Detecting and Mitigating Radiation-Induced Errors in SRAM-based Field-Programmable Gate Arrays

Oliver Diessel
Talk outline

• Explain why radiation-induced errors are a serious threat to FPGA-based systems
• Describe state-of-the-art for detecting and mitigating SEUs in commercial FPGAs
• Outline current work in testing & evaluating competing solutions
• Forecast the future
Why am I talking about SEU mitigation?
4 Detecting & Mitigating SEUs in SRAM FPGAs
Detecting & Mitigating SEUs in SRAM FPGAs
What’s inside an FPGA?

- Logic Blocks
 - comprise lookup tables and flip-flops
- Altera: LABs
- Xilinx: CLBs

Slide due to Steve Wilton
What’s inside an FPGA?

- Logic Block
- Connection Block
- Switch Block
- Routing Track (Horizontal)
- Routing Channel (Vertical)

Slide due to Steve Wilton
FPGA configuration memory architecture

- Organized into frames:
 - 101x 32-bit words for Xilinx-7
- The configuration memory of an FPGA comprises
 - CMOS configuration latch settings to determine all routes
 - Settings to configure each LUT
 - Contents of embedded memory blocks
 - Configuration of DSP slices, clock managers, PLLs, ADCs, SerDes blocks, high-speed transceivers, IO blocks, etc.
FPGA configuration

- FPGAs are configured by loading a bitstream to the device

 Bitstream organisation:

 <preamble><start address><num frames><frame content>…<postamble>

- Bitstream size varies:
 - Artix-7 7A15T: ~17 Mbits (smallest Xilinx 7-series device)
 - Virtex-7 7VX1140T: ~385 Mbits (largest Xilinx 7-series device)

- Complete versus Partial Bitstream
- Writing versus Reading frame contents
COTS FPGAs in Space

- Space-based systems play increasingly important roles in the efficient functioning of modern societies
- Growing international interest in the development of space missions based on low-cost nano-/microsatellites e.g. CubeSats, demands new approaches to the design of reliable, low-cost, reconfigurable digital processing platforms
- Commercial, off-the-shelf SRAM-based FPGAs are ideally suited to meeting these demands
Space-based applications for FPGAs

A mixture of control-oriented and computationally intensive tasks:

- On-board computer – control; interfacing; real time – all low power
- Communications – baseband; encryption; decryption
- Flight control
- Global positioning
- Image capture and processing; pre-filtering; compression
- Synthetic aperture radar
FPGA susceptibility to SEUs

- BUT…FPGAs are particularly susceptible to radiation-induced Single Event Upsets (SEUs)
 - Deposited charge causes a change of state in dynamic circuit elements
 - Affects both datapath and configuration memory
 - Can corrupt any configurable resource
 - Routing, logic & memory particularly susceptible

Datapath Bit SEU

<table>
<thead>
<tr>
<th>A=1</th>
<th>B=0</th>
<th>C=0</th>
<th>F=0</th>
</tr>
</thead>
</table>

Configuration Bit SEU

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
FPGA susceptibility to SEUs

- SEU occurrence increases with orbit radius

<table>
<thead>
<tr>
<th>Orbit</th>
<th>SEUs/day</th>
<th>MTTU (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEO (560 km)</td>
<td>4.09</td>
<td>2.11 x 10⁴</td>
</tr>
<tr>
<td>Polar (833 km)</td>
<td>1.49 x 10⁴</td>
<td>5.81</td>
</tr>
<tr>
<td>GPS (20,200 km)</td>
<td>5.46 x 10⁴</td>
<td>1.58</td>
</tr>
<tr>
<td>Geosynchronous (36,000 km)</td>
<td>6.2 x 10⁴</td>
<td>1.39</td>
</tr>
</tbody>
</table>

Predictions for Virtex-4 (XC4VLX200) [Engel et al., 2006]
FPGA susceptibility to SEUs

- SEUs have more significant impact as transistor sizes shrink

<table>
<thead>
<tr>
<th>Device Family</th>
<th>Technology Node</th>
<th>Total Events</th>
<th>1-Bit Events</th>
<th>2-Bit Events</th>
<th>3-Bit Events</th>
<th>4-Bit Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtex</td>
<td>250 nm</td>
<td>241,166</td>
<td>241,070</td>
<td>96</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(99.996%)</td>
<td>(0.004%)</td>
<td>(0%)</td>
<td>(0%)</td>
</tr>
<tr>
<td>Virtex-II</td>
<td>150 nm</td>
<td>541,823</td>
<td>523,280</td>
<td>6,293</td>
<td>56</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(98.42%)</td>
<td>(1.16%)</td>
<td>(0.01%)</td>
<td>(0.001%)</td>
</tr>
<tr>
<td>Virtex-II Pro</td>
<td>130 nm</td>
<td>10,430</td>
<td>10,292</td>
<td>136</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(98.68%)</td>
<td>(1.30%)</td>
<td>(0.02%)</td>
<td>(0%)</td>
</tr>
<tr>
<td>Virtex-4</td>
<td>90 nm</td>
<td>152,577</td>
<td>147,902</td>
<td>4,567</td>
<td>78</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(96.44%)</td>
<td>(2.99%)</td>
<td>(0.05%)</td>
<td>(0.005%)</td>
</tr>
</tbody>
</table>

Event distribution due to proton radiation @63.3 MeV [Quinn et al., 2005]
Dealing with soft errors

1. Radiation-hardened FPGAs
 – Expensive, small, superseded technology, restricted

2. Error Detection And Correction (EDAC)
 – Limited capacity to detect and correct errors in the user circuitry
 – Limited capacity to assist in detecting configuration memory errors

3. Triple Modular Redundancy (TMR)
 – Effective masking of errors that affect a single module
 – Capable of assisting in detecting configuration memory errors

4. Reconfiguration
 a. Complete
 o Corrects all configuration memory errors
 b. Partial
 o Limited capacity to assist with correcting configuration memory errors
Dealing with soft errors

• Critical systems that need to be highly available & reliable use Triple Modular Redundancy to deal with transient errors in the datapath

• Soft errors can also affect configuration memory
 – Symptoms can be similar to a permanent fault
 – These errors can be eliminated by reconfiguration

 o **Scrubbing**
 ▪ Periodic refresh of entire configuration memory
 ▪ Slow and costly in terms of energy (transfer several MB)

 o **Modular reconfiguration**
 ▪ Reconfigure the module in which a fault is present
 ▪ Useful when quicker response or higher availability is desired
 ▪ More complex to implement
SEU mitigation in FPGAs

- Triple Modular Redundancy (TMR)
 - Eliminating configuration errors by scrubbing
 - Or by dynamic modular reconfiguration
Scrubbing

• Uses special IP: SEM Controller
• Repeat:
 – Read each configuration frame
 – Check ECC of frame
 – If single error found, then correct error and restart scan
 – Check CRC

Modular Reconfiguration

• Compose design of “reconfigurable partitions”
• Detect an error in a module via the TMR voter
 – Raise request to reconfigure module
 – Fetch a “partial bitstream” for the module from off-chip
 – Reload partial bitstream to correct configuration memory error

For Both Methods

• Need to decide how to resynchronize user logic
• Need to rely on complete reconfiguration when the method fails to correct the errors present
Acyclic circuits

- Simplest case:
 - Pipeline or linear filter
 - Streamed data

- Represent as acyclic DFG
 - Node = Op [+ Reg]
 - Edge = Data transfer

- > k successive errors trigger reconfiguration of faulty module

- Time to detect fault:
 \[t_{D_{\text{MAX}}} \leq N \] clock cycles

- Time to recover from fault:
 \[\leq 2t_{D_{\text{MAX}}} + t_R \] clock cycles
Cyclic circuits

- The cause of persistent faults in cyclic components cannot be determined.
- The correct state cannot be set by presenting new inputs to the circuit.

⇒ Cut feedback edges & vote on them; recycle fb as an input to an otherwise acyclic component.

Voter logic & Reconfiguration trigger
Detecting & Mitigating SEUs in SRAM FPGAs
QB50 Project

- **International network of about 50 CubeSats**
 - Led by Von Karman Institute of Belgium
 - launch by 12/2016 into the lower thermosphere (90-380 km orbit)

- **CubeSat is a miniaturized satellite**
 - 1U measuring 10x10x10 cm, weighing 1 kg
 - Costs of 50-100 k€ and 2 year development time are typical
 - ≈50 CubeSats have been launched so far & 100-150 are planned

- **A CubeSat is too small** to carry sensors for significant scientific research
 - However, fundamental scientific questions can be addressed **when many CubeSats are networked**

- **QB50 will conduct 3 atmospheric research experiments** by networking 40 × 2U CubeSats
UNSW-EC0

A 2U CubSat comprising four UNSW/NICTA experimental payloads:

1. Namuru: FPGA-based satellite navigation receiver
 - Uses reflectometry to profile the ionosphere and troposphere, perform radio occultation experiments (atmospheric refraction of GPS signals), and to provide in-orbit position and velocity of UNSW-EC0

2. RUSH: Rapid recovery from SEUs in reconfigurable hardware
 - Evaluates FPGA-based SEU recovery approaches and maps the occurrence of SEUs for a non rad-hard Xilinx Artix-7 device in the thermosphere

3. seL4 ROCS: Reliable Optimised Critical Systems
 - Assesses the performance of critical systems utilising the seL4 microkernel

4. RAMSES (RApid Manufactured SatellitE Structure)
 - Evaluates use of 3D printing to provide CubeSat structure
UNSW-EC0

EPS
S-Band
UHF
OBC
Namuru
Cube Sense
seL4
RUSH
iMTQ
INMS

PEEK 3D printed base plate
Solar panel clips
Anodized aluminium rails
PEEK 3D printed side plates

25 Detecting & Mitigating SEUs in SRAM FPGAs
RUSH Payload Objectives

RUSH: Rapid recovery from SEUs in reconfigurable hardware

- Evaluate new approaches to rapidly recover from SEUs in COTS FPGAs
 - Evaluate the efficacy of a rapid PR-based SEU recovery approach on Xilinx Artix-7 XC7A200T FPGA
 - Benchmark results with respect to the traditional scrubbing approach
 - Obtain SEU occurrence rates, system recovery times, energy requirements and number of system resets to steer future research & development

- Map SEU events in the thermosphere
 - Provide a better understanding of the radiation performance of COTS 28nm Xilinx FPGAs in Low-Earth Orbit

- Demonstrate in-orbit reconfiguration
RUSH Configurations

Two base configurations:

• Scrubbing using SEM controller vs modular reconfiguration
• Similar TMR-based user circuits to enable comparison
• Circuits are representative of satellite tasks
 – JPEG, FFT, SAR, BAQ circuit components
• Assess SEU susceptibility
 – circuit area
 – resource type
Dynamic Modular Reconfiguration design

Off-chip flash memory for partial bitstreams
Reconfiguration Control circuitry (Microblaze system)
DMR floorplan

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SR1</td>
<td>115x16-bit</td>
<td>40xDSP</td>
</tr>
<tr>
<td>SR2</td>
<td>80x16-bit</td>
<td>20xDSP</td>
</tr>
<tr>
<td>SR3</td>
<td>50x32-bit</td>
<td>Add only</td>
</tr>
<tr>
<td>ST1</td>
<td>32-leaf x 64-bit tree</td>
<td>31xDSP</td>
</tr>
<tr>
<td>ST2</td>
<td>32-leaf x 32-bit tree</td>
<td>31xDSP</td>
</tr>
<tr>
<td>ST3</td>
<td>16-leaf x 20-bit tree</td>
<td>Add only</td>
</tr>
<tr>
<td>FIFO</td>
<td>512x16-bit</td>
<td></td>
</tr>
<tr>
<td>FIR</td>
<td>21-tap x 16-bit</td>
<td>32-bit MAC</td>
</tr>
<tr>
<td>BAQ</td>
<td>256x8-bit in; 3-bit out</td>
<td></td>
</tr>
</tbody>
</table>

Microblaze system
Scrubbing-based configuration

- **User circuits**
- **Scrub controller and error log system** (replaces Microblaze system in DMR design)
Scrubbing floorplan

Scrub controller and error log system (replaces Microblaze system in DMR design)
Work in progress

• Using configuration readback to check voters for error occurrence
• Combining scrubbing & dynamic modular reconfiguration for selective TMR
• Adapting the scrub frequency to the error rate
• Reliable heterogeneous design of a reconfiguration controller for space
• Design space exploration for FPGA-based heterogeneous systems meeting performance targets and reliability guarantees
Related work

• Carmichael et al, Xilinx scrubbing XAPP216, 2000
 – Also covers TMR techniques for FPGAs
• Selective TMR with scrubbing, for example
 – Samudrala et al, 2004+
 – Wirthlin et al, 2006+
• Several modular reconfiguration papers since 2004, for example
 – Kastensmidt et al, 2004+
 – Bolchini et al, 2007+
• FPGAs in space experiments
 – Cibola Flight Experiment – Los Alamos National Labs & BYU, 2007+
 – Sandria National Labs & NASA
Cibola Flight Experiment

• 2007 – 2014:
 – 3 boards x 3 rad-hard XQVR1000 FPGAs (6 Mbit bitstream size)
 – Launched into low-earth orbit
 – Scrubbing externally implemented with rad-hard components
 – Recorded 2,816 SEUs & 11 MBUs, but only operational 46% of the time
 – Equates to ~2 SEUs per operational day
 – 2007 – 2009 not operated over the South Atlantic Anomaly (SAA)

• 2011 launched Mission Response Module:
 – 2x rad-hard XQR4VLX200 (51 Mbit bitstream size) &
 2x rad-hard XQR4VSX55 (23 Mbit bitstream size)
 – Up 99.9% 10/2011 – 12/2012; operated 37% - 42% in the SAA
 – Recorded 11,330 SEUs, 6.37% MBUs & 5 Single Event Functional
 Interrupts
 – Equates to ~1 SEU per operational hour
What does the future hold?

COTS FPGAs

Built-in SEM support

CMOS configuration latch development

Architectural experimentation
Thanks…

Dimitris Agiakatsikas
William Andrew
Ediz Cetin
Thomas Fisk
Lingkan Gong
Yue Kang
Victor Lai
Nguyen Tran Huu Nguyen
Zhuoran Zhao

• Australian Centre for Space Engineering Research
• School of Computer Science and Engineering
• School of Electrical Engineering and Telecommunications
• Xilinx Inc.
• ICEMI Organizers
Detecting & Mitigating SEUs in SRAM FPGAs