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Abstract amongst multiple tasks has grown. Methods for reconfigur-
ing FPGASs in a modular manner are therefore being inten-
Communications infrastructure for modular reconfigu- sively researched.
ration of FPGAs needs to support the changing commu- At its core, a design methodology for implementing
nications interfaces of a sequence of modules. In or- modular reconfiguration must implementa communications
der to avoid the overheads incurred by a bus system orinfrastructure that supports the dynamically changing-com
network-on-chip, the approach we have taken is to create munications requirements of the modules placed on the de-
point-to-point wiring harnesses to support the dynamic in- vice at runtime. We proposed the COMMA methodology
termodule communications. These harnesses are reconin [9] to analyze an application and device parameters, and
figured at various stages in the application as necessary.implement and deploy a point-to-point wiring infrastruetu
The COMMA methodology implements applications on tile- with minimal overheads.
reconfigurable FPGAs such as the Virtex-4. This paper COMMA advocates the laying out of modules in a regu-
outlines the methodology and describes greedy and dy-lar structure on an FPGA, but this may introduce overheads
namic programming-based algorithms for merging configu- as compared to implementing traditional flattened netlists
rations, which is a central process in generating wiringhar  We analyzed the impact on the critical path delay of such a
nesses within the methodology. The effects of merging théayout in [10], concluding that the overheads are accegtabl
configuration graphs were explored with both algorithms in realistic scenarios, and can even be better than a flattene
for a range of device sizes and architectural parameters. netlist as wiring becomes more dense.
Our evaluation indicates graph merging using the greedy  Qur approach to implementing a wiring infrastructure to
method can reduce reconfiguration delay by up to 60% and support dynamically-placed modules was presented in [11].
the dynamic programming algorithm can achieve a further Graph merging a central process in the approach, was in-
50% reduction in reconfiguration delay. troduced to minimize reconfiguration delay overhead as it is
a key issue in dynamic reconfiguration. The proposed algo-
rithms show significant reductions in reconfiguration delay
1 Introduction of up to 70% for an example optical flow application.
The algorithm proposed for graph merging in [11] was
- ) . based on a greedy method and is non-optimal. In addition,
e e e 2,8 e 0o assesmntofg3ph mergg e s,
hance the functional density of FPGAs, designers have re- 'S paper proposes an improved algorithm for graph merg-
configured the device to implement various phases of an al-
gorithm over time [4][16].
As FPGA device sizes and speeds scaled, the pressure to
enhance the functional density of devices at run time abated 1-1  Related Work
However, the scale of applications has grown along with
device size; the arrival of platform FPGAs has stimulated  Current commercial support for implementing dynamic
the desire to implement more ambitious, autonomous sys-reconfiguration is through the Early Access Partial Re-
tems; and interest in devising schemes for sharing an FPGAconfiguration toolflow [17] but this does not advocate

ing and presents the results of benchmarking the two algo-
rithms.
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munications delay and area overheads compared with Figure 1. Module placement and simplified
higher-level approaches. Consequently, there is a greater 100! flow

chance of meeting area and timing constraints. No commu-

nications protocol is preferred; any protocol, if desireah

be implemented. modules can be placed on a tile-reconfigurable device such

as the Virtex 4/5 as shown in Fig. 1a. This approach main-
tains the structural advantages of a paged reconfiguration
scheme and keeps critical path delays low. A key feature
This paper provides the following specific contributions: of the approach is that we utilize spare routing capacity
. ) and wire sharing to fashion a bespoke wiring harness
1. We summarize the COMMA methodology and intro- 54 4ccommodates the intermodule communications of a

duce an |mp-roved subsequence merging algﬁr'ﬁhm t,hatsequence of module reconfigurations. In Fig. 1a, modules
uses dynamic programming to target more cha €NdNYin the white slots are segregated from the intermodule

aspects of the problem. wiring in the graywiring channel The channel width
2. We present benchmarking results showing that graph®Presented as “cw” in Fig. 1, is the width in CLBs of the
merging shows significant improvements over not 92P between_ adjacgnt slots. The p_erlmeter_ofthe devu_:e has
a channel width of5?. The objective of this segregation
is to allow independent reconfiguration of each module
3. The results also demonstrate that the new subsequenceithout requiring the wiring to be reconfigured, a la Breb-
merging algorithm shows consistent improvements ner’s fixed wiring harness [2]. However, we believe current
over the previous one. device technology is insufficiently advanced to adopt a

) i i general fixed scheme capable of interconnecting every
4. We perform architectural explorations on different ap- moqyle. Instead, we advocate tailoring the wiring harness

plication and device parameters. An interesting result 1, he applications’ needs. Ultimately it is conceivable
we observed was that using a smaller device or dis- ¢ one wiring harness may not be sufficient for an entire
abling clustering can sometimes result in a lower total application. Our goal here is to minimize the times the

reconfiguration delay for large task graphs involving yiring harness needs to be reconfigured in order to reduce
multiple reconfiguration phases. the total reconfiguration delay.

Our overall design flow (Fig. 1b) involves obtaining de-
2 The COMMA Methodology vice information (i.e. CLB and IOB grid structure etc.)
and user-supplied parameters (e.g. 0B assignments, tim-
The COMMA methodology for implementing ingrequirements etc.) to create a configuration set contain
dynamically-reconfigurable applications [9] advocates ing device- and application-specific parameters. Thislis fo
the laying out of fixed-sized reconfigurable slots where lowed by the generation of the communications infrastruc-

1.2 Specific Contributions of this Paper

merging.
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Figure 2. Wiring infrastructure generation module has associated attributes indicating its appraeima
flow size in terms of the target device resources. In Fig. 3 these

are specified by three values “x/y/z” where x is the logic cell
count, y is the arithmetic unit or DSP block count and z is
I C .. the on-chip ram block count that refer to Virtex-4 resources
ture for the application, which includes one or more wiring L .
. . . .~ say. Each edge represents a communications link between
harnesses. Each module is then wrapped in a lightweight . o
. : . = - > two modules and has three attributes: its bitwidth, the out-
or weightless interface to map its ports to specific wires in .
put port number of the source module, and the input port

its wiring harness. The modules and harnesses are then imt o
. o number of the destination module. External I/Os can also
plemented using a toolset such as the Xilinx Early-Access

Partial Reconfiguration Toolkit [17]. Please see [9] for a be represented, with the s_pecmc pad _numbers or W'th.OUt'
. S We assume the full bandwidth of each link may be required
detailed description of COMMA.
each clock cycle.

3 Wiring Infrastructure Generation 3.2 Module Clustering

Of particular interest in this paper is the “Infrastructure  The first step in the infrastructure generation process is
Generation” process in Fig. 1b. This consists of several al-to aggregate or divide the modules in the full communica-
gorithmic steps as depicted in Fig. 2, which is a detailed tions graph such that the logic size of each node in the graph
expansion of the dashed area in Fig. 1b. The inputs to thisfits into the size of the slots depicted in Fig. 1a. We use
process are an application specified as a communication®ETIS [8] for balancing the amount of logic in each parti-
graph and the configuration set from the Configurator pro- tion.
cess. The outputs are the low-level details for implementin
the wiring harnesses and module wrappers, which are ther8.3  Scheduling
to be fed into the “Module Wrapping” process. Each of the

steps in infrastructure generation are detailed in furteer Without loss of generality, we assume the clustered com-

tions of this paper. munications graph to be too large to fit onto the target de-
vice. We therefore partition the graph into a schedded

3.1 Application Specification quence of subgraphgsach of which must contain no more

nodes than the total number of slots available on the device.

The application is to be specified as a communications Each subgraph represents one of the temporal partitions of
graph, and should be derived through the natural functionalthe application that is loaded onto the device in turn. Each
partitioning of an application into modules. For example, partition comprises a smaller graph that captures the com-
a JPEG application may have DCT and Huffman encodermunications between the modules needed while the corre-
modules. A communications graph is similar to a task graph sponding configuration is active. Note that this approach
but it also contains physical details about the tasks aree-int  is currently limited to DAGS, or cyclic graphs in which the
task communications. An example is shown in Fig. 3. Each cycles do not span patrtitions.



a) If the area and timing constraints of the merged
e graph are satisfied, then remove the first two graphs
from the application sequence and replace them
with the merged graph. Return to step (i) and try
to merge the next graph in the schedule with the

merged graph at the start of the sequence.

Figure 4. A scheduled graph sequence

Traditional partitioning and scheduling algorithms such b) Otherwise, the constraints are not satisfied and the
as those of GajjalaPurna [15] and METIS [8] are used in merge is unsuccessful. The first graph in the ap-
this step. plication sequence forms a subsequence on its own,

known as aperiod Remove it from the applica-
3.4 Graph Merging tion sequence and add it to the list of merged sub-
sequences.

The output of the scheduling step is a sequence of com-
munications subgraphs. A schedule can be depicted as
shown in Fig. 4. Each subgraph can have a constia})
which specifies its target maximum critical path delay. This
constraint can be specified if it is known that the modules
in the subgraph must operate at a specific minimum clock3.4.2 Merging Two Graphs

frequency. Ideally, a single wiring harness is implemented We define the problem of merging a subgra@hwith the
to support the communications needs of the entire sequencgubgr‘,ﬂph&,1 following it in the schedule as follows:

of subgraphs. But building such a harness may exceed area Define graphs to be equivalent ta?, with additional,

and timing constraints. Theraph merging step therefore unconnected “blank” nodes representing empty slots that

a:mds o rr;]erge hcct)gtltg?ous Sllibsequegcesbfrom the SChﬁdCJO does not make use of. Place each nodé&ininto S
ued graph such that for €ach merged Subsequence a hals ., a1 the total number of shared arc-bits is maximized
ness can be built that supports the communications for all

) ) and the total number of module swaps is minimized. An arc
subgraphs in the subsequence. Graph merging attempts tgan be shared if there exists an arg , between two nodes

reuse previously-formed connections and to make use of(u v)in S, and there exists an aig, , between two nodes
spare wiring capacity to reduce the overall cost of recon- (w’ 2)in G and ifw replacesu anéli; replacesy
9 1 y .

figuring the wiring at application run-time. The reconfig- . . . : _—
uration delay of a sequence of merged graphs can thus be This problem is of exponential complexity. Assigning

o . . 4 UL nhodes in one graph to nodes in another is similar to the
split into two parts: the time to reconfigure individual mod- uadratic assianment problem. which is NP-hard. We there-
ules, and the time to reconfigure the wiring harness when it g P ' :

. o . fore pr he following heuristic algorithm Ivesthi
is necessary to do so. The goal of graph merging is to min- ore propose the following heuristic algorithm to solvest

imize the total reconfiguration delay of the application se-
guence by selecting appropriate subsequences to merge and
determining module placements that minimize the need to
reconfigure. The critical path delay of each resulting vgirin i) If there are nodes inG; that have the same type as
harness must not exceed the minimatr; ) for the graphs nodes inS, place them into the same slot. Modules
of the corresponding subsequence. that have the same module type do not require recon-
figuration. Module “type” is analogous to the VHDL
entity or Verilog module type.

iii) Return to step (i) and repeat until the application se-
quence has been processed in its entirety i.e. all periods
have been formed.

i) Order all nodes inG; in order of the total number of
bits of communication required.

3.4.1 Subsequence Merging

We initially examined the following greedy algorithm for i) For the rest of the nodes 6/, place each node into
determining which subsequences should be créfated a slot (inS) according to a cost function that accounts
for the total number of communication bits that will be
i) Merge the first two graphs in the application sequence ~ Shared due to placing the node, the total number of bits
using the algorithm in section 3.4.2. that may be shared due to communications between un-
placed nodes, and the reconfiguration time.

i) Map the merged graph using the algorithm described
in section 3.4.3 and examine the area use and critical3.4.3 Graph Mapping

path delay: ) ) )
We definemappingas the assignment of slots to each mod-

1in the following section an enhanced merging algorithm &spnted ule in a subgraph and the determination of an estimated




Improved Algorithm for Subsequence

Merging

global routing path for each arc in the subgraph. We first de-4
termine appropriate slot placements for each module. This
problem was addressed in [10], in which placement is per-
formed as a two-step process: the first minimizes th_e num- | ot us denote period to be a merged subsequence of
ber of wires across any cut, and the second minimizes the

| X oo communications subgraphs for which a single wiring har-
tot_al ere_length. Qurexperlments were initially perfomin(_e ness is implemented. Application execution proceeds by
using an integer linear program, but we now use recursive-

; ) configuring a wire harness and the modules for the first sub-
blsect_lon and branch-and-bound standard-cell placemenbraph in a period. For the remaining subgraphs in the pe-
techniques. . _ riod, module reconfiguration only is required. At the end

It is then necessary to estimate the wire delays of a setyf the period the wiring harness for the next period is con-
of placed modules to ensure that they do not exceed tim-figred along with the module reconfigurations needed to
ing and area constraints. The device is divided into routing implement the first subgraph of the following period.
cells as suggested in [12]. For each wire between any two  Tpe greedy method described in the previous section
modules, a global routing path is estimated by performing merges as many subgraphs into each successive period as
an mformed search through.the cells, while the area is con-jg possible without exceeding wiring harness area or delay
strained by the number of wires that pass across the boundgnsiraints. This approach does not consider the potintial
aries of each cell. The following algorithm is used: better period arrangements possible when periods are cho-
sen to exploit similarities in structure between conseeuti
communications subgraphs. The greedy method is thus un-
likely to be optimal.

The problem looks suited to a dynamic programming
approach in which the solutions to longer sequences are
formed by combining the solutions to shorter sequences [3].
Unfortunately, the solutions to shorter sequences carot b
readily concatenated since the cost of merging a sequence
depends, in part, upon the wiring harness of the prior pe-
riod and the arrangement of configured modules at its end
of the prior period. It is therefore difficult to assign a fixed
cost to a given merged subsequence. However, this problem
can be overcome by imposing a heuristic assumption that at
the start of each period a complete reconfiguration of the
FPGA is performed to implement the wiring harness and
the module arrangement for the first subgraph of the period.

The “modified priority A* search” mentioned in step ii)  With this assumption, the cost of merging a subsequence of
is one in which the cell ordering in the queues is modified graphs can be assumed to be independent of the previous
to utilize the channels more efficiently. The node ordering period and the problem assumes optimal substructure.
takes into account the source and destination slots. If they
are in the same column, for example, the channels on the4.1 Dynamic Programming Approach to Subse-
left or right side of the device have higher priority than the guence Merging
center channel. This is to avoid congestion and to maximize
the area use. Let us define &plit to be a position between two graphs

When all the arcs are mapped to the device, we proceedn the schedule where we examine the possibility of ending
to estimate the wire delay of the harness with a cost modela period and starting another. Let a split at positiohe
that increasingly penalizes the wire delay as channels bedefined as a split between graprand graphk + 1 in the
come saturated. We factor two variables into the nominal scheduled graph sequence.

i) Sort all arcs in descending order of length.

i) For each arc, perform a modified priority A* search
from the source to the destination nodes.

i) If we cannot implement the full width of the arc due
to insufficient wire capacity, determine the maximum
width implementable.

iv) “Use” this route by decrementing the slot and channel
boundary capacities by the maximum available width.

v) If the full arc width cannot be implemented, return to
step 2 and find a route for the remaining width.

wire delay, one to limit the channel saturation rate and the
other to decide how much to penalize the delay as it ap-
proaches this limit.

We have implemented the algorithm for use in graph

Consider a scheduled graph sequence of length
Establish the: x n memoization table. The rowsin
this table correspond to the length of subsequences consid-
ered for splitting into optimal periods. Columrsrecord

merging and the task of comparing the estimated delaysthe optimal split arrangement and the corresponding total

with actual wire delays is in progress. The bulk of the work
in this task involves integrating our algorithms with curtre
Xilinx tools so as to implement the graphs on the FPGA.

reconfiguration delay for splitting a subsequence of length
commencing with graphiin the schedule. Note that the to-
tal reconfiguration cost does not include the delay of the



initial complete reconfiguration required to configure the .
wiring harness for the first period in the subsequence and =3 @ @ @ (G, ) (Gs ) Gb G 3
the modules for the first graph in the subsequence. : : N\
Record a reconfiguration delay,; = 0 for each ele- ‘ 1 ‘
ment of the first row of the table. For each graphinthe ., @ (e
schedule, this records tlzero cosiof configuring its mod- - /1 \ %) @ @
ules after the complete configuration undertaken to imple- S
ment the wiring harness and the modules for the period con- v : l
sisting of the graph on its own. ! !
For all subsequences of the schedule of lerigthl < i=7 @ @ @ @
i < n, the algorithm does the following (without loss of
generality, let the subsequence under consideration span x
graphsz; throughG;): k=3

1. Consider forming a period over the entire subsequence Figure 5. Memoization example in the dy-
using the algorithms described in Sections 3.4.2 and | i programming algorithm
3.4.3. Letry be the reconfiguration delay incurred by
reconfiguring the modules for all the graphs in the sub-
sequence. If merging all graphs in the subsequence ex-
ceeds area/time constraints on the wiring harness, then, = 4 are used for the right of the split &t= 3. The total

letry = oo. reconfiguration delay is calculated by adding the previpusl
5 Consid ol - k< calculated values from the split arrangements fr@Ginto
- Consider every possible position: 1 <k < — L, G3 and G4 to G; together with full reconfiguration delay

for a single split in the subsequence. Determine the incurred betweeri’s andG,.

][efl:onflgu:rz]itlon costrtk for that p:)§|t|on by adding the The dynamic programming algorithm is specified in de-
ollowing three cost components: tail in Algorithm 1.

(a) the reconfiguration cost of the optimal arrange-
ment of splits for the subsequence of graphs 4.2 Complexity
1...k, i.e. for the part of the subsequence to
the left of the splitk, as determined when sub- Half the memoization table needs to be filled in. To fill
sequences of lengthwere considered, in an entry, a trial merge of all graphs in the sequence is at-
(b) the reconfiguration cost of the optimal arrange- tempted during Phase 1 and on the order tfal splits and
ment of splits for the subsequence of graphs cost comparisons need to be performed in Phase 2. Phase
k + 1...i (to the right of k, found for subse- 2 thus contribute®(n?) to the time complexity of the dy-
guences of length— &), and namic programming algorithm.
(c) the cost of the full reconfiguration thatis incurred ~ 11€ Merging step involves sorting and then linearly pro-
when commencing a new period after position ~ €€SSiNg the modules for_ each subgrap_h being merged. As
the number of modules in a subgraph is a constant depen-
3. Letrp; be the minimumofy . .. 7;_1, which is mem- dent upon the device size, it can be argued that the merg-
oized along with the corresponding split arrangement ing therefore take®)(n) time for n graphs. Mapping the
in the dynamic programming table at céll ;). merged graph involves allocating the merged modules to the
device slots and routing the wires. Allocating the modules
Thus, as longer subsequences are considered, the estimaequiresp log p time for p pins. It could be argued that the
tion of the reconfiguration delay relies on the memoization number of pins is roughly constant per subgraph and thus
of shorter subsequences. The best splits at lendihally p is O(n) for n merged subgraphs. Determining a global
indicate the optimal set of periods for the scheduled graph. route for each wire takes time proportional to the number of
An example of this memoization is depicted in Fig. 5. cells crossed, which is a function of the number of slots
The iteration currently considered is at a subsequencein the device that is constant. The number of wires can
length ofi = 7 commencing at grapty;. If a split were also be argued to b&(n) in size assuming the commu-
to be placed at = 3, the optimal split arrangement for nications density of the applications communications bgrap
subgraphg; to G5 obtained from the iteration = 3 is is fairly homogeneous. For a given device size, the merg-
used for the left of the split. Correspondingly, the optimal ing step therefore takes time proportional to the number of
splits for subgraphsg/, to G; obtained from the iteration  subgraphs being merged, which(O$n).



Algorithm 1 Dynamic Programming Algorithm T T Aterpepaion ———

1: Create an arragplitsn, n] Graph Synthesis Graph Preparation
2: {Dimensions — [subsequence length, start position] Application
3: for i = 1 ton do {i: subsequence length Parameters /| el [ paee
4. for j=1ton — i+ 1do{j: start position}
5: if i =1 then
6: Splits[i, j] < 0 SynGthpster > cmggeurliﬁg J]
7. else Clustered i
8: {Phase 1:Whole subsequence merged i Clustered
9: Create period®; j1,—1 F“"G‘f;’,',“hms' Comms . Graph
10: if map_success(Pj j+i—1) then N | \{\
11: MinRecfg «— Non -Clustered
EstimateRf gDelay(Pj_, jﬂ-,l) fnfrastructure Generation ‘ » Paﬁifl?g:ng
12: else Infrastructure l«@=2: Generate Harness ==
13: MinRecfg — 00 Generation .
W endi : | [,
15: BestSplits «— 0 Quality \_/'i
16: {Phase 2:Determine best spljt Assessment
17 for k = 1toi — 1 do {k: splitposition} | + 1oy roter o Y
18: TestSplits — Splits|k, j] | Splits[i—k, j+ '
k] . .
19: S «— CreateSolutionInstance(TestSplits) Figure 6. Experimental setup
20: CurrentRecfg —
.E‘mmateRecf g Delay(S) nesses that exhibit minimal difference. Investigatingpalg
21 if CurrentRecfg < MinRecfgthen : . . o O
- BestSplits — TestSplits nthms which deal with the additional complexity is a chal-
. lenging area for further work.
23: MinRecfg < CurrentRecfg
24: end if
25: end for 5 Experimental Setup
26: Splits[i, j] < BestSplits
20 end if As benchmarks for dynamically-reconfigurable comput-
225 en?jr}grfor ing provided as module-based communications graphs are

not readily available, manually developing and implement-
ing a range of applications such as the optical flow algo-
rithm we analyzed in [11] is too time-consuming. Thus, the
erhethodology used to conduct these experiments is to gener-
ate synthetic applications with a variety of parameters rep
resentative of actual dataflow or streaming applicatioms an
to subject these applications to the infrastructure geioera
] ) process using the full range of device sizes and architec-
4.3 Optimality ture parameters. The overall goal of the experiments is to
observe the results when a variety of target applications is
When the periods are actually implemented on an FPGA, mapped onto a range of device sizes with differing architec-
rather than performing a full reconfiguration of the device a ture parameters. In order to do this, the experimental regim
period start, a difference reconfiguration is performed, an shown in Figure 6 was followed.
thus the algorithm overestimates the reconfiguration delay = There are three main phases in the experimental setup,
This is beneficial when the application is actually imple- which are executed iteratively. Initially, a graph is syath
mented on the device, but the impact of applying the heuris-sized based on the following parameters: the number of
tic simplification should be analyzed. modules, the amount of variation in the types of modules,
If this simplification were not applied, then the reconfig- the sizes of the modules and the communications density.
uration delay between periods could be reduced in two fore-This results in a full communications graph that is then pre-
seeable ways, by maintaining the same module allocationpared for infrastructure generation based on device param-
between periods, and by trying to implement wiring har- eters, i.e., the FPGA device size and the channel width as-

As Phase 1 can be abandoned beyond a certain subs
quence length, it contribute$n?) to the dynamic program-
ming algorithm, which therefore hag(n?) overall time
complexity.



sumed for the wiring harness. The graph preparation phas¢ Device CLB Number| CW:2 | CW:4 | CW:8
partitions the graph and outputs a set of scheduled graphg XC4VLX_ Array of Slots | CLBs | CLBs | CLBs

that are processed by the infrastructure generation pbase t 15 64 x 24 8 140 96 32
generate a communications infrastructure and to obtain est 25 96 x 28 12 168 120 48
timates of the total reconfiguration time and critical path 40 128 x 36 16 224 | 168 80
delay. 60 128 x 52 16 336 264 144
The one full communications graph for the synthesized 80 160 x 56 20 364 | 288 | 160
application is then prepared for a different set of device 100 192 x 64 24 420 | 336 192
parameters, and the infrastructure generation phase is re- 160 192 x 88 24 588 | 480 | 288
executed. This repeats until all device parameters have bee 200 192 x 116 24 784 | 648 | 400
exhausted, after which a new application’s graph is synthe-
sized. Hence, the testing is iterative. Table 1. Device Parameters

The experimental setup also allows for two different

modes of operation in the graph preparation phase — with reasonable slot sizes. Table 1 lists the devices testedhand t

and without module clustering (see Section 3.2). If module number of slots and slot sizes for each device and channel
clustering is not required, that step is skipped and thetgrap width.

is partitioned and scheduled as is.
5.1 Parameters Chosen for the Experiments 6 Results

5.1.1 Application Parameters 6.1 Comparisons between Not Merging, and

L Merging using the Greedy Method and Dy-
The parameters used to generate the applications graphs namic Programming Algorithms

were as follows:

Test runs for 120 application graphs with the parameters
specified in Section 5.1.1 were performed on the LX devices
shown in Table 1. The average reductions in reconfiguration
delay and the estimated contribution to the critical path by
e Module Type Variation: Primarily 20% (i.e., 40 mod-  the wiring harness are shown in Figs. 7a to 7f. In these

ule types) to observe the effects of reducing reconfig- plots the modules have undergone clustering to pack them

uration delay by allocating modules belonging to the into the available slot area.

same type in neighboring subgraphs in the same slots. Three lines are plotted for each graph. One corresponds

0%, 40% and 60% were also used to observe the ef-to not merginghe communications subgraphs, a second re-

fects of different amounts of variation. ports the results for thgreedymethod, and the third cor-

. . o ) responds to the performance of thgnamic programming
e Module Slze_: Primarily 60 CLBs. This is approxi- approach proposed in this paper.

mately the size of a DES core when mapped onto a o mergingrefers to using the COMMA methodology

Virtex-4 device. As a comparison, a M|croBIaze Pro- - without applying the graph merging process. Each period

cessor takes up 226 CLBs, Wh'Ch IS sllghtly!argerthan consists of just one communications subgraph, and thus

a slot on an XCAVLX40 with a channel width of 2. each subgraph has its own wiring harness that needs to be

Module sizes of 35 ar_1d 85 CLBs were also useq t0 0b- reconfigured at every subgraph transition. Note that in this

serve the effects of different amounts of clustering. assessment modules are still allocated judiciously so as to

« Communications Density: An average of 3-6 outgo- reduce reconfiguration delays and thus to provide an unbi-

ing edges per module with an exponentially decreasing 25€d assessment of graph merging alone.
distribution of 2 to 32 bits per edge.

e Number of Modules: 200. Considering large graphs
allows full architectural exploration to be demon-
strated.

6.1.1 Reconfiguration Delay

5.1.2. Device and Architecture Parameters Figs. 7a, 7c and 7e show the total reconfiguration delay for

Each application subgraph was mapped onto all of the avail-channel widths of 2, 4 and 8 respectively.

able devices in the Virtex-4 LX series. The LX series was It is immediately apparent from the difference between
chosen to be most suitable for this experiment because ithe “NoMerge” and the “Greedy” lines that performing
contains mainly logic. Wiring harness channel widths of 2, graph merging provides a significant reduction in reconfigu-
4 and 8 were chosen as these are the smallest possible falation delay in smaller devices, and at larger channel gidth
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Figure 7. Reconfiguration and critical path delays for 120 ap
ules, 20% type variation, 60 CLB exact module size, clustere
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in particular. In addition, consistent improvements are ob
tained by the dynamic algorithm over the greedy method.
It is also clear from the plots that the reconfigurationde-  «+ :
lays are always higher when the channel width is larger.
This is because the slot sizes are smaller when more de£
vice area is allocated for channel width, thus more config-
urations are necessary to implement the entire application
With the COMMA methodology the system designer can
try different channel widths in decreasing order to find the T .
smallest one that can accommodate the application, while ) &
containing overheads within acceptable bounds. ka
It is also apparent that there may be some small devices R
that do not follow general trends. We will discuss these o} - " = y p S
anomalies in detail in section 6.2. Percentage Improvement in Reconfiguration Delay
The amount of improvement between the greedy and dy-
namic programming algorithms largely depends on the ap-  Figure 8. Percentages of reconfiguration de-
plication, thus an average difference over all the test runs  lay reduction for graphs with 200 modules,
may not be as significant as comparing the results for indi- 20% type variation, 60 CLB exact module
vidual applications. The plot in Fig. 8 shows the percentage ~ Size, clustered, 2880 runs
reduction in reconfiguration delay against the percentége o
all the test runs that achieved that reduction. This graph wa
derived from the results plotted in Figs. 7a to 7f. From this of having sufficient channel capacity to satisfy the wiring
summary plot we can see that performing graph mergingneeds of large subgraphs.
with the greedy method results in improvements in recon-
figuration delay of up to 60% for half of the total number of g o Reconfiguration Delay Anomaly
solutions. Using the dynamic programming algorithm pro-

vides further improvements over the greedy method. Only An interesting point in the plots occur where a larger de-
0, i i i i - . . . .
11% of the test runs did not have a reduction in reconfigura vice seems to result in a larger reconfiguration delay, e.g.,

tion delay, and this is over and above the reduction achieveqn Fig. 7¢ between the LX15 and LX25 when the channel

30 B

20 F R

Percentage of Soluti

by the greedy method. width is 4, and in Fig. 7e between the LX40 and the LX60
when the channel width is 8. To explain this, note that from
6.1.2 Critical Path Delay Table 1 the LX15 device has a slot size of 96 CLBs and the

LX25 device has a slot size of 120 CLBs when the channel

Figs. 7b, 7d and 7f show the estimated critical path delayswidth is 4. Since the type variation is 20% and the module
of the wiring harnesses obtained through test runs for chan-size is 60, the total number of possible module types for the
nel widths of 2, 4 and 8 respectively. It is apparent that LX15 is 20% of 200 which is 40. In the LX25, however, two
not merging always results in lower critical path delays and modules can be clustered into a single slot, thus the number
this is to be expected as the wiring harnesses are then moref possible module types grows #6% = 1600. This sig-
sparse and the channel saturation is low. Because both theificantly reduces the probability of neighboring configura
greedy and dynamic algorithm try to merge subgraphs un-tions having modules of the same type. Thusthe LX15 hasa
til the wiring harness cannot fit into the wiring channels, much greater chance as compared to the LX25 of reducing
the critical path delays are similar. An improvement to the the slot reconfiguration time by allocating modules of the
graph merging algorithm to reduce the critical path delay same type in neighboring configurations to the same slots.
may be considered in the future. We can see that this anomaly is not present when the chan-

It is expected that as the device size increases the criti-nel width is 2, because the LX15 has a slot size of 120 CLBs
cal path delay also increases because the number of modulthen, allowing it to fit two modules as well. In addition, it
slots increases and the distance between those that are futakes twice as long to reconfigure each slot in the LX25 as
thest apart grows. For smaller devices, the delays are highecompared to the LX15, and since the device is 50% taller it
with larger channel widths because opportunities for clus- may take up to 50% longer to reconfigure the wiring.
tering are diminished, and thus the wiring harness suffers  Since the number of possible module types matter signif-
more congestion as more subgraphs are merged per periodcantly we have also performed experiments to investigate
Diminishing critical path delays for larger channel widths how different amounts of type variation contribute to this
on large devices (LX100 and above) illustrate the benefit effect. The plots are not included here due to space con-
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Table 2. Number of periods and configura-
tions (in parentheses)
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Reconfiguration Delay (us)

same number of periods for both cases, but it must be noted
that there are many more configurations, 15 vs. 5, as shown

2000

1000 - | in parentheses. The corresponding region of the plot has the
clustered graphs outperforming the non-clustered graphs.

O T a0 e 0 100 120 w0 100 0 00 This observation follows on with the LX60 where the num-
XCAVLX Device ber of periods when clustered is now less than when the

graphs are not clustered. The LX60 has the same height as
the LX40, thus the same number of slots, and uses the same
number of configurations as in the non-clustered case.

Plots of the results for channel widths of 4 and 8 show
similar trends.

Figure 9. Reconfiguration delays for clus-
tered and unclustered cases, 200 modules,
20% type variation, 60 CLB exact module
size, channel width 2, dynamic algorithm, 120
runs

7 Conclusion and Future Work

straints. The results show that with no type variation, the
reconfiguration delay is very small and the plot is almost
flat. There is little difference in the results for type varia
tions of 20%, 40% and 60% except that there is a slight in-
crease in reconfiguration delay with larger type variations
More importantly, they all exhibit the same effect between
the LX15 and LX25. These results appear to confirm our
hypothesis.

We have proposed an improved subsequence merging
algorithm with the aim of reducing reconfiguration delays
in the point-to-point wiring harnesses used for communi-
cations in applications involving numerous modular recon-
figurations. The results show that graph merging provides
reductions of up to 60% in reconfiguration delay over not
merging, and that there can be a further benefit of 50%
to using a dynamic programming approach over a greedy
method in the merging process. The critical path delay is
increased due to merging and this is expected as the wiring
channels are more saturated after merging. The combined

The results indicate that module clustering plays an im- effect of both delays on execution time need to be consid-
portant role in the observed reconfiguration delay. Thus ered for each application.
we examined the effect of disabling clustering, i.e., pigci As expected, for an application mapped as a long se-
only one module in each slot. Assuming that each module isquence of fixed sized modules, larger devices incur lower
packed into the thinnest vertical slice in each slot, naslu  reconfiguration delays since they can accommodate more
tering the modules reduces the time to reconfigure each sloimodules with a single wiring harness. However, module
as only the area for one module needs to be reconfiguredclustering can limit the ability to reuse a slot with an iden-
However, the number of configurations increases as the totical module due to the greater variety in aggregated mod-
tal number of modules is not reduced through clustering.  ules created during clustering. The smallest devices inhib

Fig. 9 shows the results of comparing the clustered andclustering and can sometimes perform better if the appar-
non-clustered reconfiguration delays for the dynamic pro- ent module type variation is smaller than for slightly large
gramming algorithm with a channel width of 2. The plots devices. Disabling clustering altogether can mitigats thi
show that for smaller device sizes there is an advantage tceffect.
not clustering the modules due to higher apparent module It is also apparent that a system designer should try to
type variation as explained above. However, as the deviceuse the smallest channel width that can accommodate the
size increases, the number of configurations and periods arepplication, since both the reconfiguration delays andt crit
greatly reduced as compared to not clustering, as shown forcal path delays of the wiring harness increase as the channel
a particular application graph in Table 2. width increases and execution time will consequently suffe

From Table 2 we can observe that the LX25 needs 5 pe- The methods discussed in this paper apply to applica-
riods when clustered and 4 when not. The LX40 uses thetion problems that can be modeled as a linear sequence of

6.3 The Effect of Module Clustering



configurations. More sophisticated applications that irequ
forking or joining sequences to be modeled are currently
not supported.

The methods are also restricted to application scenarios(1?]
in which the temporal relationships and communications re-
guirements of modules are known at design time. Other

than catering for worst-case requirements, the methods arg; 3

unable to cope with communications requirements that only
become apparent at run time.

These limitations of the methods are the subject of on-
going investigations.
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