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Abstract-We derive an objective function which instead of 
mapping/placing application task graphs in a compact manner 
onto reconfigurable devices, dilates the mappings as much as the 
available latencies on critical connections allow.  The objective 
function is then optimized using simulated annealing. The main 
advantage of the dilated placement of the task graphs is that the 
unused resources between an application’s configured 
components can be used to provide additional flexibility when 
the configuration needs to change. We present results of 
applying the dilated placement to one synthetic case and one real 
case. The presented results show successful and meaningful 
graph dilation.  

I. INTRODUCTION 

A. Reconfigurable Systems and Networks-on-chip 
Reconfigurable systems implemented on field-

programmable gate arrays (FPGAs) provide designers with a 
means by which performance-critical components can be 
implemented in a more flexible, robust, reusable and useful 
manner than if they are implemented as application-specific 
integrated circuit (ASIC) devices. 

A significant advantage of reconfigurable systems is that 
new functional blocks or components can be added and/or 
old ones can be removed or exchanged, for a range of 
benefits. Changes may be initiated by a user who requires 
new functionality to be added, for example, a specific filter to 
a surveillance camera network [1]; or more filtering may be 
required to process a signal affected by noise [2]; a different 
modulation scheme may need to be employed [3]; or some 
(hardware) components may have failed, necessitating 
reallocation of functional tasks to the available resources [4]. 
As suggested, some of these changes may be planned for at 
design time, but it is desirable to allow for others to occur in 
an unforeseen manner as repairs to bugs become available, 
when a new component is developed, when new protocols are 
invoked, or when a user changes the requirements or 
demands new functionality.  

In recent years, attention has been drawn towards so-called 
networks-on-chip as a high-performing and flexible 
interconnection methodology for both static and 
reconfigurable systems [5-8]. A network-on-chip (NoC) 
consists of routers that are interconnected via links that 
convey packetized messages between the routers. Networks 
are more scalable and flexible than buses and point-to-point 
connections. Therefore, NoC technology appears to be well 

suited to providing the communication infrastructure of 
future dynamically reconfigurable systems-on-chip.  

To date, few results ([9-11]) attempt to address the time-
varying needs of dynamic and open application sets. In [9], a 
regular mesh of routers is proposed. Variously sized cores are 
placed where they fit and non-deterministic, adaptive routing 
algorithms are proposed for communicating between the 
cores, but communication requirements cannot be guaranteed. 
In [10], a tile-based approach is used to implement a 
customized network for the configured components. 
Unfortunately, reconfiguring the tiles disrupts the traffic on 
links within the tiles. Reconfiguration of the network incurs 
significant overheads. In [11] an architecture that combines 
packet-switching and physical circuit-switching is proposed. 
Reconfiguring the circuit switches can change the network 
topology, while packet switching can be used to share the 
circuit-switched connections when the flexibility is needed.  

 
B. Dilated Placement of Dynamic Network-on-chip Cores 

Conventional approaches assume that field-programmable 
gate array (FPGA) resources are in short supply. We explore 
the potential of utilizing the considerable FPGA resources 
that are expected to be available in the mid-term future.  
Hence, instead of mapping an application to the smallest 
compact region possible, we propose to dilate the mapping as 
much as the available latency (slack) on critical network 
connections allows. In a dilated mapping, the free space 
comprising unused configurable regions, associated network 
routers and links between an application’s configured 
components can be used to provide additional flexibility 
when the configuration needs to be changed. For example, 
when a core is to be added to a dilated design, there are 
potentially many more placement sites that provide good 
connectivity to components that have already been 
configured. Alternatively, it will be less disruptive, and is 
likely to incur fewer overheads, to move within a small 
neighbourhood (jog) some of the cores that have already been 
placed in order to make room for a new one. More 
importantly, it will be easier to allocate additional routing 
paths or insert express channels into free regions when 
additional bandwidth is required or latency needs to be 
reduced.  

In this paper, we derive an objective function that will 
enable initial, quasi-optimal, dilated placement of application 
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task graphs into a given network topology. The objective 
function addresses the following critical issues: (1) how to 
spread out the placement of cores without exceeding latency 
requirements; (2) how to place cores so as to maximize the 
potential to provide additional bandwidth or reduce latency 
between cores when required; and (3) how to place cores so 
as to allow fast and easy relocation, addition or removal of 
cores.  

 

II. DEVELOPMENT OF DILATED MAPPING TECHNIQUE 

 
A. Definitions 

 
Definition 1: We define a communication task graph 

(CTG) as a special case of an application characterization 
graph, as given in [12]. A communication task graph CTG = 
CTG(T, C) is a directed graph, where each vertex ti ∈ T 
represents an IP core or a task that has been mapped to a core 
and each directed arc ci,j ∈ C summarizes the total 
communication or interconnection between vertices ti and tj.  

While cores for reconfigurable computing applications 
should be tagged with application-specific information such 
as size or area, clock frequency, period of activity, and 
latency, we ignore these details in this paper. However, our 
work allows the placement of a core to be locked to a 
particular position to use location-dependent resources.  

Each arc ci,j is tagged with application-specific information 
including the sum of the bandwidth required by all signals 
from ti to tj and the maximum latency that can be tolerated for 
the connection. 

A communication task graph may be specified by the 
number of cores in the graph and a listing of the connection 
characteristics as provided in Table I and illustrated in Fig. 1.  

 
Definition 2: We define a network topology as a directed 

graph NT = NT(R, L) comprising a set of routers R and links 
L connecting them. Each ri ∈ R is specified by its xy 
coordinates on an FPGA floorplan and each link li,j ∈ L 
connects a given source router ri with a unique destination 
router rj. In this study, each link li,j has a maximum 
bandwidth capacity and a latency associated with it. All links 
are assumed to have the same maximum bandwidth and the 
same, constant link latency. The routers are assumed to be 
capable of switching the traffic when all incoming links are 
operating at maximum bandwidth. We assume the latency of 
a router is a constant, irrespective of the traffic volume it 
switches. Routers are also assumed to have a pair of special 
local links that allow a single core to be directly connected 
with the router. This pair of links allows the core to inject 
traffic (data) into the network and to receive data from other 
cores connected to the network. We define the latency of a 
network hop to comprise the sum of the latency of a single 
network link and the latency of the router the link inputs to. 
We neglect the latency, incurred at a core, of injecting data 
into the network and transferring it from the router to the 

core. The Manhattan distance between cores and the latency 
per hop thus characterize the latency between cores. 

In this work, we consider the problem of mapping given 
CTGs to two-dimensional (2D) mesh network topologies. A 
2D mesh network has routers located at all xy positions in 
[1..max_x, 1..max_y] and all routers are connected via bi-
directional links to their immediate neighbours to the north, 
south, east and west, where these neighbours are present. 

 
Definition 3: Mapping a CTG to a network topology 

involves finding an optimal placement (router positions) for 
the CTG cores and determining legal, minimal cost routes 
through network links for the inter-core connections. We 
have considered XY routing, which is known to be deadlock-
free on a mesh [13]. 

Maximizing performance usually forces the mapping to be 
as compact as possible. For example, the CTG of Table I 
might be mapped to a 4 x 4 router mesh as in Fig. 2. In this 
case, the maximum link bandwidth must be at least 40 MB/s 
for the mapping to be possible with XY routing. In our work, 
we are primarily interested in obtaining mappings that 
facilitate future dynamic modification. Our strategy for 
achieving such mappings is to dilate the embedding of the 
cores in the network topology so as to maximize the 
opportunities (via unused neighbouring routers) for inserting 
cores into the CTG.  

The dilation of the mapping is constrained by the latency 
bounds on connections and the utilization of link bandwidth 
capacity.  

TABLE I  
A SIMPLE 4-CORE CTG EXAMPLE 

Connection Bandwidth 
(MB/s) 

Latency 
(ns) 

c1,2 20 10 
c2,3 30 20 
c3,4 40 20 
c4,1 10 10 

 
Fig. 1.  Example of a simple 4-core CTG. 

 
Fig. 2.  Mapping of CTG from Table I  to 4 x 4 mesh. Router positions are 
depicted as grey squares at link intersections. Link positions are dotted. Used 
routers and links are darkened. Positions are numbered along x (horizontal) 
and y (vertical) axes. 
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As an example, the CTG of Table I can be mapped in a 

dilated manner to a 4 x 4 router mesh with a maximum link 
bandwidth of at least 40 MB/s and a hop latency of 10 ns as 
in Fig. 3. The difference with the previous mapping of Fig. 2 
is that connections c2,3 and c3,4 have now been mapped to 
routes that require two hops instead of one as permitted by 
their given latency constraints. The advantage of doing so is 
that if a 5th core needs to be added to the CTG of Table I , as 
listed in Table II, then the mapping of Fig. 2 would have to 
be modified in order to accommodate the latency 
requirements for the 5th core. This can incur significant 
reconfiguration overheads. However, in this case, the 5th core 
can easily be inserted into the dilated mapping of Fig. 3 at 
router position (2, 2) as illustrated in Fig. 4. In the absence of 
a priori knowledge of future CTG requirements, as is the case 
in open systems, we feel generalized dilation is the best 
strategy for minimizing the potential cost of modifying the 
mapping. The dilated mapping problem we have outlined 
above in some sense inverts the conventional mapping 
problem that aims to minimize the cost of the mapping by 
minimizing the sum of the products of the embedded 
connection lengths and the required connection bandwidths. 
In our case, the unused spaces (unallocated FPGA resources) 
between cores, and thus the connection lengths, are to be 
maximized subject to the latency constraints. We conjecture 
this problem is harder to optimize than the usual mapping 
problem since there is more freedom to place the cores at a 
distance. The approach we have therefore taken to obtain a 
timely solution to the problem is to apply a simulated 
annealing heuristic, which is known to produce good results 
for the conventional mapping problem. 

 
 

 
Fig. 3.  Dilated mapping of CTG from Table I  to 4 x 4 mesh. 

 
 

TABLE II 
 A 5TH CORE IS ADDED TO THE CTG EXAMPLE OF TABLE I . 

Connection Bandwidth 
(MB/s) 

Latency 
(ns) 

c1,2 20 10 
c2,3 30 20 
c3,4 40 20 
c4,1 10 10 
c4,5 10 10 
c5,2 20 10 

 

 
Fig. 4.  Addition of 5th core to mapping of Fig. 3. 

 
B. Simulated Annealing Framework 

Simulated annealing (SA) [14], has been applied to many 
combinatorial optimization problems including partitioning, 
placement and routing, to name a few. The method requires 
four ingredients for it to be applicable: a concise description 
of a configuration of the system; a random generator of 
rearrangements of the elements in a configuration; a 
quantitative objective function containing the tradeoffs to be 
made; and an annealing schedule of the temperatures and 
length of times for which the system is to be evolved.  

For the dilated mapping problem, the mapping of CTG 
cores to mesh routers represents a system configuration. It 
should be clear, that the placement of cores at specific routers 
together with our choice of XY routing algorithm determines 
which routes are used for the inter-core connections. 

Rearrangements are generated by randomly choosing two 
routers, at least one of which should be occupied by a core, 
and exchanging the cores connected to the chosen routers. 
The derivation of the quantitative objective function we used 
will be described in the following subsection.  

 
C. Objective Function 

The objective function (1) used in our experiments 
balances a term promoting the compact placement of 
communicating cores with another term that favours the 
dilated placement of cores, 

 
dilation α   compaction  α  cost ∗−+∗= )1( .     (1) 

 
The balance of the compaction and dilation terms can be 

adjusted by modifying the weight given to the multiplicative 
constant, α. The goal of the annealing process is to minimize 
the cost as given by (1).  

 
The compaction term of (1) can be expanded as in (2), 
 

∑ ∗=
s, cconnection

cc hops  bandwidth  compaction          (2) 

 
in which the product of the required bandwidth for each 
connection between the cores, bandwidthc, and the number of 
hops (Manhattan distance) over which the connection is 
formed, hopsc, is summed over all connections in the graph. 
This approach is typically used to minimize the distance 
between the most heavily communicating cores and thus 
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commonly leads to a low power/low latency/high clock 
frequency solution. 

 
The dilation term of (1) is expanded as in (3), 
 

nutilizatio  proximity    slack   dilation ∗+∗+∗= δγβ ,      (3) 
 

whereby the amount of slack on connections, the proximity of 
cores and the utilization of link capacity are minimized. 
These factors can be traded off by adjusting the multiplicative 
constants, β, γ and δ. 

 
The overall slack in (3) of the current placement of the 

cores is calculated as a sum of slacks for all connections with 
a given required latency, 

 

∑∑ ∗−==
csconnection

hcc
csconnection

c latency  hops latency(slack  slack
,,

) ,

              (4) 
 

where the slack of a connection, slackc, is given as a 
difference in the required latency of a connection, latencyc, 
and the product of the number of hops for the connection, 
hopsc, and the hop latency, latencyh. 

 
The proximity term in (3) uniformly distributes (dilates) 

those core pairs (u,v) that are mutually non-communicating or 
for which no required latency is specified. It is calculated as 
(5) 

( )

( )∑

∑

−+

+−=

v)(u, pairs core
vertical

uniformvu,

v)(u, pairs core
horizontal

uniformvu,

spacingver_dist

spacinghor_distproximity

2

2

       (5) 

 
where hor_distu,v is a horizontal mutual distance between a 
horizontal pair of cores, ver_distu,v is a vertical mutual 
distance between a vertical pair of cores and spacinguniform is 
the optimal mutual spacing between a pair of cores in 
horizontal and vertical directions if they were uniformly 
distributed across the mesh. The term spacinguniform  in (5)  is 
calculated as (6) 
 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

number

dim
uniform coresceil

mesh ceilspacing ,          (6) 

 
where meshdim is the dimension of the square mesh, 
coresnumber is the total number of cores to be mapped on the 
mesh and ceil rounds the expression to the nearest integer 
towards infinity. 

 
Placements that minimize the link utilization are preferred 

in order to provide spare capacity for cores to be added to the 
communication graph over time. This goal is captured by (7) 

∑ ∗=
ks, sshared lin

s s bandwidth  sconnection  nutilizatio ,       (7) 

 
 

where connectionss is the number of connections sharing each 
used link and bandwidths is the sum of the bandwidths of the 
connections sharing the link, i.e., the total bandwidth of the 
link. Rather than apply (7) to the CTG embedding in the 
network, which penalizes longer (dilated) shared paths more 
than shorter ones, we construct a graph of the embedded CTG 
connections, thereby inserting pseudo-vertices into the CTG 
where signal paths meet at shared routers. Equation (7) is 
then applied to this graph of the embedding with each shared 
connection being counted just once. 

 
Constraints (8) and (9) 
 

ks, sshared lin  bandwidthbandwidth s ∀≥− ,0max          (8) 
s, cconnection   latencyhops latency hcc ∀≥∗− ,0          (9) 

 
also need to be observed. Constraint (8) requires that the total 
bandwidth allocated to a network link, bandwidths, must be 
no greater than the maximum link bandwidth capacity 
bandwidthmax. Constraint (9) ensures that no connection 
exceeds the required latency of the connection.  

 

III. RESULTS 

This section presents simulation results to allow our dilated 
mapping technique to be evaluated for one synthetic case, 
Case I, and one real application case, Case II.  

As described in the previous section, the balance of the 
compaction and dilation terms can be adjusted by modifying 
the weight given to the multiplicative constant α in (1). In the 
results presented here, α was changed in a discrete manner, 
i.e., initially α = 1, corresponding to compaction only. Once 
compaction converged, α was changed to α = 0, which 
corresponded to dilation only. In this way, the initial random 
allocation was first compacted and then dilated. By running 
the compaction stage first, the SA algorithm initially obtains 
a compacted solution in which the maximum link bandwidths 
are unlikely to be exceeded. This intermediate solution also 
locates the communicating cores as closely as possible, 
resulting in the maximum possible slack between 
communicating cores. When the dilation phase is started from 
the compacted solution, the probability of starting with a 
solution that does not adhere to the given constraints is 
smaller and the convergence of the SA algorithm is 
significantly improved. 

Experimentation with a number of graphs indicated that β 
= 1, γ = 0.2 and δ = 0.04 resulted in a reasonable balance in 
the contributions to (3) from the slack, the proximity and the 
utilization. If all contributions are of equal importance then 
the values of the multiplicative constants β, γ and δ are 
chosen intuitively so that the magnitudes of the terms 
β ∗ slack,  γ ∗ proximity, and δ ∗  utilization  are approxi-
mately equal during the optimization. 

2403



In our experiments, the SA was started with an initial, 
random placement of the cores. Following standard SA 
practice, the current placement was perturbed at the given 
temperature and the change in configuration was accepted if 
the perturbation resulted in a lower cost configuration, or 
with exponentially decreasing likelihood if it yielded an 
increase in cost [14]. In both the compaction and dilation 
phases we decreased the temperature when at least 50 
successive rejected perturbations preceded a successful one. 
The algorithm was terminated when Tmin = 0 was reached, or 
when 10,000 successive perturbations were rejected. 

 
A. Case I 

In Case I, listed in Table III, we dilated 8 cores into a 9 x 9 
mesh. Fig. 5 shows the initial placement of the 8 cores. Fig. 6 
shows the detail of the compacted solution and Fig. 7 shows 
the dilated solution. The maximum allowed link bandwidth 
was set to 20. The dilated placement has zero slack for all 
connections, the utilization is minimized, and the distances 
between non-communicating cores were optimized. 
Comparing placements shown in Fig. 6 and Fig. 7 it can be 
appreciated that new cores can be inserted more readily into 
the dilated placement in order to satisfy the latency 
requirements of new cores while at the same time not 
exceeding any given link bandwidth constraints. 
 

B. Case II 
In Case II, we dilated a high performance, power 

constrained 4G wireless modem application described in [15, 
16]. The application has 34 nodes (cores). In our results, 
cores 1 to 16 correspond to nodes M0 to M15 and cores 17 to 
34 correspond to nodes S0 to S17 in [16], and our single hop 
latency is assumed to be 50 ns. A summary of bandwidth and 
latency requirements can be found in [16]. We dilated the 34 
cores into a 16 x 16 mesh. The initial placement is not shown 
here due to space constraints. Fig. 8 shows the detail of the 
compacted solution and Fig. 9 shows the dilated solution. As 
in Case 1, it can be appreciated that new cores can be inserted 
more readily into the dilated placement in order to satisfy the 
potential latency requirements of new cores while not 
exceeding link bandwidth limits. 

 
 

TABLE III 
INTERCONNECTION MATRIX FOR CASE I. 

(Connections listed as Required Bandwidth/Connection Latency in Hops; 
cells representing null connections left blank). 

Core t1 t2 t3 t4 t5 t6 t7 t8 
t1  10/2   10/4    
t2 10/2  10/2   10/4   
t3  10/2  10/2   10/4  
t4   10/2     10/4 
t5 10/4     10/2   
t6  10/4   10/2  10/2  
t7   10/4   10/2  10/2 
t8    10/4   10/2  
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Fig. 5.  Initial (random) placement of Case I into a 9 x 9 mesh. 
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Fig. 6.  Placement of Case I after compaction. 
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Fig. 7.  Placement of Case I into a 9 x 9 mesh after dilation. 
 

 

Fig. 8.  Placement of Case II after compaction. 
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Fig. 9.  Placement of Case II into a 16 x 16 mesh after dilation. 

 

IV. CONCLUSION 

In this paper we detailed our motivation for exploring the 
benefits of dilating communication task graphs, derived a 
simulated annealing approach to dilating the initial 
placement of such graphs, and presented results of applying 
the algorithm to one synthetic case and one real case. The 
method results in successful and meaningful graph dilation. 
We plan to examine the effect of varying the parameters of 
the simulated annealing and to explore approaches to 
maintaining a dilated placement at runtime. 
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