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Abstract—Field-Programmable Gate Arrays (FPGAs) provide
ideal platforms for meeting the computational requirements of
future space-based processing systems. However, FPGAs are
susceptible to radiation-induced Single Event Upsets (SEUs).
Techniques for dynamically reconfiguring corrupted modules of
Triple Modular Redundant (TMR) components are well known.
However, most of these techniques utilize resources that are
themselves susceptible to SEUs to transfer reconfiguration
requests from the TMR voters to a central reconfiguration
controller. This paper evaluates the impact of these Reconfigu-
ration Control Networks (RCNs) on the system’s reliability and
performance. We provide an overview of RCNs reported in
the literature and compare them in terms of dependability,
scalability and performance. We implemented our designs
on a Xilinx Artix-7 FPGA to assess the resulting resource
utilization and performance as well as to evaluate their soft
error vulnerability using analytical techniques. We show that
of the RCN topologies studied, an ICAP-based approach is
the most reliable despite having the highest network latency.
We also conclude that a module-based recovery approach is
less reliable than scrubbing unless the RCN is triplicated and
repaired when it suffers configuration memory errors.

I. INTRODUCTION

An FPGA-based TMR system that employs Module-based
configuration memory Error Recovery (MER) is illustrated
in Fig. 1. A voter associated with each TMR component
identifies which module, if any, is suffering from a persistent
fault, and raises a reconfiguration request. Requests from
the voters of different TMR components across the device
are transmitted through a Reconfiguration Control Network
(RCN). In Fig. 1, the components of an RCN, which include
a Network Interface (NI) at each voter, a central Network
Controller (NC) and an interconnection network between
them, appear darkly shaded. The RCN identifies which
module needs to be reconfigured and sends identifying
information to a Reconfiguration Controller (RC). The
RC fetches the corresponding partial bitstream from off-
chip memory and reconfigures the faulty module via the
configuration fabric, which is accessed through the Internal
Configuration Access Port (ICAP) present in advanced
FPGAs from Xilinx. Analogous hardware is available in
Altera FPGAs. After the faulty module has been reconfigured
and resynchronized with the remaining two modules of the
TMR component, the voter resumes its normal operation.

II. RELATED WORK

Several RCN topologies have been described in the
literature. These include examples of a point-to-point (P2P)
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Figure 1. Components of an RCN (darkly shaded) in a TMR system that
employs module-based recovery from configuration memory errors.

network [1], [2], a bus network [3], a token ring network
[4], and an ICAP-based readback approach [5].

P2P networks use simple interfaces to connect the voter
outputs distributed across the device to the central NC
[1], [2]. In P2P networks, the interconnecting wires may
need to span the entire device and therefore pass through
numerous programmable interconnection resources. This not
only increases their susceptibility to SEUs, but also introduces
latency.

In [3] the authors implemented a bus network using the
Advanced eXtensible Interface (AXI) core to transfer the
outputs of individual modules to a central voter. While not
serving as an RCN, any shared messaging resource, such as
this bus, could be used to convey reconfiguration requests
from distributed components to a central controller. The use
of a shared bus allows new modules to be readily integrated
into the system while avoiding the use of the dedicated
routing resources found in P2P networks. However, a bus
requires more complex interconnection interfaces than P2P
networks, which increases soft-error vulnerability, power
consumption and latency.

In [4] a token ring network is implemented that spans all
voters in a daisy-chained manner. The design uses complex
network interfaces that require significantly more logic than
the endpoints of the point-to-point connections found in the
P2P networks in [1]. However, token ring topologies usually
link neighbouring components and therefore utilize a reduced
number of global wires for interconnecting them. In contrast,
P2P and bus topologies realize mixed distance connections
and thus utilize various interconnection resources, including
both local and global wires. Usually, SRAM-based FPGAs
integrate more local than global wires and therefore token
ring networks, which tend to utilize more local wires, are
considered to be more scalable than P2P and bus networks.
However, in token ring networks, the latency increases with
the number of components on the network. A drawback of
this topology is that when a link suffers a configuration
memory error the ring no longer functions as intended,
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whereas the P2P topology is inherently more robust as all
links are independent.

A fourth approach that has been described in the literature
makes use of the ICAP to read the outputs of the TMR
modules [5]. The former uses software to centrally compare
the outputs of each module in order to reduce the overheads
of distributed voting and to reduce the likelihood of the voter
mechanism becoming corrupted. An ICAP-based communi-
cations scheme eliminates the need for a soft network and
therefore reduces routing pressure, implementation time, and
improves reliability. Reliability is enhanced since the built-in
hard reconfiguration network is utilized to obtain module or
voter outputs. This approach has the potential to be scalable
as it does not require user routing resources and utilizes a
moderate amount of logic to implement the central controller.

Uniquely, this work compares the prevalent RCN topolo-
gies by studying their performance, utilization and reliability
when used in a range of synthetic and real TMR systems
with a view to aiding the development of systems that are
to be deployed in high radiation environments.

III. RELIABILITY EVALUATION

In this section, we outline how we model the reliability
of a non-triplicated component, the reliability of a TMR
component and the reliability of a complete FPGA-based
system composed of both non-triplicated and triplicated
components. Our analysis is based on the number of critical
bits per component for which we use the number of essential
bits reported by the vendor’s tools as a worst case estimate.

In the following, we assume that the flip of a single
essential bit leads to a module failure if the module is
not triplicated. With this assumption, the module failure
rate λm is given by the product of the bit error rate, λbit,
and the number of essential bits in module m. We also
assume that the three modules of a TMR component have
the same failure rate λm. We derived a “high radiation level”
of λbit = 2.7×10−10 upsets/bit/s for Xilinx 7-series FPGAs
[6] in equatorial geosynchronous orbit using the peak 5-min
CREME96 model [7] with 2.54 mm aluminium shielding.

We assume that module reliability decreases exponentially
over time t as expressed by the function:

Rm(t) = e−λmt, (1)

whereby the reliability, Rm(t), of a module at time t denotes
the probability that the module operates without any failure
in the interval [0, t].

When module m is triplicated, its reliability function
becomes:

RTMR
m (t) = 3R2

m(t)− 2R3
m(t). (2)

In order to achieve higher reliability, for a given SEU rate,
we employ TMR with MER. The reliability function is then
given by [8]:

RTMR
m,r (t) =
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b
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where a = 5λm + μm, b =
√
λ2
m + 10λmμm + μ2

m.
The term μm denotes the repair rate of a module, which

is the reciprocal of the time needed to recover the faulty
module: μm = 1

trepair
= 1

td+tc+tsync
≈ 1

td+tc
, where td

denotes the average error detection time, tc denotes the error

correction time and tsync denotes the synchronization time,
which we omit in our case study because it normally only
accounts for a small fraction of the recovery time.

The reliability of an FPGA-based system composed of N
TMR components that use MER to recover from configuration
memory errors and an RCN for aggregating reconfiguration
requests can be derived as follows. Depending upon the
level of network protection and recovery used, we model the
reliability of the RCN RRCN (t) using Eqs (1, 2 or 3). The
reliability of the system is then given by the product of the
reliability of each individual component, namely the RCN
and the N TMR components [9]:

RTMR
s (t) = RRCN (t)

N∏

i=1

RTMR
i,r (t). (4)

In this derivation, it is assumed that failures follow a Poison
distribution and the occurrence of errors in modules or
components are statistically independent and uncorrelated.
Note that Eq. (4) holds true only if μ� λ, which ensures
repairs are completed independently [9]. Moreover, since we
aim to evaluate the impact of various RCN architectures on
the total reliability of FPGA designs that incorporate MER,
we do not include the reconfiguration controller or the voters
in our reliability analysis as these will have the same impact
in each case.

IV. EXPERIMENTS AND RESULTS

We evaluated the performance of the networks discussed in
Section II, in terms of resource utilization, latency, operating
frequency, power consumption and soft-error vulnerabil-
ity. All networks were implemented on a Xilinx Artix-7
XC7A200TFBG484-1 FPGA, as hosted by the RUSH payload
[4], using the vendor’s Vivado 2014.4 implementation tools
with default settings. The comparison of the networks is
based on data obtained from the implementation tools.

A. Experiments
As mentioned in Section I, an RCN consists of NIs, a

central NC and the interconnection network between them.
In our experiments the same voter interfaces and RC were
used irrespective of the RCN types being tested. Identical
NI and NC locations were used for all RCN designs. In
a first experiment we studied “synthetic” layouts in which
the TMR components, their voters, and thus the NIs were
distributed in a checkerboard pattern across the majority
of the device area. Furthermore, the NIs and the NC were
located in partitions that utilized the same FPGA resources
in each implementation. To obtain resource utilization and
performance results, we initially implemented designs that
only contained the components of the RCNs being tested and
constrained the implementation tools to prevent optimizations
across the port interfaces of the NIs and the NC. We tested
each RCN type for networks comprising 7, 15 and 31 voters.
The synthetic layout of a 31-voter design for testing the P2P
network topology is shown in Fig. 2(a).

In a second experiment, we investigated the utilization
and performance of each RCN when used to collect re-
configuration requests for the RUSH payload [4]. For this
case study, we implemented the four network types with
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the 9 TMR components comprising the RUSH experiment.
These components include a single MAC-based 21-tap Finite
Impulse Response (FIR) filter with 16-bit signal width, an
8-to-3-bit Block Adaptive Quantizer (BAQ), an 8,096-word
deep 32-bit FIFO, three 32-bit Shift Registers (SRs) having
different lengths and a range of combinational logic between
the stages and three 32-bit Binary Search Trees (BSTs) of
different heights and a range of combinational logic at each
node. A MicroBlaze processor was used to implement the
RC and the AXI HWICAP IP was used to reconfigure faulty
modules. The layout of this system is depicted in Fig. 2(b).
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Figure 2. (a) Synthetic layout of a 31-voter design and (b) RUSH floorplan

B. Results
1) Implementation results: Table I presents information

extracted from the vendor’s implementation tools. Similar
designs are grouped together and arranged from left to right
with increasing resource utilization. The dynamic power
consumption and the number of essential bits follow the
same pattern. A relatively small and constant static power
consumption was observed, which we believe is due to the
relatively few resources (0.2% of total available resources)
allocated to the RCNs studied.

The ICAP-based RCN was realized with the fewest
resources compared to the other RCN architectures. This
is primarily because the ICAP NIs are implemented with just
two Flip Flops (FFs) and a small amount of support logic
mapped to Look Up Tables (LUTs). As expected, the number
of Programmable Interconnection Points (PIPs) and Switch
Matrices (SMs) used by the ICAP approach is significantly
lower than for the other approaches. As a consequence, the
ICAP-based RCN has on average 2.7, 3.6 and 6.0 times
fewer essential bits than the synthetic layouts of the P2P, bus
and ring networks respectively. However, the ICAP-based
RCN suffers from high network latency. It requires two to
three orders of magnitude more time than the other RCNs
to transfer reconfiguration requests to the NC. In contrast,
the ring has the lowest latency, since it can achieve a higher
operating frequency and only needs 1 clock cycle per node
hop. We calculated the average latency for the ICAP, P2P
and bus RCNs assuming half the voters are checked before
an erroneous one is found. In contrast, we assume a message
needs to completely traverse the ring to reach the RC. The
latency of the ICAP approach is on average over 175 times
that of the ring and the latencies of the P2P and bus networks
were about 1.4 times that of the ring over the set of synthetic
layouts studied.

Table II
RESULTS OF MAPPING 9 TMR COMPONENTS TO XILINX ARTIX-7

XC7A200TFBG-484

Design Essential Bits Failure rate (λm)
nf tc (ms)

(ne) (upsets/s/module)

FIR 12,042 (0.02%) 3.25× 10−6 65 1.2

FIFO 41,842 (0.07%) 1.13× 10−5 192 3.5

BAQ 48,963 (0.08%) 1.32× 10−5 73 1.3

BST1 281,604 (0.46%) 7.60× 10−5 145 2.6

SR1 285,914 (0.46%) 7.72× 10−5 378 6.8

SR2 515,904 (0.84%) 1.39× 10−5 474 8.5

BST2 793,534 (1.30%) 2.14× 10−4 610 11.0

SR3 1,403,647 (2.30%) 3.79× 10−4 1,090 19.6

BST3 1,833,235 (3.00%) 4.95× 10−4 1,483 26.7

We investigated an optimization of the ICAP RCN that
entails constraining the registers of those groups of NIs
that are located within each clock region. These registers
are forced to be placed into a single configuration frame
so that they can be accessed in a single frame read. With
reference to Fig. 2(a), which depicts 4 voters per clock
region (10 grey rectangles), this optimization resulted in the
creation of horizontal wires leading from each voter to a
frame that was centrally located in each clock region. Instead
of requiring 31 separate frame reads to check all voters, this
approach reduced the number of frame reads needed to 8 in
total — one for each clock region used by the design. The
results of this implementation are reported in Table I in the
ICAP column headed L1*. As can be seen, this optimization
reduced the latency of the ICAP approach by a factor of 4
while increasing the number of essential bits used over the
unoptimized 31-voter ICAP design by 32%.

2) RUSH case study results: Table II presents the number
of essential bits (ne), the failure rate of each module assuming
λbit = 2.7× 10−10 upsets/bit/s, the number of frames (nf )
and the correction time (tc) of each TMR module. Note that
in our design, since we used the AXI HWICAP, the ICAP
throughput using the MicroBlaze was limited to 10 MB/s,
considerably less than the maximum possible throughput of
400 MB/s. The reduction in ICAP bandwidth also affected
the latency for checking a voter using the ICAP to 60 us per
voter, and we observed a much higher network latency.

The system reliability for each RCN type and the 9
RUSH application circuits using Eq. (4) is compared with
the reliability of a blind scrub implemented on the same
system in Fig. 3. The MicroBlaze RC and off-chip flash
configuration storage used by the RUSH payload supports
a random FPGA configuration frame read latency of 60 us
and a sustained frame write period of 18 us per frame. Blind
scrubbing, which entails rewriting each configuration frame
of the device, therefore takes 430 ms on the used Artix-
7 XC7A200TFBG-484 (24,060 configuration frames), and
errors are recovered by scrubbing after 215 ms on average.
Please note that in Fig. 3, the scrub plots only account for
the 9 application components; they specifically exclude an
RCN component, which is not needed for blind scrubbing.

Fig. 3(a) assumes that the four RCNs are implemented as
non-triplicated components. While the ICAP RCN results in
the best reliability for MER, all 4 RCNs reduce the reliability
of the system since they are single points of failure.
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Table I
RESULTS OF MAPPING FOUR RCNS TO XILINX ARTIX-7 XC7A200TFBG-484

Type ICAP P2P BUS RING
Layout L1 L1* L2 L1 L2 L1 L2 L1 L2
# NIs 7 15 31 31 9 7 15 31 9 7 15 31 9 7 15 31 9

Slices 7 15 31 31 9 12 29 50 18 21 33 60 21 30 50 141 35

LUTs 0 0 0 0 0 14 27 30 16 28 50 108 33 54 130 279 87

FFs 14 30 62 62 18 26 44 77 32 35 61 110 43 61 134 295 87

PIPs 440 889 1,770 1,858 557 1,101 1,996 3,513 1,243 1,341 2,553 4,625 1,729 2,057 3,894 7,986 2,724

SMs 38 62 102 181 55 277 453 792 274 351 616 1074 466 426 496 861 426

Freq. (MHz) 100 112 109 107 126 109 107 104 114 132 203 186 145

Clocks / Hop 230 2 2 1

# hops 7 15 31 8 9 7 15 31 9 7 15 31 9 8 16 32 10

Latency (us) 8.05 17.25 35.65 9.20 300 0.06 0.14 0.29 0.5 0.06 0.14 0.30 0.5 0.07 0.08 0.18 0.5

Static (mW) 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138

Dynamic (mW) 3 4 5 5 3 4 7 7 4 6 7 9 5 4 5 8 4

Ess. bits (Kb) 3.42 5.6 10.4 13.7 4.1 9.4 15.8 26.0 10.1 11.9 20.1 38.6 14.9 18.3 33.7 69.4 24.3

L1: Synthetic layout L2: RUSH layout L1*: optimized ICAP layout
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Figure 3. a) Unprotected RCN b) TMR triplicated c) TMR triplicated with
recovery

Fig. 3(b) assumes that the RCNs are implemented as
triplicated components, and that the errors that occur in this
component are not repaired. This provides some limited
error mitigation. Only the ICAP outperforms scrubbing over
the time period shown. However, eventually (when t >
165, 000 s) even this approach succumbs to errors that remain
unrepaired and scrubbing once again dominates.

In Fig. 3(c) we assume that the device is partially
reconfigured in its entirety when an error in the triplicated
RCN component is detected. This error recovery period
is longer than desired, but the approach ensures any error
in the network is corrected. Despite the long recovery
time (equivalent to reconfiguring the complete device), the
reliability is not significantly affected because errors occur
infrequently in the relatively small RCN components.

V. CONCLUDING REMARKS AND FUTURE WORK

In this paper, we have compared four RCN types in
terms of reliability, scalability, resource utilization, power
consumption and sensitivity to configuration memory errors.
The utilization and performance of these RCNs were assessed
for networks with 7, 15 and 31 voters. The results demonstrate
that the ICAP-based readback approach, which uses the built-
in reconfiguration mechanism available in FPGAs, requires
the least resources of those networks studied.

The results of a case study that was implemented on
the RUSH payload indicate that the ICAP-based readback
approach has the highest system reliability but it also has
a relatively high latency. This higher latency may not be
too problematic except when radiation levels become much

higher than the high error rate assumed in our work. We
have shown that the latency of the ICAP approach can be
reduced by clustering the registers that are to be read from
a clock region into a single frame. This optimization does
not significantly increase the number of essential bits of the
design. We have also determined that for the reliability of
MER to be competitive with scrubbing in a real system, the
RCN must also be triplicated and be repaired when errors
affect it.

One direction for further study is to consider the order in
which TMR components are checked. Further work is also
envisaged to derive more comprehensive reliability models
for complete FPGA-based TMR systems with MER. This
work is just the first step in this direction.
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