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Binarised neural networks (BNNs) have attracted research
interest for embedded deep learning applications. BNNs are
well suited to FPGA implementation since BNNs have small
memory utilisations and make use of many binary logic
operations in parallel. Moreover, the FPGA acceleration of
BNNs has very high energy efficiency and performance [1],
making FPGA-based BNNs attractive for implementing neural
network capability in power-constrained satellite systems.

However, ionising radiation threatens the function of FPGA-
based applications by inducing soft errors. The effect of ion-
ising radiation altering the state of an SRAM memory cell is
called a single event upset (SEU). SEUs are the primary class
of soft error of concern for SRAM-based FPGAs as SEUs in
the configuration memory can result in loss of circuit function
[2]. An FPGA application’s SEU susceptibility depends on the
radiation flux, the FPGA fabric, resource utilisation, as well as
the inherent fault tolerance of the algorithm. The application-
dependency of SEU vulnerability is especially relevant for
neural network accelerators on FPGAs, as the perceptron
algorithm can maintain its output when there is a minor change
in input or weight.

Applying FPGA-based neural network hardware in high
radiation environments or safety-critical scenarios requires a
solid understanding of the SEU vulnerability of such hardware.
Therefore, it is important to understand the contribution to
the SEU vulnerability from each component of the neural
network accelerator and how the neural network model affects
the vulnerability of the hardware. In addition, the techniques to
harden a neural network against radiation need to be developed
with an eye towards their efficiency.

This work studies the SEU vulnerability and hardening
options for FPGA-based BNNs deployable on satellites. We
tested fully-connected BNNs trained on image classification
tasks since such networks are being considered for on-satellite
image filtering to reduce downlink bandwidth requirements [3]
[4]. We investigate the SEU vulnerability and characteristics
of each layer in this representative BNN architecture. We
study the distribution of vulnerable bits (critical bits) across
layers, the severity of soft errors in layers, as well as the
resource overhead of selective hardening methods. We conduct

fault injection experiments targeting each layer’s hardware to
analyse how faults in each layer contribute to the accuracy
loss of the BNN. We then develop resource-efficient soft error
detection and mitigation techniques by selectively introduc-
ing redundancy to vulnerable components. We also construct
validation datasets for verifying the integrity of the BNN
accelerator with no extra hardware utilisation.

We showed that the impact of configuration memory upsets
varies across layers. Layers with more neurons and layers
with wider input activations cause smaller degradations in
classification accuracy when affected by upsets than layers
with fewer neurons and with narrower input activations. On the
severity of soft errors, We found that while most faults in the
BNN hardware have a minor impact on accuracy, some faults
caused severe degradation in the networks’ accuracies. We find
that most of the severe faults occurred in the output layers of
BNN hardware and consequently study efficient fault-tolerance
and fault-detection techniques by selectively hardening the
output layer. We conclude that the selective application of
TMR on output layers offers tolerance to more than 60% of
serious faults with resource overheads lower than 13%. The
selective application of DWC on output layers detects more
than 67% of serious faults with resource overheads lower than
7%. We also showed that more than 85% of upsets on critical
bits can be detected by using less than 35% of images from
the MNIST test sets.
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