
From C to Fault-Tolerant FPGA-based Systems

Dimitris Agiakatsikas∗, Ganghee Lee∗, Thomas Mitchell∗, Ediz Cetin†, and Oliver Diessel∗
∗School of Computer Science and Engineering, UNSW Sydney
†School of Engineering, Macquarie University Australia

{d.agiakatsikas, ganghee.lee, thomas.mitchell, o.diessel}@unsw.edu.au, ediz.cetin@mq.edu.au

Abstract—This work presents an automated flow for pro-
ducing fault-tolerant Field Programmable Gate Array (FPGA)
systems. The flow uses the TLegUp High Level Synthesis (HLS)
tool to generate triplicated register-transfer level designs for
algorithms expressed in the C language and Vivado design suite
for their implementation on Xilinx 7-series FPGAs. TLegUp
has been extended to partition the design into a number
of Triple Modular Redundant (TMR) components, which
can be optionally floorplanned during their implementation.
Partitioning the TMR design into a network of smaller TMR
components and isolating their modules through flooplanning
increases system reliability. We implemented a fine- and a
coarse grain approach to partition the design, whereby the
former approach uses a network flow algorithm to partition the
application’s Data Flow Graph (DFG) at the instruction level,
while the latter uses the same algorithm to partition the design
at the C function level. Results reveal that both approaches
provide similar reliability enhancement to the system, but
function-level partitioned designs are smaller and faster.

Sy
n

th
es

is
 -

 V
iv

ad
o

 

P
os

t 
sy

n
th

. N
et

lis
t

P
la

ce
&

R
o

u
te

 
- 

V
iv

ad
o

Fl
o

o
rp

la
n

n
er

X
D

C
 c

o
n

st
r.

B
it

st
re

am

LL
V

M
 c

o
m

p
ile

r

H
LS

 -
 T

Le
gU

p

A
p

pl
ic

at
io

n
 /

 C

LL
V

M
 /

 IR

TM
R

 R
TL

 /
 V

er
ilo

g

Front-end part Back-end part

M
ap

p
in

g 
- 

V
iv

ad
o

 

P
os

t 
m

ap
. N

et
lis

t

Figure 1. Architecture of the proposed flow.

Fig .1 illustrates the proposed flow, which consists of
two parts, a front- and a back-end part. The front-end uses
TLegUp [1] to generate Verilog code of TMR-based designs
for algorithms described in the C language. This part involves:
(i) high-level synthesis (HLS) and partitioning of the design,
(ii) voter insertion as described in [2] and (iii) triplication of
the design as guided in [3]. The flow uses a modified version
of the network flow algorithm presented in [4] to partition the
design into a user defined number of TMR components by
applying either, (i) function-level partitioning (FLP), whereby
the applications C functions are clustered into partitions, or
(ii) by applying instruction-level partitioning (ILP) on the
DFG of the entire computation of the C algorithm which
is obtained from the LegUp flow [5] once all C functions
of the C algorithm are inlined and translated into LLVM
intermediate representation. Both approaches aim to balance
resource utilization between partitions, while minimizing the
total bit-width of signals used between them. The Verilog
is then implemented on an FPGA with the back-end. The
back-end involves netlist synthesis, technology mapping,
placement, routing, and bitstream generation, while the design
can optionally be floorplanned by the academic tool [6].

We used our flow to implement non-floorplanned and
floorplanned TMR designs of 17 CHstone, DWARV and
Bambu HLS bechnarks on a Xilinx Artix-7 200T FPGA

and compared them against simplex (non-triplicated) design
versions. The TMR designs were partitioned with ILP
and FLP into k = 1, 2, 4 and 8 TMR components (i.e.
partitions). The results show that both the FLP and ILP
circuits utilize approximately 3 – 4× more resources than
the simplex circuits when k = 1. However, the ILP circuits
suffer an exponential utilization increase as k increases.
LegUp generates a Finite State Machine (FSM) for each
C function during HLS. Thereby, the ILP designs in which
all C functions are inlined into the main function have only
one centralized complex FSM to control the entire circuit.
Therefore, more partitions result in more wires and as a
consequence in more voters to interconnect the centralized
FSM with the partitions of an ILP circuit. This has negative
effects on the operating frequency (FM) and the resource
balance between the partitions of the ILP circuits. On the
other hand, results of FLP circuits are consistently more
balanced than ILP across all k for all metrics we considered.
Finally, fault-injection experiments (conducted in the same
way as in [1]) showed that both ILP and FLP circuits with k =
1 and 2 are approximately 500× less sensitive to configuration
memory soft-errors, which can be improved by a factor of
1.3× – 3.4×, on average, when the circuits are flooplanned.

ACKNOWLEDGEMENT

This research was supported in part by the Australian
Research Council’s Linkage (LP140100328) and Discovery
(DP150103866) Projects funding schemes. We also thank Dr.
Antonio Miele for providing the floorplanner [6].

REFERENCES

[1] G. Lee et al., “TLegUp: A TMR Code Generation Tool for
SRAM-Based FPGA Applications Using HLS,” in IEEE Int.
Symp. on Field-Programmable Custom Computing Machines
(FCCM), 2017, pp. 1–4.

[2] J. M. Johnson et al., “Voter insertion algorithms for FPGA
designs using triple modular redundancy,” in ACM/SIGDA Int.
Symp. on Field-programmable Gate Arrays (FPGA), 2010.

[3] C. Carmichael, Triple module redundancy design techniques
for Virtex FPGAs, Xilinx Application Note XAPP197, 2001.

[4] H. Liu et al., “Network-flow-based multiway partitioning with
area and pin constraints,” IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, vol. 17, no. 1, pp.
50–59, 1998.

[5] A. Canis et al., “LegUp: An open-source high-level synthesis
tool for FPGA-based processor/accelerator systems,” ACM
Trans. on Embedded Computing Systems (TECS), vol. 13, no. 2,
p. 24, 2013.

[6] M. Rabozzi et al., “Floorplanning Automation for Partial-
Reconfigurable FPGAs via Feasible Placements Generation,”
IEEE Trans. on Very Large Scale Integration (VLSI) Systems,
vol. 25, no. 1, pp. 151–164, Jan 2017.


