ReSim: A Reusable Library for RTL Simulation of
Dynamic Partial Reconfiguration

Lingkan Gong and Oliver Diessel
School of Computer Science and Engineering
University of New South Wales
{lingkang,odiessel}@cse.unsw.edu.au

Abstract—Dynamic Partial Reconfiguration (DPR) enables
software-like flexibility in hardware designs by allowing some
of the logic on a Field Programmable Gate Array (FPGA) to
be reconfigured while the rest continues to operate. However,
such flexibility introduces challenges for verifying DPR design
functionality because there is no straightforward way to simulate
DPR at Register Transfer Level (RTL). This paper proposes the
ReSim library to enable the RTL simulation of DPR. The library
uses a simulation-only layer to hide the physically dependent
details of DPR designs while providing sufficient accuracy for
functional verification. The library is extensible and reusable.
We assess the feasibility and demonstrate the value of our tool
via two case studies of DPR designs.

I. INTRODUCTION

Dynamic Partial Reconfiguration (DPR) allows some of the
logic on a Field Programmable Gate Array (FPGA) to be
reconfigured while the rest continues to operate. It enables
software-like flexibility in hardware designs. Systems using
such technology can save cost by time-multiplexing hardware
resources and improve performance by adapting to changing
execution requirements [1]. However, such flexibility intro-
duces significant new challenges to ensuring the functional
correctness of DPR designs.

Register Transfer Level (RTL) simulation is the most common
method for verifying hardware design functionality. Although
the various configurations of a DPR design are complete and
fixed hardware designs in themselves, the actual process of
reconfiguring a design can not be simulated by mainstream
tools [2]. This inability to simulate the reconfiguration process
poses significant difficulties for verifying DPR designs.

The reconfiguration process is prone to error and it is there-
fore necessary to perform cycle-accurate RTL simulation to
detect potential bugs within the process [3]. More specifi-
cally, we have identified 14 potential sources of error BE-
FORE, DURING, and AFTER reconfiguration. For example,
if application data and bitstreams are stored in the same
storage device, the system may experience traffic contention
DURING reconfiguration. Errors caused by such contention
can not be detected without simulating the bitstream traffic.
More generally, any reconfiguration activities on the bitstream
datapath, such as bitstream transfer, compression, decryption
and arbitration need to be verified by simulating the bitstream
traffic. However, existing MUX-based methods such as [4]

978-1-4577-1740-6/11 $26.00 © 2011 IEEE

and [5] fail to provide the accuracy required to verify the
design undergoing reconfiguration because they either swap
modules instantaneously or assume a compile-time defined
reconfiguration delay.

Simulating the reconfiguration process and the bitstream traffic
improves the accuracy of functional verification. However, the
bitstream contains physical information such as the frame
addresses of the configuration data, thereby exposing the
details of the FPGA fabric to the RTL. As a result, accu-
rate simulation of DPR violates a general rule of functional
simulation, which states that the simulated design should be
physically independent.

Given the importance and difficulty of simulating the recon-
figuration process, this paper proposes the ReSim library to
address the issue. In particular, we consider the cycle-accurate
functional verification of DPR designs but do not address
physical implementation errors such as glitches and timing
violations. The key contributions of this paper are

o Proposing the use of a simulation-only layer, a collection
of physically independent components, to model the
FPGA fabric with sufficient accuracy for functional sim-
ulation. We introduce a novel simulation-only bitstream
to enable cycle-accurate yet physically independent sim-
ulation of a design undergoing partial reconfiguration.

o Providing a reusable library, ReSim, which integrates the
simulation-only layer with commonly available tools and
enables customization to various DPR design styles.

« Providing case studies showing how ReSim resolves the
difficulties of simulating and verifying DPR designs.

The rest of this paper is organized as follows. Section 2
and 3 outlines related efforts and analyzes the challenges of
simulating DPR. We discuss the architecture of the simulation-
only layer and the ReSim library in Section 4. Section 5
illustrates the use of our tool on two case studies while the final
section concludes the paper with a summary of its contribution
and an indication of further work.

II. RELATED WORK

FPGA vendors such as Xilinx claim that the various config-
urations of a DPR design can be individually simulated [2].
However, modern hardware verification practice indicates that

the most costly bugs are encountered in the system integration
stage, and correctly verified sub-systems are mandatory but
far from enough to ensure the correctness of the integrated
design [6]. Thus, in order to achieve full system simulation,
it is essential to simulate the reconfiguration process.

The most common approach for simulating DPR has been to
use a MUX to interleave the communication between recon-
figurable modules connected in parallel [4]. This method is the
basis for more recent efforts in simulating DPR. However, this
approach only models module swapping and fails to simulate
other aspects of the design undergoing reconfiguration.

The Dynamic Circuit Switch [5] was the first systematic
study of simulating DPR. The idea is to add simulation-only
artifacts to the RTL code of DPR designs so as to select
and activate hardware tasks. Our work extends this idea into
a more comprehensive simulation-only layer. One significant
difference is that in DCS, reconfiguration is triggered by
artifacts monitoring designer selected signals in the RTL code,
whereas we use simulation-only dummy bitstreams to model
the bitstream traffic and trigger the swapping of modules. As a
result, ReSim emulates the behavior of the system on FPGAs
more accurately.

ReChannel [7] is a SystemC-based, open source library
to model DPR that was later extended in [3]. The orig-
inal work extends SystemC with new classes such as
rc_reconfigurable to encapsulate reconfiguration op-
erations such as module swapping. However, such extension
only focuses on the high-level modeling of DPR whereas the
reconfiguration details of a design are not modeled or verified.
The extended ReChannel in [3] adds new classes to capture the
reconfiguration details and proposes a modeling methodology
to assist functional verification of DPR designs at behavioral,
TLM and RTL levels. However, the accurate simulation of the
reconfiguration process was not discussed.

OSSS+R [8] is a design methodology for the high-level sim-
ulation and synthesis of DPR designs. The tool automatically
generates synthesizable code for the reconfiguration controller.
However, such automatic synthesis methodologies do not
support the simulation and functional verification of manually
specified or customized DPR designs.

There are other examples that extend SystemC to model DPR
[9] [10]. These works focus on design space exploration, the
primary concern of which is to partition the design into static
and dynamic parts and hide the reconfiguration details. These
are not accurate enough for functional simulation.

As mentioned in Section I, the primary drawback of the
existing work is that it fails to provide the accuracy required to
verify the design undergoing reconfiguration since the accesses
to and the manipulations of the bitstream traffic are not
simulated. This paper focuses on the RTL simulation of a DPR
design. The following sections show how the simulation-only
layer and the ReSim library improve the simulation accuracy
while hiding the physical details of a design.

III. CHALLENGES IN SIMULATING DPR

As a general rule, functional simulation at RTL level should
be both cycle-accurate and physically independent. However,
the two requirements conflict with each other when simulat-
ing DPR. This section illustrates these conflicting challenges
from temporal and structural perspectives. We then define the
qualities of an ideal simulation method based on our analysis.

A. Temporal Analysis of Reconfiguration

From a temporal perspective, the reconfiguration process can
be subdivided into three phases. BEFORE reconfiguration, the
static part should synchronize with the outgoing reconfigurable
module (RM) so that any ongoing computation is properly
paused. DURING reconfiguration, the static part needs to
isolate the reconfigurable region (RR) to avoid the propagation
of spurious outputs from partially configured modules. At the
same time, the bitstream datapath may be involved in complex
operations such as decompression, decryption and arbitration,
all of which should be verified. AFTER reconfiguration, the
incoming RM needs to be initialized to a known state before
it starts or resumes execution.

The logic for synchronization, isolation, initialization and the
bitstream datapath are defined by designers and are therefore
prone to error. The potential sources of error identified in [3]
indicate the importance of accurately simulating this logic.
However, it is difficult to provide the required accuracy
because traditional RTL simulation doesn’t model the essential
features of the reconfiguration process. These features include:

e Module Swapping: HDL languages define the hierarchy
of a design at compile time and thus don’t support mod-
ule swapping at run time. Moreover, switching modules
instantaneously [4], or after a compile-time defined delay
[5], hides the correct timing of the swapping.

o Spurious Outputs: The RTL code of simulated modules
won’t produce spurious outputs when being reconfigured.
The isolation logic of the DPR design cannot therefore
be tested. Moreover, modeling such spurious outputs as a
constant such as the undefined “x” value in [5] lacks the
flexibility required to thoroughly test the isolation logic.

o Bitstream Traffic: The RTL code of the bitstream
datapath cannot be verified without simulating the bit-
stream traffic, which isn’t available until after the time-
consuming implementation step.

o Triggering Condition: Even when the real bitstreams
are available, RTL simulation cannot make use of them
to trigger module swapping without modeling the FPGA
fabric and the effect of the bitstream upon it. This calls
for far more modeling detail than is desirable and would
only be feasible if the FPGA vendor were to provide such
a model. The simulation of the triggering condition there-
fore doesn’t replicate what is actually implemented. For
example, [5] uses a non-synthesizable component called
a Reconfiguration Condition Detector to trigger module

swapping, but there is no corresponding component in
implemented designs.

o Undefined Initial State: The initial state of RMs are un-
defined AFTER reconfiguration. However in simulation,
if, for example, an RM is swapped out and then swapped
in again later, the internal signals of the RM are preserved
by the HDL simulator as if the module had never been
swapped out. The initialization logic of the DPR design
cannot therefore be properly tested.

As FPGA vendor tools do not support the simulation of the
reconfiguration process [2], it is non-trivial for designers to
integrate the simulation of DPR with the environment used for
verifying the rest of the system. Potential bugs, either arising
from the reconfiguration process or from integrating DPR with
the rest of the system, can not therefore be detected until the
integrated design is tested on the target device.

B. Structural Analysis of Reconfiguration

Figure 1 illustrates three conceptual layers that can be identi-
fied for a DPR design: the application layer, the reconfigura-

tion layer and the physical layer.

Reconfigurable Region

Application Module A

(static part) (dynamic part)
—>!

User Logic:]
Application Layer & u

Reconfiguration Layer
- . Configuration
M Bitstream Memory

. A

Configuration

Port

FPGA Fabric:
Physical Layer

new module:

ey module B

Figure 1. Structural analysis of DPR

« Application and Reconfiguration Layer: The applica-
tion and reconfiguration layer comprise the user-defined
logic of a DPR design. The application layer (lightly
shaded blocks) implements the functional specification of
the system. Its operation is highly dependent on the appli-
cation. The reconfiguration layer (darkly shaded blocks)
manages the reconfiguration process of the system. It
typically includes a reconfiguration controller that trans-
fers bitstreams from storage devices to the configuration
port [11], or reads back configuration data for saving
and restoring RM states [12]. This layer also includes
reconfiguration add-ons, such as an RM wrapper that
handshakes with the controller to properly pause the
ongoing computation BEFORE reconfiguration [7].

o Physical Layer: The physical layer (black blocks) con-
tains the FPGA resources such as the configuration port
and the configuration memory. It also includes the bit-
stream which contains physically dependent information
such as frame addresses. The details of this layer are

described by vendor documentation such as [13] and are
not captured by user-defined RTL. Therefore, they are
usually excluded from functional simulation.

Given the layered DPR model of Figure 1, the reconfiguration
process involves all three layers. It is therefore challenging
to simulate user logic in the application and reconfiguration
layer without relying on the physical layer. For example, the
bitstream datapath belongs to the user logic in the reconfigura-
tion layer, whereas the bitstream itself is in the physical layer.
After it is written to the configuration port, the bitstream in
turn affects user logic in the application and reconfiguration
layer. Thus in simulation, hiding the physically dependent
bitstream prevents the bitstream datapath from being verified
and precludes the triggering condition of module swapping
from being modeled. In short, hiding the physical layer in
simulation sacrifices simulation accuracy.

However, physically independent simulation is essential for
maintaining a high level of productivity when verifying design
functionality. Firstly, as a general hardware design principle,
functional verification should be independent of the results
from the time-consuming implementation step. Moreover,
physically independent simulation improves debugging pro-
ductivity, during which designers are only interested in the
correctness of user logic. Last but not least, physically inde-
pendent simulation improves the throughput of the simulator
because the design is modeled in less detail.

C. Ideal DPR Simulation Qualities

As mentioned above, hiding the physical layer sacrifices
simulation accuracy, yet introducing physical information to
simulation reduces productivity. The ideal simulation method
should therefore balance between simulation-accuracy and
physical independence. Furthermore, this balance is con-
strained by the desire for the simulated design to be implemen-
tation ready. Thus the simulated design should not make use
of non-synthesizable components such as the Reconfiguration
Condition Detector [5] to trigger module swapping.

The method should also be reusable for the sake of produc-
tivity. It should integrate well with mainstream tools, and it
should be applicable to the large variety of DPR design styles.

IV. THE SIMULATION-ONLY LAYER

The core idea of ReSim is to use a simulation-only layer to
emulate the physical fabric of FPGAs so as to achieve the
desired balance between accuracy and physical independence.
Figure 2 redraws Figure 1 with all the physically dependent
blocks (solid black boxes) replaced by the components of our
simulation-only layer (open black boxes). These components
are known as simulation-only artifacts or just artifacts. The
solid boxes, on the other hand, represent user-defined real
entities that are to be synthesized and mapped to FPGAs.

In ReSim, reconfiguration proceeds as follows: the user-
defined reconfiguration controller transfers a simulation-only

Application H
(static part)
s
>4 — gy

User Logic : [m]
Application Layer & o
Reconfiguration Layer

O Simulation-only
[m] Bitstream

Extended
Portal

y

Configuration Port
(ICAP artifact)

commands

FPGA Fabric:
Simulation-only Layer

Figure 2. Using the simulation-only layer

bitstream (SimB, see Section IV-B) instead of a real bitstream
from storage to the configuration port. The configuration
port is replaced by the ICAP artifact, as a representative for
possible configuration ports, to parse a SimB in simulation.
By parsing the SimB, the ICAP artifact extracts RM and
RR IDs, and sends commands to the Extended Portal, the
substitute for the configuration memory. The Extended Portal
swaps modules and injects errors according to the commands
in the SimB (see Section IV-C). Reconfiguration is completed
by sending the last word of the SimB to the ICAP artifact,
which informs the Extended Portal to cease injecting errors
and to connect the new RM to the static part. This process
is physically independent and the rest of this section explains
how our simulation architecture addresses the challenges of
accurately simulating the reconfiguration process.

A. ReSim Overview

The ReSim library is built upon an existing High-level Ver-
ification Language (HVL) called SystemVerilog [14] and an
open source SystemVerilog class library known as the Open
Verification Methodology (OVM) [15]. As a result, ReSim is
fully compatible with existing and mainstream EDA tools.

Functional
Specification

Reconfiguration
Strategies

’ # Strategy Description Tcl Script
namespace import ReSim::*

create_portmap "my_if" "clk"
add_port "my_if" "rst_n" in
Code add_port "my_if" "data" out 32

Generation

HDL
(VHDL/Verilog)

Simulation-only
aritfacts
\(Sys:emVerilog)

Synthesis &
Implementation

create_region "my_region" "my_if" ...
add_error_injector "my_region" "my_ei"
add_module "my_region" "Maximum"
add_module "my_region" "Swap"

. . create_solyr "my_solyr" VIRTEX4
Simulation

Figure 3. Development flow overview

Figure 3 provides an overview of the DPR design flow using
ReSim. The proposed method takes the functional specification
and a set of reconfiguration strategies as inputs. The recon-
figuration strategies include names, sizes and connectivity of
RRs and RMs. From both specifications, the designers create
RTL code for the user logic and describe the reconfiguration

strategies using a Tcl script. ReSim automatically generates
the simulation-only artifacts based on the Tcl script. As an
option, the designer can then edit the generated artifacts for
design-/test-specific needs.

B. Simulation-only Bitstream

As RTL simulation cannot effectively make use of a real
bitstream, ReSim substitutes a simulation-only bitstream to
model the bitstream traffic and the triggering condition of
module swapping. This SimB captures the essence of a real
bitstream but its size is significantly reduced. Table I provides
an example of a SimB that configures a new module.

Table I AN EXAMPLE OF SIMB FOR CONFIGURING A NEW MODULE

SimB Explanation Actions Taken
0xAA995566 SYNC Word Start the "DURING Reconfigura-
tion" phase

0x20000000 NOP -

0x30002001 Type 1 Write FAR Informs the Extended Portal to

0x01020000 RRid=0x01 select the module id=0x02 to be
RMid=0x02 the next active module in recon-
FAR=0x0000 figurable region id=0x01

0x30008001 Type 1 Write CMD

0x00000001 WCFG

0x30004000 Type 2 Write FDRI

0x50000004 Size=4

0x5650EEA7 Random SimB Word 0 Informs the Extended Portal to

0xF4649889 Random SimB Word 1 inject errors to both static and

0xA9B759F9 Random SimB Word 2 dynamic sides

0x4E438C83 Random SimB Word 3

0x30008001 Type 1 Write CMD End the "DURING Reconfigura-

0x0000000D DESYNC tion" phase

Similar to a real bitstream, a SimB is composed of a header
section, configuration data and a tail section. A SimB starts
with a SYNC word (0xAA995566) and ends with a DESYNC
command. In ReSim, these commands represent the start and
end of the “DURING reconfiguration” phase.

A SimB contains commands to the ICAP artifact. The 6
consecutive words (bold in Table I) request that the current
module in the RR with ID = 0x1 be replaced by the new
module with ID = 0x2. Note that in a real bitstream the frame
address (FAR) field is used to locate the physical postion of
the target RR on an FPGA. In a SimB, on the other hand, the
FAR field is replaced by physically independent numerical IDs
for the new RM and the target RR.

The configuration data section of a real bitstream contains
physically dependent information and is not relevant for func-
tional simulation. So for SimB, this section is filled with
random data and is reserved for further extension. Although
the content is not used, writing the configuration data section
to the ICAP model triggers the error injection operation (see
Section IV-C). Thus the length of this section is determined
by the designer for verification purposes and is typically
significantly shorter than that of a real bitstream.

During a simulation run, the SimB mimics the bitstream traffic
and helps the verification of the bitstream datapath, which may
involve the transfer, compression, decryption and arbitration of
bitstreams. Meanwhile, the commands in a SimB inform the
simulation environment to swap modules and inject errors (see
Section IV-C), thereby mimicing the triggering condition of a
reconfiguration process.

C. Extended Portal

The Extended Portal is a physically independent substitute
for the configuration memory of the emulated FPGA fabric
(Figure 4). According to the principles of OVM, the Extended
Portal is separated into a module-based part and a class-based
part, which are connected through SystemVerilog Interfaces
(shown as clouds, the @ symbol and the dashed link) [15].

Extended Portal

phase module

selector selector

Application _i“
st =<
=] Simulation-only
I:II Bitstream 'y 'y '_-M
Configuration if
Port error_i

(ICAP artifact)

D

g

portal_if

Module-based part

Class-based part

class error_injector

class error_injector; ‘

virtual user_static_inj();
virtual user_dynamic_inj();

’
]
class portal _controller :
1]
]

’ class portal _controller;
virtual select_phase();
virtual select_module();

Y

commands

endclass endclass

Figure 4. The Extended Portal

The module-based part instantiates the artifacts and is the
infrastructure for modeling module swapping, spurious outputs
and undefined initial states of a reconfiguration process. To
model module swapping, the Extended Portal implements
a MUX-like module selector to switch between RMs
connected in parallel [4]. However in our work, the newly
selected module is not connected to the static part until all
configuration data of the SimB is written to the ICAP artifact.
Thus the delay of reconfiguration is determined by the transfer
of bitstreams instead of being zero or constant. The module
selector (and the phase selector described below)
is driven by the class-based part through a SystemVerilog
Interface called portal_if.

The Extended Portal has two error injection mechanisms.
Static error injection models the spurious outputs of the
module undergoing reconfiguration [5] and helps to test the
isolation logic of the DPR design. Dynamic error injection
models the undefined initial state of the RM [3] and helps

to test the initialization mechanism of the design. The class-
based part drives both error sources through the error_if,
and these errors are selected by the crossbar-like phase
selector. In normal operation, the selected RM is con-
nected to the static part. When the SimB is being written,
the ICAP artifact informs the Extended Portal to connect error
sources to both the static and dynamic parts. The error sources
are disconnected and the normal static-to-RM connection is
reconnected after the SimB is written.

The class-based part provides control and error sources to
the module-based part of the Extended Portal. The default
behavior of the portal_controller class is to control the
module selector and the phase selector according
to the commands in the SimB. The operations of the Extended
Portal are thereby linked with the contents of the SimB. The
default behavior of the error_injector class is to drive
an undefined “x” value as an error source to both the static
and dynamic parts of the system. All these default operations
are defined by class member functions and can be overridden
as desired, in the derived classes (see Section IV-D).

D. Reusability

In order to fulfill the reusability requirement of an ideal sim-
ulation method, ReSim allows users to parameterize artifacts
for various DPR design styles. ReSim has three mechanisms to
support extensions by users: code generation, class inheritance
and factory overrides. As a result, ReSim can be flexibly
customized to a user’s design- or test-specific needs.

As already mentioned, the module-based artifacts are instanti-
ated in the design hierarchy as if they were normal modules.
In order to do that, the artifacts need to be parameterized
with the hierarchy and the connectivity information of the
user design. Code generation provides a set of Tcl APIs for
users to parameterize the artifacts. By calling APIs in a Tcl
script, the user describes the interfacing signals crossing the
RR boundary, the affiliation of RMs and RRs, and the FPGA
family used by the design (see Figure 3). ReSim generates the
parameterized artifacts that can be correctly instantiated in the
design hierarchy.

Class inheritance enables designers to change the default be-
havior of artifacts. For example, the portal_controller
can be re-defined to ignore SimB and use a zero or constant
reconfiguration delay if the designer finds it necessary to do
so. Similarly, the designer can change the default “x” injection
to design- or test-specific error sequences by extending the
error_injector class. In contrast, the original works for
static [5] and dynamic [3] error injection only support a
constant “x” error value. These extensions can readily be
implemented by redefining the virtual functions in the derived
classes (see Figure 4). Class inheritance also improves the
extensibility of ReSim. For example, the configuration port of
a new FPGA family can be added to ReSim by defining a new

class derived from configuration_port_base.

The last mechanism for customizing ReSim is called fac-
tory overrides [15]. After defining a derived class such as
my_error_injector, ReSim allows the designer to re-
place all instances of the original error_injector class
with the new one without editing any source code within the
ReSim library. Designers can thus focus on defining the virtual
functions in their derived classes without bothering about how
ReSim is organized.

V. CASE STUDIES

We demonstrate the value of ReSim via two case studies. The
first is an in-house, general purpose DPR platform, known
as XDRS. The second is a fast PCle configuration reference
design from Xilinx [16].

A. In-house XDRS system

The architecture of the XDRS system is similar to that of the
Erlangen Slot Machine [17]. However, to focus on verification
issues, we represent the essential elements of our platform
as illustrated in Figure 5. This case study demonstrates that
ReSim addresses the challenges of simulation accuracy with-
out relying on the physical details of a design.

full, wr_en; Reconfigurable Region 0

(;’mducerfl-:_'ltl))l_L data[31:0]; FIFOs Reconfigurable Region 1
onsumer_|

req_n, ack_n;
rst_n;

cmd[1:0];
para[31:0];

addr[31:0]; cdata[31:0];

ZBT- data[31:0]; ccs n;

7..&..

application data bitstream data

il

new module: Swap_HDL

Figure 5. XDRS

The static part of the application layer is composed of
Producer and Consumer modules, which keep feeding
both reconfigurable regions with data from memory and
copying output data back to memory. The reconfiguration
controller, XCTRL, manages the reconfiguration process of the
system. The memory (ZBT-SRAM) stores both bitstream and
application data, and when one region is being reconfigured,
the ICAP-I module [18] schedules the bitstream traffic and
the application data of the other region. Thus the memory
and the the TICAP-TI forms the shared datapath between the
application layer and the reconfiguration layer (shown as both
lightly and darkly shaded boxes).

Figure 6 is a waveform obtained by simulating the XDRS sys-
tem using ModelSim 6.5g. Here, an old Maximum module in
Reconfigurable Region 1 of the XDRS system is reconfigured
to a new Swap module using the SimB of Table I. The figure
links the events on the waveform with the system diagram. The
following discussion links the events with the DPR features
mentioned in Section III-A (referred to using square brackets).

e @tl: XCTRL starts the reconfiguration and unloads

the current module by asserting the reg_n. As the
Maximum module is busy, it blocks the XCTRL and
doesn’t assert ack_n until a few cycles later. Simulating
these handshake signals assists the verification of the
synchronization mechanism of the design.

@t2: The first word of the SimB (0xAA995566) is
transferred from the memory interface (the A & DQ
signals) to the ICAP port (the cdata signal) [Bitstream
Traffic], thereby marking the start of the “DURING
reconfiguration” phase.

@t3: After parsing the header section of the SimB, the
ICAP artifact controls the Extended Portal to perform
module swapping and error injection [Triggering Condi-
tion]. For module swapping, the new Swap module is
selected by the module selector. Although such a
selection is performed instantaneously, the new module is
not connected to the static part until all configuration data
of the SimB are written to the ICAP artifact. Thus the
delay of such swapping is determined by the bitstream
traffic [Module Swapping].

@t4(1): When the configuration data section of the SimB
is being written to the ICAP, the static part is connected
to the error source by the phase selector so as to
test the robustness of the isolation module. At the same
time, the Extended Portal drives an undefined “x” value
as an error source to all RR outputs (e.g. the rd_en
signal in the rr1 signal group) [Spurious Outputs]. Note
that the 3 versions of IO signals (the rrl, max_io &
swp_io signal groups) represent signals of the static
side, the Maximum and the Swap modules respectively.
@t4(2): Apart from the “x” injection to the static side,
the Extended Portal also injects a sequence of user-
defined errors to the Swap module so as to assist the
verification of the initialization mechanism of XDRS AF-
TER reconfiguration (see t7). In particular, the Extended
Portal starts the error injection sequence by de-asserting
the empty signal. The Swap module responds to the
empty signal by reading random data (0xbfd505bd
on the data signal) into its internal register indata
[Undefined Initial State]. This user-defined error sequence
also demonstrates the reusability of ReSim.

@t5: The Consumer module requests memory access.
The ICAP-TI scheduler therefore pauses the reconfigu-
ration until the requested data are written to memory
(see the long delay on the ICAP port). This example
demonstrates that ReSim can integrate the simulation of
DPR with that of the rest of the system.

@t6: The DESYNC command is written to the ICAP
thereby ending the “DURING reconfiguration” phase. All
subsequent signal transitions on the ICAP interface until
the next SYNC are ignored.

@t7: XCTRL finishes the reconfiguration by asserting the
reset signal (rst_n) to the design, which cleans all errors
injected to the Swap module (the random data in the
indata register) [Undefined Initial State].

=4 mem
‘ rdwirn

1 2 3 4(1) 4(2) 5 6 7
--> empty; Reconfigurable Region 0
Producer FIFOs <--rd_en; () Relaconfigur bble Reg?i?\ 1
Consumer --> data[31:0]; - .
> st n, I [milaximumy
I <-- ack_n;
S ZBT-SRAM ICAPT L
]

Figure 6.

Simulation using ReSim was effective. By accurately simu-
lating the synchronization, isolation and initialization mech-
anisms of the XDRS system BEFORE, DURING and AF-
TER reconfiguration, we detected dozens of timing errors in
our design. For example, the Tsolation module, which
disconnects the RM DURING reconfiguration, resumes such
connection one cycle too early AFTER reconfiguration. This
error was easily identified because the “x” value injected by
ReSim propagated to the static part in the erroneous cycle.
Although such “x” injection is similar to [5], ReSim allows
cycle-accurate simulation of the transition from DURING
to AFTER reconfiguration, which is also essential to detect
this type of error. The simulated and verified design was
subsequently implemented without further error on an ADM-
XRC-4 board with a Virtex 4 LX160 FPGA.

B. Fast PCle configuration

The Fast PCle configuration reference design applies DPR
to address the tight PCle startup timing specification [16].
At startup, the reference design only loads the light-weight
PCIe endpoint logic as the static part to meet the PCle
timing requirements. The rest of the FPGA is then partially
reconfigured with the core application logic through PCle.
The reference design targets an ML605 board with a Virtex 6
LX240T FPGA. This case study demonstrates that ReSim can

Waveform example

readily be adapted to various design styles, especially designs
of moderate complexity, and various FPGA families.

Figure 7 depicts a block diagram of the PCle design. The
PCle endpoint receives and transmits PCle transaction level
packets (TLP) between the FPGA and the host. The TLPs
include both application and bitstream data, and are dispatched
to either the application or the reconfiguration controller by
the Switcher. Thus the PCle endpoint and the Switcher
are shared by the application and reconfiguration layers. The
application is a Bus Master DMA (BMD) design and is
completely located inside the RR. The reconfiguration con-
troller is the PR Loader module, which decodes the TLPs
from the endpoint and writes the bitstream to the ICAP.

application data

Reconfigurable Region :

User Application

Bus Master DMA

bitstream data

Figure 7. Fast PCle configuration reference design, after [16]

We integrated the original simulation testbench with ReSim
and simulated the design with ModelSim 6.5g.

o The complex bitstream datapath, including the shared
PCle endpoint, the shared Switcher and the dedicated
PR Loader, was tested by simulating the bitstream
traffic modeled by SimB.

o The Switcher isolates the RR from the static part, so
that DURING reconfiguration, the undefined state of the
BMD doesn’t affect the PCle endpoint. The robustness of
the Switcher as an isolation module was tested against
the errors injected to it.

e« The PR Loader resets the BMD AFTER reconfigura-
tion and the Switcher connects the BMD to the PCle
endpoint. This initialization process was tested against
the errors injected to the dynamic side (i.e. the BMD)
DURING reconfiguration.

The original testbench released along with the design also uses
a dummy bitstream to verify the bitstream datapath. However,
the contents of this dummy bitstream are meaningless and are
therefore discarded after being written to the ICAP without
triggering the swapping of the BMD module. As a result,
the simulated BMD module operates whether or not the
dummy bitstream is loaded correctly, and potential bugs on
the bitstream datapath cannot be detected. ReSim models the
triggering condition more accurately by swapping in the BMD
module according to the SimB. Moreover, ReSim supports the
error injection required to test the isolation and initialization
mechanisms of the design.

The development workload for integrating ReSim with the
original testbench includes: 150 lines of Tcl script for gen-
erating artifacts (120 of which are to describe the 10 of
the RR) and 10 lines of Verilog code to instantiate the
artifacts in the original testbench. We left all class definitions
at their defaults. Comparing with the original testbench, the
simulation overhead of ReSim was proportional to the number
of signals crossing the RR boundary as all boundary signals
were multiplexed as opposed to being connected to the static
part directly. The overhead was also proportional to the
frequency of reconfiguration in a specific simulation run as
each reconfiguration involves costs to swap modules and inject
errors, and a scenario-dependent delay to transfer the SimB.
For the PCle example, the simulation overhead of ReSim was
negligible.

VI. CONCLUSIONS AND FUTURE WORK

As with modern ASIC designs, functional verification has be-
come a significant challenge in large FPGA designs, and DPR
adds a new dimension to the challenge. To perform simulation-
based functional verification, it is essential to simulate the re-
configuration process as part of a full system simulation. This
paper proposes using ReSim to simulate DPR by employing
a simulation-only layer to model the physical layer of DPR
designs. Our case studies show that RTL simulation of DPR

using ReSim can achieve sufficient accuracy for functional
verification without relying on the physical details of a design.
Moreover, the ReSim library is reusable and can be adapted
to various styles of DPR design.

Looking ahead, we plan to determine the optimal size for
the SimB as a larger SimB may slow down the simulation
and a small SimB may not achieve the desired level of test
coverage. We are also looking at the simulation of DPR
designs on Altera FPGAs. It is important to study how the
idea of cycle-accurate and physically independent simulation
can be adapted to FPGAs from various vendors.

REFERENCES

[11 K. Compton and S. Hauck, “Reconfigurable Computing: A Survey of
Systems and Software,” ACM Computing Surveys, vol. 34, no. 2, pp.
171-210, 2002.

[2] Partial Reconfiguration User Guide (UG702), Xilinx Inc., 2010.

[3] L. Gong and O. Diessel, “Modeling Dynamically Reconfigurable
Systems for Simulation-based Functional Verification,” in Field-
Programmable Custom Computing Machines (FCCM), IEEE Symposium
on, 2011, pp. 9-16.

[4] W. Luk, N. Shirazi, and P. Y. Cheung, “Compilation tools for run-time
reconfigurable designs,” in Field-Programmable Custom Computing
Machines (FCCM), IEEE Symposium on, 1997, pp. 56 — 65.

[5] 1. Robertson, J. Irvine, P. Lysaght, and D. Robinson, “Improved
Functional Simulation of Dynamically Reconfigurable Logic,” in Field
Programmable Logic and Applications (FPL), International Conference
on, 2002, pp. 541-574.

[6] The International Technology Roadmap for Semiconductors: 2009,
2009. [Online]. Available: http://www.itrs.net/reports.html

[7]1 A.Raabe and A. Felke, “A SystemC Language Extension for High-Level
Reconfiguration Modelling,” in Specification, Verification and Design
Languages (FDL). Forum on, 2008, pp. 55 — 60.

[8] A. Schallenberg, W. Nebel, A. Herrholz, and P. A. Hartmann, “OSSS+R:
A Framework for Application Level Modelling and Synthesis of Recon-
figurable Systems,” in Design, Automation and Test in Europe (DATE),
2009, pp. 970 — 975.

[9]1 A. Pelkonen, K. Masselos, and M. Cupak, “System-level Modeling of

Dynamically Reconfigurable Hardware with SystemC,” in Parallel and

Distributed Processing Symposium (IPDPS), International, 2003, p. 8.

A. V. Brito, M. Kuhnle, M. Hubner, J. Becker, and E. U. K. Melcher,

“Modelling and Simulation of Dynamic and Partially Reconfigurable

Systems using SystemC,” in VLSI (ISVLSI), IEEE Computer Society

Annual Symposium on, 2007, pp. 35 — 40.

C. Claus, B. Zhang, W. Stechele, L. Braun, M. Hubner, and J. Becker,

“A Multi-platform Controller Allowing for Maximum Dynamic Partial

Reconfiguration Throughput,” in Field Programmable Logic and Appli-

cations (FPL), International Conference on, 2008, pp. 535 — 538.

H. Kalte and M. Porrmann, “Context Saving and Restoring for Multi-

tasking in Reconfigurable Systems,” in Field Programmable Logic and

Applications (FPL), International Conference on, 2005, pp. 223 — 228.

Virtex-4 FPGA Configuration User Guide (UGO071), Xilinx Inc., 2009.

IEEE Standard 1800-2005: SystemVerilog — Unified Hardware Design,

Specification, and Verification Language, The Institute of Electrical and

Electronics Engineers, Inc., 2005.

[15] M. Glasser, Open Verification

Mentor Graphics Corporation,

http://www.mentor.com/cookbook

S. Tam and M. Kellermann, Fast Configuration of PCI Express Tech-

nology through Partial Reconfiguration (XAPP883), Xilinx Inc., 2010.

C. Bobda, M. Majer, A. Ahmadinia, T. Haller, A. Linarth, and J. Teich,

“The Erlangen Slot Machine: Increasing Flexibility in FPGA-based

Reconfigurable Platforms,” in Field-Programmable Technology (FPT),

International Conference on, 2005, pp. 37 — 42.

V. Lai and O. Diessel, “ICAP-I: A Reusable Interface for the Internal

Reconfiguration of Xilinx FPGAs,” in Field-Programmable Technology

(FPT), International Conference on, 2009, pp. 357-360.

[10]

(11]

[12]

[13]
[14]

Cookbook,
Available:

Methodology
2009. [Online].

[16]

(17]

(18]

