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Abstract

Communications infrastructure for modular reconfigu-
ration of FPGAs needs to support the changing commu-
nications interfaces of a sequence of modules. In or-
der to avoid the overheads incurred by a bus system or
network-on-chip, the approach we have taken is to create
point-to-point wiring harnesses to support the dynamic in-
termodule communications. These harnesses are recon-
figured at various stages in the application as necessary.
The COMMA methodology implements applications on tile-
reconfigurable FPGAs such as the Virtex-4. This paper
outlines the methodology and describes greedy and dy-
namic programming-based algorithms for merging configu-
rations, which is a central process in generating wiring har-
nesses within the methodology. The effects of merging the
configuration graphs were explored with both algorithms
for a range of device sizes and architectural parameters.
Our evaluation indicates graph merging using the greedy
method can reduce reconfiguration delay by up to 60% and
the dynamic programming algorithm can achieve a further
50% reduction in reconfiguration delay.

1 Introduction

The ability of FPGAs to be reconfigured at run time has
intrigued researchers for the past 15 years. In order to en-
hance the functional density of FPGAs, designers have re-
configured the device to implement various phases of an al-
gorithm over time [4][16].

As FPGA device sizes and speeds scaled, the pressure to
enhance the functional density of devices at run time abated.
However, the scale of applications has grown along with
device size; the arrival of platform FPGAs has stimulated
the desire to implement more ambitious, autonomous sys-
tems; and interest in devising schemes for sharing an FPGA

amongst multiple tasks has grown. Methods for reconfigur-
ing FPGAs in a modular manner are therefore being inten-
sively researched.

At its core, a design methodology for implementing
modular reconfiguration must implement a communications
infrastructure that supports the dynamically changing com-
munications requirements of the modules placed on the de-
vice at runtime. We proposed the COMMA methodology
in [9] to analyze an application and device parameters, and
implement and deploy a point-to-point wiring infrastructure
with minimal overheads.

COMMA advocates the laying out of modules in a regu-
lar structure on an FPGA, but this may introduce overheads
as compared to implementing traditional flattened netlists.
We analyzed the impact on the critical path delay of such a
layout in [10], concluding that the overheads are acceptable
in realistic scenarios, and can even be better than a flattened
netlist as wiring becomes more dense.

Our approach to implementing a wiring infrastructure to
support dynamically-placed modules was presented in [11].
Graph merging, a central process in the approach, was in-
troduced to minimize reconfiguration delay overhead as it is
a key issue in dynamic reconfiguration. The proposed algo-
rithms show significant reductions in reconfiguration delay
of up to 70% for an example optical flow application.

The algorithm proposed for graph merging in [11] was
based on a greedy method and is non-optimal. In addition,
a more thorough assessment of graph merging was desired.
This paper proposes an improved algorithm for graph merg-
ing and presents the results of benchmarking the two algo-
rithms.

1.1 Related Work

Current commercial support for implementing dynamic
reconfiguration is through the Early Access Partial Re-
configuration toolflow [17] but this does not advocate



any particular strategy or layout for the communications
needed by dynamic modules. Research attempts to im-
plement communications infrastructures include bus-based
approaches [7][5], network-on-chip approaches [14][1] and
off-chip communication handlers [6][13]. There has not yet
been any analysis, however, of how well these methods per-
form with a variety of applications and architectural param-
eters.

Of particular concern in using bus-based, NoCs and off-
chip communication are the area, communications and re-
configuration delay overheads. Factors contributing to these
overheads include module adapter latency and area, arbitra-
tion (for buses), I/O delays (for off-chip handlers), network
router latency and area (for NoCs). The communications
overheads of such methods cannot be easily assessed be-
cause data requirements vary depending on the application.

For these reasons we have chosen to use customized
point-to-point wiring to implement the communications in-
frastructure. Point-to-point connections have lower com-
munications delay and area overheads compared with
higher-level approaches. Consequently, there is a greater
chance of meeting area and timing constraints. No commu-
nications protocol is preferred; any protocol, if desired,can
be implemented.

1.2 Specific Contributions of this Paper

This paper provides the following specific contributions:

1. We summarize the COMMA methodology and intro-
duce an improved subsequence merging algorithm that
uses dynamic programming to target more challenging
aspects of the problem.

2. We present benchmarking results showing that graph
merging shows significant improvements over not
merging.

3. The results also demonstrate that the new subsequence
merging algorithm shows consistent improvements
over the previous one.

4. We perform architectural explorations on different ap-
plication and device parameters. An interesting result
we observed was that using a smaller device or dis-
abling clustering can sometimes result in a lower total
reconfiguration delay for large task graphs involving
multiple reconfiguration phases.

2 The COMMA Methodology

The COMMA methodology for implementing
dynamically-reconfigurable applications [9] advocates
the laying out of fixed-sized reconfigurable slots where
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Figure 1. Module placement and simplified
tool flow

modules can be placed on a tile-reconfigurable device such
as the Virtex 4/5 as shown in Fig. 1a. This approach main-
tains the structural advantages of a paged reconfiguration
scheme and keeps critical path delays low. A key feature
of the approach is that we utilize spare routing capacity
and wire sharing to fashion a bespoke wiring harness
that accommodates the intermodule communications of a
sequence of module reconfigurations. In Fig. 1a, modules
in the white slots are segregated from the intermodule
wiring in the graywiring channel. The channel width,
represented as “cw” in Fig. 1a, is the width in CLBs of the
gap between adjacent slots. The perimeter of the device has
a channel width ofcw

2
. The objective of this segregation

is to allow independent reconfiguration of each module
without requiring the wiring to be reconfigured, à la Breb-
ner’s fixed wiring harness [2]. However, we believe current
device technology is insufficiently advanced to adopt a
general fixed scheme capable of interconnecting every
module. Instead, we advocate tailoring the wiring harness
to the applications’ needs. Ultimately it is conceivable
that one wiring harness may not be sufficient for an entire
application. Our goal here is to minimize the times the
wiring harness needs to be reconfigured in order to reduce
the total reconfiguration delay.

Our overall design flow (Fig. 1b) involves obtaining de-
vice information (i.e. CLB and IOB grid structure etc.)
and user-supplied parameters (e.g. IOB assignments, tim-
ing requirements etc.) to create a configuration set contain-
ing device- and application-specific parameters. This is fol-
lowed by the generation of the communications infrastruc-
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ture for the application, which includes one or more wiring
harnesses. Each module is then wrapped in a lightweight
or weightless interface to map its ports to specific wires in
its wiring harness. The modules and harnesses are then im-
plemented using a toolset such as the Xilinx Early-Access
Partial Reconfiguration Toolkit [17]. Please see [9] for a
detailed description of COMMA.

3 Wiring Infrastructure Generation

Of particular interest in this paper is the “Infrastructure
Generation” process in Fig. 1b. This consists of several al-
gorithmic steps as depicted in Fig. 2, which is a detailed
expansion of the dashed area in Fig. 1b. The inputs to this
process are an application specified as a communications
graph and the configuration set from the Configurator pro-
cess. The outputs are the low-level details for implementing
the wiring harnesses and module wrappers, which are then
to be fed into the “Module Wrapping” process. Each of the
steps in infrastructure generation are detailed in furthersec-
tions of this paper.

3.1 Application Specification

The application is to be specified as a communications
graph, and should be derived through the natural functional
partitioning of an application into modules. For example,
a JPEG application may have DCT and Huffman encoder
modules. A communications graph is similar to a task graph
but it also contains physical details about the tasks and inter-
task communications. An example is shown in Fig. 3. Each
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Figure 3. An example of a communications
graph

module has associated attributes indicating its approximate
size in terms of the target device resources. In Fig. 3 these
are specified by three values “x/y/z” where x is the logic cell
count, y is the arithmetic unit or DSP block count and z is
the on-chip ram block count that refer to Virtex-4 resources,
say. Each edge represents a communications link between
two modules and has three attributes: its bitwidth, the out-
put port number of the source module, and the input port
number of the destination module. External I/Os can also
be represented, with the specific pad numbers or without.
We assume the full bandwidth of each link may be required
each clock cycle.

3.2 Module Clustering

The first step in the infrastructure generation process is
to aggregate or divide the modules in the full communica-
tions graph such that the logic size of each node in the graph
fits into the size of the slots depicted in Fig. 1a. We use
METIS [8] for balancing the amount of logic in each parti-
tion.

3.3 Scheduling

Without loss of generality, we assume the clustered com-
munications graph to be too large to fit onto the target de-
vice. We therefore partition the graph into a scheduledse-
quence of subgraphs, each of which must contain no more
nodes than the total number of slots available on the device.
Each subgraph represents one of the temporal partitions of
the application that is loaded onto the device in turn. Each
partition comprises a smaller graph that captures the com-
munications between the modules needed while the corre-
sponding configuration is active. Note that this approach
is currently limited to DAGs, or cyclic graphs in which the
cycles do not span partitions.
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Traditional partitioning and scheduling algorithms such
as those of GajjalaPurna [15] and METIS [8] are used in
this step.

3.4 Graph Merging

The output of the scheduling step is a sequence of com-
munications subgraphs. A schedule can be depicted as
shown in Fig. 4. Each subgraph can have a constraintd(Gi)
which specifies its target maximum critical path delay. This
constraint can be specified if it is known that the modules
in the subgraph must operate at a specific minimum clock
frequency. Ideally, a single wiring harness is implemented
to support the communications needs of the entire sequence
of subgraphs. But building such a harness may exceed area
and timing constraints. Thegraph merging step therefore
aims to merge contiguous subsequences from the sched-
uled graph such that for each merged subsequence a har-
ness can be built that supports the communications for all
subgraphs in the subsequence. Graph merging attempts to
reuse previously-formed connections and to make use of
spare wiring capacity to reduce the overall cost of recon-
figuring the wiring at application run-time. The reconfig-
uration delay of a sequence of merged graphs can thus be
split into two parts: the time to reconfigure individual mod-
ules, and the time to reconfigure the wiring harness when it
is necessary to do so. The goal of graph merging is to min-
imize the total reconfiguration delay of the application se-
quence by selecting appropriate subsequences to merge and
determining module placements that minimize the need to
reconfigure. The critical path delay of each resulting wiring
harness must not exceed the minimumd(Gi) for the graphs
of the corresponding subsequence.

3.4.1 Subsequence Merging

We initially examined the following greedy algorithm for
determining which subsequences should be created1:

i) Merge the first two graphs in the application sequence
using the algorithm in section 3.4.2.

ii) Map the merged graph using the algorithm described
in section 3.4.3 and examine the area use and critical
path delay:

1In the following section an enhanced merging algorithm is presented

a) If the area and timing constraints of the merged
graph are satisfied, then remove the first two graphs
from the application sequence and replace them
with the merged graph. Return to step (i) and try
to merge the next graph in the schedule with the
merged graph at the start of the sequence.

b) Otherwise, the constraints are not satisfied and the
merge is unsuccessful. The first graph in the ap-
plication sequence forms a subsequence on its own,
known as aperiod. Remove it from the applica-
tion sequence and add it to the list of merged sub-
sequences.

iii) Return to step (i) and repeat until the application se-
quence has been processed in its entirety i.e. all periods
have been formed.

3.4.2 Merging Two Graphs

We define the problem of merging a subgraphG0 with the
subgraphG1 following it in the schedule as follows:

Define graphS to be equivalent toG0 with additional,
unconnected “blank” nodes representing empty slots that
G0 does not make use of. Place each node inG1 into S

such that the total number of shared arc-bits is maximized
and the total number of module swaps is minimized. An arc
can be shared if there exists an arcau,v between two nodes
(u, v) in S, and there exists an arcaw,x between two nodes
(w, x) in G1, and ifw replacesu, andx replacesv.

This problem is of exponential complexity. Assigning
nodes in one graph to nodes in another is similar to the
quadratic assignment problem, which is NP-hard. We there-
fore propose the following heuristic algorithm to solve this:

i) Order all nodes inG1 in order of the total number of
bits of communication required.

ii) If there are nodes inG1 that have the same type as
nodes inS, place them into the same slot. Modules
that have the same module type do not require recon-
figuration. Module “type” is analogous to the VHDL
entity or Verilog module type.

iii) For the rest of the nodes inG1, place each node into
a slot (inS) according to a cost function that accounts
for the total number of communication bits that will be
shared due to placing the node, the total number of bits
that may be shared due to communications between un-
placed nodes, and the reconfiguration time.

3.4.3 Graph Mapping

We definemappingas the assignment of slots to each mod-
ule in a subgraph and the determination of an estimated



global routing path for each arc in the subgraph. We first de-
termine appropriate slot placements for each module. This
problem was addressed in [10], in which placement is per-
formed as a two-step process: the first minimizes the num-
ber of wires across any cut, and the second minimizes the
total wire length. Our experiments were initially performed
using an integer linear program, but we now use recursive-
bisection and branch-and-bound standard-cell placement
techniques.

It is then necessary to estimate the wire delays of a set
of placed modules to ensure that they do not exceed tim-
ing and area constraints. The device is divided into routing
cells as suggested in [12]. For each wire between any two
modules, a global routing path is estimated by performing
an informed search through the cells, while the area is con-
strained by the number of wires that pass across the bound-
aries of each cell. The following algorithm is used:

i) Sort all arcs in descending order of length.

ii) For each arc, perform a modified priority A* search
from the source to the destination nodes.

iii) If we cannot implement the full width of the arc due
to insufficient wire capacity, determine the maximum
width implementable.

iv) “Use” this route by decrementing the slot and channel
boundary capacities by the maximum available width.

v) If the full arc width cannot be implemented, return to
step 2 and find a route for the remaining width.

The “modified priority A* search” mentioned in step ii)
is one in which the cell ordering in the queues is modified
to utilize the channels more efficiently. The node ordering
takes into account the source and destination slots. If they
are in the same column, for example, the channels on the
left or right side of the device have higher priority than the
center channel. This is to avoid congestion and to maximize
the area use.

When all the arcs are mapped to the device, we proceed
to estimate the wire delay of the harness with a cost model
that increasingly penalizes the wire delay as channels be-
come saturated. We factor two variables into the nominal
wire delay, one to limit the channel saturation rate and the
other to decide how much to penalize the delay as it ap-
proaches this limit.

We have implemented the algorithm for use in graph
merging and the task of comparing the estimated delays
with actual wire delays is in progress. The bulk of the work
in this task involves integrating our algorithms with current
Xilinx tools so as to implement the graphs on the FPGA.

4 Improved Algorithm for Subsequence
Merging

Let us denote aperiod to be a merged subsequence of
communications subgraphs for which a single wiring har-
ness is implemented. Application execution proceeds by
configuring a wire harness and the modules for the first sub-
graph in a period. For the remaining subgraphs in the pe-
riod, module reconfiguration only is required. At the end
of the period the wiring harness for the next period is con-
figured along with the module reconfigurations needed to
implement the first subgraph of the following period.

The greedy method described in the previous section
merges as many subgraphs into each successive period as
is possible without exceeding wiring harness area or delay
constraints. This approach does not consider the potentially
better period arrangements possible when periods are cho-
sen to exploit similarities in structure between consecutive
communications subgraphs. The greedy method is thus un-
likely to be optimal.

The problem looks suited to a dynamic programming
approach in which the solutions to longer sequences are
formed by combining the solutions to shorter sequences [3].
Unfortunately, the solutions to shorter sequences cannot be
readily concatenated since the cost of merging a sequence
depends, in part, upon the wiring harness of the prior pe-
riod and the arrangement of configured modules at its end
of the prior period. It is therefore difficult to assign a fixed
cost to a given merged subsequence. However, this problem
can be overcome by imposing a heuristic assumption that at
the start of each period a complete reconfiguration of the
FPGA is performed to implement the wiring harness and
the module arrangement for the first subgraph of the period.
With this assumption, the cost of merging a subsequence of
graphs can be assumed to be independent of the previous
period and the problem assumes optimal substructure.

4.1 Dynamic Programming Approach to Subse-
quence Merging

Let us define asplit to be a position between two graphs
in the schedule where we examine the possibility of ending
a period and starting another. Let a split at positionk be
defined as a split between graphk and graphk + 1 in the
scheduled graph sequence.

Consider a scheduled graph sequence of lengthn.
Establish then × n memoization table. The rowsi in

this table correspond to the length of subsequences consid-
ered for splitting into optimal periods. Columnsj record
the optimal split arrangement and the corresponding total
reconfiguration delay for splitting a subsequence of lengthi

commencing with graphj in the schedule. Note that the to-
tal reconfiguration cost does not include the delay of the



initial complete reconfiguration required to configure the
wiring harness for the first period in the subsequence and
the modules for the first graph in the subsequence.

Record a reconfiguration delayropt = 0 for each ele-
ment of the first row of the table. For each graph in the
schedule, this records thezero costof configuring its mod-
ules after the complete configuration undertaken to imple-
ment the wiring harness and the modules for the period con-
sisting of the graph on its own.

For all subsequences of the schedule of lengthi : 1 <

i ≤ n, the algorithm does the following (without loss of
generality, let the subsequence under consideration span
graphsG1 throughGi):

1. Consider forming a period over the entire subsequence
using the algorithms described in Sections 3.4.2 and
3.4.3. Letr0 be the reconfiguration delay incurred by
reconfiguring the modules for all the graphs in the sub-
sequence. If merging all graphs in the subsequence ex-
ceeds area/time constraints on the wiring harness, then
let r0 =∞.

2. Consider every possible positionk : 1 ≤ k ≤ i − 1,

for a single split in the subsequence. Determine the
reconfiguration costrk for that position by adding the
following three cost components:

(a) the reconfiguration cost of the optimal arrange-
ment of splits for the subsequence of graphs
1 . . . k, i.e. for the part of the subsequence to
the left of the splitk, as determined when sub-
sequences of lengthk were considered,

(b) the reconfiguration cost of the optimal arrange-
ment of splits for the subsequence of graphs
k + 1 . . . i (to the right ofk, found for subse-
quences of lengthi− k), and

(c) the cost of the full reconfiguration that is incurred
when commencing a new period after positionk.

3. Letropt be the minimum ofr0 . . . ri−1, which is mem-
oized along with the corresponding split arrangement
in the dynamic programming table at cell(i, j).

Thus, as longer subsequences are considered, the estima-
tion of the reconfiguration delay relies on the memoization
of shorter subsequences. The best splits at lengthn finally
indicate the optimal set of periods for the scheduled graph.

An example of this memoization is depicted in Fig. 5.
The iteration currently considered is at a subsequence
length of i = 7 commencing at graphG1. If a split were
to be placed atk = 3, the optimal split arrangement for
subgraphsG1 to G3 obtained from the iterationi = 3 is
used for the left of the split. Correspondingly, the optimal
splits for subgraphsG4 to G7 obtained from the iteration
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G3

G2
G1
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G4
G1 G2 G3
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Figure 5. Memoization example in the dy-
namic programming algorithm

i = 4 are used for the right of the split atk = 3. The total
reconfiguration delay is calculated by adding the previously
calculated values from the split arrangements fromG1 to
G3 andG4 to G7 together with full reconfiguration delay
incurred betweenG3 andG4.

The dynamic programming algorithm is specified in de-
tail in Algorithm 1.

4.2 Complexity

Half the memoization table needs to be filled in. To fill
in an entry, a trial merge of all graphs in the sequence is at-
tempted during Phase 1 and on the order ofn trial splits and
cost comparisons need to be performed in Phase 2. Phase
2 thus contributesO(n3) to the time complexity of the dy-
namic programming algorithm.

The merging step involves sorting and then linearly pro-
cessing the modules for each subgraph being merged. As
the number of modules in a subgraph is a constant depen-
dent upon the device size, it can be argued that the merg-
ing therefore takesO(n) time for n graphs. Mapping the
merged graph involves allocating the merged modules to the
device slots and routing the wires. Allocating the modules
requiresp log p time for p pins. It could be argued that the
number of pins is roughly constant per subgraph and thus
p is O(n) for n merged subgraphs. Determining a global
route for each wire takes time proportional to the number of
cells crossed, which is a function of the number of slots
in the device that is constant. The number of wires can
also be argued to beO(n) in size assuming the commu-
nications density of the applications communications graph
is fairly homogeneous. For a given device size, the merg-
ing step therefore takes time proportional to the number of
subgraphs being merged, which isO(n).



Algorithm 1 Dynamic Programming Algorithm

1: Create an arraySplits[n, n]
2: {Dimensions — [subsequence length, start position]}
3: for i = 1 to n do {i: subsequence length}
4: for j = 1 to n− i + 1 do {j: start position}
5: if i = 1 then
6: Splits[i, j]← 0
7: else
8: {Phase 1:Whole subsequence merged}
9: Create periodPj,j+i−1

10: if map success(Pj,j+i−1) then
11: MinRecfg ←

EstimateRfgDelay(Pj,j+i−1)
12: else
13: MinRecfg←∞
14: end if
15: BestSplits← 0
16: {Phase 2:Determine best split}
17: for k = 1 to i− 1 do {k: splitposition}
18: TestSplits← Splits[k, j] | Splits[i−k, j+

k]
19: S ← CreateSolutionInstance(TestSplits)
20: CurrentRecfg ←

EstimateRecfgDelay(S)
21: if CurrentRecfg < MinRecfg then
22: BestSplits← TestSplits

23: MinRecfg← CurrentRecfg

24: end if
25: end for
26: Splits[i, j]← BestSplits

27: end if
28: end for
29: end for

As Phase 1 can be abandoned beyond a certain subse-
quence length, it contributeso(n3) to the dynamic program-
ming algorithm, which therefore hasO(n3) overall time
complexity.

4.3 Optimality

When the periods are actually implemented on an FPGA,
rather than performing a full reconfiguration of the device at
period start, a difference reconfiguration is performed, and
thus the algorithm overestimates the reconfiguration delay.
This is beneficial when the application is actually imple-
mented on the device, but the impact of applying the heuris-
tic simplification should be analyzed.

If this simplification were not applied, then the reconfig-
uration delay between periods could be reduced in two fore-
seeable ways, by maintaining the same module allocation
between periods, and by trying to implement wiring har-
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nesses that exhibit minimal difference. Investigating algo-
rithms which deal with the additional complexity is a chal-
lenging area for further work.

5 Experimental Setup

As benchmarks for dynamically-reconfigurable comput-
ing provided as module-based communications graphs are
not readily available, manually developing and implement-
ing a range of applications such as the optical flow algo-
rithm we analyzed in [11] is too time-consuming. Thus, the
methodology used to conduct these experiments is to gener-
ate synthetic applications with a variety of parameters rep-
resentative of actual dataflow or streaming applications and
to subject these applications to the infrastructure generation
process using the full range of device sizes and architec-
ture parameters. The overall goal of the experiments is to
observe the results when a variety of target applications is
mapped onto a range of device sizes with differing architec-
ture parameters. In order to do this, the experimental regime
shown in Figure 6 was followed.

There are three main phases in the experimental setup,
which are executed iteratively. Initially, a graph is synthe-
sized based on the following parameters: the number of
modules, the amount of variation in the types of modules,
the sizes of the modules and the communications density.
This results in a full communications graph that is then pre-
pared for infrastructure generation based on device param-
eters, i.e., the FPGA device size and the channel width as-



sumed for the wiring harness. The graph preparation phase
partitions the graph and outputs a set of scheduled graphs
that are processed by the infrastructure generation phase to
generate a communications infrastructure and to obtain es-
timates of the total reconfiguration time and critical path
delay.

The one full communications graph for the synthesized
application is then prepared for a different set of device
parameters, and the infrastructure generation phase is re-
executed. This repeats until all device parameters have been
exhausted, after which a new application’s graph is synthe-
sized. Hence, the testing is iterative.

The experimental setup also allows for two different
modes of operation in the graph preparation phase — with
and without module clustering (see Section 3.2). If module
clustering is not required, that step is skipped and the graph
is partitioned and scheduled as is.

5.1 Parameters Chosen for the Experiments

5.1.1 Application Parameters

The parameters used to generate the applications graphs
were as follows:

• Number of Modules: 200. Considering large graphs
allows full architectural exploration to be demon-
strated.

• Module Type Variation: Primarily 20% (i.e., 40 mod-
ule types) to observe the effects of reducing reconfig-
uration delay by allocating modules belonging to the
same type in neighboring subgraphs in the same slots.
0%, 40% and 60% were also used to observe the ef-
fects of different amounts of variation.

• Module Size: Primarily 60 CLBs. This is approxi-
mately the size of a DES core when mapped onto a
Virtex-4 device. As a comparison, a MicroBlaze pro-
cessor takes up 226 CLBs, which is slightly larger than
a slot on an XC4VLX40 with a channel width of 2.
Module sizes of 35 and 85 CLBs were also used to ob-
serve the effects of different amounts of clustering.

• Communications Density: An average of 3-6 outgo-
ing edges per module with an exponentially decreasing
distribution of 2 to 32 bits per edge.

5.1.2 Device and Architecture Parameters

Each application subgraph was mapped onto all of the avail-
able devices in the Virtex-4 LX series. The LX series was
chosen to be most suitable for this experiment because it
contains mainly logic. Wiring harness channel widths of 2,
4 and 8 were chosen as these are the smallest possible for

Device CLB Number CW:2 CW:4 CW:8
XC4VLX Array of Slots CLBs CLBs CLBs

15 64× 24 8 140 96 32
25 96× 28 12 168 120 48
40 128× 36 16 224 168 80
60 128× 52 16 336 264 144
80 160× 56 20 364 288 160
100 192× 64 24 420 336 192
160 192× 88 24 588 480 288
200 192× 116 24 784 648 400

Table 1. Device Parameters

reasonable slot sizes. Table 1 lists the devices tested and the
number of slots and slot sizes for each device and channel
width.

6 Results

6.1 Comparisons between Not Merging, and
Merging using the Greedy Method and Dy-
namic Programming Algorithms

Test runs for 120 application graphs with the parameters
specified in Section 5.1.1 were performed on the LX devices
shown in Table 1. The average reductions in reconfiguration
delay and the estimated contribution to the critical path by
the wiring harness are shown in Figs. 7a to 7f. In these
plots the modules have undergone clustering to pack them
into the available slot area.

Three lines are plotted for each graph. One corresponds
to not mergingthe communications subgraphs, a second re-
ports the results for thegreedymethod, and the third cor-
responds to the performance of thedynamic programming
approach proposed in this paper.

Not mergingrefers to using the COMMA methodology
without applying the graph merging process. Each period
consists of just one communications subgraph, and thus
each subgraph has its own wiring harness that needs to be
reconfigured at every subgraph transition. Note that in this
assessment modules are still allocated judiciously so as to
reduce reconfiguration delays and thus to provide an unbi-
ased assessment of graph merging alone.

6.1.1 Reconfiguration Delay

Figs. 7a, 7c and 7e show the total reconfiguration delay for
channel widths of 2, 4 and 8 respectively.

It is immediately apparent from the difference between
the “NoMerge” and the “Greedy” lines that performing
graph merging provides a significant reduction in reconfigu-
ration delay in smaller devices, and at larger channel widths,
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(c) Reconfiguration delay, channel width 4
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(d) Critical path delay, channel width 4
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(e) Reconfiguration delay, channel width 8
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Figure 7. Reconfiguration and critical path delays for 120 ap plication graphs comprising 200 mod-
ules, 20% type variation, 60 CLB exact module size, clustere d



in particular. In addition, consistent improvements are ob-
tained by the dynamic algorithm over the greedy method.

It is also clear from the plots that the reconfiguration de-
lays are always higher when the channel width is larger.
This is because the slot sizes are smaller when more de-
vice area is allocated for channel width, thus more config-
urations are necessary to implement the entire application.
With the COMMA methodology the system designer can
try different channel widths in decreasing order to find the
smallest one that can accommodate the application, while
containing overheads within acceptable bounds.

It is also apparent that there may be some small devices
that do not follow general trends. We will discuss these
anomalies in detail in section 6.2.

The amount of improvement between the greedy and dy-
namic programming algorithms largely depends on the ap-
plication, thus an average difference over all the test runs
may not be as significant as comparing the results for indi-
vidual applications. The plot in Fig. 8 shows the percentage
reduction in reconfiguration delay against the percentage of
all the test runs that achieved that reduction. This graph was
derived from the results plotted in Figs. 7a to 7f. From this
summary plot we can see that performing graph merging
with the greedy method results in improvements in recon-
figuration delay of up to 60% for half of the total number of
solutions. Using the dynamic programming algorithm pro-
vides further improvements over the greedy method. Only
11% of the test runs did not have a reduction in reconfigura-
tion delay, and this is over and above the reduction achieved
by the greedy method.

6.1.2 Critical Path Delay

Figs. 7b, 7d and 7f show the estimated critical path delays
of the wiring harnesses obtained through test runs for chan-
nel widths of 2, 4 and 8 respectively. It is apparent that
not merging always results in lower critical path delays and
this is to be expected as the wiring harnesses are then more
sparse and the channel saturation is low. Because both the
greedy and dynamic algorithm try to merge subgraphs un-
til the wiring harness cannot fit into the wiring channels,
the critical path delays are similar. An improvement to the
graph merging algorithm to reduce the critical path delay
may be considered in the future.

It is expected that as the device size increases the criti-
cal path delay also increases because the number of module
slots increases and the distance between those that are fur-
thest apart grows. For smaller devices, the delays are higher
with larger channel widths because opportunities for clus-
tering are diminished, and thus the wiring harness suffers
more congestion as more subgraphs are merged per period.
Diminishing critical path delays for larger channel widths
on large devices (LX100 and above) illustrate the benefit
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of having sufficient channel capacity to satisfy the wiring
needs of large subgraphs.

6.2 Reconfiguration Delay Anomaly

An interesting point in the plots occur where a larger de-
vice seems to result in a larger reconfiguration delay, e.g.,
in Fig. 7c between the LX15 and LX25 when the channel
width is 4, and in Fig. 7e between the LX40 and the LX60
when the channel width is 8. To explain this, note that from
Table 1 the LX15 device has a slot size of 96 CLBs and the
LX25 device has a slot size of 120 CLBs when the channel
width is 4. Since the type variation is 20% and the module
size is 60, the total number of possible module types for the
LX15 is 20% of 200 which is 40. In the LX25, however, two
modules can be clustered into a single slot, thus the number
of possible module types grows to402 = 1600. This sig-
nificantly reduces the probability of neighboring configura-
tions having modules of the same type. Thus the LX15 has a
much greater chance as compared to the LX25 of reducing
the slot reconfiguration time by allocating modules of the
same type in neighboring configurations to the same slots.
We can see that this anomaly is not present when the chan-
nel width is 2, because the LX15 has a slot size of 120 CLBs
then, allowing it to fit two modules as well. In addition, it
takes twice as long to reconfigure each slot in the LX25 as
compared to the LX15, and since the device is 50% taller it
may take up to 50% longer to reconfigure the wiring.

Since the number of possible module types matter signif-
icantly we have also performed experiments to investigate
how different amounts of type variation contribute to this
effect. The plots are not included here due to space con-
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straints. The results show that with no type variation, the
reconfiguration delay is very small and the plot is almost
flat. There is little difference in the results for type varia-
tions of 20%, 40% and 60% except that there is a slight in-
crease in reconfiguration delay with larger type variations.
More importantly, they all exhibit the same effect between
the LX15 and LX25. These results appear to confirm our
hypothesis.

6.3 The Effect of Module Clustering

The results indicate that module clustering plays an im-
portant role in the observed reconfiguration delay. Thus
we examined the effect of disabling clustering, i.e., placing
only one module in each slot. Assuming that each module is
packed into the thinnest vertical slice in each slot, not clus-
tering the modules reduces the time to reconfigure each slot
as only the area for one module needs to be reconfigured.
However, the number of configurations increases as the to-
tal number of modules is not reduced through clustering.

Fig. 9 shows the results of comparing the clustered and
non-clustered reconfiguration delays for the dynamic pro-
gramming algorithm with a channel width of 2. The plots
show that for smaller device sizes there is an advantage to
not clustering the modules due to higher apparent module
type variation as explained above. However, as the device
size increases, the number of configurations and periods are
greatly reduced as compared to not clustering, as shown for
a particular application graph in Table 2.

From Table 2 we can observe that the LX25 needs 5 pe-
riods when clustered and 4 when not. The LX40 uses the

LX25 LX40 LX60
Clustered 5 (10) 4 (5) 3 (3)

Non-Clustered 4 (20) 4 (15) 4 (15)

Table 2. Number of periods and configura-
tions (in parentheses)

same number of periods for both cases, but it must be noted
that there are many more configurations, 15 vs. 5, as shown
in parentheses. The corresponding region of the plot has the
clustered graphs outperforming the non-clustered graphs.
This observation follows on with the LX60 where the num-
ber of periods when clustered is now less than when the
graphs are not clustered. The LX60 has the same height as
the LX40, thus the same number of slots, and uses the same
number of configurations as in the non-clustered case.

Plots of the results for channel widths of 4 and 8 show
similar trends.

7 Conclusion and Future Work

We have proposed an improved subsequence merging
algorithm with the aim of reducing reconfiguration delays
in the point-to-point wiring harnesses used for communi-
cations in applications involving numerous modular recon-
figurations. The results show that graph merging provides
reductions of up to 60% in reconfiguration delay over not
merging, and that there can be a further benefit of 50%
to using a dynamic programming approach over a greedy
method in the merging process. The critical path delay is
increased due to merging and this is expected as the wiring
channels are more saturated after merging. The combined
effect of both delays on execution time need to be consid-
ered for each application.

As expected, for an application mapped as a long se-
quence of fixed sized modules, larger devices incur lower
reconfiguration delays since they can accommodate more
modules with a single wiring harness. However, module
clustering can limit the ability to reuse a slot with an iden-
tical module due to the greater variety in aggregated mod-
ules created during clustering. The smallest devices inhibit
clustering and can sometimes perform better if the appar-
ent module type variation is smaller than for slightly larger
devices. Disabling clustering altogether can mitigate this
effect.

It is also apparent that a system designer should try to
use the smallest channel width that can accommodate the
application, since both the reconfiguration delays and criti-
cal path delays of the wiring harness increase as the channel
width increases and execution time will consequently suffer.

The methods discussed in this paper apply to applica-
tion problems that can be modeled as a linear sequence of



configurations. More sophisticated applications that require
forking or joining sequences to be modeled are currently
not supported.

The methods are also restricted to application scenarios
in which the temporal relationships and communications re-
quirements of modules are known at design time. Other
than catering for worst-case requirements, the methods are
unable to cope with communications requirements that only
become apparent at run time.

These limitations of the methods are the subject of on-
going investigations.
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