
ICAP-I: A Reusable Interface
for the Internal Reconfiguration of Xilinx FPGAs

Victor Lai and Oliver Diessel
School of Computer Science and Engineering,

The University of New South Wales, Sydney, NSW 2052 AUSTRALIA
{victorl, odiessel}@cse.unsw.edu.au

 Abstract—Application circuits configured on Xilinx Virtex

series FPGAs are able to reconfigure the FPGA at run time using
the on-chip ICAP. Traditional methods of accessing the ICAP
using OPB-based and PLB-based schemes are unnecessarily
complex and rarely reused. In this study, a new interface for
accessing the ICAP is introduced. The interface is easy to use, it
can readily be integrated to different systems, it is customizable,
and it is reusable. A demonstration is crafted to show the use of
the new interface. Performance results for the new interface and
two existing OPB-based and PLB-based methods are compared.

I. INTRODUCTION
One of the most intriguing features of reconfigurable

systems is their ability to dynamically change their structure
and functionality in order to better suit the task at hand. For
Xilinx Virtex series FPGAs, those changes to structure and
functionality are made by loading configuration bitstream data
through one of several configuration ports [11]. External
configuration ports such as the SelectMAP and JTAG
interfaces are typically driven by an external device such as a
PC. In contrast, the internal configuration access port (ICAP)
can be directly accessed by application circuits configured on
the FPGA, allowing them to change their own structures and
functionalities at run time. To achieve this, different circuits
with different functionalities are loaded onto the FPGA when
needed by those applications. This has the potential of
allowing applications to have a smaller operational area on the
FPGA and of consuming less power.

When using Xilinx’s Early Access Partial Reconfiguration
(EAPR) toolflow, internal reconfiguration of an FPGA
involves generating alternative circuit configurations as a set
of Partial Reconfigurable Modules (PRMs) that can be
swapped into predefined Partial Reconfigurable Regions
(PRRs) at runtime [12]. A storage device is needed to hold the
configuration data (bitstreams) of the PRMs which can be
read by the application when needed. Once read, the
bitstreams are then forwarded and written into the ICAP,
where those bitstreams update the circuits inside the PRRs,
reflecting the loading of new functionalities onto the FPGA.

Traditionally, access to the ICAP is made possible by
using the OPBHWICAP peripheral attached to the On-Chip
Peripheral Bus (OPB, see [2]) or by using a Xilinx Intellectual
Property Interface (IPIF) peripheral attached to the Processor
Local Bus (PLB, see [1]), with the operations of the ICAP
controlled by software running on a processor core on the
FPGA. However, the use of the OPB and PLB can take up
relatively large amounts of resources; the need to integrate

several components makes usage relatively complex; and the
developed ICAP peripherals, such as the OPBHWICAP, were
designed to be used with particular bus systems in each case.
These peripherals cannot therefore be reused with other bus
types or systems that do not use buses at all.

TABLE I
FEATURES FOUND IN PREVIOUS STUDIES

Features Designs
Sedcole [2] Claus [1] Cuoccio [3] Bok [4] ICAP-I

Storage
device
required

Yes Yes Yes Yes Yes

CPU core
required Yes Yes Yes No No

Bus system
used OPB PLB Any None Any

DMA to
Storage
Device

No Yes Yes Yes Yes

Readback
supported

Yes; but
slow Yes Yes No Yes

Table 1 summarizes the features of typical reconfigurable

platforms in previous studies that have made use of or
provided access to the ICAP. Sedcole et. al. [2] and Claus et.
al. [1] both investigated feasible platforms for reconfiguration
using the ICAP with OPB-based and PLB-based systems
respectively. Cuoccio et. al. [3] tried to generalise the OPB-
based and PLB-based platforms found in [1] and [2] by
providing a toolflow that incorporated these systems. Bok et.
al. [4], while attempting to discover an efficient way of
providing error checking to FPGA configuration bitstreams
during reconfiguration, used a much simpler controller that
had limited access to the ICAP. The commonalities of these
studies are: 1) their use of a storage device to provide
bitstream data to the ICAP at run time; 2) the need for a
controller to operate the ICAP on the FPGA; and 3) the ICAP
and the storage device are both physically close to allow better
reconfiguration performance. We feel that the platforms in
Sedcole [2] and Claus [1] are unnecessarily complex to
implement (i.e. they require too many components) simply for
the sake of accessing the ICAP alone. In contrast, we feel that
the controller described in Bok [4] is too simplistic and is
subsequently not sufficiently general to provide all the
features that a designer may require (e.g. readback from the
ICAP).

In this study, a new interface for using the ICAP is
introduced. The interface implements a wrapper that provides
a new and easy-to-use interface for accessing the ICAP
without needing a bus or processor core. However, the
interface can still be integrated with OPB, PLB or other bus
systems if necessary. The proposed ICAP interface (ICAP-I)
is specifically designed to be reusable, simple to use, flexible,
and conservative in its use of resources. Configuration
bitstream data are pregenerated and stored in a storage device.
When needed, those configuration bitstream data are read out,
and written into the ICAP. Section 2 introduces the design of
our proposed ICAP-I. Section 3 introduces a demo developed
to show the ease of using ICAP-I and compares the
performance of ICAP-I with previous methods. Section 4
concludes this study with a summary of the main
contributions and directions for future work.

II. DESIGN
This section introduces the new interface for accessing the

ICAP. The structure of our interface is described and
discussed in detail.

ICAP-I, illustrated in Fig. 1, is a set of VHDL modules,
which describe logic blocks that can be instantiated and
included in a system. These blocks provide a set of predefined,
simple and efficient mechanisms for accessing the ICAP.

A. Storage Device Module
The Storage Device Module provides configuration data for

the ICAP and stores configuration data that is read from the
ICAP while not preventing the application(s) from using the
Storage Device for other purposes.

The Storage Device Controller Module provides signals for
operating a storage device. A Storage Device Controller
Module can be written for any device that has the capabilities
of reading or storing data. This module can be replaced when
a different device is used. Examples of storage devices are
BRAM, SD RAM, flash memory or even an ethernet port. A
Storage Device driver module needs to support both device-
generic operations (e.g. read or write) and device-specific
operations (e.g. erase for flash memory). These operations are
defined inside a VHDL package and can be imported by the
application.

The Storage Device Scheduler mediates the data flow into
and out of the Storage Device. An application may use a Bulk
Transfer Unit (BTU), which is included for direct transfers
between the ICAP and the storage device. This is done by
simply specifying the amount of data that needs to be
transferred and the start address of this data in the storage
device. The Storage Device Scheduler allows the application
to share access to the storage device while maintaining
operations handled by the BTU. Within the current
implementation, the scheme for accessing the storage device
is to share this access equally between the BTU and the
application. The Storage Device Scheduler is required to
support device-generic operations to control the data flow in
and out of the Storage Device Module. Device-specific

operations are passed directly from the application to the
Storage Device Controller Module.

The Storage Device Module can be used by instantiating it
inside the application and is meant to operate together with an
instance of the ICAP IF Module. Generic variables can be
altered at the time of instantiation to modify, to keep or to
leave out the various internal components of the Storage
Device Module (e.g. the BTU can be left out entirely if it is
not needed).

FPGA

Storage Device
ModuleICAP IF Module

ICAP Controller Module Storage Device Controller
Module

ICAP Control Arbiter

ICAP
Controller

Logic

I
C
A
P

Storage
Device

Controller
Logic

Internal
Storage
Device
(e.g.

BRAM)

User
application

I/O

Storage Device
Scheduler B

T
U

External
Storage
Device
(e.g.

Flash)

I/O

PRM

Fig. 1. ICAP-I

B. ICAP IF Module
The ICAP IF Module accepts and processes read and write

request operations for the ICAP from the application and from
the (BTU inside) the Storage Device Module.

The ICAP Controller Module provides signals for operating
the ICAP. This module should handle lower level signaling
for operations such as nop, abort, read and write. Read and
write operations are considered to be device-generic
operations while nop and abort are considered to be device-
specific operations for the ICAP. These operations are
declared as operands inside a VHDL package that can be
included by the application and the Storage Device Module.

The ICAP Control Arbiter mediates requests from the
application and the Storage Device Module for access to the
ICAP. The ICAP Control Arbiter is required to be aware of
device-generic operations to direct the flow of data between
the ICAP, Storage Device and the application. In contrast,
device-specific operands are passed directly to the ICAP
Controller Module without interpreting them.

 For internal reconfiguration of the FPGA, configuration
bitstreams are loaded into the ICAP while the application is
executing. These configuration bitstreams may be generated
on the fly while the application is executing or are pre-

generated prior to the execution of the application. The
Storage Device provides ICAP-I a source for pre-generated
bitstreams while the application provides the ICAP-I a source
for bitstreams that are generated on the fly. In the case of
compressed bitstreams, the application is required to read the
compressed bitstreams from the Storage Device first, in order
to decompress the data before sending it to the ICAP via the
ICAP IF Module.

C. Discussion
The interface allows for any Storage Device with arbitrary

data and address width to be connected to the embedding
system by attaching to the Storage Device Scheduler. One
Storage Device may be swapped for another without the need
to respecify the rest of the design. However, the application
will still need to be aware of changes in device-specific
operations when the Storage Device changes.

Similarly, the current interface allows for any ICAP device
with arbitrary data and address width. However, only 8-bit
and 32-bit devices currently exist.

To gain access to the ICAP, the application is only required
to instantiate the ICAP IF Module with the Storage Device
Module being an optional component. At the time of
instantiation, the application can change the properties of the
internal components of the ICAP IF Module and the Storage
Device Module using generic variables. The resources
required for the needed components are then automatically
generated by the synthesis tool. This allows the application
designer to easily choose a bare minimum of the components
and resources that are needed for a particular design.

 The ICAP-I in the present study is capable of being
connected to or of being used by any application or system.
However, because ICAP-I is designed to be light weight, it
can only be connected to a single application or system at a
time. In cases where multiple applications or systems want to
gain access to the ICAP, an additional arbiter (e.g. a bus
system) will be needed at the application layer to arbitrate
between multiple access requests by the different applications
or systems.

A significant problem for the current ICAP-I design is its
ability to transfer data in an efficient way. Currently, the
implementation requires a minimum of two cycles for
transfers between the ICAP and the Storage Device; at least
one cycle for an operation (i.e. read or write) on the ICAP and
at least one cycle for an operation on the Storage Device. The
ICAP and the Storage Device must both finish their current
operation before the next operation can begin. This is
inefficient because the Storage Device and the ICAP are
separate entities and they should be able to operate
independently.

A solution to this problem is to pipeline (i.e to latch) the
control and data bits that are in flight between the Storage
Device Module and the ICAP IF Module. However, an
additional resource hazard detection unit will need to be
implemented within the Storage Device Scheduler to ensure
that access to the Storage Device by the application does not
begin until a previous (i.e. a pipelined) transfer of a read from
the ICAP to the Storage Device has finished. The internal

states of the Storage Device Scheduler will also need to be
modified to allow simultaneous requests to both the ICAP IF
Module and the Storage Device Controller Module.

III. RESULTS
This section compares the performance of the current

implementation of the ICAP-I to previous OPB and PLB-
based ICAP implementations. Whilst we are able to report our
findings for the ICAP-I, it has been difficult to locate papers
that report a breakdown of the amount of resources for
comparable systems. Thus we were unable to obtain essential
information for comparing the ICAP in the OPB and PLB-
based implementations directly. The results reported here are
approximations obtained for the resources used by the
components of these systems as sourced from [2, 6-10]. A
simple demonstration, which shows the ease of using the
ICAP-I for internal reconfiguration on a Virtex4 series FPGA,
is also described.

A. Demonstration
Our demonstration is hosted on a Xilinx Virtex-4 FX LC

Evaluation Kit from Avnet Memec [13]. The flash memory
chip is used as an example of a storage device. The flash
memory is preloaded with four different partial bitstreams for
Partial Reconfiguration Region 1 (PRR1) using a design that
is able to communicate to the PC via a parallel port. The
FPGA is then configured with the design in Fig. 2. Buttons B0
to B3 each trigger the loading of one of the four different
types of bitstreams. Switches S0 to S3 are used as a 4-bit input
to the module currently loaded in. Patterns in the output, due
to the effects of the 4-bit inputs and the different
functionalities of the various partial bitstreams, can be
observed on the outputs LED0 to LED3.

B. Performance

For the present study, the ICAP-I was implemented on a
Xilinx Virtex4 FX12 FPGA that has an ICAP with a data
width of 32-bits. The results of an implementation to perform
internal reconfiguration on an FPGA from the present study
(ICAP-I) and the results from two previous implementations
(PLB and OPB) [1] can be seen in Table 2.

The amount of resources required for each implementation
that is reported below is approximated from the sum of the

Lookup Table M M M M

M

M

M

M

B0 B1 B2 B3 S0 S1 S2 S3

LED0
LED1

LED2
LED3

ICAP-I

Fig. 2. ICAP-I Demo

(Xilinx’s XST) synthesis results of different core components
gathered from several sources. The OPB implementation,
which makes use of the OPBHWICAP peripheral from Xilinx
and a MicroBlaze softcore processor, uses at least 639 Flip-
flops, 993 Look-up Tables (LUTs) and 1 BRAM. The PLB
implementation required more resources, taking up an area
equivalent to at least 2427 Flip-Flops, 2608 LUTs and 2
BRAMs, due primarily to the PowerPC core (as estimated
using Xilinx’s Floorplanner). In contract the ICAP-I as a
whole uses a total of 208 Flip-Flops, 462 LUTs and 0 BRAMs.
ICAP-I can therefore make do with considerably less
resources than the previous PLB and OPB implementations.
However, this is largely due to the reduction in resources
previously taken up by the CPU cores.

The OPB implementation was able to achieve a throughput
of 5MB/s read/write to the ICAP [1]. The PLB
implementation achieved a much higher throughput of
95MB/s read/write to the ICAP. This was close to the
theoretical maximum throughput (100MB/s) of the ICAP with
8-bits data width. Our interface system (excluding the Storage
Device Controller Module) is currently capable of supporting
up to 180MB/s throughput using a 32-bit interface. However
the system is currently constrained by the performance of the
Storage Device (flash memory) used, which only has a
throughput of 29MB/s (using the AT49BV322A chip [10]).
This means that our system as a whole currently only provides
29MB/s throughput to the ICAP. The storage device used can
thus significantly impact the performance of ICAP-I. In
future studies, we aim to improve the performance of the

1 Estimated from OPB arbiter with 2 Masters and a processor interface [7],
OPBHWICAP peripheral with OPB IPIF [1] and minimum resources
configuration for 1 OPB IPIF for the storage device [8] but controller is
omitted (not reported in [1]).
2 Estimated from PLB arbiter with 2 Masters [6], ICAP Controller with the
PLB IPIF [1] and minimum resources configuration for 1 PLB IPIF for the
storage device [10] but controller is omitted (not reported in [1]).
3 Estimated from the CLBs omitted on a Virtex4 FX12 FPGA.
4 Excludes the SD Controller Module.

ICAP-I, by reducing the critical path delay and by pipelining
its internal operations to provide better throughput. We expect
to obtain further significant improvement by porting the
system to another development board with a faster storage
device. The maximum theoretical throughput with a 32-bit
ICAP interface is 400MB/s.

IV. CONCLUSIONS
Previous methods for accessing the ICAP in order to

perform internal reconfiguration on a Xilinx FPGA have been
complex, one-off designs which required the integration of
many components.

The study described in this paper introduces a new
interface for the ICAP that is lightweight, is easy to use, can
be easily integrated into any application or system, and can be
customized for the needs of specific applications such that the
resources used are minimized. The VHDL specification of
ICAP-I takes advantage of Modular I/O to facilitate module
reusability. The VHDL specification also takes advantage of
Conditional Code Generation to allow users to easily choose
the essential components from the ICAP-I for their designs.
ICAP-I uses fewer resources than previous OPB and PLB
implementations. Although ICAP-I beats existing OPB and
PLB implementations on throughput to the ICAP, the end-to-
end throughput including access to the storage device is still
not as high as it could be due to limitations of the storage
device tested, the need to improve the critical path of the
design, and the need to pipeline accesses.

Future work will aim to demonstrate the interface with a
variety of storage devices and to make ICAP-I publicly
available.

 REFERENCES
[1] C. Claus, F. H. Muller, J. Zeppenfeld & W. Stechele. A new

framework to accelerate Virtex-II Pro dynamic partial self-
reconfiguration. Parallel and Distributed Processing Symposium.
March 2007, pp. 1 - 7.

[2] P. Sedcole, B. Blodget, T. Becker, J. Anderson & P. Lysaght. Modular
dynamic reconfiguration in Virtex FPGAs. Computers and Digital
Techniques, IEE Proceedings. May 2006, pp. 157 – 164.

[3] A. Cuoccio, P. R. Grassi, V. Rana, M. D. Santambrogio & D. Sciuto. A
Generation Flow for Self-Reconfiguration Controllers Customization.
Electronic Design, Test and Applications. Jan 2008, pp. 279 – 284.

[4] K. Bok , R. Chaves, G. Kuzmanov, L. Sousa & A. Genderen. Dynamic
FPGA Reconfigurations with Run-Time Region Delimitation.
Proceedings of the 18th Annual Workshop on Circuits, Systems and
Signal Processing (ProRISC). 2007, pp. 201 – 207.

[5] P. Huerta, J. Castillo, J. I. Martines & V.Lopez. A MicroBlaze Based
Multiprocessor SoC. WSEAS Transactions on Circuits and Systems.
2005.

[6] Xilinx Inc., Processor Local Bus (PLB) v3.4 Data Sheet DS400. April
2009.

[7] Xilinx Inc., PLB Arbiter v1.02e Data Sheet DS469. September, 2005.
[8] Xilinx Inc., OPB IPIF v3.01c Data Sheet DS414. December, 2005.
[9] Xilinx Inc., PLB IPIF v2.02a Data Sheet DS448. April, 2005.

[10] ATMEL Corporation, AT49BV322A-70TI - 32-megabit (2M x 16/4M
x 8) 3-volt Only Flash Memory. 2004.

[11] Xilinx Inc., Virtex-4 FPGA Configuration User Guide v1.11 UG071.
June, 2009.

[12] Xilinx Inc., Early Access Partial Reconfiguration User Guide for ISE
8.1.01i v1.1 UG208. March, 2006.

[13] Avnet Memec.Virtex-4 Fx12 LC Development Board User’s Guide
v1.1. May, 2006.

TABLE 2
RESULTS FOR THE ICAP-I FROM THE PRESENT STUDY, PLB AND OPB

IMPLEMENTATIONS FROM [1]

Components OPB Implementation

Flip-
Flops LUTs BRAMs

Frequency
(MHz)

Throughput
(MB/s)

OPB
Interface1 266 273 1 250

5
MicroBlaze
[6] 373 720 8 ?

 PLB Implementation
PLB
Interface2 699 880 2 241

95
PPC405 CPU
Core3 1728 1728 ? ?

 ICAP-I
ICAP-I4 177 303 0

90

180
SD Controller
Module
(Flash)

31 159 0 29

