International Journal of Foundations of Computer Science
© World Scientific Publishing Company

ON DYNAMIC TASK SCHEDULING
FOR FPGA-BASED SYSTEMS

OLIVER DIESSEL

School of Computer Science and Engineering, University of New South Wales,
Sydney, NSW 2052, Australia.

and

HOSSAM ELGINDY

School of Computer Science and Engineering, University of New South Wales,
Sydney, NSW 2052, Australia.

Received
Revised
Communicated by

ABSTRACT

The development of FPGAs that can be programmed to implement custom circuits

by modifying memory has inspired researchers to investigate how FPGAs can be used as
a computational resource in systems designed for high performance applications. When
such FPGA-based systems are composed of arrays of chips or chips that can be partially
reconfigured, the programmable array space can be partitioned among several concur-
rently executing tasks. If partition sizes are adapted to the needs of tasks, then array
resources become fragmented as tasks with varying requirements are processed. Tasks
may end up waiting despite their being sufficient, albeit fragmented resources available.
We examine the problem of repartitioning the system (rearranging a subset of the exe-
cuting tasks) at run—time in order to allow waiting tasks to enter the system sooner.
In this paper, we introduce the problems of identifying and scheduling feasible task
rearrangements when tasks are moved by reloading. It is shown that both problems
are NP-complete. We develop two very different heuristic approaches to finding and
scheduling suitable rearrangements. The first method, known as Local Repacking, at-
tempts to minimize the size of the subarray needing rearrangement. Candidate subarrays
are repacked using known bin packing algorithms. Task movements are scheduled so as
to minimize delays to their execution. The second approach, called Ordered Compaction,
constrains the movements of tasks in order to efficiently identify and schedule feasible
rearrangements. The heuristics are compared by time complexity and resulting system
performance on simulated task sets. The results indicate that considerable scheduling
advantages are to be gained for acceptable computational effort. However, the benefits
may be jeopardized by delays to moving tasks when the average cost of reloading tasks
becomes significant relative to task service periods. We indicate directions for future
research to mitigate the cost of moving executing tasks.

Keywords: FPGA, partitionable array, dynamic reconfiguration, task scheduling, task
rearrangement, dynamic allocation, scheduling complexity, scheduling heuristic

1. Introduction

FPGA-based computer systems are typically composed of workstation class pro-
cessors that host circuit boards comprising arrays of FPGAs, distributed memory to
support high bandwidth I/0, and low latency networks to allow flexible and rapid
communications between system components. Such systems have proved effective
at performing compute intensive tasks by loading the FPGAs with special purpose
logic circuits that exploit the parallelism present in many grand challenge problems
and overcome the “von Neumann bottleneck” of sequentially fetching and decod-
ing instructions. The design of FPGA-based systems poses many challenges and
attracts considerable attention from researchers interested in system architectures
that provide high bandwidth and low latency to computational resources, effective
mappings of algorithms to the compute resource, and the run—time management of
systems for high performance.

An FPGA consists of a two—dimensional grid of configurable logic cells and a
programmable routing network that can be programmed to implement any digi-
tal circuit. The logic cells are typically capable of implementing simple boolean
functions of their inputs and one or more registers for storing constants or interme-
diate results. Cells are usually directly connected to their grid neighbours but often
also provide some means of obtaining inputs or supplying results over longer wires
that may connect several cells or convey signals for longer distances. An FPGA is
programmed by configuring the logic functions of the cells and setting the routing
switches to implement a digital circuit.

The conventional approach to configuring FPGAs is to load the configuration
for the complete chip in an uninterrupted fashion taking time proportional to the
area of the chip. This approach does not scale well, and with the development of
configuration stores based on static RAM that can be randomly accessed, partially
reconfigurable devices have been produced. Partially reconfigurable FPGAs allow
part of the FPGA to be reconfigured while circuits occupying the rest of the device
continue to operate. The benefits of this development have been to reduce the
reconfiguration time to within a factor of the area requiring reconfiguration and
to allow reconfiguration to overlap with operation. Such FPGAs are therefore also
called dynamically reconfigurable.

Dynamically reconfigurable FPGAs can be used in several ways. If a circuit does
not fit onto a chip, it may be possible to partition it into components that can be
“paged” onto the device as control passes to them and they become active. Another
use is to recycle inactive regions of the FPGA for use by other tasks. It has thus
become feasible to configure and operate regions of an FPGA independently of other
regions. Interest has therefore grown in sharing FPGA devices and FPGA-based
systems among multiple simultaneous tasks. Similar goals for mesh multiprocessor
systems led to the notion of a space—shared system which partitions the mesh to
share the resource among multiple simultaneously operating tasks.

The space—shared FPGA model allows the FPGA area to be partitioned among
multiple tasks that are each allocated a region of the FPGA in which they may
execute as if they were the sole task running on an FPGA of the required size.

Efficient use of the FPGA is gained by allocating as much of the resource to running
tasks as possible. Rather than waiting until the system is available for their exclusive
use, tasks benefit from being able to run as soon as there are sufficient contiguous
free resources available to support their processing needs.

When the logic resource of an FPGA is to be shared among multiple tasks, each
having its own spatial and temporal requirements, the resource becomes fragmented.
If the requirements of tasks and their arrival sequence is known in advance, suitable
arrangements of the tasks can be designed and sufficient resource can be provided
to process tasks in parallel. However, when placement decisions need to be made
on-line, it is possible that a lack of contiguous free resource will prevent tasks from
entering although sufficient resource in total is available. Tasks are consequently
delayed from completing, and the utilization of the FPGA is reduced because re-
sources that are available are not being used. The system designer may be tempted
to provide additional resource, thereby increasing the physical and economic needs
of the system.

To maintain system speed, and to contain size and cost, we propose rearranging
a subset of the executing tasks when doing so allows a waiting task to be processed
sooner. Our goal is to increase the rate at which waiting tasks are allocated while
minimizing disruptions to executing tasks that are to be moved.

In the next section, a model of a space—shared FPGA system and its task man-
agement is developed. We use this model to formulate the problem and our solution
goals in Section 3. In this section it is also shown that the problems of identifying
feasible FPGA rearrangements to accommodate a waiting task and the schedul-
ing of task movements so as to minimize execution delays are NP—complete. We
then present two heuristics to overcome the complexity of finding suitable rear-
rangements. Each uses a different scheduling technique. Section 4 describes the
local repacking heuristic that attempts to minimize the FPGA area that is to be
rearranged to accommodate the waiting task. To schedule the movements, an or-
dered search heuristic is used. In Section 5 we present a second technique, ordered
compaction, which restricts the type of movements permitted so as to efficiently
identify potential rearrangements and schedule their movements. Section 6 assesses
the time complexity and reports on the performance of the methods. The results
are discussed in Section 7 and our conclusions are presented in Section 8.

2. Model & Assumptions

2.1. Space—Shared FPGA Model

The configurable logic cells of common dynamically reconfigurable FPGAs are
laid out in a two—dimensional grid and are usually directly connected with their
neighbours to the north, south, east, and west via nearest neighbour links [9, 1].
Definition 1 A space—shared FPGA of width W and height H is a two—dimensional
grid of configurable cells and routing resources denoted G*[(1,1), (W, H)] with bottom—
left cell labelled (1,1) and top—right cell labelled (W, H).

It is assumed that an FPGA task and the used routing resources surrounding
its perimeter can be modelled as a rectangular subarray of arbitrary yet specified
dimensions. Some internal fragmentation therefore results when task designs cannot
be optimized to a rectangular shape. The size of a task is assumed fixed for the
duration of its execution.

Definition 2 The FPGA task t[ly,1s] with l1,lo € ZT requires an array of size
11 x 13 to execute.

Tasks are assumed to be independent. However, when a task is decomposed
into several reconfigurable subtasks, they are allocated to the largest bounding box
required throughout the task’s instantiation. In this way, routing conflicts and
interference with other tasks are avoided.

Each task is allocated a subarray of the required size within a larger partitionable
array. Usually a subarray will simply be referred to as an array as well.

Definition 3 The orientation or(t) = (z,y) of a task t specifies the number of cell
columns x and rows y allocated to the task from the array. Given the orientation of
a task, its width w(or(t)) = x and height h(or(t)) =y are known.

Tasks may be rotated and relocated. Task t[l1,l2] may be oriented such that
or(t) = (I1,13) or such that or(t) = (ls,11). If or(t) = (I1,02), then it may be
allocated to any array G*[(z,y), (z +11 — 1,y +ls — 1)], where 1 <z < W — I3 +1
and 1 <y < H — 1y + 1. If tasks make use of hierarchical routing, then they might
not in practice be relocated anywhere. Our FPGA abstraction assumes the routing
interface to all cells is identical.

No limit is placed upon the number of tasks that can execute simultaneously. To
support multi-tasking, the FPGA should be able to support multiple simultaneous
I/O streams. The idealized model assumes any number of I/O streams can be
supported without slowdown.

Tasks are assumed to be deadline—free and to have unknown service periods.
However, it is possible to check whether or not tasks with known service periods
can be rearranged without exceeding deadlines.

Configuration involves loading the lookup table and/or selectors for the mul-
tiplexors associated with each cell to select the cell’s function. Several bytes of
configuration data per cell are serially loaded as a configuration bit—stream via pins
on the periphery of the chip. The setting of the routing switches is also determined
by the configuration data.

The dynamically reconfigurable FPGA model assumes the I/O architecture per-
mits random access to the configuration memory of a single logic cell or routing
switch in a single step. Moreover, it is assumed that a cell or switch can be config-
ured in a constant amount of time.

It is therefore assumed that the time needed to configure a subarray,

teont(GZ[(21,91), (22,92)]) = CD X (22 — 21 + 1) (y2 — 91 + 1), (1)

is proportional to the configuration delay per cell, CD, and the size of the subarray.
Since the delay properties of commercially available chips are isotropic and homo-

geneous, CD is assumed to be constant, i.e., the time needed to configure a task
and route I/O to it is independent of the task’s location and orientation.

2.2. Task Management with Partial Rearrangement

The management of tasks is depicted in Fig. 1.

TASK MANAGEMENT
defragmenter

allocator = task controllers

Pending task queue Space-shared FPGA

Fig. 1. An overview of task management with partial rearrangement.

Requests for service are queued in arrival order by a sequential host. A task
allocator, executing on the host, attempts to find an allocation site to satisfy the
next pending request when it arrives. If the allocator succeeds in finding a suitable
site, it associates a controller with the new task and its partition and allows the
controller to assume responsibility for loading the task and establishing I/O to it.

When the allocator fails to find a suitable allocation site for the next pending
request, it invokes a defragmenter, that determines whether or not the request can
be satisfied with partial rearrangement. If allocation with rearrangement is possible,
the defragmenter performs the rearrangement and returns the allocation site thereby
created to satisfy the request. If on the other hand allocation with rearrangement is
not possible, then all requests are blocked until allocation is attempted once more.

Subsequent allocation attempts are made whenever a task completes and there
is a request for service pending. If some executing tasks can be rearranged to ac-
commodate the task, then a schedule for suspending and moving them is computed.
The defragmenter then coordinates the partial reconfiguration of the FPGA by sig-
nalling individual task controllers to suspend a task’s operation, save the task’s
context, move the task and its context to a new location, and to resume the task’s
operation.

For the sake of fairness and simplicity, requests for service are processed in first—
come first—served (FCFS) order. However, the methods we describe do not depend
upon the scheduling method. Non-FCFS methods with better performance could
therefore be used.

The task allocator uses bottom-left allocation, which is a first fit method [10].

The bottom—leftmost free block large enough to satisfy the request is allocated to
the task. The advantages of the first fit method are that it is simple and that it
has complete recognition capability, i.e., it recognizes all possible allocation sites.
Many other contiguous allocation schemes have been proposed. It should be noted
that partial rearrangement can be successfully used with any allocation method.
Definition 4 Let T = {t;[li;,l2:] : 1 < i < n} be a set of tasks allocated to
an FPGA G?[(1,1),(W,H)]. The arrangement of tasks A(G?*[(1,1),(W,H)]) =
{a(t;) : t; € T'} is the set of non—overlapping orthogonally aligned rectangular par-
titions a(t;) = G?[bl(t;),tr(t;)] allocated to each task in T. The allocation for task
t; is said to be based at the cell allocated to the bottom—left corner of the task
(z(bl(t;)), y(bl(¢;))) and to extend to the cell allocated to the top-right corner of
the task (x(tr(t;)), y(tr(t:))).

Rearranging the tasks executing on an FPGA requires moving them. Moving
a task involves: suspending input to the task and waiting for the results of the
last input to appear or waiting for the task to reach a checkpoint; storing register
states if necessary; reconfiguring the portion of the FPGA at the task’s destination;
loading stored register states if necessary; and resuming the supply of input to the
task for execution. We assume I/O to tasks is performed by register access. The
interesting problem of rerouting I/O wires from the chip periphery to a task that
is moved is therefore not considered.

Since tasks are assumed to be without deadlines, any task is considered preempt-
able and may therefore be suspended with its inputs being buffered and necessary
internal states being latched until the task is resumed. The time needed to wait for
the results of an input to appear or for the task to reach a checkpoint is considered
to be proportional to the size of the task, which is the worst case in the absence
of feedback circuits. However, since with current technology the time to configure
a cell and associated routing resources is typically an order of magnitude greater
than the signal delay of a cell or the latency of a wire, the latency of the design is
considered negligible compared with the time needed to configure the task.

3. Problem Statement and Complexity

The purpose of partial FPGA rearrangement is to allocate waiting tasks as
quickly as possible so as to reduce task response time. This benefit to the waiting
task is at the cost of delays to the executing tasks since they must be interrupted
in order to be moved. It is therefore desirable to delay as few executing tasks as
possible and to minimize the maximum amount any single task is delayed. The
FPGA model moves tasks by reloading their configuration bit streams with new
offsets. This approach determines the time needed to complete the rearrangement
since the time to move a task is assumed to be proportional to its area and the
tasks that need to be moved must be reloaded one after another. The time to
complete a rearrangement is therefore proportional to the total area of the tasks
moved. Since the rate at which tasks can be allocated is limited by the rate at
which allocations can be found or rearrangements can be performed, it is desirable
to complete rearrangements as quickly as possible. These factors contribute to the

formulation of the FPGA rearrangement problem as follows.

FPGA REARRANGEMENT PROBLEM

INPUT: A set of executing tasks T = {t1,...,t,}, an arrangement A(G?[(1,1),
(W, H)]) = {a(t;) : t; € T} of the executing tasks, and a waiting task tp41[l1 541,
l2 n+1] that cannot be allocated to the array without overlapping the allocation of
some other task in 7T'.

OUTPUT: A new arrangement A'(G%[(1,1),(W,H)]) = {a'(t;) : 1 <i < n+1}
of the tasks, if possible, and a schedule p : T — Zg for moving the tasks in
{ti : a(ti) 75 a’(ti)} such that:

1. the delay to the waiting task is minimized,
2. the maximum delay to moving tasks is minimized, and

3. the time needed to complete the rearrangement is minimized.

The statement of the problem suggests two subproblems are to be solved. First,
a new arrangement of the executing tasks that accommodates the unallocated or
waiting task is needed. Second, a schedule for moving the tasks from their initial to
their final allocations needs to be found. The work involved in solving these prob-
lems represents an overhead to the system. An additional requirement, therefore,
is to find efficient solutions.

3.1. Identifying Feasible Rearrangements

A feasible rearrangement of the executing tasks is a new arrangement of the
tasks that allows the waiting task to be allocated as well. Although it is assumed
that tasks may be rotated before allocation, the rearrangements considered in this
work do not rotate the executing tasks.

In [5], Li and Cheng show that it is NP—complete to decide the RECTANGLE
PACKABILITY problem, which is to determine whether or not a set of oriented
rectangles can be orthogonally packed without overlap into a larger containing rect-
angle. Their proof was by reduction from the PARTITION problem [4]: the sizes of
the elements of a given PARTITION instance determine the widths of correspond-
ing rectangles having height 1/4. These can be packed into an array of width one
half the total size of the PARTITION elements and height 1/2 in polynomial time
if and only if P = NP. The following theorem thus follows.

Theorem 1 ([5/) RECTANGLE PACKABILITY is NP-complete.

Corollary 1 REARRANGEMENT FEASIBILITY, the problem of deciding whe-
ther a set of erecuting FPGA tasks can be rearranged to accommodate the next
waiting task, is NP—complete.

Proof. By equivalence with RECTANGLE PACKABILITY. A procedure for
deciding RECTANGLE PACKABILITY can decide whether or not the set of ex-
ecuting tasks taken together with the next waiting task can be packed into the
array. Similarly, an algorithm for deciding REARRANGEMENT FEASIBILITY

can be used iteratively to determine RECTANGLE PACKABILITY. The problems
are therefore computationally equivalent. O

Since the problem of deciding REARRANGEMENT FEASIBILITY is NP—com-
plete, it is unlikely to have a polynomial time solution. The corresponding opti-
mization problem, that of finding a feasible rearrangement, is therefore also unlikely
to be easy. Consequently, heuristic solutions are sought.

3.2. Scheduling FPGA Rearrangements

Definition 5 Given two arrangements of a set of FPGA tasks, an initial arrange-
ment A(G?[(1,1), (W, H)]) = {a(t;) : t; € T} and a final arrangement A'(G*[(1,1),
(W, H)]) = {a'(t;) : t; € T}, the intersection set of task t;, I(t;) C T — {t;}, is the
set of tasks in the initial arrangement that are intersected by t; when it is placed
into its final position, i.e., I(t;) = {t; : a(t;) Na'(t;) # 0}.

Given an initial and a final arrangement of a set of FPGA tasks, a method
for rearranging the tasks, i.e., moving the tasks from their initial to their final
partitions, is sought that minimizes the delay (defined below) to tasks subject to
the following constraints. These constraints arise as a consequence of the FPGA
model and the scheduling goals.

C1: A task must be removed from its initial position on the array before it can
be placed into its final position. The removal of a task from the array is
instantaneous.

C2: Only one task at a time can be placed. A task can only be placed into its final
position and its placement cannot be interrupted. The time needed to place
a task is equal to its size s(t;) = w(or(t;)) x h(or(t;)).

C3: Any tasks in I(¢;) that have not yet been removed from the array at the instant
the placement of ¢; commences are simultaneously removed from the array.

C4: The waiting task t,1, which is assumed to be initially removed from the array
and therefore without an initial position, is the first task placed into its final
position.

Definition 6 The elapsed time between the removal of a task from the array and
the commencement of its placement represents a delay to the task.

Let r(t;) be the time ¢; is removed from the array, p(¢;) be the time the placement
of t; commences, and d(t;) = p(t;) — r(t;) be the delay to t;. The sequencing
constraints can then be formulated in the following way:

r(ti) < p(t:) (C1),
p(ti) > p(t;) = p(t:) > p(t;) + s(t;) (C2),
Vt; € 1(t;),r(t;) < p(ti) (C3),
r(t;) < min{p(t;), {p(t;) : t; € I(¢;)}} (C1 & C3), and
r(tn+1) = p(tnt1) =0 (C4).

The problem now is to determine the complexity of finding a schedule p: T —
Z¢ that minimizes max{d(t1),d(t2), ..., d(tn)}

FPGA REARRANGEMENT SCHEDULING

INSTANCE: A set T' = {t1,...,tnt1} of tasks and a delay bound D € Z*. For
each task t; € T, a size s(t;) € ZJr and an intersection set I(t;) C T — {t;}.

QUESTION: Is there a schedule p : T — Z subject to C1 through C4 with
max{p(t;) — p(t;) : t; € I(t;)} < D for all i?
Theorem 2 FPGA REARRANGEMENT SCHEDULING is NP-complete.

Proof. It is easy to see that FPGA REARRANGEMENT SCHEDULING is in
NP since a non—deterministic algorithm need only guess a schedule and then check
in polynomial time that the placement constraints and the delay bound are met. To
show that the FPGA REARRANGEMENT SCHEDULING is NP—complete, the
well-known PARTITION problem is reduced to it [4].

Let the non—empty set A = {a1,...,a,} with size s(a;) € Zt for each a; € A
constitute an instance of PARTITION, and let S = }_7 , s(a;). Then construct an
instance of the FPGA REARRANGEMENT SCHEDULING problem consisting of
n + 3 tasks with D = 45 + |.S/2] such that the delay bound can be met if and
only if the set A can be partitioned into two subsets A’ C A and A — A’ such that
|A'| = |A— A"l = [5/2].

Let t; = [w(or(t;)), h(o
h(or(t;)), and size s(t;) =

r(t;))] denote a task oriented with width w(or(¢;)), height
w(or(t;)) x h(or(t;)). Set

tl = n+3 [25 2]
ta = [S, 1]7

and construct a further n tasks corresponding to the items in A,
ti+2 = [s(ai), 1], 1 S) S n.

The initial arrangement of the tasks for a particular instance is illustrated in
Fig. 2(a). Task t; initially occupies the second and third rows from the bottom of
an array of width 25 and height 5. Tasks t2 through ¢, 2 are arranged in sequence
from left to right along the fourth row from the bottom of the array.

The final arrangement of the tasks of the example is shown in Fig. 2(b). The
bottom-left corner of task ¢, 3 is aligned with the bottom-left corner of the array,
and tasks t; through ¢,,42 have been shifted up a row.

From the initial and final arrangements it can be seen that the intersection set
of t1 is I(t1) = T — {t1,tna3}, Of tnys is I(tnes) = {t1}, and of all other tasks
is empty. The tasks t;12,1 < ¢ < n, their intersection sets, and the intersection
set of task ¢; can be constructed in a linear scan of the set A. The magnitude of
S can be established at the same time, whereupon the tasks t1,%2, and t,3 can
be constructed in constant time. The initial and final arrangement of tasks need
not be computed since the intersection information is conveyed by the intersection

t, t3)ts ts |t t7
ty

(a)
t, ta)ts ts |te t7
ty
tg

(b)
Fig. 2. The initial (a) and final (b) arrangement of the tasks for an instance
of PARTITION with A = {1,3,2,4,6}.

sets. The transformation from an instance of PARTITION to an instance of FPGA
REARRANGEMENT SCHEDULING can thus be done in linear time.

As tp43 is placed first of all, ¢; is removed from the array at time p(tp43) = 0.
If t; is placed next, then the remaining tasks are removed from the array at time
p(t1) = p(tn+3) + s(tne3) and can only be placed after ¢; has been placed. In order
to minimize the delay to the remaining tasks, they are best placed in non—decreasing
order of size. But this ordering places t2 last of all and delays it for a total of 55
(the size of tasks t; and t3 through ¢,42). If this delay is to be reduced, some tasks
from T — {t1,t, 13} must therefore be moved before ¢; is placed. However, tasks
totaling no more than |S/2] in size can be placed after ¢,43 and before ¢; if the
delay on t; is not to exceed D.

Since s(t2) = S, it must be placed after ¢;, and placing ¢, before any other tasks
that are also chosen to be placed after ¢; forces those tasks to be delayed by 5S at
least since they would be delayed by the time taken to place tasks ¢; and ¢3. Any
correct schedule must therefore place t5 last of all. Placing tasks with a total size of
less than | S/2| after t,,13 and before t; leaves tasks with a total size of more than
|S/2] to be removed from the array with ¢ when ¢ is placed, thereby delaying
task t2 by more than 45 + [S/2].

Therefore, if the tasks t3 through ¢,,2, can be partitioned into a pair of disjoint
sets of size |S/2] in total, then a schedule satisfying the bound D can be found.
Since there is a one-to—one correspondence between these tasks and the elements of
A in the given PARTITION instance, it can be seen that if and only if a partition
of the set exists, a schedule meeting the bound can be found.

Similarly, if the bound of the FPGA REARRANGEMENT SCHEDULING
problem corresponding to an instance of the PARTITION problem can be met,
then one of the possible partitions is given by the elements corresponding to the
tasks placed respectively between tasks t,y3 and ¢; and between ¢; and t2 in the
schedule. If a valid partitioning of the set A does not exist, then no schedule can
meet the bound. O

Corollary 2 Without the constraint of placing the waiting task first of all, FPGA

rearrangement scheduling is NP—complete.

4. Local Repacking

Local repacking is a heuristic approach to finding feasible rearrangements that
limits the area of the FPGA that needs to be rearranged in order to accommodate
the waiting task. The idea behind local repacking is to repack the tasks initially
allocated to some rectangular region of the array so as to accommodate the waiting
task within the subarray as well. A hierarchical decomposition of the array known
as a free area tree is used to keep track of the number of free cells within each
subarray. In so doing, regions that contain sufficient free area to accommodate the
waiting task can be identified quickly, and rearrangements of the tasks they contain
can be attempted. Two—dimensional bin packing algorithms with good performance
bounds are used for this last step: the tasks, viewed as rectangles, are packed from
scratch into an infinitely long strip whose width is determined by the length of one
side of the subarray. If the tasks are packed using total height less than the length
of the other side of the subarray, then the rearrangement is feasible and its cost is
assessed. An ordered depth—first heuristic search algorithm is used to schedule and
compare the cost of feasible FPGA rearrangements.

4.1. Free Area Trees

A free area tree is a type of quadtree [6, 11] that need not necessarily be defined
over a square grid and whose leaves may have just one rather than three siblings.
Each node of the tree, which represents a portion of the array, stores the number
of free cells contained within the region and pointers to its children. If the array
covered by a node is completely free, or if it is entirely allocated to a single task,
then it is not further decomposed. Otherwise, the array represented by the node is
partitioned evenly into two or four disjoint subarrays, depending upon its size, and
represented by child nodes.

Fig. 3(a) depicts the arrangement of a pair of tasks on a rectangular array. The
array is partitioned to show the regions delimiting the extent of the leaf nodes in the
free area tree representation of the arrangement. The free area tree corresponding
to the arrangement of Fig. 3(a) is illustrated in Fig. 3(b).

When invoked, the local repacking method commences by building the free area
tree for an arrangement of tasks on the array. Next the tree is searched for nodes
that contain more free cells than are needed by the waiting task. For each such node,
a repacking of the tasks allocated to the array covered by the node is attempted.
These tasks are found by checking for intersections with the node’s array. If the
new arrangement accommodates the waiting task within the array covered by the
node as well, then the rearrangement of the tasks to achieve the packing can be
scheduled in order to evaluate its optimality.

Tasks which only partially intersect the array covered by a node need to be
handled in some way. The approach we adopt is to attempt to repack these tasks
completely into the rectangular array covered by the node as well. This approach

Key:
) B Node partially allocated to one or more tasks
7777777777777777777777777777 12 [J T Node entirely allocated to task

[] Nodecompletely free
(a) (b)

Fig. 3. (a) The arrangement of a pair of tasks on an array with free area tree
leaves marked. (b) The free area tree for the arrangement of (a).

avoids further searching and avoids the complexity of packing into arbitrary rec-
tilinear polygons. At each node, therefore, the area available for the waiting task
needs to account for the total area of tasks that are partially covered by the region
as well.

4.2. Searching the Free Area Tree

It is desirable that the free area tree be searched in some way that allows promis-
ing regions to be discovered early in the search. Ideally the region that is known
to cost least to repack should be discovered first. Searching the tree breadth—first
allows schedules affecting successively fewer tasks to be discovered and allows the
search to be abandoned at a time when the marginal benefit of finding arrangements
with lower allocation and execution delays is offset by the growing allocation delay
due to the search. A “deepest layer first” search examines those nodes that affect
the least number of tasks but have the least chance of accommodating the waiting
task first of all. An ideal search therefore starts somewhat higher in the tree and
works its way up.

4.3. Repacking the Tasks

The search of the free area tree identifies those subarrays that might accom-
modate the waiting task if the tasks allocated to it are rearranged. Well-known
strip—packing algorithms can be used to check whether such an arrangement exists.

Given a set of oriented rectangles and a two-dimensional bin of a given width
and unbounded height, the strip—packing problem is to find a minimum height
non—overlapping orthogonal packing of the rectangles into the bin. This variant
of the two—dimensional bin—packing problem is NP—complete. Much attention has
therefore been given to finding polynomial time approximation algorithms, i.e., fast

algorithms that come within a constant times the height used by an optimal packing
[3]. For L an arbitrary list of rectangles, let OPT(L) denote the minimum possible
bin height into which the rectangles in L can be packed, and let A(L) denote the
height actually used by a particular algorithm when applied to L.

Sleator proposed an O(nlogn) time strip—packing algorithm with

A(L) < 20PT(L) + 0.5hey;

where hg,j; is the height of the tallest rectangle [7]. Since hy,; < OPT(L), A(L) <
2.50PT(L) in the worst case. Asymptotically, however, A(L) = 20PT(L) as
htan = 0

We report on the effectiveness of using Sleator’s algorithm to attempt the repack-
ing. Given the node G?[(x1,41), (%2,92)] has been identified as a likely candidate,
a “strip” of width (zo — 21 + 1) is tried first. While the orientation of the allo-
cated tasks relative to the width of the strip needs to be preserved to obtain the
performance of known strip—packing algorithms, a packing with each orientation of
the waiting task is attempted. A feasible rearrangement results if the height of the
packing is less than (y2 — y; + 1). Otherwise, the orientation of the strip is flipped
so that its width is considered to be (y2 —y; + 1), and a packing within a height of
(z2 — z1 + 1) is attempted. As mentioned in Section 4.1, the algorithm attempts to
pack tasks that are partially intersected by the subarray into the array as well. If,
however, a partially intersected task couldn’t possibly fit because one of its sides is
too long, the repacking is not attempted.

4.4. FPGA Rearrangement Scheduling as Heuristic Search

The FPGA rearrangement scheduling problem may be thought of as a search for
a task reconfiguration sequence that minimizes the maximum delay to tasks. With
n tasks to rearrange after configuring the waiting task, there are n! different ways of
sequencing the rearrangement. Each of these can be viewed as a path from the root
of a tree to a leaf, in which a node ¢;,0 < i < n, represents the ith sequencing choice.
From the specification of the problem, the waiting task ¢,41 is chosen to be placed
at the root, ¢g. The initially executing tasks are then chosen to be reconfigured in
the sequence ¢y, co, ..., c,. The state of the search at any node, ¢;, can be deduced
from the unique path cg,c1,co,...,c; taken from the root to ¢;. The sizes of the
tasks determine the times at which a choice can be carried out and thus the time at
which tasks are suspended as they become intersected. It is therefore also possible
to determine which tasks have not yet been suspended or relocated, and by how
much the placed tasks have been delayed.

In FPGA rearrangement scheduling, each path has a cost associated with it,
which is the maximum of the execution delays to the tasks when they are relocated
in the sequence given by the path. The FPGA rearrangement scheduling problem
is to find a cost—-minimal path, which is known as a solution path. At a node, the
search for a cost—minimal path proceeds by calculating the cost associated with
each arc leaving the node. This process is called expanding the node. After a node
has been expanded, a decision is made about which node to expand next. For the

search for a solution path to be efficient, as little as possible of the tree is expanded.
Searching for a cost—-minimal path blindly, in a breadth—first or depth—first manner,
is impractical because there are n — i possibilities for the next sequencing choice at
node ¢; — one for each task remaining to be placed into its final position. However,
the search can be made more efficient through the use of heuristic information to
guide the choice. The idea is to expand the node that seems most promising. Such
a search is called an ordered search or best—first search [2]. One way of judging the
promise of a node is to estimate the cost of a solution path that includes the node
being evaluated. This estimate, made by an evaluation function, is based on the
current state and knowledge about the problem domain. How well the evaluation
function discriminates between promising and unpromising nodes determines the
effectiveness of the search.

A well-known optimal ordered search algorithm applicable to finding minimal-
cost paths in directed acyclic graphs is the A* algorithm [2]. Its distinctive feature
is its definition of the evaluation function f*. In a tree, the evaluation function
f*(c;) estimates the minimal cost of a path from the root to a leaf passing through
node ¢; by summing the exact cost of reaching the node from the root, g(c;), and an
estimate h*(c;) of the minimal cost of reaching a leaf from ¢;. It can be shown that
A* is guaranteed to find a solution path if A* is a nonnegative under—estimator of
the minimal cost of reaching a leaf from the node being evaluated and all arc costs
are positive.

The cost of reaching node g(c;) is given by the maximum of the delays to the re-
located tasks, which is known. A simple estimator of the minimal—cost path to reach
a leaf from the node is also available: in calculating h*(c;), ignore the executing
tasks, and determine the maximum amount by which the suspended tasks could be
delayed if they were scheduled in non-decreasing r(¢;) + s(¢;) order. The minimum
cost of a path to a leaf through ¢; is then estimated by f*(¢;) = max{g(c;), h*(¢;)}-

Unfortunately the A* algorithm potentially requires exponential time and space
because it attempts to make a globally optimal choice of the most promising node
at each step. However, an acceptable solution can be found most of the time for
lower cost by making a locally optimal choice of the next node to expand. Such
a search is known as an ordered depth—first search [2]. The quality of the solution
is determined by the depth to which the algorithm looks ahead before making a
choice. Better quality can thus be gained at higher search cost.

5. Ordered Compaction

Ordered compaction constrains the movement of tasks in order to identify feasi-
ble rearrangements efficiently. The ordered compaction heuristic places the waiting
task at a favourable location and moves those tasks that initially occupy the alloca-
tion site off to one side only. Ordered compaction therefore has the effect of moving
a subset of the executing tasks closer together while preserving their relative order.
Without loss of generality, ordered compaction to the right is considered. Fig. 4
depicts an example of a right ordered compaction.

In order to minimize the time to complete a compaction we show it is best to

Tasks to be compacted Allocation Site

(a) Initial arrangement (b) Final arrangement

Fig. 4. An example of a right ordered compaction. The initial arrangement
on the left shows the tasks to be compacted so as to allocate a waiting task of
size 6 X 5. The final arrangement on the right indicates the allocation site for
the waiting task.

attempt to place the waiting task adjacent to a pair of tasks such that one abuts the
allocation site on its left and the other abuts the allocation site below. The number
of potential allocation sites worth checking is thus significantly reduced. It is then
shown how the feasibility of a site can be decided by searching a visibility graph
defined over the executing tasks. An optimal schedule for freeing the allocation site
of executing tasks is also obtained during the search.

In the following, the right ordered compaction of tasks for a given orientation
of the waiting task is discussed. It is assumed that or(¢,+1) = (w,h). However,
it is necessary to consider both orientations of the waiting task and to consider
compacting the executing tasks to the left, top, and bottom of the array as well in
order to find the best allocation site. In each case the method is identical, albeit
with orientations and directions switched in the natural way. For the remainder of
this section the term compaction is used to refer to right ordered compaction.

5.1. Identifying Potential Allocation Sites

The following definitions are used to pinpoint the minimum cost locations for
placing the base of the waiting task ¢, if it is to be allocated in the neighbourhood
of t,'.

The first definition arises from considering where the waiting task can be based
were it to abut ¢; on the right.

Definition 7 For the waiting task t,1, assumed to be oriented such that or(tp41) =
(w,h), and for each executing task t;;1 < i < n, the right cell interval for t;,
rci(t;, tny1) consists of the set of possible base locations for tn,41 were some cell in
its leftmost column placed adjacent to and in the same row as a cell in the rightmost
column of t;.

The existence and extent of the right cell interval for ¢; given or(t,y1) is con-
strained by the boundaries of the array but disregards the intersection of ¢,,41 with
other executing tasks.

Definition 8 The right cell interval

rci(ti tnr1) = G?[(z(tr(t;)) + 1, max{1,y(bl(t;)) — h +1}),
(z(tr(t;)) + 1, min{y(tr(t;)), H — h + 1})]

exists iff x(tr(t;)) +1<W —w+1.
Definition 9 The right cell intervals for t, 1 is the set

Rtnsr) = {rei(ti, tug1) : 1 < i < n,z(tr(t;)) < W — w} UG2[(L,1), (1, H — h + 1)),

which includes an interval that is defined with respect to the left edge of the array.
Similar definitions can be made regarding the placement of the waiting task in
the vicinity of the other edges of executing tasks. Those that can be made with
respect to the topmost row of an executing task follow.
Definition 10 For the waiting task t,1 the top cell interval for t; is the set of
possible base locations tci(t;,t,y11) were some cell in the bottommost row of the
waiting task placed adjacent to and in the same column as a cell in the topmost row
Of tz .
The top cell interval

tci(ti, tnr1) = G?[(max{1,z(bl(t;)) —w + 1},y(tr(t;)) + 1),
(min{z(tr(t;)), W —w + 1}, y(tr(t;)) + 1)]

exists iff y(tr(t;)) + 1 < H—h+1.
The top cell intervals for t,y1 is the set

T(tur1) = {tci(ti,tns) : 1 <i < n,y(te(t) < H — B} UG2[(L,1), (W —w + 1,1))],

which includes an interval defined with respect to the bottom edge of the array.

The cells at the intersection of the set of right and top cell intervals for ¢, are
of particular interest.

Definition 11 The set of cells at the intersection of the set of right and top cell
intervals for t,1 is denoted Z(tn+1) = Rtnt1) N T (try1)-

Definition 12 Let the set B(t, 1) denote the union of the set of cells in T(t,1)
with the bottommost cells of each rci(ti,ty41) € R(tnt1) and the leftmost cells of
each tci(ti, tny1) € T (tnt1).

Theorem 3 If the waiting task t, 1 can be allocated by right ordered compaction,
then the time needed to complete the compaction is minimized for an allocation site
based at some cell in B(t,y1).

Proof. The proof considers the time needed to free the allocation site for all
possible base locations of the waiting task. The assumption is that the time needed
to complete the compaction is proportional to the area of tasks that need to be
moved out of the allocation site.

The right cell interval for ¢; is the leftmost column in ¢;’s neighbourhood where
t,+1 can be placed without intersecting ¢;. Refer to Fig. 5. Were the placement of

tn+1 to intersect ¢;, t; would have to be moved to the right of the allocation site for
tn+1 by the right ordered compaction rule, thereby increasing the time needed to
complete the compaction. Placing ¢,,41 to the right of the right cell interval for ¢;
does not reduce the cost of freeing the area needed by t,,41. Indeed, it could increase
the cost by intersecting additional tasks on the right boundary of the allocation site.
For example, see task t; in Fig. 5. These additionally intersected tasks would need
to be moved as well, thereby increasing the time needed to complete the compaction.

Boundary of allocation site based at cell (r,c)

Right cell
interval for t;

Cell (r,c) Top cell
interval for tJ.

Fig. 5. Allocation sites based at the intersection of right and top cell intervals
are locally optimal. Minor displacements from these local optima can force
additional tasks to have to be removed from the allocation site.

If the right cell interval for ¢; intersects the top cell interval for t; at cell (r,c)
say, then if t,,,1 were based at (r,c), it would, as described above, be constrained
from being placed further to the left or right without potentially increasing the time
needed to free the allocation site. The waiting task would also be constrained from
being located above or below the top cell interval for ¢; by a similar argument since
a slightly lower placement of the site would intersect ¢;, forcing it to be moved, and
a slightly higher placement would force the movement of any tasks that become
intersected at the top edge of the site. In Fig. 5, for example, task ¢; is intersected
if the allocation site is based above the top cell interval for ¢;.

If the right cell interval for ¢; is not intersected by a top cell interval, then it
is possible for an allocation site based at a cell in the interval to intersect another
task in one way only. The site could intersect a task ¢;, to the right of and in the
vicinity of ¢;, whose top edge is flush with, or above the top edge of ¢;. See Fig. 6
for an example. Basing the waiting task at the bottommost cell of the right cell
interval avoids the need for compaction if the site does not intersect such a task.
On the other hand, no more time is needed to complete the compaction for a site
based at this cell than at any other cell in the right cell interval for ¢; since each
location forces t; to have to move.

A similar argument can be used to show that it is only necessary to check the

Top cell
interval for t;

Right cell
interval for t;

JEY T S S

Optimal alocation site in the vicinity of t;

Extension of t; forcing compaction

Fig. 6. Right cell intervals that are not intersected may offer opportunities
for allocating the waiting task without compaction. In any case, checking the
bottommost cell is optimal.

leftmost cell of each top cell interval when the interval is not intersected by a right
cell interval. O

5.2. Assessing Allocation Site Feasibility

Allocation sites based at cells in B(#,+1) are not guaranteed to be feasible be-

cause it may not be possible to compact the executing tasks within such a site to
the right due to lack of space. An efficient way of assessing feasibility is to build a
visibility graph of the executing tasks.
Definition 13 (After [8]) A task v is said to dominate o task t if, for some cell
(ry,cy) of v and some cell (r¢,¢;) of t, 1y =14 and ¢, > ¢;. Where v dominates t,
v is said to directly dominate t if there is no task u such that v dominates u and u
dominates t. A wvisibility graph is o directed graph having the collection of executing
tasks as vertex set and for each pair of tasks t and v it contains an edge from t to
v iff v directly dominates t.

Fig. 7 depicts the visibility graph for the example of Fig. 4. For each potential
base b € B(t,y1), the subgraphs that span rows intersected by the allocation site
were it based at b are searched. The leftmost tasks that intersect the potential
allocation site can be identified by a depth first search. Once they have been found,
the feasibility of moving them right the required distance can be checked. If the
potential base admits a feasible rearrangement, the set of tasks that need to be
moved can be listed by searching the subgraphs of the leftmost tasks intersecting
the allocation site.

The order in which potential allocation site bases are searched influences the
efficiency of the ordered compaction method. It is desirable to search the bases
as they are identified in a left to right sweep across the array because tasks that
intersect potential allocation sites based closer to the left edge have a better chance

35
(5.6)
[58]

2:5
(23)
[1.3]

Key:

6:3 | <— Taskid: distance task can moveright

(6,6) | <~— (Bottom, Top) rows occupied by task

(66) =— [Bottom, Top] rows occupied by subgraph
Fig. 7. An arrangement of tasks on the left, with its visibility graph depicted
on the right.

of being accommodated on the right. To this end, it is useful to check potential
allocation site bases in the order generated when right cell intervals are chosen
in increasing column order. However, sites closer to the left may involve moving
a greater total area of tasks than sites further to the right. These potentially
less costly sites become more sparse as the sweep progresses because it becomes
more difficult to compact the intersected tasks. The search for the best allocation
site could therefore be abandoned when the cost of further searching exceeds the
marginal benefit of finding less costly compaction schedules.

5.8. Scheduling Ordered Task Movements with Minimum Delay

Given a set of tasks that are to be orderly compacted it is possible to move the
tasks without delay according to the visibility graph if a task is not moved until all
tasks in its subgraph that must move have moved. This scheduling policy minimizes
delays to executing tasks by suspending each task that is to be moved just for the
period needed to reload it, and by moving it onto a region of the FPGA that does
not overlap any other executing tasks. Scheduling the compaction is straightforward
and requires time linear in the number of tasks to be compacted. The only drawback
with the policy is that it moves the tasks occupying the allocation site last of all and
therefore does not minimize the time needed to free the allocation site. However,
this may not be a serious disadvantage since it is the rate at which compactions are
completed that determines the rate at which waiting tasks can be allocated.

6. Evaluation of Partial Rearrangement Heuristics

6.1. Time Complexity

For an FPGA of width W and height H with m = max{W, H} and n executing
tasks, the local repacking heuristic requires O(mn) time to build the free area tree.
With O(m) nodes, the tree can be searched in O(mnlogn) time for the existence

of a feasible rearrangement. Ordered compaction, on the other hand, needs O(n?)
time to identify potential allocation sites and build the visibility graph. Each of
the potential sites can be checked in O(n) time, which leads to a time complexity
of O(n?) for ordered compaction to determine whether a feasible compaction exists
or not. These costs can be reduced by dynamically maintaining the free area tree
and visibility graph.

In the worst case it is difficult to know which method requires more time. How-
ever, in practice only a few nodes at the root of the free area tree are searched,
which means O(mn) time is spent building the tree, and a few searches at a cost of
O(nlogn) time each are performed. For ordered compaction, the visibility graph
needs to be built, and if the potential allocation sites are checked in a left to right
sweep, the search can be abandoned after checking the right cell interval on the left
array border, which usually suffices to determine compaction feasibility. The cost
for ordered compaction is therefore more likely to be O(n?), which is unlikely to be
greater than the O(mn) time needed by local repacking.

Without the constraint of placing the waiting task first of all, ordered compaction
needs O(n) time to schedule the rearrangement so as to minimize the delays to the
executing tasks whereas local repacking requires O(n®logn) time with one-state
lookahead, or O(n*logn) time with two states of lookahead. When the waiting task
is to be placed first of all, both methods need to use the approximate scheduling
method.

6.2. Empirical Performance

Simulation experiments were carried out to compare the performance of the
static first fit allocation method with dynamic allocation methods employing local
repacking and ordered compaction whenever first fit failed. Local repacking used
an ordered depth—first search with two—state lookahead to schedule rearrangements,
while ordered compaction adopted a strategy that minimized the delay to executing
tasks. Both local repacking and ordered compaction were programmed to abandon
the search for feasible rearrangements when the first feasible rearrangement was
found. This rearrangement was then scheduled.

Several experiments were conducted to compare the performance of the different
allocation/rearrangement methods. For each experiment, sets of 10,000 tasks char-
acterized by 4 independently chosen uniformly distributed random variables were
generated. The random variables represented the two task side lengths, the inter-
task arrival period, and the task service period. The tasks were queued and placed
in arrival order to a simulated FPGA of size 64 x 64. The time needed to load a task
was determined by the availability of space and the time used to configure the cells
needed by the task. The configuration delay per cell was thus also a parameter.
Each experiment averaged the results of 10 runs.

The first experiment investigated the effect on performance of varying task loads
with nominal configuration delays (see Fig. 8(a)). Both local repacking and ordered
compaction perform significantly better than first fit when the FPGA is saturated
with work as tasks arrived more quickly than they could be processed. Varying

the maximum task size indicates local repacking performs marginally better than
ordered compaction when tasks are small, whereas ordered compaction performs
better when task sizes as large as the array size are permitted (see Fig. 8(b)).
When the FPGA is saturated with work, partial rearrangement reduces the mean
allocation delay by up to 24%. Response times are correspondingly lower and the
utilization correspondingly higher. When tasks arrive less frequently than they can
be processed, the benefits of rearrangement are insignificant.

A second experiment investigated the effect on performance of varying the con-
figuration delay in the saturated operating region (see Fig. 9(a)). Both methods
performed well when the mean configuration delay is very low (less than 1% of the
mean service period). However, local repacking begins to perform worse than first
fit at mean configuration delays of less than 5% of the mean service period. By com-
parison, ordered compaction sustains mean configuration delays corresponding to
approximately 10% of the service period before performing worse than first fit. The
very high execution delays experienced by tasks using the local repacking method
is the main factor contributing to its poor performance (see Fig. 9(b)). Ordered
compaction, which delays no task longer than is needed to move it, and which may
move tasks with less total area, delays tasks much less. It therefore sustains better
performance than first fit over a larger range of configuration delays.

7. Discussion

Partial rearrangement has the potential to offer considerable performance ad-
vantages with acceptable computational effort. Unfortunately, these benefits may
be jeopardized by execution delays which render partial rearrangement ineffective at
configuration delays that are relatively small compared with the mean task service
period.

These execution delays need to be substantially reduced if partial rearrange-
ment is to be broadly applied. Since the ratio of the configuration delay to the
computational latency of cells is unlikely to change significantly, unless heuristics
that reduce the total area of tasks involved in rearrangements are found, new ap-
proaches to moving tasks are needed.

The main bottleneck with the approach is that tasks are reloaded from off—chip
in a sequential process that takes time proportional to the area of each task. If it
were possible to use the configurable interconnect for moving tasks, then it would
be possible to eliminate the sequential reload step and to reconfigure a number of
target cells at a time. Furthermore, several tasks might make use of the available
bandwidth to move at the same time. Additional performance gains could then be
expected from the reduced delays to individual tasks and rearrangement schedule
lengths.

8. Conclusions

Partial FPGA rearrangement aims to reduce allocation delays for waiting tasks
by reducing the fragmentation of free cells through the movement of executing

Mean Allocation Delay (tus)

Mean Allocation Delay (tus)/Percentage Reduction

Mean Allocation Delay

60
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr T I IS Local Rm-m'i..g —
E Ordered Compaction; ----
First Fit, --:--
50
40 \v'
30 :
20
10
0 et
10 100 1000
Maximum Intertask Arrival Period (tus)
(a)
Mean Allocation Delay
1000
irst Fit
Ordered-Compaction ;===
Local Rearrangement ===
rFercenta (:'IEULLliUII, Jraere LUHI},dLLiUII
Per e rnl‘lll"finr\‘l cal-R .
100
10 T
1
8 16 24 32 40 48 56 64

Maximum Task Side Length (cells)

(b)
Fig. 8. (a) Mean allocation delay for local repacking, ordered compaction, and
first fit as the maximum inter—task arrival period was varied. Task sizes were
chosen from U(1, 32) x U(1, 32) and CD was 1/1,000 time unit (tu). (b)
Mean allocation delay for local repacking, ordered compaction, and first fit as
the maximum task size was varied. The intertask arrival period was set to 1
tu. For both plots, the task service period was chosen from U(1, 1000) tus.

Mean Allocation Delay (tus)

Mean Execution Delay (tus)

Mean Allocation Delay at Saturation
60

Local Repacking: —+
Ordered Campaction: -+-+-
First Fit:----

50

30 o

10

1 10 100 1000
Mean Configuration Delay per Task (tus)

(a)

Mean Execution Delay at Saturation

140

Local Repacking: —
Ordered Compaction: -+-+-

120

80

60

40

20

1 10 100 1000
Mean Configuration Delay per Task (tus)

(b)

Fig. 9. (a) Mean allocation delay at saturation for local repacking, ordered
compaction, and first fit as the mean configuration delay per task was varied.
(b) Mean execution delay at saturation for local repacking and ordered com-
paction as the mean configuration delay per task was varied. For both plots,
task sizes were chosen from U(1, 32) x U(1, 32) and intertask arrival period
was set to 40 time units (tus). The task service period was chosen from U(1,
1000) tus.

tasks. In order to minimize the delay to waiting tasks, the rearrangements should
be performed as quickly as possible. When tasks are reloaded, this aim equates to
minimizing the total area of the set of tasks to be moved. So as not to offset the
benefits of rearrangement, the delay to executing tasks that are to be moved needs
to be minimized as well.

Considering identifying feasible rearrangements of FPGA tasks is NP-complete,
two heuristics were developed. Local repacking uses a quadtree decomposition of
the FPGA to identify subarrays that may be capable of accommodating the waiting
task if they are repacked. Known strip—packing algorithms are used to attempt the
repacking. Ordered compaction, on the other hand, searches a visibility graph of the
executing tasks to determine whether tasks can be moved together in one direction
so as to fit the waiting task in the resulting gap — the method can also be used to
identify allocation sites when compaction is not required. The fixed costs associated
with constructing the data structures needed to search for feasible rearrangements
can be reduced by dynamically maintaining them. However, the efficiency of both
methods depends upon the search strategy used. It is not clear how the search
effort can be minimized.

Scheduling rearrangements so as to minimize the delays to the executing tasks
that must be moved was shown to be NP—complete. Scheduling heuristics based
on state-space search strategies were therefore proposed, and a simple linear time
cost function for guiding the order in which nodes are expanded was described. The
more constrained task movements of ordered compaction allow a scheduling method
that minimizes the delay to the moving tasks to be used.

It is difficult to distinguish between the heuristics for identifying rearrangements
on the basis of worst case performance. It is likely that the cost of identifying
feasible ordered compactions is no more than the cost of identifying feasible local
repackings. However, the existence of a linear time scheduling algorithm for ordered
compaction gives it a scheduling advantage. Analytical performance bounds on the
ordered depth—first scheduling heuristic are needed.

An experimental assessment of the performance of the methods indicates dy-
namic allocation by partial rearrangement can be of significant benefit when the
configuration delay is a small fraction of the mean service period and when tasks
arrive more quickly than they can be processed. Local repacking appears to be
slightly more effective than ordered compaction when task sizes are small, however,
both methods become ineffective with modest increases in the configuration delay.

In order to increase the range of application, it is proposed to examine moving
tasks on—chip as a means of overcoming the I/O bottleneck of reloading config-
uration bit streams from off the chip. The architectural support and scheduling
techniques needed to move tasks on—chip are being further investigated.

References

1. Atmel, “AT6000 FPGA configuration guide,” Document 0436B, Atmel, 1997.

2. A. Barr and E. A. Feigenbaum, eds. The Handbook of Artificial Intelligence, Vol-
ume [(William Kaufmann, Los Altos, 1981).

11.

E. G. Coffman Jr., M. R. Garey, and D. S. Johnson, “Approximation algorithms
for bin-packing — an updated survey,” in Algorithm Design for Computer System
Design, eds. G. Ausiello, M. Lucertini, and P. Serafini (Springer, Vienna, 1984) pp.
49 — 106.

. M. R. Garey and D. S. Johnson. Computers and Intractability — A Guide to the

Theory of NP-Completeness (W. H. Freeman, San Francisco, 1979).

. K. Li and K. H. Cheng, “Complexity of resource allocation and job scheduling

problems on partitionable mesh connected systems,” Technical report UH-CS-88-
11, University of Houston, 1988.

. H. Samet, “The quadtree and related hierarchical data structures,” ACM Comput.

Surv. 16 (1984) 187 — 260.

. D. D. K. D. B. Sleator, “A 2.5 times optimal algorithm for packing in two dimen-

sions,” Inf. Process. Lett. 10 (1980) 37 — 40.

. A. P. Sprague. “A parallel algorithm to construct a dominance graph on nonover-

lapping rectangles,” Int. J. Parallel Program. 21 (1992) 303 — 312.

. Xilinx, “XC6200 Field Programmable Gate Arrays,” Technical report, Xilinx, 1996.
10.

Y. Zhu, “Efficient processor allocation strategies for mesh—connected parallel com-
puters,” J. Parallel Distrib. Comput. 16 (1992) 328 — 337.

Y. Zhu, “Fast processor allocation and dynamic scheduling for mesh multiproces-
sors,” Comput. Syst. Sci. Eng. 11 (1996) 99 — 107.

