
Dynamic Scheduling of Voter Checks in
FPGA-based TMR Systems

Nguyen T. H. Nguyen∗, Dimitris Agiakatsikas∗, Ediz Cetin†, and Oliver Diessel∗
∗School of Computer Science and Engineering, UNSW Australia

†School of Electrical Engineering and Telecommunications, UNSW Australia

Abstract—SRAM-based Field-Programmable Gate Arrays (FP-
GAs) are susceptible to radiation-induced Single Event Upsets
(SEUs). Techniques for partially reconfiguring corrupted modules
of Triple Modular Redundant (TMR) FPGA-based designs have
been described in the literature. Most of these techniques require
some form of network-on-chip for aggregating voter error mes-
sages from the system’s TMR components to a central reconfig-
uration controller in order to trigger the partial reconfiguration
of modules when they become faulty. The frequency at which
TMR components fail in the system depends on their soft-error
vulnerability. However, most error recovery techniques adopt
a static voter error checking schedule, which leads to delays
in checking TMR components with high failure probability. In
this paper we propose a Voter Scheduling Engine (VSE) for
dynamically prioritizing and managing TMR voter checks so
as to minimize the error detection time in the system and to
thereby maximize the system’s reliability. Software and hardware
implementations of the VSE are proposed. Moreover, we have
implemented the classic static voter checking schedule and the
VSE on a real TMR system and evaluated the reliabilities of
both approaches for varying radiation environments. Results
demonstrate that the likelihood of system failure can be decreased
by up to 50% when the VSE, rather than static voter checking,
is incorporated into the TMR system.

I. INTRODUCTION

Space missions are integrating increasingly many applica-
tions within a single SRAM-based Field-Programmable Gate
Array (FPGA) to reduce mass, power consumption and to
achieve desired processing performance. The considerable
amount of configuration memory in these devices is susceptible
to radiation-induced Single Event Upsets (SEUs). One of the
most common approaches to dealing with this problem is to
use Triple Modular Redundancy with repair, such as scrubbing
[1], [2], or Module-based Error Recovery (MER) [3].

Both TMR-scrubbing and TMR-MER rely on Dynamic
Partial Reconfiguration (DPR) to correct configuration mem-
ory errors. TMR-scrubbing is typically initiated periodically
and commonly involves reading back each configuration mem-
ory frame, checking for errors, correcting any that are found,
and writing back the corrected frame when necessary. TMR-
MER, on the other hand, is commonly triggered when repeated
errors are detected by the voter associated with a TMR
component and involves rewriting the configuration memory
for the entire module that has been found to be in error. While
TMR-scrubbing occurs periodically, whether or not errors are
present, TMR-MER relies upon the repeated detection of an
error by the same TMR voter to trigger a reconfiguration of
the module presenting the error [1]. Both methods utilize a
controller to operate. However, MER also requires a Reconfig-
uration Control Network (RCN) to relay error requests from

This research was supported in part by the Australian Research Council’s
Linkage (LP140100328) and Discovery (DP150103866) Projects funding
schemes.

the voters in the system to the Reconfiguration Controller (RC)
[4].

Agiakatsikas et al. provided a comprehensive study on
TMR-MER using different RCNs [4]. They showed that TMR-
MER has higher reliability than TMR-scrubbing if the RCN is
triplicated and repaired when it suffers configuration memory
errors. Morever, they also demonstrated that TMR-MER using
an ICAP-based network to aggregate voter statuses provides
the highest reliability in comparison with systems implement-
ing soft star, bus or token ring network. The ICAP-based
network utilizes the Internal Configuration Access Port (ICAP)
available in advanced Xilinx devices to readback configuration
frames that contain the health status of the system’s TMR
components [4], [5]. As with other soft networks, using the
ICAP, the voter status bits cannot be readback in parallel. They
must be read sequentially [6], typically in a round-robin order
[4]. However, doing so increases the response time in checking
the voters of highly vulnerable TMR components.

Intuitively, the rate at which a TMR component may
requests error recovery depends on its failure rate. Therefore,
the RCN arbiter should check components with high failure
rates more frequently than those with lower failure rates
in order to minimize the chance that the system becomes
unusable. However, in [4], it was found that the failure rate
of a component depends on the number of sensitive bits in its
configuration (which affect the circuit operation when they are
flipped), the recovery time of a TMR module and the amount
of time that has elapsed since it was last checked, which is
not constant. It is thus difficult and unlikely to be optimal to
check components in a static order.

In this paper, we propose and evaluate a Voter Scheduling
Engine (VSE) that dynamically prioritizes and manages the
voter checks in a TMR-MER system using an ICAP-based
network. Furthermore, we assess and compare the reliability
of TMR-MER systems, in which the TMR voter statuses are
checked in a round-robin fashion with those implementing our
VSE. We show that TMR-MER systems that incorporate the
VSE are overwhelmingly more reliable than those using a
round-robin order. Results show that the failure probability of
the TMR system incorporating VSE is up to 50% lower than
that of the same system using round-robin during a simulated
30-day mission at Geostationary Equatorial Orbit (GEO).

II. SCHEDULING VOTER CHECKS

In this section, we detail a Voter Scheduling Engine (VSE)
along with its implementations in either software or hardware
that respectively require linear or logarithmic time to determine
which TMR component to check next.

A. Voter scheduling engine (VSE)

Scheduling is based on the idea that the likelihood of a
configuration memory error being present in a component is

978-1-5090-5602-6/16/$31.00 c© 2016 IEEE

169

exponentially proportional to the product of the number of
sensitive bits contained in the component and the amount of
time elapsed since it was last checked. Therefore, components
with a large number of sensitive bits must be checked more
frequently than those with less sensitive bits. We propose the
VSE to implement this idea.

The probability that the three modules of TMR component
i are still working after time τ is given by [7]:

Pi(τ) = e−3λMiτ , i = 1..N, (1)

where λ denotes the bit error rate, Mi denotes the number of
sensitive bits of a module of component i, and N denotes the
number of TMR components in a system.

For a constant bit error rate λ, Pi(τ) is the same over any
fixed period τ . In other words, in the arbitrary time window
between two consecutive checks of component i, we can
consider that Pi(τ) starts from 1 when the voter of component
i is checked and no error is detected (τ = 0) and that Pi(τ)
decreases until the next check. Pi(τ) is estimated by:

Pi(τ) = e−3λMiτ = e−3λMini∆to , (2)

where ni denotes the number of other components that have
been checked since the last time component i was checked and
∆to denotes the period between any two successive checks of
any pair of components (assumed to be a constant).

In this paper, the VSE simply searches the list of Pi(τ) of
all TMR components to obtain the component with the smallest
Pi(τ), i.e. the component with the highest probability that at
least one of the three TMR modules will fail during the next
time window, and therefore should be checked next.

B. Implementations of the proposed VSE

The VSE plays the role of the arbiter of the ICAP-based
RCN. The VSE selects the component that needs to be checked
next and asserts the component ID to the RC. While the RC
reads the associated configuration frame and checks the status
message of the voter associated with the component ID, it
sends an Update signal to the VSE, which commences the
search for the component to check during the next cycle.

In the VSE implementation, we use the Mini product in
terms of ∆to units as a proxy for representing Pi(τ) in (2). The
Mini product ranks the records in the list of N elements and
eliminates the overhead of calculating the exponential function
and multiplications. The algorithm involves two steps, which
include (1) finding the largest Mini product and (2) updating
the Mini product. These steps require O(N) time in sequential
software.

...

Update

M1

M2

ID1

ID2 M

ID

x
x
y

y

y

x

Update
FB

y
1

(a) (b)

ID

MN‐3 MN‐2 MN‐1 MNM1 M2 M3 M4

> + > + > + > +

>

>

>

Update

Record i Leaf CBsMi > + > Internal CBs

Fig. 1: (a) VSE and (b) Conditional Block interface.

With the proposed hardware implementation, as depicted
in Fig. 1(a), N − 1 Conditional Blocks (CBs) are connected
together as a binary tree in which N records are stored at the
leaf nodes. Each record consists of the current Mini product

and an identifier (IDi) corresponding to component i. The IDi
are assigned to components according to their Mi values with
the component with the largest Mi being assigned 1. The CBs
that are connected to the leaf nodes and which are referred
to as the leaf CBs, perform two functions which involve (1)
comparing the two records and forwarding the record with the
greater Mini value to the node in the next level-up; and (2)
updating the records at the leaf nodes. The internal CBs only
perform the first function. If the two records contain the same
Mini values, the component with the smaller IDi is chosen.
The record with the greatest Mini product reaches the root
CB after log(N) steps. The root CB asserts the ID of the
selected component to the RC and to the leaf CBs. These CBs
update their records after they receive an Update signal from
the RC. The record of the component that was just selected
for checking is reset, while all other records are incremented
by their corresponding Mi amount.

The CB interface is depicted in Fig. 1(b) where the x-bit
signals M1, M2 and M denote the Mini products, and the
y-bit signals ID1, ID2, and ID represent the component IDs.
x depends on the size of the maximum Mini product while y
depends on the number of TMR components in a system.

Since the VSE scheduling of voter checks is based on the
Mini product, the user can modify the Mi values to impose
user-defined priorities, if so desired. One limitation of the VSE
is that when the number of TMR components is increased, the
search time is increased logarithmically while the hardware
overhead increases linearly as shown in Section III-B.

III. EXPERIMENTAL ANALYSIS

In this section we evaluate the VSE in terms of resource
utilization, operating frequency, and scalability. We also eval-
uate and compare the reliability of a TMR system that checks
voters in a round-robin fashion with one that uses the VSE
to schedule voter checks. The systems were implemented on
a Xilinx Artix-7 XC7A200TFBG484-1 FPGA using Vivado
2014.4 CAD tools.

A. Experiments

We conducted two types of experiments. In the first type,
the VSE is implemented as a standalone module on the Artix-7
FPGA in order to obtain resource utilization and performance
results. We tested the VSE with systems containing 4, 8, 16
and 32 TMR components.

In the second set of experiments, we compared the relia-
bility of a specific system using three different voter checking
approaches as listed in Table I. In the first configuration,
we checked the voters in round-robin order. In the second
configuration, we used an off-chip hardware implementation
of the VSE. And in the third and final configuration, we
implemented the VSE on-chip as an additional triplicated
system component.

TABLE I: Second Experiment configurations

Configuration # of TMR components Voter Checking
I 9 Round robin
II 9 Off-chip VSE
III 10 (including the VSE) On-chip VSE

To implement these approaches, three system configura-
tions comprising the first 9 TMR components listed in Table
III were created — note that the VSE was only included
as a TMR component in the third configuration. The TMR
components include a single MAC-based 21-tap Finite Impulse

170

TABLE II: Area and performance of the VSE

x− y N Slices LUTs FFs Freq (MHz)

32 – 5 32 894 (2.53%) 1922 (1.43%) 1527 (0.57%) 104
32 – 4 16 579 (1.73%) 1595 (1.19%) 968 (0.36%) 117
32 – 3 8 282 (0.84%) 749 (0.55%) 454 (0.16%) 141
32 – 2 4 114 (0.34%) 305 (0.22%) 196 (0.07%) 191

16 – 5 32 419 (1.25%) 1032 (0.77%) 775 (0.28%) 122
16 – 4 16 314 (0.93%) 832 (0.62%) 488 (0.18%) 164
16 – 3 8 146 (0.43%) 380 (0.28%) 230 (0.08%) 197
16 – 2 4 58 (0.16%) 154 (0.11%) 100 (0.03%) 270

8 – 5 32 232 (0.69%) 583 (0.43%) 399 (0.14%) 130
8 – 4 16 158 (0.47%) 426 (0.31%) 248 (0.09%) 174
8 – 3 8 77 (0.23%) 298 (0.14%) 118 (0.04%) 220
8 – 2 4 31 (0.09%) 79 (0.05%) 52 (0.01%) 271

Response (FIR) filter with 16-bit signal width, an 8-to-3-bit
Block Adaptive Quantizer (BAQ), an 8,096-word deep 32-
bit FIFO, three 32-bit Shift Registers (SRs) having different
lengths and a variety of combinational functions between the
stages and three 32-bit Binary Search Trees (BSTs) of different
heights and a variety of combinational functions at each
node. The VSE used in the second and third configurations
was configured with x = 10 and y = 4. A MicroBlaze
(MB) processor was used to implement the RC and the AXI
HWICAP IP was used to reconfigure faulty modules in all of
the three configurations.

We also injected faults into each TMR component in order
to verify the operations of the MicroBlaze processor and
to measure the correction time (tc) for each TMR module.
The MB controls the fault-injection procedure which involves
reading the corresponding frame, flipping one bit, and writing
the frame back using the HWICAP. After injecting a fault,
the MB commences checking the voter statuses of all TMR
components and reconfiguring any faulty module as needed.
The correction time accounts for the time interval between the
error being detected until the last word of the partial bitstream
is written to the HWICAP.

B. Results

1) VSE component: Table II presents the resource utiliza-
tion and maximum clock frequency of the VSE with varying
number of TMR components and the sizes x and y of Mi
and IDi. When the number of TMR components increases,
the resources needed to implement the VSE increase almost
linearly. The VSE utilises a small amount of resources and
can handle a design with 32 components in which x = 32
and y = 5. This small footprint ensures that the placement
and routing of other components is not affected and that the
VSE can also be readily implemented as a TMR protected
component with a small overhead.

So as to reduce the wire requirements of the VSE search
tree, we have normalized the Mi value to the smallest Mi.
This mean that the Mini product does not overflow an 8− bit
or a 16−bit value. In this case, the CBs with x = 8 or x = 16
can be used to implement the VSE. As can be observed from
Table II, the resource utilization of the VSE with x = 8 and of
the VSE with x = 16 is reduced by approximately 75% and
50%, respectively, while the maximum clock frequencies are
substantially higher in comparison with the VSE with x = 32.

Moreover, the VSE can update and find which component
to check next in O(log N) clock cycles. Therefore, even if the
ICAP is used at its maximum throughput, we can maintain a
list of over 2 100 components in the time it takes to check one
voter. This is because it requires at least 101 clock cycles to
read the voter status bits in Xilinx 7-series FPGAs [6].

TABLE III: Results of mapping 10 TMR components to Xilinx
Artix-7 XC7A200TFBG-484 FPGA

Design Essential Bits Norm Mi nf
tc (ms) td (∆to)

Mi (relative to FIR) MBlaze I II III

BST3 1,833,235 152 1,483 26.7 4.5 1.7 1.7
SR3 1,403,647 117 1,090 19.6 4.5 1.7 1.7
BST2 793,534 66 610 11.0 4.5 3.3 3.4
SR2 515,904 43 474 8.5 4.5 4.8 4.8
SR1 285,914 24 378 6.8 4.5 8.2 8.4
BST1 281,604 23 145 2.6 4.5 8.2 8.4
BAQ 48,963 4 73 1.3 4.5 41.0 41.3
FIFO 41,842 3 192 3.5 4.5 56.0 54.7
FIR 12,042 1 65 1.2 4.5 164.4 157.4

VSE 51,293 4 144 2.6 – – 41.3

2) Case study results: Table III presents the number of es-
sential bits (Mi) (as a worst case estimate of the sensitive bits),
the normalized Mi (ratio of each component’s Mi relative to
the component with smallest Mi), the number of frames (nf),
the correction time (tc) and the average detection time (td) in
∆to units of each TMR component for the three configurations
studied. In our design, the MB-based RC and off-chip flash
configuration storage support a sustained frame write period
of 18 us per frame which was used to calculate the tc of each
component in Table III. These data were used as inputs to a
Markov reliability model derived from [4], [8]. The system
failure probability (FPTMR

s (t)) is the complement of the
system reliability. In this paper, we derived a “high radiation
level” of bit failure rates as shown in Table IV for Xilinx 7-
series FPGAs [9] at different orbits using the CREME96 model
[10] assuming 2.54 mm aluminium shielding.

TABLE IV: Bit failure rates in different orbits [11]

Orbit
Altitude (km)/ Solar Worst Worst Peak

Inclination Min Week Day 5-Min
λ (SEUs/Bit/s)

GEO 35,768/0o 1.71E-13 2.16E-11 7.34E-11 2.66E-10
GPS 20,200/55o 1.54E-13 1.43E-11 4.84E-11 1.75E-10
LEO 2,000/51.6o 1.92E-14 7.01E-13 2.33E-12 8.41E-12

10
−6

10
−5

10
−4

10
−3

0.175

0.18

0.185

∆ t
o
 (s)

F
P

sT
M

R
(t

)

10
−3

10
−2

10
−1

10
0

0.2

0.4

0.6

0.8

1

∆ t
o
 (s)

I II III

Fig. 2: Failure probabilities of the three configurations in GEO
orbit at the peak 5-min condition during a mission of 30 days.

Fig. 2 plots the failure probabilities of the three configura-
tions during a 30-day mission in GEO orbit at the peak 5-min
radiation condition for each ∆to. For clarity, we plotted 2 sub-
figures in which ∆to ranges from 1 us to 1 ms and from 1 ms to
1 s. As can be seen in Fig. 2, configuration II is generally less
vulnerable than configuration I. When ∆to is increased, the
gap between the failure probabilities of the two configurations
increase, but eventually it decreases because of the proximity
of the failure probabilities of the two configurations to 1.
Moreover, the reliabilities of configurations II and III are
similar as errors occur infrequently in the relatively small VSE
component.

171

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

10

20

30

40

50

%
 D

e
c
re

a
s
e

∆ t
o
 (s)

(b)

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−8

10
−4

10
0

∆ t
o
 (s)

(a)

F
P

sT
M

R
(t

)

Solar Min Worst Week Worst Day Peak 5−min

Fig. 3: (a): Failure probabilities of configuration III with four
radiation conditions in GEO orbit during a mission of 30
days, (b) Percentage decrease in the probability of failure in
configuration III versus configuration I.

TABLE V: Failure probabilities of the three configurations
when ∆to = 10 ms

Orbit\Configuration I II III

GEO

Solar min 1.23E − 7 1.00E − 7 1.03E − 7
Worst week 2.89E − 3 2.31E − 3 2.32E − 3
Worst day 2.28E − 2 1.83E − 2 1.83E − 2
Peak 5-min 2.68E − 1 2.21E − 1 2.22E − 1

GPS

Solar min 9.98E − 8 7.79E − 8 7.81E − 8
Worst week 8.75E − 4 6.99E − 4 7.02E − 4
Worst day 9.98E − 3 7.98E − 3 8.02E − 3
Peak 5-min 1.23E − 1 0.99E − 1 0.99E − 1

LEO

Solar min Negligible
Worst week 2.10E − 6 1.68E − 6 1.69E − 6
Worst day 2.33E − 5 1.86E − 5 1.87E − 5
Peak 5-min 3.03E − 3 2.42E − 3 2.43E − 3

Fig. 3(a) presents the failure probabilities of configuration
III during a 30-day mission in GEO orbit conditions for various
∆to. It can be observed that similar system failure probabilities
can be achieved at different conditions by adjusting ∆to. This
implies that depending upon the environment that the system is
operating in, we can vary the operating frequency of the voter
checks to save energy, while maintaining a desired reliability.

Fig. 3(b) depicts the percentage decrease in the failure
probability of configuration III relative to that of configuration
I during a 30-day mission in GEO orbit conditions for various
∆to. It can be seen that the percentage decrease is similar
at different GEO orbit conditions when ∆to is less than
0.01 second. For the peak 5-minute condition, the highest
percentage decrease is 30%, while it is 45% for the worst
day and 50% for the worst week and solar min conditions.
However, when ∆to is increased, the percentage decreases in
all conditions eventually decline to 0% because the failure
probabilities of both configurations approach 1. Please note
that due to space limitations and for clarity, this paper has
only plotted results for a 30-day mission in GEO orbit. Similar
results can also be obtained for longer missions in the three
orbits. For example, the percentage decrease is up to 50% for
four radiation conditions for a 10-year mission in LEO orbit,
while it is also up to 50% for solar min and worst week, 40%
for worst day and 10% for peak 5-min conditions for a 1-year
mission in GPS orbit.

From Figs. 2 and 3, one may need to examine the duration
of a mission and the voter checking frequency in order to
evaluate the robustness of TMR systems that employ either
voter checking approach. For the sake of energy saving in
space-based applications in long-term missions, the checking

frequencies may be decreased [2]. In this case, the VSE is
capable of ensuring a higher reliability than round robin.

Table V shows the failure probabilities of configurations I,
II, and III during a 30-day mission in GEO, GPS and LEO
orbits. For brevity, we present the failure probabilities of a
TMR system with MER when ∆to = 10 ms. At these operating
points, we confirm that configurations II and III are generally
more reliable than configuration I and that they have similar
reliability. Furthermore, the failure probabilities of the three
configurations operating in LEO orbit are two to three orders
of magnitude less than those in GPS and GEO orbits.

IV. CONCLUDING REMARKS AND FUTURE WORK

In this paper, we have proposed the use of a Voter
Scheduling Engine (VSE) to schedule the voter checks in
an FPGA-based TMR system with MER that employs an
ICAP-based RCN. The VSE plays the role of an arbiter in
prioritizing checks of critical components. We have also argued
that any system using an RCN that provides random access to
component voters can benefit from using a VSE to prioritize
checks of more vulnerable components. We also presented
practical algorithms for checking voters in both hardware and
software to maximize the system reliability.

We have shown that a TMR system that includes a VSE is
generally more reliable than one that checks voters in a round-
robin fashion. The failure probabilities of the former are up to
50% lower than those of the latter for a 30-day mission in
GEO orbit with solar min and worst week conditions, and
up to 45% and 30% lower with worst day and peak 5-min
conditions, respectively.

The proposed approach is fair since each voter will even-
tually be checked. By modifying the record of the number
of essential bits, we can impose a user-defined priority with
which to check the voters. The cost of our method is the design
and hardware cost of the moderately complex VSE. Our future
work consider the static scheduling of voter checks to optimize
the system reliability and the reconfiguration order when
multiple errors occur in different modules simultaneously.

REFERENCES

[1] C. Carmichael et al., “Correcting single event upsets through virtex
partial configuration,” Xilinx xapp216 (v1.0)., 2000.

[2] I. Herrera-Alzu et al., “Design techniques for Xilinx Virtex FPGA
configuration memory scrubbers,” IEEE Trans. on Nuclear Science,
vol. 60, no. 1, pp. 376–385, Feb 2013.

[3] C. Bolchini et al., “A novel design methodology for implementing
reliability-aware systems on SRAM-based FPGAs,” IEEE Trans. on
Computers, vol. 60, no. 12, pp. 1744–1758, 2011.

[4] D. Agiakatsikas et al., “Reconfiguration Control Networks for TMR
Systems with Module-based Recovery,” in FCCM, 2016, pp. 88–91.

[5] F. Veljkovic et al., “Adaptive reconfigurable voting for enhanced re-
liability in medium-grained fault tolerant architectures,” in AHS, June
2015, pp. 1–8.

[6] UG470: Xilinx 7 Series FPGAs configuration user guide v1.10, 2015.
[7] M. L. Shooman, Reliability of Computer Systems and Networks: Fault

Tolerance, Analysis and Design. New York, NY, USA: John Wiley &
Sons, Inc., 2002.

[8] D. McMurtrey et al., “Estimating TMR reliability on FPGAs using
Markov models,” All Faculty Publications. Paper 149., 2008. [Online].
Available: http://scholarsarchive.byu.edu/facpub/149

[9] D. Hiemstra et al., “Single event upset characterization of the Kintex-7
Field Programmable Gate Array using proton irradiation,” in REDW,
July 2014, pp. 1–4.

[10] A. Tylka et al., “CREME96: A revision of the cosmic ray effects on
micro-electronics code,” IEEE Trans. on Nuclear Science, vol. 44, no. 6,
pp. 2150–2160, Dec 1997.

[11] D. Heynderickx et al., “ESAs SPace ENVironment Information System
(SPENVIS): a WWW interface to models of the space environment and
its effects,” in AIAA, vol. 371, 2000.

172

