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Abstract—We present TLegUp, an extension of LegUp, that
automatically generates Triple Modular Redundant designs for
FPGAs from C programs. TLegUp is expected to improve
the productivity of application designers for space; to allow
designers to experiment with alternative application partitioning,
voter insertion and fault-tolerant aware scheduling and binding
algorithms; and to support the automatic insertion of the infras-
tructure needed to run a fault-tolerant system. In this paper, we
examine TLegUp’s capacity to make use of both combinational
and sequential voters by triplicating a design before scheduling
and binding occur. In contrast, traditional RTL-based tools are
constrained to use only combinational voters so as to preserve the
scheduling and binding of the design; critical path lengths are
consequently increased. We compare the use of sequential and
combinational voters for a range of benchmarks implemented
on a Xilinx Virtex-6 FPGA in terms of: (i) maximum operating
frequency; (ii) latency; (iii) execution time; and (iv) soft-error
sensitivity. Compared to the use of combinational voters, the use
of sequential voters reduces the application execution time on
the CHStone benchmark suite by 4% on average.

I. INTRODUCTION

Due to their performance/power characteristics, low non-
recurring engineering costs and re-configurability, commercial
SRAM-based Field Programmable Gate Arrays (FPGAs) are
becoming key components for implementing payload for space
applications [1]. This trend is enhanced by the development
of sophisticated FPGA High Level Synthesis (HLS) tools
that enable researchers and practitioners to increase their
productivity and rapidly realize high-performance and energy
efficient hardware [2]. Although, HLS is not a new concept,
it has only recently started gaining traction in the FPGA
design industry, selectively, or completely replacing Hardware
Description Languages (HDL), such as Verilog, in which a
digital circuit is described at the Register Transfer Level (RTL)
rather than at the more abstract algorithmic level.

Unfortunately, radiation experiments [3] and spacecraft ap-
plications [4] show that systems implemented on SRAM-based
FPGAs are susceptible to radiation-induced errors, or Single
Event Upsets (SEUs) in their user and configuration memory
[4]. While one-time programmable or FLASH-based FPGAs
are used for space applications because of their immunity to
SEUs affecting their configuration memory, these devices have
considerably lower capabilities than SRAM-based FPGAs [4],
including lower performance, logic capacity and flexibility.
Many SEU mitigation techniques have been introduced to
overcome the effects of SEUs in SRAM-based FPGAs [4].
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The most common way to implement a reliable SRAM-
based FPGA system that tolerates SEUs is to follow a Triple
Modular Redundant (TMR) design methodology combined
with configuration memory error correction techniques [5], [6].
Yet, manually triplicating a design is tedious and error prone,
especially when dealing with complex applications.

Commercial and academic tools have therefore emerged
to automate the triplication process of FPGA applications.
Examples are the commercial tools Synopsis Synplify Premier,
Mentor Graphics Precision Hi-Rel, Xilinx TMRtool, and the
academic tool BL-TMR [3], whereby the latter two tools
support only a limited number of Xilinx FPGA parts. These
tools usually analyze, modify and apply fine- or coarse-grained
triplication of the design in RTL, during the synthesis or post-
synthesis phase of the Computer-Aided Design (CAD) flow.
Triplicating a design in RTL, though, has the considerable
drawback that the circuit’s schedule needs to be preserved
while voters are inserted into the data- and control-paths;
the design’s critical path length is consequently increased
and flexibility regarding voter placement and the ability to
retime the design are hampered. Recently the use of HLS to
generate fault-tolerant FPGA designs [7], [8] was reported in
the literature. However, these approaches aim to minimize the
area overhead by using a partial triplication without considering
the performance degradation due to voter insertion.

We report preliminary results of using HLS to automatically
generate triplicated FPGA circuit designs. We propose TLegUp,
which extends the LegUp HLS framework [9] in order to
generate synthesizable Verilog RTL suitable for implementation
in Altera and Xilinx FPGA-based systems. The triplication of
the design is performed within the Low-Level Virtual Machine
(LLVM) [10] compiler Intermediate Representation (IR) of
the LegUp flow, before synthesis, scheduling and binding
take place. This approach allows users to implement custom
voter insertion algorithms, to experiment with partitioning
the design in order to enhance reliability, and provides
opportunities to automatically instantiate the infrastructure,
such as reconfiguration controllers or scrubbers, to support the
reliable running of the TMR systems.

The contributions of this paper are: (i) we describe the
TLegUp tool to automatically generate triplicated RTL designs
from a C language program using HLS, (ii) we outline an
approach for inserting combinational voters into feedback paths
within a circuit — these voters are crucial to resynchronizing a
design after configuration memory errors have been corrected,
(iii) we detail how pipelined sequential voters, which are very
challenging to add using RTL-based tools since pipelining
changes the timing of the control signals, can be seamlessly



added using TLegUp. We assess the performance of TLegUp
in producing triplicated versions of standard benchmarks using
both combinational and sequential voters, (iv) we conduct
fault-injection experiments on Virtex-6 implementations of the
benchmarks in order to evaluate the SEU masking effectiveness
of TLegUp generated designs.

II. BACKGROUND
A. SEU Mitigation Techniques for SRAM-based FPGAs

SRAM FPGAs utilize SRAM cells to store their configura-
tion, i.e. the memory that configures the FPGA’s prefabricated
hardware blocks in order to implement the desired circuit or
system, while a smaller portion of SRAM memory is used to
store the system’s state and data (referred to as user memory
in this work). However, the bistable values of the FPGA’s
SRAM cells can change state when they are bombarded by
heavy ions and protons in space [4]. This leads to corruption
of the system’s state or data when SEUs occur in the FPGA’s
Flip Flops (FFs) or Block RAMs (BRAMs). These errors are
corrected when they are overwritten by new results. However,
if an SEU occurs in a utilized Configuration Memory (CM)
cell it may lead to a corruption of the design itself, and the
system will only recover when that particular configuration
cell is overwritten with its correct value.

Employing TMR by triplicating the design and applying
majority voting on the outputs of each module (one of the
three replicated, functionally identical designs) ensures that
the memory and CM errors are masked until error recovery
takes place [3], [5]. Two recovery methods are commonly used,
whereby either the entire FPGA is periodically scrubbed to
overwrite erroneous configuration data, regardless of errors
being present or not, or the configuration of an individual
module that is found to be in error is dynamically rewritten [6].
In order to avoid single points of failure, the majority voters,
that are used to mask errors in the user circuit and trigger the
recovery of erroneous modules, are also commonly triplicated.
Particular care is needed to also vote on internal re-entrant or
feedback signals that form cycles within the logic [11]. This
ensures that the state of modules that have undergone CM error
correction can be re-synchronized with their siblings [12]. We
refer to these voters as feedback voters (FV) [11]. A design may
also be partitioned into several TMR sub-components so as to
reduce the likelihood of multiple errors affecting more than one
of the modules of a TMR component [6] and to improve the
recovery time when module-based error recovery is employed
[12]. We refer to these voters as partitioning voters (PV). Prior
to routing outputs off chip, so called reducing voters (RV) may
be needed to determine the output pin values.

B. LLVM IR and LegUp

LLVM IR is a machine-independent RISC-like instruction
set, which is easily represented as a Control Flow Graph (CFG),
where the nodes represent Basic Blocks (BBs) and the edges
represent control transitions between BBs. Nodes are composed
of a sequence of LLVM IR instructions with a single entry
and exit. In LegUp [9] the hardware constructs corresponding
to all LLVM instructions are pre-synthesized for the target
FPGA in all supported bit-widths so that the FPGA resources
needed to implement the instruction and the associated delay
can be determined. This FPGA-specific information is used to
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III. TLEGUP
A. Design Flow

Fig.1 illustrates the TLegUp design flow. TLegUp takes as
input a standard C program and a configuration file, which
contains user directives regarding the target architecture, clock
period, and pipeline support, etc. We added two directives that
enable TMR emission and allow the voter type, combinational
or sequential, to be selected. According to these directives
TLegUp can generate simplex (non-TMR) RTL, triplicated
RTL with combinational or triplicated RTL with registered
(sequential) voters.

Referring to Fig. 1, at step (I), TLegUp compiles the C code
and generates LLVM IR using the Clang frontend compiler.
At step (), voter locations in a circuit are determined on the
LLVM IR based on user directives in the configuration file. At
step 3, HLS as a backend compilation step is accomplished
with LegUp, which performs scheduling and binding with
allocated resources while considering the voter latency. At
step @), triplication with pre-located voters is performed and
synthesizable Verilog RTL code is generated. Note that the
voter locations are identified before HLS at (3) and that the
triplication process is deferred until after HLS, to guarantee the
concurrent execution of TMR replicas, and prevent common
sub-expression elimination between TMR modules. At step (),
the triplicated RTL produced by TLegUp is synthesized to an
FPGA implementation using standard tools such as Xilinx ISE
or Altera Quartus. Since TLegUp is based on LLVM, which
is a source and target independent IR, it can be extended to
support other input or output languages.

B. Voter Insertion Algorithm

TLegUp triplicates the modules, FSMs, memories, registers
and wires, but not the top module’s I/O pins such as clock
and reset signals. TLegUp currently supports automatic voter
insertion at the following four locations in a circuit as shown
in Fig. 2: 1) feedback paths of an application’s datapath; 2)
application FSMs; 3) memory output signals; and 4) output
ports of the top module. Voters at locations 1) and 2) are
classified as feedback voters (FVs), voters at location 3) are
partitioning (or feedforward) voters (PVs), and those at location
4) are reducing voters (RVs).

1) Feedback paths of an application’s datapath: When an
application is translated to LLVM IR via the frontend compiler,
we perform dataflow analysis using a depth first search in
order to detect feedback paths in the datapath. We insert
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FVs at the register outputs of the immediate successor of
the first detected feedback edge in each case. Since TLegUp is
based on an HLS approach, the user can specify for TLegUp
to implement combinational or sequential voters via a user
directive. However, the addition of registers on feedback paths
has the effect of increasing the initiation interval of pipelined
designs and increased execution time when used in loop bodies.
In our experiments, we found that the use of sequential FVs
increased the average execution time of the tested benchmarks
by about 17% compared with the use of combinational FVs.

2) Application FSM: We only use combinational voters for
the feedback paths in FSMs since in digital systems the FSM
registers must be updated every clock cycle. We insert voters
between the next state logic and the state registers since the
paths between the state register outputs and the datapath register
inputs are often timing-critical in LegUp.

3) Memory output signals: Since dense BRAMs are relatively
more exposed to SEUs [13], we isolate them from the datapath
to prevent error propagation. We do this by triplicating the
memory blocks and inserting combinational or sequential voters
(depending upon the user directive) on the memory output
signals. Sequential voters increase the number of clock cycles
to deliver the final result of an application. However, they
may reduce the critical path delay, and thereby reduce the
application’s final execution time. Inserting sequential voters
in feedforward paths can be especially useful for pipelined
designs, since they can increase the clock frequency of the
design without changing the application’s throughput.

4) Output ports of the top module: RVs are inserted on the
output ports of the top module of the design hierarchy. We use
combinational voters for the output ports since they are not
usually on the critical paths of designs.

In previous work [3], where triplication was applied to RTL,
the tools were prevented from using sequential voters so as
to preserve the existing application schedule. The critical path
lengths of the resulting systems are often therefore increased.
Since we perform triplication before HLS, it is possible to
insert sequential voters to reduce the critical path length of
signals. More specifically, the triplication of the design is
carried out on the LLVM IR, before the scheduling and binding
phases occur. Therefore, any timing or resource assignment
effect of inserting sequential voters is accounted for when the
application is scheduled. Another benefit of using HLS is that
we can consider the clock frequency margin for TMR. Since
TMR designs use more resources than simplex designs, they are
expected to achieve lower clock frequencies [14]. Experiments
we conducted on triplicated designs without voters observed
a 26% average reduction in clock frequency compared with
their corresponding simplex designs due to increased routing

delays. To reflect these increased routing delays, we targeted a
10ns clock period for the circuits that incorporated sequential
voters and used a 15ns target clock period for all other design.

IV. EXPERIMENTAL RESULTS

We compared simplex and triplicated versions of the HLS
CHStone benchmarks [2] in terms of resource utilization,
maximum operating frequency (FM) in MHz, application
latency (LAT) in number of clock cycles, execution time (ET)
in ms, essential bits (EB) in Mbits, and soft error sensitivity
(SES). See Table 1.

We performed two sets of experiments. In the first set we 1)
produced the simplex and triplicated RTL versions of the HLS
benchmarks with LegUp and TLegUp, 2) performed functional
simulation to verify and obtain the latency (LAT) required for
each benchmark to finish its computation, and 3) synthesized,
placed and routed them on a Xilinx Virtex-6 FPGA with Xilinx
ISE 14.7, in order to extract post-routed resource utilizations,
i.e. numbers of occupied Look Up Tables (LUT) and slice
registers (REG). The numbers of DSPs and memories are not
presented in Table I as these tripled precisely in number. We
calculated ET as FM ™! x LAT. Note that we used the default
optimization settings of LegUp and TLegUp to compile the
HLS benchmarks, except for the pipeline, bitwidth and memory
merge optimizations, which were enabled. We disabled all
resource sharing options in the Xilinx ISE to prevent common
sub-expression elimination between different TMR replicas,
while the optimization strategy of the Xilinx synthesizer was
set to "speed”, since this is the default configuration of the
official LegUp framework.

In the second set of experiments we re-implemented the
benchmarks, but also incorporated a Microblaze (MB) soft-
processor to facilitate fault-injection. The MB was implemented
in one of the twelve available clock regions of the FPGA, while
the benchmarks were implemented (and isolated from the MB)
in the remaining eleven clock regions. All benchmarks included
test vectors that were stored in BRAM and incorporated three 1-
bit input ports, clock, reset and start, as well as two output ports:
finish (1-bit) and result (32-bit). The MB was programmed
to inject a fault into the CM of each benchmark (excluding
the MB’s clock region) and then to test the benchmark’s
functionality by setting its start bit, logging its output when
finished and comparing the results with the golden value for
the benchmark.

Not all corrupted CM bits result in a functional error, e.g.
soft-errors in the CM bits of unused resources do not affect
the functionality of the design. In order to speed up the
fault injection campaign, we used the SEVAX tool [15] to
extract information from the Xilinx essential bits file, which
indicates the essential CM bits (EB) that may affect a circuit’s
functionality when corrupted, and injected faults into each of
these EB. The SES of each benchmark was calculated as the
fraction of injected faults that resulted in observed functional
errors, i.e. SES = number of functional errors / EB. It should be
noted that in this second set of experiments, the jpeg benchmark
was unable to complete routing due to increased resource
utilization and therefore fault-injection for this benchmark was
not performed. Similarly, the sha and bfish benchmarks are
not reported upon since testing had not completed by the time
of going to press.



TABLE I: Simplex vs. Triplicated Designs

Benchmark Simplex TMR* + Combinational TMR* + Sequential

REG LUT FM LAT ET EB SES|REG LUT FM ET EB SES|REG LUT FM LAT ET EB SES
adpcm 7,701 8,850 61 8,704 142 548 275 | 3.05 384 0.70 142 2.04 038 ] 3.06 394 0.75 100 133 208 040
aes 7,182 8,600 145 1,481 10 480 1.18| 296 3.12 0.62 161 1.62 059 3.06 3.12 070 1.01 143 161 0.27
aesdec 7,883 9,419 146 3219 22 494 148|296 3.10 0.67 150 1.62 0.19]| 3.14 3.08 0.64 1.01 157 1.63 0.24
gsm 4,459 6458 108 4,763 44 488 084|287 330 059 1.68 156 0.13] 298 352 073 123 1.68 1.64 0.06
sha 2471 2,695 203 167K 820 - -1 305 369 054 18 - - 315 363 068 125 185 - -
bfish 3983 4276 180 164K 909 - -1 28 365 058 172 - - 296 364 059 111 187 - -
dfadd 2,420 5,625 147 643 4 459 053|283 310 0.63 158 140 0.07| 320 3.19 067 120 178 142 0.07
dfdiv 12K 13K 99 1,908 19 559 076|297 3.10 081 123 174 0.02| 3.05 3.14 080 1.03 128 1.74 0.02
dfmul 1,467 2,428 101 208 2 417 029|289 310 086 1.17 123 0.10| 3.75 3.19 098 127 130 124 0.08
dfsin 16K 22K 92 57K 623 7.06 526|291 3.08 073 136 207 0.03| 3.0l 3.14 0.64 1.03 160 209 0.04
jpeg 22K 35K 52 12M 23K - -|1301 333 070 142 - - 3.07 333 072 1.01 142 - -
mips 845 2,240 81 5004 62 416 043|270 339 095 1.05 122 015|328 316 122 124 1.02 123 0.09
motion 7,630 12K 111 8259 74 550 026 | 3.06 342 0.61 1.63 186 0.05]| 3.08 349 0.67 1.00 150 1.85 0.04
satd 2,598 3,506 120 102 1 419 040|297 320 088 1.14 126 0.04]| 3.12 3.19 131 108 0.82 1.13 031
sobel 622 766 83 1.0M 13K 4.00 099 | 3.07 342 062 160 1.16 036|345 347 108 100 093 1.16 033
bmford 1,104 1,375 128 465 4 397 025|282 356 071 140 1.14 0.10| 320 354 0.89 146 163 1.15 0.05
mmult 395 487 99 10K 102 385 0.15| 293 321 093 1.07 1.05 0.15]| 343 325 129 1.04 0.81 1.06 0.14
Geomean 3435 4791 108 7942 73 472 0.66 | 294 332 071 142 146 0.11 | 3.17 335 082 1.11 136 146 0.11

Table I compares the results between simplex and trip-
licated RTL designs. The TMR columns in Table I are
scaled (normalized) relative to the results for the simplex
designs. We evaluated two TMR variations: (1) triplicated RTL
designs with only combinational voters ('TMR+Combinational’
column), and (2) triplicated RTL designs with sequential
voters in the feedforward paths and combinational vot-
ers elsewhere ('TMR+Sequential’ column). Note that the
"TMR+Combinational’ results do not include a LAT column
since the latency of these designs is the same as for the
corresponding Simplex designs, i.e. relative to Simplex, LAT =
1. As can be observed from Table I, the use of sequential voters
instead of combinational ones in TMR implementations reduces
the ET on average by 4% while respectively requiring 1.42x
and 1.36x more time to execute their tasks when compared
to the simplex versions. A three-fold increase is observed
in utilized resources for TMR implementations, as expected,
while the number of EBs only increased by 1.46x. Further, we
found the SES of TMR implementations to be 9.09x lower
than the corresponding simplex version, which in our opinion
is a smaller reduction than expected. We believe that the SES
could be further reduced if the TMR implementations were
placed and routed in such a way so as to reduce the chance of
having more than one TMR module failing due to a single bit
error [16].

V. CONCLUSIONS AND FUTURE CONSIDERATIONS

In this paper we introduced TLegUp, a TMR code generation
tool for SRAM FPGA-based applications using HLS. Previous
RTL-based TMR approaches are restricted to using only
combinational voters to preserve the pre-defined scheduling
and binding. However, since in TLegUp voter insertion is
considered before scheduling and binding, we can make use
of sequential voters and achieve an improvement of 16% in
clock frequency and 4% in an application’s execution time.

Future work will consider i) enhancement of voter insertion
algorithms, ii) developing task partitioning algorithms to
increase the fault-tolerance of the design and to minimize
the recovery time when a module-based error recovery scheme
is adopted and iii) developing FPGA layout algorithms to apply
module based error recovery to a TLegUp synthesized circuit.
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