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Abstract – Reconfigurable systems based on Field-Programmable 
Gate Arrays (FPGAs) can offer performance and power advantages 
over processor-based systems as well as cost and flexibility 
advantages over custom integrated circuit solutions. Dynamic 
reconfiguration, the ability to partially modify a circuit 
implementation at run-time, has the potential to extend the flexibility, 
utilization, and resilience of FPGA-based systems even further. In 
this paper we review the capabilities of this technology with respect 
to applications in electronic measurement and instrumentation and 
present results on testing and assuring the correctness of 
dynamically reconfigurable systems at design and run time. 
 
Keywords – Dynamically reconfigurable systems, FPGA, modular 
reconfiguration, simulation, SEU mitigation. 

I. RECONFIGURABLE SYSTEMS 

Digital computing systems are mainly implemented using 
one of two approaches. The desired function is either 
programmed as software into a processor, or it is realized in 
hardware as a digital circuit of an electronic device. The 
processor-based approach is relatively quick and easy to 
implement and modify, and is relatively cheap to deploy in 
small volumes. In contrast, the circuit-based approach is more 
complex and time-consuming to design and implement, may 
be impossible to modify, and only becomes cheap in very 
large volumes. On the other hand, relative to 
custom-designed circuits, processors expend more energy and 
have lower performance in operation. 

Within the spectrum of implementation choices, 
Field-Programmable Gate Arrays (FPGAs), using static RAM 
(SRAM) as a configuration memory to implement application 
circuits post production, have created a niche for themselves 
between processors on the one hand and custom circuits on 
the other. FPGAs are universal digital devices in that the one 
device can be used to implement any digital circuit for which 
there are sufficient resources available.  Fundamentally, an 
FPGA achieves this universality by providing a large number 
of configurable logic elements, composed of small look-up 
tables (LUTs) and flip-flops (FFs), that can be arbitrarily 
interconnected via a configurable wiring matrix. A specific 
function is realized by setting the desired function into the 
LUTs, and interconnecting these with FFs and input/output 
(IO) pins via wires that are selected by setting appropriate 
 

routing switches between signal sources and their 
destinations. The desired functionality is implemented by 
loading the FPGA’s configuration memory with a 
configuration bitstream that contains the required LUT and 
routing switch settings. Changing the functionality 
implemented by the device simply involves loading a 
different configuration bitstream. Since FPGAs can be 
reconfigured to implement different circuits as readily as 
processors execute different programs, they bridge the gaps 
in flexibility, performance, energy consumption and costs 
between custom devices and processors. 

FPGAs have proven themselves effective and competitive 
at a range of processing tasks. These include fundamental 
operations such as filtering, matching, sorting, switching and 
control. A prime application domain is signal processing, 
including image, video, and radar. Suitability for using 
FPGAs as core computational devices in these applications 
depends upon the performance requirements (more is better), 
available lead time (less is better), the need for processing 
flexibility (greater is better), and volume of the market 
(smaller is better). Another class of processing problems that 
is well matched to the capabilities of FPGAs is stream 
processing, which includes network traffic and video 
processing, cryptography, genomic sequence alignment, and 
database processing. FPGAs are also commonly found in 
very specialized, high-end simulation (e.g. N-body, cellular 
automata) and big science (e.g. the ALICE experiment of the 
Large Hadron Collider as well as the cross-point switches and 
correlators for the Australian Square Kilometre Array 
Pathfinder) projects. 

II. DYNAMIC RECONFIGURATION 

Since FPGA configurations are most commonly stored in 
volatile SRAM, they are typically loaded when the device is 
powered on from off-chip storage such as a PROM or flash 
device. Unless there is a need to change the functionality of 
the FPGA, it is not reconfigured while in operation. If a 
change in function is desired, the off-chip configuration store 
is overwritten so that when the FPGA is next re-started, the 
new configuration is loaded instead.  

Certain FPGA device families provide a special operating 
mode in which part of the configuration memory can be 
reloaded while the unaffected user logic continues to operate. 
Because it occurs at run time, this is referred to as dynamic 
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reconfiguration (DR), and it has the potential to significantly 
enhance the functionality of the FPGA. 

A common use of DR is to reuse FPGA area for different 
functions that are readily time-multiplexed, e.g. when 
different functions are needed in different operating “modes”. 
An example of such a use is a so-called muxponder function 
in which a network switch is capable of supporting one of 
multiple communications protocols e.g. 10 GigE, OC48, and 
fibre, and is reconfigured between connections to implement 
the protocol needed for the next connection [36]. This type of 
use can be characterized by the design-time knowledge of the 
variety of circuit modules that may be swapped at run time. A 
generalization of the approach, described below, aims to 
provide an open system in which the modules that are 
swapped in at run time may not be known at design time. 

A more refined usage of DR replaces existing circuits with 
variations of them to adapt the function to changing 
environmental conditions and requirements. For example, a 
receiver may dynamically adapt the number of CORDIC 
operators to the data rate and antenna number in a MIMO 
detector [32]; an email spam filter must be adapted to detect 
new threats as they emerge [10]; similarly, an electronic 
jammer needs to respond to rapidly changing characteristics 
of radio signals [7]. This use of DR complements circuit 
optimizations such as constant folding [34] and partial 
evaluation [30]. This type of use may need to rely on rapid 
circuit specialization at run time, which may constrain the 
complexity of the circuits it is applied to. 

As alluded to in the first example of DR use above, 
another application of DR is to support “general-purpose” 
hardware acceleration as seen in experimental systems such 
as DISC [33], the Erlangen Slot Machine [23], and Intel’s 
QuickAssist technology [19]. For this application, the 
FPGA’s resources are organized so that they can be shared in 
space and time by multiple (potentially unrelated) tasks. 
Regions of the FPGA are reconfigured with new tasks, and 
may even have their tasks pre-empted, with the current state 
being saved before the task is unloaded. Independently 
loading an FPGA-based task while others are running is not 
possible without DR. This type of use relies upon the design 
of an effective framework and run-time manager for 
concurrently sharing IO, memory and wires among multiple 
independent FPGA-based circuits. Individual tasks need to be 
designed with these constraints in mind. 

Finally, DR has also been used to provide fault tolerance 
in at least two ways. First, tasks can be migrated between 
hardware and software [29], or between resources on an 
FPGA [6]. A second use is to clear soft errors that have 
affected the configuration memory of an FPGA [3].  

A. Possible uses of DR in EMI 

The characteristics of DR that are potentially useful to 
electronic measurement, test and instrumentation applications 
are the ability to reuse hardware for different test circuits over 
time (time-multiplexed hardware) and the ability to rapidly 
specialize the test circuits to particular requirements. 

Virtual instruments capable of meeting real-time 
processing constraints can be created using FPGAs that are 
dynamically reconfigured as the instrument is switched from 
one intended use to another. The potential advantage is that a 
partial dynamic reconfiguration takes less time than a 
complete static reconfiguration, and that the instrument can 
continue to operate while a subset of its functions are being 
reconfigured. Exploiting DR thereby enhances the flexibility 
and capability of the instrument.  

VLSI testing can involve use of a large number of 
high-speed custom controllers. The specific controllers 
needed to test a particular chip could be implemented using 
FPGAs. The testing of complex chips may involve the 
creation of more control circuits than the test system can 
implement at once. Reconfiguration thus allows for an 
extensible hardware system to be created with the potential to 
implement a limitless number of specific tests. Dynamically 
reconfiguring the test system while it is operating has the 
potential to save considerable down time that would be 
incurred if the complete device were to be reconfigured 
statically while inactive. 

When test equipment requires circuits to be specialized to 
meet performance constraints, DR might be exploited to 
adapt test circuits to specific needs, or to trial new approaches 
(such as searching the test circuit space) to perform a test.  

It is also noteworthy that a number of specialized, 
high-speed instruments, as used in medicine [9], astronomy 
[17] and particle physics [11] have been constructed by 
employing DR to enhance flexibility, reduce power and 
improve radiation tolerance. 

III. TESTING & ASSURING THE CORRECTNESS OF 
DYNAMICALLY RECONFIGURABLE SYSTEMS 

Dynamic reconfiguration introduces additional complexity 
to the validation and testing of hardware. This additional 
complexity is due to the dynamic nature of the hardware. 
Hardware is traditionally considered static, and design and 
test methods have evolved around this central tenet. 
However, when hardware can change at run time, not only do 
we need to determine the correctness of the system before 
and after the change, we need new methods for testing that 
the system remains correct while the change is in progress. 
There is thus a need for tools and methods that assist in 
validating dynamically reconfigurable designs, in testing 
implementations, and in assuring correct operation at run 
time. 

A. Design Time Validation 

Apart from validating each configuration of a dynamically 
reconfigurable system, it is essential to test and debug the 
integrated DR design, including the behavior immediately 
before, during and after partial reconfiguration [13]. 
Unfortunately, FPGA vendors such as Xilinx do not provide 
methods for simulating the reconfiguration process [36]. 
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DR is commonly simulated via the insertion of a 
multiplexer into the design to interleave the communication 
between reconfigurable modules connected in parallel [20]. 
This method is the basis for more recent efforts in simulating 
DR. However, it only models module swapping and fails to 
simulate other aspects of DR, such as module isolation and 
bitstream retrieval, which is increasingly handled on-chip. 

The more recent Dynamic Circuit Switch method [21], 
[26], [27] improves the simulation accuracy of DR designs in 
various respects. However, like the virtual multiplexing 
approach, it assumes that the reconfiguration delay is zero or 
a constant and does not simulate bitstream traffic. 
Furthermore, reconfiguration is triggered by monitoring 
designer-selected signals in the Register Transfer Level 
(RTL) code, whereas on real FPGAs, module swapping is 
triggered by bitstream transfer. 

ReChannel [25] is a SystemC-based, open source library 
to model DR at the transaction level. However, such 
extension only focuses on the high-level modeling of DR 
whereas the reconfiguration details (e.g. module isolation, 
bitstream retrieval, accurate reconfiguration delay, triggering 
of module swapping) of a design are not modeled or verified. 

Our recent work, ReSim [14][15], improves the simulation 
accuracy by using simulation-only bitstreams as substitutes 
for the real bitstreams so as to accurately model the transfer 
of bitstreams and the timing of reconfiguration, and is the 
first work to support the cycle accurate RTL simulation of the 
complete reconfiguration process of an integrated DR design. 

B. On-chip Testing 

Field testing runs the implemented design on the target 
device under real-world conditions. However, tracing the 
cause of a bug on the implemented design requires extra 
effort to insert probing logic using vendor tools (e.g., 
ChipScope [35] and SignalTap [1]) and the design needs to 
be re-implemented every time a different set of user design 
signals is to be probed. The debug turnaround time of on-chip 
debugging is therefore at least as long as the time-consuming 
implementation stage. Furthermore, since probing logic can 
only visualize a limited number of signals for a limited period 
of time, on-chip debugging typically involves more iterations 
to identify the source of a bug than simulation requires. Last 
but not least, collecting and analyzing coverage data on chip 
is not guided by quantifiable metrics. As a result, it is 
essential to perform thorough simulation-based functional 
verification to detect as many logic errors as possible before 
testing the implemented design on the target FPGA [37].  

C. Run-time Checking 

Checking designs are behaving as expected and that the 
conditions under which a design operates are as expected can 
be achieved using run-time assertions [31].  

When physical faults, permanent or hard errors are 
detected, reconfigurable systems may make use of spare or 
redundant hardware [6]. 

When transient errors are to be tolerated, the most 
common approach is to use spatial redundancy, such as Triple 
Modular Redundancy (TMR), to detect and hide the errors 
[22]. In order to overcome transient errors leading to changes 
in datapath register values, the XTMR tool ensures all 
register inputs are voted upon [38].  

The extensive configuration memory of FPGAs is a 
significant potential source of error, particularly when it is 
subjected to ionizing radiation, such as in space-based, 
airborne and very large-scale or radiation-exposed terrestrial 
applications. This is due to the fact that configuration 
memory bit flips can alter the function of a logic cell or the 
interconnection of components and thus present the same 
symptoms as hardware errors. These errors can be dealt with 
by reloading the configuration that has been corrupted. 
Traditionally, the complete configuration is “scrubbed”, i.e. 
each configuration frame is read, checked and rewritten if 
found to contain an error [3]. More recently attention has 
turned to more fine-grained partial modular reconfiguration 
to reload a TMR module that is in error. This approach can be 
more responsive and use less energy, and is therefore 
attractive in real-time, space-based applications [2][24][4]. 

Dynamic reconfiguration has the potential to implement 
open-ended hardware-based systems, in which new hardware 
is loaded as needed and integrated with an operating system. 
One concern with such a vision is to ensure the acquired IP is 
safe for use and fit for purpose. Some work has been 
undertaken to study the potential for proof-carrying hardware 
to facilitate run-time validation [8]. However, real systems 
that demonstrate the potential for enhancing functionality in 
an on-line manner are yet to emerge. 

IV. SIMULATING DYNAMIC RECONFIGURATION 

Compared with traditional static FPGA designs, DR 
introduces additional flexibility for system designers but also 
introduces challenges to the verification of design 
functionality. Before reconfiguration, the static logic should 
properly synchronize with the circuit that is to be replaced to 
pause the ongoing computation. During reconfiguration, a 
reconfiguration controller transfers the configuration 
bitstream of the incoming circuitry to the configuration port. 
During this period, the static part must isolate the 
reconfigurable region (RR) to avoid the propagation of 
spurious outputs from partially configured circuits. After 
reconfiguration, the incoming circuit needs to be initialized to 
a known state before it starts execution [13].  

Since traditional RTL simulation does not model 
characteristic features of DR, it only offers limited assistance 
in detecting DR-related bugs [14][15]. However, it is 
challenging to accurately model these characteristic features. 
In traditional FPGA-based hardware designs, the FPGA 
fabric is statically configured and does not interact with the 
user design. In DR designs, on the other hand, components of 
the FPGA fabric interact with the user design in the process 
of partial reconfiguration. In particular, bitstreams are 
transferred by the user design and the bitstreams subsequently 
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overwrite the configuration memory, thereby changing the 
functionality of the user design. Therefore, a completely 
accurate simulation of the reconfiguration process involves 
modeling these aspects of the FPGA fabric. However, 
because FPGA vendor tools do not provide a simulation 
model for the FPGA fabric, it is non-trivial for designers to 
accurately simulate the interactions between the user design 
and the FPGA. And in any case, fabric-accurate simulation 
includes a multitude of unnecessary details for verification. 
For the sake of productivity, it is desirable that functional 
verification remains physically independent. An effective 
simulation method therefore needs to strike a balance 
between simulation accuracy and verification productivity. 
Furthermore, the simulated design should be implementation 
ready. That is, the captured design should not be changed for 
simulation purposes. 

The core idea of ReSim is to use a simulation-only layer to 
emulate the physical fabric of FPGAs so as to achieve the 
desired balance between accuracy and physical 
independence. ReSim uses a simulation-only bitstream 
(SimB) to model the bitstream traffic. A SimB captures the 
essence of a real bitstream in that it serves the purpose of and 
effects the mediation of module swapping. By summarizing 
the details of a real configuration bitstream, the size of a 
SimB is significantly reduced and verification productivity is 
thereby improved. Nevertheless, ReSim allows the bitstream 
transfer and its manipulation (decryption, decompression, 
etc.) to be tested. ReSim models the RR in order to exercise 
module swapping and its trigger conditions, as well as 
spurious outputs from the region while it is being 
reconfigured, and that the system correctly handles any 
initially undefined module state.  

Since the simulation-only layer abstracts away the details 
of the FPGA fabric, it can be regarded as a 
fabric-independent FPGA device, and simulation can be 
thought of as functionally verifying the user design layer of a 
DR system on such a fabric-independent FPGA. Simulation 
using the simulation-only layer assists designers in detecting 
fabric-independent bugs of a DR design. These bugs include, 
but are not limited to: system integration bugs and software 
bugs; bugs in synchronizing the static region and the logic 
that is to be reconfigured before reconfiguration; bugs in the 
bitstream transfer logic; bugs in isolating the region 
undergoing reconfiguration; and bugs in initializing the 
newly configured circuitry. However, the simulation-only 
layer is not exactly the same as the FPGA fabric. The 
mismatches between the two can lead to bugs that remain 
undetected using the simulation-only layer and bugs that are 
incorrectly reported. These bugs, which could be categorized 
as being fabric-dependent, include errors in the bitstream 
itself, and errors in interpreting the content of the bitstream. 

The ReSim library is built upon SystemVerilog [18] and 
the Open Verification Methodology (OVM) [12]. As a result, 
ReSim is fully compatible with existing and mainstream EDA 
tools. ReSim takes the functional specification and a set of 
reconfiguration strategies as inputs. The reconfiguration 
strategies include names, sizes and connectivity of RRs and 

reconfigurable circuitry. From these specifications, the 
designer creates RTL code for the user logic and describes 
the reconfiguration strategies using a Tcl script. ReSim 
automatically generates the simulation-only artifacts 
(including the SimBs and simulation models of the 
configuration port and RRs) based on the Tcl script. If 
required, the designer can edit the generated artifacts for 
design and/or test-specific needs. 

Through 6 case studies (such as [16]), we have 
demonstrated that ReSim can be applied to a range of DR 
design styles including in-house designs, third-party designs, 
hardware-only designs, microprocessor-based HW/SW 
designs, a design that saves and restores module state via the 
configuration port, designs that use customized 
reconfiguration controllers and vendor IP, as well as designs 
that were mapped to different FPGA families. The extra 
development workload for using ReSim involved creating 
parameter scripts, which ranged from 50–150 lines of Tcl 
code for each of these case studies. Generally speaking, the 
workload of using ReSim is trivial compared to the effort 
spent creating a DR design and a testbench. For each case 
study, we used the ModelSim profiling tool to evaluate the 
simulation overhead of ReSim. We found that 0.3–20.9% of 
simulation time was spent in ReSim. The simulation 
overhead of ReSim is proportional to the number of signals 
crossing the RR boundary since all boundary signals are 
multiplexed as opposed to being connected to the static part 
directly. The overhead is also proportional to the frequency of 
reconfiguration in a specific simulation run, since each 
reconfiguration involves costs to swap logic and inject errors, 
and includes a scenario-dependent delay to transfer the SimB. 
In the course of these case studies, we found 69 DR-related 
bugs, 28 of which could only be detected using ReSim, and 
one of which could only be detected using on-chip 
debugging. 

V. MITIGATING CONFIGURATION MEMORY 
UPSETS IN FPGAS 

Off-the-shelf FPGAs are increasingly being considered as 
potential platforms for delivering the performance, flexibility, 
and power budgets required for space-based systems. 
However, space-based systems are exposed to ionizing 
radiation, which can cause undesirable signal transitions in 
the implemented circuits as well as in the configuration 
memory. In the configuration memory, such Single Event 
Upsets (SEUs) can have the effect of altering the contents of 
LUTs and the contents of routing switches. As a 
consequence, the implemented application circuits are 
affected by logic errors and stuck at faults.  

A common approach used to hide the effects of SEUs is to 
implement application circuits using Triple Modular 
Redundancy (TMR) [22]. In such a scheme, three identical 
copies of a circuit operate in parallel, and the output is 
determined by majority vote. This scheme successfully hides 
transient and permanent errors that affect at most one of the 
triplicated modules since two erroneous modules can lead to 
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an erroneous output by majority decision. It is therefore 
desirable to eliminate “permanent” errors, in the form of 
configuration memory content errors and errors contained in 
datapath registers with cyclic dependencies, before an SEU 
affects a second module in a TMR system.  

Configuration memory contents are corrected by rewriting 
the memory, i.e. reconfiguring it. Stopping the device to 
completely reconfigure it has the drawback of interrupting 
processing for a considerable period – perhaps on the order of 
a second – which is potentially unacceptable for real-time 
applications. Various dynamic reconfiguration approaches 
have therefore been suggested.  

One approach, referred to as “scrubbing”, periodically 
refreshes the entire configuration memory contents [3]. While 
the application can continue to operate while the scrub is in 
progress, the scrubbing process itself is slow and costly in 
terms of energy use because several MB of configuration data 
need to be transferred. Moreover, a separate mechanism is 
required to correct the corrupted state of datapath registers 
with cyclic dependencies. These can include checkpointing 
[28] and copying the state from a fault-free module.  

Alternatively, the erroneous module can be reconfigured 
using dynamic partial reconfiguration, while its sibling 
modules in the TMR system continue to operate [2][24][4]. 
This approach is more responsive, takes less time to 
complete, and uses less energy as only that part of the device 
that contains the error is reconfigured. To overcome the 
problem of restoring the correct state to datapath registers 
with cyclic dependencies, a further set of approaches have 
been proposed. On the one hand, the state at which the 
reconfigured module is to be restarted can be predicted [24], 
or a voter is inserted into each feedback path [4]. In the latter 
case, the correct feedback is provided to the newly 
reconfigured module by its siblings. 

In our work, we are investigating the dynamic partial 
reconfiguration approach as a means of designing circuits that 
are guaranteed to recover from a fault within a specified 
period. We would also like to show that we achieve similar, if 
not better, reliability than scrubbing while expending less 
energy. Our investigation is examining the trade-off between 
module size and recovery time, which is primarily 
determined by the reconfiguration delay. Nevertheless, a 
number of other factors need to be considered, including the 
layout of the TMR system, and the communication of 
reconfiguration requests to a centralized reconfiguration 
controller.  

Recovery commences with the detection of a fault. When 
feedback signal paths are voted upon, the detection of 
consecutive errors in a module’s output indicates the likely 
presence of a configuration memory content error for that 
module. The delay in detecting the error is bounded by the 
latency of the module. Interestingly, with all feedback being 
voted upon, this is also the time it takes to resynchronize the 
state of the reconfigured module with its siblings [4]. 

As a large and complex circuit or system will be 
partitioned into many TMR components, and requests for 
reconfiguration (initiated by voters) need to be communicated 

to a single reconfiguration controller, we have proposed the 
use of token ring network to convey the reconfiguration 
requests and completion signals. The delay of this network is 
proportional to the number of TMR components and the 
clock frequency of the slowest component [5].  

The time to retrieve and write the partial configuration 
bitstream for the module undergoing reconfiguration is 
proportional to the size of the module’s bounding box, 
normalized to the unit of reconfiguration (a 41-word 
configuration frame). 

Combining the delays for detecting a fault, communicating 
the reconfiguration request, reconfiguring the faulty module, 
and resynchronizing the reconfigured module, allows us to 
choose module sizes that result in a maximum recovery time 
below the specified bound.  

We have simulated and implemented on a Xilinx Virtex-5 
XC5VFX70T FPGA a small system comprising a triplicated 
16-bit, 21-tap single accumulator Finite Impulse Response 
(FIR) filter, a triplicated 8-to-3-bit, 256-sample Block 
Adaptive Quantizer (BAQ) circuit, a 3-wire token ring 
control network, and a flash-based reconfiguration controller. 
Our simulations, which assumed the maximum theoretical 
reconfiguration port bandwidth was available, indicated that 
the system could recover from an error in one of the three 
FIR modules in less than 50μs, and an error in a BAQ module 
in less than 80μs. In contrast, our implementation, which 
operated at half the simulated clock speed and had a 
reconfiguration bandwidth that was throttled by a slow flash 
controller, recovered from errors in these modules in under 
2.0ms and 3.4ms, respectively. These recovery times 
correspond to FPGA regions covering 0.5% (100 
reconfiguration frames) and 0.9% (180 reconfiguration 
frames), respectively, of the complete FPGA area. In 
comparison, a compete reconfiguration, or scrubbing, would 
have taken up to 100X longer than the time to reconfigure the 
BAQ module. Our results can also be contrasted with the 
peak average SEU rate of approximately 1 per second that 
has been estimated for an XC4VLX200 device located in a 
geosynchronous orbit. It should be noted that this device is 
twice as large as our test device, but is produced with a 90nm 
process rather than a 65nm process, which is more 
susceptible to radiation events. Without partitioning the 
circuits we implemented into smaller TMR modules, we were 
able to achieve maximum recovery times approximately 
300X less than the average expected fault rate. 

VI. CONCLUSIONS 

Dynamic reconfiguration is a technique that enhances the 
flexibility, utilization, and reliability of high-performance 
FPGA-based systems. Potential applications in EMI include 
the construction of virtual instruments, extensible 
hardware-based test systems, and adaptive systems. 

Dynamic reconfiguration introduces challenges for the 
validation, testing, and run-time checking of system 
behaviour. Our work has progressed the state-of-the-art in the 
functional simulation of DR systems by increasing the 
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accuracy with which such systems are modelled without 
significant loss of productivity. We are also investigating the 
use of DR to improve the reliability of FPGA-based systems 
that are exposed to ionizing radiation. 

Future work includes devising improved techniques for 
assessing the correct and safe operation of dynamically 
reconfigurable systems at run time. 
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