
Fine-grained Module-based Error Recovery in
FPGA-based TMR Systems

Zhuoran Zhao∗, Dimitris Agiakatsikas∗, Nguyen T. H. Nguyen∗, Ediz Cetin†, and Oliver Diessel∗
∗School of Computer Science and Engineering, UNSW Australia

†School of Electrical Engineering and Telecommunications, UNSW Australia

Abstract—Space processing applications deployed on SRAM-
based Field Programmable Gate Arrays (FPGAs) are vulnerable
to radiation-induced Single Event Upsets (SEUs). Compared
with the well-known SEU mitigation solution — Triple Modular
Redundancy (TMR) with configuration memory scrubbing —
TMR with module-based error recovery (MER) is notably more
energy efficient and responsive in repairing soft-errors in the
system. Unfortunately, TMR-MER systems also need to resort
to scrubbing when errors occur in sub-components, such as
nets, which are not recovered by MER. This paper addresses
this problem by proposing a fine-grained module-based error
recovery technique that without additional system hardware can
localize and correct errors that classic MER fails to do. We
evaluate our proposal via a fault-injection campaign on a Xilinx
Artix-7 application circuit and compare the reliability, the error
correction latency and the energy cost of repairing errors, of our
proposal with those of a conventional MER approach and with
periodic and on-demand blind scrubbing. We find the reliability
of our proposal to be the highest and the energy expenditure to
be the lowest amongst those methods considered.

I. INTRODUCTION

Reliable space-based digital systems implemented using Com-
mercial Off-The-Shelf (COTS) SRAM-based FPGAs and pro-
grammable System-on-Chips (SoCs) commonly rely on Triple
Modular Redundancy (TMR) to mask the effects of radiation-
induced Single Event Upsets (SEUs) in the application circuits.
The considerable amount of configuration memory in these
devices is also susceptible to radiation-induced corruption.
Two approaches have emerged to deal with this problem.
Configuration memory scrubbing (TMR-S) periodically scans
the entire device and corrects configuration memory errors by
rewriting the memory frames containing them. Module-based
error recovery (TMR-MER), on the other hand, reconfigures
the frames of a TMR module when an error in its configuration
memory is detected. While scrubbing occurs periodically,
whether or not errors are present, TMR-MER relies upon the
repeated detection of an error by the same TMR voter to
trigger a reconfiguration of the module presenting the error
[1]. Both methods utilize a controller to operate. However,
MER also requires a Reconfiguration Control Network (RCN)
to relay error requests from the voters in the system to the
Reconfiguration Controller (RC) [2].

In [2], it was found that FPGA SoCs that rely on TMR-MER
have lower reliability than those relying on TMR-S unless
the RCN is also triplicated and corrected when configuration
memory errors become evident in it. Due to the distributed
nature of RCN resources, Agiakatsikas et al. [2] resorted to

This research was supported under the Australian Research Council’s Link-
age (LP140100328) and Discovery (DP150103866) Projects funding schemes.

scrubbing the whole device when an RCN was affected by
configuration memory errors. Although error recovery using
scrubbing is slow and energy is wasted checking/reconfiguring
frames that are not in error, it was found that scrub operations
were only occasionally needed since the triplicated RCN had a
relatively low susceptibility to errors due to the comparatively
few resources utilized by this system component.

The work described in this paper aims to address the con-
siderable latency and energy used scrubbing the device when
the RCN is affected by configuration memory errors. Our
contributions are:

1) To localize configuration memory errors more pre-
cisely than has previously been reported in the litera-
ture and to explain how the response to error signals
should be prioritized;

2) To describe a fine-grained method for dynamically
reconfiguring sub-components that are suspected of
containing configuration memory errors; and

3) To compare the reliability, latency and energy cost
of correcting configuration memory errors using the
proposed approach with (a) TMR-MER with com-
plete scrubbing of the device when errors are detected
outside the TMR modules, (b) on-demand scrubbing
of the device when an SEU is detected in the system,
and (c) periodic scrubbing of the device as a fault
prevention strategy.

The paper is organized as follows: Section II provides back-
ground to our work. Section III gives an overview of the TMR
circuit model, the effect of errors in different sub-components
of the model, and a proposal for a repair strategy that reduces
the total number of configuration frames required to recover
an SEU in the system, which results in reduced recovery time
and energy consumption. Section IV explains how the fine-
grained dynamic partial reconfiguration approach relied upon
by the proposed approach is implemented. Section V describes
our experimental evaluation and details our findings while
concluding remarks are given in Section VI.

II. BACKGROUND

COTS FPGAs are being considered as an alternative to
radiation-hardened devices in Low Earth Orbits (LEO), and, if
proven to be sufficiently reliable, may even have applications in
Geosynchronous satellites. The main reason for this acceptance
is that they have been proven to be able to tolerate destructive
radiation effects — Total Ionization Dose (TID) and Single
Event Latchup (SEL) [3], which can lead to device failure.
Radiation-hardened devices are designed with high immunity
to these two effects even in high earth orbits e.g. Geostationary
Equatorial Orbit (GEO). Since the radiation level of LEO is
hundreds of times lower than that of GEO, and there are hardly978-1-5090-5602-6/16/$31.00 c© 2016 IEEE

101

any heavy ions that could result in SELs, COTS FPGAs can
provide a safe operating platform at this orbital altitude [4].
Secondly, just like radiation-hardened devices that have built-
in protection against Single Event Transient (SET) and SEU
[5], COTS FPGAs can be strengthened with TMR-S or TMR-
MER to mitigate malfunctions caused by SETs and SEUs [3].

Both TMR-MER and TMR-S rely on Dynamic Partial Recon-
figuration (DPR) to correct SEUs in the configuration memory.
TMR-S can be implemented by simply overwriting all of the
configuration frames, or reading and comparing these frames
with a golden copy, to replace any frame that is found to
be in error. TMR-S operates at frame-level, detecting and
correcting faulty frames periodically. To reduce the need for
data retrieval, single frame errors can be detected and corrected
using Error Correcting Codes embedded in the frame. This
approach can be complemented with a device level Cyclic
Redundancy Check (CRC) to determine whether or not a
complete reconfiguration of the device is required [6]. To
reduce the energy consumed by the periodic scrubbing of
TMR-S, a scrub cycle can be triggered via a dedicated error
transmission network (referred to as a Reconfiguration Control
Network (RCN) in TMR-MER). The overall mean-time-to-
repair (MTTR) can be further reduced by prioritizing the
frames scanned for different error signatures generated by the
network [7].

Until now, as it has been described in the literature, the
TMR-MER technique is not as robust as TMR-S, since the
method can only detect and correct errors inside the TMR
modules, while errors inside the majority voters, affecting
the interconnecting nets between voters and modules, and the
RCNs are almost always neglected. Furthermore, the TMR-
MER technique relies upon the vendor’s partial reconfiguration
flow [8] to generate partial bitstreams, but this flow is not able
to generate partial bitstreams for non-block-oriented designs.
It is therefore not possible for the flow to generate partial
bitstreams for the nets between TMR modules.

This paper takes a significant step towards solving the above-
mentioned drawbacks of TMR-MER. In this paper, a repair
strategy is used to enhance the localization of single errors
within fully-triplicated systems. Inspired by the fact that
scrubbing is able to rewrite a frame without resorting to the
Partial Reconfiguration Flow [8], a fine-grained reconfiguration
approach is applied to determine configuration frame sets
pertaining to either block or non-block sub-components after
a system is implemented. To save on the cost of storing partial
bitstream, we describe and demonstrate a dynamic bitstream
composition method that retrieves arbitrary frame data from the
full bitstream at run time. These ideas have, to our knowledge,
not previously been reported in the literature.

III. CONFIGURATION MEMORY ERROR DETECTION,
CLASSIFICATION AND CORRECTION

A. System Architecture

Our system model (Fig. 1) assumes the user circuit comprises
n TMR components. In our system model the voters and their
input and output nets are triplicated in order to maximize relia-
bility. Each set of triplicated modules, voters and interconnect-
ing nets comprise a single component (Ck, k ∈ {0, 1, ...n−1}).
Fig. 1 illustrates Ck and its interconnections with Ck−1 and
Ck+1. We assume the modules are acyclic, as discussed in [9],
and that cyclic components are implemented by allowing voter
outputs to re-enter a component as module inputs. While Fig.
1 illustrates a linear sequence of TMR components, in general
there may be several immediate predecessors and immediate
successors of Ck.

Mk_0 Vk_0

Mk_1

Mk_2

voutk_1

voutk_1

voutk_2

V(k-1)_0

vout(k-1)_0

V(k-1)_2

V(k-1)_1

Ck-1 Ck

vout(k-1)_1

vout(k-1)_2

e(k-1)_0

moutk_0

moutk_1

moutk_2

Vk_1

Vk_2

M(k+1)_0

M(k+1)_1

M(k+1)_2

Ck+1

ek_0

e(k-1)_1
ek_1

e(k-1)_2
ek_2

Fig. 1. TMR model

e0_0

e0_1

NC2
id2

id1

id0

sel0

done0

sel1

done1

sel2

done2

e0_2

e1_0

e1_1

e1_2

en-1_0

en-1_1

en-1_2

C0

Cn-1

C1

R
e
co

n
fig

u
ra

tio
n

C
o

n
tr

o
lle

r

clr

ecnt0

clr

ecnt1

clr

ecntn-1

sel

do

din

e0_0

id0

done0

e1_0

en-1_0

sel0trg_e0

done0

trg_e1

done1

trg_en-1

donen-1

logN

2

(a) (b)

NC1

NC0

Fig. 2. (a) Star-type RCN, (b) Elaborated NC logic

Each component consists of three identical circuit replicas,
referred to as modules, and additional sub-components, in-
cluding voters and nets (between circuit modules and voters,
between voters and downstream components, and between
voters and a reconfiguration controller). There are at least
three possible approaches to partitioning the component into
reconfigurable modules that can be independently recovered
when they are found to be in error. Most commonly in
the literature, only SEUs in the circuit modules themselves
(indicated as Mk_0,1,2 in Fig. 1) are localized and corrected.
This approach leaves the voters and interconnecting nets to be
recovered by other means - perhaps via scrubbing, as proposed
in [2], or via fine-grained modular reconfiguration, as studied
in this paper. Another approach includes the corresponding
voter and some of the interconnecting nets, as illustrated by
the grey box surrounding Mk_0 and Vk_0. This approach allows
both sub-components and some of the interconnecting nets
to be recovered by modular reconfiguration, but does not
provide a means for recovering all of the nets comprising
moutk_0,1,2. A third alternative therefore includes all sub-
components of a triplicated component in the reconfigurable
partition, as illustrated by the dashed box surrounding Ck. This
approach can be used to cover all the nets except for the voter
outputs, which must cross partition boundaries, but suffers a
significantly larger reconfiguration delay, which translates to
increased Mean Time To Repair (MTTR).

The voter blocks in our model are enhanced to identify the
module whose output differs from the majority based on [10].
We have implemented voter logic that not only protects the
output of the user circuit, but also detects which module output
(moutk_j) is incorrect in the minority and raises a 2-bit error
report (ek_i) identifying that module, where i, j ∈ {0, 1, 2}.
Values 00, 01 and 10 identify the erroneous module (Mk_0,1,2),
while the value 11 indicates the absence of an error in Ck.

The error reports from the triplicated voter blocks are aggre-
gated by a central Reconfiguration Controller (RC) through
three identical star-type Reconfiguration Control Networks

102

(RCNs). The RC thus receives triplicated error reports from
each component. Fig. 2(a) illustrates the triplicated RCNs. The
RC manages the triplicated Network Controllers (NCs) in order
to check the error state of a particular component. The RCNs
are synchronous and all NCs operate in lock step to check the
voter of each component in turn according to the direction of
the RC.

The NC aggregates error signals and distinguishes between
transient errors in the user circuit and “permanent” errors that
are likely due to configuration memory corruption. Fig. 2(b)
elaborates the architecture of an NC. Each of the error signals
inputs to a saturating up-down counter. A permanent error
is associated with repeated error signals that are expected to
saturate the counter and trigger an error report trg_ei to the
RC [1]. Transient errors will result in both up- and downward
counts and will therefore not saturate the counter. A switch
selects between the error triggers of the individual counters.

The RC controls the sel signal to the NC switch to select the
output of the desired error counter, which triggers the partial
reconfiguration of the indicated module. The RC then retrieves
the frame data of the indicated module from external memory
and writes these to the configuration memory space. When the
reconfiguration is complete, the done signal is asserted to clear
the corresponding error counter.

B. Persistent Errors

Permanent errors reported by the counters in the NCs may
be, as indicated, due to configuration memory errors present
in one of a component’s modules. But a substantial number
of reported errors are caused by permanent errors present in
the voters, the intra-component nets connecting modules and
voters, the nets connecting voters to downstream components,
as well as in the wires of the RCNs and the NCs themselves.
In this paper, we study the effect of configuration memory
SEUs on TMR-MER systems and propose a remediation
scheme that enhances the reliability of TMR-MER that is
more responsive, and saves considerable energy with respect
to equivalent systems employing scrubbing.

Configuration memory errors in different parts of a component,
as shown in Figs. 1 & 2, result in a range of error symptoms.
The error reports received by the RC due to errors in the
various sub-components are as follows:

• An error in the configuration of Mk_j may cause
moutk_j to differ from moutk_i, i 6= j. In this case
all three error outputs for Ck should report Mk_j to
be in error.

• Errors in the net vout(k−1)_j or the majority voter
logic of V(k−1)_j can cause the input for Mk_j to be
incorrect. The three RCNs will then report that Mk_j is
incorrect but cannot correctly determine that the error
lies with the logic of the upstream voter or with its
corresponding outgoing nets.

• If an error is present in the minority voter logic of
Vk_i, the voter may assert that an error is present in
Ck while the other two voters report no error. The RC
thus only receives one error report for Ck instead of
three.

• An error present in the branch of moutk_j can cause
the connected voters to incorrectly indicate the pres-
ence or absence of an error in Mk_j . If the error is
present in the main trunk of the net, all three voters,
or just two of them, may assert an error. Errors in the
region of moutk_j where it branches may also cause

K=0, E=Ø

A

Check Ck

E=Ø
n

y

Errors present?

Chk++

scrub

A

R = Lookup the
Recovery Order

Fix RR==scrub?

Allow for
module to

synchronize

Signature == E?
nE=signature,

Chk=0

y

K++

ny

Issue done
signal to the

counters

Wait for
possible error

to emerge

Fig. 3. Repair flow

two different voters to indicate that different modules
are in error. This is because a single error in a switch
matrix can affect more than two nets [11]. If an error
is present in the switch matrix used by any two of
moutk_0,1,2, two voters may report different modules
to be in error.

• If an error is present in one of the triplicated RCNs,
that RCN may raise or mask errors for a random
module in some component.

It is evident that errors in the various sub-components of Ck−1

and Ck or in RCNj result in different behaviors at the outputs
of the triplicated RCNs which we refer to as error signatures.
A single error may cause one of three different types of error
signature to be observed for Ck. These are: (i) three identical
error reports (id0,1,2 = Mk_j), (ii) one error report (idi =
Mk_j), and (iii) all others.

If the error signature is of type (i) and the reconfiguration of
the module indicated by the RCNs fails to clear the error, the
same error signature will present after the recovery operation,
in which case the error is deemed to be persistent. It should
then be suspected that the error is in V(k−1)_j , vout(k−1)_j ,
moutk or mout(k−1). For error signatures of type (ii), besides
moutk, Vk_i and the RCN logic (NCi & ek_i) are suspects.
For error signatures of types (iii), the only suspect is moutk.

Other possible RCN outputs are caused by an accumulation
of SEUs. Two or more errors may then be present in different
sub-components. We do not consider these effects in this paper,
but all could be dealt with by triggering a complete scrub of
the device when they appear.

C. Repair Strategy

We propose a repair strategy to guide the design of an RC
that is capable of detecting and repairing persistent errors in
systems using fine-grained dynamic reconfiguration. The repair

103

TABLE I. RECOVERY SEQUENCE

Error Signature
Number of Checks (Chk)

1 2 3 4 5 6

i. id0,1,2 = Mk_j Mk_j V(k−1)_j vout(k−1)_j moutk mout(k−1) scrub

ii. idi = Mk_j Vk_i moutk NCi ek_i scrub

iii. others moutk scrub

strategy includes a repair flow and a recovery sequence as
determined by the flow.

1) Repair Flow: Fig. 3 depicts the proposed flow for recover-
ing from persistent errors in the system. An error check and
correction cycle commences at entry point A, when the com-
ponent number K and the error signature E are cleared. The
first component is checked after initialization. K is incremented
while the RCN reports no errors for the component currently
being checked. When an error is reported for Ck the error
signature is compared with the previously recorded signature
E and the check index Chk is incremented if so. The error
signature and check index indicate which sub-component R is
to be reconfigured (Table I). After the dynamic reconfiguration
of the sub-component has been performed, the RC waits for
the component to be resynchronized [1] and issues a done
signal to the RCN to reset the error counters for Ck. After the
error counters have been cleared, the RC waits for a period
of time to allow any residual error to once again manifest
itself by saturating the error counters. This period depends
upon the saturation level of the counter and the latencies of
component Ck and the RCN. These wait times are of the order
of a few µs [1], [2]. The RC checks whether Ck is still affected
by errors, and if the same error signature is decoded, Chk
is incremented in order to recover the next sub-component
indicated by the recovery sequence. If errors persist after all
suspect sub-components have been reconfigured, a scrub is
performed to sweep away all accumulated errors, and the flow
is re-initialized by returning to entry point A.

2) Recovery Sequence: Table I lists the repair order we use
with the flow. The recovery sequence is based on the suspects
identified for each error signature. For each type of signature,
the priority is to recover logic blocks first, followed by the
component nets. The main reason for this preference is that the
programmable bits are more densely located in the logic blocks
than in the nets, while the nets are more vulnerable at their
source and destination terminals, which are always included
in the logic blocks. Reconfiguring the block components first
results in higher repair efficiency. For signature (i), Mk_j is
to be recovered first. If the recovery of the module does not
clear the error, the error is deemed persistent and V(k−1)_j

is recovered next, followed by the three component nets
vout(k−1)_j , moutk and mout(k−1). For signature (ii), since
the utilization of routing and switch resources for dedicated
nets and NC-related logic is far lower than for the logic sub-
components, the recovery sequence commences with logic
blocks first and follows up with recovery of the RCN sub-
components: Vk_i and moutk are recovered first, followed by
NCi and the dedicated routing for ek_i. For signature (iii),
it is only worthwhile recovering moutk before resorting to a
complete scrub of the device.

D. Triggered Scrubbing

Systems that solely rely on scrubbing to correct configuration
memory errors usually perform a scrub periodically as they
do not usually monitor system outputs to determine when
configuration memory errors may be present. However, when
the outputs of system components are monitored using the

architecture outlined in Section III-A, it is feasible to trigger a
scrub cycle when a configuration error is detected. In this case,
the error correction flow of Fig. 3 can be adapted to perform
a scrub whenever an error is detected, and to restart the flow
after the scrub is finished. In this case the prioritized recovery
sequence is ignored.

IV. FINE-GRAINED DYNAMIC RECONFIGURATION

Conventional TMR-MER SoCs (e.g. [1], [12], [13]) rely on
the vendor’s partial reconfiguration flow [8] to generate partial
bitstreams for the component modules. These partial bitstreams
are stored in external memory and a lookup table is created
for the RC to index these files [1], [13]. When a permanent
error is detected, the RC fetches the indexed file from memory
and writes it to the ICAP. However, as indicated in Section II,
the flow is not flexible enough for robust and efficient SEU
recovery in fault-tolerant systems. This is mainly because the
original intention of the flow was to create a partial region to
allow for dynamic hardware changes. Partition pins have to be
placed on the boundary of the region, which result in extra
delay on the interface signals as well as slower compilation
and longer design cycles. Most importantly, in the architecture
described in Section III-A, the RCN and the interconnecting
nets between voters and modules are not amenable to modular
reconfiguration using the partial reconfiguration flow.

In this section, we propose a fine-grained dynamic partial
reconfiguration approach (FDPR). Our approach uses the stan-
dard FPGA project flow while overcoming the drawbacks
of the vendor’s partial reconfiguration flow when applied to
fault-tolerant systems. The approach includes a design method
for identifying the sets of frames pertaining to the sub-
components, such as the module outputs moutk, voter outputs
voutk_j , RCN nets ek_i, voters and network controllers, which
needs to be applied after the design is floorplanned and
implemented using the standard flow. We also describe a
bitstream composition method that enables retrieving arbitrary
sets of frame data from a full bitstream at run time.

A. Major Columns on 7-Series FPGAs

We describe the proposed FDPR approach for Xilinx 7-series
devices. Programmable resources on a 7-Series device are tiled
in major columns [8] [14]. A major column is a column of
resources in a single clock region, of which there are several
in a device. It also includes a column of switch matrices that
provides access to the general routing matrix. A major column
is configured via a contiguous set of configuration frames, each
of which forms a bit slice of the configuration memory for the
major column. The size of the contiguous set of frames used to
configure a major column depends upon the type of resources
it contains. Every pair of major columns shares a local clock
buffer.

B. Configuration Memory Boundaries

An FPGA application circuit is typically implemented using a
number of CLBs. Interconnecting signals are routed via switch
matrices to their destination CLBs. Floorplanning enables
resource allocation within a specified region, which may be as

104

narrow as a single major column. The placer can be instructed
to only place the logic of part of a design (a logic block) within
such a specified region. The router can also be constrained to
only use the switch matrices within the region for the internal
routing of the logic block. When a logic block and its internal
routing are constrained in this way, the design can be partially
reconfigured to recover from configuration memory errors that
affect the block by just reconfiguring the configuration frames
of that region. If the design is synchronous, then local clock
buffers are also used, and the other major column that shares
the clock buffer must also be reconfigured.

The detailed routing of nets that interconnect different logic
blocks can be retrieved from the implementation database of
the design. The information stored in the database includes
the name of any entry or exit Programmable Interconnect Pin
(PIP) the net uses, the switch matrices that own these PIPs,
and the segments of the general routing matrix forming the net.
The major columns that implement the net can be extracted
from the names of the switch matrices used. Configuration
memory errors in a net can thus also be recovered by simply
reconfiguring the configuration frames of the major columns
it uses.

C. Floorplanning

Fig. 4 illustrates one possible floorplan for the proposed TMR
architecture outlined in Section III-A. The circuit spans three
rows of major columns. Modules and voters are constrained to
be placed in different major columns as shown in Fig. 4(a). Fig.
4(b) presents the major columns relating to the interconnection
nets between the modules and the voters. As the output nets
from the triplicated modules (moutk_0,1,2) are intertwined, we
treat them as a single sub-component for recovery purposes.
The router automatically routes voter outputs and module
outputs in the gaps between the closest module and voter.
Fig. 4(c) shows the major columns relating to the triplicated
RCN. The NCs are also isolated and constrained to different
rows of major column. The NCs connect to the voters via
error signals. The signal sinks correspond to switch matrices.
The major columns that contain these switch matrices will be
recovered if the RCN signals are determined to be in error.
The routes of the triplicated RCN are isolated because they
are implemented in different major column rows. However, in
large-scale systems, the RCN connects voters from different
regions of the device. It may then become impossible to isolate
the RCN replicas from each other in this way. Although few
single errors would cause more than two RCN replicas to fail,
a better design method is then needed to avoid the use of PIPs
that will bridge two nets if corrupted.

To improve area usage, small modules can be implemented in
a single clock region using a similar layout. However, in this
case, each copy should be provided with its own clock signal
to ensure ongoing protection if an SEU disables a clock buffer.

D. Dynamic Repair Bitstream Composition

A full bitstream is written when the device boots. This bit-
stream comprises a bitstream header and configuration frame
data. The bitstream header is the command sequence that is
loaded before the frame data are written. After the commands
are issued to the device fabric, the data for the first frame,
at frame address 0, are written. The frame address register
auto-increments and the data of the second frame are written
straight after the last word of the first frame.

Usually a full bitstream is difficult to index. However, com-
pared with a typical full bitstream, the full bitstream for critical
systems usually have single-frame CRC checking enabled.

v

v

v

v

v

v3
 r

o
w

s
o
f
m

a
jo

r
co

lu
m

n
s

sp
a

n
n
in

g
 3

d
if
fe

re
n

t
cl

o
ck

 r
e
g

io
n
s

v

v

v

v

v

v

NC

NC

NC

vv vv

vv vv

vv vv

(a)

(b)

(c)

Fig. 4. One possible floorplan (a) Logic, (b) Intra-component nets, (c) RCN

Frame headers are then inserted after every single frame of
data. The header contains the CRC check sequence as well as
the address of the previous frame. We use this information
to extract frame addresses and to index them according to
their byte offset in the file. When the bitstream is loaded into
external memory, we can then extract the data for arbitrary
frames according to their byte offsets.

Storing the frame index potentially necessitates a large context
memory for the RC. To minimize the amount of memory
required, we only index the address of the first frame for
each major column that is needed for the recovery strategy.
The range of frame addresses for the sub-components can be
calculated off-line and stored with the index. The frame write
operation is done as for the full bitstream with single frame
CRC check enabled.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate the recovery latency, energy used
in correcting configuration memory, and the reliability of
the proposed approach, and compare the results with those
obtained for MER when scrubbing is used to recover from
errors that occur outside the TMR modules, with on-demand
scrubbing that is triggered by SEUs located anywhere in the
system, and with periodic scrubbing. We evaluate the fine-
grained dynamic reconfiguration method described in Section
IV via an exhaustive fault injection experiment on a typical
hardware implementation of the system model of Section III-A,
based on a Nexys-4 Video board implemented using Vivado
2015.4. The board includes a Xilinx Artix-7 XC7A200T device
which is clocked at 100MHz.

The purpose of the fault injection experiment was to find
the critical bits of the test circuit, to log their locations, and
to record the error signatures they gave rise to. The results
were used to validate the persistent error effects described in
Section III-B, to evaluate the soft-error vulnerability of the sub-
components in the test circuit, and to evaluate the performance
of the proposed recovery method.

105

Xilinx Artix-7 XC7A200T FPGA

lfsr0

id0

ShiftRegister0

ShiftRegister1

ShiftRegister2

lfsr1

lfsr2

id1

id2

sel0

sel1

sel2

NC0

NC1

NC1

done1

done2

done0

HWICAP

Fault

Injector

Signature

Decode

Host

PC

vfb0

vfb1

vfb2

UART

Reconfig.

Controller

V
1
_

0

Test Harness

(MicroBlaze)

V
1
_

1
V

1
_

2

V
0
_

0
V

0
_

1
V

0
_

2

Fig. 5. Experimental setup

NC0,1,2 V1_0,1,2

M1_0,1,2

(Shift Registers) V0_0,1,2

M0_0,1,2

(LFSR)

RC & Fault

Injector

Fault Injection

Region (DUT)

Fig. 6. Floorplan of the test harness, and test circuit in three clock regions
on the right-hand side of the device

A. Experimental Setup

1) Test Circuit: Fig. 5 depicts a block diagram of the test
system implemented on the Nexys-4 Video board. The test
circuit comprises two TMR components representing both
cyclic state-machine logic and acyclic datapath logic [1]. To
represent a typical state machine, we chose a 64-bit Linear-
Feedback Shift Register (LFSR). The LFSR serves as a random
test vector generator for the DUT and emulates the upstream
voters and nets illustrated in Fig. 1. The acyclic datapath logic
was represented by a Shift Register (SR) module in which all
logic paths travelled without feedback from the input to the
output of the module. The module comprised 8 stages of 64-
bit registers with a variety of arithmetic operations mapped into
the look-up tables (LUTs) of each stage. In our experimental
setup, the SR module processed the data generated by the
LFSR module.

The LFSR modules, their voters and module outputs comprise
C0 of the design. As there is feedback from the LFSR voter
back to the LFSR input, the LFSR voter also behaves as an
upstream voter with respect to the LFSR component. The SR
modules, its voters, and their connection to the RCN form C1

of the Design Under Test (DUT).

We floorplanned the test circuit according to the guide-
lines provided in Section IV-C. The DUT contained 26 sub-
components in total. These included three identical LFSR
modules (M0_0,1,2) and three SR modules (M1_0,1,2), six
voters (V0,1_0,1,2), triplicated NCs (NC0,1,2), two sets of nets
connecting the modules to their voters (mout0,1), three voter
output signals (vout0_0,1,2), and the dedicated error signal
for each voter (e0,1_0,1,2). The voter output of C1 was not

TABLE II. BLOCK SUB-COMPONENT AREA & RECOVERY TIME

Sub-component LUT
Flip- Major

Frames
Recovery

Flops Columns Time (ms)

M0_0,1,2 8 64 2 64 2.0

V0,1_0,1,2 153 66 2 72 2.3

M1_0,1,2 2,548 512 20 712 22.6

NC0,1,2 43 34 2 72 2.3

TABLE III. NET SUB-COMPONENT AREA & RECOVERY TIME

Sub-component PIPs
Switch Major

Frames
Recovery

Matrices Columns Time (ms)

mout0 10,690 632 35 1,188 39.7

mout1 10,358 637 50 1,712 55.8

vout0_0 3,077 161 12 416 13.7

vout0_1 3,050 143 13 452 14.8

vout0_2 3,131 172 12 416 13.7

e0_0 41 11 11 380 12.3

e0_1 41 18 18 624 20.3

e0_2 41 19 16 552 18.0

e1_0 22 7 4 136 4.6

e1_1 23 7 5 172 5.7

e1_2 22 4 3 100 3.4

evaluated because it did not connect to any downstream logic
in this design. The frame sets for these sub-components were
extracted using the method described in Section IV-B.

2) Test Harness: The test harness implemented a fault injector,
an error signature decoder, and an RC program running FDPR
of Section IV-D.

Since the full bitstream was stored in an SPI flash mem-
ory from which the device booted, we implemented a flash
controller to access this memory. The controller allowed a
maximum read throughput of 25 Mbyte/s through quad SPI
protocol running at 50MHz. We stored the byte offset of the
first frame of each major column in an array. The total program
memory needed for the array was 530 entries, corresponding
to the 5×106 major columns available in the device. The list
of the major columns used by the sub-components was also
stored in program memory, the size of which depended on the
number of major columns they used. When the reconfiguration
of a sub-component was triggered, the data for the frames of
the corresponding major columns were fetched from the flash
memory and transferred to the ICAP with the required frame
headers using a DMA engine.

We measured the reconfiguration latency of different sub-
components and used the same hardware setup to measure the
latency of a complete blind scrub of the device. The frames
to be scrubbed were also extracted from the full bitstream as
described in Section IV-D.

Fig. 6 shows the layout of the test system on the device.
The test circuit was implemented in the three shaded clock
regions depicted on the right side of the device — we injected
faults (configuration bit flips) into this region using dynamic
partial reconfiguration. The MicroBlaze was implemented in
the two central clock regions on the left side of the device.
This region was not subjected to fault injection. In total,
we injected 16,134,144 faults into 4,992 frames of the DUT,
thereby injecting a fault into every configuration bit of the
DUT.

After an error was injected, the RC was programmed to wait
for 1 µs in order to let the error emerge. Only then did it check
the output of the RCNs. For this DUT, a bit was deemed not to
be sensitive if the RCN did not report an error. Otherwise, the

106

TABLE IV. FAULT INJECTION RESULTS

Sig
Number of Checks (Chk)

Sub-component Reconfiguration Sequence
1 2 3 4 5 6

i0 4,882 959 N/A 627 N/A 0 M0_0,1,2 → V0_0,1,2 → mout0

ii0 15,862 6,623 159 44 0 V0_0,1,2 → mout0 → NC0,1,2 → e0_0,1,2

iii0 3,656 0 mout0

i1 633,901 4,788 2,038 748 23 0 M1_0,1,2 → V0_0,1,2 → vout0_0,1,2 → mout1 → mout0

ii1 18,248 7,282 115 0 0 V1_0,1,2 → mout1 →NC0,1,2

iii1 4,364 0 mout1

TABLE V. SUB-COMPONENT CRITICAL BITS SUMMARY USING

PROPOSED RECOVERY SEQUENCE

Sub-component
Critical Bits

Average Recovery Latency (ms)

Found
MER/ MER/ Triggered

FDPR Scrub Scrub

M0_0,1,2 1,307 2.0 2.0 216.0

mout0_0,1,2 3,590 41.5 216.2 216.0

V0_0,1,2 4,107 7.4 221.1 216.0

vout0_0,1,2 430 38.9 238.6 216.0

e0_0,1,2 15 48.3 216.0 216.0

M1_0,1,2 211,300 22.6 22.6 216.0

mout1_0,1,2 4,058 59.9 216.8 216.0

V1_0,1,2 3,655 2.3 216.0 216.0

NC0,1,2 77 52.4 216.0 216.0

RC reported the sensitive bit location and the error signature to
the host. Thereafter, the faulty bit was corrected by reversing
the injected bit flip. Between each injection cycle, the RC
waited another 1 µs to allow the correct data to flush through
the test circuit.

The host PC used the bit locations reported as causing errors
to determine which sub-component of the design was affected
and, together with the reported error signature, determined
which sub-components would have been reconfigured to clear
the error according to the repair strategy described in Section
III-C. The total number of frames that would consequently
have been reconfigured and the reconfiguration latency that
would have been incurred to recover the observed errors were
logged against each error report. Note, therefore, that for this
experiment the repair strategy was not actually running on the
board. Instead, the host simulated the strategy based on the
error location and signatures contained in the error reports it
received and assuming that the error would have persisted until
the sub-component containing the error, as identified by the
error location, would have been reconfigured.

B. Results

1) Fine-grained Dynamic Reconfiguration of Subcomponents:
Tables II & III report the utilization, number of major columns
and number of configuration frames for each of the sub-
components in the design, as well as the reconfiguration times
that we measured using the proposed fine-grained dynamic
bitstream composition method. Using this method, on our
platform we found that we could sustain a transfer rate of one
frame every 32 us. This is a reasonably good result considering
the constraints imposed by the board architecture (SPI flash)
and the use of Microblaze and AXI-HWICAP.

While the LFSR modules are relatively small, since they are
synchronous, we need to reconfigure the neighboring major
columns to recover from any errors affecting their clock
buffers, as explained in Section IV-B. In our design, the
outputs of the LFSR voters were registered to separate the
feedback path from the module output. For efficiency’s sake,
we included the feedback path in the mout0 sub-component.

On our platform, we found that to perform a blind scrub of the
device we had to overwrite 18,300 frames in total. The latency
for a scrub cycle was 432 ms, which corresponds to a sustained
transfer rate of one frame every 24 us. This performance is
limited not just by the board and circuit architecture, but also
by the need in our test to retrieve each frame individually
from the indexed complete bitstream. It should be noted that
the use of a purpose-designed scrubber could be expected to
use considerably less than 432 ms to scrub the device.

On the tested circuit, the worst-case repair time using our
proposed repair strategy was 135 ms, which involved the
reconfiguration of one of the SR modules, its upstream voter
and voter output, the nets between the SR modules and their
voters (mout1), and those of the LFSR modules and their
voters (mout0 of the upstream component). This maximum
repair time is approximately 1/3 of the scrub cycle latency,
which represents a substantial reduction in the repair time. At
most, we found we had to reconfigure just over 4,136 frames,
which is less than 1/4 of those needed to perform a scrub.

2) Fault Injection Results: Table IV reports on the exhaustive
fault injection experiment. The subscripts indicate the signa-
tures for the LFSR and SR components (0 & 1) respectively.
The table reports for each error signature (i0 - iii1) how
many reconfigurations of the sub-components were triggered
(Number of Checks) according to our repair strategy. The sub-
components reconfigured for each error signature and their
priority, as proposed by the repair sequence, is also listed.

As can be seen from Table IV, a complete scrub of the device
was not required to recover any emulated SEU during our fault
injection experiment. We therefore conclude that the repair
strategy is effective at quickly recovering from single errors
within the test circuit, and that in the worst case, the strategy
is able to recover from errors substantially faster and using
considerably less energy than a scrub cycle.

In total, 680,931 errors were reported for 16,134,144 fault
injections. For error signature (i), the number of reports for the
LFSR and SR modules differ greatly because their utilizations
differ greatly. For error signatures (ii) & (iii), both components
show the same trend on the number of checks per signature.
It is clear that voters and the interconnecting nets between
voters and modules are much more prone to errors than the
RCNs. Since the LFSR component is further away from the
NC, its routing net utilization is greater than for the SR com-
ponent, and thus, its RCN nets present more errors. However,
since the reconfiguration frames for these sub-components are
different, the average number of frames recovered for these
sub-components differ.

C. Frames, MTTR & Energy

Table VI compares the average number of frames reconfigured
per error, the average recovery time and the energy expended
to repair the error assuming each frame write consumes 535
nJ [15]. The proposed fine-grained DPR approach to MER is
listed as MER/FDPR and its performance is compared with,

107

TABLE VI. FRAMES, MTTR AND ENERGY RESULTS

MER/FDPR MER/Scrub Triggered Scrub

Frames 695 1,950 18,300

MTTR (ms) 22 36 216

Energy (mJ) 0.37 1.04 9.79

on the one hand, a more conventional approach to MER in
which errors that occur outside the reconfigurable modules are
recovered by scrubbing the device (MER/Scrub) [2], and on
the other, by triggering a scrub whenever any error is detected
in the system (Triggered Scrub). In each case, the test system is
used to trigger reconfigurations or scrubs as outlined in Section
III. While triggered scrubbing needs to scrub 18,300 frames,
MER/FDPR only needs to reconfigure 695 frames on average.
While these results are application and device dependent, they
are representative of the gains that are possible. In our case, the
MTTR for MER/FDPR was only 10% of that for scrubbing.
MER/FDPR is also the most energy efficient approach of those
we have studied. As energy consumption is assumed to be
proportional to the number of frames that are rewritten, in
our study we found the fine-grained DPR approach was 2.8×
more efficient than MER/Scrub and 26× more efficient than
triggered scrubbing. A periodic scrubbing approach is likely
to expend more energy or compromise MTTR if the period
between scrubs is reduced.

D. Reliability

Table V summarizes the critical bits we found in the test circuit
via the fault-injection experiment and the average recovery
time for these sub-components using MER/FDPR, MER/Scrub
and Triggered Scrub. The average recovery times for sub-
components using MER/FDPR and MER/Scrub were derived
from Table IV, which was used to calculate the number of
times an error was found in each sub-component, and to
identify which sub-components were reconfigured according to
the reconfiguration sequence. The average recovery time was
used as input to a Markov reliability model derived from [16],
[2]. Fig. 7 plots the resulting reliability of the test circuit using
the proposed MER/FDPR, the more conventional MER/Scrub,
Triggered Scrub and periodic scrubbing (Periodic Scrub) in
LEO and GEO over a 4-year mission. Furthermore, we have
zoomed in to certain parts of the reliability plots to show
how the MER/FDPR performance compares with MER/Scrub.
Note that the Periodic Scrub plot needs the same recovery
time as Triggered Scrub, but that it excludes the RCN sub-
components (NC0,1,2 and e0_0,1,2), as these are not needed for
this approach. In our analysis, we have assumed high bit failure
rates using the peak 5-min CREME96 model [17] with 2.54
mm aluminum shielding for these two orbits. Thus, in LEO,
we assume 8.41E-12 upset/bit·s, while in GEO, this figure
is 2.66E-10 upset/bit·s. We find that both MER/FDPR and
MER/Scrub approaches can be expected to be more reliable
than scrubbing because of the significant reduction in the
MTTR of critical system sub-components.

VI. CONCLUSION

In this paper, we have proposed a fine-grained module-based
error detection and dynamic reconfiguration scheme that can
detect and recover any error present in TMR-based SoCs
without additional hardware or resorting to scrubbing. We
evaluated our method by injecting faults into a typical test
circuit. The result shows that with the proposed method, we
can achieve a slight improvement in reliability over the more
conventional module-based configuration memory error recov-
ery scheme that triggers a scrub cycle when an error repeats

0 1 2 3 4
0.9995

0.9996

0.9997

0.9998

0.9999

1.0000

t (years)
(a)

R
e
lia

b
ili

ty

3.8 3.9 4
0.9999

0.9999

0 1 2 3 4
0.6

0.7

0.8

0.9

1.0

t (years)
(b)

R
e
lia

b
ili

ty

MER/FDPR MER/Scrub Triggered Scrub Periodic Scrub

3.96 3.98 4
0.9475

0.948

0.9485

Fig. 7. Reliability results: (a) λbit = 8.41E − 12 (LEO), (b) λbit =

2.66E − 10 (GEO)

or the triplicated reconfiguration control networks disagree [2],
but it is also much more energy efficient — in our case we
found an improvement of almost two-thirds in the energy
consumption. The advantages of the proposed approach in
terms of energy efficiency and reliability over triggered and
periodic scrubbing are even greater. Finally, it should be noted
that our fine-grained reconfiguration method applies to Xilinx-
4 to 7-series devices, but may not port directly to the UltraScale
family.

REFERENCES

[1] E. Cetin, O. Diessel, L. Gong, and V. Lai, “Towards bounded error
recovery time in FPGA-based TMR circuits using dynamic partial
reconfiguration,” in FPL, 2013, pp. 1–4.

[2] D. Agiakatsikas, N. T. Nguyen, Z. Zhao, T. Wu, E. Cetin, O. Diessel,
and L. Gong, “Reconfiguration Control Networks for TMR Systems
with Module-based Recovery,” in FCCM, 2016, pp. 88–91.

[3] F. Siegle, T. Vladimirova, J. Ilstad, and O. Emam, “Mitigation of
Radiation Effects in SRAM-Based FPGAs for Space Applications,”
CSUR, vol. 47, no. 2, p. 37, 2015.

[4] D. M. Hiemstra and V. Kirischian, “Single Event Upset Characteri-
zation of the Kintex-7 Field Programmable Gate Array Using Proton
Irradiation,” in REDW, 2014, pp. 1–4.

[5] G. Swift, C. Carmichael, G. Allen, G. Madias, E. Miller, R. Monreal
et al., “Compendium of XRTC radiation results on all single-event
effects observed in the Virtex-5QV,” MAPLD, pp. 1–33, 2011.

[6] PG036: Product Guide - Soft Error Mitigation Controller (v4.1), Xilinx
Inc., 2015.

[7] G. L. Nazar, L. Pereira Santos, and L. Carro, “Fine-Grained Fast Field-
Programmable Gate Array Scrubbing,” IEEE Trans. on VLSI Systems,
vol. 23, no. 5, pp. 893–904, 2015.

[8] UG909: Vivado Design Suit User Guide - Partial Reconfiguration,
Xilinx Inc., 2015.

[9] J. M. Johnson and M. J. Wirthlin, “Voter insertion algorithms for FPGA
designs using triple modular redundancy,” in FPGA, 2010, pp. 249–258.

[10] S. D’Angelo, C. Metra, S. Pastore, A. Pogutz, and G. R. Sechi, “Fault-
tolerant voting mechanism and recovery scheme for TMR FPGA-based
systems,” in DFT, 1998, pp. 233–240.

[11] G. Asadi and M. B. Tahoori, “Soft error rate estimation and mitigation
for SRAM-based FPGAs,” in FPGA, 2005, pp. 149–160.

[12] C. Bolchini, A. Miele, and C. Sandionigi, “A novel design methodology
for implementing reliability-aware systems on SRAM-based FPGAs,”
IEEE Trans. on Computers, vol. 60, no. 12, pp. 1744–1758, 2011.

[13] M. Straka, J. Kastil, Z. Kotasek, and L. Miculka, “Fault tolerant
system design and SEU injection based testing,” Microprocessors and
Microsystems, vol. 37, no. 2, pp. 155–173, 2013.

[14] UG470: 7 Series FPGAs Configuration User Guide, Xilinx Inc., 2013.

[15] J. Tonfat, F. Kastensmidt, and R. Reis, “Analyzing the effectiveness of a
frame-level redundancy scrubbing technique for SRAM-based FPGAs,”
IEEE Trans. on Nuclear Science, vol. 62, no. 6, pp. 3080–3087, Dec
2015.

[16] D. McMurtrey, K. S. Morgan, B. Pratt, and M. J. Wirthlin, “Estimating
TMR reliability on FPGAs using Markov models,” 2008. [Online].
Available: http://scholarsarchive.byu.edu/facpub/149

[17] A. Tylka, J. Adams, P. Boberg, B. Brownstein, W. Dietrich, E. Flueck-
iger, E. Petersen, M. Shea, D. Smart, and E. Smith, “CREME96: A
revision of the cosmic ray effects on micro-electronics code,” IEEE
Trans. on Nuclear Science, vol. 44, no. 6, pp. 2150–2160, Dec 1997.

108

