

Never Stand Still

Detecting and Mitigating Radiation-Induced Errors in SRAM-based Field-Programmable Gate Arrays Oliver Diessel

Engineering School of Computer Science and Engineering

Australian Centre for Space Engineering Research

Talk outline

- Explain why radiation-induced errors are a serious threat to FPGA-based systems
- Describe state-of-the-art for detecting and mitigating SEUs in commercial FPGAs
- Outline current work in testing & evaluating competing solutions
- Forecast the future

Why am I talking about SEU mitigation?

4 Detecting & Mitigating SEUs in SRAM FPGAs

6 Detecting & Mitigating SEUs in SRAM FPGAs

What's inside an FPGA?

What's inside an FPGA?

Slide due to Steve Wilton

8 Detecting & Mitigating SEUs in SRAM FPGAs

FPGA configuration memory architecture

- Organized into frames:
 - 101x 32-bit words for Xilinx-7
- The configuration memory of an FPGA comprises
 - CMOS configuration latch settings to determine all routes
 - Settings to configure each LUT
 - Contents of embedded memory blocks
 - Configuration of DSP slices clock managers, PLLs, ADCs, SerDes blocks, high-speed transceivers, IO blocks, etc.

FPGA configuration

• FPGAs are configured by loading a bitstream to the device

• Bitstream organisation:

<preamble><start address><num frames><frame content>...<postamble>

- Bitstream size varies:
 - Artix-7 7A15T: ~17 Mbits (smallest Xilinx 7-series device)
 - Virtex-7 7VX1140T: ~385 Mbits (largest Xilinx 7-series device)
- Complete versus Partial Bitstream
- Writing versus Reading frame contents

COTS FPGAs in Space

- Space-based systems play increasingly important roles in the efficient functioning of modern societies
- Growing international interest in the development of space missions based on low-cost nano-/microsatellites e.g. CubeSats, demands new approaches to the design of reliable, low-cost, reconfigurable digital processing platforms
- Commercial, off-the-shelf SRAM-based FPGAs are ideally suited to meeting these demands

Space-based applications for FPGAs

A mixture of control-oriented and computationally intensive tasks:

- On-board computer control; interfacing; real time all low power
- Communications baseband; encryption; decryption
- Flight control
- Global positioning
- Image capture and processing; pre-filtering; compression
- Synthetic aperture radar

FPGA susceptability to SEUs

- BUT...FPGAs are particularly susceptible to radiation-induced Single Event Upsets (SEUs)
 - Deposited charge causes a change of state in dynamic circuit elements
 - Affects both datapath and configuration memory
 - Can corrupt any configurable resource
 - Routing, logic & memory particularly susceptible

FPGA susceptability to SEUs

• SEU occurrence increases with orbit radius

Orbit	SEUs/day	MTTU (s)
LEO (560 km)	4.09	2.11 x 10 ⁴
Polar (833 km)	1.49 x 10 ⁴	5.81
GPS (20,200 km)	5.46 x 10 ⁴	1.58
Geosynchronous (36,000 km)	6.2 x 10 ⁴	1.39

Predictions for Virtex-4 (XC4VLX200) [Engel et al., 2006]

FPGA susceptability to SEUs

• SEUs have more significant impact as transistor sizes shrink

Device Family	Technology Node	Total Events	1-Bit Events	2-Bit Events	3-Bit Events	4-Bit Events
Virtex	250 nm	241,166	241,070 (99.996%)	96 (0.004%)	0 (0%)	0 (0%)
Virtex-II	150 nm	541,823	523,280 (98.42%)	6,293 (1.16%)	56 (0.01%)	3 (0.001%)
Virtex-II Pro	130 nm	10,430	10,292 (98.68%)	136 (1.30%)	2 (0.02%)	0 (0%)
Virtex-4	90 nm	152,577	147,902 (96.44%)	4,567 (2.99%)	78 (0.05%)	8 (0.005%)

Event distribution due to proton radiation @63.3 MeV [Quinn et al., 2005]

Dealing with soft errors

- 1. Radiation-hardened FPGAs
 - Expensive, small, superseded technology, restricted
- 2. Error Detection And Correction (EDAC)
 - Limited capacity to detect and correct errors in the user circuitry
 - Limited capacity to assist in detecting configuration memory errors
- 3. Triple Modular Redundancy (TMR)
 - Effective masking of errors that affect a single module
 - Capable of assisting in detecting configuration memory errors
- 4. Reconfiguration
 - a. Complete
 - Corrects all configuration memory errors
 - b. Partial
 - Limited capacity to assist with correcting configuration memory errors

Dealing with soft errors

- Critical systems that need to be highly available & reliable use Triple Modular Redundancy to deal with transient errors in the datapath
- Soft errors can also affect configuration memory
 - Symptoms can be similar to a permanent fault
 - These errors can be eliminated by reconfiguration

○ Scrubbing

- Periodic refresh of entire configuration memory
- Slow and costly in terms of energy (transfer several MB)
- **o Modular reconfiguration**
 - Reconfigure the module in which a fault is present
 - Useful when quicker response or higher availability is desired
 - More complex to implement

SEU mitigation in FPGAs

- Triple Modular Redundancy (TMR)
 - Eliminating configuration errors by scrubbing
 - Or by dynamic modular reconfiguration

Scrubbing

- Uses special IP: SEM Controller
- Repeat:
 - Read each configuration frame
 - Check ECC of frame
 - If single error found, then correct error and restart scan
 - Check CRC

Modular Reconfiguration

- Compose design of
 "reconfigurable partitions"
- Detect an error in a module via the TMR voter
 - Raise request to reconfigure module
 - Fetch a "partial bitstream" for the module from off-chip
 - Reload partial bitstream to correct configuration memory error

For Both Methods

- Need to decide how to resynchronize user logic
- Need to rely on complete reconfiguration when the method fails to correct the errors present

Acyclic circuits

- Simplest case:
 - Pipeline or linear filter
 - Streamed data

- Represent as acyclic DFG
 - Node = Op [+ Reg]
 - Edge = Data transfer
- > k successive errors trigger reconfiguration of faulty module
- Time to detect fault: $t_{D_{MAX}} \le N$ clock cycles
- Time to recover from fault:
 ≤ 2t_{D_MAX} + t_R clock cycles

Cyclic circuits

- The cause of persistent faults in cyclic components cannot be determined
- The correct state cannot be set by presenting new inputs to the circuit
- ⇒ Cut feedback edges & vote on them; recycle *fb* as an input to an otherwise acyclic component

Reconfiguration control

QB50 Project

- International network of about 50 CubeSats
 - Led by Von Karman Institute of Belgium
 - launch by 12/2016 into the lower thermosphere (90-380 km orbit)
- CubeSat is a miniaturized satellite
 - 1U measuring 10x10x10 cm, weighing 1 kg
 - Costs of 50-100 k€ and 2 year development time are typical
 - ≈50 CubeSats have been launched so far & 100-150 are planned
- A CubeSat is too small to carry sensors for significant scientific research
 - However, fundamental scientific questions can be addressed when many CubeSats are networked
- QB50 will conduct 3 atmospheric research experiments by networking 40 × 2U CubeSats

UNSW-EC0

A 2U CubSat comprising four UNSW/NICTA experimental payloads:

1. Namuru: FPGA-based satellite navigation receiver

 Uses reflectometry to profile the ionosphere and troposphere, perform radio occultation experiments (atmospheric refraction of GPS signals), and to provide in-orbit position and velocity of UNSW-EC0

2. RUSH: Rapid recovery from SEUs in reconfigurable hardware

 Evaluates FPGA-based SEU recovery approaches and maps the occurrence of SEUs for a non rad-hard Xilinx Artix-7 device in the thermosphere

3. seL4 ROCS: Reliable Optimised Critical Systems

- Assesses the performance of critical systems utilising the seL4 microkernel
- 4. RAMSES (RApid Manufactured SatellitE Structure)
 - Evaluates use of 3D printing to provide CubeSat structure

UNSW-EC0

25 Detecting & Mitigating SEUs in SRAM FPGAs

RUSH Payload Objectives

RUSH: Rapid recovery from SEUs in reconfigurable hardware

- Evaluate new approaches to rapidly recover from SEUs in COTS FPGAs
 - Evaluate the efficacy of a rapid PR-based SEU recovery approach on Xilinx Artix-7 XC7A200T FPGA
 - Benchmark results with respect to the traditional scrubbing approach
 - Obtain SEU occurrence rates, system recovery times, energy requirements and number of system resets to steer future research & development

• Map SEU events in the thermosphere

- Provide a better understanding of the radiation performance of COTS 28nm Xilinx FPGAs in Low-Earth Orbit
- Demonstrate in-orbit reconfiguration

RUSH Configurations

Two base configurations:

- Scrubbing using SEM controller
 vs modular reconfiguration
- Similar TMR-based user circuits to enable comparison
- Circuits are representative of satellite tasks
 - JPEG, FFT, SAR, BAQ circuit components
- Assess SEU susceptibility
 - circuit area
 - resource type

Dynamic Modular Reconfiguration design

DMR floorplan

SR1	115x16-bit	40xDSP
SR2	80x16-bit	20xDSP
SR3	50x32-bit	Add
		only
ST1	32-leaf x	31xDSP
011	64-bit tree	
ST2	32-leaf x	31xDSP
	32-bit tree	
ST3	16-leaf x	Add
	20-bit tree	only
FIFO	512x16-bit	
FIR	21-tap x	32-bit
	16-bit	MAC
BAQ	256x8-bit	
	in; 3-bit out	

Scrubbing-based configuration

Scrubbing floorplan

Scrub controller and error log system — (replaces Microblaze system in DMR design)

Work in progress

- Using configuration readback to check voters for error occurrence
- Combining scrubbing & dynamic modular reconfiguration for selective TMR
- Adapting the scrub frequency to the error rate
- Reliable heterogeneous design of a reconfiguration controller for space
- Design space exploration for FPGA-based heterogeneous systems
 meeting performance targets and reliability guarantees

Related work

- Carmichael et al, Xilinx scrubbing XAPP216, 2000
 - Also covers TMR techniques for FPGAs
- Selective TMR with scrubbing, for example
 - Samudrala et al, 2004+
 - Wirthlin et al, 2006+
- Several modular reconfiguration papers since 2004, for example
 - Kastensmidt et al, 2004+
 - Bolchini et al, 2007+
- FPGAs in space experiments
 - Cibola Flight Experiment Los Alamos National Labs & BYU, 2007+
 - Sandria National Labs & NASA

Cibola Flight Experiment

- 2007 2014:
 - 3 boards x 3 rad-hard XQVR1000 FPGAs (6 Mbit bitstream size)
 - Launched into low-earth orbit
 - Scrubbing externally implemented with rad-hard components
 - Recorded 2,816 SEUs & 11 MBUs, but only operational 46% of the time
 - Equates to ~2 SEUs per operational day
 - 2007 2009 not operated over the South Atlantic Anomaly (SAA)
- 2011 launched Mission Response Module:
 - 2x rad-hard XQR4VLX200 (51 Mbit bitstream size) & 2x rad-hard XQR4VSX55 (23 Mbit bitstream size)
 - Up 99.9% 10/2011 12/2012; operated 37% 42% in the SAA
 - Recorded 11,330 SEUs, 6.37% MBUs & 5 Single Event Functional Interrupts
 - Equates to ~1 SEU per operational hour

What does the future hold?

COTS FPGAs

CMOS configuration latch development

Architectural experimentation

35 Detecting & Mitigating SEUs in SRAM FPGAs

Thanks...

Dimitris Agiakatsikas

William Andrew

Ediz Cetin

Thomas Fisk

Lingkan Gong

Yue Kang

Victor Lai

Nguyen Tran Huu Nguyen

Zhuoran Zhao

- Australian Centre for Space Engineering Research
- School of Computer Science
 and Engineering
- School of Electrical Engineering and Telecommunications
- Xilinx Inc.
- ICEMI Organizers

