
Opportunities and Challenges for Dynamic FPGA Reconfiguration
in Electronic Measurement and Instrumentation

Oliver Diessel
School of Computer Science & Engineering

University of New South Wales, Sydney NSW 2052, Australia
Email: odiessel@cse.unsw.edu.au

Abstract – Reconfigurable systems based on Field-Programmable
Gate Arrays (FPGAs) can offer performance and power advantages
over processor-based systems as well as cost and flexibility
advantages over custom integrated circuit solutions. Dynamic
reconfiguration, the ability to partially modify a circuit
implementation at run-time, has the potential to extend the flexibility,
utilization, and resilience of FPGA-based systems even further. In
this paper we review the capabilities of this technology with respect
to applications in electronic measurement and instrumentation and
present results on testing and assuring the correctness of
dynamically reconfigurable systems at design and run time.

Keywords – Dynamically reconfigurable systems, FPGA, modular
reconfiguration, simulation, SEU mitigation.

I. RECONFIGURABLE SYSTEMS

Digital computing systems are mainly implemented using
one of two approaches. The desired function is either
programmed as software into a processor, or it is realized in
hardware as a digital circuit of an electronic device. The
processor-based approach is relatively quick and easy to
implement and modify, and is relatively cheap to deploy in
small volumes. In contrast, the circuit-based approach is more
complex and time-consuming to design and implement, may
be impossible to modify, and only becomes cheap in very
large volumes. On the other hand, relative to
custom-designed circuits, processors expend more energy and
have lower performance in operation.

Within the spectrum of implementation choices,
Field-Programmable Gate Arrays (FPGAs), using static RAM
(SRAM) as a configuration memory to implement application
circuits post production, have created a niche for themselves
between processors on the one hand and custom circuits on
the other. FPGAs are universal digital devices in that the one
device can be used to implement any digital circuit for which
there are sufficient resources available. Fundamentally, an
FPGA achieves this universality by providing a large number
of configurable logic elements, composed of small look-up
tables (LUTs) and flip-flops (FFs), that can be arbitrarily
interconnected via a configurable wiring matrix. A specific
function is realized by setting the desired function into the
LUTs, and interconnecting these with FFs and input/output
(IO) pins via wires that are selected by setting appropriate

routing switches between signal sources and their
destinations. The desired functionality is implemented by
loading the FPGA’s configuration memory with a
configuration bitstream that contains the required LUT and
routing switch settings. Changing the functionality
implemented by the device simply involves loading a
different configuration bitstream. Since FPGAs can be
reconfigured to implement different circuits as readily as
processors execute different programs, they bridge the gaps
in flexibility, performance, energy consumption and costs
between custom devices and processors.

FPGAs have proven themselves effective and competitive
at a range of processing tasks. These include fundamental
operations such as filtering, matching, sorting, switching and
control. A prime application domain is signal processing,
including image, video, and radar. Suitability for using
FPGAs as core computational devices in these applications
depends upon the performance requirements (more is better),
available lead time (less is better), the need for processing
flexibility (greater is better), and volume of the market
(smaller is better). Another class of processing problems that
is well matched to the capabilities of FPGAs is stream
processing, which includes network traffic and video
processing, cryptography, genomic sequence alignment, and
database processing. FPGAs are also commonly found in
very specialized, high-end simulation (e.g. N-body, cellular
automata) and big science (e.g. the ALICE experiment of the
Large Hadron Collider as well as the cross-point switches and
correlators for the Australian Square Kilometre Array
Pathfinder) projects.

II. DYNAMIC RECONFIGURATION

Since FPGA configurations are most commonly stored in
volatile SRAM, they are typically loaded when the device is
powered on from off-chip storage such as a PROM or flash
device. Unless there is a need to change the functionality of
the FPGA, it is not reconfigured while in operation. If a
change in function is desired, the off-chip configuration store
is overwritten so that when the FPGA is next re-started, the
new configuration is loaded instead.

Certain FPGA device families provide a special operating
mode in which part of the configuration memory can be
reloaded while the unaffected user logic continues to operate.
Because it occurs at run time, this is referred to as dynamic

The 11th IEEE International Conference on Electronic Measurement & Instruments ICEMI’2013

978-1-4799-0759-5 /13/$31.00 ©2013 IEEE

266

reconfiguration (DR), and it has the potential to significantly
enhance the functionality of the FPGA.

A common use of DR is to reuse FPGA area for different
functions that are readily time-multiplexed, e.g. when
different functions are needed in different operating “modes”.
An example of such a use is a so-called muxponder function
in which a network switch is capable of supporting one of
multiple communications protocols e.g. 10 GigE, OC48, and
fibre, and is reconfigured between connections to implement
the protocol needed for the next connection [36]. This type of
use can be characterized by the design-time knowledge of the
variety of circuit modules that may be swapped at run time. A
generalization of the approach, described below, aims to
provide an open system in which the modules that are
swapped in at run time may not be known at design time.

A more refined usage of DR replaces existing circuits with
variations of them to adapt the function to changing
environmental conditions and requirements. For example, a
receiver may dynamically adapt the number of CORDIC
operators to the data rate and antenna number in a MIMO
detector [32]; an email spam filter must be adapted to detect
new threats as they emerge [10]; similarly, an electronic
jammer needs to respond to rapidly changing characteristics
of radio signals [7]. This use of DR complements circuit
optimizations such as constant folding [34] and partial
evaluation [30]. This type of use may need to rely on rapid
circuit specialization at run time, which may constrain the
complexity of the circuits it is applied to.

As alluded to in the first example of DR use above,
another application of DR is to support “general-purpose”
hardware acceleration as seen in experimental systems such
as DISC [33], the Erlangen Slot Machine [23], and Intel’s
QuickAssist technology [19]. For this application, the
FPGA’s resources are organized so that they can be shared in
space and time by multiple (potentially unrelated) tasks.
Regions of the FPGA are reconfigured with new tasks, and
may even have their tasks pre-empted, with the current state
being saved before the task is unloaded. Independently
loading an FPGA-based task while others are running is not
possible without DR. This type of use relies upon the design
of an effective framework and run-time manager for
concurrently sharing IO, memory and wires among multiple
independent FPGA-based circuits. Individual tasks need to be
designed with these constraints in mind.

Finally, DR has also been used to provide fault tolerance
in at least two ways. First, tasks can be migrated between
hardware and software [29], or between resources on an
FPGA [6]. A second use is to clear soft errors that have
affected the configuration memory of an FPGA [3].

A. Possible uses of DR in EMI

The characteristics of DR that are potentially useful to
electronic measurement, test and instrumentation applications
are the ability to reuse hardware for different test circuits over
time (time-multiplexed hardware) and the ability to rapidly
specialize the test circuits to particular requirements.

Virtual instruments capable of meeting real-time
processing constraints can be created using FPGAs that are
dynamically reconfigured as the instrument is switched from
one intended use to another. The potential advantage is that a
partial dynamic reconfiguration takes less time than a
complete static reconfiguration, and that the instrument can
continue to operate while a subset of its functions are being
reconfigured. Exploiting DR thereby enhances the flexibility
and capability of the instrument.

VLSI testing can involve use of a large number of
high-speed custom controllers. The specific controllers
needed to test a particular chip could be implemented using
FPGAs. The testing of complex chips may involve the
creation of more control circuits than the test system can
implement at once. Reconfiguration thus allows for an
extensible hardware system to be created with the potential to
implement a limitless number of specific tests. Dynamically
reconfiguring the test system while it is operating has the
potential to save considerable down time that would be
incurred if the complete device were to be reconfigured
statically while inactive.

When test equipment requires circuits to be specialized to
meet performance constraints, DR might be exploited to
adapt test circuits to specific needs, or to trial new approaches
(such as searching the test circuit space) to perform a test.

It is also noteworthy that a number of specialized,
high-speed instruments, as used in medicine [9], astronomy
[17] and particle physics [11] have been constructed by
employing DR to enhance flexibility, reduce power and
improve radiation tolerance.

III. TESTING & ASSURING THE CORRECTNESS OF
DYNAMICALLY RECONFIGURABLE SYSTEMS

Dynamic reconfiguration introduces additional complexity
to the validation and testing of hardware. This additional
complexity is due to the dynamic nature of the hardware.
Hardware is traditionally considered static, and design and
test methods have evolved around this central tenet.
However, when hardware can change at run time, not only do
we need to determine the correctness of the system before
and after the change, we need new methods for testing that
the system remains correct while the change is in progress.
There is thus a need for tools and methods that assist in
validating dynamically reconfigurable designs, in testing
implementations, and in assuring correct operation at run
time.

A. Design Time Validation

Apart from validating each configuration of a dynamically
reconfigurable system, it is essential to test and debug the
integrated DR design, including the behavior immediately
before, during and after partial reconfiguration [13].
Unfortunately, FPGA vendors such as Xilinx do not provide
methods for simulating the reconfiguration process [36].

The 11th IEEE International Conference on Electronic Measurement & Instruments ICEMI’2013

267

DR is commonly simulated via the insertion of a
multiplexer into the design to interleave the communication
between reconfigurable modules connected in parallel [20].
This method is the basis for more recent efforts in simulating
DR. However, it only models module swapping and fails to
simulate other aspects of DR, such as module isolation and
bitstream retrieval, which is increasingly handled on-chip.

The more recent Dynamic Circuit Switch method [21],
[26], [27] improves the simulation accuracy of DR designs in
various respects. However, like the virtual multiplexing
approach, it assumes that the reconfiguration delay is zero or
a constant and does not simulate bitstream traffic.
Furthermore, reconfiguration is triggered by monitoring
designer-selected signals in the Register Transfer Level
(RTL) code, whereas on real FPGAs, module swapping is
triggered by bitstream transfer.

ReChannel [25] is a SystemC-based, open source library
to model DR at the transaction level. However, such
extension only focuses on the high-level modeling of DR
whereas the reconfiguration details (e.g. module isolation,
bitstream retrieval, accurate reconfiguration delay, triggering
of module swapping) of a design are not modeled or verified.

Our recent work, ReSim [14][15], improves the simulation
accuracy by using simulation-only bitstreams as substitutes
for the real bitstreams so as to accurately model the transfer
of bitstreams and the timing of reconfiguration, and is the
first work to support the cycle accurate RTL simulation of the
complete reconfiguration process of an integrated DR design.

B. On-chip Testing

Field testing runs the implemented design on the target
device under real-world conditions. However, tracing the
cause of a bug on the implemented design requires extra
effort to insert probing logic using vendor tools (e.g.,
ChipScope [35] and SignalTap [1]) and the design needs to
be re-implemented every time a different set of user design
signals is to be probed. The debug turnaround time of on-chip
debugging is therefore at least as long as the time-consuming
implementation stage. Furthermore, since probing logic can
only visualize a limited number of signals for a limited period
of time, on-chip debugging typically involves more iterations
to identify the source of a bug than simulation requires. Last
but not least, collecting and analyzing coverage data on chip
is not guided by quantifiable metrics. As a result, it is
essential to perform thorough simulation-based functional
verification to detect as many logic errors as possible before
testing the implemented design on the target FPGA [37].

C. Run-time Checking

Checking designs are behaving as expected and that the
conditions under which a design operates are as expected can
be achieved using run-time assertions [31].

When physical faults, permanent or hard errors are
detected, reconfigurable systems may make use of spare or
redundant hardware [6].

When transient errors are to be tolerated, the most
common approach is to use spatial redundancy, such as Triple
Modular Redundancy (TMR), to detect and hide the errors
[22]. In order to overcome transient errors leading to changes
in datapath register values, the XTMR tool ensures all
register inputs are voted upon [38].

The extensive configuration memory of FPGAs is a
significant potential source of error, particularly when it is
subjected to ionizing radiation, such as in space-based,
airborne and very large-scale or radiation-exposed terrestrial
applications. This is due to the fact that configuration
memory bit flips can alter the function of a logic cell or the
interconnection of components and thus present the same
symptoms as hardware errors. These errors can be dealt with
by reloading the configuration that has been corrupted.
Traditionally, the complete configuration is “scrubbed”, i.e.
each configuration frame is read, checked and rewritten if
found to contain an error [3]. More recently attention has
turned to more fine-grained partial modular reconfiguration
to reload a TMR module that is in error. This approach can be
more responsive and use less energy, and is therefore
attractive in real-time, space-based applications [2][24][4].

Dynamic reconfiguration has the potential to implement
open-ended hardware-based systems, in which new hardware
is loaded as needed and integrated with an operating system.
One concern with such a vision is to ensure the acquired IP is
safe for use and fit for purpose. Some work has been
undertaken to study the potential for proof-carrying hardware
to facilitate run-time validation [8]. However, real systems
that demonstrate the potential for enhancing functionality in
an on-line manner are yet to emerge.

IV. SIMULATING DYNAMIC RECONFIGURATION

Compared with traditional static FPGA designs, DR
introduces additional flexibility for system designers but also
introduces challenges to the verification of design
functionality. Before reconfiguration, the static logic should
properly synchronize with the circuit that is to be replaced to
pause the ongoing computation. During reconfiguration, a
reconfiguration controller transfers the configuration
bitstream of the incoming circuitry to the configuration port.
During this period, the static part must isolate the
reconfigurable region (RR) to avoid the propagation of
spurious outputs from partially configured circuits. After
reconfiguration, the incoming circuit needs to be initialized to
a known state before it starts execution [13].

Since traditional RTL simulation does not model
characteristic features of DR, it only offers limited assistance
in detecting DR-related bugs [14][15]. However, it is
challenging to accurately model these characteristic features.
In traditional FPGA-based hardware designs, the FPGA
fabric is statically configured and does not interact with the
user design. In DR designs, on the other hand, components of
the FPGA fabric interact with the user design in the process
of partial reconfiguration. In particular, bitstreams are
transferred by the user design and the bitstreams subsequently

The 11th IEEE International Conference on Electronic Measurement & Instruments ICEMI’2013

268

overwrite the configuration memory, thereby changing the
functionality of the user design. Therefore, a completely
accurate simulation of the reconfiguration process involves
modeling these aspects of the FPGA fabric. However,
because FPGA vendor tools do not provide a simulation
model for the FPGA fabric, it is non-trivial for designers to
accurately simulate the interactions between the user design
and the FPGA. And in any case, fabric-accurate simulation
includes a multitude of unnecessary details for verification.
For the sake of productivity, it is desirable that functional
verification remains physically independent. An effective
simulation method therefore needs to strike a balance
between simulation accuracy and verification productivity.
Furthermore, the simulated design should be implementation
ready. That is, the captured design should not be changed for
simulation purposes.

The core idea of ReSim is to use a simulation-only layer to
emulate the physical fabric of FPGAs so as to achieve the
desired balance between accuracy and physical
independence. ReSim uses a simulation-only bitstream
(SimB) to model the bitstream traffic. A SimB captures the
essence of a real bitstream in that it serves the purpose of and
effects the mediation of module swapping. By summarizing
the details of a real configuration bitstream, the size of a
SimB is significantly reduced and verification productivity is
thereby improved. Nevertheless, ReSim allows the bitstream
transfer and its manipulation (decryption, decompression,
etc.) to be tested. ReSim models the RR in order to exercise
module swapping and its trigger conditions, as well as
spurious outputs from the region while it is being
reconfigured, and that the system correctly handles any
initially undefined module state.

Since the simulation-only layer abstracts away the details
of the FPGA fabric, it can be regarded as a
fabric-independent FPGA device, and simulation can be
thought of as functionally verifying the user design layer of a
DR system on such a fabric-independent FPGA. Simulation
using the simulation-only layer assists designers in detecting
fabric-independent bugs of a DR design. These bugs include,
but are not limited to: system integration bugs and software
bugs; bugs in synchronizing the static region and the logic
that is to be reconfigured before reconfiguration; bugs in the
bitstream transfer logic; bugs in isolating the region
undergoing reconfiguration; and bugs in initializing the
newly configured circuitry. However, the simulation-only
layer is not exactly the same as the FPGA fabric. The
mismatches between the two can lead to bugs that remain
undetected using the simulation-only layer and bugs that are
incorrectly reported. These bugs, which could be categorized
as being fabric-dependent, include errors in the bitstream
itself, and errors in interpreting the content of the bitstream.

The ReSim library is built upon SystemVerilog [18] and
the Open Verification Methodology (OVM) [12]. As a result,
ReSim is fully compatible with existing and mainstream EDA
tools. ReSim takes the functional specification and a set of
reconfiguration strategies as inputs. The reconfiguration
strategies include names, sizes and connectivity of RRs and

reconfigurable circuitry. From these specifications, the
designer creates RTL code for the user logic and describes
the reconfiguration strategies using a Tcl script. ReSim
automatically generates the simulation-only artifacts
(including the SimBs and simulation models of the
configuration port and RRs) based on the Tcl script. If
required, the designer can edit the generated artifacts for
design and/or test-specific needs.

Through 6 case studies (such as [16]), we have
demonstrated that ReSim can be applied to a range of DR
design styles including in-house designs, third-party designs,
hardware-only designs, microprocessor-based HW/SW
designs, a design that saves and restores module state via the
configuration port, designs that use customized
reconfiguration controllers and vendor IP, as well as designs
that were mapped to different FPGA families. The extra
development workload for using ReSim involved creating
parameter scripts, which ranged from 50–150 lines of Tcl
code for each of these case studies. Generally speaking, the
workload of using ReSim is trivial compared to the effort
spent creating a DR design and a testbench. For each case
study, we used the ModelSim profiling tool to evaluate the
simulation overhead of ReSim. We found that 0.3–20.9% of
simulation time was spent in ReSim. The simulation
overhead of ReSim is proportional to the number of signals
crossing the RR boundary since all boundary signals are
multiplexed as opposed to being connected to the static part
directly. The overhead is also proportional to the frequency of
reconfiguration in a specific simulation run, since each
reconfiguration involves costs to swap logic and inject errors,
and includes a scenario-dependent delay to transfer the SimB.
In the course of these case studies, we found 69 DR-related
bugs, 28 of which could only be detected using ReSim, and
one of which could only be detected using on-chip
debugging.

V. MITIGATING CONFIGURATION MEMORY
UPSETS IN FPGAS

Off-the-shelf FPGAs are increasingly being considered as
potential platforms for delivering the performance, flexibility,
and power budgets required for space-based systems.
However, space-based systems are exposed to ionizing
radiation, which can cause undesirable signal transitions in
the implemented circuits as well as in the configuration
memory. In the configuration memory, such Single Event
Upsets (SEUs) can have the effect of altering the contents of
LUTs and the contents of routing switches. As a
consequence, the implemented application circuits are
affected by logic errors and stuck at faults.

A common approach used to hide the effects of SEUs is to
implement application circuits using Triple Modular
Redundancy (TMR) [22]. In such a scheme, three identical
copies of a circuit operate in parallel, and the output is
determined by majority vote. This scheme successfully hides
transient and permanent errors that affect at most one of the
triplicated modules since two erroneous modules can lead to

The 11th IEEE International Conference on Electronic Measurement & Instruments ICEMI’2013

269

an erroneous output by majority decision. It is therefore
desirable to eliminate “permanent” errors, in the form of
configuration memory content errors and errors contained in
datapath registers with cyclic dependencies, before an SEU
affects a second module in a TMR system.

Configuration memory contents are corrected by rewriting
the memory, i.e. reconfiguring it. Stopping the device to
completely reconfigure it has the drawback of interrupting
processing for a considerable period – perhaps on the order of
a second – which is potentially unacceptable for real-time
applications. Various dynamic reconfiguration approaches
have therefore been suggested.

One approach, referred to as “scrubbing”, periodically
refreshes the entire configuration memory contents [3]. While
the application can continue to operate while the scrub is in
progress, the scrubbing process itself is slow and costly in
terms of energy use because several MB of configuration data
need to be transferred. Moreover, a separate mechanism is
required to correct the corrupted state of datapath registers
with cyclic dependencies. These can include checkpointing
[28] and copying the state from a fault-free module.

Alternatively, the erroneous module can be reconfigured
using dynamic partial reconfiguration, while its sibling
modules in the TMR system continue to operate [2][24][4].
This approach is more responsive, takes less time to
complete, and uses less energy as only that part of the device
that contains the error is reconfigured. To overcome the
problem of restoring the correct state to datapath registers
with cyclic dependencies, a further set of approaches have
been proposed. On the one hand, the state at which the
reconfigured module is to be restarted can be predicted [24],
or a voter is inserted into each feedback path [4]. In the latter
case, the correct feedback is provided to the newly
reconfigured module by its siblings.

In our work, we are investigating the dynamic partial
reconfiguration approach as a means of designing circuits that
are guaranteed to recover from a fault within a specified
period. We would also like to show that we achieve similar, if
not better, reliability than scrubbing while expending less
energy. Our investigation is examining the trade-off between
module size and recovery time, which is primarily
determined by the reconfiguration delay. Nevertheless, a
number of other factors need to be considered, including the
layout of the TMR system, and the communication of
reconfiguration requests to a centralized reconfiguration
controller.

Recovery commences with the detection of a fault. When
feedback signal paths are voted upon, the detection of
consecutive errors in a module’s output indicates the likely
presence of a configuration memory content error for that
module. The delay in detecting the error is bounded by the
latency of the module. Interestingly, with all feedback being
voted upon, this is also the time it takes to resynchronize the
state of the reconfigured module with its siblings [4].

As a large and complex circuit or system will be
partitioned into many TMR components, and requests for
reconfiguration (initiated by voters) need to be communicated

to a single reconfiguration controller, we have proposed the
use of token ring network to convey the reconfiguration
requests and completion signals. The delay of this network is
proportional to the number of TMR components and the
clock frequency of the slowest component [5].

The time to retrieve and write the partial configuration
bitstream for the module undergoing reconfiguration is
proportional to the size of the module’s bounding box,
normalized to the unit of reconfiguration (a 41-word
configuration frame).

Combining the delays for detecting a fault, communicating
the reconfiguration request, reconfiguring the faulty module,
and resynchronizing the reconfigured module, allows us to
choose module sizes that result in a maximum recovery time
below the specified bound.

We have simulated and implemented on a Xilinx Virtex-5
XC5VFX70T FPGA a small system comprising a triplicated
16-bit, 21-tap single accumulator Finite Impulse Response
(FIR) filter, a triplicated 8-to-3-bit, 256-sample Block
Adaptive Quantizer (BAQ) circuit, a 3-wire token ring
control network, and a flash-based reconfiguration controller.
Our simulations, which assumed the maximum theoretical
reconfiguration port bandwidth was available, indicated that
the system could recover from an error in one of the three
FIR modules in less than 50μs, and an error in a BAQ module
in less than 80μs. In contrast, our implementation, which
operated at half the simulated clock speed and had a
reconfiguration bandwidth that was throttled by a slow flash
controller, recovered from errors in these modules in under
2.0ms and 3.4ms, respectively. These recovery times
correspond to FPGA regions covering 0.5% (100
reconfiguration frames) and 0.9% (180 reconfiguration
frames), respectively, of the complete FPGA area. In
comparison, a compete reconfiguration, or scrubbing, would
have taken up to 100X longer than the time to reconfigure the
BAQ module. Our results can also be contrasted with the
peak average SEU rate of approximately 1 per second that
has been estimated for an XC4VLX200 device located in a
geosynchronous orbit. It should be noted that this device is
twice as large as our test device, but is produced with a 90nm
process rather than a 65nm process, which is more
susceptible to radiation events. Without partitioning the
circuits we implemented into smaller TMR modules, we were
able to achieve maximum recovery times approximately
300X less than the average expected fault rate.

VI. CONCLUSIONS

Dynamic reconfiguration is a technique that enhances the
flexibility, utilization, and reliability of high-performance
FPGA-based systems. Potential applications in EMI include
the construction of virtual instruments, extensible
hardware-based test systems, and adaptive systems.

Dynamic reconfiguration introduces challenges for the
validation, testing, and run-time checking of system
behaviour. Our work has progressed the state-of-the-art in the
functional simulation of DR systems by increasing the

The 11th IEEE International Conference on Electronic Measurement & Instruments ICEMI’2013

270

accuracy with which such systems are modelled without
significant loss of productivity. We are also investigating the
use of DR to improve the reliability of FPGA-based systems
that are exposed to ionizing radiation.

Future work includes devising improved techniques for
assessing the correct and safe operation of dynamically
reconfigurable systems at run time.

ACKNOWLEDGMENTS

The author wishes to acknowledge the primary
contribution of Lingkan Gong towards the simulation work
and the collaboration of Ediz Cetin, Lingkan Gong and Victor
Lai on the SEU mitigation work reported in this paper.
Donations received through the Xilinx University Program
are also gratefully acknowledged.

REFERENCES

[1] Altera Corp., “Design Debugging Using the SignalTap II Embedded
Logic Analyzer”. 2012.

[2] C. Bolchini, A. Miele, and M. D. Santambrogio, “TMR and Partial
Dynamic Reconfiguration to mitigate SEU faults in FPGAs”. Defect
and Fault-Tolerance in VLSI Systems, pp. 87–95, 2007.

[3] C. Carmichael, M. Caffrey, and A. Salazar, “Correcting single-event
upsets through Virtex partial configuration”. Xilinx Corporation, 2000.

[4] E. Cetin, and O. Diessel, “Guaranteed Fault Recovery Time for
FPGA-based TMR Circuits Employing Partial Reconfiguration”. DAC
Workshop on Computing in Heterogeneous, Autonomous ‘N’
Goal-oriented Environments, 2012.

[5] E. Cetin, O. Diessel, L. Gong and V. Lai, “Towards Bounded Error
Recovery Time in FPGA-based TMR Circuits using Dynamic Partial
Reconfiguration". Field-Programmable Logic and Applications, 2013.

[6] J. A. Cheatham, J. M. Emmert, and S. Baumgart. “A survey of fault
tolerant methodologies for FPGAs”. ACM Trans. Des. Autom.
Electron. Syst., vol. 11, no. 2, pp. 501–533, 2006.

[7] T. W. Coleman, D. B. Gabriel, and B. Kogan, “Systems and methods
for radio frequency hopping communications jamming utilizing
software defined radio platforms”. U.S. Patent Application No.
13/532,235, Publication No. 20130023201, Jan 24, 2013.

[8] S. Drzevitzky, U. Kastens, and M. Platzner, “Proof-carrying Hardware:
Towards Runtime Verification of Reconfigurable Modules".
Reconfigurable Computing and FPGAs, pp. 189–194, 2009.

[9] H. Eggers, P. Lysaght, H. Dick, and G. McGregor, “Fast
Reconfigurable Crossbar Switching in FPGAs”. Field-Programmable
Logic, pp. 297–306, 1996.

[10] K. Eguro, "Automated dynamic reconfiguration for high-performance
regular expression searching". Field-Programmable Technology, pp.
455–459, 2009.

[11] W. Gao, A. Kugel, R. Männer, N. Abel, N. Meier, and U. Kebschull,
“DPR in high energy physics”. Design, Automation and Test in Europe,
pp. 39–44, 2009.

[12] M. Glasser, “Open Verification Methodology Cookbook”. Mentor
Graphics Corporation, 2009.

[13] L. Gong and O. Diessel, “Modeling Dynamically Reconfigurable
Systems for Simulation-based Functional Verification”.
Field-Programmable Custom Computing Machines, pp. 9–16, 2011.

[14] L. Gong and O. Diessel. “ReSim: A Reusable Library for RTL
Simulation of Dynamic Partial Reconfiguration”. Field-Programmable
Technology, pp. 1–8, 2011.

[15] L. Gong and O. Diessel. “Functionally Verifying State Saving and
Restoration in Dynamically Reconfigurable Systems”. Field
Programmable Gate Arrays, pp. 241–244, 2012.

[16] L. Gong, O. Diessel, J. Paul and W. Stechele, “RTL Simulation of High
Performance Dynamic Reconfiguration: A Video Processing Case
Study”. Reconfigurable Architectures Workshop, pp. 106–113, 2013.

[17] P. J. Hall, "Power considerations for the Square Kilometre Array
(SKA) radio telescope". General Assembly and Scientific Symposium,
XXXth URSI , pp. 1–4, 2011.

[18] IEEE, “IEEE Standard 1800-2005: SystemVerilog – Unified Hardware
Design, Specification, and Verification Language”. The Institute of
Electrical and Electronics Engineers, Inc., 2005.

[19] Intel Corp., “Intel QuickAssist Acceleration Technology for Embedded
Systems”. http://www.intel.com/content/www/us/en/io/quickassist-
technology/quickassist-technology-developer.html accessed 25/6/2013.

[20] W. Luk, N. Shirazi, and P. Y. Cheung, “Compilation tools for run-time
reconfigurable designs”. Field-Programmable Custom Computing
Machines, pp. 56–65, 1997.

[21] P. Lysaght and J. Stockwood, “A Simulation Tool for Dynamically
Reconfigurable Field Programmable Gate Arrays”. IEEE Trans. on
VLSI Syst., vol. 4, no. 3, pp. 381–390, 1996.

[22] R. E. Lyons, and W. Vanderkulk, “The use of triple-modular
redundancy to improve computer reliability”. IBM Journal of Research
and Development, vol. 6, no. 2, pp. 200–209, 1962.

[23] M. Majer, J. Teich, A. Ahmadinia, and C. Bobda, “The Erlangen Slot
Machine: A Dynamically Reconfigurable FPGA-based Computer”. J.
VLSI Signal Process. Syst., vol. 47, no. 1, pp. 15–31, 2007.

[24] C. Pilotto, J. R. Azambuja, and F. L. Kastensmidt, “Synchronizing
triple modular redundant designs in dynamic partial reconfiguration
applications”. Integrated Circuits and System Design, pp.199–204,
2008.

[25] A. Raabe, P. A. Hartmann, and J. K. Anlauf, “ReChannel: Describing
and Simulating Reconfigurable Hardware in SystemC”. ACM Trans.
Des. Autom. Electron. Syst., vol. 13, no. 1, p. 15, 2008.

[26] I. Robertson, J. Irvine, P. Lysaght, and D. Robinson, “Improved
Functional Simulation of Dynamically Reconfigurable Logic”. Field
Programmable Logic and Applications, pp. 541–574, 2002.

[27] I. Robertson and J. Irvine, “A Design Flow for Partially Reconfigurable
Hardware”. ACM Trans. Embed. Comput. Syst., vol. 3, no. 2, pp.
257–283, 2004.

[28] A. Sari and M. Psarakis, “Scrubbing-based SEU mitigation approach
for systems-on-programmable-chips”. Field-Programmable
Technology, pp. 1–8, 2011.

[29] H. Simmler, L. Levinson, and R. Männer, “Multitasking on FPGA
Coprocessors”. Field-Programmable Logic and Applications, pp.
121–130, 2000.

[30] S. Singh, J. Hogg, and D. Mcauley, “Expressing Dynamic
Reconfiguration by Partial Evaluation”. FPGAs for Custom Computing
Machines, pp. 188–194, 1996.

[31] T. Todman and W. Luk, “Runtime assertions and exceptions for
streaming systems”. Field-Programmable Logic and Applications,
2013.

[32] H. Wang, P. Leray, and J. Palicot, “Reconfigurable architecture for
MIMO systems based on CORDIC operators”. Comptes Rendus
Physique, vol. 7, no. 7, pp. 735–750, 2006.

[33] M. J. Wirthlin, B. L. Hutchings, "A dynamic instruction set computer".
FPGAs for Custom Computing Machines, pp. 99–107, 1995.

[34] M. J. Wirthlin and B. L. Hutchings, “Improving functional density
through run-time constant propagation”. Field-Programmable Gate
Arrays, pp. 86–92, 1997.

[35] Xilinx Inc., “ChipScope Pro 12.1 Software and Cores (UG029)”, 2010.
[36] Xilinx Inc. “Partial Reconfiguration User Guide (UG702)”. 2010.
[37] Xilinx Inc., “Synthesis and Simulation Design Guide”. 2010.
[38] Xilinx Inc. “Xilinx TMRTool product brief”. (2009).

The 11th IEEE International Conference on Electronic Measurement & Instruments ICEMI’2013

271

