
Reliable SEU Monitoring and Recovery using a
Programmable Configuration Controller
Lingkan Gong∗†, Alexander Kroh∗, Dimitris Agiakatsikas∗, Nguyen T. H. Nguyen∗,

Ediz Cetin‡ and Oliver Diessel∗
∗ School of Computer Science and Engineering, UNSW Sydney, Australia

† School of Electrical Engineering and Telecommunications, UNSW Sydney, Australia
‡ Department of Engineering, Macquarie University, Australia

Abstract—FPGAs are promising candidates for computational
tasks in space. However, they are susceptible to radiation-
induced errors in their configuration memory. The recovery of
configuration errors, either by device scrubbing or by module-
based recovery, involves a series of reads and writes to the
FPGA’s configuration port, and is efficiently performed on-chip
by a fast, flexible and reliable reconfiguration controller. In this
work, we consider the reliability improvement of the recently
proposed Programmable Configuration Controller (PCC), a soft
reconfiguration controller that has been shown to be both fast and
flexible, but whose reliability, particularly in the face of radiation-
induced configuration errors, has not until now been studied. To
ensure that the PCC itself is reliable, we propose the use of
traditional Triple Modular Redundant (TMR) combined with a
novel software-based interrupt-driven fault recovery process that
leverages hardware-accelerated configuration access. We report
on our design space exploration to balance the utilization, error
recovery performance, and reliability of the PCC. In extremely
harsh radiation environments, the Mean Time to Failure of the
PCC is as high as 25 years, compared with 3.5 hours for its
non-protected counterpart, and that it takes as little as 27 ms to
recover from a configuration memory error affecting the PCC.

I. INTRODUCTION

There is growing interest in using off-the-shelf SRAM-based
Field Programmable Gate Arrays (FPGAs) for space missions
due to their low cost, high performance, flexibility and low
power. However, SRAM FPGA-based designs are susceptible
to radiation-induced Single Event Upsets (SEUs) that corrupt
the configuration memory [1]. Triple Modular Redundancy
(TMR) is a common SEU mitigation technique that protects
the user application by masking errors in one of the triplicated
replicas through majority voting [1]. TMR is typically used
in conjunction with either dynamic, partial reconfiguration-
based modular recovery or frame-based scrubbing to correct
radiation-induced configuration memory errors. Both of these
approaches involve a series of reads and writes from and to an
FPGA configuration port, such as the Internal Configuration
Access Port (ICAP) of Xilinx FPGAs. A Reconfiguration
Controller (RC) typically oversees the recovery process and

This research was supported in part by the Australian Research Council’s
Linkage (LP140100328) and Discovery (DP150103866) Projects funding
schemes.

is a critical component of the system. Ensuring its reliability
is therefore of paramount importance in guaranteeing that the
overall system operates reliably.

A number of investigations have studied general-purpose, fast,
light-weight, and easy-to-use RCs [2], [3], [4]. For space-based
FPGA systems, in particular, RC designs are also constrained
by, the desire to reduce the risk of radiation-induced faults.
On the one hand, the more resources used by the RC, the
more area that is exposed to radiation-induced SEUs, which
directly impacts the Mean Time To Failure (MTTF). On the
other hand, the more configuration frames used, the longer the
Mean Time To Recover (MTTR) from a configuration memory
error via modular reconfiguration or scrubbing.

While a significant amount of work has focused on the
reliability of the user application [1], not nearly as much effort
has been directed to ensuring that the infrastructure for fault
monitoring and recovery is reliable. The integrity of the entire
device can be corrupted when the fault-recovery process is
defeated by SEUs in the configuration memory of the RC. This
work presents a reliable RC with self-recovery capabilities and
low resource utilization that is programmed in C, rather than
in assembly or HDL, in which bugs are more likely to be
prevalent due to their greater design complexities.

To ensure that the RC meets these requirements, we propose
the use of a triplicated Programmable Configuration Controller
(PCC) [5]. Although implemented as a soft processor, the PCC
has an Application Specific Instruction Set Processor (ASIP)
architecture, which provides rapid configuration recovery of
the user design, as well as of the PCC itself, while also
providing software programmability and design flexibility. The
design supports Xilinx FPGAs, but the idea can be readily
applied to FPGAs from other vendors. While [5] focused
on the performance, resource usage and flexibility of the
ASIP architecture, this paper focuses on the reliability of the
PCC and the fault recovery process. In particular, this paper
presents:

• A novel, interrupt-driven, ASIP-based, fault recovery
approach to dealing with radiation-induced configuration
memory errors within the PCC;



• Design space exploration to establish the necessary PCC
datapath and TMR characteristics that provide the high-
est reliability without sacrificing reconfiguration perfor-
mance or flexibility; and

• Physical placement considerations of the TMR replicas
to ensure a short fault recovery time in the PCC.

The paper is organized as follows. Section II summarizes
the use cases of RCs for fault-tolerant applications and their
reliability, identifying the gaps with respect to the reliability
of the RC. Aiming to bridge the gap, we illustrate the
ASIP architecture, TMR protection and the interrupt-based
fault recovery process of the PCC in Section III. Section IV
provides two case studies and analyzes the impact of PCC
design parameters on its reliability. Concluding remarks are
given in Section V.

II. RELATED WORK

Various proprietary and academic RCs have been developed to
meet the general needs of dynamically reconfiguring FPGAs
as well as the specific requirements posed by fault-tolerant
applications in harsh radiation environments. The HWICAP
[6] and the SEM controller [7] are Xilinx IPs that can be
used for fault recovery. HWICAP, commonly used with a
soft processor such as MicroBlaze, suffers from large resource
overheads and slow performance [5], while the SEM controller
fails to meet flexibility needs as it does not allow alternative
user-defined scrubbing functions, such as selective scrubbing
[8], to be developed. Significantly, it is not known whether
the MicroBlaze+HWICAP or the SEM controller have been
designed to be fault tolerant. Furthermore, proprietary IPs are
non-trivial to triplicate without knowing their implementations.

Several academic RCs have been proposed and are able to
access the FPGA configuration resources [2], [3]. More recent
work combines the built-in ECC capabilities with the hard,
Processor Configuration Access Port (PCAP) of the Xilinx
Zynq devices to perform fast scrubbing [4]. While previous
solutions, including [5], have focused upon the performance
and flexibility of the RC, beyond attempting to keep the
utilization of the design small, not much attention has been
given to the reliability of the controller, and by implication,
the impact on the system, were it to fail.

Focusing on the reliability of the RCs themselves, in [9],
[10] a self-recovering RC that has the ability to correct any
errors in its configuration memory by writing a pre-stored
recovery bitstream to the ICAP has been proposed. Heiner et
al. demonstrated an internal readback scrubber by triplicating
the ICAP control circuits and by implementing user memory
scrubbing to recover from SEUs in the RC’s BRAMs [11].
However, the RCs of the approaches detailed in [9], [10], [11]
are based on the PicoBlaze processor [12], which does not
have an official C compiler and must cope with a limited
instruction space (1,024 words). These RCs cannot therefore
readily be reprogrammed to perform new or more sophisticated
fault recovery functions [5].

We propose using the PCC [5] as the RC, combined with
techniques employed by other reliable soft-core processors,
but by also exploiting its ASIP architecture. In particular, the
interrupt-driven recovery and synchronization of the PCC is
similar to that of [13]. However, the RC being recovered in
this paper is the infrastructure protecting the user application,
whereas the MicroBlaze being recovered in [13] is part of
the user application. As such, [13] only uses an interrupt to
synchronize processor state. We use the interrupt mechanism
to manage the entire recovery process, and more importantly,
to prioritize the recovery of the PCC and the bitstream datapath
over the recovery of the user application.

III. PROGRAMMABLE CONFIGURATION CONTROLLER

The PCC is based on an ASIP architecture. Figure 1 depicts
a block diagram of the PCC. The lightly shaded blocks are
the main logic of the PCC as described in [5] (See Section
III-A). In this paper, we have triplicated the PCC to protect it
from SEU errors and the moderately shaded blocks illustrate
the TMR voting logic (See Section III-B). The darkly shaded
blocks are FPGA primitives, such as the FRAME_ECC1 and
the ICAP, that are used for fault recovery.

Figure 1. One copy of the triplicated PCC.

A. ASIP Architecture

The PCC is derived from the RISC-V instruction specifica-
tion and thus supports all RISC-V integer instructions and
all RISC-V C compilers [14]. We removed the multiplica-
tion/division, floating point and privileged instructions since
these are not required to perform reconfiguration. However,
interrupt handling is an important element of the fault-recovery
mechanism of the PCC (see Section III-C).

1FRAME_ECC is a Xilinx FPGA primitive that automatically calculates
ECC data when a frame is read from the ICAP.

2



We have extended the RISC-V specification with the rcfg,
wcfg, wbit, getw, setw and getecc instructions to gain
rapid access to the configuration resources (see Figure 1
for descriptions). These instructions are implemented by a
Finite State Machine (FSM) that controls a bitstream buffer,
a bitstream FIFO, the ICAP port and the FRAME_ECC
primitive, which are conceptually viewed as a co-processor
(Co-Proc). Frame reading and writing are accomplished by a
sequence of wcfg and rcfg instructions that populate the
bitstream header, read/write the frame body, and write the
bitstream footer. ECC-based scrubbing (e.g., [15]) can be im-
plemented by hardware-accelerated frame accesses, as well as
the getecc instructions. For modular recovery using partial
reconfiguration (e.g., [16]), the wbit instruction is used to
accelerate bitstream fetching. Therefore, PCC’s performance is
comparable to the Xilinx SEM IP but also has the advantage of
being programmable to enable novel uses, such as scrubbing
a region of the device in isolation of the rest [5].

B. Triplicating the PCC

We triplicated the PCC to increase its reliability by masking
transient errors and mitigating the negative effects of SEUs
in its configuration memory. TMR voters are inserted at a
number of places in the PCC (see V1-V7 in Figure 1), and are
also triplicated to avoid single points of failure. Voters 1-4 are
inserted to vote on the inputs of the BRAM, Register Files and
bitstream buffer/FIFO, and are referred to as boundary voters
in this paper. Boundary voters isolate the memory elements
and reduce the likelihood of errors being accumulated in them
[17]. V7 is the boundary voter of the interrupt source of
the PCC. On the other hand, synchronization voters, i.e., V5
and V6, are inserted to cut the feedback edges in the circuit
topology [18]. These voters ensure that the next state, such as
the next value of the Program Counter, the next state of the
Co-Proc FSM, are determined by voted sources. As a result,
the 3 copies of the PCC are assured of being synchronized.
It should be noted that since there is no synchronization voter
for the BRAM and CPU Register Files, they are explicitly
synchronized after fault recovery (see Section III-C).

Figure 2. Two types of TMR voters.

Figure 2 illustrates two implementations of the PCC voters.
The voters compare the 3 input signals and generate the

boolean output that agrees with the majority of inputs, thereby
masking erroneous module outputs. Traditionally, for modular
recovery, a voter also generates a 2-bit “error_info” output
indicating the ID of the PCC replica (i.e., 0, 1 or 2) that is
in error and needs to be recovered (see Figure 2-(a)) [16].
One LUT can be used to implement an arbitrary 6-input logic
function when configured in LUT6 mode, or two 5-input logic
functions when configured in LUT6_2 mode [19]. Therefore,
the voter in Figure 2-(a) use 2 LUTs for each bit of the signal
to be voted upon. Alternatively, voters as in 2-(b) generate a 1-
bit “error_any” output that indicates the existence of an error,
and can thus be packed into a single LUT. Since the resource
usage is halved, its reliability also improves. However, since
it is not known which replica is in error, all 3 copies of the
PCC have to be recovered. We analyze the impact of the voter
insertion points and voter type selection in Section IV-C.

C. Interrupt-based Fault-Recovery

The PCC uses an interrupt request (IRQ) to recover from SEU
errors that affect its own configuration. Figure 3 illustrates
the use of the dedicated IRQ source and the execution of the
Interrupt Service Routine (ISR) that reconfigures the PCC.

@t0 Let us assume that the PCC is performing an ECC-based
scrub of the user application when an SEU affects replica
0 of the PCC. The error won’t immediately affect the
scrubbing of the user applications since the error in PCC0
is masked by the TMR voters.

@t1 Repeated errors reported by a voter cause an IRQ to be
raised to the PCC. Since the interrupt sources are voted
upon by V7, the voted IRQ will be asserted even if only
2 copies of the PCC are operational.

@t2 The two non-faulty replicas of the PCC accept the IRQ,
suspend scrubbing the user application, and starts the
ISR. The instruction fetch logic, such as the BRAM read
enable, is voted upon by the V1 voter, and the fetched
instructions are voted on by V5. Therefore, the correct
instructions will be used in the subsequent cycles of the
PCC. The ISR starts by saving the Register File contents
to BRAM for future restoration. Similar to the instruction
fetch, the saved register values pass through the V1 voter
and thus only correct data are written to BRAM.

@t3 The PCC starts transferring the correct PCC bitstream
from an external, radiation-hardened flash memory, to the
ICAP. If an SEU error affects the datapath from the flash
to the ICAP, the error is masked (V3 and V4) and the
request to reconfigure the flash datapath is kept pending
until the PCC finishes recovering itself.

@t4 After reconfiguration, the freshly reconfigured PCC
replica is in an undefined state. PCC performs the state
synchronization by a number of NO-OP instructions.
In this period, since the pipeline registers, such as the
Program Counter and the Co-Proc FSM state, etc, are
voted on by V5 and V6, these registers are updated
with voted, correct values. Afterwards, PCC restores the

3



Register Files with previously saved values, which are
voted and corrected by V2. After this, all PCC replicas
resume lock-step operation.

@t5 On executing a “return-from-interrupt” instruction, the
global interrupt mask is automatically cleared and any
pending IRQ request, such as reconfiguring the flash
datapath, is accepted and served accordingly. After all
the IRQs are served, the PCC resumes the ECC-based
scrubbing of the user application that was suspended @t2.

Figure 3. Interrupt-based fault-recovery.

Since the PCC has been triplicated and instructions are voted
upon, the two correctly functioning copies of the PCC are
able to reconfigure the faulty copy. The use of synchronization
voters ensures that the state of the functioning PCC replicas
is copied to the recovered replica after reconfiguration.

IV. EVALUATION

We validated the triplicated PCC via a number of optimizations
and two case studies. In our evaluation platform, the triplicated
PCC connects to an external, bitstream storage flash via a
triplicated flash controller. Since there is only one copy of the
flash and only one instance of the ICAP and FRAME_ECC
primitives, the voter to/from these components are not tripli-
cated. We assume that errors in these FPGA primitives and the
off-chip components require a device reset to clear them. The
user application consisted of a number of synthetic TMRed
compute nodes with each node containing a TMR voter that
identified the ID of the erroneous module.

We present the reliability model in Section IV-A, and use the
model to guide our optimization of the non-replicated, baseline
PCC (Section IV-B), initial TMRed PCC (Section IV-B), and
the optimized PCC (Sections IV-C and IV-D).

A. Reliability Model

We use MTTR and MTTF to evaluate the reliability of the
PCC. We define an error as an SEU event that corrupts a
configuration bit. Not all configuration bits are critical and we
use essential bit (E-Bit) to denote bits that, when flipped, may
result in observable functional impacts. We define a failure to
be an event that prevents the PCC from functioning correctly
so that it can only be recovered by a full reset. Since there
is no redundancy in the non-TMR PCC, the flip of any E-
Bit leads to a failure. Its MTTF is only affected by the error
rate: MTTF = 1/λ [20], where λ = E-bits * bit-error-rate, and

the bit-error-rate is determined by the radiation flux and the
physical characteristics of the device. For the triplicated PCC,
it only fails if it suffers a second error in one of the other
two PCC replicas before it has recovered from the first error.
Therefore, its MTTF is determined by the MTTR, apart from
the error rate, λ: MTTF = (5λ+ (1/MTTR))/6λ2 [20].

According to the reliability model, the focus of the resource
optimization is to reduce the overhead of the TMR voting logic
so as to reduce the number of E-Bits. The focus of the perfor-
mance optimization is to reduce the recovery (ISR) time, and
thus the MTTR. This requires improving general instruction
performance, as indicated by the Cycles Per Instruction (CPI)
count, improving the speed of the extended reconfiguration
instructions, and reducing the bitstream size of the PCC itself.
We also need to ensure that the PCC operates at 100MHz so
that it does not throttle the ICAP and limit reconfiguration
performance. In subsequent sections, we calculate the MTTF
using a worst case expected configuration memory upset rate
(2.7E-10 SEUs/bit/s) for the target Xilinx Artix-7 FPGA in
Geosynchronous Equatorial Orbit (GEO) [16].

B. Placement-Aware Optimizations

The placement of the PCC is constrained by the fact that on the
target Artix-7 FPGA, a pblock, i.e., a rectangular placement
block used to define a partially reconfigurable region, has to be
a multiple of CLB columns wide, each containing ~400 LUTs.
By moving non-essential components, such as the the debug
UART/GPIO, outside the PCC, the PCCv2 (See Table I) uses
38% fewer LUTs as compared with the PCCv1 of [5], which
results in 20% reduction in the pblock size, since the LUT
reduction also falls below a 400-LUT boundary and fewer
CLB columns. We subsequently used PCCv2 as the baseline
design for our evaluations.

Table I also reports the results for PCCv2-TMRv1-PR, which
is a triplicated PCC design, with each PCC replica mapped
to a reconfigurable partition. In this design, introducing the
TMR voters resulted in a 7.2X increase in resource usage
and a 57% penalty to the clock frequency compared to the
PCCv2 baseline. TMR voting incurred a large number of
extra LUTs since there are 2,304 signals to be voted upon.
Furthermore, the tool sacrificed timing so as to fully route all
voting signals via the limited routing resources available across
the reconfigurable partition boundaries. The results of Table I
were deemed unacceptable and motivated further optimization.

C. Voter Insertion Points Analysis

Table II reports on a number of design iterations to find
optimal voter insertion points. We refer to the optimized TMR
voting schemes as -TMRv2 and -TMRv3, as compared to -
TMRv1 of Table I.

For the -TMRv1 design, the long delay paths were those
that crossed module boundaries and also happened to be
on the feedback edges of the circuit. As a result, both a

4



Table I BASELINES OF TMR EVALUATIONS

Design Voter location Voter type Resource usage
(Slice/LUT/FF)

Freq
(MHz)

Placement

PCCv1 [5] non-TMR – 573/1758/1048 100.4 5 CLB cols
PCCv2 non-TMR – 352/1164/533 102.6 4 CLB cols

PCCv2-TMRv1-PR all FF outputs error_info 2488/8383/9123 43.5 10 CLB cols * 3

Table II VOTER INSERTION POINT ANALYSIS OF THE TMRED PCC

Design Voter
location

Voter
type

Resource usage
(Slice/LUT/FF)

Freq
(MHz)

Placement E-Bits
(KBits/%)

Bitstream
(KBytes)

MTTR
(ms)

MTTF
(years)

PCCv2 non-TMR – 352/1164/533 102.6 4 CLB cols 299 /0.49 – – 0.0004
PCCv2-TMRv2-PR selected FFs error_info 1996/5971/5484 45.5 10 CLB cols * 3 1,773/2.91 463 41.4 5.2
PCCv2-TMRv3-PR selected FFs error_any 1381/4994/2409 87.7 17 CLB cols 1,264/2.07 787 36.5 11.7

synchronization voter and a boundary voter were inserted on
these paths, which added extra delay. In the -TMRv2 design,
we moved the synchronization voters to cut different edges of
the same feedback loop, or removed the boundary voters if the
signals could be voted upon by downstream pipeline stages of
the PCC. By carefully selecting the voter insertion points, -
TMRv2 only votes on 1,227 (as opposed to 2,304) signals for
all PCC replicas, and achieved an 18.4% area reduction when
compared with the -TMRv1 design.

To resolve the routing congestion in the -TMRv1 design, the
PCCv2-TMRv3-PR design placed all 3 PCC replicas into a
single reconfigurable region so that the voting signals were
internal to the pblock, where the routing requirements are
relaxed. As a result, we observed a boost in the operating fre-
quency. Furthermore, since we only have ONE reconfigurable
region, it is no longer necessary for the voters to distinguish
which PCC replica is in error. We could therefore use the
“error_any” voters (see Figure 2-(b)), which saved area and
reduced the number of E-Bits. The drawback of the -TMRv3
design is that the partial bitstream size is increased to include
3 replicas (as opposed to 1). Overall, we observed that the
boost in the operating frequency and the reduction in E-Bits
outweigh the negative impacts of the larger reconfiguration
bitstream size, with both MTTR and MTTF improving.

D. ALU Bitwith Analysis

The largest sub-module of the PCCv2 is the 32-bit ALU.
To reduce the resource usage and the number of E-Bits for
the design, we re-implemented the PCC to support sub-32-
bit ALU bitwidths in a way similar to [21]. Since a sub-32-
bit ALU requires multiple cycles to execute a 32-bit ALU
instruction, an FSM had to be introduced and the PCC was
modified to become a multi-cycle processor, referred to as
PCCmX in Table III, where the m indicates multi-cycle and X
refers to the ALU bitwidth.

From the 32-bit-ALU to the 2-bit-ALU PCCs, we see a 21%
reduction in the number of E-Bits, and a 15% reduction in the
bitstream size (Table III). We also, as expected, but undesirably
so, observed a steady slowdown of the PCC CPI performance,
as reported by the Dhrystone benchmark. The best MTTR is

achieved by a small, 8-bit ALU PCC, whereas the highest
MTTF is from a 2-bit ALU PCC. This is because the ALU
instructions are only used for PCC synchronization, which
account for < 0.1% of total recovery time. The recovery perfor-
mance primarily depends upon the speed of the reconfiguration
process, which benefits from the higher clock frequency and
the smaller bitstream sizes.

As illustrated in Table III, the optimized PCCs achieve an
MTTF of up to 25 years and therefore could be used in GEO
satellites that traditionally have a 15-year lifespan. The PCC
can be safely incorporated into small Low Earth Orbit (LEO)
satellites e.g. CubeSats, where the radiation level is much
lower and their lifespan is usually no longer than 2 years.

E. Case Studies

We ran two user applications as case studies to validate
the PCC-based recovery. Case Study 1 used module-based
recovery, whereby the PCC read the configuration frame of the
voter and extracted the erroneous module ID while reading. If
the extracted ID indicated an error, the PCC reconfigured the
erroneous module [5]. Case Study 2 used ECC-based recovery:
the PCC read out the configuration frames of a module and
checked the FRAME_ECC primitives while reading. If the
FRAME_ECC reported an error, the corrected frame was
written back to the configuration memory [5].

Table IV compares the results of the 32-bit, pipelined
PCC (i.e., PCCv2-TMRv3-PR), the 8-bit, multi-cycle PCC
(PCCm8-TMRv3-PR), and the baseline PCCv2. The test re-
sults of the baseline PCCv2 are the same as its predecessor,
the PCCv1 in [5]. The 32-bit, pipelined PCC, PCCv2-TMRv3-
PR is suited to scrubbing, since it achieves comparable
performance on ECC check and correction to that of the
PCCv1/PCCv2. The 8-bit ALU PCC, PCCm8-TMRv3-PR,
is more suited to module-based recovery due to its higher
reconfiguration throughput.

V. CONCLUSIONS AND FUTURE WORK

SRAM FPGA-based space applications are susceptible to SEU
errors in the configuration memory, and the RC is the key

5



Table III ALU BITWIDTH ANALYSIS

Design ALU CPI Resource usage
(Slice/LUT/FF)

Freq
(MHz)

Placement E-Bits
(KBits/%)

Bitstream
(KBytes)

MTTR
(ms)

MTTF
(years)

PCCv2-TMRv3-PR 32 1.2 1381/4994/2409 87.7 17 CLB cols 1,264/2.07 787 36.5 11.7
PCCm16-TMRv3-PR 16 4.97 1183/4389/2643 95.6 15 CLB cols 1,109/1.81 726 30.9 17.9
PCCm8-TMRv3-PR 8 6.05 1177/4182/2622 99.6 13 CLB cols 1,036/1.70 664 27.1 23.4
PCCm4-TMRv3-PR 4 8.2 1150/4104/2613 96.9 13 CLB cols 1,041/1.70 664 27.9 22.6
PCCm2-TMRv3-PR 2 12.5 1163/4090/2610 99.3 13 CLB cols 997/1.63 664 27.2 25.2

Table IV RESULTS OF CASE STUDIES

ALU Freq
(MHz)

Frames
write/read

Recfg. Thpt.
(Case Study 1)

Check a frame
(Case Study 2)

Correct an error
(Case Study 2)

PCCv2 (or PCCv1 [5]) 32 100 3.41/3.39 us 24.4 MB/s 3.6 us 7.5 us
PCCv2-TMRv3-PR 32 87.7 3.7/3.7 us 21.6 MB/s 3.7 us 9.1 us
PCCm8-TMRv3-PR 8 99.6 5.1/5.0 us 24.5 MB/s 5.0 us 13.2 us

component that manages the detection of and recovery from
SEU errors. Apart from the requirements of being fast, small
and flexible, the RC must also work reliably in harsh radiation
environments since a failure of the RC will leave the entire
FPGA unprotected. To the best of our knowledge, the PCC
proposed in this paper is the first work to use a soft ASIP
architecture to implement a reliable RC that provides robust
fault-recovery of SEUs in both the user logic and the RC itself.

The PCC uses well-known TMR techniques to protect its logic,
and uses a novel, interrupt-based method to synchronize the
freshly recovered copy of the PCC with the other two operating
copies. Through a careful analysis, we have optimized the
placement, voter insertion points and the ALU bitwidths
of the PCC. Our evaluations indicate that placing 3 PCC
replicas in a single reconfigurable partition is more reliable
than placing them each in their own partition. We have also
identified that the fastest MTTR is achieved by using an 8-
bit ALU, which recovers itself in 27ms, whereas the highest
MTTF is achieved by the 2-bit ALU PCC, which can run
25.2 years without failure in GEO orbit, achieving 63,000X
improvement in MTTF over the non-TMR PCC. PCC is thus
a tiny, software-programmable, high performance and, most
importantly, highly reliable reconfiguration controller.

Looking ahead, we intend to further study the relationship
between PCC reliability and system-wide reliability. We also
plan to conduct fault-injection experiments in order to validate
the sensitivity to faults of the triplicated PCC.

REFERENCES

[1] F. Siegle, T. Vladimirova, J. Ilstad, and O. Emam, “Mitigation of
Radiation Effects in SRAM-Based FPGAs for Space Applications,”
ACM Computing Surveys, vol. 47, no. 2, pp. 37:1–37:34, 2015.

[2] K. Vipin and S. A. Fahmy, “A High Speed Open Source Controller for
FPGA Partial Reconfiguration,” in Int. Conf. on Field-Programmable
Technology (FPT), 2012, pp. 61 – 66.

[3] S. D. Carlo, P. Prinetto, and P. Trotta, “A Portable Open-Source
Controller for Safe Dynamic Partial Reconfiguration on Xilinx FPGAs,”
in Int. Conf. on Field Programmable Logic and Applications (FPL),
2015, pp. 1 – 4.

[4] A. Stoddard, A. Gruwell, P. Zabriskie, and M. Wirthlin, “High-speed
PCAP Configuration Scrubbing on Zynq-7000 All Programmable SoCs,”
in Int. Conf. on Field Programmable Logic and Applications (FPL),
2016, pp. 1–8.

[5] L. Gong, T. Wu, N. T. H. Nguyen, D. Agiakatsikas, Z. Zhao, E. Cetin,
and O. Diessel, “A Programmable Configuration Controller for Fault-
Tolerant Applications,” in Int. Conf. on Field-Programmable Technology
(FPT), 2016, pp. 117–124.

[6] Xilinx, AXI HWICAP (PG134), 2015.
[7] ——, Soft Error Mitigation Controller (PG036), 2015.
[8] D. Agiakatsikas, E. Cetin, and O. Diessel, “FMER: A Hybrid Configura-

tion Memory Error Recovery Scheme for Highly Teliable FPGA SoCs,”
in Int. Conf. on Field Programmable Logic and Applications (FPL),
2016, pp. 1–4.

[9] A. Ebrahim, K. Benkrid, X. Itrube, and C. Hong, “A Novel High-
Performance Fault Tolerant ICAP Controller,” in NASA/ESA Conf. on
Adaptive Hardware and Systems, 2012, pp. 259–263.

[10] A. Ebrahim, T. Arslan, and X. Iturbe, “On Enhancing the Reliability of
Internal Configuration Controllers in FPGAs,” in NASA/ESA Conf. on
Adaptive Hardware and Systems (AHS), 2014, pp. 83–88.

[11] J. Heinerl, N. Collins, and M. Wirthlin, “Fault Tolerant ICAP Controller
for High-Reliable Internal Scrubbing,” in IEEE Aerospace Conf., 2008,
pp. 249–258.

[12] Xilinx, PicoBlaze 8-bit Microcontroller User Guide (UG129), 2011.
[13] Y. Ichinomiya, S. Tanoue, M. Amagasaki, M. Iida, M. Kuga, and

T. Sueyoshi, “Improving the Robustness of a Softcore Processor against
SEUs by Using TMR and Partial Reconfiguration,” in IEEE Symp. on
Field-Programmable Custom Computing Machines (FCCM), 2010, pp.
47 – 54.

[14] A. Waterman, Y. Lee, D. Patterson, and K. Asanovic, The RISC-V
Instruction Set Manual Volume I: User-Level ISA, 2014. [Online].
Available: https://riscv.org/specifications/

[15] I. Herrera-Alzu and M. Lopez-Vallejo, “Design Techniques for Xilinx
Virtex FPGA Configuration Memory Scrubbers,” IEEE Trans. on Nu-
clear Science, vol. 60, no. 1, pp. 376–385, 2013.

[16] D. Agiakatsikas, N. T. H. Nguyen, Z. Zhao, T. Wu, E. Cetin, O. Diessel,
and L. Gong, “Reconfiguration Control Networks for TMR Systems
with Module-based Recovery,” in IEEE Symp. on Field-Programmable
Custom Computing Machines (FCCM), 2016, pp. 88–91.

[17] B. Pratt, M. Caffrey, D. Gibelyou, P. Graham, K. Morgan, and M. Wirth-
lin, “TMR with More Frequent Voting for Improved FPGA Reliability,”
in Int. Conf. on Engineering of Reconfigurable Systems and Algorithms
(ERSA), 2008, pp. 1–8.

[18] J. M. Johnson and M. J. Wirthlin, “Voter Insertion Algorithms for FPGA
Designs Using Triple Modular Redundancy,” in ACM/SIGDA Int. Symp.
on Field Programmable Gate Arrays (FPGA), 2010, pp. 1–10.

[19] 7 Series FPGAs Configuration Logic Block (UG474), Xilinx Inc., 2013.
[20] Z.-M. Wang, L.-L. Ding, Z.-B. Yao, H.-X. Guo, H. Zhou, and M. Lv,

“The Reliability and Availability Analysis of SEU Mitigation Techniques
in SRAM-based FPGAs,” in European Conf. on Radiation and Its Effects
on Components and Systems, 2009, pp. 497–503.

[21] Y. Tanaka, S. Sato, and K. Kise, “The Ultrasmall Soft Processor,” ACM
Computer Architecture News, vol. 41, no. 5, pp. 95–100, 2013.

6


