
Optimization of Placement of Dynamic Network-on-
chip Cores Using Simulated Annealing

Branislav Hredzak, Oliver Diessel*

School of Electrical Engineering and Telecommunications
* School of Computer Science and Engineering

University of New South Wales
Sydney NSW 2052, Australia

E-mail: b.hredzak@unsw.edu.au, o.diessel@unsw.edu.au

Abstract-We derive an objective function which instead of
mapping/placing application task graphs in a compact manner
onto reconfigurable devices, dilates the mappings as much as the
available latencies on critical connections allow. The objective
function is then optimized using simulated annealing. The main
advantage of the dilated placement of the task graphs is that the
unused resources between an application’s configured
components can be used to provide additional flexibility when
the configuration needs to change. We present results of
applying the dilated placement to one synthetic case and one real
case. The presented results show successful and meaningful
graph dilation.

I. INTRODUCTION

A. Reconfigurable Systems and Networks-on-chip
Reconfigurable systems implemented on field-

programmable gate arrays (FPGAs) provide designers with a
means by which performance-critical components can be
implemented in a more flexible, robust, reusable and useful
manner than if they are implemented as application-specific
integrated circuit (ASIC) devices.

A significant advantage of reconfigurable systems is that
new functional blocks or components can be added and/or
old ones can be removed or exchanged, for a range of
benefits. Changes may be initiated by a user who requires
new functionality to be added, for example, a specific filter to
a surveillance camera network [1]; or more filtering may be
required to process a signal affected by noise [2]; a different
modulation scheme may need to be employed [3]; or some
(hardware) components may have failed, necessitating
reallocation of functional tasks to the available resources [4].
As suggested, some of these changes may be planned for at
design time, but it is desirable to allow for others to occur in
an unforeseen manner as repairs to bugs become available,
when a new component is developed, when new protocols are
invoked, or when a user changes the requirements or
demands new functionality.

In recent years, attention has been drawn towards so-called
networks-on-chip as a high-performing and flexible
interconnection methodology for both static and
reconfigurable systems [5-8]. A network-on-chip (NoC)
consists of routers that are interconnected via links that
convey packetized messages between the routers. Networks
are more scalable and flexible than buses and point-to-point
connections. Therefore, NoC technology appears to be well

suited to providing the communication infrastructure of
future dynamically reconfigurable systems-on-chip.

To date, few results ([9-11]) attempt to address the time-
varying needs of dynamic and open application sets. In [9], a
regular mesh of routers is proposed. Variously sized cores are
placed where they fit and non-deterministic, adaptive routing
algorithms are proposed for communicating between the
cores, but communication requirements cannot be guaranteed.
In [10], a tile-based approach is used to implement a
customized network for the configured components.
Unfortunately, reconfiguring the tiles disrupts the traffic on
links within the tiles. Reconfiguration of the network incurs
significant overheads. In [11] an architecture that combines
packet-switching and physical circuit-switching is proposed.
Reconfiguring the circuit switches can change the network
topology, while packet switching can be used to share the
circuit-switched connections when the flexibility is needed.

B. Dilated Placement of Dynamic Network-on-chip Cores

Conventional approaches assume that field-programmable
gate array (FPGA) resources are in short supply. We explore
the potential of utilizing the considerable FPGA resources
that are expected to be available in the mid-term future.
Hence, instead of mapping an application to the smallest
compact region possible, we propose to dilate the mapping as
much as the available latency (slack) on critical network
connections allows. In a dilated mapping, the free space
comprising unused configurable regions, associated network
routers and links between an application’s configured
components can be used to provide additional flexibility
when the configuration needs to be changed. For example,
when a core is to be added to a dilated design, there are
potentially many more placement sites that provide good
connectivity to components that have already been
configured. Alternatively, it will be less disruptive, and is
likely to incur fewer overheads, to move within a small
neighbourhood (jog) some of the cores that have already been
placed in order to make room for a new one. More
importantly, it will be easier to allocate additional routing
paths or insert express channels into free regions when
additional bandwidth is required or latency needs to be
reduced.

In this paper, we derive an objective function that will
enable initial, quasi-optimal, dilated placement of application

978-1-61284-972-0/11/$26.00 ©2011 IEEE 2400

task graphs into a given network topology. The objective
function addresses the following critical issues: (1) how to
spread out the placement of cores without exceeding latency
requirements; (2) how to place cores so as to maximize the
potential to provide additional bandwidth or reduce latency
between cores when required; and (3) how to place cores so
as to allow fast and easy relocation, addition or removal of
cores.

II. DEVELOPMENT OF DILATED MAPPING TECHNIQUE

A. Definitions

Definition 1: We define a communication task graph

(CTG) as a special case of an application characterization
graph, as given in [12]. A communication task graph CTG =
CTG(T, C) is a directed graph, where each vertex ti ∈ T
represents an IP core or a task that has been mapped to a core
and each directed arc ci,j ∈ C summarizes the total
communication or interconnection between vertices ti and tj.

While cores for reconfigurable computing applications
should be tagged with application-specific information such
as size or area, clock frequency, period of activity, and
latency, we ignore these details in this paper. However, our
work allows the placement of a core to be locked to a
particular position to use location-dependent resources.

Each arc ci,j is tagged with application-specific information
including the sum of the bandwidth required by all signals
from ti to tj and the maximum latency that can be tolerated for
the connection.

A communication task graph may be specified by the
number of cores in the graph and a listing of the connection
characteristics as provided in Table I and illustrated in Fig. 1.

Definition 2: We define a network topology as a directed

graph NT = NT(R, L) comprising a set of routers R and links
L connecting them. Each ri ∈ R is specified by its xy
coordinates on an FPGA floorplan and each link li,j ∈ L
connects a given source router ri with a unique destination
router rj. In this study, each link li,j has a maximum
bandwidth capacity and a latency associated with it. All links
are assumed to have the same maximum bandwidth and the
same, constant link latency. The routers are assumed to be
capable of switching the traffic when all incoming links are
operating at maximum bandwidth. We assume the latency of
a router is a constant, irrespective of the traffic volume it
switches. Routers are also assumed to have a pair of special
local links that allow a single core to be directly connected
with the router. This pair of links allows the core to inject
traffic (data) into the network and to receive data from other
cores connected to the network. We define the latency of a
network hop to comprise the sum of the latency of a single
network link and the latency of the router the link inputs to.
We neglect the latency, incurred at a core, of injecting data
into the network and transferring it from the router to the

core. The Manhattan distance between cores and the latency
per hop thus characterize the latency between cores.

In this work, we consider the problem of mapping given
CTGs to two-dimensional (2D) mesh network topologies. A
2D mesh network has routers located at all xy positions in
[1..max_x, 1..max_y] and all routers are connected via bi-
directional links to their immediate neighbours to the north,
south, east and west, where these neighbours are present.

Definition 3: Mapping a CTG to a network topology

involves finding an optimal placement (router positions) for
the CTG cores and determining legal, minimal cost routes
through network links for the inter-core connections. We
have considered XY routing, which is known to be deadlock-
free on a mesh [13].

Maximizing performance usually forces the mapping to be
as compact as possible. For example, the CTG of Table I
might be mapped to a 4 x 4 router mesh as in Fig. 2. In this
case, the maximum link bandwidth must be at least 40 MB/s
for the mapping to be possible with XY routing. In our work,
we are primarily interested in obtaining mappings that
facilitate future dynamic modification. Our strategy for
achieving such mappings is to dilate the embedding of the
cores in the network topology so as to maximize the
opportunities (via unused neighbouring routers) for inserting
cores into the CTG.

The dilation of the mapping is constrained by the latency
bounds on connections and the utilization of link bandwidth
capacity.

TABLE I
A SIMPLE 4-CORE CTG EXAMPLE

Connection Bandwidth
(MB/s)

Latency
(ns)

c1,2 20 10
c2,3 30 20
c3,4 40 20
c4,1 10 10

Fig. 1. Example of a simple 4-core CTG.

Fig. 2. Mapping of CTG from Table I to 4 x 4 mesh. Router positions are
depicted as grey squares at link intersections. Link positions are dotted. Used
routers and links are darkened. Positions are numbered along x (horizontal)
and y (vertical) axes.

1
 1

2
 1

3
 1

4

2

3

4

1 2

3 4

Local links
to core

Unused router

Unused link

Used link

Used router

1 2

3 4

c2,3

c3,4

c4,1

c1,2

2401

As an example, the CTG of Table I can be mapped in a

dilated manner to a 4 x 4 router mesh with a maximum link
bandwidth of at least 40 MB/s and a hop latency of 10 ns as
in Fig. 3. The difference with the previous mapping of Fig. 2
is that connections c2,3 and c3,4 have now been mapped to
routes that require two hops instead of one as permitted by
their given latency constraints. The advantage of doing so is
that if a 5th core needs to be added to the CTG of Table I , as
listed in Table II, then the mapping of Fig. 2 would have to
be modified in order to accommodate the latency
requirements for the 5th core. This can incur significant
reconfiguration overheads. However, in this case, the 5th core
can easily be inserted into the dilated mapping of Fig. 3 at
router position (2, 2) as illustrated in Fig. 4. In the absence of
a priori knowledge of future CTG requirements, as is the case
in open systems, we feel generalized dilation is the best
strategy for minimizing the potential cost of modifying the
mapping. The dilated mapping problem we have outlined
above in some sense inverts the conventional mapping
problem that aims to minimize the cost of the mapping by
minimizing the sum of the products of the embedded
connection lengths and the required connection bandwidths.
In our case, the unused spaces (unallocated FPGA resources)
between cores, and thus the connection lengths, are to be
maximized subject to the latency constraints. We conjecture
this problem is harder to optimize than the usual mapping
problem since there is more freedom to place the cores at a
distance. The approach we have therefore taken to obtain a
timely solution to the problem is to apply a simulated
annealing heuristic, which is known to produce good results
for the conventional mapping problem.

Fig. 3. Dilated mapping of CTG from Table I to 4 x 4 mesh.

TABLE II
 A 5TH CORE IS ADDED TO THE CTG EXAMPLE OF TABLE I .

Connection Bandwidth
(MB/s)

Latency
(ns)

c1,2 20 10
c2,3 30 20
c3,4 40 20
c4,1 10 10
c4,5 10 10
c5,2 20 10

Fig. 4. Addition of 5th core to mapping of Fig. 3.

B. Simulated Annealing Framework

Simulated annealing (SA) [14], has been applied to many
combinatorial optimization problems including partitioning,
placement and routing, to name a few. The method requires
four ingredients for it to be applicable: a concise description
of a configuration of the system; a random generator of
rearrangements of the elements in a configuration; a
quantitative objective function containing the tradeoffs to be
made; and an annealing schedule of the temperatures and
length of times for which the system is to be evolved.

For the dilated mapping problem, the mapping of CTG
cores to mesh routers represents a system configuration. It
should be clear, that the placement of cores at specific routers
together with our choice of XY routing algorithm determines
which routes are used for the inter-core connections.

Rearrangements are generated by randomly choosing two
routers, at least one of which should be occupied by a core,
and exchanging the cores connected to the chosen routers.
The derivation of the quantitative objective function we used
will be described in the following subsection.

C. Objective Function

The objective function (1) used in our experiments
balances a term promoting the compact placement of
communicating cores with another term that favours the
dilated placement of cores,

dilation α compaction α cost ∗−+∗=)1(. (1)

The balance of the compaction and dilation terms can be

adjusted by modifying the weight given to the multiplicative
constant, α. The goal of the annealing process is to minimize
the cost as given by (1).

The compaction term of (1) can be expanded as in (2),

∑ ∗=
s, cconnection

cc hops bandwidth compaction (2)

in which the product of the required bandwidth for each
connection between the cores, bandwidthc, and the number of
hops (Manhattan distance) over which the connection is
formed, hopsc, is summed over all connections in the graph.
This approach is typically used to minimize the distance
between the most heavily communicating cores and thus

1
 1

2
 1

3
 1

4

4

2

3

1 2

3 4

1
 1

2
 1

3
 1

4

4

2

3

1 2

3 4 5

2402

commonly leads to a low power/low latency/high clock
frequency solution.

The dilation term of (1) is expanded as in (3),

nutilizatio proximity slack dilation ∗+∗+∗= δγβ , (3)

whereby the amount of slack on connections, the proximity of
cores and the utilization of link capacity are minimized.
These factors can be traded off by adjusting the multiplicative
constants, β, γ and δ.

The overall slack in (3) of the current placement of the

cores is calculated as a sum of slacks for all connections with
a given required latency,

∑∑ ∗−==
csconnection

hcc
csconnection

c latency hops latency(slack slack
,,

) ,

 (4)

where the slack of a connection, slackc, is given as a
difference in the required latency of a connection, latencyc,
and the product of the number of hops for the connection,
hopsc, and the hop latency, latencyh.

The proximity term in (3) uniformly distributes (dilates)

those core pairs (u,v) that are mutually non-communicating or
for which no required latency is specified. It is calculated as
(5)

()

()∑

∑

−+

+−=

v)(u, pairs core
vertical

uniformvu,

v)(u, pairs core
horizontal

uniformvu,

spacingver_dist

spacinghor_distproximity

2

2

 (5)

where hor_distu,v is a horizontal mutual distance between a
horizontal pair of cores, ver_distu,v is a vertical mutual
distance between a vertical pair of cores and spacinguniform is
the optimal mutual spacing between a pair of cores in
horizontal and vertical directions if they were uniformly
distributed across the mesh. The term spacinguniform in (5) is
calculated as (6)

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

number

dim
uniform coresceil

mesh ceilspacing , (6)

where meshdim is the dimension of the square mesh,
coresnumber is the total number of cores to be mapped on the
mesh and ceil rounds the expression to the nearest integer
towards infinity.

Placements that minimize the link utilization are preferred

in order to provide spare capacity for cores to be added to the
communication graph over time. This goal is captured by (7)

∑ ∗=
ks, sshared lin

s s bandwidth sconnection nutilizatio , (7)

where connectionss is the number of connections sharing each
used link and bandwidths is the sum of the bandwidths of the
connections sharing the link, i.e., the total bandwidth of the
link. Rather than apply (7) to the CTG embedding in the
network, which penalizes longer (dilated) shared paths more
than shorter ones, we construct a graph of the embedded CTG
connections, thereby inserting pseudo-vertices into the CTG
where signal paths meet at shared routers. Equation (7) is
then applied to this graph of the embedding with each shared
connection being counted just once.

Constraints (8) and (9)

ks, sshared lin bandwidthbandwidth s ∀≥− ,0max (8)
s, cconnection latencyhops latency hcc ∀≥∗− ,0 (9)

also need to be observed. Constraint (8) requires that the total
bandwidth allocated to a network link, bandwidths, must be
no greater than the maximum link bandwidth capacity
bandwidthmax. Constraint (9) ensures that no connection
exceeds the required latency of the connection.

III. RESULTS

This section presents simulation results to allow our dilated
mapping technique to be evaluated for one synthetic case,
Case I, and one real application case, Case II.

As described in the previous section, the balance of the
compaction and dilation terms can be adjusted by modifying
the weight given to the multiplicative constant α in (1). In the
results presented here, α was changed in a discrete manner,
i.e., initially α = 1, corresponding to compaction only. Once
compaction converged, α was changed to α = 0, which
corresponded to dilation only. In this way, the initial random
allocation was first compacted and then dilated. By running
the compaction stage first, the SA algorithm initially obtains
a compacted solution in which the maximum link bandwidths
are unlikely to be exceeded. This intermediate solution also
locates the communicating cores as closely as possible,
resulting in the maximum possible slack between
communicating cores. When the dilation phase is started from
the compacted solution, the probability of starting with a
solution that does not adhere to the given constraints is
smaller and the convergence of the SA algorithm is
significantly improved.

Experimentation with a number of graphs indicated that β
= 1, γ = 0.2 and δ = 0.04 resulted in a reasonable balance in
the contributions to (3) from the slack, the proximity and the
utilization. If all contributions are of equal importance then
the values of the multiplicative constants β, γ and δ are
chosen intuitively so that the magnitudes of the terms
β ∗ slack, γ ∗ proximity, and δ ∗ utilization are approxi-
mately equal during the optimization.

2403

In our experiments, the SA was started with an initial,
random placement of the cores. Following standard SA
practice, the current placement was perturbed at the given
temperature and the change in configuration was accepted if
the perturbation resulted in a lower cost configuration, or
with exponentially decreasing likelihood if it yielded an
increase in cost [14]. In both the compaction and dilation
phases we decreased the temperature when at least 50
successive rejected perturbations preceded a successful one.
The algorithm was terminated when Tmin = 0 was reached, or
when 10,000 successive perturbations were rejected.

A. Case I

In Case I, listed in Table III, we dilated 8 cores into a 9 x 9
mesh. Fig. 5 shows the initial placement of the 8 cores. Fig. 6
shows the detail of the compacted solution and Fig. 7 shows
the dilated solution. The maximum allowed link bandwidth
was set to 20. The dilated placement has zero slack for all
connections, the utilization is minimized, and the distances
between non-communicating cores were optimized.
Comparing placements shown in Fig. 6 and Fig. 7 it can be
appreciated that new cores can be inserted more readily into
the dilated placement in order to satisfy the latency
requirements of new cores while at the same time not
exceeding any given link bandwidth constraints.

B. Case II
In Case II, we dilated a high performance, power

constrained 4G wireless modem application described in [15,
16]. The application has 34 nodes (cores). In our results,
cores 1 to 16 correspond to nodes M0 to M15 and cores 17 to
34 correspond to nodes S0 to S17 in [16], and our single hop
latency is assumed to be 50 ns. A summary of bandwidth and
latency requirements can be found in [16]. We dilated the 34
cores into a 16 x 16 mesh. The initial placement is not shown
here due to space constraints. Fig. 8 shows the detail of the
compacted solution and Fig. 9 shows the dilated solution. As
in Case 1, it can be appreciated that new cores can be inserted
more readily into the dilated placement in order to satisfy the
potential latency requirements of new cores while not
exceeding link bandwidth limits.

TABLE III
INTERCONNECTION MATRIX FOR CASE I.

(Connections listed as Required Bandwidth/Connection Latency in Hops;
cells representing null connections left blank).

Core t1 t2 t3 t4 t5 t6 t7 t8
t1 10/2 10/4
t2 10/2 10/2 10/4
t3 10/2 10/2 10/4
t4 10/2 10/4
t5 10/4 10/2
t6 10/4 10/2 10/2
t7 10/4 10/2 10/2
t8 10/4 10/2

10

303
20 6
10

10

10 10

10

30

0 1 2 3 4 5 6 7 8 9

10 10 10 10 10

10 10 20 20 20

10

10 10 10 10 10
10 10 20 20 20 20 30

1

2

4

8

10 10 10 10 10

20 20 20 20 20 10 10

20 30 30 20 10
10

20

10

10

10

10

10

10

10

10

10 10

10

10
10

10
10
10
10

10
7

10

10

10

10 10

10
10
10
10
10

10

10

10

20

5

10

0

1

2

3

4

5

6

7

8

9

Total bandwidth of
traffic going ‘west’

Total bandwidth of
traffic going ‘east’

Total bandwidth
of traffic going
‘south’

Total bandwidth
of traffic going
‘north’

Used router

Core 7

Unused link

Fig. 5. Initial (random) placement of Case I into a 9 x 9 mesh.

10 10 10
10 10

10
10

10 10 10
23 4

5 67 8

10 10 10
10 10 10

10 10 10 10 1

Fig. 6. Placement of Case I after compaction.

10

10

10 10

10

10

0 1 2 3 4 5 6 7 8 9 10

10 10 10 10

10 10 10 10

10 10 10 10

10 10 10 10 1

2

3

4

5

6

7

8 10 10 10 10

10 10 10 10

10 10 10 10

10 10 10 10

10

10

10

10

10

10

10
10
10
10
10
10

10

10

10

10

10

10

10

0

1

2

3

4

5

6

7

8

9

Fig. 7. Placement of Case I into a 9 x 9 mesh after dilation.

Fig. 8. Placement of Case II after compaction.

2404

Fig. 9. Placement of Case II into a 16 x 16 mesh after dilation.

IV. CONCLUSION

In this paper we detailed our motivation for exploring the
benefits of dilating communication task graphs, derived a
simulated annealing approach to dilating the initial
placement of such graphs, and presented results of applying
the algorithm to one synthetic case and one real case. The
method results in successful and meaningful graph dilation.
We plan to examine the effect of varying the parameters of
the simulated annealing and to explore approaches to
maintaining a dilated placement at runtime.

REFERENCES
[1] V. Tadigotla and S. Commuri, "Dynamic image filter selection using

partially reconfigurable FPGAs for imaging operations," presented at
the Proceedings of the 5th WSEAS International Conference on
Circuits, Systems, Electronics, Control and Signal Processing, Dallas,
Texas, 2006.

[2] R. Tessier, et al., "A reconfigurable, power-efficient adaptive Viterbi
decoder," IEEE Transactions on VLSI Systems, vol. 13, pp. 484-488,
2005.

[3] G. J. M. Smit, et al., "Dynamic Reconfiguration in Mobile Systems,"
presented at the Proceedings of the Reconfigurable Computing Is
Going Mainstream, 12th International Conference on Field-
Programmable Logic and Applications, 2002.

[4] P. Zipf, "Applying dynamic reconfiguration for fault tolerance in fine-
grained logic arrays," IEEE Trans. Very Large Scale Integr. Syst., vol.
16, pp. 134-143, 2008.

[5] D. Micheli and L. Benini, "Networks on Chips: Technology and
Tools," ed: Morgan Kaufmann, 2006.

[6] A. Jantsch and H. Tenhunen, Networks-on-Chip: Kluwer, 2003.
[7] W. Dally and B. Towles, "Route packets, not wires: On-chip

interconnection networks," presented at the Proc. Des. Autom., 2001.
[8] M. B. Taylor, et al., "Evaluation of the Raw Microprocessor: An

Exposed-Wire-Delay Architecture for ILP and Streams," presented at
the International Symposium on Computer Architecture (ISCA), 2004.

[9] C. Bobda, et al., "A Dynamic NoC Approach for Communication in
Reconfigurable Devices " presented at the International Conference on
Field Programmable Logic and Applications, 2004.

[10] T. Pionteck, et al., "Applying Partial Reconfiguration to Networks-
On-Chips," presented at the International Conference on Field
Programmable Logic and Applications (FPL), 2006.

[11] M. B. Stensgaard and J. Spars, "ReNoC: A Network-on-Chip
Architecture with Reconfigurable Topology," presented at the
International Symposium on Networks-on-Chip (NOCS), 2008.

[12] R. Marculescu, et al., "Outstanding research problems in NoC design:
system, microarchitecture, and circuit perspectives," Trans. Comp.-
Aided Des. Integ. Cir. Sys., vol. 28, pp. 3-21, 2009.

[13] L. M. Ni and P. K. McKinley, "A Survey of Wormhole Routing
Techniques in Direct Networks," Computer, vol. 26, pp. 62-76, 1993.

[14] S. Kirkpatrick, et al., "Optimization by Simulated Annealing,"
Science, vol. 220, pp. 671-680, May 13, 1983 1983.

[15] R. Beraha, et al., "The design of a latency constrained, power
optimized NoC for a 4G Soc," presented at the ACM/IEEE
International Symposium on Networks-on-Chip 2009.

[16] I. h. Walter, et al., "The design of a latency constrained, power
optimized NoC for a 4G Soc," Technion-Israel Institute of
Technology CCIT Report #724, 2009.

2405

Powered by TCPDF (www.tcpdf.org)

