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ABSTRACT

Reconfiguration time in dynamically-reconfigurable mod-
ular systems can severely limit application run-time com-
pared to the critical path delay. In this paper we present a
novel method to reduce reconfiguration time by maximising
wire use and minimising wire reconfiguration. This builds
upon our previously-presented methodology for creating mo-
dular, dynamically-reconfigurable applications targeted to
an FPGA. The application of our techniques is demonstrated
on an optical flow problem and show that graph merging can
reduce reconfiguration delay by 50%.

1. INTRODUCTION

The advantages of modular dynamic reconfiguration of FP-
GAs have been widely discussed, from early ideas [1] to
recent hardware techniques [2]. With ongoing scaling of
FPGA device sizes and speeds, hardware virtualisation al-
lows the use of smaller devices to implement large applica-
tions. On the other hand, larger devices can enhance through-
put in a more general or high-performance setting by hosting
multiple applications at a time.

However, dynamic reconfiguration is not yet widely ac-
cepted or utilised in industry and we believe this to be pri-
marily due to a lack of practical methods for designing such
applications. Current vendor tools are limited, insofar as
they only support area-based partial reconfiguration. There
is a lack of a coherent toolset to support the design and
implementation of dynamically-reconfigurable applications
from application specification through to bitstream genera-
tion. This in turn inhibits the designers’ ability to explore
the potential of dynamic reconfiguration.

Current research deals with various aspects and different
sub-problems in the area but does not combine to form a
coherent methodology or toolset. In contrast, our approach
is to tackle the problem in an integrated fashion from the top
down. Our goal is to provide a methodology and toolset to
allow designers to target applications that are too large to fit
onto a single target device, or that involve combining two or
more applications to be multitasked on a large target device.
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1.1. Specific Contributions of this Paper

In [3], we have proposed the COMMA methodology to al-
low designers to take an application, analyse it to determine
opportunities for dynamic reconfiguration, perform device-
specific design exploration, and to finally implement the ap-
plication on a device.

In this paper we detail the steps in one of the key pro-
cesses of the methodology. We describe the generation of a
communications infrastructure that supports the communi-
cations needs of a sequence of dynamically-placed modules
with the aim of minimising reconfiguration time.

A key and novel problem in the infrastructure generation
process is the merging of communications graphs, which
consists of several sub-problems. The first sub-problem,
module placement, was addressed in [4], and in this pa-
per we propose algorithms to solve the mapping (wire delay
estimation) and merging (minimising reconfiguration time)
sub-problems.

Finally we present a case study of an optical flow com-
putation. The experimental results show that reconfiguration
times can be significantly reduced through graph merging.

2. THE COMMA METHODOLOGY

The COMMA methodology for implementing dynamically-
reconfigurable applications [3] advocates the laying out of
fixed-sized reconfigurable slots where modules can be placed
on a tile-reconfigurable device such as the Virtex 4/5 as shown
in Fig. 1(a). This approach maintains the structural advan-
tages of a paged reconfiguration scheme and keeps critical
path delays low. Non-tile-reconfigurable devices such as
the Virtex-II can also be used but a one-dimensional layout
may be preferred. A key feature of the approach is that we
utilise spare routing capacity and wire sharing to fashion a
bespoke wiring harness that accommodates the intermodule
communications of a sequence of module reconfigurations.
In Fig. 1(a), modules should be placed in the white slots
while the wiring between the modules is to be placed in the
grey area surrounding the slots. The objective of this is to
allow independent reconfiguration of each module without
requiring the wiring to be reconfigured. This layout was first
proposed by Brebner as a “fixed wiring harness” [1]. How-
ever, we believe current device technology is insufficiently
advanced to adopt a general fixed scheme capable of inter-



Fig. 1. Module placement and wiring harness layout (a).
Overall (simplified) COMMA design flow (b), with focus of
this paper highlighted.

connecting every module. Instead, we advocate tailoring the
wiring harness to the applications’ needs. Ultimately it is
conceivable that one wiring harness may not be sufficient
for an entire application. Our goal here is to minimise the
number of wiring harnesses necessary i.e. the rate of recon-
figuration of wiring harnesses is intended to be much lower
than that of the hardware tasks, thereby reducing the total
reconfiguration overheads (i.e. reconfiguring less than the
full amount most of the time).

Our overall design flow (Fig. 1(b)) involves obtaining
device information (i.e. CLB and IOB grid structure etc.)
and user-supplied parameters (e.g. IOB assignments, tim-
ing requirements etc.) to create a configuration set contain-
ing device- and application-specific parameters. This is fol-
lowed by the generation of the communications infrastruc-
ture for the application, which includes one or more wiring
harnesses. Each module is then wrapped in a lightweight
or weightless interface to map its ports to specific wires in
its wiring harness. The modules and harnesses are then im-
plemented using a toolset such as the Xilinx Early-Access
Partial Reconfiguration Toolkit [5]. Please see [3] for a de-
tailed description of COMMA.

We have addressed “Configurator”, “Module Wrapping”
and “Partial Reconfiguration”, which are implementation-
level processes in [3]. The “Infrastructure Generation” pro-
cess consists of several algorithmic steps as depicted in Fig. 2.
The inputs to this process are an application specified as a
communications graph and the configuration set from the
Configurator process. The outputs are the low-level details
for implementing the wiring harnesses and module wrap-
pers, which are then to be fed into the “Module Wrapping”
process. Each of the steps in infrastructure generation will
be detailed in further sections of this paper.

Fig. 2. Steps in “Infrastructure Generation”

Fig. 3. Example of a Communications Graph

3. DERIVING THE COMMUNICATIONS GRAPH

The application is to be specified as a communications graph,
and should be derived through the natural functional parti-
tioning of an application into modules. For example, a JPEG
application may have DCT and Huffman encoder modules.
A communications graph is similar to task graph but also
containing physical details about the tasks and inter-task com-
munications. An example is shown in Fig. 3. Each module
has associated attributes indicating its approximate size in
terms of the target device resources. In Fig. 3 these are
specified by three values “x/y/z” where x is the logic cell
count, y is the arithmetic unit or DSP block count and z is
the on-chip ram block count that refer to Virtex-4 resources,
say. Each edge represents a communications link between
two modules and has three attributes: its bitwidth, the out-
put port number of the source module, and the input port
number of the destination module. External I/Os can also be
represented, with the specific pad numbers or without. We
assume the full bandwidth of each link may be required each
clock cycle.



Fig. 4. An Example of a Scheduled Graph

4. MODULE FITTING

The first step in the infrastructure generation process is to
aggregate or divide the modules in the full communications
graph such that the logic size of each node in the graph fits
into the size of the slots depicted in Fig. 1. There are many
approaches in related domains that can be applied to this
problem, including the clustering substep in multiprocessor
task assignment [6], and multilevel partitioning algorithms
such as METIS [7], which balance the partitions according
to the combined logic size in each partition. We propose
using such previous approaches to perform this step.

5. SCHEDULING

The output of the module fitting step is a communications
graph with a similar format to the original communications
graph, but possibly with nodes that are actually aggregated
or divided modules. Without loss of generality, we assume
this graph is too large to fit onto the target device. We there-
fore partition the graph into a schedule of subgraphs, each
of which must contain no more nodes than the total number
of slots available on the device. Fig. 4 depicts an example
of such a schedule in which each box represents one of the
temporal partitions of a full communications graph the ap-
plication has been divided into. The sequence of partitions
corresponds to the sequence of configurations that are to be
loaded onto the device. Each partition comprises a smaller
graph that captures the communications between the mod-
ules needed while the corresponding configuration is active.
Note that this approach is currently limited to DAGs, or
cyclic graphs in which the cycles do not span partitions.

Fig. 5. Another View of a Scheduled Graph

Traditional partitioning and scheduling algorithms such
as those of GajjalaPurna [8] or METIS [7] can be used in
this step.

6. GRAPH MERGING

The output of the scheduling step is a sequence of subgraphs.
Viewed at the top level, without the individual modules in
each subgraph, this can be depicted as shown in Fig. 5. Each
subgraph also has a constraint d(Gi) which specifies its tar-
get maximum critical path delay. Ideally, a single wiring
harness is implemented to support the communications needs
of all the subgraphs. But building such a harness may ex-
ceed area and timing constraints. This step therefore aims to
merge contiguous subsequences from the scheduled graph
such that for each merged subsequence a harness can be built
that supports the communications for all subgraphs in the
subsequence. Graph merging attempts to reuse previously-
formed connections and to make use of spare wiring capac-
ity to reduce the overall cost of reconfiguring wiring at ap-
plication run-time. The reconfiguration delay of a sequence
of merged graphs can then be split into two parts: the time to
reconfigure individual modules, and the time to reconfigure
the wiring harness when it is necessary to do so. The goal of
graph merging is to minimise the total reconfiguration delay
of the application sequence by selecting appropriate subse-
quences to merge and determining module placements that
minimize the need to reconfigure. The critical path delay of
each resulting wiring harness must not exceed the minimum
d(Gi) for the graphs of the corresponding subsequence.

6.1. Mapping a Graph onto a Device

Before we merge subsequences, it is important to state how
we estimate the critical path delay of a given subgraph.

We define mapping as the assignment of slots to each
module in a subgraph, and determining an estimated, gen-
eral routing path for each arc in the subgraph. We first deter-
mine appropriate slot placements for each module. We have
addressed this problem in [4], where we performed place-
ment as a two-step process; the first minimises the number
of wires across any cut, and the second minimises the to-
tal wire length. Our experiments were initially performed
using an integer linear program, but we now use recursive-
bisection and branch-and-bound standard-cell placement tech-
niques.

It is then necessary to estimate the wire delay of a set of
placed modules and to ensure that it does not exceed timing
and area constraints. To do so we have modelled the device



Fig. 6. Device Layout for Graph Mapping

as shown in Fig. 6 using cell-based divisions as suggested
in [9]. Each cell is a slot (white if free, or black if occu-
pied) or a channel (grey) into which wiring is placed. For
each wire between any two modules, a general routing path
is estimated by performing an informed search through the
cells, while the area is constrained by the number of wires
that pass across the boundaries of each cell. We currently
map communications graphs with the following algorithm
(details are omitted due to space constraints):

1. Sort all arcs in descending order of length.

2. For each arc, perform a modified priority A* search
from the source to the destination nodes.

3. If we cannot implement the full width of the arc due
to insufficient wire capacity, determine the maximum
width implementable.

4. “Use” this route by decrementing the slot and channel
boundary capacities by the maximum available width.

5. If the full arc width cannot be implemented, return to
step 2 and find a route for the remaining width.

The “modified priority A* search” mentioned in step 2
is one in which the cell ordering in the queues is modified
to utilise the channels more efficiently. The node ordering
takes into account the source and destination slots; if they
are in the same column, for example, the channels on the
left or right side of the device have higher priority than the
centre channel. This is to avoid congestion and to maximise
the area use.

When all the arcs are mapped to the device, we proceed
to estimate the wire delay of the harness with the follow-
ing cost model that increasingly penalises the wire delay as
channels become saturated. We factor two variables into the
nominal wire delay, one to limit the channel saturation rate
and the other to decide how much to penalise the delay as it
approaches this limit.

We have implemented the algorithm for use in graph
merging and the task of comparing the estimated delays with
actual wire delays is in progress. The bulk of the work in this
task involves integrating our algorithms with current Xilinx
tools so as to implement the graphs on the FPGA.

6.2. Merging Two Subgraphs

The next step in graph merging is to determine which sub-
graphs to merge into subsequences that use a single wiring
harness. However, before this can be done we need to define
the problem of merging adjacent subgraphs. We define the
problem of merging a subgraph G0 with the subgraph G1

following it in the schedule as follows:
Define graph S to be equivalent to G0 with additional,

unconnected “blank” nodes representing empty slots that
G0 does not make use of. Place each node in G1 into S
such that the total number of shared arc-bits is maximised
and the total number of module swaps is minimised. An arc
can be shared if there exists an arc au,v between two nodes
(u, v) in S, and there exists an arc aw,x between two nodes
(w, x) in G1, and if w replaces u, and v replaces x.

This problem is of exponential complexity. Assigning
nodes in one graph to nodes in another is similar to the
quadratic assignment problem, which is NP-hard. We there-
fore propose the following heuristic algorithm to solve this
(again detail is omitted due to space constraints):

1. Order all nodes in G1 in order of the total number of
bits of communication required.

2. If there are nodes in G1 that have the same type as
nodes in S, place them into the same slot. Modules
that have the same module type do not require recon-
figuration. Module “type” is analogous to the VHDL
entity or Verilog module type.

3. For the rest of the nodes in G1, place each node into a
slot (in S) according to a cost function that accounts
for the total number of communication bits that will
be shared due to placing the node, the total number
of bits that may be shared due to communications be-
tween unplaced nodes, and the reconfiguration time.

6.3. Merging Subgraphs into Subsequences

We have examined the following greedy algorithm for de-
termining which subsequences should be created:

1. Try to merge the first two graphs in the application
sequence using the algorithm in section 6.2.

2. Map the merged graph using the algorithm proposed
in section 6.1 and examine the area use and critical
path delay:

a. If the area and timing constraints of the merged
graph are satisfied, then remove the first two graphs
from the application sequence and replace them
with the merged graph. Return to step 1 and try
to merge the next graph in the schedule with the
merged graph at the start of the sequence.



b. Otherwise, the constraints are not satisfied and the
merge is unsuccessful. The first graph in the appli-
cation sequence forms a subsequence on its own.
Remove it from the application sequence and add
it to the list of merged subsequences.

3. Return to step 1 and repeat until the application se-
quence has been processed in its entirety i.e. all sub-
sequences have been formed.

We have also implemented this algorithm. As per the
mapping process the analysis of its performance is under-
way and also still requires implementing the graphs onto the
device using the partial reconfiguration tool flow.

7. CASE STUDY – OPTICAL FLOW

Optical flow computations calculate the velocity between
pixels in successive frames of a video stream obtained from
a camera source, mounted, for example, on an unmanned
vehicle. Each frame goes through a two-step process — first
it is smoothed and prepared into tensors (products of pixel
values), which are then fed into an iterative process until the
optical flow converges.

In previous studies we have noted that placing the en-
tire application onto a single device has requirements that
greatly exceed the device area (by about 8 times) and on-
chip RAM (by about 15 times) of a medium-sized Virtex-4
device. Dynamic reconfiguration through hardware virtu-
alisation and off-chip buffering is suggested as a means of
overcoming these constraints. We aim to assess the feasibil-
ity of this approach through a case study, which also serves
to test the development of COMMA.

7.1. Graph Preparation

We first constructed a block-level design of an implementa-
tion of the Gauß-Seidel method [10] with successive over-
relaxation. We then transformed this into a communications
graph. Each block was implemented in VHDL and synthe-
sised to the smallest Virtex-4 device (XC4VLX15) in order
to obtain FPGA-resource estimates.

We performed the module-fitting stage using METIS [7]
and some manual adjustments for customisation purposes
to ensure that the application behaves correctly and as ef-
ficiently as possible. The resulting clustered graph had 51
nodes, each of which fits into a 10 × 14 CLB slot. In con-
trast, the device provides 8 COMMA slots corresponding to
the 8 natural pages on the device.

The scheduling stage was carried out using a modified
version of GajjalaPurna’s time-based algorithm [8], again
modified to improve the efficiency of this application. The
resulting schedule had 8 partitions, each containing 6 to 8
nodes. Partitions 1–4 form the pre-processing stages and
partitions 5–8 form the iterative stages.

7.2. Graph Merging Results

The scheduled graphs were processed using the combined
algorithm in section 6.3. A comparison of the individual

Fig. 7. Reconfiguration Time for Iterations

performance results of each graph is shown in Table 1. Af-
ter merging we obtained the eight partitions were merged
into three (1-3, 4-6 and 7-8) with one wiring harness each.
It must be noted that we used parameters that were conser-
vative with respect to the area and timing constraints so as to
have a higher chance that the merged graphs could be phys-
ically implemented by the low-level place-and-route tools.

The “ReconfigM” rows report the approximate reconfig-
uration delay for modules between partitions, estimated by a
fixed reconfiguration time for each slot based on the Virtex-
4 reconfiguration mechanism [11] (the reconfiguration time
of a single frame is 0.41µs). There are several 0µs entries
after merging e.g. reconfiguring from partition 2 to parti-
tion 3 because all the required modules for partition 3 were
already configured during partition 2.

The “ReconfigH” rows report on estimates of the recon-
figuration delay to reconfigure the wiring harness. This is
based on reconfiguring the respective halves of the channels
that wires occupy (see Fig. 6, where reconfiguring the top
half of the wire entails reconfiguring the halves of the chan-
nels depicted as medium-dark grey areas). Note that in the
merged case, wiring harness reconfiguration is only neces-
sary when transitioning between merged graphs.

The “Critical Path” rows report on the estimated criti-
cal path delay (by the mapping process in section 6.1) of
the wiring harness for each configuration. Note that merged
configurations would share the same critical path delay as
they use the same wiring harness. The main point of esti-
mating the delay is to decide whether the graphs should be
merged rather than to accurately determine the delay when
they are implemented.

Fig. 7 shows the reconfiguration times as the application
iterates between graphs. The pre-processing stage starts at
G1 and runs through to G5 where the iterative stage begins.
This iterates between graphs G5 through G8 until conver-
gence, before a new frame is processed again at G1. As-
suming that convergence is reached in 100 iterations, the
total reconfiguration time is shown with an overall improve-
ment of 69.6%.



Table 1. Optical Flow Comparison Results
Partition 1 2 3 4 5 6 7 8

Orig. ReconfigM (432µs) 504µs 360µs 504µs 432µs 432µs 432µs 144µs

Orig. ReconfigH (392)µs 234µs 201µs 322µs 221µs 261µs 361µs 116µs

Orig. Crit. Path 4.0 ns 5.1 ns 6.2 ns 4.0 ns 4.6 ns 5.7 ns 5.6 ns 5.6 ns

Merged ReconfigM (288µs) 216µs 0µs 360µs 360µs 0µs 72µs 0µs

Merged ReconfigH (302µs) - - 321µs - - 398µs -
Merged Crit. Path 6.8ns 6.2ns 6.0ns

7.3. Analysis

Looking at the individual graph timings, the wiring harness
reconfiguration times are small compared to those of the
modules because the channel width chosen was small. The
harness reconfiguration time is approximately equivalent to
that without merging because most of the channels are al-
ready used by the unmerged graphs. The critical path delays
are only slightly higher in the merged case. We believe that
an actual router is also likely to display this difference as the
extra delay is due to congestion rather than wire length.

The total timing results show a large improvement in
terms of reconfiguration time (69.6%), especially since a lot
of savings are present during the iterative stages. Even if no
merging were performed but an optimisation step is carried
out to reduce the number of the module swaps, this may be
detrimental to the critical path delay as the placement of the
modules is not optimised for each subsequent configuration.
This performance hit may grow significantly as the device
size scales.

We used the smallest possible device in this case study
to examine the results if such a large application were to
perform on it. One of our goals in COMMA is to use our
top-down methodology to reprocess the original communi-
cations graph automatically through the fitting, mapping and
merging processes with different device sizes to determine
the trade-off between device size and performance. This will
allow designers to choose the most economical device for
their needs.

8. CONCLUSION

In this paper we have described our efforts to construct a
tool that produces a custom wiring harness for a sequence
of communications graphs configured onto a paged recon-
figurable device. We have demonstrated the advantage in
terms of reduced overheads of such a tool when applied to
the mapping of a very large optical flow communications
graph to a very small device.

The experimental results to date have been produced us-
ing high-level tools. We expect the positive trends to be re-
produced when the produced designs are mapped to devices
using vendor tools.

The greedy heuristics so far employed for merging com-
munications graphs and mapping these merged graphs to the

device could very well be significantly improved upon in fu-
ture work.

The tools described in the paper are then to be integrated
into a flow that will assist designers with the exploration and
construction of dynamically-reconfigurable systems using a
modular approach.
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