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 Abstract—Application circuits configured on Xilinx Virtex 

series FPGAs are able to reconfigure the FPGA at run time using 
the on-chip ICAP. Traditional methods of accessing the ICAP 
using OPB-based and PLB-based schemes are unnecessarily 
complex and rarely reused. In this study, a new interface for 
accessing the ICAP is introduced. The interface is easy to use, it 
can readily be integrated to different systems, it is customizable, 
and it is reusable. A demonstration is crafted to show the use of 
the new interface. Performance results for the new interface and 
two existing OPB-based and PLB-based methods are compared.   

I. INTRODUCTION 
One of the most intriguing features of reconfigurable 

systems is their ability to dynamically change their structure 
and functionality in order to better suit the task at hand. For 
Xilinx Virtex series FPGAs, those changes to structure and 
functionality are made by loading configuration bitstream data 
through one of several configuration ports [11]. External 
configuration ports such as the SelectMAP and JTAG 
interfaces are typically driven by an external device such as a 
PC. In contrast, the internal configuration access port (ICAP) 
can be directly accessed by application circuits configured on 
the FPGA, allowing them to change their own structures and 
functionalities at run time. To achieve this, different circuits 
with different functionalities are loaded onto the FPGA when 
needed by those applications. This has the potential of 
allowing applications to have a smaller operational area on the 
FPGA and of consuming less power. 

When using Xilinx’s Early Access Partial Reconfiguration 
(EAPR) toolflow, internal reconfiguration of an FPGA 
involves generating alternative circuit configurations as a set 
of Partial Reconfigurable Modules (PRMs) that can be 
swapped into predefined Partial Reconfigurable Regions 
(PRRs) at runtime [12]. A storage device is needed to hold the 
configuration data (bitstreams) of the PRMs which can be 
read by the application when needed. Once read, the 
bitstreams are then forwarded and written into the ICAP, 
where those bitstreams update the circuits inside the PRRs, 
reflecting the loading of new functionalities onto the FPGA. 

Traditionally, access to the ICAP is made possible by 
using the OPBHWICAP peripheral attached to the On-Chip 
Peripheral Bus (OPB, see [2]) or by using a Xilinx Intellectual 
Property Interface (IPIF) peripheral attached to the Processor 
Local Bus (PLB, see [1]), with the operations of the ICAP 
controlled by software running on a processor core on the 
FPGA. However, the use of the OPB and PLB can take up 
relatively large amounts of resources; the need to integrate 

several components makes usage relatively complex; and the 
developed ICAP peripherals, such as the OPBHWICAP, were 
designed to be used with particular bus systems in each case. 
These peripherals cannot therefore be reused with other bus 
types or systems that do not use buses at all.   

TABLE I 
FEATURES FOUND IN PREVIOUS STUDIES 

Features Designs 
Sedcole [2] Claus [1] Cuoccio [3] Bok [4] ICAP-I 

Storage 
device 
required 

Yes Yes Yes Yes Yes 

CPU core 
required Yes Yes Yes No No 

Bus system 
used OPB PLB Any None Any 

DMA to 
Storage 
Device  

No Yes Yes Yes Yes 

Readback 
supported 

Yes; but 
slow Yes Yes No Yes 

 
Table 1 summarizes the features of typical reconfigurable 

platforms in previous studies that have made use of or 
provided access to the ICAP. Sedcole et. al. [2] and Claus et. 
al. [1] both investigated feasible platforms for reconfiguration 
using the ICAP with OPB-based and PLB-based systems 
respectively. Cuoccio et. al. [3] tried to generalise the OPB-
based and PLB-based platforms found in [1] and [2] by 
providing a toolflow that incorporated these systems. Bok et. 
al. [4], while attempting to discover an efficient way of 
providing error checking to FPGA configuration bitstreams 
during reconfiguration, used a much simpler controller that 
had limited access to the ICAP. The commonalities of these 
studies are: 1) their use of a storage device to provide 
bitstream data to the ICAP at run time; 2) the need for a 
controller to operate the ICAP on the FPGA; and 3) the ICAP 
and the storage device are both physically close to allow better 
reconfiguration performance. We feel that the platforms in 
Sedcole [2] and Claus [1] are unnecessarily complex to 
implement (i.e. they require too many components) simply for 
the sake of accessing the ICAP alone. In contrast, we feel that 
the controller described in Bok [4] is too simplistic and is 
subsequently not sufficiently general to provide all the 
features that a designer may require (e.g. readback from the 
ICAP). 



In this study, a new interface for using the ICAP is 
introduced. The interface implements a wrapper that provides 
a new and easy-to-use interface for accessing the ICAP 
without needing a bus or processor core. However, the 
interface can still be integrated with OPB, PLB or other bus 
systems if necessary. The proposed ICAP interface (ICAP-I) 
is specifically designed to be reusable, simple to use, flexible, 
and conservative in its use of resources. Configuration 
bitstream data are pregenerated and stored in a storage device. 
When needed, those configuration bitstream data are read out, 
and written into the ICAP. Section 2 introduces the design of 
our proposed ICAP-I. Section 3 introduces a demo developed 
to show the ease of using ICAP-I and compares the 
performance of ICAP-I with previous methods. Section 4 
concludes this study with a summary of the main 
contributions and directions for future work. 

II. DESIGN 
This section introduces the new interface for accessing the 

ICAP. The structure of our interface is described and 
discussed in detail. 

ICAP-I, illustrated in Fig. 1, is a set of VHDL modules, 
which describe logic blocks that can be instantiated and 
included in a system. These blocks provide a set of predefined, 
simple and efficient mechanisms for accessing the ICAP.  

A. Storage Device Module 
The Storage Device Module provides configuration data for 

the ICAP and stores configuration data that is read from the 
ICAP while not preventing the application(s) from using the 
Storage Device for other purposes. 

The Storage Device Controller Module provides signals for 
operating a storage device. A Storage Device Controller 
Module can be written for any device that has the capabilities 
of reading or storing data. This module can be replaced when 
a different device is used. Examples of storage devices are 
BRAM, SD RAM, flash memory or even an ethernet port. A 
Storage Device driver module needs to support both device-
generic operations (e.g. read or write) and device-specific 
operations (e.g. erase for flash memory). These operations are 
defined inside a VHDL package and can be imported by the 
application. 

The Storage Device Scheduler mediates the data flow into 
and out of the Storage Device. An application may use a Bulk 
Transfer Unit (BTU), which is included for direct transfers 
between the ICAP and the storage device. This is done by 
simply specifying the amount of data that needs to be 
transferred and the start address of this data in the storage 
device. The Storage Device Scheduler allows the application 
to share access to the storage device while maintaining 
operations handled by the BTU. Within the current 
implementation, the scheme for accessing the storage device 
is to share this access equally between the BTU and the 
application. The Storage Device Scheduler is required to 
support device-generic operations to control the data flow in 
and out of the Storage Device Module. Device-specific 

operations are passed directly from the application to the 
Storage Device Controller Module.  

The Storage Device Module can be used by instantiating it 
inside the application and is meant to operate together with an 
instance of the ICAP IF Module. Generic variables can be 
altered at the time of instantiation to modify, to keep or to 
leave out the various internal components of the Storage 
Device Module (e.g. the BTU can be left out entirely if it is 
not needed).   
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Fig. 1.  ICAP-I 

B. ICAP IF Module 
The ICAP IF Module accepts and processes read and write 

request operations for the ICAP from the application and from 
the (BTU inside) the Storage Device Module. 

The ICAP Controller Module provides signals for operating 
the ICAP. This module should handle lower level signaling 
for operations such as nop, abort, read and write.  Read and 
write operations are considered to be device-generic 
operations while nop and abort are considered to be device-
specific operations for the ICAP. These operations are 
declared as operands inside a VHDL package that can be 
included by the application and the Storage Device Module. 

The ICAP Control Arbiter mediates requests from the 
application and the Storage Device Module for access to the 
ICAP. The ICAP Control Arbiter is required to be aware of 
device-generic operations to direct the flow of data between 
the ICAP, Storage Device and the application. In contrast, 
device-specific operands are passed directly to the ICAP 
Controller Module without interpreting them. 

 For internal reconfiguration of the FPGA, configuration 
bitstreams are loaded into the ICAP while the application is 
executing. These configuration bitstreams may be generated 
on the fly while the application is executing or are pre-



generated prior to the execution of the application. The 
Storage Device provides ICAP-I a source for pre-generated 
bitstreams while the application provides the ICAP-I a source 
for bitstreams that are generated on the fly. In the case of 
compressed bitstreams, the application is required to read the 
compressed bitstreams from the Storage Device first, in order 
to decompress the data before sending it to the ICAP via the 
ICAP IF Module. 

C. Discussion 
The interface allows for any Storage Device with arbitrary 

data and address width to be connected to the embedding 
system by attaching to the Storage Device Scheduler. One 
Storage Device may be swapped for another without the need 
to respecify the rest of the design. However, the application 
will still need to be aware of changes in device-specific 
operations when the Storage Device changes.  

Similarly, the current interface allows for any ICAP device 
with arbitrary data and address width. However, only 8-bit 
and 32-bit devices currently exist.  

To gain access to the ICAP, the application is only required 
to instantiate the ICAP IF Module with the Storage Device 
Module being an optional component. At the time of 
instantiation, the application can change the properties of the 
internal components of the ICAP IF Module and the Storage 
Device Module using generic variables. The resources 
required for the needed components are then automatically 
generated by the synthesis tool. This allows the application 
designer to easily choose a bare minimum of the components 
and resources that are needed for a particular design. 

 The ICAP-I in the present study is capable of being 
connected to or of being used by any application or system. 
However, because ICAP-I is designed to be light weight, it 
can only be connected to a single application or system at a 
time. In cases where multiple applications or systems want to 
gain access to the ICAP, an additional arbiter (e.g. a bus 
system) will be needed at the application layer to arbitrate 
between multiple access requests by the different applications 
or systems. 

A significant problem for the current ICAP-I design is its 
ability to transfer data in an efficient way. Currently, the 
implementation requires a minimum of two cycles for 
transfers between the ICAP and the Storage Device; at least 
one cycle for an operation (i.e. read or write) on the ICAP and 
at least one cycle for an operation on the Storage Device. The 
ICAP and the Storage Device must both finish their current 
operation before the next operation can begin. This is 
inefficient because the Storage Device and the ICAP are 
separate entities and they should be able to operate 
independently.  

A solution to this problem is to pipeline (i.e to latch) the 
control and data bits that are in flight between the Storage 
Device Module and the ICAP IF Module. However, an 
additional resource hazard detection unit will need to be 
implemented within the Storage Device Scheduler to ensure 
that access to the Storage Device by the application does not 
begin until a previous (i.e. a pipelined) transfer of a read from 
the ICAP to the Storage Device has finished. The internal 

states of the Storage Device Scheduler will also need to be 
modified to allow simultaneous requests to both the ICAP IF 
Module and the Storage Device Controller Module.  

III. RESULTS 
This section compares the performance of the current 

implementation of the ICAP-I to previous OPB and PLB-
based ICAP implementations. Whilst we are able to report our 
findings for the ICAP-I, it has been difficult to locate papers 
that report a breakdown of the amount of resources for 
comparable systems. Thus we were unable to obtain essential 
information for comparing the ICAP in the OPB and PLB-
based implementations directly. The results reported here are 
approximations obtained for the resources used by the 
components of these systems as sourced from [2, 6-10]. A 
simple demonstration, which shows the ease of using the 
ICAP-I for internal reconfiguration on a Virtex4 series FPGA, 
is also described.  

A. Demonstration 
Our demonstration is hosted on a Xilinx Virtex-4 FX LC 

Evaluation Kit from Avnet Memec [13]. The flash memory 
chip is used as an example of a storage device. The flash 
memory is preloaded with four different partial bitstreams for 
Partial Reconfiguration Region 1 (PRR1) using a design that 
is able to communicate to the PC via a parallel port. The 
FPGA is then configured with the design in Fig. 2. Buttons B0 
to B3 each trigger the loading of one of the four different 
types of bitstreams. Switches S0 to S3 are used as a 4-bit input 
to the module currently loaded in. Patterns in the output, due 
to the effects of the 4-bit inputs and the different 
functionalities of the various partial bitstreams, can be 
observed on the outputs LED0 to LED3. 

B. Performance 

For the present study, the ICAP-I was implemented on a 
Xilinx Virtex4 FX12 FPGA that has an ICAP with a data 
width of 32-bits. The results of an implementation to perform 
internal reconfiguration on an FPGA from the present study 
(ICAP-I) and the results from two previous implementations 
(PLB and OPB) [1] can be seen in Table 2. 

The amount of resources required for each implementation 
that is reported below is approximated from the sum of the 
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Fig. 2.  ICAP-I Demo 



(Xilinx’s XST) synthesis results of different core components 
gathered from several sources. The OPB implementation, 
which makes use of the OPBHWICAP peripheral from Xilinx 
and a MicroBlaze softcore processor, uses at least 639 Flip-
flops, 993 Look-up Tables (LUTs) and 1 BRAM. The PLB 
implementation required more resources, taking up an area 
equivalent to at least 2427 Flip-Flops, 2608 LUTs and 2 
BRAMs, due primarily to the PowerPC core (as estimated 
using Xilinx’s Floorplanner). In contract the ICAP-I as a 
whole uses a total of 208 Flip-Flops, 462 LUTs and 0 BRAMs. 
ICAP-I can therefore make do with considerably less 
resources than the previous PLB and OPB implementations. 
However, this is largely due to the reduction in resources 
previously taken up by the CPU cores. 

The OPB implementation was able to achieve a throughput 
of 5MB/s read/write to the ICAP [1]. The PLB 
implementation achieved a much higher throughput of 
95MB/s read/write to the ICAP. This was close to the 
theoretical maximum throughput (100MB/s) of the ICAP with 
8-bits data width. Our interface system (excluding the Storage 
Device Controller Module) is currently capable of supporting 
up to 180MB/s throughput using a 32-bit interface. However 
the system is currently constrained by the performance of the 
Storage Device (flash memory) used, which only has a 
throughput of 29MB/s (using the AT49BV322A chip [10]). 
This means that our system as a whole currently only provides 
29MB/s throughput to the ICAP. The storage device used can 
thus significantly impact the performance of ICAP-I.  In 
future studies, we aim to improve the performance of the 

                                                 
1 Estimated from OPB arbiter with 2 Masters and a processor interface [7], 
OPBHWICAP peripheral with OPB IPIF [1] and minimum resources 
configuration for 1 OPB IPIF for the storage device [8] but controller is 
omitted (not reported in [1]). 
2 Estimated from PLB arbiter with 2 Masters [6], ICAP Controller with the 
PLB IPIF [1] and minimum resources configuration for 1 PLB IPIF for the 
storage device [10] but controller is omitted (not reported in [1]). 
3 Estimated from the CLBs omitted on a Virtex4 FX12 FPGA. 
4 Excludes the SD Controller Module. 

ICAP-I, by reducing the critical path delay and by pipelining 
its internal operations to provide better throughput. We expect 
to obtain further significant improvement by porting the 
system to another development board with a faster storage 
device. The maximum theoretical throughput with a 32-bit 
ICAP interface is 400MB/s.   

IV. CONCLUSIONS 
Previous methods for accessing the ICAP in order to 

perform internal reconfiguration on a Xilinx FPGA have been 
complex, one-off designs which required the integration of 
many components.  

The study described in this paper introduces a new 
interface for the ICAP that is lightweight, is easy to use, can 
be easily integrated into any application or system, and can be 
customized for the needs of specific applications such that the 
resources used are minimized. The VHDL specification of  
ICAP-I takes advantage of Modular I/O to facilitate module 
reusability. The VHDL specification also takes advantage of 
Conditional Code Generation to allow users to easily choose 
the essential components from the ICAP-I for their designs. 
ICAP-I uses fewer resources than previous OPB and PLB 
implementations. Although ICAP-I beats existing OPB and 
PLB implementations on throughput to the ICAP, the end-to-
end throughput including access to the storage device is still 
not as high as it could be due to limitations of the storage 
device tested, the need to improve the critical path of the 
design, and the need to pipeline accesses.  

Future work will aim to demonstrate the interface with a 
variety of storage devices and to make ICAP-I publicly 
available. 
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TABLE 2 
RESULTS FOR THE ICAP-I FROM THE PRESENT STUDY, PLB AND OPB 

IMPLEMENTATIONS FROM [1] 

Components OPB Implementation 

Flip-
Flops LUTs BRAMs 

Frequency 
(MHz) 

Throughput 
(MB/s) 

OPB 
Interface1 266 273 1 250 

5 
MicroBlaze  
[6] 373 720 8 ? 

  PLB Implementation 
PLB 
Interface2 699 880 2 241 

95 
PPC405 CPU 
Core3 1728 1728 ? ? 

 ICAP-I 
ICAP-I4 177 303 0 

90 

180 
SD Controller 
Module 
(Flash) 

31 159 0 29 
 


