
Functionally Verifying State Saving and Restoration in
Dynamically Reconfigurable Systems

Lingkan Gong and Oliver Diessel
School of Computer Science and Engineering

University of New South Wales
Sydney, NSW, Australia 2052

{lingkang,odiessel}@cse.unsw.edu.au

ABSTRACT

Dynamically reconfigurable systems increase design density
and flexibility by allowing hardware modules to be swapped
at run time. Systems that employ checkpointing, periodic or
phased execution, preemptive multitasking and resource de-
fragmentation, may also need to be able to save and restore
the state of a module that is being reconfigured. Existing
tools verify the functionality of a system that is undergoing
reconfiguration. These tools can also be employed if state
is accessed using application logic. However, when state is
accessed via the configuration port, functional verification
is hindered because the FPGA fabric, which mediates the
transfer of state between the application logic and the con-
figuration port, is not being simulated. We describe how to
efficiently simulate those aspects of the fabric that are used
in accessing module state. To the best of our knowledge,
this work is the first to allow cycle-accurate simulation of a
system partially reconfiguring both its logic and state and
a case study shows that our method is effective in detecting
device independent design errors.

Categories and Subject Descriptors

B.6.3 [Logic Design]: Design Aids—Verification; I.6.7
[Simulation and Modeling]: Simulation Support Systems

General Terms

Verification

Keywords

FPGA, Dynamically Reconfigurable Systems, Verification,
State Saving and Restoration

1. INTRODUCTION
The exponential increase of hardware design costs and

risks have driven the electronic industry to use reconfig-
urable devices such as FPGAs as computing platforms. Com-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’12, February 22–24, 2012, Monterey, California, USA.
Copyright 2012 ACM 978-1-4503-1155-7/12/02 ...$10.00.

pared with customized chips, hardware/software systems
implemented on reconfigurable devices achieve more flex-
ibility for potential upgrades or bug fixes over the prod-
uct life-cycle, while sacrificing acceptable tradeoffs in power,
area and performance. Dynamically Reconfigurable Systems
(DRS) extend such flexibility by allowing partial reconfigu-
ration of hardware modules at run time. Recent examples of
DRS include a networked multiport switch [13], a software-
defined radio [10] and a video-based driver assistance system
[1].

Apart from reconfiguring module logic, state saving and
restoration (SSR) is a common and sometimes essential re-
quirement of DRS. For example, to recover from an error,
a module can be restored to a saved checkpoint [7]. For
periodic/phased applications, the system configures the re-
quired computational module for each period of execution
and copies the results across periods [5]. In hardware multi-
tasking, a module can be preempted and later resume execu-
tion from the interrupted state [11]. To defragment FPGA
resources, modules can be relocated from their original lo-
cations to other areas of available resources [6]. In each of
these scenarios, module state need to be saved and restored
during or after partial reconfiguration.

The architectural flexibility of DRS introduce challenges
in functionally verifying the system because conventional
verification methods assume that hardware circuits are time-
invariant. Although each configuration of a design can be
verified using traditional methods, new approaches are re-
quired to verify the design while it is undergoing reconfigu-
ration, during which modules need to be properly swapped
and module state needs to be saved and restored [3].

Register Transfer Level (RTL) simulation is the most com-
mon method for verifying hardware design functionality. By
visualizing selected signals in a waveform viewer, RTL simu-
lation assists in debugging a design without implementing it.
In order to simulate partial reconfiguration of module logic,
existing methods use multiplexers to interleave mutually ex-
clusive modules [9], and use simulation-only bitstreams to
capture the cycle-accurate behavior of module swapping [4].
This paper extends ReSim [4], our previous work, to sup-
port the simulation of a design reconfiguring both module
logic and module state. In particular, we consider designs
that utilize the Configuration Port (CP) to save and restore
state (e.g., [6] [11]). The key contributions of this paper are:

• Extending the original use of simulation-only bitstreams
(SimB) with state data to enable cycle-accurate simu-
lation of CP-based SSR in DRS designs.



• Providing a case study showing how ReSim assists in
simulating and debugging CP-based SSR.

It should be noted that for CP-based SSR, RTL simulation
cannot detect device-dependent bugs. Running the DRS on
the target device is the only way to accurately verify the
system in real-world environments. For example, the loca-
tions of the state data on the FPGA fabric can’t be checked
until they have been determined by implementation. How-
ever, it is non-trivial to visualize signals of the implemented
design for the sake of debugging because extra effort is re-
quired to insert probing logic using vendor tools such as
Chipscope. Moreover, the probing logic can only visualize a
limited number of signals for a limited period of time. As
a result, debugging the design on chip involves costly iter-
ations of probing the relevant signals and reimplementing
the design. It is therefore desirable to perform RTL simu-
lation to identify and fix as many device-independent bugs
as possible in the early stage of the design cycle, and leave
the device-dependent part of the design to be tested on the
target FPGA once the implementation has been completed.

The rest of this paper is organized as follows. Section 2
outlines the background for CP-based SSR. We discuss the
architecture of the ReSim library in Section 3. Section 4
illustrates the use of our tool on a case study, while the final
section concludes the paper.

2. BACKGROUND AND RELATED WORK
For DRS designs, state data include storage elements such

as flip-flops and memory cells such as Block RAM (BRAM)
located on the FPGA fabric. To save and restore module
state, the designer needs to create a datapath to access the
state. There are currently two approaches for creating such a
datapath. The first method adds design specific application
logic to read/write storage elements (e.g., [7]), whereas the
other approach utilizes the configuration port of the FPGA
to access flip-flops and memory cells (e.g., [6], [11]). Com-
paring the two methods, CP-based SSR is more general as
the configuration port defines a uniform access method for
saving and restoring state anywhere on chip. Therefore, it
does not require any changes to module logic, and does not
introduce any side effect to the system such as extra re-
source usage or tighter timing requirements. In contrast,
customized state access logic needs to be carefully inserted
for each module in the system.

In a typical DRS design (see Figure 1), multiple recon-
figurable modules (RM) are mapped to a Reconfigurable
Region (RR) and communicate with the static circuitry to
perform the required tasks. For CP-based SSR, the static
part starts state saving with a synchronization operation,
which copies the RM state to the configuration memory of
the FPGA fabric. The user design then reads the state data
by sending frame addresses, i.e., the addresses of the config-
uration memory, to the configuration port and sampling the
returned data. In this process, requests from the user design
and responses from the fabric are all delivered in the form
of bitstreams, a device-specific, packet-like data structure
containing commands (e.g., synchronize, read) and parame-
ters (e.g., frame addresses). The restoration process reverses
the state saving procedure. Please refer to the configuration
guide (e.g., [14]) for further details of CP-based SSR.

The primary difficulty of simulating and verifying CP-
based SSR is the conflict between simulation accuracy and

Figure 1: State saving and restoration in DRS

productivity. Because the state access datapath (i.e., the
configuration memory and the configuration port depicted
as black boxes in Figure 1) is part of the FPGA fabric,
the most straightforward way to simulate CP-based SSR
involves modeling the fabric. Unfortunately, vendor tools
do not provide a simulation model for the fabric and even if
such a model were available, simulating the design by mod-
eling the fabric is performed at too low a level. For the
sake of productivity, it is desirable that functional simula-
tion should be independent of the FPGA fabric. This means
it is better simulating user logic via HDL signals than simu-
lating the bit settings in the configuration memory. It is also
better to avoid the time-consuming implementation step in
the iterative simulation-design cycle.

Alternatively, if accuracy can be sacrificed, CP-based SSR
can be simulated without dependence on the FPGA fabric.
The Dynamic Circuit Switch method modifies the RTL de-
scription of all storage elements in simulation so as to save
and restore state [9]. By extending SystemC, ReChannel
use call-back functions to access arbitrary variables in the
modeled design [8]. However, the functionality added to the
storage elements and the call-back functions do not exist on
the target device and the simulated design therefore doesn’t
replicate what is implemented. Furthermore, these meth-
ods fail to model the interaction between user logic and the
configuration port and thus only offer limited assistance in
verifying CP-based SSR.

Although ReSim facilitates cycle-accurate simulation of
configuration port accesses, it only supports the verification
of a DRS reconfiguring its logic [4]. The simulation-only bit-
stream concept introduced in ReSim raises simulation accu-
racy by linking accesses to the simulated configuration port
with module swapping. This work extends the application of
the simulation-only bitstream by transferring module state
via its contents. With this extension, ReSim is the first
work to support cycle-accurate yet physically independent
simulation of CP-based SSR.

3. RESIM LIBRARY
The core idea of ReSim is to use a simulation-only layer to

emulate the physical fabric of FPGAs so as to achieve the de-
sired balance between accuracy and physical independence.
Figure 2 redraws Figure 1 with all the physically dependent
blocks (solid black boxes) replaced by the components of
our simulation-only layer (open black boxes). These com-
ponents are known as simulation-only artifacts or artifacts.
It should be noted that the artifacts only model the aspects
of the fabric that are essential to partial reconfiguration.
In particular, the configuration bitstreams are replaced by



simulation-only bitstreams, possible configuration ports are
represented by an ICAP artifact, and the part of configu-
ration memory to which each reconfigurable region (RR) is
mapped is substituted by an Extended Portal.

Figure 2: Using the simulation-only layer

To simulate partial reconfiguration of module logic, ReSim
connects all RMs in parallel in the same way as existing
approaches. However in ReSim, the selection of the active
module is controlled by the Extended Portal, which is in turn
triggered by writing a SimB to the ICAP artifact. SimBs are
also used to simulate CP-based SSR. In particular, the static
module transfers a SimB instead of a real bitstream to the
ICAP artifact. By parsing the SimB, the ICAP artifact ex-
tracts the readback parameters, and controls the Extended
Portal. The Extended Portal probes the RM state (typi-
cally modeled by HDL signals), and returns the state data
to the ICAP artifact. Finally, the ICAP artifact returns the
retrieved state data to the user design as a readback SimB.
Restoring the state of a RM also utilizes the artifacts and
SimBs to mimic the behavior of the FPGA fabric. However,
a different SimB from the one for state saving is used, and
the state data are copied back to the HDL signals. Using the
SimB, ReSim mimics the behavior of the FPGA fabric dur-
ing partial reconfiguration, and significantly improves the
accuracy of simulating the user design.

Figure 3: Extended Portal

Figure 3 illustrates the architecture of the Extended Por-
tal. Mimicing the FPGA fabric, the Extended Portal in-
stantiates a spy memory as a substitute for the configura-
tion memory to buffer the state data. To simulate state
saving, for example, a Simulator-kernel thread (SKT) com-
ponent probes RM signals when a synchronization operation
is requested by the static module. The SKT uses simulator
commands (e.g. ModelSim examine, force commands) to
extract values of arbitrary HDL signals. The extracted sig-
nal values are then buffered to the spy memory, and are

returned to the static module on each read from the ICAP
artifact.

As the simulation-only layer doesn’t rely on any physical
details of the target device, the simulation of CP-based SSR
is physically independent. The ReSim library is built upon
the existing SystemVerilog language and Open Verification
Methodology (OVM) [2], an open source SystemVerilog class
library. As a result, ReSim is fully compatible with existing
and mainstream EDA tools, although the current implemen-
tation of ReSim only supports ModelSim.

In order to avoid requiring the designer to create arti-
facts from scratch, ReSim automatically generates all arti-
facts based parameters defined in a script. The parameters
include the name of each RM, the IO signals for each RR,
the target FPGA family, etc. When executed, the script
then creates parameterized artifacts by calling ReSim APIs.

4. A CASE STUDY
The hardware architecture of our case study is similar to

a reference design from Xilinx [12] (see Figure 4). Although
the original design only partially reconfigures the logic, we
modified the software running on the microprocessor to sup-
port state saving and restoration as well. Our case study
runs a periodic application. In each period of execution, the
xps_math module is dynamically reconfigured with either an
adder core or a maximum core as two alternative RMs. Apart
from computation, each core maintains a statistic regis-
ter, and its value is copied across configuration periods.

Figure 4: CP-based SSR case study, after [12]

t1

t2

Figure 5: Waveform example

Figure 5 shows two waveform segments obtained by simu-
lating the design using ModelSim 6.5g. Here, an old maximum



core is reconfigured to a new adder core, and the value of
the statistic register is copied across the two cores.

• @t1: Before reconfiguration, A readback SimB is writ-
ten to the ICAP artifact requesting to save the value of
the statistic register (0xf00d0003). The ICAP arti-
fact is switched to read mode and returns the retrieved
state data (see the cdata_rb signal).

• @t2: After reconfiguration, the statistic register of
the new maximum core is initially zero. Then a restora-
tion SimB containing the saved value is written to the
ICAP artifact (see the cdata signal), after which the
statistic register is restored to the desired value.

We detected dozens of bugs in our design using the above
cycle-accurate simulation of CP-based SSR. For example,
the restoration of the statistic register should have been
skipped during the first round of execution as there was no
previous execution period. The statistic register saved
by the xps_hwicap driver was not properly returned to the
periodic application, and was destroyed at the end of the
function call. These bugs were detected as a consequence of
incorrect values being restored to the statistic register. In
the debugging process, it took less than a minute to complete
one iteration of compiling and simulating the design on a
Windows XP, Intel 2.53G Dual Core machine.

The simulated design was subsequently tested on an ML507
board with a Virtex-5 FX70T FPGA and we detected two
device dependent bugs. As one example, the saved data were
wrong because we failed to invert each bit of the saved state
data as required by Virtex-5 FPGAs. In this cases, ReSim
failed to mimic the exact behavior of the target device. Al-
though this bug was trivial and would not have occurred
with experienced designers, we used 3 iterations to trace
the cause of this bug. Each iteration involved inserting new
probing logic and re-implementing the design, and took 53
min to complete on the same machine used for simulation.

In this study, the workload for integrating ReSim with
the testbench included: 50 lines of Tcl script for generat-
ing the artifacts, 10 lines of Verilog code to instantiate the
artifacts, and 4 ModelSim commands to start the SKT. In
contrast, the workload for modifying the xps_hwicap driver
to support CP-based SSR included 1300 lines of C code. The
simulation overhead of ReSim is proportional to the number
of registers to be saved and restored. The overhead is also
proportional to the frequency of SSR in a simulation run as
each saving and restoration triggers a synchronization be-
tween the spy memory and the HDL signals. For our case
study, the simulation overhead was negligible.

5. CONCLUSIONS AND FUTURE WORK
Functional verification has become a significant challenge

in DRS designs. It is therefore essential to perform RTL sim-
ulation of the reconfiguration process, including the saving
and restoration of state, as part of a full system simulation.
This paper proposes extending ReSim [4] to simulate CP-
based SSR. In particular, we use simulation-only bitstreams
to correlate the accesses of a simulated configuration port
with the state of a simulated module.

As ReSim abstracts out the details of the FPGA fab-
ric, the simulation-only layer can be regarded as a vendor-
independent device. Simulation can be thought of as func-
tionally verifying a design on such a vendor-independent

device. Although RTL simulation is only an approxima-
tion to the target device, our case study demonstrated that
with negligible development and simulation overhead, sim-
ulation using ReSim captured a reasonable number of bugs
and avoided most of the costly iterations of using Chipscope.
Meanwhile, as ReSim only offers limited help in detecting
device dependent bugs, it is desirable that a DRS be sepa-
rated into a device dependent part and a device independent
part. ReSim can then assist in verifying the device indepen-
dent part, and the rest of the design should be tested on the
target device.

6. REFERENCES
[1] Claus, C., Zeppenfeld, J., Muller, F., and

Stechele, W. Using Partial-Run-Time
Reconfigurable Hardware to accelerate Video
Processing in Driver Assistance System. In Design,
Autom. Test in Europe (2007), pp. 1–6.

[2] Glasser, M. Open Verification Methodology
Cookbook. Mentor Graphics Corporation, 2009.

[3] Gong, L., and Diessel, O. Modeling Dynamically
Reconfigurable Systems for Simulation-based
Functional Verification. In Field-Prog. Cust. Comput.
Machines (2011), pp. 9–16.

[4] Gong, L., and Diessel, O. ReSim: A Reusable
Library for RTL Simulation of Dynamic Partial
Reconfiguration. In Field-Prog. Tech. (2011).

[5] Jiang, Y.-C., and Wang, J.-F. Temporal
Partitioning Data Flow Graphs for Dynamically
Reconfigurable Computing. IEEE Trans. VLSI Syst.
15, 12 (2007), 1351–1361.

[6] Kalte, H., and Porrmann, M. Context Saving and
Restoring for Multitasking in Reconfigurable Systems.
In Field-Prog. Logic and App. (2005), pp. 223–228.

[7] Koch, D., Haubelt, C., and Teich, J. Efficient
Hardware Check pointing: Concepts, Overhead
Analysis, and Implementation. In Field-Prog. Gate
Arrays (2007), pp. 188–196.

[8] Raabe, A., Hartmann, P. A., and Anlauf, J. K.
ReChannel: Describing and Simulating Reconfigurable
Hardware in SystemC. ACM Trans. Design Autom.
Electr. Syst. 13, 1 (2008), 15.

[9] Robertson, I., and Irvine, J. A Design Flow for
Partially Reconfigurable Hardware. ACM Trans.
Embedded Comput. Syst. 3, 2 (2004), 257–283.

[10] Sedcole, P., Blodget, B., Anderson, J.,
Lysaght, P., and Becker, T. Modular Partial
Reconfiguration in Virtex FPGAs. In Field-Prog.
Logic and App. (2005), pp. 211–216.

[11] Simmler, H., Levinson, L., and Manner, R.
Multitasking on FPGA Coprocessors. In Field-Prog.
Logic and App. (2000), pp. 121–130.

[12] Xilinx Inc. Partial Reconfiguration of a Processor
Peripheral (UG744), 2009.

[13] Xilinx Inc. Partial Reconfiguration User Guide
(UG702), 2010.

[14] Xilinx Inc. Virtex-5 FPGA Configuration User
Guide (UG191), 2010.


