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Abstract—High-reliability SRAM-based Field Programmable
Gate Array (FPGA) designs that are deployed in space are
commonly triplicated to mask Single Event Upsets (SEUs) and
employ either scrubbing or modular reconfiguration to recover
from radiation-induced configuration memory errors. Scrubbing
benefits from vendor support and clears errors anywhere in the
design but suffers from longer recovery times and higher energy
use. Module-based error recovery is more energy efficient and
responsive but repairs only corrupted TMR modules, leaving
the supporting parts of the design such as pins or routing
that are not included in the modules unrecovered. This paper
proposes and assesses a hybrid technique we refer to as Frame-
and Module-based Error Recovery (FMER) that uses modular
reconfiguration to repair faulty TMR modules and otherwise
scrubs the supporting parts of the design. We derive and compare
the reliability, availability and power consumption of TMR-based
System on Chip (SoC) designs that incorporate FMER, modular
reconfiguration alone, blind scrubbing and no recovery. Our re-
sults reveal that FMER has the highest reliability and availability
of the studied techniques in high radiation environments or when
a mission’s energy budget is limited.

I. INTRODUCTION

Consider an FPGA-based System on Chip (SoC) design that
is composed of a combination of some or all of the subsystems
depicted in Fig. I(a), where each subsystem is composed of K
Triple Modular Redundant (TMR) components. Of the subsys-
tems depicted in Fig. I(a) the most reliable structure is that of
subsystem (a; ), whose logic is completely triplicated including
the voters (V) and the Input Output (I/O) pins (P). Although
fully triplicated schemes provide better reliability than those
with non-triplicated IO pins and voters, there are situations in
which this triplication is not possible, such as when there are
insufficient pins. Such a case is represented by subsystem (as)
in which all the logic of the subsystem is triplicated except
for the input pins and the output pins associated with their
voters. Furthermore, as illustrated in subsystem (a3), there are
situations in which even the intermediate triplicated voters
of a subsystem’s components are not triplicated in order to
decrease the overhead of the fully triplicated scheme. If the
SoC incorporates configuration memory scrubbing [1], any
erroneous resources are corrected after a scrub cycle (a com-
plete reconfiguration of the FPGA). However, if Module-based
Error Recovery (MER) [2] is applied to the SoC, only the
errors inside the TMR modules are recovered, i.e. the resources
inside the dashed bounding boxes of the reconfigurable regions
depicted in Fig. I(a). Errors in the following resources are
never recovered with MER: (i) the output pins since they
are instantiated after the voters, (ii) the non-triplicated voters
and their associated output pins, (iii) the non-triplicated input
pins, and (iv) the routing resources that interconnect the TMR
modules. We refer to all resources that are not included in
the dashed shaded resources in Figs. I(a) & (b) as “Support
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Fig. 1. (a) SoC subsystems, (b) SoC model and (c) R(t)&A(t) Markov models

Resources” (SRs). Scrubbing can therefore be considered as
a slow but robust SEU error recovery technique in TMR
systems since errors in both the TMR modules and the SRs
are corrected by just reconfiguring the Configuration Frames
(CFs) of the device. However with scrubbing, the Mean Time
to Repair (MTTR) of the system is often considerably longer
than with MER, which can respond rapidly when the voter
detects repeated errors [3].

In this paper we investigate a hybrid configuration memory
error recovery mechanism that combines the advantages of
both scrubbing and MER. This Frame- and Module-based
Error Recovery (FMER) technique periodically scrubs the SRs
until it is interrupted by a reconfiguration request from a
faulty TMR module. Once the faulty TMR module is recon-
figured, the periodic scrubbing resumes in order to recover
any erroneous SRs. We model and compare the reliability,
availability and energy consumption of four identical SoCs
that incorporate (a) FMER, (b) blind scrubbing, (c) MER and
(d) NR (no recovery technique). We explore the proposed SoC
models at various radiation levels and design characteristics in
order to determine which is the best error recovery technique
to be used depending upon design/mission parameters.

II. RELIABILITY, AVAILABILITY AND ENERGY
CONSUMPTION MODELS

Fig. I(b) depicts an abstract model of the FPGA-based SoC
design illustrated in Fig. I(a). As shown in Fig. I(b;) the CFs



of the device have been divided into two sets, Fp = {Fy, F»}
where; (i) Fy CFs are devoted to mapping (implementing)
the SRs for the K TMR components, and (ii) F> CFs are
devoted to mapping the logic of the 3K TMR modules (dashed
bounding boxes in Fig. I(a)). Moreover, Fig. I(bs) shows F}
being further subdivided into two subsets, F; = {Fj5, Fy}
where; (i) F3 CFs are devoted to mapping the triplicated
support logic, e.g. triplicated output pins and any triplicated
interconnection routing resources between the TMR modules,
and (ii) 4 CFs are devoted to mapping the non-triplicated
support logic. The proposed model includes two variables,
g,h € [0,1] that determine the relative sizes of the F 234
CF sets, ie. Fp = F1 + F» = [g x Fp] + [(1 — g)Fp] and
Fl:F3+F4:[thXFD]—i-[(l—h)XgXFD].

The average number of CFs per TMR module then is Fi; =

By — (1-9)xFp Additionally, we assume that every TMR

3XK 3XK - i "
module in the system requires; (i) Frs = 353]( = X;’XXKD

and (i) Fgs = % = M%FD CFs on average for their
triplicated and non-triplicated SRs respectively. We assume
that the device suffers configuration memory errors at rate
Ap = Fp X Bp X Ay, where B denotes the configuration bits
of a CF and ), denotes the failure rate of one conﬁguration
bit. Consec%uently, the failure rate of Fy;, Frg and Fgg is:

() Am = US2522 X UTM x CBF, (i) Ars = 25222 x

UTS x CBF and (iii) Ass = 1="X9AD » TS x CBF. Here,
UTM and UTS denote the resource utilization of the TMR
modules and the SRs respectively, while CBF refers to the
Criticality Bit Factor (CBF) of the TMR modules or SRs and
represents the proportion of their utilized configuration bits
that will lead to observable errors if they are corrupted.

The reliability R(t) and availability A(t) of an SoC, which
is composed of the subsystems depicted in Fig. I(a), in
which each subsystem is composed of K components can
be simplified to a series logic structure of K independent

K
components with R(t) = H RY7¢(¢) and A(t) = H AZP(t),
respectively [4]. R?7(¢) and A’)p e( ) denote the rehab1l1ty and
availability functions of the " € [1, K] individual component
in the SoC respectively, where types € {(a) Simplex & NR
(no recovery), (b) Simplex & Scrub, (c) TMR & NR, (d)
TMR & Scrub, (¢) TMR & MER}. Therefore in SoC/FMER
and SoC/MER the F> CFs implement type () components,
while SoC/Scrub and SoC/NR implement type (d) and type (c)
components respectively. Similarly, the F; CFs of SoOC/FMER
and SoC/Scrub implement type (b) & (d) components, while
SoC/MER and SoC/NR implement type (a) & (c) components.

We apply the method presented in [4], which assumes that
failures follow a Poisson distribution and that components fail
and recover independently, to find R(t) and A(t) for all the
above fypes of components with the Markov models of Fig.
I(c). We assume that the initial probability distribution pgg
of the Markov models is psg = 1 and 0 elsewhere. R(t) and
A(t) of type (a) & (b) components is given by the probability
distribution pgo of the Markov models depicted in Fig. I(cq)
and Fig. I(co) respectively. In this model A, represents the rate
at which the component fails (SO:operational state—S1:failed
state), while p represents the recovery rate of the components.
When scrubbed, 1 = (0.5 x F x tp + w)~!, which is the
reciprocal of the MTTR in the system or the SRs, i.e. F' = Fp
when the system is completely scrubbed (FER) and F' = F}

when only the SRs are scrubbed (FMER). We denote with ¢x
the configuration time of a CF and with w any waiting time
that is inserted between the scrub cycles. When the component
is not recovered, then u = 0.

Similarly, the R(t) and A(t) models for components of
type (c), (d) and (e) are depicted in Fig. I(c3) and Fig.
I(cq) respectively. Their R(t) and A(t) are calculated by the
probability distribution of the operational states pgo+ps1 (SO:
zero faulty modules, S1: one faulty module, S2: two faulty
modules). Independent of the repair mode in the component,
Am always represents the failure rate of one TMR module. In
contrast, the rates pp and pq in which one (S1—50) or three
(52—50) TMR modules recover respectively, depends on the
incorporated recovery technique where for; type (c): TMR &
NR, po = p1 = 0, type (d): TMR & Scrub pg = p1 =
(0.5x F xtp+w)~! (Scrub: F = Fp, FMER F = F)) and
type (e): TMR & MER g = (Fay X tp)~ Y, g = B,

The energy consumption of each SoC for a rnlssmn of
length T is estimated as follows. Denoting with E the energy
required to reconfigure one CF in the device, then the energy
consumption of SoC/Scrub is Fggpp = ﬁ X FpEp, ie.
the number of scrub cycles during the mission multiplied by
the energy consumption of a scrub cycle. Similarly, the energy
consumption of SOC/MER is Eygr = 3\, T X FjyEF, i.e. the
product of the likelihood of a module error over the mission’s
duration and the average energy needed to recover a TMR
module. Last, the energy consumption of SOC/FMER can be
calculated as follows. The Reconfiguration Controller (RC) of
the SoC recovers the F, CFs of the TMR components with
MER for Tygr = 3T x Fyrtp time of the mission. Thus, for
the rest of the mission, Tsepp = T—Tyer = T(1—=3\ Frtr)
the RC is either scrubbing the F} CFs of the SRs or is
waiting between scrub cycles. Thus, the energy consumption
of SoOC/FMER for a mission time T is Fryrr = Eyer +
EScmb = (3)\mT X FMEF) + (w X gFDEF)

gFptr+w
III. ANALYTICAL RESULTS

This section explores and compares the reliability, avail-
ability and energy consumption of the SoCs depending upon
which recovery technique is incorporated into the system.
We assume that each SoC is implemented on a Xilinx
Artix-7 (XC7A200TFBG484-1) FPGA which has the follow-
ing specifications: Fp = 18,300 CFs, Br = 3,232 bits and
tr = 1.01E-6 s considering the maximum configuration speed
of the FPGA. We feel that the following initial variable
setup of our model (Fig. I(b)) captures a realistic FPGA-
based SoC that operates in a relatively high radiation envi-
ronment; A\, = 2.66E-10 SEU/bit/s, w =0 s, g = 0.4, h = 1.0,
CBF =0.1[5],UTS =0.1,UTM = 0.7, K =5and T =5 yrs.
However, we explore all possible values of the model’s
variables, i.e. we vary Ay, w, K etc. We explore our SoC
model for Ay € [3.76E-14, 2.66E-10], which was estimated for
Xilinx 7-series series [6] from Low Earth Orbit (LEO) up to
Geosynchronous Equatorial Orbit (GEO) with the CREME96
[7] Worst Week, Worst Day and Peak 5-minute models as-
suming 2.54 mm of Al shielding. The reliability, availability
and energy consumption results are captured on the Y axis
of 2D or 3D plots in Fig. 2, while the other dimensions are
devoted to varying the parameters of our model. All plots
use the mentioned default values unless otherwise stated. The
physical units for A, is SEUs/bit/s, for w it is seconds (s),
while the mission duration T is given in hours (hrs) or years
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Fig. 2. Reliability, Availability and Energy Consumption Results

(yrs). We report energy consumption in Joules (J), and assume
that the RC requires Er = 535E-9 J to configure a CF [8].
Fig. 2(a) shows the reliability of all SoCs in the first
24 hours of a mission (71" = 24 hrs). As can be observed,
SoC/FMER and SoC/Scrub based systems are the only sur-
vivors after 24 hrs of operation and have negligible difference
in reliability AR(T) ~ 43E-6. However, in longer missions
the reliability of SOC/FMER is interestingly higher than that
of SoC/Scrub. For example, Fig. 2(b) shows the reliability of
SoC/FMER and SoC/Scrub, and their difference in reliability
(FMER-Scrub) for a 10 yrs mission, at the end of which
SoC/FMER has R(T") ~ 0.98 and SoC/Scrub has R(T) ~ 0.84.
On the other hand, as the failure rate )\, of the SoC’s
configuration memory decreases, the difference in reliability
between all SoCs becomes negligible. For example, Fig. 2(c)
shows the reliability at 7' =5 yrs and )\, € [E-15, E-13],
i.e. the failure rate at LEO (International Space Station (ISS)
orbit at the lower end of this range). The FMER and Scrub
recovery techniques result in almost the same reliability, since
TMR error masking at low configuration memory failure rates
allows plenty of time for recovery, i.e. p of scrubbing is
adequate to reduce the probability of having more than two
faulty modules in one TMR component to a negligible level.
However, due to unrecovered errors in the SRs, SoOC/MER
has a considerably lower reliability than SoC/FMER and
SoC/Scrub over the complete A, spectrum, while the reliability
of SoC/NR drops to 0.5 when A\, = 9.8E-15. Additionally, the
3D plot of Fig. 2(d) shows the difference in reliability AR(t)
between SOC/FMER and SoC/Scrub for T € [0, 100] yrs and
Ay € [E-12, E-10]. The figure shows that AR(t) — 0 as
Ay, T" — 0. These results indicate that FMER achieves better
reliability than scrubbing does in higher radiation environment

or as the mission time increases. Moreover, FMER should
be considered in missions with a tight energy budget. For
example, Fig. 2(e) shows the reliability of a mission with
Ap € [E-12, E-10] and w € [0,60] s. The figure reveals that
the reliability of SoC/Scrub is affected more than the reliability
of SoOC/FMER as w increases. The reason for this is that with
blind scrubbing the system is completely scrubbed, while with
FMER only a portion of the device, i.e. only the I CFs are
scrubbed. Therefore, w can be longer in the case of FMER
and still recover errors more effectively than scrubbing is able
to. SOC/FMER achieves the reliability of SoC/Scrub with less
frequent scrub cycles and is thus able to reduce its energy
consumption.

The above results only hold when the SRs in the SoCs
are fully triplicated (h = 1). As shown in Fig. 2(f), even in
relatively low radiation orbits (A, = 3.76E-14) a small amount
of non-triplicated SRs can dramatically impact the reliability
of all SoCs independent of the recovery technique used. Note
that the reliability of SoC/NR remains close to O because
the TMR modules and the SRs of SoC/NR are not repaired
when errors occur in them. However, the SoC designer may
increase the system’s reliability by partitioning the SoC at a
finer granularity (X — 00), in order to increase the reliability
of the system. The improvement in reliability as K increases
(due to a reduced likelihood of multiple errors affecting the
one component and reduced MTTR for MER) is captured
in Fig. 2(g), which depicts the reliability of SoC/FMER and
SoC/Scrub for K € [1,50].

Achieving high availability in SoCs is easier than achieving
high reliability. The ratio between the configuration mem-
ory failure rate and error recovery rate in modern SRAM-
based FPGAs makes them attractive SoC candidates for



high-availability space missions. For example, Fig. 2(h) de-
picts the transition to steady-state availability of SoC/FMER,
SoC/Scrub and SoC/MER for an extremely high failure rate,
Ap = 1,000 x 2.66E-10 (1,000x the Peak-5-Min GEO \;).
As can be observed the steady-state availability of SoC/Scrub
is 5 nines, while the steady-state availability for SOC/FMER
is even higher. However, the availability of SoC/MER does
not reach a steady-state since the SRs never recover from
errors. Nevertheless, SOC/FMER and SoC/Scrub achieve high
availability even when h — 0 or UTS — 1, i.e. when the SRs
are not fully triplicated or are highly utilized. This is shown
in Fig. 2(j) where, in the worst case, (h =0, UTS = 1) the
steady-state availability for both SOC/FMER and SoC/Scrub
is approximately the same. However, FMER can be used to
achieve high availability with less energy. Fig. 2(i) shows
the steady-state availability of SOC/FMER and SoC/Scrub as
w is varied. SOC/FMER achieves 5 nines availability when
w = 120 s, while SoC/Scrub 3 nines for the same w, however
FEryer =~ 5083 J and Es.. =~ 12686 J, i.e. SOC/FMER also
consumes 2.5 times less energy than SoC/Scrub.

We found that SOC/FMER and SoC/Scrub energy consump-
tion decreases geometrically as w decreases. Fig. 2(k) shows
the energy consumption for both systems for w € [0,10],
g € [0,1]. We observe that Epyeg is always less than FEjgp
when w is equal in both SoCs and when g > 0. When g = 1
in SOC/FMER then the system is completely scrubbed, thus
Ermer = FEseup- Additionally, as K increases, the energy
consumption of SoC/MER decreases. This is true because
the systems are partitioned at finer granularity which means
faulty TMR components can be localized and corrected more
precisely as K — oo, thus repairing less CFs per fault.
This is shown in Fig. 2(l), in which we plot the energy
consumption of SoC/FMER, SoC/Scrub and SoC/MER for
K € [1,10] and w =1 5. We observe that Ejgr decreases
when K in SoC/MER increases. In case of SOC/FMER the
energy consumption that is spent in repairing TMR modules
is negligible compared to the energy consumed scrubbing the
SRs. Therefore K does not significantly affect the overall
energy consumption of SOC/FMER. Furthermore, the energy
consumption of SoC/Scrub is not affected at all as K varies,
since p depends on Fp and not on F;. Last, we observe that
FEyger is less than Eryrr and FEs.. since SOC/MER does not
involve periodic scrubbing of the SRs and it reconfigures the
CFs of the TMR modules only when required.

IV. IMPLEMENTATION OF FMER

The realization of various internal or external RCs for
SRAM-based FPGAs has been extensively researched [1].
Rather than detailing the implementation of an RC for FMER,
we simply outline its operating principles and the bitstream
analysis flow required to provide the necessary partial bit-
streams for our recovery mechanism. It is assumed that the
custom FMER RC has the following specifications in order to
execute both scrubbing and MER: (a) it is able to reconfigure
a contiguous sequence of CFs, (b) it is able to reconfigure
individual CFs, and (c) it is fault-tolerant.

The most important step for the realization of the proposed
FMER RC is the extraction of the “golden” F; and F» CFs
from the SoC model of Fig. I(a). We propose a Dynamic
Partial Reconfiguration (DPR) implementation flow [9], in
which the design is partitioned into DPR and static partitions.
Each TMR module of the SoC is mapped into a DPR partition,

while the SRs (shaded region of Figs. I(a) & (b)) are mapped
to the static area of the FPGA. The FMER RC downloads the
corresponding partial bitstream of any faulty TMR module
when required [3] and otherwise scrubs the F; CFs of the
design. The vendor’s DPR implementation flow guarantees
that a partial bistream for each TMR module is generated and
that the modules and SRs are not mapped on the same CFs.
However, the CFs of the SRs can only be extracted from the
design’s full bitstream with the aid of bitstream manipulation
tools, such as RapidSmith [10]. In more detail, the tool reads
a full bitstream and creates a list with all the CF addresses
of the device, while it reads and creates another 3K similar
lists for each of the 3K partially reconfigurable TMR modules
of the design. Next the CF addresses of the partial bitstreams
are removed from the full bitstream address list in order to
create a list with only the F; CFs (static region). Thereafter,
the F; CF’s address list is further divided into contiguous
sequences of CF addresses, whereby for each such sequence
a partial bitstream is generated for scrubbing the static region
of the design. Each of these partial bitstreams has an initial
value for the FPGA’s Frame Address Register (FAR) and the
corresponding CF data for the sequence.

V. CONCLUSIONS

This work has shown that FMER in TMR-based SoC FPGA
designs can achieve higher reliability and availability using
less energy than SoCs that are completely scrubbed. Moreover,
we have shown that the energy consumption of MER is less
than that of scrubbing or FMER, but it becomes ineffective
during long missions or in high radiation environments since
the SRs of the SoC are never recovered. FMER is under
development for the “RUSH” satellite payload [11] in order
to experimentally assess the correctness of our reliability,
availability and power consumption models in a real world
space application with fault injection experiments.
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