
ACS: an Addressless Configuration Support for Efficient Partial
Reconfigurations

Jenny Yi-Chun Kuo Anderson Kuei-An Ku Jingling Xue Oliver Diessel Usama Malik*
School of Computer Science and Engineering, University of New South Wales, NSW 2052, Australia

{kuoy, kua, jingling, odiessel}@cse.unsw.edu.au
* Endace Technology Limited, Hamilton 3204, New Zealand

usama.malik@endace.com

Abstract

This paper presents a complete design of a reconfig-
urable architecture support system, called ACS (an Ad-
dressless Configuration Support), which provides efficient
access to non-contiguous reconfigurable locations in re-
configurable systems. ACS reduces the amount of partial
reconfiguration information required by removing a large
amount of addressing information and padding as found in
Virtex-4 bitstreams.

ACS improves significantly on the distTree architecture
previously proposed by us. ACS introduces the selector
block which connects the leaf nodes to a consecutive block
of reconfiguration locations called a frame set. The sys-
tem allows any number of leaf nodes customised to the size
of the device, thereby providing much more flexibility. The
hardware costs have also been reduced significantly over
the distTree design. Together with the new marker load-
ing mechanism, ACS is readily applicable to SRAM-based
FPGAs. This new ACS system is benchmarked using eight
real-world applications against a Virtex-4 device and the
results show 6.83%-15.07% speedups when the reconfigu-
ration granularity is set to a Virtex-4 frame.

1. Introduction

Reconfigurable systems are systems which consist of
arrays of reconfigurable hardware such as Field Pro-
grammable Gate Arrays (FPGAs). The two main compo-
nents of an FPGA are the logic blocks and the switch boxes
that provide routing between these logic blocks. These
switch boxes as well as the contents of the logic blocks are
reprogrammable after fabrication to perform different tasks
at different times.

Applications nowadays often have more intricate func-
tionalities and require more hardware resources than are
available. As a result, designs often cannot fit onto a single
FPGA device [8]. The solutions are often to use more logic

by either networking multiple FPGAs or performing some
form of run-time reconfiguration [7]. He et al. [9] proposed
a solution by finding optimal strategies in networking multi-
ple FPGA devices using crossbars. However, having multi-
ple FPGAs not only increases the costs but also power con-
sumption. The on-chip/off-chip latencies and synchroniza-
tion between the devices are also of concern. In this paper,
we take the second approach and present a new hardware
support system, called ACS (an Addressless Configuration
Support), which aims to facilitate fast run-time partial re-
configurations with little extra hardware costs.

1.1. Background

A run-time reconfiguration can either be a full or partial
reconfiguration. Each configuration is referred to as a con-
text and the context is stored in the form of a bitstream. A
full reconfiguration requires a complete configuration of the
whole system while a partial reconfiguration requires only
the differences between the old and the new configurations,
resulting in a smaller bitstream length and a smaller recon-
figuration latency. The bitstreams are swapped in and out
of an FPGA whenever new functionalities are required. Al-
though run-time reconfigurable systems offer great flexibil-
ities and the ability to accommodate larger designs than the
physical capacity of the device, the time it takes to perform
a reconfiguration can take up a large proportion of the to-
tal execution time resulting in inefficient throughput. This
delay is called the reconfiguration latency and is propor-
tional to the length of the bitstream, which depends on the
area to be reconfigured and the sparsity of the reconfigur-
ing blocks. This leads to one of the major shortcomings in
current FPGA technologies [13] [14] [15].

1.2. Motivation

In reconfigurable systems, an unused reconfiguration
context is usually stored in a memory external to the work-
ing hardware and is only swapped in when required. As a

result, considerable amount of information may need to be
transferred between the internal and external memories and
thus incur a significant run-time reconfiguration latency.
Also, the current reconfigurable architectures impose con-
siderable overheads by loading more reconfiguration bits
than required. For example, a frame is the smallest recon-
figurable unit in a Virtex device [2] and a bitstream of the
size of a complete frame must be loaded onto the device
even when only a small part of a frame is changing. Ma-
lik and Diessel [12] experimented with smaller reconfigura-
tion units with vector addressing and found that the smaller
the granularities, the shorter the bitstream despite of the in-
creased addressing overhead.

Lange and Middendorf [11] proposed a two-level re-
configurable architecture that aims to reduce the address-
ing overhead incurred in systems with finer granularities
by adding extra hardware. The architecture links the loca-
tions that are required to be reconfigured by short-circuiting
the non-reconfiguring locations. However, this architec-
ture may be difficult to implement in practice for two rea-
sons. First, because the reconfiguring locations may be far
apart, signals have to be strong enough to maintain their in-
tegrity. The frequency of the system is also limited by the
longest distance between two reconfiguring locations. Sec-
ond, there is little parallelism in the architecture and the ef-
ficiency depends heavily on the locality of the reconfiguring
locations. As a result, the reconfiguration latency may still
be large in extreme cases.

In the previous paper [10], we proposed a preliminary
idea of using a hardware architecture support called dist-
Tree for partial reconfigurations. While allowing reconfig-
uration of non-contiguous frames in an FPGA with mini-
mum addressing information from outside, distTree is too
costly to be practical. First, distTree has to be a perfectly
balanced binary tree. If there are 2m + 1 reconfigurable lo-
cations, the tree will have 2m+1 leaves while a large amount
of hardware is not used. Second, the granularity of tree leaf
nodes is assumed to be one bit with no solutions to coarser
granularities being explored. At this finest granularity, dist-
Tree can be costly. For example, the smallest Virtex-4 de-
vice consists of 4.7Mb of configuration bits, which would
result in a distTree with 4.7 million leaf nodes. Third,
distTree does not address how the markers, which is used
to indicate the reconfiguring sites, should be loaded into
the system and has always assumed their availability when
required. Addressing these limitations may impose extra
hardware and timing overheads that were not accounted in
the distTree design. Finally, distTree was evaluated using
hypothetical bitstreams with random reconfiguration sites
which may not have reflected real-world scenarios.

In this paper, we present an improved system called
ACS, which addresses all the limitations above by includ-
ing a marker loading mechanism, a selector block and a re-
fined distTree now called the BinTree. ACS is not only
efficient but also practical as demonstrated using eight real-
world benchmarks from different application domains. The

results are compared with a Virtex-4 device.
In summary, this paper extends on the previous distTree

and makes the following contributions:

• The Selector Block: The selectors are introduced to
reduce the size of the BinTree in the ACS system and
offer more flexibility. A significantly smaller BinTree
can now be used instead of a tree with the same num-
ber of leaf nodes as the number of reconfiguration lo-
cations in a device. The granularity is now set to one
Virtex-4 frame instead of one bit in the original dist-
Tree design.

• The Marker Loading Mechanism: The ACS design
includes a loading mechanism for the markers. An ar-
ray of shift registers used as marker buffers is imple-
mented to accept the input from outside. These ex-
tra hardware costs and the communication latency im-
posed by the marker buffers are adequately modelled.

• The BinTree: The design of the BinTree is opti-
mized to save the hardware costs so the leaf nodes can
now be of any size for flexible customisation. If there
are 2m + 1 reconfigurable locations, the BinTree will
only need to be of size 2m + 1 instead of 2m+1.

• Validation against Virtex-4: Eight real-world bench-
marks from different application domains are used to
evaluate the effectiveness of the ACS system. The bit-
streams used for the system include the reconfiguration
data as well as the markers to make the timing simula-
tion realistic. The ACS design is evaluated by compar-
ing with a Virtex-4 device using bitstreams generated
by Xilinx ISE. The results show that ACS has an aver-
age of 6.83%-15.07% speedup over a Virtex-4 device.

1.3. Paper Organization

Section 2 describes the hardware components of the
ACS system including selectors, I/O connections and mem-
ory requirements. It also describes the system work flow
and the design of each component. Section 3 introduces the
methodologies used in designing the system and the experi-
mental setup. Section 4 evaluates and analyses its effective-
ness. Section 5 concludes the paper.

2. The ACS Architecture

The ACS system, as shown in Figure 1, is defined in
terms of four key architectural parameters f , k, s, and N .
f denotes the number of reconfigurable units in a device,
for example, a frame in Virtex-4 devices. k denotes the re-
configuration port size and the width of the link between
marker buffers and marker memory. s represents the width
of the selector block output and N denotes the number of
leaf nodes in the BinTree as well as the size of marker
buffers. In this paper, s and N are the two variables in

BinTree

ACS System Reconfiguration Port

 size = k

Leaf Nodes

size = N

Marker
Buffers

S
e
le

c
to

r
B

lo
c
k

Frame Set (1)
Frame Set (2)

Frame Set (f/N)

Total number of frames = f

Marker
Memory

Figure 1. Basic diagram of an ACS system

designing a suitable ACS system while the other two pa-
rameters are set to constants for fair comparisons with the
target Virtex-4 device (i.e. f = 3600 and k = 8).

The ACS architecture comprises of three main compo-
nents: the BinTree, which is in the form of a balanced bi-
nary tree, an array of shift registers used as marker buffers
and a selector block. The leaf nodes of the BinTree are
represented with white square boxes and the root and in-
ternal nodes are marked with circles. The leaf nodes serve
as the dedicated memory for the ACS system and I/O’s to
the reconfigurable units. Each leaf node connects to f/N
reconfigurable units where each of these units is called a
frame set. The marker buffers are made up of shift registers
of size k. They are marked with grey boxes in Figure 1,
and are used to receive reconfiguration information from
the marker memory and transfer this information to the leaf
nodes during partial reconfigurations. The selector block is
used to activate the current reconfiguring frame set when N
is designed to be smaller than f . The width of the selector
block output is represented with s where s = f/N .

In this paper, we compare ACS with a Virtex-4 device.
Frames in Virtex-4 are arranged in a 2D matrix across the
device. A frame has 41 32-bit words and the height of
a frame spans over the height of 16 CLBs, 4 DSPs or 4
BRAMs [6].

2.1. The BinTree

The BinTree is constructed in a way that it can take any
number of leaf nodes but always satisfies the conditions of
a balanced binary tree. Examples of non-perfectly balanced
BinTree’s are shown in Figure 2. There are three different
node design modules for three different kinds of tree nodes,
the root node, the internal nodes, and the leaf nodes.

The root node acts as the control center for the ACS sys-
tem and the BinTree. It contains a finite state machine

BinTree s ize = 7BinTree s ize = 5

Figure 2. Examples of BinTree with 5 and 7
leaf nodes in ACS systems

(FSM) and two counter registers. The two counter regis-
ters at the root, the leftCounter and rightCounter, are used
to store the flows of its left and right child, respectively. The
flow refers to the total number of data that would go through
a node. These two counters each stores values up to half
of the number of leaf nodes, i.e., Root.RegisterSize =
lg(N/2). Because each leaf node in the ACS system is
now connected to a frame, the counter registers should
only decrement after each frame worth of data is sent. A
counter decrement signal is sent with the last data for this
purpose.

Each internal node consists of an FSM, a counter reg-
ister, which is used to store the flow F and the threshold
value T , which is the total number of data that should be
delivered to the left child of a node, and an adder. Each in-
ternal node needs to sum up the F value from both of its
children and to update the threshold value T using its left
child’s flow F value. It also needs to forward data from the
parent to the correct child according to the T value. If T is
larger than 0, the data should be sent to the left child, other-
wise to the right child. The threshold counter T decrements
only when T > 0 and counter decrement signal is received.
The size of the adder depends on the level of the node, i.e.,
AdderInput = level and AdderOutput = level + 1.

A leaf node in BinTree contains an FSM and a 1-bit reg-
ister to store the marker M . In our experiments, a leaf node
is connected to a reconfigurable unit equivalent to a frame
in a Virtex-4 device. The leaf nodes interface with their par-
ents as well as the marker buffers. A new set of markers is
required when all the leaf nodes either have their current
M set to 0 to start with or have received counter decrement
signals from their parents. When a new set of markers is
required, a get next marker signal is issued and a new set
of markers is shifted into the marker buffers in blocks of k
bits from the marker memory as shown in Figure 1.

2.2. The Marker Loading Mechanism

The markers consist of a series of 0’s and 1’s. They are
used to identify the leaf nodes which should be reconfigured
and will be discussed in Section 2.4.1. The length of a set of
markers equals the total number of leaf nodes that an ACS
system has. The markers are stored in a small dedicated on-
chip memory and are always loaded into the marker buffers
first before moving into the leaf nodes. The marker buffers

communicate with the leaf nodes by the get next marker
signal. When this signal is received by the buffer, a new
set of markers is requested and the current content in the
marker buffers will be transferred into the leaf nodes.

S
e

le
c
to

r
B

lo
c
k
 s

iz
e

 =
 s

Frame Set (1)

Frame Set (s – 2)

Frame Set (4)

Frame Set (2)

Frame Set (s – 1)

Frame Set (5)

Frame Set (3)

Frame Set (s)

Frame Set (6)

ACS System

BinTree

Total number of frames = f

Reconfiguration Port
 size = k

Figure 3. 2-D frame set structure using a
small BinTree combined with a selector block

2.3. The Selector Block

In case when N , the number of leaf nodes in ACS, is
smaller than the total number of frames available in a de-
vice, a selector block is employed to activate the current
reconfiguring frame set. It is similar to the traditional write
enable signal of a memory. The selector block connects
its input to the get next marker signal and outputs to a
s = df/Ne-bit-wide output where each bit connects to a
set of reconfigurable frames. The selector block is designed
with a simple shifter. As soon as the get next marker signal
is 1, the markers for the next frame set overwrite the con-
tents in the marker buffers and the selector block enables
the next frame set. Figure 3 shows how the frame sets are
arranged when incorporating the whole ACS system into an
existing 2-D SRAM-based FPGA.

2.4. System Operation

The ACS system improves the performance of partial
reconfigurations by parallelizing the counter setup, data de-
livery and marker loading stages. The bitstreams for the
system consist of reconfiguration data and markers. The
reconfiguration data enters the system through the reconfig-
uration port during reconfigurations while the markers are
pre-loaded into a small dedicated on-chip marker memory
as shown in Figure 1.

2.4.1. Initialization

To intialize the system, the markers are loaded into the
marker memory in k-bit blocks via the reconfiguration port
first. The marker buffers then accept markers for the first

two frame sets from the marker memory and put the first set
into the leaf nodes as their counters while keeping the sec-
ond set in the marker buffers. All the leaf nodes then issue a
flow ready signal to their parents to signify that the markers
are ready. The markers mark the locations where reconfig-
uration data should be placed and are treated not only as
the flows F but also the thresholds T of the leaf nodes. If
the marker of a leaf node is 1, then the frame connected to
that particular leaf node should expect new reconfiguration
data, otherwise the frame remains unchanged. After initial-
ization, counter setup, data delivery and any further marker
loading stages will run in parallel (Figure 4). The reconfig-
uration port is now solely dedicated for reconfiguration data
loading.

2.4.2. Counter Setup

The aim is to set up all the counters in the BinTree so
that incoming data can be directed to the correct recon-
figuration locations. The process starts from the internal
nodes at the lowest level and proceeds up the BinTree
one level at a time until the root is reached. Upon receiv-
ing flow ready signals from both children, an internal node
calculates its flow by adding up the flows from both chil-
dren and sends a flow ready signal to its parent. Therefore,
F (Node) = F (LeftChild) + F (RightChild). When the
root node receives flow ready from both children, it takes
the flow from its left child to be the leftCounter and the
flow from its right child to be the rightCounter. The root
node is now ready to accept data via the reconfiguration
port. At the same time, the root node sends a get thresh
signal which is propagated down the BinTree to all inter-
nal nodes one level at a time until the lowest level internal
nodes are reached. Every internal node, upon receiving the
get thresh signal, sets its threshold value to the flow value
of its left child, i.e. T (Node) = F (LeftChild). The inter-
nal node then forwards the get thresh signal to its children.
Note that data can begin travelling down the system at the
same time as the get thresh signal so that the first data ar-
rives at its destination leaf node exactly one cycle after the
completion of the counter setup.

2.4.3. Data Delivery

The data delivery stages are run in parallel with the counter
setup and marker loading stages (Figure 4). In this stage,
the root node accepts data from the reconfiguration port
and forwards the data down the BinTree as described in
Section 2.1. The leftCounter and rightCounter decrement
when the last data word of a frame is received. The data
that leaves the root node is then redirected down the Bin-
Tree by the internal nodes. The data delivery stage finishes
when both the leftCounter and the rightCounter at the root
node become 0, which means that no more data is required
for the current configuration.

2.5. Marker Loading and Selector Block

After the markers for the first frame set are used by the
internal nodes, the content in the marker buffers (i.e., mark-
ers for the second frame set) is shifted into the leaf nodes.
Each leaf node then makes a request for a new marker value
and update its counter either when its current counter value
is 0, or when it receives a valid data from the parent. A
leaf node updates its counter value by replacing the current
counter value by the marker stored in the marker buffers.
All the requests for a new set of markers are collected with
an AND gate and the output of the AND gate is an 1-bit
wire used as the get next marker signal to load the markers
for the next frame set. The get next marker signal is also
connected as the input to the selector block to activate the
next frame set as the recipient of any incoming data.

2.6. The Parallelism Overview

!" #$%$

#&'()&*+

',-./010"

!2
3456%&*0

7&%58

!"
3456%&*0

7&%58

!90
:$*;&*0

<4$=(6,

!"
:$*;&*0

<4$=(6,

.0>0;

!20
:$*;&*0

<4$=(6,

!2 #$%$

#&'()&*+

?(@&0-A'4A;0A+A'&B/

!9
3456%&*0

7&%58

!9 #$%$

#&'()&*+

.0>0;

C6(%($'(D&

:$*;&*0:&@4*+0

EF&A5%(46

G0>0;

Figure 4. Parallelism of the ACS system

The parallelism of the three stages discussed in Sec-
tion 2.4 is shown in Figure 4. The latency at the start-up
of the system is called the initialization latency and includes
the marker loading from external source to the marker mem-
ory and a counter setup. This latency is inevitable in the
ACS system and is exactly f/k + N/k + lg(N) + 1 cy-
cles, where f is the number frames and k is the size of the
reconfiguration port and the size of the link between marker
buffers and marker memory. Every subsequent marker load-
ing stage takes N/k cycles and every subsequent counter
setup stage takes lg(N) + 1 cycles to complete. For a
complete partial reconfiguration, the ACS system needs to
go through the iteration of marker loading → data deliv-
ery → counter setup f/N times. The example in Figure 4
shows a complete partial reconfiguration that requires only
three interations, where Pj represents the jth iternation and
j = 1, 2, or 3. Data delivery stages shown in the figure
commence from when the first data word enters the root
node, and complete when the last data word in the bitstream
reaches its destined leaf node.

3. Methodology

In our experiments, we have chosen eight benchmarks
from OPENCORES.ORG [1] representing a variety of ap-
plication domains. ACS is compared with the Virtex-
4 XC4VLX15 device using partial bitstreams generated
from the Xilinx ISE and the BitGen tool. The hardware
costs, timing requirements and power consumptions of the
ACS system are simulated using the Synopsis R© Design
Compiler R© .

3.1. Virtex-4 Partial Reconfigurations

Virtex-4 performs partial reconfigurations in three main
stages [4]: setup, bitstream loading and startup sequence.
In this paper, we focus on the configuration data loading
phase of the bitstream loading stage. The Virtex-4 recon-
figuration memories are tiled around the device in units of a
frame which is the smallest unit that must be reconfigured.
Partial reconfigurations can be loosely referred to as the pro-
cesses of loading the bitstream into the frames in a device.
The Virtex-4 bitstream consists of a header, reconfiguration
commands, reconfiguration data, pad zeros and a tail. The
reconfiguration commands and reconfiguration data are the
parts of a bitstream that are of interest here.

BitGen is a tool provided by Xilinx as part of the ISE
design suite that can be used to manipulate the bitstream
files [3]. The BitGen command: BitGen [target conf.ncd]
-r [initial conf.bit] generates a file called target conf.bit
which is the partial reconfiguration bitstream that changes
the configuration from initial conf to target conf. For
Virtex-4 devices, the partial reconfiguration bitstreams con-
sist of a number of Type 1 and/or Type 2 packets [5]. These
packets contain a header with information on the starting
address of configuration frame and the number of words
to be loaded from the starting address as in a DMA burst
model. The number of frames to be reconfigured can be
calculated by finding all Type 1 and Type 2 packet head-
ers in the .bit files. This is checked against the bitstreams
generated for ACS as described in Section 3.2.

3.2. ACS Partial Reconfigurations

ACS also does partial reconfigurations by loading bit-
streams into the frames connected to the leaf nodes. The
information of the Virtex-4 bitstream composition was ob-
tained from [5]. The following steps are taken to generate
the ACS bitstreams for partial reconfigurations:

1. Synthesize the configurations written in any hardware
descriptive languages in Xilinx ISE for the target de-
vice. In our experiments, we have used XC4VLX15
as our target device. This device is chosen as it is
the smallest device that fits all benchmarks. We have
kept all the default settings in the ISE unless otherwise

specified. We keep the resulting .ncd and .bit files from
all configurations.

2. Take the resulting .bit files from Step 1 and set BitGen
options to -g Binary:Yes to generate .bin files. Look
for the Type 1 packet header 0x30004000. This de-
notes the start of the configuration data. The next word
that follows contains the number of 32-bit words in
this packet. Since these .bin files are the initial config-
uration bitstream files and the XC4VLX15 device has
3600 configuration frames where each frame is 41 32-
bit words long, the number of words in the packet is
always 0x90240.

3. Use a Java application developed for ACS, taking the
two .bin files as inputs and generate the differences be-
tween two configurations into a .mkr and a .dta files.
The .mkr is the marker file that is used to mark the
frames to be reconfigured. The length of the .mkr file
is exactly 3600 bits long for our chosen device. The
.dta file contains only the reconfiguration data to be
loaded into the device. The .mkr and .dta files are the
input files to the ACS system.

3.2.1. Virtex-4 Reconfiguration Architecture

Virtex-4 devices accept the bitstreams through either an 8-
bit or a 32-bit SelectMap [5] bidirectional data bus clocked
at 100MHz. In our experiments, we choose to compare with
the SelectMap 8-bit reconfiguration method. The speedup
of ACS over Virtex-4 will remain the same with larger
buses as the reconfiguration latency is inversely propor-
tional to the width of the reconfigurable port. The Virtex-4
bitstreams contain commands, addresses and reconfigura-
tion data. The commands are loaded first to set up the de-
vice before accepting addresses or data. Then, addresses
which include the starting frame address and the number of
consecutive frames to be reconfigured are sent to a Frame
Address Register (FAR) and the address decoder. Recon-
figuration data is then shifted into a Frame Data Register
(FDR) and then into the destination frame(s) depending on
the addresses given [4]. Each reconfiguring frame either
takes data straight from the FDR if it is the first frame in a
packet, or otherwise from its preceding frame.

The ACS system replaces the FAR, FDR, address de-
coders and any wires that are used for these components.

3.3. Experimental Setup

The proposed ACS system was written in VHDL, syn-
thesized using Synopsis R© Design Compiler R© with Tower
0.18µm Standard Cell library (tsl18fs120) and simulated
using ModelSim

TM
SE 5.7e by Mentor Graphics. The

tsl18fs120 library is optimized for the TOWER semicon-
ductor which uses the 0.18 micron process. The results from
the Synopsis Design Compiler are presented and analyzed
in Section 4.

Benchmarks Application Slice Slice IOB IOB
Name Area (%) (%)
cf fir Signal Processing 272 4.43 178 74.17

colorconv Image Processing 670 10.90 153 63.75
bluetooth Communication 728 11.85 85 35.42

fir Signal Processing 1148 18.68 103 42.92
fm Communication 422 6.87 22 9.17

huffman Compression 755 12.29 23 9.58
basicrsa Encryption 527 8.58 132 55.00

t65 Processor Core 510 8.30 57 23.75

Table 1. Benchmarks

All the benchmarks used in the experiments are down-
loaded from OPENCORES.ORG [1] and their basic infor-
mation is shown in Table 1. All benchmarks utilize 5%
to 20% of the resources available which mimics the sce-
nario where small functional units are swapped in and out
of the reconfigurable area during run-time partial reconfigu-
rations. The number of slices used, slice%, number of IOB
used and IOB% are obtained from the Xilinx ISE with the
target device set to XC4VLX15, which has 6144 slices and
240 IOB’s in total.

4. Experimental Results

N
Sel BinTree Marker Sel Total Sel Total Max
Size Area Buffer Area Area % Power Clock

ACS
8 450 6154 58 3230 9442 34.2 11.3 1.88

12 300 8342 117 2149 10608 20.25 11.86 1.69
16 225 10337 117 1608 12062 13.33 13.07 1.69
18 200 11519 172 1428 13119 10.88 13.81 1.67
20 180 12643 172 1284 14099 9.1 14.57 1.67
36 100 21180 294 707 22181 3.18 21.57 1.98
72 50 40343 540 347 41230 0.84 38.5 2.11
144 25 79121 1001 167 80289 0.2 73.06 2.34

distTree
4096 0 1766756 34120 0 1805536 0 - -

Table 2. Hardware costs, total power and
maximum clock for ACS and distTree

4.1. Hardware Costs

Table 2 shows the hardware costs, longest path timing
requirements and power consumptions for ACS of various
sizes. N denotes the number of leaf nodes an ACS system
has and “Sel Size” equals to the width of the selector block
output so that Sel Size = 3600/N . The areas presented
here include the logics and any wiring area associated with
the component. They are presented in terms of number of
tsl18 cells which are 2-input NAND gates. Sel % column
shows the hardware costs of selector blocks with respect to
the total ACS area. The selector block area can be quite
significant when N is small and is inversely proportional to
N. When N equals to the total number of frames in a device,

Time (ns) cf fir colorconv bluetooth fir fm huffman basicrsa t65
cf fir - 2,161,830 2,628,380 2,543,340 2,841,650 2,763,780 2,200,760 1,601,300

colorconv 2,161,830 - 2,773,430 2,958,990 3,179,300 3,429,630 2,606,330 2,153,630
bluetooth 2,628,380 2,773,430 - 3,273,340 3,084,170 3,690,900 2,958,080 2,662,540

fir 2,543,340 2,958,990 3,273,340 - 3,315,850 3,183,340 3,070,240 2,728,900
fm 2,841,650 3,179,300 3,084,170 3,315,850 - 3,657,930 3,165,270 2,964,090

huffman 2,763,780 3,429,630 3,690,900 3,183,340 3,657,930 - 3,338,560 3,264,060
basicrsa 2,200,760 2,606,330 2,958,080 3,070,240 3,165,270 3,338,560 - 2,316,880

t65 1,601,300 2,153,630 2,662,540 2,728,900 2,964,090 3,264,060 2,316,880 -

Table 3. Estimated Times for Virtex-4 partial reconfigurations

Time (ns) / Speedup (%) cf fir colorconv bluetooth fir fm huffman basicrsa t65
cf fir - 1,897,850 / 13.91 2,374,130 / 10.71 2,210,260 / 15.07 2,511,330 / 13.15 2,519,470 / 9.70 1,960,410 / 12.26 1,460,670 / 9.63

colorconv 1,897,850 / 13.91 - 2,548,160 / 8.84 2,636,990 / 12.21 2,889,650 / 10.02 3,129,600 / 9.59 2,377,860 / 9.61 1,963,140 / 9.70
bluetooth 2,374,130 / 10.71 2,548,160 / 8.84 - 2,995,750 / 9.27 2,812,510 / 9.66 3,404,610 / 8.41 2,740,130 / 7.95 2,483,940 / 7.19

fir 2,210,260 / 15.07 2,636,990 / 12.21 2,995,750 / 9.27 - 3,038,630 / 9.12 2,922,250 / 8.93 2,787,680 / 10.14 2,467,630 / 10.59
fm 2,511,330 / 13.15 2,889,650 / 10.02 2,812,510 / 9.66 3,038,630 / 9.12 - 3,373,330 / 8.44 2,884,770 / 9.72 2,694,620 / 10.00

huffman 2,519,470 / 9.70 3,129,600 / 9.59 3,404,610 / 8.41 2,922,250 / 8.93 3,373,330 / 8.44 - 3,067,300 / 8.84 3,055,350 / 6.83
basicrsa 1,960,410 / 12.26 2,377,860 / 9.61 2,740,130 / 7.95 2,787,680 / 10.14 2,884,770 / 9.72 3,067,300 / 8.84 - 2,133,510 / 8.59

t65 1,460,670 / 9.63 1,963,140 / 9.70 2,483,940 / 7.19 2,467,630 / 10.59 2,694,620 / 10.00 3,055,350 / 6.83 2,133,510 / 8.59 -

Table 4. Times and percentage speedups for partial reconfigurations using ACS

which is the case for the previously proposed distTree pro-
posed in [10], the selector block can be eliminated.

As mentioned in Section 3.2.1, ACS replaces the FAR,
FDR, address decoders and wirings around these compo-
nents in a Virtex-4 device. The actual reconfiguration archi-
tecture for Virtex-4 is unknown and a lot of optimizations
have gone into their design. A rough estimation using Syn-
opsys Design Compiler with the same library shows that the
area of these components occupies about 18931 cells which
is larger than any ACS systems with sizes < 20 and is twice
as large as an ACS system of size 8. The “Total Power” col-
umn shows the rough estimation of the total dynamic power
required for the whole ACS system in mW. The last column
from Table 2 shows the longest path of ACS systems in ns
when ACS is running on its own. The ACS system is not
only able to meet the timing requirement, which is set to
10ns clock cycles as for Virtex-4 devices, but also gives at
least 50% of slack.

The hardware cost of the previously proposed distTree
structure is shown in the last row of Table 2. For distTree
to reconfigure 3600 frames, it is required to have 4096 leaf
nodes, which makes the total area almost 200 times more
than an ACS system of size 8. The power consumption and
the longest path for distTree are unknown in this case as
the Synopsys Design Compiler available at this time cannot
simulate designs that require more than 4GB of memory.

4.2. Comparison with Virtex-4

Let us now examine the performance of ACS compared
with that of the XC4VLX15 device. The reconfiguration
time for ACS is taken from the result of ModelSim simula-
tion using methodologies described in Section 3.2.

Table 3 shows the reconfiguration time that XC4VLX15
would take when running the same partial reconfigurations.
The time is calculated by generating the partial bitstream us-

ing the method of Section 3.2 and converting the partial .bit
files into partial .bin files, which takes away any header in-
formation that is not loaded during partial reconfigurations.
By dividing the size of the .bin files by the reconfiguration
port size, which is 8-bit in this case, we obtain the partial
reconfiguration time required for XC4VLX15.

Table 4 shows the total reconfiguration times for an
ACS of size 8 to reconfigure a XC4VLX15 device and the
speedups in percentages. The reconfiguration time taken
from configuration A to configuration B is the same as from
configuration B to configuration A. Each leaf node in the
ACS system connects to 450 41 x 32-bit frames. The size
of ACS is set to 8 because we found that the reconfiguration
latency intrinsic to the ACS architecture is less than 0.04%
of the total reconfiguration time, so a small ACS system is
sufficient to demonstrate the efficiency while introducing as
little extra hardware as possible. Table 4 shows that ACS
has achieved speedups ranging from 6.83% to 15.07% over
a XC4VLX15 device.

Frames
Per Packet cf fir colorconv bluetooth fir fm huffman basicrsa t65

cf fir - 22.52 18.35 18.70 23.56 16.95 18.76 21.80
colorconv 22.52 - 13.78 17.86 17.81 13.70 12.60 17.74
bluetooth 18.35 13.78 - 14.18 14.92 11.41 10.09 14.35

fir 18.70 17.86 14.18 - 15.31 12.69 13.09 13.99
fm 23.56 17.81 14.92 15.31 - 16.64 16.38 19.10

huffman 16.95 13.70 11.41 12.69 16.64 - 16.88 14.82
basicrsa 18.76 12.60 10.09 13.09 16.38 16.88 - 13.75

t65 21.80 17.74 14.35 13.99 19.10 14.82 13.75 -

Table 5. Number of frames per packet for dif-
ferent partial reconfiguration benchmarks

To understand where the speedups of ACS come from,
we have written a Java application that parses the partial
bitstreams produced by BitGen and calculates the number
of frames per packet in the bitstream (shown in Table 5).

These packets can be either Type 1 or Type 2 and each
packet contains frame data that belongs to a consecutive
block of frames. The more packets there are in a partial
bitstream, the more sparse the reconfiguration is and the
better ACS is expected to perform. This is because ACS
essentially removes the 80-byte header and tail and at least a
frame worth of padded zeroes associated with each packet.
For Virtex-4, this overhead can occupy up to 50% of the
bitstream. The result shows that there are 75-182 pack-
ets for all the partial bitstreams generated. Take an ex-
ample of the partial reconfiguration from “cf fir” to “color-
conv” There are 144 packets in the partial bitstream which
means that there are 144 ∗ 80 = 11520 bytes of packet
header and tail and at least 144 ∗ 41 ∗ 4 = 23616 bytes of
padding zeros. Therefore, the partial reconfiguration over-
head for Virtex-4 occupies at least 11520+23616

bitstream size = 16.25%
of the bitstream. For ACS, the partial reconfiguration over-
head is just the number of frames thus the overhead is only

3600
1156∗41∗4+3600 = 1.86%. The percentage speedup can be
estimated by 1+16.25%

1+1.86% = 14.13%, which is in line with the
13.91% shown in Table 4. The difference between 14.14%
and 13.91% comes from the intrinsic reconfiguration delay
of the ACS system. Because the size of the system N is
chosen to be 8, the system itself needs to be reconfigured
450 times in order to complete one partial reconfiguration
for the target device. This results in some delay that is in-
cluded in Table 4 but cannot be seen in the theoretical anal-
ysis.

6

8

10

12

14

16

6 8 10 12 14 16 18

Frames Per Packet

S
p

e
e

d
u

p
 (

%
)

speedup of FAST over Virtex-4

Figure 5. Speedups for ACS v.s. the number
of frames per packet in Virtex-4 bitstreams

Sparsity here refers to the number of frames per packet
in the bitstream. When there are less frames in a packet, the
average overhead per frame in a bitstream will be larger and
better speedup should be achieved by ACS. Figure 5 plots
the speedups of ACS versus the sparsity and shows that the
more sparse the partial bitstream is, the better performance
ACS can achieve over Virtex-4.

5. Conclusions

In this paper, we presented a complete design for the
ACS system that has practical benefits. We simulated and
evaluated the system using eight real-world benchmarks in

different application domains. The system can easily be ex-
tended onto larger devices with the introduction of the se-
lector block so extra hardware overhead incurred will be
small. The ACS system is now complete with marker
loading mechanism and the results are compared with a
XC4VLX15 device using partial bitstreams generated by
Xilinx ISE. The results show that 6.83%-15.07% speedups
can be achieved while the hardware cost is no greater than
that of a XC4VLX15 device. The ACS system shows a
promising potential for future reconfigurable architectures
and may provide even better speedups on systems with re-
duced granularities.

References

[1] Opencores. http://www.opencores.org.
[2] Virtex series configuration architecture user guide, 2000.
[3] Xilinx, Development system reference guide, 2005.
[4] Virtex-4 user guides, 2005. www.xilinx.com/support/ docu-

mentation/user guides/ug070.pdf.
[5] Xilinx, Correcting single-event upsets in Virtex-4 platform

FPGA configuration memory, 2008.
[6] T. Becker, W. Luk, and P. Y. K. Cheung. Enhancing relo-

catability of partial bitstreams for run-time reconfiguration.
In 15th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines, pages 35–44, 2007.

[7] K. Compton and S. Hauck. Reconfigurable computing:
a survey of systems and software. ACM Comput. Surv.,
34(2):171–210, 2002.

[8] E. El-Araby, I. Gonzalez, and T. El-Ghazawi. Perfor-
mance bounds of partial run-time reconfiguration in high-
performance reconfigurable computing. In 1st International
Workshop on High-performance Reconfigurable Computing
Technology and Applications, pages 11–20, 2007.

[9] F. He, X. Song, M. Gu, G. Yang, W. Hung, and J. Sun.
Probabilistic optimization for FPGA board level routing
problems. IEEE Transactions on Circuits and Systems,
53(4):264–268, April 2006.

[10] J. Kuo, H. ElGindy, and A. Ku. A novel network architecture
support for fast reconfiguration. In International Conference
on Field-Programmable Technology, pages 353–356, 2007.

[11] S. Lange and M. Middendorf. Hyperreconfigurable archi-
tectures for fast run time reconfiguration. In 12th Annual
IEEE Symposium on Field-Programmable Custom Comput-
ing Machines, pages 304–305, 2004.

[12] U. Malik and O. Diessel. On the placement and granularity
of FPGA configurations. IEEE International Conference on
Field-Programmable Technology, pages 161–168, 2004.

[13] W. H. Mangione-Smith. Atr from UCLA. Personal Com-
munications, 1999.

[14] E. M. Panainte, K. Bertels, and S. Vassiliadis. FPGA-area
allocation for partial run-time reconfiguration. In Proceed-
ings of ProRISC, pages 415–420, November 2005.

[15] T. T. Ye, L. Benini, and G. D. Micheli. Packetized on-chip
interconnect communication analysis for MPSOC. In In-
ternational Conference on Design, Automation and Test in
Europe, page 10344, 2003.

