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Abstract—Dynamically Reconfigurable Systems (DRS), which
allow logic to be partially reconfigured during run-time, are
promising candidates for embedded and high-performance sys-
tems. However, their architectural flexibility introduces a new
dimension to the functional verification problem. Dynamic recon-
figuration requires the designer to consider new issues such as
synchronizing, isolating and initializing reconfigurable modules.
Furthermore, by exposing the FPGA architecture to the applica-
tion specification, it has made functional verification dependent
on the physical implementation. This paper studies simulation
as the most fundamental approach to the functional verification
of DRS. The main contribution of this paper is in proposing a
verification-driven top-down modeling methodology that guides
designers in refining their reconfigurable system design from
the behavioral level to the register transfer level. We assess the
feasibility of our methodology via a case study involving the
design of a generic partial reconfiguration platform.

I. INTRODUCTION

Dynamically Reconfigurable Systems (DRS) can be partially
reconfigured at run-time without affecting the execution of
the remaining logic. Such additional flexibility over traditional
static hardware systems enables DRS to adapt to changing
execution requirements while at the same time improving
performance and power consumption [1]. However, such flex-
ibility has also resulted in significant challenges in ensuring
the functional correctness of the DRS.

The ability to reconfigure DRS on-the-fly has added a new
dimension to the functional verification problem. First of
all, designers have to consider the new features that do not
exist in purely static designs, such as how to synchronize
the reconfiguration so that no data is lost when swapping
reconfigurable modules (RM) in and out; how to isolate the
RM undergoing reconfiguration to avoid providing unexpected
data values to the static part; and how to initialize the newly
downloaded RM before commencing execution. Moreover, as
dynamic reconfiguration has made the behavior of the system
dependent on the physical reconfigurable fabric, including
the configuration memory and the bitstreams [2], accurate
functional verification can only be performed after the time-
consuming physical implementation step. This conflicts with
the general hardware design principle, which requires func-
tional verification to be performed as early as possible because
fixing a bug involves an iteration of the design cycle and
the later the bug is found the higher the cost it may incur.

These problems suggest that new methods and tools need to
be provided to assist designers with the functional verification
of DRS.

While design errors in reconfigurable systems do not require
re-fabricating chips, functional verification is an important,
time-consuming and costly step in the design process. Accel-
erating verification closure can reduce time-to-market and thus
considerably reduce the cost and enhance the profitability of
a DRS design project. Moreover, releasing undetected bugs in
a design may incur significant recovery costs, and, for critical
applications such as aviation, finance and defense, may be
impossible to recover from.

Given the difficulty and the importance of verifying the
functional correctness of DRS, this paper focuses on the
modeling methodology, which is a crucial determinant in
facilitating simulation-based functional verification for such
systems. Borrowing a widely accepted concept from the ASIC
community, this paper proposes a top-down modeling method-
ology that guides designers in refining their reconfigurable
design from the relatively abstract behavioral modeling level to
the implementation-ready, Register Transfer Level (RTL) for
the purpose of functional verification. The key contributions
are

• Describing the potential bugs introduced by the new
features of dynamic reconfiguration at all stages of the
reconfiguration process.

• Extending the top-down modeling methodology already
proven successful in the ASIC community, so as to detect
the potential bugs identified in DRS.

• A case study on the modeling of DRS at different levels
of abstraction, so as to provide a concrete example of how
to use the top-down methodology to cover some typical
bugs.

In this paper, the DRS considered are restricted to using
coarse-grained or modular reconfiguration that is performed
by loading new configuration bitstreams. We only consider
the cycle-accurate behavior of DRS and ignore physical im-
plementation errors such as glitches and timing violations.
The listing and analysis of potential bugs we provide is at
an early stage; we have almost certainly not covered them
all. Nevertheless, we hope to inspire other researchers and
designers to consider the value of simulation and to adopt
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a systematic top-down modeling methodology to facilitate
functional verification instead of performing ad-hoc testing
or moving on to the implementation stage without achieving
functional verification closure. Unfortunately, we have not
been able to automatically eliminate the set of bugs we have so
far identified. Like similar approaches in the ASIC community,
our modeling methodology therefore only serves as a guide for
researchers and designers who need to create their own specific
simulation environment, and in so doing, helps manage the
verification process.

The rest of this paper is organized as follows. Section 2
provides an overview of related efforts to model DRS. In
Section 3, we summarize the bugs that may be present in the
design and affect the reconfiguration process. We define the
requirements of an ideal modeling methodology based on our
analysis. Section 4 discusses the proposed top-down modeling
methodology. Section 5 illustrates the use of our methodology
in the design of a generic reconfigurable computing platform
and Section 6 concludes the paper.

II. RELATED WORK

Current research on the modeling of dynamic reconfigura-
tion focuses on creating customized languages and extending
existing languages. Although customized languages such as
JHDL [3] and Lava [4] are more flexible, they are difficult
to integrate into existing design flows and have therefore had
little impact on industry. On the other hand, because existing
languages such as VHDL/Verilog and SystemC [5] do not
support changing the logic at run-time, much current work
is directed at extending existing languages to model dynamic
reconfiguration.

ReChannel [6], [7] is a SystemC-based, open source library
to model dynamic reconfiguration. In ReChannel, RMs are
derived from the rc_reconfigurable base class and are
connected to the static design through an rc_portal, a
MUX-like SystemC class. The built-in class rc_control
provides reconfiguration control such as unloading and acti-
vating an RM. The original work only focuses on high-level
modeling. In this work, we extend this library to support
behavioral modeling down to RTL level.

OSSS+R [8] is a design methodology for automatic modeling,
synthesis, and simulation of DRS. The underlying philosophy
is to treat dynamic reconfiguration separately from a system’s
functional specification; the tool can then automatically gener-
ate the necessary reconfiguration controls. However, such au-
tomatic synthesis methodologies do not support the functional
verification of manually specified, customized DRS designs.

Brito et al [9] attempt to model DRS by modifying the
SystemC kernel. The authors add to the SystemC kernel a
configlist, which keeps track of the state of all RMs
and stops executing a thread if the corresponding RM is
deactivated. A significant drawback of this work is that the

modified SystemC kernel is not standard and is incompatible
with existing design flows.

Some other examples using SystemC as a modeling language
can be found in [10], [11], [12]. These works focus on
design space exploration, the primary concern of which is to
partition the design into static and dynamic parts and hide the
reconfiguration details. In terms of verification, they do not
capture enough low-level information to assist with debugging
the reconfigurable features.

The Dynamic Circuit Switch (DCS) [2], [13] is a systematic
study of modeling the DRS at RTL level. The idea is to
add simulation-only artifacts to the VHDL description of
the hardware. The artifacts include, for example, Task State
Registers, Dynamic Task Selectors and so on. However, the
VHDL artifacts can not be reused, and can only model the
DRS at RTL level.

Table I summarizes the current research. It can be seen that
while much effort has been invested in modeling dynamic
reconfiguration, there has only been limited study of how
to facilitate the functional verification of DRS. For example,
all existing methods assume a compile-time defined delay
for deactivating/activating an RM. As a result, they fail to
accurately simulate systems that share the application datapath
with the bitstream datapath, and thus cannot assist in assess-
ing the impact these two streams may have on each other.
Additionally, previous efforts have lacked a clearly defined
boundary between behavioral level modeling and Transac-
tion Level Modeling (TLM) despite their different objectives.
While a TLM model should define the system architecture and
component interactions, behavioral modeling does not require
such distinctions to be made.

III. CHALLENGES IN VERIFYING DRS

Dynamic reconfiguration imposes new challenges on the func-
tional verification of a system. From a temporal perspective,
these challenges can be categorized according to the state
of progress of the reconfiguration process, i.e. BEFORE,
DURING, and AFTER reconfiguration. Table II summarizes
the potential bugs we have identified at each of these stages of
reconfiguration. The table is, no doubt, incomplete, and there-
fore only provides examples which illustrate the difficulties
of verifying DRS. We describe each of the potential bugs we
have identified so far in more detail below.

BEFORE reconfiguration: The time interval from when a
request for reconfiguration is generated until just before the
first byte of the bitstream is written to the reconfiguration
port of the FPGA. During this stage, the static part should
synchronize with the RM so as to ensure no data is lost [6].
Generally speaking, the designer has three options to perform
the synchronization.

Firstly, for a pipelined RM in a streaming application, the
data can be flushed without synchronizing, and the RM can
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Table I COMPARING DRS MODELING LANGUAGES

Concepts Modeling Method Comments
ReChannel
[6], [7]

A SystemC based library that
provides flexible macros, classes,
functions to model dynamic recon-
figuration

- Interleaves communication via a
MUX-like rc_portal

- Extend standard sc_module with
sync. & reset properties

- Use rc_control to control recon-
figuration (e.g., unload, activate)

- Can build the simulation environ-
ment on top of the library

- Does not cover the RTL details

DCS [2],
[13]

Adding simulation artifacts to the
VHDL description

- Interleaves communication via an
HDL MUX

- Use simulation only artifacts to
sync. & isolate

- Captures the RTL details
- Have to build the simulation en-
vironment from scratch

Modifying
the SystemC
kernel [9]

Modifying the SystemC simulation
kernel to support time-variant hier-
achy

- Disable the SystemC thread when
deactivated

- Non-standard SystemC kernel can
not be integrated with existing de-
sign flows

OSSS+R [8] Automatic modeling, synthesis,
and simulation of DRS

- Use SystemC polymorphic classes
- Synthesize the controller automat-
ically

- Seperates dynamic reconfigura-
tion from the functional specifica-
tion of the design

- Fails to support customized recon-
figuration controllers

Table II POTENTIAL BUGS BEFORE, DURING, AND AFTER RECONFIGURATION

BEFORE Recon. DURING Recon. AFTER Recon.
Concept Request to reconfigure the RM →

Just before the first byte of the
bitstream is written

Writing configuration bitstream Just after the last byte of the bit-
stream is written → RM activated

Design con-
siderations

- Synchronization of the old RM
- Unloading the old RM

- Isolation
- The bitstream datapath

- Initialization of the new RM
- Activating the new RM

Potential
bugs

- Recording the flushed data
- Circular waiting & deadlock
- Draining the pipelines
- Multiple reconfig. requests
- Inconsistent state of the RM
- Implementation dependent logic
to save states

- Unpredictable effects of the static
part

- Timing of isolation
- Waiting for non-exsiting feedback
- Shared datapath between the bit-
stream and the application

- Previous RM not cleared
- Timing of the reset signal
- Initialization of pipelined designs

refill the pipeline with the flushed data when and if it is again
swapped in later. In this approach,

Bug # 1. Failing to record the flushed data correctly can
cause the RM to later restart with incorrect data..

The second option is to wait for the RM to finish. In this case,
the RM should not acknowledge the reconfiguration request
until it has processed all the data. However,

Bug # 2. For complex RMs having multiple FSMs or
pipelines, extra care should be taken to wait for all FSMs
to enter the idle state and/or to drain all pipelines of data.
This may result in circular waiting and deadlock.

Bug # 3. An RM may receive multiple reconfiguration
requests that conflict with each other, such as to unload
an already unloaded module [14] or to cancel an acknowl-
edged request.

The third option is to save the state of the RM before
reconfiguration. However, it is challenging to freeze the RM in
a consistent state before reading back the state. For example,

Bug # 4. The static part keeps sending data to the RM
after the RM has acknowledged the reconfiguration, and
places the RM into an in-consistent state.

Bug # 5. If the system saves state by reading back the
configuration memory, bugs in the read-back logic cannot
be verified without knowledge of physical implementa-
tion details such as the frame addresses of the RM. This
represents an undesirable level of detail for functional
verification purposes.

DURING reconfiguration: The period during which the
configuration bitstream is being written to the reconfiguration
port of the FPGA. During this stage, the behavior of the
logic inside the reconfigurable region is undefined and may
introduce potential bugs into the system. For example,

Bug # 6. The default value of the newly downloaded
bitstream may drive erroneous signals onto the static side.
Even if such default value won’t cause errors on the static
side, there is no guarantee that during the reconfiguration
process signals are held at their default values.

As a result, it is a good idea to have isolation between the
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static part of the system and the RMs (e.g., the reconfiguration
interface in [15]) even if it involves overhead to implement the
additional isolation. However, it is not always easy to isolate
an RM. For example,

Bug # 7. The timing of isolation is critical. Isolating one
cycle too early may cause the static module to fail to
transmit the last dataset to the RM, and isolating one
cycle too late may cause the RM to inject spurious data
into the static part.

Bug # 8. If the static part relies on some feedback signals
from the dynamic part, failure to cancel the communica-
tion attempt from the static part may cause it to wait for
a response that will never arrive.

During this stage, the designer should also consider the bit-
stream datapath, i.e. the path from the bitstream storage device
to the reconfiguration port of the FPGA. For very simple
designs, this datapath contains just some glue logic, while
it can also become very complex, involving decompression,
decryption and error checking (see for example, the bitstream
datapath in [16]). Thus,

Bug # 9. If the system uses a shared datapath for bit-
stream and application data streams, failure to correctly
schedule the two streams may lead to bugs.

The behavior of RMs during reconfiguration is highly depen-
dent on their physical implementation such as the placement
and routing of the old and new RMs. As has previously
been discussed, this makes functional verification dependent
on physical implementation, which is undesirable..

AFTER reconfiguration: The time interval from just after
the last byte of the bitstream is written until the new module
is activated. In the last stage of reconfiguration, the designer
should consider how to initialize the newly downloaded RM.
The options include restoring the state or resetting the RM.
Bugs undetected BEFORE reconfiguration (e.g., Bug #1, 4, 5
) may affect the correct initialization of the RM now. Other
potential bugs in this stage include:

Bug # 10. Without a proper reset operation, the state
of the newly downloaded RM can be affected by the
previous RM, especially if both RMs share the same
physical area on the FPGA.

Bug # 11. The time to assert reset is critical. The reset
signal should be coordinated with the isolation mech-
anism to ensure no undefined behavior of the RM is
propagated to the static part.

Bug # 12. The state of a pipelined RM can only be
initialized by feeding the pipelines with meaningful data,
which is more difficult to design correctly than simply
resetting a single FSM [14].

Given the challenges of functionally verifying a DRS, the
ideal modeling methodology should cover all three stages of
dynamic reconfiguration so as to accurately detect all instances
of the above potential bugs in a design. For example, the

methodology should mimic the timing of the bitstream dat-
apath so as to accurately simulate the impact of the bitstream
transfer on the rest of the system. In this case, a compile-
time defined delay to deactivate/activate an RM may not be
accurate enough. Moreover, it is desirable that the method
integrates well with existing and mainstream EDA tools, so
that the modeling methodology is acceptable to industry and
to encourage designers to adapt the flow to their own needs.

IV. THE TOP-DOWN MODELING METHODOLOGY

Based on the requirements of the ideal methodology stipulated
at the end of the previous section, this section proposes our
top-down modeling methodology, which is built on top of
ReChannel [6], [7], an open source SystemC library. Figure
1 provides an overview of the methodology. It should be
noted that in this figure and all that follow, the simulation-
only artifacts (open blocks) are virtual components covered
in or extended from ReChannel to assist in the functional
verification of the system, and real entities (solid blocks)
are defined by users to be synthesized and mapped to the
FPGA. Moreover, the lightly shaded parts perform the required
computation defined by the functional specification, while the
darkly shaded parts are modules added to the application to
support dynamic reconfiguration.

The proposed methodology takes the functional specification
as input. Behavioral level modeling helps to explore all avail-
able design options. The TLM model assists in the verifica-
tion of the execution flow of sub-modules and inter-module
communications so as to support early system integration and
the detection of global bugs. RTL modeling assists in the
verification of the signal-level implementation of the modules
so as to support the detection of local bugs. Finally, the RTL
model is mapped to the FPGA device without further change.

The methodology is fully compatible with existing and main-
stream EDA tools. Using an open source SystemC compiler
and the ReChannel library, the behavioral and TLM models
can be simulated on any machine with a C++ compiler such as
Visual Studio. We use the mixed-language (HDL & SystemC)
ModelSim simulator to perform cycle accurate simulation at
the RTL level. The final synthesis and implementation use
standard FPGA vendor tools such as ISE & PlanAhead.

A. Behavioral Level

The behavioral level model of DRS only assists in verifying
the very abstract operations of the application and hides all
the details of reconfiguration. As in Figure 2, the static part
of the application communicates with the RM through the
rc_portal, a MUX-like SystemC class. Without loss of
generality, we assume that the application logic operates as
a master while the RMs are slaves so as to simplify the dis-
cussion of the refinement process from the behavioral model
to the RTL model. To increase development productivity,
there is no clear boundary between the real entities and the
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SC_MODULE RC_MODULE- design space exploration Real Entities                  Simulation -only artifactsBehavioral level ModelingTransaction level Modeling- execution flow of sub-modules- inter-module communication 
- signal level manipulation - implementation of sub-modulesRTL level Modeling HDL (VHDL/Verilog) RC_MODULESC_MODULE

HDL (VHDL/Verilog)Synthesis & Implementation

Functional Specification
SC_MODULERC_MODULE

Figure 1. Modeling methodology overview

simulation-only artifacts. Thus the reconfiguration controller
(rc_control) is shown as a half-open half-solid box in
the figure, because it performs both simulation-only operations
such as switching between the RMs and real control operations
such as unloading and activating the RMs. At this level
of abstraction, all communication channels are modeled as
function calls and it’s acceptable to use a compile-time defined
reconfiguration delay. Please note that in this figure and all that
follow, all arrows represent the direction of communication
flows from masters to slaves, which may sometimes differ
from the direction of data flows.portal .read()portal .write() RC_MODULE(A)RC_MODULE(B)rc.unload(A)rc.activate(B)

portal.switch()
rc_reconfigurable
rc_reconfigurablerc_portalApplication

rc_control
A.unload()B.activate()

A.read()A.write()B.read()B.write()
Figure 2. Behavioral modeling, after [6]

Despite making only limited contributions to detecting bugs,
behavioral level modeling is useful for design space explo-
ration to see whether it is worthwhile adopting dynamic
reconfiguration as a strategy and for evaluating the available
reconfiguration options BEFORE, DURING and AFTER re-
configuration as early as possible. These include, for example,
whether the system should wait for the RM, kill the RM,
or save the RM state BEFORE reconfiguration, and which
operations the RM should preserve as atomic. After the
desired options have been chosen, the behavioral model can be
considered to be an executable, non-ambiguous specification
of the DRS from which to proceed with the refinement process.

B. Transaction Level

At the transaction level (Figure 3), the designer should model
the architecture of the system so as to verify the execution
flow of sub-modules and the inter-module communication.
Although it can make use of the same modeling language,
a TLM model differs from a behavioral model as follows: Reconfigurable Region
Reconfiguration Controller

rc.activate(B)

SC_MODULE(A)SC_MODULE(B)sync add-onssync add-onsrc_controlReconfiguration Port (eg. ICAP)Bitstream Storage

Application data_port.read()data_port.write()controller.reconfigure(module_id)
icap.download(bitstream)ctrl_port.unload()
bitstream = mem.read(addr)

rc_portal
rc.unload(A)xctrl_port

xdata_port

Figure 3. TLM modeling

• Distinguishing between entities and artifacts
All simulation-only artifacts (e.g., rc_portal,
rc_control) are gathered and put into the
reconfigurable region (RR), a virtual container that
represents the reconfigurable area on the FPGA. A
Data_port and a Ctrl_port form the abstract
representations of the interface signals of the application
logic and the reconfiguration add-ons, respectively. Note
that the rc_control in the behavioral model is now
modeled separately as an rc_control component,
now contained in the RR, that performs simulation-
only operations, a user-defined Reconfiguration
Controller that performs real control operations,
and the Reconfiguration Port that mimics the
configuration resources of the FPGA.

• Modeling the execution flows
The execution flow of the real entities should be explicitly
modeled. For example, upon receiving a request
to reconfigure a region, the Reconfiguration
Controller unloads the current module
(ctrl_port.unload()), and transfers the bitstream
from the storage memory to the Reconfiguration
Port (bitstream = mem.read(addr);
icap.download(bitstream)); the
Reconfiguration Port implicitly calls the
rc_control to enable the new module as if the
downloaded bitstream were written to the configuration
memory of the FPGA. In this way, the designer can
detect bugs that involve illegal operations such as
conflicting reconfiguration requests of the controller
(Bug #3), and in the bitstream datapath caused by bugs
in the scheduling algorithm (Bug #9).
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• Modeling the inter-module communication
In addition to delineating the partitioning and the
execution flow of real entities, TLM is also con-
cerned with inter-module communication channels, in-
cluding the parameters of those channels. For example,
ctrl_port.unload() does not take any parameter,
which implies this operation only needs some handshak-
ing signals such as req & ack. As another example,
recording the flushed data, as mentioned in Bug #1, may
require a register in the static part. Simulating the relevant
function calls with the register as a parameter helps to
detect Bug #1.

To conclude, in the TLM model, the architecture of the system
should be clearly defined, including all the sub-modules and
the communication channels between them. This helps to
detect bugs involving illegal operations and incorrect interface
parameters. With such a TLM model, the designers can then
verify the integration of the system before the component de-
tails are available and thereby shorten the verification timeline.

C. Register Transfer Level

When moving to RTL modeling, as shown in Figure 4, the
verified execution and communication flows of the TLM
model need to be reproduced and mapped to signal-level
protocols and the individual modules need to be implemented.

 Reconfigurable Region
Reconfiguration Controller

wire [31:0] datawire wr_en...wire [1:0] module_id;
wire [31:0] bit_data;wire bit_wr_en;
wire req, ack;wire reset;wire isolate;

wire [31:0] addr;wire [31:0] data;wire mem_rd_en; rc.activate(B)

SC_MODULE(A)SC_MODULE(B)sync add-onssync add-onsrc_monitorIsolation
Reconfiguration Port (eg. ICAP)Bitstream Storage

sc_signal req , ack;
sc_signal reqsc_signal ackwait(req_posedge & ack_posedge);rc_control::unload(current);

on_open(){�} // connects signals as normalon_close(){�} // starts 'X' injectionsig_2static sig_2staic_Asig_2rm ����x���� sig_2rm_A
Application Extended rc_portal

x
x

Figure 4. RTL modeling

• Synchronization (sync.)
To perform cycle-accurate simulation of synchroniza-
tion BEFORE reconfiguration, we have derived a novel
rc_monitor class from the rc_control to interface
with the unloading operations of req & ack signals (see

the skeleton code in Figure 4). In this way, we can detect
timing bugs such as not successfully stopping multiple
FSMs or pipelines (e.g., Bug #2).

• Isolation (isol.)
DURING reconfiguration, the designer should perform
cycle-accurate simulation to verify the isolation mecha-
nisms (e.g., the isolate signal and the Isolation
module in Figure 4) and to detect, for example, Bugs
#6, 7 and 8. In order to mimic the undefined behavior of
an RM DURING reconfiguration, we have also derived a
novel extended portal from the rc_portal. It overloads
the member function on_open() & on_close(),
which are implicitly called by the rc_monitor upon
switching RMs so as to inject undefined (X) signals to
the static side DURING reconfiguration (see the skeleton
code in Figure 4).
However, because RMs on FPGAs can output random
instead of undefined values to the static part, X injection
can only reveal the possibility of bugs and is of limited
value in tracing the bug. A similar approach can be found
in [14] where X injection is implemented using a VHDL
MUX instead of using a SystemC class, as in ReChannel.

• Initialization (init.)
In order to verify the initialization mechanisms, we need
to mimic the undefined state of the RM AFTER recon-
figuration. In Figure 4, the extended portal also injects
undefined X into inactive RMs. These undefined values
propagate into the internal wires and registers as well
as towards the IOs of the RM, and are kept until the
RMs are properly initialized when they are later swapped
in. AFTER reconfiguration, internal X values mimic the
undefined initial state of the new RM and help to detect
Bugs #10 and 12, while X values on the IOs mimic
undefined outputs to the static part and help to verify
the timing of reset (e.g., Bug #11). However, for similar
reasons as for isolation, this method can not accurately
emulate the presence of real bugs and therefore only
serves as a reference.

• The bitstream datapath
At RTL level, the bitstream datapath should also be
accurately simulated to verify, for example, the signals
and FSMs of the scheduling algorithm (e.g., Bug #9).
To detect bugs in the bitstream datapath, it may be
insufficiently accurate to assume a compile-time defined
reconfiguration delay. The Reconfiguration Port
keeps track of the size of the bitstream written so far
and should not allow the new RM to be activated until
the amount of data transferred reaches the compile-time
defined size of each RM. This allows the transfer of a
bitstream to be interrupted if the bitstream datapath is
shared with the application or if the datapath latency
is dependent on run-time information (e.g., when de-
compressing or decrypting the bitstream). For simulation
purposes, the size of the bitstream can be set to a small
value for the sake of improving simulation performance.
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As mentioned above, some of the implementation-dependent
design options of the DRS cannot be verified by functional
simulation. For example, synthesizable HDL descriptions of
the state saving and restoring logic can not directly access
the internal registers and wires of an RM, which are also
described using HDL. Saving and restoring state can only be
simulated by modeling the configuration resources and access
mechanisms of the FPGA and the configuration bitstreams of
the design. Since the bitstreams are implementation dependent,
they are not available at the time functional verification should
be completed. Consequently, simulating these aspects of a
design is not supported nor recommended and the relevant
bugs (e.g., Bug #4, 5) cannot be detected in our methodology.

Table III summarizes the design choices and verification issues
covered by the three levels of abstraction within our proposed
methodology.

V. A CASE STUDY

We demonstrate the feasibility and indicate the value of
using our top-down methodology via a case study involving
the design of a general purpose dynamically reconfigurable
computing platform. The architecture of the platform is similar
to the Erlangen Slot Machine [16], which also implements
the reconfigurable features of embedded and high-performance
applications such as software defined radio [17] and OTN
muxponder application [18]. To focus on the verification
issues, we represent the essential elements of our platform
as illustrated in Figure 5.  Reconfigurable RegionProducer_HDLConsumer_HDL wire [31:0] datawire wr_en...

wire [31:0] bit_data;wire bit_wr_en;
FIFOswire req, ack;wire reset;wire isolate;

wire [31:0] addr;wire [31:0] data;wire mem_rd_en;
Maximum_HDL
Swap_HDLSync_HDL
Sync_HDL

Isolation
ICAP

XCTRLwire [1:0] cmd;wire [31:0] para; 
ZBT-SRAMICAP-I

Figure 5. Case study

Comparing Figure 5 with Figure 4, the application logic is
composed of Producer and Consumer modules, which
keep sending/receiving data to/from the RM through two FI-
FOs, and reading/writing data from/to the memory through the
ICAP-I. We use two alternative RMs: a Maximum module
reads two data from the input FIFO and writes the larger one
to the output FIFO; and a Swap module reads two data from
the input FIFO and writes them to the output FIFO in the
reverse order.

The reconfiguration controller is implemented using two sep-
arate entities: the XCTRL is responsible for synchronization,
isolation and initialization of the RMs; and the ICAP-I mod-
ule [19] schedules between the requests for reconfiguration

from the XCTRL and the requests for memory access from
the application as well as manipulating the reconfiguration
port (ICAP) and the storage device (ZBT-SRAM). Note that
the ICAP-I and the ZBT-SRAM are shared between the
application and the reconfiguration add-ons and are thus both
lightly and darkly shaded in the figure.

After exploring the design space at the highest behavioral
level, we chose the “wait and sync” option BEFORE reconfig-
uration and the “simple reset” option AFTER reconfiguration.
The behavioral level model used a block diagram similar to
Figure 2, in which the real entities and the artifacts were not
partitioned.

We evaluated the execution and the communication of the
system via a TLM model. In particular, we considered
two candidates for the interface between the XCTRL and
the ICAP-I. One option considered the interface func-
tion icapi_download(addr, size), which requests
the ICAP-I to copy the bitstream from the given address in
the ZBT-SRAM to the ICAP. The other option used the func-
tion icapi_download(cmd, para), whereby the cmd
can be ICAPI_ADDR, ICAPI_SIZE or ICAPI_START, and
needs three consecutive function calls to start a reconfiguration
request. We chose the second approach to make the ICAP-I
more generic at some cost of performance. The scheduling
between the application and the bitstream datapath were
simulated and verified at this level.

Two students worked on the final refinement from TLM to
RTL level. One student worked primarily on the ICAP-I
while the other implemented the rest of the system. With the
cycle accurate simulation of the RTL model, we detected 3
bugs that are relevant to the XCTRL: two synchronization tim-
ing bugs (similar to Bug #2) and one isolation timing design
error (similar to Bug #11). By more accurately simulating
the flow of the bitstream instead of assuming a compile-
time defined reconfiguration delay, we also detected dozens
of bugs in the ICAP-I scheduler (similar to Bug #9). Since
the interface between the ICAP-I and the XCTRL was clearly
defined and verified at the TLM level, the integration of the
two students’ work was straightforward. The verified design
was implemented and tested on a Virtex 4 LX160 FPGA on
the ADM-XRC-4 evaluation board, and no more bugs were
found.

VI. CONCLUSIONS

As is the case in modern ASIC design, functional verification
has become a significant challenge in FPGAs, and dynamic
reconfiguration adds a new dimension to the challenge. To
perform the most popular and traditional simulation-based
functional verification, accurate modeling of the DRS is es-
sential.

This paper addresses these modeling difficulties by bridging
the gap from the very abstract, behavioral level modeling
down to the RTL level that is to be mapped onto the FPGA.
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Table III COMPARING THE THREE LEVELS OF ABSTRACTION

BEFORE Recon. DURING Recon. AFTER Recon.
Behavioral
Level

Choose the sync. option:
- Kill the RM immediately
- Wait for the RM
- Save RM states

N/A Choose the init. option:
- Reset the RM
- Restore RM states

Transaction
Level

Verify the sync. interface:
- The execution flow (e.g., Bug
#3)

- The parameters (e.g., Bug #1)

Integrating the bitstream datapath
with the rest of the system:
- The execution flow (e.g., Bug #9)
- The parameters

Verify the init. interface:
- The execution flow
- The parameters (e.g., Bug #1)

RTL Level Verify the signal-level manipula-
tion for sync.:
- The timing of sync.(e.g., Bug #2)

Verify the signal-level manipula-
tion for isol. & bitstreams:
- The timing of isol.(e.g., Bug #7)
- The effect of the undefined RM
(e.g., Bug #6,8)

- The timing of the bitstream data-
path (e.g., Bug #9)

Verify the signal-level manipula-
tion for init.:
- The timing of init.(e.g., Bug #11)
- The effect of the old RM on the
new RM (e.g., Bug #10,12)

Not covered Implementation dependent options
- Save RM states (e.g., Bug #4, 5)

N/A Implementation dependent options
- Restore RM states (e.g., Bug #4, 5)

By providing a complete, top-down modeling methodology
(tools, guidelines and examples), future designers can follow a
straightforward refinement process to facilitate early functional
verification closure. We have also identified and analyzed a set
of potential bugs typically found in DRS systems. The bugs
are categorized according to the different stages of operation,
namely BEFORE, DURING & AFTER reconfiguration. We
assessed the feasibility of our method via a simple case study.

Looking ahead, we plan to evaluate the impact of physical
implementation on functional verification. Although it is de-
sirable to hide the physical implementation and reconfigurable
fabric during simulation, it is possible that some bugs may
be missed. The consequences of ignoring these physical im-
plementation details are not known. We are also looking at
extending the TLM library [20] with reconfiguration support
so as to ease the creation of the TLM model.
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