
Leveraging FPGA Runtime Reconfigurability to
Implement Multi-Hash-Chain Proof-of-Work

Tong Wu
School of Computer Science and Engineering

University of New South Wales
tong.wu@unsw.edu.au

Oliver Diessel
School of Computer Science and Engineering

University of New South Wales
o.diessel@unsw.edu.au

Abstract—In the cryptocurrency mining field, algorithms have
been developed to frustrate the development of ASICs that greatly
out-compete general purpose hardware in both performance
and power efficiency. A class of algorithms that claims to be
ASIC-resistant is randomized multi-hash-chain proof-of-work
algorithms, such as X16R. For these algorithms, the result of one
iteration depends on the chained application of several randomly
selected hash functions, which disadvantages fixed-function ASICs
due to their inflexibility. FPGAs lie between GPUs and ASICs
in terms of raw performance and flexibility. We investigate the
usage of FPGAs for this type of proof-of-work, in particular, by
leveraging the ability of modern FPGAs to quickly reconfigure at
runtime. We implemented a proof-of-concept design that runs the
X16R algorithm by partially reconfiguring the FPGA for every
hash function in the chain and processing the data in batches. We
show that our system achieves better performance when compared
to GPUs from the same semiconductor process technology node,
while being nine times more power efficient.

I. INTRODUCTION

Initially, on blockchains such as Bitcoin, miners were able to
use commodity hardware such as CPUs and GPUs to perform
proof-of-work. However, over time ASICs were developed that
offered orders of magnitude better performance and energy
efficiency over CPUs and GPUs. Today, many blockchains try
to introduce ASIC resistance to their proof-of-work algorithms
in order to maintain the viability of CPU or GPU mining. One
ASIC-resistant method is a multi-hash algorithm, which is an
algorithm that chains together several different hash functions.
An example of such an algorithm is X16R [1], which has the
added feature that the order of the chain of hash functions
changes randomly every 60 seconds.

In this paper we propose to leverage the dynamic reconfigu-
ration capabilities of modern FPGAs in order to achieve better
performance and especially better power efficiency than the
GPUs that are typically used to mine X16R.

II. BACKGROUND

A. Proof-of-Work and Cryptocurrency Mining

Proof-of-work (PoW) schemes are used in blockchains to
provide spam protection and guard against bad actors who aim
to disrupt the consensus (the agreement across blockchain oper-
ators). Evidence of work must be submitted before a participant

can modify the blockchain. This work must be computationally
expensive, but the validity of the end result must be easy to
check. The effort required to find a solution to a PoW is ideally
no less than that of random guessing. As such, hash functions
are commonly used as PoW, taking in a publicly known value,
i.e., the block header, and outputting a pseudo-random value.
If the hash output is numerically smaller than the target that
is set by the blockchain network, then it is a valid PoW.

Typically a block header contains some set fields such as
a timestamp, the hash of the previous block and, a nonce
field. The nonce is an arbitrary value that the individual prover
(commonly called a miner) can modify in order to influence
the resulting hash. Block headers with nonce values that hash
to a valid PoW are called golden nonces.

B. X16R Proof-of-Work Algorithm

One PoW algorithm is X16R, which is a multi-hash-chain
algorithm. It is comprised of 16 chained hash functions, where
the output of each hash function feeds into the next. The order
in which the functions are applied is determined by the last 16
nibbles of the hash of the previous block, where each nibble
corresponds to one of the 16 possible hash functions. The pool
of hash functions are: (0) Blake, (1) Bmw, (2) Groestl, (3) Jh,
(4) Keccak, (5) Skein, (6) Luffa, (7) Cubehash, (8) Shavite,
(9) Simd, (A) Echo, (B) Hamsi, (C) Fugue, (D) Shabal, (E)
Whirlpool, and (F) Sha512.

Since the order in which the hash functions are applied
depends on a cryptographic hash, the order is uniformly random
and may contain repeated functions (a function that occurs in
the chain more than once). For example, if the last 16 nibbles
of the previous block are “025FF981EEF8EE2A”, then the
hash ordering is as follows: Blake→ Groestl→ Keccak→ · · ·
→ Groestl → Echo. Also note the repeats of hash functions 2,
8, E and F. The possibility of repeated functions is essential
to understanding the difficulty of building a hardware solution
for this problem.

We can immediately see that the chance of having no repe-
titions in a chain is extremely small: 16!/1616 ≈ 1.34× 10−6.
Therefore, an ASIC-like (fixed function) hardware implementa-
tion of X16R that only implements one hash core per function
will almost always be bottle-necked at less than half of its
full theoretical throughput. Table I shows the probability of
having N or more repetitions in an X16R chain, obtained978-1-6654-8332-2/22/$31.00 ©2022 IEEE

20
22

 IE
EE

 3
0t

h
A

nn
ua

l I
nt

er
na

tio
na

l S
ym

po
si

um
 o

n
Fi

el
d-

Pr
og

ra
m

m
ab

le
 C

us
to

m
 C

om
pu

tin
g

M
ac

hi
ne

s (
FC

C
M

) |
 9

78
-1

-6
65

4-
83

32
-2

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

FC
C

M
53

95
1.

20
22

.9
78

60
81

Authorized licensed use limited to: UNSW Library. Downloaded on February 03,2023 at 06:10:36 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Probability of > N repetitions in an X16R chain

>1 >2 >3 >4 >5
Repetitions 99.9% 80.5% 23.1% 3.7% 0.4%

by categorizing a large number of generated X16R-style
hexadecimal strings. We calculate the efficiency (utilization) of
a fixed-function hardware design, where there is only one core
for every hash function, to be 34.4%. That is, on average
such a design will be bottle-necked at 34.4% of its peak
throughput. This is obtained by summing the probabilities
of having exactly N repetitions multiplied by the bottle-necked
throughput (1/N).

C. Dynamic Reconfiguration

Modern SRAM-based FPGAs are capable of being re-
configured at runtime, without needing to be power cycled.
Additionally, parts of an FPGA can be reconfigured while
neighboring logic remains undisturbed, this is called Dynamic
Partial Reconfiguration.

FPGA configuration binaries are called bitstreams, and
bitstreams which configure only a portion of available FPGA
resources are called partial bitstreams. These bitstreams can be
loaded by writing them to configuration interfaces, for example,
to the Internal Configuration Access Port (ICAP) for Xilinx
devices or the Secure Device Manager for Intel devices.

D. Related Work

In a paper analyzing the ASIC-resistance of multi-hash-chain
algorithms [2], Cho implemented a similar algorithm to X16R
on a Xilinx ZU9EG based board. The algorithm consisted of
fifteen of the sixteen hash functions used by X16R. As their
goal was to study estimated ASIC performance, their design
was static. In order to fit fifteen hash functions onto the ZU9EG,
they were not unrolled. In absolute terms, Cho’s FPGA-based
design achieves 1.5 to 2 MH/s, which is worse than GPUs in
performance. Instead, Cho’s goal was to assess the performance
relative to a SHA256D (Bitcoin’s PoW) baseline. Cho showed
that in general, multi-hash-chains are not ASIC-resistant, with
the exception of randomized chains like X16R, which offer
some level of ASIC-resistance.

Much previous work has implemented the SHA-3 hash
function candidates in hardware [3], [4], [5]. However, their
implementations are not suitable for mining applications. The
fixed input size of typical PoW algorithms allow the hash
functions to be fully unrolled. Many variables in these hash
functions thus become constants and their associated operations
can be optimized away, such as variable amount shifts becoming
simple rewirings at compile time.

There have been commercial implementations of X16R on
both GPUs and FPGAs. A popular X16R miner for NVIDIA
GPUs is Trex [6], which we used for some of our GPU
comparisons. An FPGA based X16R miner is available from
Altered Silicon, which teams two VU9P based FPGA boards
(2x VCU1525) to achieve an average aggregate hash rate of
240MH/s while consuming 440W. There also exists an ASIC

miner, OW1 which uses 72 ASIC chips to achieve 250MH/s
while consuming 1500W1.

III. DESIGN AND IMPLEMENTATION

When implementing proof-of-work algorithms for crypto-
mining, throughput (hashes per second) and power efficiency
(hashes per joule) are the most important metrics. Therefore, the
main data-paths of PoW algorithms are typically unrolled and
deeply pipelined. As discussed in Section II-B, a static design
would be heavily underutilized. A design whereby the hash
chain is physically reorganized every block interval, such that
data may flow through it without stall, would be ideal. However,
it would be difficult to fit sixteen unrolled hash functions in even
large high-end FPGAs (e.g. VU13P with 1.7M LUTs). Instead,
we propose time-slicing the X16R algorithm into sixteen pieces,
and processing the data in batches. The hash functions are
sequentially configured onto the FPGA. For the first hash
function in the chain, the initial nonces are fed in and the output
hashes are buffered in DRAM as so-called mid-states. For each
subsequent hash function, the mid-states are read from DRAM,
processed by the next configuration, and then written back
again. In the final iteration (having configured the sixteenth
hash function), the output hashes are filtered for golden nonces.

A. Target Hardware
For our FPGA-based X16R implementation we target the

Xilinx Virtex Ultrascale+ family of devices. These are FPGAs
manufactured on the TSMC 16nm node and were readily
available to miners in 2018, when the X16R algorithm was
popular. These FPGAs are constructed from one or more Super
Logic Regions (SLRs), which are separate logic dies that
are stacked on top of an interposer. The fastest method to
reconfigure these FPGAs is by using the internal configuration
access port (ICAP). The ICAP on Ultrascale+ devices is
capable of 762.9MiB/s throughput (operating at 200MHz) when
configuring a local SLR and 476.8MiB/s (limited to 125MHz)
when configuring a distant SLR. The ICAP throughput deter-
mines how quickly the FPGA can be dynamically reconfigured,
which affects the reconfiguration overhead.

We implemented our design using a SQRL FK33 mining
board, which is based around the VU33P (medium speed grade)
FPGA. This device has a single SLR and contains 440K LUTs
and 8GB of High Bandwidth Memory (HBM).

B. System Overview
The system consists of the host computer, on which the

FPGA card is connected by a PCIE Gen3 x1 interface, and on
the FPGA the available logic is split between the static region
and the dynamic region (Fig. 1). The static region contains the
shell, which is responsible for communicating with the host,
interfacing with the HBM, and controlling the reconfiguration
of the dynamic region.

The dynamic region takes up most of the FPGA logic, and
is where our hash functions are swapped in and out.

1References to the Altered Silicon FPGA miner and OW1 ASIC miner
have recently been removed from the web, however one may still find reseller
listings that advertise performance.

Authorized licensed use limited to: UNSW Library. Downloaded on February 03,2023 at 06:10:36 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: System Architecture

C. Static Shell

The static shell consists of the PCIE subsystem, reconfigu-
ration controller and the hash buffer engine. The shell takes
up 80K LUTs, which is 15% of a VU33P. While the actual
utilization of the static region is only 43K LUTs (52%), the
constraints on the positions of the hard blocks (i.e. ICAP, PCIE
and HBM interface) required that the bounding box of the
static region be expanded to encompass them.

To communicate with the host, we chose to use a PCIE
Gen3 x1 link for maximum compatibility with existing mining
machines, which typically use one lane PCIE risers in order
to attach as many devices to a single host as possible.

On initialization, the host transfers all sixteen partial bit-
streams (one for each possible hash function) to a reserved
region in the HBM (512MB out of 8GB is reserved for partial
bitstreams). We use compressed bitstreams, as generated by
Vivado, and the exact size of each partial bitstream varies
between different compilation runs. The total size of the sixteen
partial bitstreams is approximately 352MB.

The reconfiguration controller is a simple finite state
machine with sixteen registers. Each register contains a pointer
to one of the partial bitstreams associated with one of the
sixteen hash functions that are needed in X16R. The registers
are written to by the host at the beginning of each block
interval. Once the reconfiguration controller has started, it
fetches the partial bitstreams in order and writes them to the
ICAP, thus programming the corresponding hash function
into the dynamic region. In between each reconfiguration, the
controller waits for a done signal from the hash buffer engine,
indicating that the current batch of mid-states has been pushed
through the current hash function and the next configuration
can be loaded. While the PCIE subsystem and reconfiguration
controller operate at 250MHz, the ICAP is limited to 200MHz
(for a maximum bandwidth of 762.94MB/s); an asynchronous
FIFO is used to cross clock domains.

The hash buffer engine is responsible for reading the mid-
states from the HBM, feeding them to the hash function that
resides within the dynamic region, and writing the resulting
mid-states back to the HBM. The engine is connected to the
HBM by eight AXI3 ports, four for writing and four for reading.

On the first pass, it feeds the sub-chain with the block header,
while incrementing the nonce field. On the last pass, instead of
writing the mid-states back to the HBM, it filters the returning
stream of hashes for hashes that meet the target (golden nonces).
Golden nonces are inserted into a golden nonce fifo, which is
periodically polled by the host.

Internally, the hash buffer engine consists of four FIFOs (one
for each AXI3 write port), a 4-to-1 multiplexer and a 1-to-4 de-
multiplexer. Due to the architecture of the hardened AXI HBM
switch, the mid-states are read from the HBM over four 256-bit
AXI3 channels. For each AXI3 channel, every two consecutive
256-bit words that are read are recombined to form a 512-bit
mid-state every two clock cycles, which is then merged through
the multiplexer to form one 512-bit stream that is fed to the
hash function. The output of the hash function is de-multiplexed
to the appropriate write channel whereby the nonces represent
the memory addresses where the mid-state is stored.

Due to the nature of the HBM used on the VU33P, which
is DRAM based, bank refreshes can stall the read and write
channels for up to 260ns every 3.9µs (the actual refresh interval
depends on temperature), therefore the FIFOs on the write ports
are needed to prevent mid-states from being dropped (recall
that the hash cores are unable to stall for performance reasons).
The reason we use four HBM ports instead of two is because
the hash cores run at a higher frequency (625MHz) than the
hash buffer engine (350MHz).

D. Dynamic Hash Functions

We were unable to find open-source hardware implementa-
tions of hash functions that were suitable for crypto-mining
applications. Typically in crypto-mining, the input sizes are
limited to known sizes such as 80 or 64 bytes. This allows
us to unroll and pipeline the entire hash function to optimize
throughput/area. We implemented a library of the 16 hash
cores needed for X16R in Vitis HLS. Each hash core comes in
80-byte and 64-byte input versions. All cores have a 64-byte
output width, have an initiation interval of 1 (i.e., can output
one hash every clock cycle), and can be clocked at more than
625MHz. Table II shows the resource utilization for each core.
Note that they can all fit within the 360K LUT budget for
the dynamic region, but no currently available device could
accommodate all of them at once.

The 80-byte versions are only deployed as the initial hash
function in a chain. It may be noted that some 80-byte circuits
are smaller than their 64-byte counterparts. This is due to the
fact that certain hash functions permit further optimization that
involves pre-computing the initial mid-state.

IV. RESULTS

When using a batch size of 62.9M nonces (taking up 3.75GB
to store mid-states), we found that it takes 2.28s to process a
batch of X16R hashes. With an average block interval of 60s,
there is some overhead associated with batch processing. If the
block interval ends while a batch is in the middle of processing,
the partial results are discarded. In the worst case, 2.28s of
processing time is lost for each 60 seconds. Performance for

Authorized licensed use limited to: UNSW Library. Downloaded on February 03,2023 at 06:10:36 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Hash core resource utilization

Core LUTs FFs Core LUTs FFs

blake 80 90,189 133,269 shavite 80 199,605 64,504
blake 64 88,826 130,809 shavite 64 146,975 54,813

bmw 80 55,178 81,891 simd 80 324,806 428,267
bmw 64 56,632 81,524 simd 64 321,783 427,834

groestl 80 299,630 84,539 echo 80 201,244 107,892
groestl 64 297,938 84,196 echo 64 199,781 89,305

jh 80 97,794 173,738 hamsi 80 47,904 52,613
jh 64 97,832 171,900 hamsi 64 139,335 153,609

keccak 80 51,054 78,445 fugue 80 175,441 84,290
keccak 64 49,293 74,112 fugue 64 154,279 72,674

skein 80 93,959 113,926 shabal 80 84,471 74,398
skein 64 87,075 103,894 shabal 64 76,664 68,531

luffa 80 66,946 63,541 whirlpool 80 50,045 76,336
luffa 64 107,251 99,022 whirlpool 64 74,140 115,393

cubehash 80 270,925 369,668 sha512 80 79,371 128,062
cubehash 64 327,106 437,639 sha512 64 79,807 127,182

crypto-mining is typically given in hashes per second. Given
that we process a batch of 62.9M hashes every 2.28 seconds,
we get 27.59MH/s. However, we may need to throw away
up to 62.9M hashes due to being interrupted by the start of
a new block interval, which happens on average every 60
seconds. This gives us an additional overhead of 3.8%. Thus,
our performance is (1− 0.038)× 27.59 = 26.54MH/s.

The power consumption of the FPGA board was measured
at the 12V inputs of both the PCIE edge and AUX connectors.
We measured an average power consumption of 26.1W over
eight hours, while running random hash chain configurations.

TABLE III: X16R Performance Comparison

MH/s Watts MH/Joule Node
GTX 1070 17.8 125 0.14 TSMC 16nm
GTX 1080 17.71 150 0.12 TSMC 16nm
GTX 1080 Ti 19.33 170 0.11 TSMC 16nm
RTX 2060 19.88 90 0.22 TSMC 12nm
RTX 2070 25.5 110 0.23 TSMC 12nm
RTX 2070 Super * 34 110 0.31 TSMC 12nm
RTX 2080 34 108 0.31 TSMC 12nm
RTX 2080 Ti 43 145 0.30 TSMC 12nm
RTX 3090 * 63.99 330 0.19 Samsung 8nm
OW1 ASIC 250 1500 0.17 Unknown
AS VCU1525 120 220 0.55 TSMC 16nm
ZU9EG [2] 2 Unknown Unknown TSMC 16nm
VU33P (ours) 26.54 26 1.02 TSMC 16nm

In Table III, we list the performance of various GPUs, along
with existing FPGA-based solutions, the OW1 ASIC, and our
own. The performance metrics for GPUs were taken from Nice-
Hash [7], a popular mining pool, which maintains a database of
GPU performance for various mining algorithms. The entries
which are marked with an asterisk were benchmarked by us.

V. CONCLUSION

We showed that our solution has 37% higher performance
while being nine times more power efficient in terms of mega-
hashes per joule than a high-end NVIDIA GTX 1080 Ti GPU

that was manufactured on the same node. While more recent
GPUs that were manufactured on newer nodes beat our solution
in terms of raw performance, they are still more than three
times less power efficient. We also see that our solution is
twice as power efficient as the competing FPGA based miner
from Altered Silicon.

Our design shows that a time-sliced approach using runtime
reconfiguration can be used to achieve good performance
where a static design would not be possible. We also note that a
hypothetical unbalanced hash chain, as described in [2], will not
be effective in decreasing FPGA performance. We hope that the
cryptocurrency community will consider FPGAs as a separate
class of computing device from ASICs. Runtime reconfiguration
gives FPGAs the flexibility to optimize an algorithm in both
the space and time dimensions. PoW algorithm designers
should therefore also consider whether they want properties
of FPGA-resistance, separate from ASIC-resistance.

VI. FUTURE WORK

In our current design the dynamic region is not fully
utilized. We can see from Table II that many hash functions
only use a fraction of the dynamically reconfigurable region.
By combining hash functions into sub-chains, we can save on
the number of reconfigurations by processing multiple hash
functions in one stage. If we consider sub-chains of two hash
functions (of the 64-byte variant), there are 136 combinations
(we include a multiplexer so that the order in which the hash
functions are combined does not matter), of which 92 fit within
the dynamic region (assuming a max utilization of 90%). This
would save on average 6 reconfigurations per batch, which leads
to an estimated total hashrate of 42MH/s on the VU33P. In order
to realise the double hash function scheme, without having to
compile all 92 combinations, we plan to employ nested dynamic
reconfiguration, where the dynamic region is configured in two
stages. The first stage configuration subdivides the dynamic
region into two smaller regions of varying sizes, along with
a network that connects them. The second stage configures
each of the smaller regions as hash functions.

The VU33P is one of the smallest devices, in terms of
logic resources, in the Virtex Ultrascale+ family, with only
one SLR. A two SLR device such as the VU35P, would
effectively double the hashrate, except that ICAPs are local to
one SLR and can only reconfigure different SLRs at a reduced
bandwidth. The static region in our design should therefore be
expanded to encompass the ICAP on the second SLR, and the
dynamic region should be split into two, with one in each SLR.
This way, we could reconfigure both SLRs independently and
in parallel at the maximum ICAP bandwidth. The estimated
hashrate for the VU35P is 57MH/s for the the single hash
function per reconfiguration scheme, and estimated at 84MH/s
for the double hash function per reconfiguration scheme.

Xilinx Versal devices are capable of eight times faster
dynamic reconfiguration than the VU33P. Coupled with a more
regular fabric, hardened ARM processor, and network-on-chip,
this opens up more flexibility in implementing time-sliced
algorithms based on runtime reconfiguration.

Authorized licensed use limited to: UNSW Library. Downloaded on February 03,2023 at 06:10:36 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] T. Black and J. Weight, “X16R: ASIC resistant by design.” [Online].
Available: https://ravencoin.org/assets/documents/X16R-Whitepaper.pdf

[2] H. Cho, “ASIC-resistance of multi-hash proof-of-work mechanisms for
blockchain consensus protocols,” IEEE Access, vol. 6, pp. 66 210–66 222,
2018.

[3] R. Shahid, M. U. Sharif, M. Rogawski, and K. Gaj, “Use of embedded
FPGA resources in implementations of 14 round 2 SHA-3 candidates,” in
2011 International Conference on Field-Programmable Technology, 2011,
pp. 1–9.

[4] B. Baldwin, A. Byrne, L. Lu, M. Hamilton, N. Hanley, M. O’Neill,
and W. P. Marnane, “FPGA implementations of the round two SHA-3
candidates,” in 2010 International Conference on Field Programmable
Logic and Applications, 2010, pp. 400–407.

[5] H. E. Michail, L. Ioannou, and A. G. Voyiatzis, “Pipelined SHA-3
implementations on FPGA: Architecture and performance analysis,” in
Proceedings of the Second Workshop on Cryptography and Security in
Computing Systems, ser. CS2 ’15. New York, NY, USA: Association
for Computing Machinery, 2015, p. 13–18. [Online]. Available:
https://doi.org/10.1145/2694805.2694808

[6] Trex, “Trex miner,” https://github.com/trexminer/T-Rex, 2021.
[7] “Leading cryptocurrency platform for mining and trading.” [Online].

Available: https://www.nicehash.com/profitability-calculator

Authorized licensed use limited to: UNSW Library. Downloaded on February 03,2023 at 06:10:36 UTC from IEEE Xplore. Restrictions apply.

