
Simulating Run-Time Task
Migration in Many-Core Systems

Koosha Ahmadi

A thesis in fulfilment of the requirements for the degree of

Masters by Research

Discovery and Adaptation of
Process Views

THE UNIVERSITY OF NEW SOUTH WALES

SYDNEY · AUSTRALIA

A dissertation submitted in fulfillment

of the requirements for the degree of

Doctor of Philosophy

in

Computer Science and Engineering

Hamid Reza Motahari Nezhad

Supervisor: Prof. Boualem Benatallah

12 February 2008

School of Computer Science and Engineering
Faculty of Engineering

September 2014

PLEASE TYPE
THE UNIVERSITY OF NEW SOUTH WALES

Thesis/Dissertation Sheet

Surname or Family name:

First name: Other name/s:

Abbreviation for degree as given in the University calendar:

School:

Title:

Abstract 350 words maximum: (PLEASE TYPE)

Declaration relating to disposition of project thesis/dissertation

I hereby grant to the University of New South Wales or its agents the right to archive and to make available my thesis or dissertation in whole or in
part in the University libraries in all forms of media, now or here after known, subject to the provisions of the Copyright Act 1968. I retain all
property rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation.

I also authorise University Microfilms to use the 350 word abstract of my thesis in Dissertation Abstracts International (this is applicable to doctoral
theses only).

……………………………………………………………
 Signature

……………………………………..………………
 Witness

……….……………………...…….…
 Date

The University recognises that there may be exceptional circumstances requiring restrictions on copying or conditions on use. Requests for
restriction for a period of up to 2 years must be made in writing. Requests for a longer period of restriction may be considered in exceptional
circumstances and require the approval of the Dean of Graduate Research.

FOR OFFICE USE ONLY Date of completion of requirements for Award:

THIS SHEET IS TO BE GLUED TO THE INSIDE FRONT COVER OF THE THESIS

Koosha Ahmadi Oliver Diessel 22/09/2014

Ahmadi

Koosha
Msc

EngineeringComputer Science and Engineering Faculty:

Simulating run-time task migration in many-core systems

With the ever increasing number of processing elements on Network-on-Chip multiprocessors, it is
crucial to utilise the resources efficiently. Allocation of tasks to processing elements is one of the most
important problems to be solved for these systems. This requirement is further complicated as
embedded systems become evermore open ended.

In addition, as the requirements and the volume of applications are hard to predict at design time, not
only do we need to allocate resources at runtime, but we may want to reallocate them as well. Having
frameworks for testing different allocation and reallocation policies is therefore of great importance.
However, simulators that are readily available for performing task migration and dynamic mapping in
the context of open-ended embedded systems are scarce or hard to configure.

We propose a framework for testing different allocation and reallocation policies for 2D-mesh many-
core systems, where requirements of applications are not known a priori. Our simulator is based on
the Booksim2 network simulator, and we have used Synchronous Data Flow Graphs provided by the
SDF^3 tool as our application model. The presented simulator is extensible and provides useful
insights into on-chip communications and runtime behaviour of applications. It is therefore to be
hoped that it could be used to explore and develop task migration policies.

ORIGINALITY STATEMENT

‘I hereby declare that this submission is my own work and to the best of my
knowledge it contains no materials previously published or written by another
person, or substantial proportions of material which have been accepted for the
award of any other degree or diploma at UNSW or any other educational
institution, except where due acknowledgement is made in the thesis. Any
contribution made to the research by others, with whom I have worked at
UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that
the intellectual content of this thesis is the product of my own work, except to
the extent that assistance from others in the project's design and conception or
in style, presentation and linguistic expression is acknowledged.’

Signed ……………………………………………..............

Date ……………………………………………..............

KA
Typewritten Text
Koosha Ahmadi

KA
Typewritten Text
22/09/2014

KA
Typewritten Text

 COPYRIGHT STATEMENT

‘I hereby grant the University of New South Wales or its agents the right to
archive and to make available my thesis or dissertation in whole or part in the
University libraries in all forms of media, now or here after known, subject to the
provisions of the Copyright Act 1968. I retain all proprietary rights, such as patent
rights. I also retain the right to use in future works (such as articles or books) all
or part of this thesis or dissertation.
I also authorise University Microfilms to use the 350 word abstract of my thesis in
Dissertation Abstract International (this is applicable to doctoral theses only).
I have either used no substantial portions of copyright material in my thesis or I
have obtained permission to use copyright material; where permission has not
been granted I have applied/will apply for a partial restriction of the digital copy of
my thesis or dissertation.'

Signed ……………………………………………...........................

Date ……………………………………………...........................

 AUTHENTICITY STATEMENT

‘I certify that the Library deposit digital copy is a direct equivalent of the final
officially approved version of my thesis. No emendation of content has occurred
and if there are any minor variations in formatting, they are the result of the
conversion to digital format.’

Signed ……………………………………………...........................

Date ……………………………………………...........................

KA
Typewritten Text

KA
Typewritten Text

KA
Typewritten Text

KA
Typewritten Text

KA
Typewritten Text
Koosha Ahmadi

KA
Typewritten Text
20/02/2015

KA
Typewritten Text
Koosha Ahmadi	

KA
Typewritten Text
20/02/2015

KA
Typewritten Text

ABSTRACT

With the ever increasing number of processing elements on Network-on-Chip

multiprocessors, it is crucial to utilise the resources efficiently. Allocation of tasks

to processing elements is one of the most important problems to be solved for these

systems. This requirement is further complicated as embedded systems become

evermore open ended.

In addition, as the requirements and the volume of applications are hard to pre-

dict at design time, not only do we need to allocate resources at runtime, but we

may want to reallocate them as well. Having frameworks for testing different alloca-

tion and reallocation policies is therefore of great importance. However, simulators

that are readily available for performing task migration and dynamic mapping in

the context of open-ended embedded systems are scarce or hard to configure.

We propose a framework for testing different allocation and reallocation policies

for 2D-mesh many-core systems, where requirements of applications are not known

a priori. Our simulator is based on the Booksim2 network simulator, and we have

used Synchronous Data Flow Graphs provided by the SDF 3 tool as our application

model. The presented simulator is extensible and provides useful insights into on-

chip communications and runtime behaviour of applications. It is therefore to be

hoped that it could be used to explore and develop task migration policies.

ii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my supervisor Oliver Diessel for his

guidance and patience throughout my Master’s.

I would like to acknowledge Dr. Muhammad Shafique and Prof. Jörg Henkel

from Karlsruhe Institute of Technology (KIT), Germany as well as Prof. Akash

Kumar and Amit Kumar Singh from National University of Singapore (NUS) for

providing me with the SDFs for applications JPEG decoder, MPEG4 decoder, and

H.264 decoder and encoder.

I express my warm thanks to Nan Jiang and Sander Stuijk for their help with

Booksim2 and SDF 3.

Lastly, a special thanks to my family and friends for their support and kindness

throughout my studies.

Contents

Acknowledgements ii

List of Acronyms vi

List of Figures vii

List of Tables ix

1 Introduction 1

2 Background 5

2.1 Mapping and task migration . 5

2.2 Task migration implementation . 6

2.3 Application models . 9

2.3.1 Dataflow MoCs . 9

2.3.2 Application models used in the mapping literature 11

2.4 Simulators . 12

2.5 Summary . 14

3 Simulator 15

3.1 Overview . 15

3.2 Application model . 16

iii

CONTENTS iv

3.2.1 Synchronous Data Flow Graphs 16

3.2.2 Modelling memory access . 18

3.2.3 Modelling transient applications 19

3.2.4 SDF 3 . 19

3.3 Architecture . 20

3.4 The network simulator . 23

3.5 Mapping and scheduling SDFGs . 28

3.6 Execution of SDFG actors on the processors 29

3.7 Task migration . 32

3.8 Performance metrics . 36

3.9 Limitations . 37

3.9.1 Processors . 37

3.9.2 Memory Controller . 38

3.9.3 Central Controller . 38

3.9.4 Task Migration . 38

3.10 Summary . 39

4 Task placement and migration 40

4.1 Mapping and contention . 40

4.2 Fragmentation . 43

4.3 Runtime mapping and fragmentation 48

4.4 Task migration . 55

4.5 Implementing task migration policies 58

4.6 Summary . 60

5 Conclusion and Future Directions 61

5.1 Concluding remarks . 61

CONTENTS v

5.2 Future directions . 62

Bibliography 63

Appendix A SDFGs XML descriptions 72

Appendix B Application Mapping Order 94

List of Acronyms

BDF Boolean Data Flow

CSDF Cyclo-Static Data Flow

IQ Input Queued

KPN Kahn Process Network

MoC Model of Computation

NoC Network-on-Chip

OS Operating System

PE Processing Element

SDF Synchronous Data Flow

SDFG Synchronous Data Flow Graph

VC Virtual Channel

vi

List of Figures

3.1 Schematic diagram of the H.263 decoder SDFG 17

3.2 Modelling memory access for the SDFGs 18

3.3 NoC Architecture . 21

3.4 Tile architecture . 21

3.5 Memory controller architecture . 22

3.6 Top level view of Booksim2 . 24

3.7 Module hierarchy of Booksim2 . 25

3.8 IQ router’s micro-architecture and pipeline stages 26

3.9 Module hierarchy of our simulator . 26

3.10 Mapping and execution of applications 30

3.11 Processor module hierarchy . 30

3.12 Triggering task migration flow chart 33

3.13 Task migration process flow chart . 34

4.1 Schematic diagram of the H.263 decoder SDFG 42

4.2 Contention example, single application 42

4.3 Schematic diagram of the Synthetic Application 42

4.4 Contention example, two applications 43

4.5 Contention for the router output . 44

4.6 The JPEG and the MPEG4 decoders’ SDFGs 45

vii

LIST OF FIGURES viii

4.7 The MPEG4 decoder’s actors’ execution order 47

4.8 Fragmentation in mapping of an instance of the JPEG decoder 47

4.9 Fragmentation in mapping of an instance of the MPEG4 decoder . . 47

4.10 Execution time of the applications in the runtime mapping scenario . 50

4.11 Average flit throughput of the applications in the runtime mapping

scenario . 51

4.12 Load time of the applications in the runtime mapping scenario 52

4.13 Contention points for an instance of the MPEG4 decoder in the run-

time mapping scenario . 53

4.14 Migration scenarios . 55

List of Tables

2.1 State-of-the-art runtime task migration methods 7

2.2 State-of-the-art simulators . 13

3.1 Design parameters for our simulations 39

4.1 Contention and mapping . 43

4.2 The effect of fragmentation on an instance of the JPEG decoder . . . 46

4.3 The effect of fragmentation on an instance of the MPEG4 decoder . . 48

4.4 Benchmarks for the runtime mapping scenario 49

4.5 Simulation results for migration choice (1) 56

4.6 Simulation results for migration choice (2) 56

4.7 Cost of early migration . 57

4.8 Cost of late migration . 57

ix

Chapter 1

Introduction

The architectural complexity, excessive power consumption, effective utilisation of

available silicon, and stagnation in raising the maximum clock frequency of proces-

sors has led to the emergence of architectures with numerous cores integrated onto a

single chip. These architectures improve performance by offering parallel processing

solutions. With the growing number of transistors on a single chip, having thou-

sands of cores on a single chip is feasible [13]. Many-core systems usually consist

of a regular grid or a mesh of cores with an underlying Network-on-Chip (NoC)

for communication and a range of memory hierarchies. They can be homogeneous,

meaning that all the cores share the same architecture, or heterogeneous, meaning

that the cores’ instruction set architectures are different.

A number of many-core processors are already available. Intel’s Single Chip

Cloud computer [34], consists of 4 clusters with 6 tiles each. Each tile contains two

processors and each cluster is connected to a memory controller. Tilera’s Tile-GX

family [2] is a series of many-core processors with a mesh of 16 to 64 cores. Kalray’s

MPPA many-core chips [1] integrate up to 1024 cores onto a single chip. The chips

are divided into clusters of 16 cores with shared memory. All the chips mentioned

above use NoCs for communication.

The vast resources offered by these systems require effective and scalable resource

management approaches. Application mapping has been identified as one of the

most important problems for designing NoCs and on-chip multi-processors [46, 48].

Application mapping is the process of allocating the set of concurrently active tasks

1

2

of an application to a suitable set of processors in a mesh with a specific optimisation

goal e.g. execution time, network throughput, power consumption, thermal profile,

etc. The task to core mapping problem is a special case of the Quadratic Assignment

Problem1, which is a well known NP-hard problem [56, 39]. Hence, there is no fast

optimal solution for this problem in general, and heuristics for runtime solutions

or exhaustive algorithms for design-time solutions are used for solving the mapping

problem.

Mapping methods could target homogeneous or heterogeneous architectures. A

resource manager carries out mapping and scheduling, i.e policies for sharing re-

sources between applications in order to satisfy the temporal and resource require-

ments of each application. These managers are either centralised or distributed.

Centralised managers are a class of controllers where the manager has a global view

of the system which leads to better mapping decisions. However, as the number of

processing elements integrated onto a chip grows, scalable and fault-tolerant man-

agers are required. Another drawback of using centralised managers is that they

introduce a single point of failure, thus if the central module stops working the

whole system comes to a halt. On the other hand, distributed resource managers

spread the resource management task among the processors and localise decision

making. Consequently, they are capable of being more scalable and they can reduce

the traffic that is caused by control messages. However, due to the lack of a global

view of the system, mapping decisions are more likely to be suboptimal.

Depending on the time when the mapping of task to cores is performed and

optimised, mapping methodologies are classified into three categories namely: static,

runtime and hybrid.

Static mapping methodologies target small to medium-sized embedded systems

where the application set is known a priori and optimal mappings can be realised

offline. However, with the growing number of cores and applications it is not feasible

to use these methods. For example, A typical digital TV may run 60 applications

simultaneously which means that 260 different scenarios can occur [9]. That is a pro-

1 For N locations and N weighted facilities, the Quadratic Assignment Problem is the problem
of deploying facilities at chosen locations such that the sum of the product of the distances and
the weights of the facilities is minimised.

3

hibitively large design space for even off-line approaches . Moreover, these methods

cannot cope with dynamism in the system or the applications e.g faults occurring

at runtime, applications with dynamic workloads, addition of new applications at

runtime, etc.

On the other hand, runtime methods realise task to core mappings at runtime.

Contrary to static methods, where the application set is known a priori and exhaus-

tive algorithms can run for a long time, with these methods the mapping time is a

design factor and they rely on lightweight heuristics to speed up the mapping pro-

cess. The temporal and computational constraints on these methods render them

suboptimal. However, they can cope with dynamism at runtime by attempting to

make adequate mapping decisions according to the latest state of the system.

Another class of mapping method couples the off-line profiling of applications

and study of the design space with the dynamism of runtime mapping methods. In

these so-called hybrid methods, different scenarios for applications are studied at

design time and various mappings are devised for each scenario. At runtime, based

on the latest state of the system the mapping that is most suitable for the current

situation is chosen.

Task migration can be used with both runtime and hybrid methods to improve

the initial mapping by observing the current state of the system and changing the

mapping in order to optimise a certain criterion. However, migrating tasks intro-

duces new costs and requires additional hardware and software support. Conse-

quently, task migration should be used judiciously.

Studying effective mapping and task migration policies requires simulators that

simulate many-core architectures that take into account realistic costs of implement-

ing task allocation and migration. Simulators that are readily available for the study

of task migration policies are scarce. We therefore introduce a many-core simulator

for the study of task placement and migration methods that employs a dataflow

application model and a cycle-accurate NoC simulator. An overview of the thesis is

provided below.

Chapter 2 reviews the literature on mapping methods that employ task migra-

tion, on task migration implementations and application models, as well as surveying

4

the state-of-the-art regarding NoC-based many-core simulators. Chapter 3 describes

the design of our simulator, while Chapter 4 verifies the usefulness of our simulator

via a sequence of application mapping, execution and migration experiments. Fi-

nally, Chapter 5 concludes the thesis with a summary of the main accomplishments

and directions for future work.

Chapter 2

Background

2.1 Mapping and task migration

Traditionally, embedded systems were small-scale systems in which the application

set was known before operation and the system designer could optimise the system

for the known application set. Hence, the majority of the work in the mapping

literature focused on the design of custom architectures and static mappings in

which optimal solutions are realised for small-scale systems. However, with the

emergence of many-core processors and the explosion in the variety and complexity

of embedded applications, it has become necessary to employ runtime methods to

cope with the dynamism of these systems.

Numerous runtime mappings methods have been described in the literature.

These methods map the application on the fly, meaning that they use heuristics for

placing the application sub-tasks as they are needed at runtime. Works reported in

[19, 22, 57, 64, 24, 5] use on-the-fly mapping methods. These methods consist of

an initial phase during which the initial tasks of an application are mapped. These

methods in some cases divide the system into multiple clusters [57, 24, 64, 5] and

carry out the initial mapping by choosing a suitable cluster for each application

according to size and resource requirements of the application. The work in [22]

does not use a clustering method, instead it tries to form convex regions where

applications are mapped contiguously. After the initial phase, the remaining tasks

of an application are mapped to the system according to a heuristic with a certain

5

2.2. Task migration implementation 6

optimisation criterion. The works described in [57, 19] map the communicating tasks

closer to one another to reduce the traffic congestion. The work reported in [22] aims

to reduce energy consumption by mapping the remaining tasks of the application to

the convex region occupied by the initial task. The works reported in [64, 5] aim at

reducing the traffic load and the work in [24] employs a greedy algorithm in order

to reduce the power consumption.

However, our focus is primarily on runtime mapping methods that employ task

migration to improve the mapping at runtime. Task migration adds adaptive ca-

pabilities to the mapping approach that allow task mappings to change according

to the latest state of the system. Table 2.1 lists state-of-the-art runtime mapping

methods that use task migration. A small number of works reported in the runtime

mapping literature employ task migration as well, and some of these works do not

assign a cost to task migration. This means that it is more difficult to assess their

benefits. All of the works listed in Table 2.1 use custom simulators. A general pur-

pose simulator, that is readily available for experimenting with task migration and

that allows the cost of task migration to be considered, could help researchers focus

on this aspect of runtime mapping.

System throughput, i.e. the number of messages delivered over an interval, is an

important optimisation criterion for multimedia and network applications. However,

it is only considered in a few runtime mapping algorithms that incorporate task

migration [67, 37]. Our proposed simulator offers a tool for studying the effect

of runtime mapping methods and task migration by focusing on throughput and

execution time for many-core system on a chip.

2.2 Task migration implementation

Task migration has been traditionally used in distributed systems in which a net-

worked set of machines communicate through message passing. Task migration is

primarily used in these systems to distribute the workload between different pro-

cessors (load balancing), moving the task away from overloaded or faulty cores, or

easing access to data [50, 58]. Task migration involves interrupting the task on a pro-

2.2. Task migration implementation 7

Reference
Optimisation
criteria

Cost considered

Anagnostopoulos et al. [6]
Execution time,
hop distance

No

Brião et al. [15]
Execution time,
energy

Yes

Kobbe et al. [40]
Execution time,
traffic

No

Jahn et al. [37] Throughput Yes
Zipf et al. [67] Throughput No
Nollet et al. [53] Mapping time Yes

Goodarzi et al. [32]
Communication latency,
power consumption

Yes

Goh et al. [31]
Execution time,
migration latency

Yes

Table 2.1: State-of-the-art runtime mappings with task migration

cessor, saving the program context, moving the context to the destination processor

and restarting the program at the new location. The amount and type of program

context that needs to be migrated is closely related to the processor architecture,

the Operating System (OS) and the memory hierarchy. It consists of the instruction

code, the stack memory, the heap memory (for architectures with dynamic memory

support), the processor registers and the OS context e.g. I/O requests. However,

implementing task migration in on-chip multi-processors and many-core systems

has different implications, since these systems have more constraints on scheduling

and power consumption, and have a lower latency between the cores, but a more

restricted communication bandwidth. Therefore, we cannot directly apply the task

migration methods used in the distributed computing domain to on-chip, many-core

systems.

In shared memory systems, where cores share the same physical memory, there is

no need to physically move instruction code and data memory, whereas in distributed

memory systems, where each core has its own local memory, the instruction code

and data memory need to be sent over the network. Furthermore, moving tasks in

heterogeneous systems where different cores have different instruction sets, requires

a step during which the instruction code is transcoded for the new processor [36].

A task migration method for bus-based, distributed memory, on-chip multi-

2.2. Task migration implementation 8

processor architectures was proposed in [10]. This work utilises user checkpointing,

where the programmer explicitly defines safe points for task migration and the user

also defines the necessary context that needs to be moved. The OS context is flushed

and the task migration process is coordinated by a central controller. The work in

[7] keeps replicas of all the tasks on each processor and targets deeply embedded

operating systems i.e. reliable, low cost systems with pre-determined sets of tasks

that are usually incapable of dynamically loading new tasks.

The work in [36] offers a task migration mechanism for systems with fully dis-

tributed memory, where each core runs an OS kernel in its local memory. They

claim that heap memory constitutes the bulk of the the program context and they

aim at mitigating the task migration cost by transferring the heap memory in a

manner that reduces page faults on the destination processor.

The work in [33] offers a task migration methodology for a distributed kernel

OS for many-core systems similar to OSs like Barrelfish [8], Corey [14], fos [65] and

Helios [52]. In these OSs, system calls are directed at the local kernel for each core

rather than at a single, large kernel. Hence they are scalable to many-core systems.

Shared memory is used in this work to store the program code, stack memory, heap

memory and inter-core messages. The architecture they use is based on Intel’s Single

Chip Cloud computer. For migrating the tasks, the memory space pointers of the

task need to be translated for the new core and the context itself is not physically

moved.

Two task migration approaches with message consistency are reported in [53].

The work in [62] offers a task migration checkpointing method, similar to the one in

[53], that is based on the principle that pipeline applications (synchronous data flows

in this case) continuously visit points in execution where they are processing data

that is not dependant on previous data and hence the state of the task is minimal

at these points. Consequently these points are more efficiently used as checkpoints

for task migration.

Many-core processors are more likely to have distributed memory architectures,

as shared-memory architectures are not scalable. Consequently, to migrate a task,

the state of the task needs to be migrated via the network. Hence, we follow the

2.3. Application models 9

same trend and assume that the state of each task, as described by our benchmarks,

needs to be explicitly migrated via the network. Our task migration method is

described in Chapter 3.

2.3 Application models

Network-on-chip (NoC) many-core systems consist of multiple processing elements

and communication modules. Hence, it is desirable to use application models that

model concurrency at the task level and separate communication from computation.

Furthermore, to gain meaningful insights at system level, the enormous complexity of

applications needs to be abstracted during modelling. At system level, it is desirable

to study the impact of different architectural choices at a faster pace. A suitable

application model should be able to model a variety of applications, it should also be

easy to use, be amenable to analysis, and be compatible with the target architecture.

Numerous concurrent application models exist in the literature. These models

either have precise underlying Models of Computation (MoC), or they are extensions

of sequential programming languages or hardware descriptive languages without any

specific underlying MoC (SystemC and Bluespec System Verilog) [23]. Different

concurrent computation models are studied in [44] and an overview of general models

of computation can be found in [23]. Among the models studied in the mentioned

works, the dataflow MoC is widely used for modelling streaming and multimedia

applications for multi-processors. The dataflow MoC separates computation from

communication. Tasks communicate by sending asynchronous data messages called

tokens. In the following we introduce the dataflow MoC followed by a review of

application models used in the runtime mapping literature and finally our choice of

application model.

2.3.1 Dataflow MoCs

Dataflow is a term used for a concurrent model of application specification that

consists of concurrent processes or tasks communicating through FIFOs and cor-

responds to the concurrent nature of many-core systems on a chip. These models

2.3. Application models 10

express concurrency explicitly. DSP and multimedia applications have long been as-

sociated with dataflow MoCs. It is common to use graphical illustrations for these

models. Applications are depicted as graphs where nodes represent processes while

edges correspond to FIFOs (communication channels). In the following, three ma-

jor dataflow concurrent models, namely Kahn process network, Dennis dataflow and

synchronous dataflow are presented:

Kahn Process Network (KPN) [30] consists of a series of sequential pro-

cesses that communicate through unbounded FIFOs. Processes produce tokens that

are sent through the FIFOs, which in turn are consumed by the receiver process.

Writing on FIFOs is non-blocking but reading is blocking. KPN is a deterministic

model, meaning that for a given set of inputs, outputs are independent from process

scheduling. Deadlocks may happen in these models and they terminate in case of

a global deadlock. Furthermore, the behaviour of processes is data-dependent and

as a result, a self-timed FIFO-based dynamic scheduling is usually used for these

models. Using FIFOs means that there is no need for a shared memory and hence

the model is suited to a distributed memory architecture. Issues such as develop-

ing runtime scheduling policies for execution of the tasks and allocating the buffer

spaces for FIFOs at runtime, add to the complexity of implementing KPNs.

Dennis Dataflow [26] or dataflow process networks execute a series of firings.

Instead of having a blocking read like KPN, Dennis dataflow actors have a set of

firing rules, that once they are satisfied, cause the act of firing (execution of process)

to occur. Firing rules determine the number of tokens that should be present on an

edge before they can be consumed. The firing may also change the internal state

of the actor which affects the future firing of that actor. It is undecidable whether

a Dennis dataflow application can be statically scheduled. Consequently a central

runtime scheduler is required, and this adds to the complexity of implementing this

model [44, 16].

Synchronous Data Flow (SDF) [43] is similar to Dennis dataflow but the fir-

ing rules are more restricted. The number of tokens that is required by each process

to fire is predefined and fixed. Consequently, it is possible to statically schedule this

model and in some cases buffer requirements can be set statically as well (in runtime

2.3. Application models 11

scenarios it is not always possible to guarantee buffer requirements, as resources are

limited and system has no a priori knowledge of the incoming applications’ require-

ments). On the other hand, the predefined rates limit the expressiveness of these

models as they are not able to model dynamic workloads. In addition, data access

patterns and conditional execution cannot be modelled using SDFs. The Cyclo-

Static Data Flow (CSDF) [11] allows for a finite sequence of rates rather than

fixed rates and the Boolean Data Flow (BDF) [42] supports data-dependant

conditional behaviour.

KPN, Dennis dataflow and SDF are all widely used to represent DSP and mul-

timedia applications. They define applications at a high level of abstraction, they

are explicitly parallel, they separate computation from communication, and they

are suited to distributed memory architectures. All of which makes these models

suitable application model candidates for on-chip multi-processors with distributed

memories. However, these models have their shortcomings. There is no mechanism

to express iterative behaviour and it is difficult to model shared resource access con-

flicts e.g. off-chip memory access. These MoCs are data driven and as a result they

are not able to manifest the control flow (contrary to finite state machines), that is

desirable for a range of embedded applications.

2.3.2 Application models used in the mapping literature

A considerable proportion of the studies on mapping and task migration use acyclic

task graphs as their application models where the nodes represent processes and the

arcs model communication. Each node is usually associated with a deadline. Works

reported in [57, 5, 24, 64, 67, 19, 22, 35] use acyclic task graphs. TGFF [27] and

TGG [3] are the main tools used for generating random acyclic task graphs.

Task graphs with SDF and KPN as the underlying MoC are used in some hybrid

mapping works [25, 51, 55].

The task migration methods in [37, 40, 6] use the so-called malleable application

model, where the application expands or retracts its resource usage according to the

availability of resources.

2.4. Simulators 12

Despite their limitations, dataflow task graphs are widely used in the mapping

and scheduling studies. SDF and KPN task graphs are more expressive than the

acyclic graphs that are generated by the TGFF tool. While KPNs are better for

capturing runtime dynamic behaviour of applications, the unbounded buffer models

and the need for complex runtime schedulers and lack of benchmarks, make them

infeasible for our work. Therefore, we have chosen the more restricted SDF model

as our application model, as they are widely used in the literature, they can be run

with bounded memory and benchmarks are available for this model.

2.4 Simulators

A variety of multi-processor system-on-chip and many-core simulators are available

in the literature. These simulators range from NoC simulators to full-system simula-

tors. An ideal simulator for studying dynamic mapping in the context of many-core

processors should be fast and provide interfaces for runtime mapping and task mi-

gration.

Table 2.2 lists state-of-the-art, on-chip multi-processor simulators found in the

literature. gem5 [12] and GEMS [47] are cycle-accurate, full-system simulators.

These simulators, model the hardware and the complete software stack (applica-

tion and system software) in great detail, and as a result the simulations are slow.

Moreover, the effort of adding runtime mapping and task migration support to the

operating systems of these simulators is non-trivial. These systems are capable of

simulating many-core processors, however as the number of cores rises, the already

slow speed of these simulators becomes an even bigger obstacle.

Graphite [49], Sniper [18] and Hornet [45], use multi-threaded simulations to

speed up the simulation time. They execute at the application abstraction level,

meaning that the complete software stack is not modelled. Task migration and run-

time mapping is not supported in these simulators. MAPS [20] simulates dataflow

applications and supports dynamic scheduling and task migration for small-scale

bus-based multi-processor system on a chip. MCoreSim [41] is a many-core simu-

lator built on top of OMNeT++ [63] that focuses on the communication overheads

2.4. Simulators 13

S
im

u
la

to
r

A
b
st

ra
ct

io
n

le
v
e
l

R
u
n
ti

m
e

m
a
p
p
in

g
T

a
sk

m
ig

ra
ti

o
n

M
a
n
y
-c

o
re

M
o
C

s/
p
ro

g
ra

m
m

in
g

la
n
g
u
a
g
e
s

su
p
p

o
rt

e
d

C
o
m

m
u
n
ic

a
ti

o
n

m
o
d
e
l

P
ro

ce
ss

in
g
/
p
ro

ce
ss

o
r

m
o
d
e
l

ge
m

5
[1

2]
F

u
ll

S
y
st

em
N

o
N

o
Y

es
S

L
IC

C
B

as
ed

on
G

E
M

S
A

lp
h

a,
A

R
M

,
M

IP
S

,
P

ow
er

,
S
P

A
R

C
,

an
d

x
86

G
E

M
S

[4
7]

F
u

ll
S

y
st

em
N

o
N

o
Y

es
S

L
IC

C
A

n
y

p
oi

n
t

to
p

oi
n
t

co
n

n
ec

ti
on

to
p

ol
og

y
S

P
A

R
C

v
9

H
or

n
et

[4
5]

A
p

p
li

ca
ti

on
N

o
N

o
Y

es
P

ro
gr

am
s

co
m

p
il

ed
fo

r
M

IP
S

or
x
86

ex
ec

u
ta

b
le

s
fo

r
P

in
b

as
ed

ex
ec

u
ti

on
N

oC
w

it
h

cu
st

om
ar

ch
it

ec
tu

re
/t

op
ol

og
y

M
IP

S

H
em

p
s

[1
7]

A
p

p
li

ca
ti

on
Y

es
N

o
N

o
K

P
N

2D
m

es
h

N
oC

(u
p

to
64

co
re

s)
P

la
sm

a
G

ra
p

h
it

e
[4

9]
A

p
p

li
ca

ti
on

N
o

N
o

Y
es

p
th

re
ad

A
n

al
y
ti

ca
l

N
oC

P
in

su
p

p
or

te
d

p
ro

ce
ss

or
s

S
n

ip
er

A
p

p
li

ca
ti

on
N

o
N

o
Y

es
p

th
re

ad
A

n
al

y
ti

ca
l

N
oC

(b
as

ed
on

G
ra

p
h
it

e)
In

te
lX

eo
n

X
74

60

M
A

P
S

[2
0]

A
p

p
li

ca
ti

on
Y

es
Y

es
N

o
K

P
N

s
d

es
cr

ib
ed

w
it

h
C

P
N

B
u

s
b

as
ed

E
x
ec

u
te

s
K

P
N

tr
ac

es
an

d
si

m
u

la
te

s
ex

ec
u
ti

on
d

el
ay

s

M
C

or
eS

im
[4

1]
A

p
p

li
ca

ti
on

N
o

N
o

Y
es

C
u

st
om

ap
p

li
ca

ti
on

m
o
d

el
B

as
ed

on
O

M
N

et
+

+
,

su
p

p
or

ts
m

es
h

an
d

to
ru

s
to

p
ol

og
y

S
im

u
la

te
s

th
e

d
el

ay
of

p
ro

ce
ss

in
g

in
st

ru
ct

io
n

s

B
o
ok

si
m

2
[3

8]
N

oC
N

/A
N

/A
N

/A
N

/A
N

oC
w

it
h

cu
st

om
ar

ch
it

ec
tu

re
/t

op
ol

og
y

N
/A

G
ar

n
et

[4
]

N
oC

N
/A

N
/A

N
/A

N
/A

N
oC

w
it

h
cu

st
om

ar
ch

it
ec

tu
re

/t
op

ol
og

y
N

/A

T
ab

le
2.

2:
S

ta
te

-o
f-

th
e-

ar
t

si
m

u
la

to
rs

2.5. Summary 14

of heterogeneous many cores; runtime mapping and task migration are not imple-

mented. Hemps [17] is a multi-processor system-on-chip simulator, implemented

using VHDL and SystemC. Hemps can simulate up to 64 cores and uses KPN MoC

for its application model. Task migration and many-core architectures are not sup-

ported in Hemps.

Booksim2 [38] and Garnet [4] are NoC simulators. They use synthetic traffic

patterns or communication traces to simulate custom NoCs.

As none of these simulators present mechanisms for task migration for many-

core systems, there is a need for a simulator that offers the option to integrate

task migration with realistic costs into runtime mapping methods. Such a facility

would allow migration strategies to be developed and would support the testing of

alternative task migration algorithms.

2.5 Summary

Task migration can be used to improve task-to-core mappings at runtime. However,

most of the runtime mapping methods reported in the literature do not employ task

migration. Hence, there is room for more focus and study on task migration methods

for many-core processors. Furthermore, a majority of the task migration works use

custom-built simulators to test their algorithms . While state-of-the-art simulators

are detailed and accurate in their own respective fields, there are no simulators that

are readily available for mapping dataflow graphs at runtime and there is no support

for task migration. Use of task graphs in the mapping literature is prevalent and

they model the application at an acceptable level of abstraction for studying the

result of task migration on system throughput and application execution time. The

SDF application model is already used for hybrid mapping methods that use task

migration as well in [25, 62] and is adequate for our work. We therefore, propose

developing a simulator that maps SDFGs at runtime and supports task migration.

Chapter 3

Simulator

3.1 Overview

We aim to study task migration algorithms for many-core chips with Network-

on-Chips (NoCs) as the underlying communication infrastructure, assuming the

application set is not known a-priori.

Runtime mappings are suboptimal as they rely on fast heuristics. Consequently,

issues such as fragmentation and contention for resources arise. It is known that

re-mapping tasks (migrating tasks) to other processors at runtime reduces frag-

mentation [31, 32] and can help improve the application throughput [37, 67]. Our

simulator is intended to provide a platform for studying the impact of this technique,

e.g. alternative defragmentation algorithms, on flit throughput and application ex-

ecution time.

We need to find a proper level of abstraction for modelling different components

of the system so we can study the benefits and cost of different mappings and

remapping strategies with fast simulations. We have chosen an application model

that explicitly models concurrency and that also captures inter-task communication

at sufficient detail so as to provide an accurate estimation of traffic in the system.

In addition, our NoC model is detailed enough to be able to model contention for

shared architectural resources. In the following, we introduce our application model

and also the architecture of our target system.

15

3.2. Application model 16

3.2 Application model

3.2.1 Synchronous Data Flow Graphs

Synchronous Data Flow Graphs (SDFGs) are the schematic representations of

the Synchronous Data Flow (SDF) application model. SDFGs explicitly model

concurrency and separate computation and communication. Assuming that an ap-

plication consists of a set of communicating tasks, the nodes of an SDFG represent

the computation of tasks, while the directed edges of the graph model inter-task

communication. Nodes are called actors and arcs are called channels. An SDFG is

formally defined below:

Definition 1 (SDFG) SDFGs consist of a set of actors and dependency channels

(A,D) where A denotes the finite set of actors and D ⊆ A2 ×N2 is the finite set of

dependency edges. d = (a, b, p, q) represents the dependency of actor b on actor a.

When actor a fires p tokens are put on d and when b fires, q tokens are consumed

by b. Edges may contain initial tokens

Each actor a ∈ A may have multiple input and output ports. Channels connect

different ports of different actors and actors communicate via tokens. Each port has

a predetermined fixed rate of firing, which is defined as the number of tokens a port

consumes or produces when it is executing. Execution of actors is called firing. In

order for an actor to fire, it must gather enough tokens on its input ports (as specified

by the input rates). When sufficient input tokens are present, the actor fires and

produces tokens on its output ports. Firings are atomic and cannot be interrupted

in the SDF application model. However, we allow the firings to be delayed in our

use of the model in case there is not enough space for writing the output tokens on

the local memory of the processor.

SDFGs may be used to model pipelined streams or cyclic dependencies between

actors (tasks). Furthermore, as there are fixed rates on the ports, SDFGs can be

scheduled statically to be executed with time constraints and bounded memory.

SDFGs are assumed to be constantly active and repeat the same function over an

infinite stream of inputs.

3.2. Application model 17

Figure 3.1: H.263 Decoder [28].

SDFG actors represent blocks of code in an application. Methods to extract

SDFGs from application codes are explained in [60].

Each actor is assigned an internal state. The internal state of a task refers to

the sum of the worst-case stack size, instruction size, and data size [60] .

An SDFG models the global variables used during the execution of an actor,

i.e. the data required for subsequent firings that is not stored as internal state, by

self-loops. Self-loops have one initial token with the size of the global data required

by the actor. In addition to modelling global data usage, SDFGs use self-loops to

limit auto-concurrency. In this case, initial tokens indicate the number of instances

of an actor that can be active during the execution of an application.

Figure 3.1 depicts the SDFG model of an H.263 decoder as described by [28].

An H.263 decoder is a video decoder used in video conferencing. It consists of four

actors (tasks) : Variable Length Decoding (VLD), Inverse Quantiser (IQ), Inverse

Discrete Cosine Transformer (IDCT) and Motion Compensation (MC). VLD is the

initial decoding task. A video frame is decoded once MC consumes all its input

tokens. The numbers on the ends of the edges denote rates e.g. VLD produces

2376 tokens each time it fires. Each token in this example represents a block of 64

pixels worth of data. The self loops represent data that need to be conserved for

the next round of firing. The black dots denote the availability of initial tokens on

each channel.

At the start of execution, VLD is the only actor that has enough input tokens

(one initial token on one input and 2544 on the other one). VLD fires and produces

2376 tokens on the channel to IQ and one token on its self loop channel. Now IQ

has enough tokens to fire; as a result of one firing of VLD, IQ can fire 2376 times,

3.2. Application model 18

Figure 3.2: Modelling memory access for the SDFGs

consuming the tokens on the VLD to IQ channel and producing tokens on its output

edges. Each time IQ fires, IDCT gets enough tokens on its inputs to fire as well

(one token from IQ and 2544 initial tokens from MC). After 2376 firings of IQ and

IDCT, MC fires once. This cycle of firings will go on indefinitely.

In order to put a bound on the buffer requirements of edges for an SDFG (A,D),

for each edge (a, b, p, q) ∈ D, we add a back edge (b, a, qδ, pδ) from actor b to actor

a where Rate(p) = Rate(pδ) and Rate(q) = Rate(qδ) [60]. The buffer space is set

by the number of initial tokens on the (b, a, qδ, pδ) edge. For example, in Figure 3.1

the edge from IQ to VLD, represents a buffer space of 2544 tokens as indicated by

initial tokens on the link.

3.2.2 Modelling memory access

As SDFGs do not conventionally model input and output, we have extended the

graph model to include I/O access by adding dummy actors.

Figure 3.2 depicts an SDFG with memory actors. The M-in actor models off-

chip memory reads, and the M-out actor models off-chip memory writes. In order

to read from memory, the actor sends a request to the off-chip memory through the

memory controller. This request is modelled by the edge from the actor A to the

actor M-in. For writing to memory, there is no need to send a request, hence there

is only a need for a channel to send tokens to off-chip memory.

3.2. Application model 19

3.2.3 Modelling transient applications

There are two categories of application graphs, namely, periodic applications with

infinite input streams and transient applications with bounded amount of input

data, which bounds the number of execution iterations. In order to model transient

applications we use two properties of SDFGs, namely the so-called repetition vector

and its iteration:

Definition 2 (Repetition Vector) A repetition vector rpt of an SDFG (A,D) is

a function A → N such that for each edge (a, b, p, q) ∈ D , Rate(p) · rpt(a) =

Rate(q) · rpt(b). A repetition vector a is called non-trivial if and only if rpt(a) > 0

for all a ∈ A [60].

Definition 3 (Iteration) Assume SDFG (A,D) has repetition vector rpt. An itera-

tion is a set of actor firings such that for each a ∈ A, the set contains rpt(a) firings

of a [29].

We model the bound on the input data by setting a limit on the number of

iterations of an application. Once an application reaches the iteration limit, it stops

executing. Since an SDF processes a meaningful block of data during each transition,

stopping the execution before the end of a transition leaves a portion of the input

data unprocessed.

3.2.4 SDF 3

The SDF 3 tool [59] generates random, timed SDFGs in the shape of chains, acyclic

graphs, and cyclic graphs. In timed SDFGs, each actor has a fixed execution time

that defines how many processor cycles it takes for an actor to complete its firing

on a specific processor type. A number of SDFG representations of real streaming

applications like H.263 encoder and decoder, MP3 decoder, MP3 playback, etc. can

be found in [61]. The applications we have used in our study that are not on the

SDF 3 website are taken from [56].1 SDF 3 graphs are in XML format. Actors and

1I would like to acknowledge Dr. Muhammad Shafique and Prof. Jörg Henkel from Karlsruhe
Institute of Technology (KIT), Germany as well as Prof. Akash Kumar and Amit Kumar Singh

3.3. Architecture 20

channels in SDF 3 are described in these models. Token sizes are defined for each

channel in bits. For each actor, the actor’s context is given in bits.

SDF 3 offers a range of tools for offline profiling of SDFGs. We used SDF 3 to

compute repetition vectors, set buffer sizes and also for creating synthetic applica-

tions.

3.3 Architecture

Our goal is to simulate and measure network metrics and application execution times

running on a many-core system while tasks are being allocated and reallocated at

runtime. As our application model abstracts away the details of instruction execu-

tion and provides estimates of the execution time of an actor per firing, modelling

communication requirements and the latency of executing applications as a result of

communication delays is our main concern. We therefore decided to modify a cycle-

accurate simulator that provides sufficient accuracy to model network congestion

and contention.

Our system assumes a 2-D mesh on a chip multiprocessor with an NoC as the

underlying communication infrastructure. Figure 3.3 depicts a 2 × 2 model of our

architecture. Tiles can be Processing Element (PE) tiles or memory controller

tiles. Each tile is connected to a router. A memory controller is connected to the off-

chip memory via off-chip links. We have assumed a distributed memory architecture

and that PEs communicate via message passing. Our architecture is homogeneous,

meaning that all the processing elements have the same architecture and use the

same instruction set. In addition, we assume that there is a global software entity

called the Central Controller in charge of resource management.

The architecture of a PE tile is depicted in Figure 3.4. The tile consists of a

processor, local memory, and a network interface. The network interface consists of a

Packetiser-Depacketiser unit and two buffers, one for injecting packets to the network

and one for ejecting packets from the network. PEs model execution of SDFG actors.

Since PEs have limited capacity and we have sufficient PEs to distribute the tasks

from National University of Singapore (NUS) for providing me with the SDFGs for the applications
JPEG decoder, MPEG4 decoder, and H.264 decoder and encoder.

3.3. Architecture 21

Figure 3.3: NoC Architecture

Figure 3.4: Tile architecture

3.3. Architecture 22

Figure 3.5: Memory controller architecture

in a many core system, we assume that they run a single task at a time. Each PE is

equipped with a local memory of size M bits. The Ejection Buffer’s size is V × P .

Where V denotes the number of Virtual Channels (VCs) and P the maximum

packet size. The Injection Buffer has to capacity to store one packet.

Routers have input and output ports to the north, south, east and west, plus a

local link to the connected PE. We assume X/Y routing and wormhole switching

are used for flow control.

There are two pairs of links connecting each component to its neighbours, a pair

of data and credit links in one direction, and a complementary pair in the opposite

direction. Credit links carry credits for flow control while data links carry data flits.

Data link capacity is determined by the flit size. Each data link can carry a single

flit during each cycle.

Flits have constant sizes. Packets range in size from three flits to a maximum

that is set by the user. For our simulations we set the flit size to be 32 bits and

the maximum packet size was set to 10 flits (8 flits for data and 2 for head and tail

flits).

All off-chip memory requests are directed at the memory controller. The memory

controller in turn sends the requests to the off-chip memory. Figure 3.5 depicts the

architecture of the memory controller. The request buffer of the memory controller

3.4. The network simulator 23

is N ×RP , where N is the number of nodes and RP is the memory request packet

size. Each memory request packet consists of three flits. One flit for the request

plus the head and tail flits. We set the burst rate of the off-chip memory to be a

packet size. Therefore, the maximum size of a memory request per request message

is the maximum packet size. With 32-bit flits and packets sizes of 10 flits, 8 bits of

the request message is used for identifying how much data we intend to fetch from

the memory and 24 bits are used to specify the memory address.

Assuming that the latency for accessing a memory block is M cycles and the size

of the request is f flits, then the latency for receiving a block of memory from the off-

chip memory by the memory controller is M + f cycles. Furthermore, the memory

controller has a buffer of size N ×P , for writing to the off-chip memory, where N is

again the number of nodes and P is the maximum packet size. In addition, a write

back buffer with the size of one packet stores the replies from the off-chip memory.

The memory controller serves the read/write requests in a FIFO manner. Read

and write channels are separate, consequently reads and writes can be carried out

simultaneously. The memory controller only serves a new read request once the

off-chip memory replies to the previous request and the data leaves the Injection

Buffer of the memory controller module.

We do not store data on the off-chip memory (we do not save actual data inside

a data structure), but we account for the latency of the off-chip memory access

as discussed above, in order to mimic communication delay and contention for the

memory controller.

3.4 The network simulator

We have based our simulator on Booksim2 [38]. Booksim2 is a cycle-accurate net-

work simulator, which operates at the granularity of flits and clock cycles. Book-

sim2 has a parametrised modular design that makes it easy to extend. Booksim2

modules are designed based on actual hardware implementations. All the modules

are synchronised with a clock and configurable latencies are associated with links,

router stages, and credit flows. The comparison of Booksim2 with an RTL imple-

3.4. The network simulator 24

Figure 3.6: Top level view of Booksim2 [38]

mentation in [38] indicates that Booksim2’s behaviour is nearly identical to the RTL

implementation. Consequently, Booksim provides the accuracy needed for modelling

contention for shared resources like VCs, switch allocates, flit buffers, etc.

Figure 3.6 depicts a top-level view of the simulator. The Trafficmanager is a

controller wrapped around the network that sweeps the endpoints (i.e., source and

destination nodes in the figure) and network components in each cycle.

Figure 3.7 depicts the module hierarchy of Booksim2. Several modules of Book-

sim2 have multiple implementations. As a result researchers can use a range of

different network configurations to simulate NoCs. The Trafficmanager instantiates

all the network modules and then runs the simulation. The Network module creates

the topology and instantiates the routers and the channels.

Multiple router implementations are available in Booksim2. We have mainly

used the Input Queued (IQ) router in our experiments. The IQ router has four

stages of pipeline as depicted in Figure 3.8. In the first stage, flits are read into

their respective VC buffers, and routing is done for each packet using the specified

routing function. In the second and third stages, computations for VC allocation

and the switch allocation are carried out. Once an output VC is allocated, the flit

traverses the crossbar and is ready to be put on the link. With this architecture,

3.4. The network simulator 25

Figure 3.7: Module hierarchy of Booksim2 [38]

the minimum latency for sending a flit from the Injection Buffer of a source node

to the Ejection Buffer of an adjacent endpoint in the mesh topology is twelve flit

cycles (the flit has to traverse three links with one cycle per link, and two routers

with four stages of pipeline each and a final cycle to latch the flit into the Ejection

Buffer of the destination node).

As depicted in Figure 3.9, our model treats the network as a black box and mainly

extends the Trafficmanager module. We extended the Trafficmanager module to in-

stantiate processors and memory controllers according to the topology. Our Central

Controller is responsible for mapping the incoming SDFGs to the processors that

are connected to endpoints of Booksim (Mapping Manager) and also carrying out

task migration (Task Migration Manager). Our code is not dependant on the net-

work configuration and as a result our processor model can be tested with different

network architectures that use different parameters. However, to implement multi-

ple memory controllers or topologies other than 2D meshes, the memory controller

addresses would need to be updated manually by the user.

The endpoints in Booksim are in charge of creating the traffic and also ejecting

packets. Booksim uses traffic generators (using traffic pattern and injection process

3.4. The network simulator 26

(a) IQ router

(b) Pipeline Stages of the IQ router

Figure 3.8: (a) Mirco architecture of the IQ router [38], (b) Pipeline stages of the
IQ router [38].

Figure 3.9: Module hierarchy of our simulator

3.4. The network simulator 27

modules) in order to create a variety of synthetic traffic patterns. However, in

our simulator, rather than using synthetic traffic generators, we have extended the

endpoints to simulate processors that produce and consume packets according to

the semantics of the SDFGs.

In Booksim2, the traffic pattern module determines the packet destination, while

in our simulator the application model determines the packet destinations (i.e.,

the processor to which the destination actor is mapped). The Central Controller

therefore tracks the processor address of each task for each application using the

Application Directory Module. The Central Controller updates the information

stored in this module each time a new application is mapped or migrated. Processors

are only aware of application layer addresses, i.e. the destination actor and port for

each token. Once the output tokens are packetised, the Network Interface module

of the processor fetches the network layer address from the application directory.

The Application Directory also stores the time when tasks are mapped and the

performance metrics such as the execution time of a task and its load time. Network

performance metrics such as packet latency, injection/ejection rates, and average hop

distances can thus be calculated by Booksim2.

Booksim2 uses credit-based flow control, where downstream buffers send credits

to upstream routers to specify how much buffer space they have. As we discussed

before, each tile uses its Injection Buffer that can store one whole packet for injecting

packets to the network. Once the processor fills the buffer, the flits of the packet

are injected to the network one-by-one. The PE cannot inject a new packet until

the tail flit of the previous packet is injected to the network. This helps modelling

source queuing and head-of-line blocking on the endpoints, which means that the

back pressure from the downstream nodes blocks the upstream nodes from injecting

more packets to the network if there is congestion in the network.

As Booksim2 endpoints act mainly as traffic generators, Booksim2 does not ex-

plicitly model ejection back pressure. Ejection back pressure occurs when a processor

runs out of memory and cannot eject any more packets. In order to simulate this

behaviour, once the local memory of a processor becomes full, the PE stops the

credit flow to its local router until it has enough space to eject packets again.

3.5. Mapping and scheduling SDFGs 28

3.5 Mapping and scheduling SDFGs

The basis for the scheduling of our SDFGs is self-timed execution scheduling [29].

In self-timed execution scheduling, each actor should fire as soon as it is able to, i.e.

has enough tokens on its input ports.

Mapping the communication channels of the SDFGs to the NoC does not guar-

antee the bandwidth requirements of the SDFG channels. In other words, commu-

nications between actors could be delayed due to congestion in the network. As a

result, we extended the constraints for the firing of an actor to having enough tokens

on input ports plus having enough space in the local memory for storing the output

tokens. We further assumed that the processors have enough local memory space

for one firing of all the actors in our benchmark (for both input and output tokens).

Local memories are large enough to store both the tokens and the SDFGs’ internal

state.

Our simulator receives SDFG application descriptions as input and after parsing

the XML description of SDFGs, it places them into a global queue called the appli-

cation queue. Figure 3.10 depicts the stages for mapping and executing applications

in our simulator.

The Mapping Manager determines where tasks should be mapped according to

a user-defined mapping algorithm. The default mapping algorithm fetches an

application from the application queue and checks the system to determine whether

there are enough processors to map all of the actors of the application. If enough

resources are available, the mapper scans the mesh from the top-left node to the

bottom-right node and maps each task of the application to the first free PE. Oth-

erwise, it blocks the application queue and waits until an application leaves the

system before reattempting to map the application at the head of the queue. Since

our architecture is homogeneous, any task of any application can be mapped to any

free processor.

The Mapping Manager is implemented as a sub-module of the Trafficmanager

module. As mentioned in the previous paragraph, the manager receives an appli-

cation and chooses a processor for each actor. The final allocation of a task to

3.6. Execution of SDFG actors on the processors 29

a processor is performed by a subroutine of the Mapping Manager based on task

and processor IDs. Hence, to develop new algorithms, the user simply changes the

section of the code where the Mapping Manager chooses the processor ID.

After the mapping is done, processors load their allocated tasks from off-chip

memory. To load a task to a PE, the processor sends requests for the initial tokens

and the state (program instruction memory and data as specified by the stateSize

property of actors in the XML descriptions of our SDFGs) of the actor to the off-

chip memory and stores the data it receives on its local memory. Note that while

packets are transferred to emulate the necessary communication, the actual data is

irrelevant since program execution is merely simulated to account for the execution

delay.

Once all the tasks of an application are loaded, processors start executing their

tasks according to the semantics of the SDFGs. If task migration is triggered during

execution, the task’s context is moved over the network from the source processor to

the destination processor and once the move has been completed, the new processor

continues to execute the task until the task is done.

The Central Controller is also in charge of removing any transient applications

from the system once they finish executing. Once a processor finishes executing

a task of a transient application, the Central Controller frees the processor and

updates the Application Directory to indicate that the processor is now free and

that the task has finished its execution.

3.6 Execution of SDFG actors on the processors

Figure 3.11 depicts the Processor module hierarchy. The network interface connects

the processor to the network. The SDFG execution module simulates execution of

SDFG actors and the Control Module coordinates the start and end of task execution

as well as task migration. Each module is explained in detail below:

1. Network Interface: As mentioned before, the Network Interface consists

of Injection and Ejection buffers, plus a Packetiser-Depacketiser unit. Once

a packet is received on the Ejection Buffer, if the local memory has enough

3.6. Execution of SDFG actors on the processors 30

Figure 3.10: Mapping and execution flow of applications in our simulator

Figure 3.11: Processor module hierarchy

3.6. Execution of SDFG actors on the processors 31

space, the Depacketiser module extracts the data from the packet and writes

it to the local memory.

The PEs generate three types of messages (packets) during load time and

execution (a fourth kind of packet carrying the program context is created

during task migration): memory requests, memory writes, and packets car-

rying SDFG tokens. Round-Robin arbitration is used to settle the priority

between messages when the PE needs to send more than one of any type in a

cycle. Furthermore, when sending SDFG tokens, if the actor has more than

one output port, Round-Robin arbitration is used again to choose the output

port which is permitted to send a packet. The Packetiser module extracts

data from the local memory, organises the data into flits, adds the head and

tail flits and saves the packet to the Injection Buffer.

The size of the packet is determined by the product of the rate of an output

port and the token size of the SDFG channel connected to that port. If the

product is larger than the maximum packet size, the data has to be sent using

multiple packets.

2. SDFG Execution: The SDFG execution module consists of the three sub-

modules listed below:

(a) Memory Requests: Although we modelled memory accesses in our

application model as actors, memory actors are implemented as source

and sink ports on the actors connected to M-in and M-out actors. Actors

with source ports, have to send requests to the memory for the number

of tokens given by their rate. In case of sink ports, the processor simply

sends the tokens to the memory controllers.

As stated in the previous section, the maximum memory request size is

the maximum packet size. If the rate of a source port is larger than

the maximum packet size then it has to issue multiple memory request

messages.

(b) Firing Rule: This module checks the local memory and issues a firing

command once the necessary number of input tokens are present and

there is enough space for the output tokens in local memory.

3.7. Task migration 32

(c) Produce/Consume Tokens: Once the Firing Rule module issues a

firing command, the Produce/Consume module waits for as many cycles

as specified by the actor execution time. The time unit for the SDFG

actor execution is one simulation cycle. The execution time is further

delayed if the local memory does not have enough space for output tokens.

Once the execution time is up, the module removes the input tokens

required for firing from the local memory and produces output tokens

and writes them to the memory. The reading and wiring of tokens to the

local memory is carried out in one cycle.

3. Control Module: This module consists of Task Execution and Task Migra-

tion modules:

(a) Task Execution: Task Execution module coordinates loading and exe-

cution of tasks. Once a task is mapped to a processor the Task Execution

module starts sending requests to the off-chip memory to fetch the task’s

initial tokens and the actor’s state and after the loading is done, it issues

a command to start execution. This module also determines when a task

of a transient application is done executing (when an application finishes

its final iteration).

(b) Task Migration When the Mapping Manager issues a Task Migration

command (see Section 3.7), this module determines whether the task

has reached the migration checkpoint and if it has, it starts the task

migration. This module is also in charge of determining when a processor

is done migrating a task or receiving a task from another processor.

3.7 Task migration

In order to migrate a task from one tile to another tile, the application needs to

be halted. Then we migrate the task state (a property of each actor, as given by

the application model) and the tokens stored on the local memory of the tile to the

migration destination tile.

3.7. Task migration 33

Figure 3.12: Triggering task migration flow chart

We use the same approach as the one in [62] to choose a migration point. This

approach uses a special property of SDFG graphs, which is, that after a certain

number of firings (according to the repetition vector) the graph returns to its original

state (iteration). In this approach, the migration is only carried out once all the

actors of the application are at the beginning of the same iteration. This is because

at the beginning of an iteration there are no flits in flight between the tasks and the

only tokens that we need to migrate are the initial tokens.

As we use self-timed execution scheduling of actors, iterations may interleave.

Each processor keeps track of the iteration at which their task is. When the con-

troller issues a request to migrate a task of an application, it checks the iteration of

each task to determine the highest iteration number amongst all the tasks and sets

that iteration number as the task migration checkpoint. After all the tasks of the

application are at the start of the same iteration number, migration is performed.

During the migration no tasks of the application fires or make requests for off-chip

memory access. Migration destinations can be any PE tile. In case that it is de-

sirable to swap the tasks of two PEs, the respective applications of each task are

3.7. Task migration 34

Figure 3.13: Task migration process flow chart

3.7. Task migration 35

halted and the migration process is carried out for both tasks.

As mentioned above, task migration in our simulator consists of two stages,

namely, triggering task migration and carrying out the process of migration. Fig-

ure 3.12 depicts the stages involved in triggering migration. First, it is checked that

the source processor has a task to be migrated to begin with. Second, the desti-

nation should be an idle processor as a processor in our simulator can only run a

single task at a time. If these conditions are met, then using the method mentioned

above the checkpoint iteration is set and the source and destination processors are

set to migration mode. The trigger is invoked using a method called ”Migrate” in

our code, which accepts three arguments: the application ID from the Application

Directory, the source processor ID and the destination processor ID (each processor

has a unique ID).

Figure 3.13 depicts the stages involved in carrying out the migration of a task.

The Task Migration Manager (Figure 3.9) coordinates task migration. The Cen-

tral Controller issues migration requests according to the task migration algorithm

(in our simulations we triggered migration manually). Once the Task Migration

Manager receives migration requests for actors of a particular application, it checks

the iteration of each actor of the application and sets the migration checkpoint ac-

cording to the procedure outlined above. After choosing the checkpoint, it notifies

all the processors running the tasks of the application to halt once they reach the

checkpoint. Once all the processors reach the checkpoint, the Task Migration Man-

ager notifies the Task Migration module of the affected processors that they need to

migrate their task or that they are receiving a task from another processor. Once

a PE starts migrating a task, the Packetiser module of the processor obtains the

migration destination from the Task Migration Manager and sends the task’s entire

state to the destination PE. Once all the processors finish migrating or receiving

new tasks, the Task Migration Manager updates addresses of tasks inside the Ap-

plication Directory and notifies the processors that they can resume executing their

tasks.

During the migration of a task, the controller can issue additional migration re-

quests to the tasks of the same application. Multiple migration events can be carried

3.8. Performance metrics 36

out simultaneously. The application only resumes execution once all the tasks are

done with migration. Other applications that are not being migrated continue to

execute as normal. However, traffic loads may be affected during migration events.

3.8 Performance metrics

Listed below are the metrics for measuring the performance of applications when

they are mapped to our system:

• Application load time: The time expressed in cycles, from when an appli-

cation is mapped, until all the actors of the application are loaded.

• Application execution time: The time expressed in cycles, from when

the application is loaded until the last actor(s) of the application finish(es)

execution.

• Actor execution time: The time expressed in cycles, from when the appli-

cation is loaded until the actor finishes execution.

• Actor flit throughput: The number of flits sent by the actor divided by

the execution time of the actor. The flits of packets that are used for task

migration and application load are not counted.

• Average flit throughput: The average over all the actors of an application

of their flit throughputs expressed in flits per cycle.

• Packet latency: The time expressed in cycles from when the head flit of a

packet is injected to the network in the source tile until the tail flit of the

packet is ejected at the destination tile.

• Average packet latency: The average over all the packets sent during a

simulation of their latency expressed in cycles.

• Link utilisation: The number of cycles during which a particular link is

transferring flits during the simulation.

3.9. Limitations 37

• Average hop distance: The average number of routers that packets traverse

during a simulation.

• Task migration response time: The number of cycles from when the task

migration command is triggered by the Task Migration Manager until the

affected application reaches the checkpoint iteration and starts the migration

process.

Apart from the above-mentioned metrics, the simulator prints the logs for the

cycle in which each application is mapped, the tile which each actor is mapped, the

cycle during which the application is loaded and the cycle during which each actor

of a transient applications finishes execution. Moreover, the cycles during which

any migration commands are triggered, the migration checkpoint iteration, the mi-

gration response time, and the duration of migration of each task is also recorded.

Furthermore, Booksim2 provides mechanisms for tracing individual packets which

are useful for tracing communication flows. The number of packets and flits sent

and received by each node is logged by Booksim2 as well.

3.9 Limitations

In this section we list the limitations of our platform. We discuss how they can

affect our results and what the solutions for ameliorating them are.

3.9.1 Processors

Our processors can only run a single task while in the thousands of core era, we have

enough resources to run single tasks on cores, this could lead to underutilisation of

resources.

Furthermore, our processors should have large enough local memories for the fir-

ing of any actor and they cannot read/write excess tokens from/to off-chip memory.

This limitation could be overcome by a more sophisticated scheduling scheme plus

a more detailed modelling of the off-chip memory.

3.9. Limitations 38

3.9.2 Memory Controller

Memory controllers usually have a higher bandwidth than other tiles, since they

have to serve multiple requests at the same time. In our model all the links have

the same capacity. In order to support heterogeneous link capacities, a new router

port and link architecture should be developed for Booksim2.

In addition, in order to reduce the network traffic that the memory request

packets cause, we could allow memory request packets with a larger size than the

maximum packet size (which is our off-chip memory’s burst length) and have the

memory controller breaking each request from the processor into multiple requests.

Moreover, the memory controller’s address is hard-coded at the moment (we only

used one memory controller per simulation and only used the 2D mesh topology for

our simulations). However, the memory controller(s)’ address could be automatically

updated when other topologies are used or when more than one memory controller

is desirable without much effort.

3.9.3 Central Controller

For simplicity, the Central Controller module is a software entity with global access

to all the modules inside the simulator. Hence, we are not simulating the overheads

and the delay in sending control messages from the controller to the processors or

the traffic these messages create while, for instance, the Mapping Manager or the

Task Migration Manager are carrying out mapping or migration. In a more realistic

scenario, the controller should either be a special tile or it should be a service running

on one or more of the processors.

3.9.4 Task Migration

The accuracy of measuring the cost of task migration depends on the level of ab-

straction we use. Costs such as translating memory pointers, saving an operating

system’s context, etc. requires more accurate processor and operating system mod-

elling.

3.10. Summary 39

Our checkpointing mechanism requires all actors of the application to reach the

same iteration. While this makes the behaviour of applications more predictable,

and hence easier to schedule, it slows down the migration response time, which

is the time between requesting a migration until it is granted. we could improve

the response time by using more complex scheduling algorithms and forwarding the

packets that arrive at the previous position of a task.

3.10 Summary

We introduced our many-core simulator based on Booksim2. We have extended the

Trafficmanager module of the Booksim2 to execute SDFG applications and perform

runtime mapping and task migration. Moreover, We have extended the SDFG

structure to model off-chip memory access and we modified the firing rules of SDFGs

to account for local memory occupancy before firing.

Table 3.1 lists the design parameters used in our simulations:

Design Parameter Description

Maximum packet size
10 Flits with 8 body flits and
2 flits for head and tail

Flit size 32 bits

Memory request packet size
3 flits, one body and 2 for head and tail.
The body flit reserves 8 bits for data
and 24 bits for memory address.

Topology 2D Mesh
Routing algorithm X/Y
Router buffer size 10 flits
Router architecture Input Queued
Number of VCs 2
PEs’ Ejection Buffer size 2× 10 flits
PE’s Injection Buffer size 10 flits
Memory controller Request buffer size N × 32 bits (N: number of nodes)

Memory controller Write buffer size
N × 8× 32 bits
(N: number of nodes,
8: maximum number of data flits in a packet)

Arbitration Round-Robin

Table 3.1: Design parameters for our simulations

Chapter 4

Task placement and migration

Task placement can create or eliminate fragmentation and contention in many-core

systems that use network-on-chips. In this Chapter, through various simulation

scenarios we demonstrate how our simulator can simulate the different task mappings

that cause fragmentation and contention. Furthermore, we devise task migration

scenarios and investigate how our simulator takes the cost of task migration into

account as well as showing the merits of using the task migration technique.

In all our simulations we used the design parameters outlined in Section 3.10.

However it should be noted that, we scaled and changed the execution times of our

SDFGs to stress the traffic in the system and to be able to demonstrate how our

simulator captures the effect of contention in the system.

4.1 Mapping and contention

Contention for architectural resources like links, router ports and virtual channels

can greatly affect the packet latency and execution time of tasks running on a

multi-processor system. Effective switching and routing algorithms as well as careful

adaptive mapping schemes can resolve contention. Our focus is on simulating the

effect of task placement and migration on network contention.

From the network layer perspective, contention can be classified into three dif-

ferent classes, namely, source-based, destination-based and path-based contention

40

4.1. Mapping and contention 41

[21]. Source-based contention occurs when multiple flows originating from the same

source, contend for the local router’s injection link/port. Destination-based con-

tention occurs when multiple flows with the same destination contend for the router’s

ejection link/port. In case of path-based contention, data flows may or may not share

the same source or destination, but they contend for shared network resources along

their paths. Results in [21] show that mapping cannot affect the source-based or

destination-based contention as these types of contentions have direct relation to

architectural characteristics of the processors and the network (i.e., maximum injec-

tion or ejection rate of the processors). However, task mapping can greatly reduce

the occurrence of path-based contention.

In our model, source-based contention occurs if a Synchronous Data Flow Graph

(SDFG) actor has multiple output ports and destination-based contention occurs

when an SDFG actor has multiple input ports.

From an application’s perspective, contention can be either internal or external.

Internal contention refers to the contention that occurs between the data flows of

tasks of the same application, while external contention occurs when data flows of

different applications contend for architectural resources.

In the experiment below, we demonstrate a path-based external contention sce-

nario that occurs as a result of a task mapping. We demonstrate internal contention

scenarios in the next section.

Let us assume that we have a 4× 4 mesh labelled in row-major order and that

node 0 is the memory controller tile while the H.263 decoder depicted in Figure 4.1 is

our application. Figure 4.2 depicts our mesh with each tile representing a processing

tile and its local router. In this scenario (Scenario 1), the H.263 decoder is the only

application in the system. In Scenario 2, depicted in Figure 4.4, we added a synthetic

application (depicted in Figure 4.3) mapped to tile 2 and tile 13.

Table 4.1 compares the results of these two scenarios. In Scenario 1, in which

only one application is mapped to the mesh, there is no contention for network

resources. However, once the synthetic application is mapped to the mesh as well,

path-based contention on the link from node 5 to node 9 occurs. Figure 4.5 depicts

the router connected to Tile 5. The data flows that came from the northern and local

4.1. Mapping and contention 42

Figure 4.1: Schematic diagram of the H.263 decoder SDFG [61].

Figure 4.2: Scenario 1: Contention example single application

Figure 4.3: Schematic diagram of the Synthetic Application

4.2. Fragmentation 43

Figure 4.4: Scenario 2: Contention example two applications

input ports of the router contended for the southern output port. As a result of this

contention, the execution times of all the actors for the H.263 Decoder increased.

Furthermore, looking at the utilisation of the link between tiles 5 and 9, we notice

the dramatic increase in Scenario 2, as both flows have to use this link to get to

their destinations. Contention also degraded the average flit throughput of the H.263

decoder.

As we demonstrated in this experiment, our simulator is capable of modelling

path-based contention and its effects on execution time and throughput of the ap-

plications.

Flit Throughput
For Actor IQ
(Flits/Cycle)

Link 5-9
Utilisation
(Cycles)

Actor VLD
Execution Time

(Cycles)

Actor IQ
Execution Time

(Cycles)

Actor IDCT
Execution Time

(Cycles)

Actor MC
Execution Time

(Cycles)
Scenario 1 (Single application) 0.798 237,619 464,272 470,237 470,272 470,287
Scenario 2 (Two applications) 0.659 820,225 554,297 568,075 568,145 568,160

Table 4.1: Contention as a result of mapping

4.2 Fragmentation

Fragmentation occurs when there is no contiguous block of processors that can fit

all the tasks of an application and consequently, the tasks of an application are

4.2. Fragmentation 44

Figure 4.5: Contending flows inside the router attached to tile 5 for the mapping scenario
depicted in Figure 4.4.

scattered across the network. Fragmentation increases the hop distance between

the communicating tasks of an application, which in turn increases both the packet

latency and power consumption of the system. Moreover, when communicating

tasks are mapped non-contiguously, external contention as a result of interference

between the data flows of unrelated applications is more likely to occur.

We studied the effects of fragmentation on the execution time and communica-

tion metrics for a JPEG decoder and an MPEG4 decoder [56]. In each experiment

only one application is mapped to the system. For each application, we compared

the performance of a contiguous mapping against that of a fragmented mapping.

Figures 4.6(a) and 4.6(b) depict SDFGs for these two applications. The JPEG de-

coder’s structure is a simple cycle while the MPEG4 decoder has a more complex

communication pattern with multiple internal cycles. In both experiments, appli-

cations are mapped to a 4 × 4 mesh. We ran the JPEG decoder for one hundred

iterations and the MPEG4 decoder for fifty iterations.

Figure 4.8(a) depicts the contiguous mapping scenario while Figure 4.8(b) de-

picts the fragmented mapping scenario for the JPEG decoder. The dotted arrows,

depict the communication flows between processors. As we can observe there are no

contending flows in either scenario.

Table 4.2 summarises the results of the experiments with the JPEG decoder.

The fragmented scenario (Scenario 2) performed worse than the contiguous scenario

(Scenario 1). Execution time of the application in Scenario 2 increased by 16%,

4.2. Fragmentation 45

(a) (b)

Figure 4.6: (a) The JPEG decoder SDFG [56] (b) The MPEG4 decoder SDFG [56].
The numbers in parentheses indicate the number of initial tokens.

while the average packet latency increased by 60%. The average hop distance of

Scenario 2 increased by 132% compared to Scenario 1. The reason why the average

hop distance of the contiguous mapping of Scenario 1 is 2.002 and not 2, which is

the average hop distance between the mapped actors in this scenario, is due to the

additional hops spanned by packets sent and received for loading the application.

In the absence of external or internal contention in either scenario, the fragmented

mapping of Scenario 2 caused a higher hop distance between the communicating

tasks. The higher hop distance, in turn, led to a greater packet latency, higher

execution time, and lower throughput.

Figures 4.9(a) and 4.9(b), depict a contiguous mapping scenario and a frag-

mented mapping scenario for the MPEG4 decoder application respectively. Appar-

ent points of contention are pointed out with red circles. Table 4.3 summarises the

results of the simulations with the MPEG4 decoder mappings. This time, contrary

to what we observed with the JPEG decoder application, despite the greater hop

distance and higher packet latency in the fragmented mapping of Scenario 2, the

4.2. Fragmentation 46

contiguous mapping of Scenario 1 performed worse.

The order of execution of the MPEG4 decoder’s actors is depicted in Figure 4.7

assuming that the tokens are delivered without delay. In our simulations, with the

mappings in both scenarios, the order of execution is the same as in Figure 4.7.

With the mentioned order of execution, the flows from the actors FD and VLD to

the actor MC are not active at the same time. Hence, there is no contention between

these flows. Another apparent point of contention is where multiple flows originate

from the same tile and share a number of links along their paths. This scenario is

pointed out in Figure 4.9(a) where two flows originate from tile number 4, and in

Figure 4.9(b) where multiple flows originate from tiles 3, 4 and 8. Irrespective of

the mapping we use, source-based contention exists in both scenarios. However, as

Round-Robin arbitration is used to settle the priority between the output ports of

actors, and given that the Injection Buffer can only ever be occupied by one packet

at a time, in the absence of external contention, the packets from different output

ports do not contend with each other and path-based contention does not occur for

the apparent points of contention mentioned above.

By examining the contiguous mapping depicted in Figure 4.9(a), we observe

an internal contention between data flows VLD-to-MC and IDCT-to-RC. While in

Figure 4.9(b), there is no path contention between data flows. This means that

shorter hop distance or lower packet latency does not always translate to better

execution time. In this case, in Scenario 1, the delay in delivering packets from

actors VLD and IDCT to RC and MC respectively increased the execution time of

actors MC and RC. Although the volume of the delayed packets of the contending

flows is small compared to the total number of packets sent and received by the

actors of the application, they cause a great delay. Since an SDFG actor needs all

input tokens present before firing, the firing time of an actor is determined by the

arrival time of the slowest packet that carries input tokens. The longer the actor

has to wait for tokens, the longer is the execution time of the actor.

Average Flit Throughput
(flits/cycle)

Execution Time
(cycles)

Average Packet Latency
(cycles)

Average Hop Distance
(Number of Hops)

Scenario 1 (Contiguous mapping) 0.200 47,967 21.002 2.002
Scenario 2 (Fragmented mapping) 0.171 55,947 34.305 4.663

Table 4.2: The JPEG decoder mapped to a 4-by-4 mesh and run for 100 iterations

4.2. Fragmentation 47

Figure 4.7: The order of the execution of actors of the MPEG4 decoder assuming zero
latency communication.

(a) (b)

Figure 4.8: (a) A contiguous mapping (Scenario 1) of the JPEG decoder (b) A
fragmented mapping (Scenario 2) of the JPEG decoder

(a) (b)

Figure 4.9: (a) A contiguous mapping (Scenario 1) of the MPEG4 decoder (b) A
fragmented mapping (Scenario 2) of the MPEG4 decoder

4.3. Runtime mapping and fragmentation 48

Average Flit Throughput
(flits/cycle)

Execution Time
(cycles)

Average Packet Latency
(cycles)

Average Hop Distance
(Number of Hops)

Scenario 1 (Contiguous mapping) 0.214 516,422 27.948 2.714
Scenario 2 (Fragmented mapping) 0.219 503,807 34.564 4.712

Table 4.3: The MPEG4 decoder mapped to a 4-by-4 mesh and run for 50 iterations

4.3 Runtime mapping and fragmentation

Runtime mapping may lead to fragmentation of available processors in a system.

With careful clustering methods and efficient mappings, we can reduce the possi-

bility of fragmentation occurring. However, as the system does not have a priori

knowledge about future application needs, scenarios occur where the size of the

available contiguous regions do not match the size of the application being mapped.

We mapped thirty applications to an 8 × 8 mesh 1, with the top left tile (tile

0) being the memory controller and the remaining being processor tiles (the last

being tile 63 on the bottom-right). We used multiple instances of eight multimedia

applications as listed in Table 4.4. As our SDFGs are deterministic and they express

the same behaviour regardless of the number of iteration they are completing, the

number of iterations for transient applications was chosen so the contention in the

network would be noticeable. The applications were placed into a global queue and

were mapped in FIFO manner when sufficient free tiles became available on the

mesh. At time 0, we mapped as many applications as we could and the rest were

mapped at runtime. Each time an application finished its execution, the next appli-

cation at the head of the queue was picked for mapping. Some of the applications

(resident applications) were designed to remain allocated and execute periodically,

while the rest (transient applications) were executed for a specified number of itera-

tions in a one-off manner. We ran the simulation for four million cycles which took

over 297 seconds to finish on a Core-i5 Intel processor running at 3.3 GHz.

We used a very simple mapping heuristic. We scanned the mesh from top left to

bottom right, and mapped the tasks of each application to the first free tile found.

At the beginning of the simulation, since all the tiles of the mesh were free, the

mapping manager mapped the applications contiguously. However, as different ap-

1For the XML representations of the SDFGs see Appendix A. The order in which the applica-
tions were mapped is listed in Appendix B

4.3. Runtime mapping and fragmentation 49

Application Actors Instances Type Iterations
MPEG4 [56] 5 6 Transient 50
JPEG [56] 6 5 Transient 10
MP3 Dec. [61] 14 6 Transient 10
H.263 Dec. [61] 4 5 Transient 10
Sample-rate [61] 6 3 Transient 4
H.264 Dec. [56] 3 2 Resident N/A
H.263 Enc. [61] 5 1 Resident N/A
H.264 Enc [56] 9 2 Resident N/A

Table 4.4: Applications used for the simulation

plications finished executing, fragmented spaces became available, and the mapping

manager mapped the applications in a fragmented way. As we discussed in Section

4.2, in the absence of external contention, fragmentation can either slow down appli-

cations by increasing the average hop distance and the average packet latency or it

may speed up applications by resolving internal contention. However, once multiple

applications exist in the system, fragmentation causes contention between flows that

share the same path.

Figures 4.10 to 4.12 illustrate the execution time, average flit throughput, and

application load time for the various mappings of the individual instances of the

MPEG4, JPEG and H.263 decoders applications in the runtime mapping scenario,

compared with identical mappings but without external contention (without other

applications being present). As the behaviour of SDFGs is deterministic, the number

of flits sent by different instances of the same application is the same. Hence,

there is a direct inverse relationship between the execution time and the average flit

throughput of SDFGs.

As we can observe from the figures, the scenarios without contention outper-

formed the ones that experienced contention in all cases and for all metrics. In

the runtime mapping scenario, with external contention, the load time of the ap-

plications increased dramatically for all three applications, which indicates that the

off-chip memory access is an important point of contention.

To make matters more clear, we examine one of the instances of the MPEG4

decoder more closely to show how fragmentation as a result of poor mapping causes

performance degradation.

4.3. Runtime mapping and fragmentation 50

(a) MPEG4 Decoder (b) JPEG Decoder

(c) H.263 Decoder

Figure 4.10: Execution time of the individual instances of MPEG4 (a), JPEG (b)
and H.263 (c) decoders as recorded in the runtime mapping scenario with exter-
nal contention compared with identical mapping but without external contention
(without competing applications).

4.3. Runtime mapping and fragmentation 51

(a) MPEG4 Decoder (b) JPEG Decoder

(c) H.263 Decoder

Figure 4.11: Average flit throughput of the individual instances of the MPEG4 (a),
JPEG (b), and H.263 (c) decoders as recorded in the runtime mapping scenario
with external contention compared with identical mapping but without external
contention (without competing applications).

4.3. Runtime mapping and fragmentation 52

(a) MPEG4 Decoder (b) JPEG Decoder

(c) H.263 Decoder

Figure 4.12: Application load time of the individual instances of the MPEG4 (a),
JPEG (b), and H.263 (c) decoders as recorded in the runtime mapping scenario
with external contention compared with identical mapping but without external
contention (without competing applications).

4.3. Runtime mapping and fragmentation 53

(a)

(b)

(c)

Figure 4.13: Internal and external contention for the third instance of the MPEG4 decoder
in the runtime mapping scenario.

4.3. Runtime mapping and fragmentation 54

Figure 4.13 depicts the mapping of the third instance of the MPEG4 decoder

and the applications mapped to the vicinity of it in the runtime mapping scenario

as time advanced. We chose this instance of the MPEG4 decoder as it had the

longest execution time. The Mapping Manager mapped the application to tiles

13 − 17. The red dashed arrows indicate the MPEG4 decoder’s communication

flows that suffer from contention while the dotted arrows depict the communication

flows which do not experience contention. The white arrows, depict the presence of

external contention.

An instance of a resident H.264 decoder was mapped to tiles 10− 12 but did not

contend with the MPEG4’s flows, as depicted in the figures. However, a fragmented

instance of the H.264 encoder occupied tiles 18− 21, and the flows from these tiles

did contend with the MC-FD flow of the MPEG4 decoder. In Figure 4.13(a), tiles 8

and 9 were occupied by an H.263 decoder’s actors. The flows from this application

did not contend with any of the flows of the MPEG4 decoder. Another instance

of the H.263 decoder was mapped to tiles 22 − 25. Apart from the load memory

request packets sent from tiles 22 and 23, the flow from tile 23 to 24 contended

with the MC-RC flows of the MPEG4 decoder. As time advanced, an instance of

an MP3 decoder was mapped to tiles 8 and 9, as depicted in Figure 4.13(b). The

flow from tile 8 to tile 55 contended with the FD-VLD and VLD-IDCT flows of the

MPEG4 decoder. Finally, in Figure 4.13(c), two new fragmented instances of the

H.263 decoder were mapped to the mesh. Tiles 8 and 25 were occupied by portions

of one instance of one of the H.263 decoders and the other instance was mapped to

tiles 22 − 24 and 26. Again, apart from the load memory request packets of tiles

22 and 23, the flow from tile 8 to tile 25 contended with the FD-MC and VLD-MC

flows of the MPEG4 decoder. Moreover, the flow from tile 23 to tile 24, contended

with the MC-RC flow of the MPEG4 decoder. As a result of both internal and

external contentions, this instance of MPEG4 had a longer execution time when

compared with other instances when the contention for architectural resources was

less.

4.4. Task migration 55

Figure 4.14: a migration scenario with two instances of the H.263 decoder.

4.4 Task migration

As we saw earlier in this Chapter, inefficient mappings lead to path-based contention

in the network. Task migration can improve poor initial mappings at the cost of some

processing delay and some temporary additional network flow due to the movement

of task state. A task migration algorithm needs to address three issues: Which tasks

to migrate, when to migrate them and where to migrate them.

Figure 4.14 depicts a scenario where two instances of the H.263 decoder have

been mapped to a 4 × 4 mesh. Both instances were mapped at time 0 and were

run for 20 iterations. The dashed arrows indicate the links on which communication

flows experienced contention. We experimented with two migration scenarios. In

the first migration scenario, we moved the V LD actor of the second application to

Processing Element (PE) 12 and in the second migration scenario, we migrated

the IQ actor of the second application to PE 2 in order to resolve contention.

Tables 4.5 and 4.6 summarise the results of simulations for both migration sce-

narios. For each scenario we compared the results of running applications with four

different mappings. A mapping with external contention depicted in Figure 4.14, a

mapping with migration at an early stage of the execution, a mapping with a late

4.4. Task migration 56

Mapping
App. (1)

Execution Time
(Cycles)

App. (2)
Execution Time

(Cycles)

App. (1)
Average

Flit Throughput
(flits/Cycle)

App. (2)
Average

Flit Throughput
(flits/Cycle)

Overall Average
Packet Latency

(Cycles)

No Migration
(Contention)

541,377 475,628 0.466 0.532 34.680

Early Migration 477,398 483,027 0.529 0.523 22.493
Late Migration 537,817 483,568 0.469 0.522 34.131
No Migration
(No Contention)

470,287 470,287 0.537 0.537 21.000

Table 4.5: Simulation results for migration choice (1), where we migrated the actor
V LD of Application (2) from PE 1 to PE 12.

Mapping
App. (1)

Execution Time
(Cycles)

App. (2)
Execution Time

(Cycles)

App. (1)
Average

Flit Throughput
(flits/Cycle)

App. (2)
Average

Flit Throughput
(flits/Cycle)

Overall Average
Packet Latency

(Cycles)

No Migration
(Contention)

541,377 475,628 0.466 0.532 34.680

Early Migration 477,398 470,451 0.529 0.537 23.535
Late Migration 537,817 470,992 0.469 0.536 34.181
No Migration
(No Contention)

470,287 470,297 0.537 0.537 22.258

Table 4.6: Simulation results for migration choice (2), where we migrated the actor
IQ of Application (2) from PE 13 to PE 2.

migration, and also a mapping in which the task which we migrated in the other sce-

narios was mapped to the migration destination in the first place, thereby avoiding

contention and migration overheads.

In both scenarios, the mapping in which there is no contention in the system out-

performed other mappings, as we expected. It should be noted that the contention

has a greater impact on Application 1. In both migration cases, task migration

improved Application 1’s execution time and flit throughput while it degraded the

performance of the second application. However, In Scenario 2 (Table 4.6) both

applications gained improvements after we migrated the IQ task to PE 2.

The execution time of application 1 was the same in both scenarios, since once

migration was triggered, application 1 did not experience further contention in either

scenario, and the migration traffic of moving application 2’s task for either migration

destination choice, did not interfere with Application 1’s flows. Furthermore, due

to the fragmentation in the mapping of Application 2 in the ”no-contention” case

of Scenario 2, a one-off additional delay in the execution time incurs. Although,

the extra two hops distance for ”no-contention” case of Application 2 in Scenario 2

changed the execution time slightly, it still raised the average packet latency, as it

4.4. Task migration 57

took a longer time for the individual packets from tile 2 to reach tile 14. The same

explanation applies to the overall packet latency of task migration simulations of

Scenario 2.

Early migrations are better in both cases, compared with late migrations, as the

applications got to benefit from the new mappings for a longer periods of time. The

difference between the results of the two migration scenarios lies in the task migration

penalty of these two scenarios. Tables 4.7 and 4.8 compare the migration cost of the

early and late migrations for both scenarios. The actor VLD of the H.263 decoder

has a much larger state size compared to the actor IQ. Hence the time needed to

migrate the VLD task in Scenario 1 is greater. Consequently, Application 2 has to

halt for a longer period in Scenario 1 and that causes a longer execution time for

Application 2.

Mapping
Response Time

(Cycles)
State
(bits)

Packets
Duration
(Cycles)

Checkpoint
(Iteration)

Migration Choice 1 8,574 323,168 1,263 12,653 2
Migration Choice 2 8,574 912 4 66 2

Table 4.7: Migration cost of early migration of tasks for both migration scenarios.

Mapping
Response Time

(Cycles)
State
(bits)

Packets
Duration
(Cycles)

Checkpoint
(Iteration)

Migration Choice 1 3,885 323,168 1,263 12,653 19
Migration Choice 2 3,885 912 4 66 19

Table 4.8: Migration cost of late migration of tasks for both migration scenarios.

As we demonstrated in this example, choosing different tasks of the application

to migrate, can dramatically change the performance. Moreover, the right timing

to trigger the task migration is another factor that changes the balance between the

performance gain and penalty of task migration.

The trade-off threshold between the speed-up of one application and slow-down of

another, is a design parameter that should be considered for task migration schemes.

For example, in the case of Scenario 1 where task migration made Application 1

faster and Application 2 slower, the migration algorithm needs to decide whether

this trade-off is acceptable or not.

4.5. Implementing task migration policies 58

4.5 Implementing task migration policies

In this section we provide guidelines for implementing task migration policies using

our simulator. For this purpose, we chose two task migration policies published in

[31] and [67] as mentioned in our literature review. In the following we explain how

the tools in our simulator can be used to implement these policies.

The work in [31] proposes a task migration policy to improve the fragmentation

in 2D-mesh NoC multiprocessors that use X-Y routing and wormhole switching.

A contiguous first-fit algorithm is used to allocate applications to rectangular sub-

meshes. The task migration policy aims at defragmenting the system by moving

the applications to the bottom-left corner of the mesh to open up submeshes in the

right and upper sides of the mesh. In order to reduce the cost of the task migration,

the tasks of the application are moved in a way that the traffic caused by moving

the state of the tasks through the network does not interfere with the traffic inside

other submeshes. When migrating an application, the algorithm first moves the ap-

plication along the X-axis to the left and then along the Y-axis towards the bottom.

The application is moved to left as long as all the nodes on the left-hand side of

the submesh it is occupying are free, and it is moved towards the bottom as long as

all the nodes on the bottom of the submesh are free. This way, further contention

is avoided and applications are moved toward the bottom-left corner in order to

open up more space for incoming applications. The task migration mechanism used

is a checkpoint based method and task migration is triggered once for every two

disallocations (when applications finish execution).

In order to implement this policy, we need to know where allocated submeshes

are, and it is necessary to move the tasks of the application to a new submesh.

The information about allocated applications and tasks are all stored in the Appli-

cation Directory data structure inside the Central Controller. Hence when moving

a submesh, the algorithm can use the Application Directory to check if the nodes

along the right-hand or bottom of the submesh are free or not. Once the algorithm

decides to migrate tasks, it can use the ”Migrate” method of the simulator to move

the tasks. The task migration policy in this work uses a diagonal scheme [66] for

choosing the order in which tasks of an application are migrated in order to avoid

4.5. Implementing task migration policies 59

contention between the migration traffic flows of different tasks. To schedule the in-

dividual task migrations of an application, it is possible and necessary to amend the

condition for migrating a task inside our Task Migration Manager with the further

condition, that it is in fact the task’s turn (as indicated by the diagonal scheme)

to be migrated. This migration policy would be added as a sub-module inside the

Trafficmanager class, and it should be used inside Central Controller method.

The second task migration policy, proposed in [67], uses a hybrid force-directed

and tabu search task migration algorithm to improve upon the initial mapping. The

algorithm is run with the local view of each processor. A cost function is used to

determine weather task migration will improve the local communication cost, overall

communication cost and the congestion in the network. The communication cost

is determined by the product of the distance between two tasks and the volume

of communication between them. In order to formulate the cost function in our

simulator, the Application Directory module can be used to calculate the distance

between communicating tasks, and also the volume of communication using the rates

provided in the SDFG model of the applications.

The task migration policy picks initial tasks of each application, and tries to move

the communicating tasks connected to the initial task, based on a spring-connected

weights model, where weights represent the communication volume between the

tasks and the stiffness of the spring is determined by the communication cost func-

tion. The algorithm starts with a one-hop radius of the selected task, and checks

whether migrating a task improves the cost function or not. If not, the radius is

incremented by one. The tabu search is used to penalise the task each time its

migration is unsuccessful. It also sets a threshold for the number of times a task can

be migrated in order to avoid excessive migrations. The tabu list should be added

to the Application Directory where the task migration algorithm can check to see if

a task can be migrated or not. The cost function in conjunction with the algorithm

itself would be added as a sub-module inside the Trafficmanager class and it should

be used inside the Central Controller module.

As shown above, our simulator provides simple interfaces for acquiring the posi-

tion and communication costs of the applications using the Application Directory.

4.6. Summary 60

The ”Migrate” interface can be used to trigger task migrations and policies can

be added to the Central Controller with minimal changes to the modules of the

simulator.

4.6 Summary

We investigated different mapping scenarios in this chapter. We demonstrated how

our simulator captures the effects of contention and fragmentation. With the var-

ious statistics and feedback that the simulator provides, it is possible to study in

detail various performance metrics for different mapping scenarios. Furthermore, we

mapped 30 applications to a system with 63 processing tiles and 1 memory controller

tile and ran the simulation for 4 million cycles that took less than 5 minutes to fin-

ish. Having a separate module for application mapping allows different mappings

to be readily investigated. Moreover, we demonstrated how our simulator could be

used to study task migration and how capturing the response time and migration

delays of interrupting and moving of tasks can be used to compare the performance

of migration policies.

Chapter 5

Conclusion and Future Directions

5.1 Concluding remarks

Task migration is a powerful tool that can be utilised to improve application map-

pings at runtime. This thesis introduces a simulator that simulates the execution of

applications represented by Synchronous Data Flow (SDF) model of computa-

tion on a 2D-mesh network-on-chip homogeneous many-core system. Our simulator

can be utilised to study the effects of different runtime mapping and task migration

methodologies on execution time and throughput of applications. We demonstrated

how our simulator can simulate the results of contention and fragmentation that is

caused by suboptimal mappings and how task migration can improve the execution

time and throughput of the applications while realistic costs for task migration are

taken into account.

In order to develop and implement our simulator, the following accomplishments

were achieved:

• Extended the SDF model to realistically incorporate off-chip memory accesses

and account for local memory occupancy before firing;

• Extended and adapted the well-known Booksim2 simulator for the purpose

of simulating the execution of applications represented in SDFG form on 2D

mesh-of-processor architectures. This simulator allows network traffic to be

accurately simulated. The impact of allocation and migration decisions can

61

5.2. Future directions 62

thereby be closely studied.

5.2 Future directions

As for future work we intend to extend the simulator by adding more expressive

application models. The work reported in [54] offers a model for a more accurate

data access pattern for the SDF application model where actors consume a fraction

of the data for execution rather than waiting for the whole data block to arrive. By

incorporating this work into our application model the communication pattern of our

application model will be less bursty and more representative of real applications.

As mentioned before, the Cyclo-Static Data Flow and the Boolean Data Flow

models, that are extensions of SDF, can be used to model a finite sequence of rates,

rather than fixed rates, and allow data dependant conditional behaviour respectively.

On the architecture level, we intend to implement a more detailed memory con-

troller and off-chip memory modules in order to simulate the memory accesses more

accurately. Furthermore, adding multi-tasking functionality to our cores and in-

tegrating mechanisms for the study of other optimisation criteria like power and

thermal profiling are other possible future directions for this work. The work in

[25] offers a model for energy consumption and task migration overhead of SDF

applications that can be applied to our work. Moreover, we intend to investigate

distributed control methods in order to make our controller scalable.

Finally, the response time of the task migration command in our simulator de-

pends on the iteration latency of the application. By implementing a more so-

phisticated task migration mechanism we could improve our response time to task

migration requests.

Bibliography

[1] Kalray MPPA MANYCORE. http://www.kalray.eu/products/

mppa-manycore/. [Online; accessed September, 2014].

[2] Tilera Tile-Gx Processor Family. http://www.tilera.com/products/

processors/TILE-Gx_Family. [Online; accessed September, 2014].

[3] TGG: Task Graph Generator. http://sourceforge.net/projects/

taskgraphgen/, 2010. [Online; accessed September, 2014].

[4] Niket Agarwal, Tushar Krishna, Li-Shiuan Peh, and Niraj K Jha. Garnet: A

detailed on-chip network model inside a full-system simulator. In Performance

Analysis of Systems and Software, 2009. ISPASS 2009. IEEE International

Symposium on, pages 33–42. IEEE, 2009.

[5] Iraklis Anagnostopoulos, Alexandros Bartzas, Georgios Kathareios, and Dim-

itrios Soudris. A divide and conquer based distributed run-time mapping

methodology for many-core platforms. In Design, Automation & Test in Europe

Conference & Exhibition (DATE), 2012, pages 111–116. IEEE, 2012.

[6] Iraklis Anagnostopoulos, Vasileios Tsoutsouras, Alexandros Bartzas, and Dim-

itrios Soudris. Distributed run-time resource management for malleable ap-

plications on many-core platforms. In Proceedings of the 50th Annual Design

Automation Conference, page 168. ACM, 2013.

[7] Acquaviva Andrea, Alimonda Andrea, Carta Salvatore, and Pittau Michele.

Assessing task migration impact on embedded soft real-time streaming multi-

media applications. EURASIP Journal on Embedded Systems, 2008, 2008.

63

http://www.kalray.eu/products/mppa-manycore/
http://www.kalray.eu/products/mppa-manycore/
http://www.tilera.com/products/processors/TILE-Gx_Family
http://www.tilera.com/products/processors/TILE-Gx_Family
http://sourceforge.net/projects/taskgraphgen/
http://sourceforge.net/projects/taskgraphgen/

BIBLIOGRAPHY 64

[8] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris, Rebecca

Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and Akhilesh Sing-

hania. The multikernel: A new OS architecture for scalable multicore systems.

In Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems

Principles, pages 29–44. ACM, 2009.

[9] Luca Benini, Davide Bertozzi, and Michela Milano. Resource management

policy handling multiple use-cases in MPSoC platforms using constraint pro-

gramming. In Logic Programming, pages 470–484. Springer, 2008.

[10] Stefano Bertozzi, Andrea Acquaviva, Davide Bertozzi, and Antonio Poggiali.

Supporting task migration in multi-processor systems-on-chip: a feasibility

study. In Proceedings of the conference on Design, Automation and Test in

Europe: Proceedings, pages 15–20. European Design and Automation Associa-

tion, 2006.

[11] Greet Bilsen, Marc Engels, Rudy Lauwereins, and Jean Peperstraete. Cycle-

static dataflow. Signal Processing, IEEE Transactions on, 44(2):397–408, 1996.

[12] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali

Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, So-

mayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish,

Mark D. Hill, and David A. Wood. The gem5 simulator. ACM SIGARCH

Computer Architecture News, 39(2):1–7, 2011.

[13] Shekhar Borkar. Thousand core chips: A technology perspective. In Proceedings

of the 44th annual Design Automation Conference, pages 746–749. ACM, 2007.

[14] Silas Boyd-Wickizer, Haibo Chen, Rong Chen, Yandong Mao, M Frans

Kaashoek, Robert Morris, Aleksey Pesterev, Lex Stein, Ming Wu, Yue-hua

Dai, Yang Zhang, and Zheng Zhang. Corey: An operating system for many

cores. In OSDI, volume 8, pages 43–57, 2008.

[15] Eduardo Wenzel Brião, Daniel Barcelos, and Flávio Rech Wagner. Dynamic

task allocation strategies in MPSoC for soft real-time applications. In Pro-

ceedings of the conference on Design, Automation and Test in Europe, pages

1386–1389. ACM, 2008.

BIBLIOGRAPHY 65

[16] Joseph Tobin Buck and Edward A Lee. Scheduling dynamic dataflow graphs

with bounded memory using the token flow model. In Acoustics, Speech, and

Signal Processing, 1993. ICASSP-93., 1993 IEEE International Conference on,

volume 1, pages 429–432. IEEE, 1993.

[17] Everton A Carara, Roberto P de Oliveira, Ney Laert Vilar Calazans, and Fer-

nando Gehm Moraes. Hemps- A framework for NoC-based MPSoC generation.

In Circuits and Systems, 2009. ISCAS 2009. IEEE International Symposium

on, pages 1345–1348. IEEE, 2009.

[18] Trevor E Carlson, Wim Heirman, and Lieven Eeckhout. Sniper: Exploring the

level of abstraction for scalable and accurate parallel multi-core simulation. In

Proceedings of 2011 International Conference for High Performance Comput-

ing, Networking, Storage and Analysis, page 52. ACM, 2011.

[19] Ewerson Carvalho and Fernando Moraes. Congestion-aware task mapping in

heterogeneous MPSoCs. In System-on-Chip, 2008. SOC 2008. International

Symposium on, pages 1–4. IEEE, 2008.

[20] Jeronimo Castrillon, Rainer Leupers, and Gerd Ascheid. MAPS: Mapping con-

current dataflow applications to heterogeneous MPSoCs. Industrial Informat-

ics, IEEE Transactions on, 9(1):527–545, 2013.

[21] Chen-Ling Chou and Radu Marculescu. Contention-aware application mapping

for network-on-chip communication architectures. In Computer Design, 2008.

ICCD 2008. IEEE International Conference on, pages 164–169. IEEE, 2008.

[22] Chen-Ling Chou, Umit Y Ogras, and Radu Marculescu. Energy and

performance-aware incremental mapping for networks on chip with multiple

voltage levels. Computer-Aided Design of Integrated Circuits and Systems,

IEEE Transactions on, 27(10):1866–1879, 2008.

[23] Jason Cong, Karthik Gururaj, Peng Zhang, and Yi Zou. Task-level data model

for hardware synthesis based on concurrent collections. Journal of Electrical

and Computer Engineering, 2012:6, 2012.

BIBLIOGRAPHY 66

[24] Yingnan Cui, Wei Zhang, and Hao Yu. Decentralized agent based re-clustering

for task mapping of tera-scale network-on-chip system. In Circuits and Systems

(ISCAS), 2012 IEEE International Symposium on, pages 2437–2440. IEEE,

2012.

[25] Anup Das, Akash Kumar, and Bharadwaj Veeravalli. Energy-aware task map-

ping and scheduling for reliable embedded computing systems. ACM Transac-

tions on Embedded Computing Systems (TECS), 13(2s):72, 2014.

[26] Jack B Dennis. First version of a data flow procedure language. In Programming

Symposium, pages 362–376. Springer, 1974.

[27] Robert P Dick, David L Rhodes, and Wayne Wolf. TGFF: task graphs for

free. In Proceedings of the 6th International Workshop on Hardware/Software

Codesign, pages 97–101. IEEE Computer Society, 1998.

[28] A. Ghamarian. Timing Analysis of Synchronous Data Flow Graphs. PhD thesis,

Eindhoven University of Technology, 2008.

[29] Amir Hossein Ghamarian, MCW Geilen, Sander Stuijk, Twan Basten, AJM

Moonen, Marco JG Bekooij, Bart D Theelen, and MohammadReza Mousavi.

Throughput analysis of synchronous data flow graphs. In Application of Con-

currency to System Design, 2006. ACSD 2006. Sixth International Conference

on, pages 25–36. IEEE, 2006.

[30] Kahn Gilles. The semantics of a simple language for parallel programming. In

Proceedings of the IFIP Congress, volume 74, pages 471–475, 1974.

[31] Lee Kee Goh and Bharadwaj Veeravalli. Design and performance evaluation of

combined first-fit task allocation and migration strategies in mesh multiproces-

sor systems. Parallel Computing, 34(9):508–520, 2008.

[32] B Goodarzi and H Sarbazi-Azad. Task migration in mesh NoCs over virtual

point-to-point connections. In Parallel, Distributed and Network-Based Process-

ing (PDP), 2011 19th Euromicro International Conference on, pages 463–469.

IEEE, 2011.

BIBLIOGRAPHY 67

[33] Simon Holmbacka, Mohammad Fattah, Wictor Lund, Amir-Mohammad Rah-

mani, Sébastien Lafond, and Johan Lilius. A task migration mechanism for dis-

tributed many-core operating systems. The Journal of Supercomputing, pages

1–22, 2014.

[34] Jason Howard, Saurabh Dighe, Yatin Hoskote, Sriram Vangal, David Finan,

Gregory Ruhl, David Jenkins, Howard Wilson, Nitin Borkar, Gerhard Schrom,

Fabrice Pailet, Shailendra Jain, Tiju Jacob, Satish Yada, Sraven Marella,

Praveen Salihundam, Vasantha Erraguntla, Michael Konow, Michael Riepen,

Guido Droege, Joerg Lindemann, Matthias Gries, Thomas Ape, Kersten Hen-

riss, Tor Lund-Larsen, Sebastian Steibl, Shekhar Borkar, Vivek De, Rob Van

Der Wijngaart, and Timothy Mattson. A 48-core IA-32 message-passing pro-

cessor with DVFS in 45nm CMOS. In Solid-State Circuits Conference Digest

of Technical Papers (ISSCC), 2010 IEEE International, pages 108–109. IEEE,

2010.

[35] Jia Huang, Andreas Raabe, Christian Buckl, and Alois Knoll. A workflow

for runtime adaptive task allocation on heterogeneous MPSoCs. In Design,

Automation & Test in Europe Conference & Exhibition (DATE), 2011, pages

1–6. IEEE, 2011.

[36] Janmartin Jahn, MAA Faruque, and Jörg Henkel. CARAT: Context-aware

runtime adaptive task migration for multi core architectures. In Design, Au-

tomation & Test in Europe Conference & Exhibition (DATE), 2011, pages 1–6.

IEEE, 2011.

[37] Janmartin Jahn, Santiago Pagani, Sebastian Kobbe, Jian-Jia Chen, and Jörg

Henkel. Optimizations for configuring and mapping software pipelines in many

core systems. In Proceedings of the 50th Annual Design Automation Conference,

page 130. ACM, 2013.

[38] Nan Jiang, Daniel U Becker, George Michelogiannakis, James Balfour, Brian

Towles, DE Shaw, John Kim, and WJ Dally. A detailed and flexible cycle-

accurate network-on-chip simulator. In Performance Analysis of Systems and

BIBLIOGRAPHY 68

Software (ISPASS), 2013 IEEE International Symposium on, pages 86–96.

IEEE, 2013.

[39] David S Johnson and M Garey. Computers and Intractability: A guide to the

theory of NP-completeness. Freeman&Co, San Francisco, 1979.

[40] Sebastian Kobbe, Lars Bauer, Daniel Lohmann, Wolfgang Schröder-Preikschat,

and Jörg Henkel. Distrm: Distributed Resource Management for On-Chip

Many-Core Systems. In Proceedings of the seventh IEEE/ACM/IFIP Interna-

tional Conference on Hardware/Software Codesign and System Synthesis, pages

119–128. ACM, 2011.

[41] Sunil Kumar, Tommaso Cucinotta, and Giuseppe Lipari. A latency simulator

for many-core systems. In Proceedings of the 44th Annual Simulation Sympo-

sium, pages 151–158. Society for Computer Simulation International, 2011.

[42] Edward Lee. Consistency in dataflow graphs. Parallel and Distributed Systems,

IEEE Transactions on, 2(2):223–235, 1991.

[43] Edward A Lee and David G Messerschmitt. Synchronous data flow. Proceedings

of the IEEE, 75(9):1235–1245, 1987.

[44] Edward A Lee and Stephen Neuendorffer. Concurrent models of computation

for embedded software. IEE Proceedings-Computers and Digital Techniques,

152(2):239–250, 2005.

[45] Mieszko Lis, Pengju Ren, Myong Hyon Cho, Keun Sup Shim, Christopher W

Fletcher, Omer Khan, and Srinivas Devadas. Scalable, accurate multicore sim-

ulation in the 1000-core era. In Performance Analysis of Systems and Soft-

ware (ISPASS), 2011 IEEE International Symposium on, pages 175–185. IEEE,

2011.

[46] Radu Marculescu, Umit Y Ogras, Li-Shiuan Peh, Natalie Enright Jerger, and

Yatin Hoskote. Outstanding research problems in NoC design: System, mi-

croarchitecture, and circuit perspectives. Computer-Aided Design of Integrated

Circuits and Systems, IEEE Transactions on, 28(1):3–21, 2009.

BIBLIOGRAPHY 69

[47] Milo MK Martin, Daniel J Sorin, Bradford M Beckmann, Michael R Marty, Min

Xu, Alaa R Alameldeen, Kevin E Moore, Mark D Hill, and David A Wood.

Multifacet’s general execution-driven multiprocessor simulator (gems) toolset.

ACM SIGARCH Computer Architecture News, 33(4):92–99, 2005.

[48] Peter Marwedel, Jürgen Teich, Georgia Kouveli, Iuliana Bacivarov, Lothar

Thiele, Soonhoi Ha, Chanhee Lee, Qiang Xu, and Lin Huang. Mapping of

applications to MPSoCs. In Proceedings of the seventh IEEE/ACM/IFIP In-

ternational Conference on Hardware/Software Codesign and System Synthesis,

pages 109–118. ACM, 2011.

[49] Jason E Miller, Harshad Kasture, George Kurian, Charles Gruenwald, Nathan

Beckmann, Christopher Celio, Jonathan Eastep, and Anant Agarwal. Graphite:

A distributed parallel simulator for multicores. In High Performance Computer

Architecture (HPCA), 2010 IEEE 16th International Symposium on, pages 1–

12. IEEE, 2010.

[50] Dejan S Milojičić, Fred Douglis, Yves Paindaveine, Richard Wheeler, and Song-

nian Zhou. Process migration. ACM Computing Surveys (CSUR), 32(3):241–

299, 2000.

[51] Davit Mirzoyan, Benny Akesson, and Kees Goossens. Process-variation-aware

mapping of best-effort and real-time streaming applications to MPSoCs. ACM

Transactions on Embedded Computing Systems (TECS), 13(2s):61, 2014.

[52] Edmund B Nightingale, Orion Hodson, Ross McIlroy, Chris Hawblitzel, and

Galen Hunt. Helios: Heterogeneous multiprocessing with satellite kernels. In

Proceedings of the ACM SIGOPS 22nd symposium on Operating systems prin-

ciples, pages 221–234. ACM, 2009.

[53] Vincent Nollet, Théodore Marescaux, Prabhat Avasare, D Verkest, and J-Y

Mignolet. Centralized run-time resource management in a network-on-chip

containing reconfigurable hardware tiles. In Design, Automation and Test in

Europe, 2005. Proceedings, pages 234–239. IEEE, 2005.

BIBLIOGRAPHY 70

[54] Hyunok Oh and Soonhoi Ha. Fractional rate dataflow model for efficient code

synthesis. Journal of VLSI signal processing systems for signal, image and video

technology, 37(1):41–51, 2004.

[55] Lars Schor, Iuliana Bacivarov, Devendra Rai, Hoeseok Yang, Shin-Haeng Kang,

and Lothar Thiele. Scenario-based design flow for mapping streaming applica-

tions onto on-chip many-core systems. In Proceedings of the 2012 International

Conference on Compilers, Architectures and Synthesis for Embedded Systems,

pages 71–80. ACM, 2012.

[56] Amit Kumar Singh, Muhammad Shafique, Akash Kumar, and Jörg Henkel.

Mapping on multi/many-core systems: Survey of current and emerging trends.

In Proceedings of the 50th Annual Design Automation Conference, page 1.

ACM, 2013.

[57] Amit Kumar Singh, Thambipillai Srikanthan, Akash Kumar, and Wu Jigang.

Communication-aware heuristics for run-time task mapping on NoC-based MP-

SoC platforms. Journal of Systems Architecture, 56(7):242–255, 2010.

[58] Jonathan M Smith. A survey of process migration mechanisms. ACM SIGOPS

Operating Systems Review, 22(3):28–40, 1988.

[59] S. Stuijk, M.C.W. Geilen, and T. Basten. SDF3: SDF For Free. In Application

of Concurrency to System Design, 6th International Conference, ACSD 2006,

Proceedings, pages 276–278. IEEE Computer Society Press, Los Alamitos, CA,

USA, June 2006.

[60] Sander Stuijk. Predictable mapping of streaming applications on multiproces-

sors. PhD thesis, TU Eindhoven, 2007.

[61] Sander Stuijk. SDFG of real applications . http://www.es.ele.tue.nl/sdf3/

download/examples.php, 2014. [Online; accessed September, 2014].

[62] Pranav Tendulkar and Sander Stuijk. A Case Study into Predictable and Com-

posable MPSoC Reconfiguration. In Parallel and Distributed Processing Sym-

posium Workshops & PhD Forum (IPDPSW), 2013 IEEE 27th International,

pages 293–300. IEEE, 2013.

http://www.es.ele.tue.nl/sdf3/download/examples.php
http://www.es.ele.tue.nl/sdf3/download/examples.php

BIBLIOGRAPHY 71

[63] András Varga and Rudolf Hornig. An overview of the OMNeT++ simulation

environment. In Proceedings of the 1st International Conference on Simulation

Tools and Techniques for Communications, Networks and Systems & work-

shops, page 60. ICST (Institute for Computer Sciences, Social-Informatics and

Telecommunications Engineering), 2008.

[64] Andreas Weichslgartner, Stefan Wildermann, and Jürgen Teich. Dynamic de-

centralized mapping of tree-structured applications on NoC architectures. In

Networks on Chip (NoCS), 2011 Fifth IEEE/ACM International Symposium

on, pages 201–208. IEEE, 2011.

[65] David Wentzlaff and Anant Agarwal. Factored operating systems (fos): The

case for a scalable operating system for multicores. ACM SIGOPS Operating

Systems Review, 43(2):76–85, 2009.

[66] Gwo-Jong Yu, Chih-Yung Chang, and Tzung-Shi Chen. Task migration in

n-dimensional wormhole-routed mesh multicomputers. Journal of Systems Ar-

chitecture, 50(4):177–192, 2004.

[67] Peter Zipf, Gilles Sassatelli, Nurten Utlu, Nicolas Saint-Jean, Pascal Benoit,

and Manfred Glesner. A decentralised task mapping approach for homoge-

neous multiprocessor network-on-chips. International Journal of Reconfigurable

Computing, 2009:3, 2009.

Appendix A

SDFGs XML descriptions

The XML descriptions of our SDFGs from [56] and [61] are given below:

• H.263 decoder used in Section 4.1 and Section 4.4:

<?xml version=” 1.0 ” encoding=”UTF−8”?>

<sd f3 type=” sd f ” version=” 1.0 ”

xmlns :x s i=” ht tp : //www.w3 . org /2001/XMLSchema−i n s tance ”

xsi:noNamespaceSchemaLocation=” ht tp : //www. es . e l e . tue . n l / sd f3 /xsd/ sdf3−sd f

. xsd”>

<appl icat ionGraph name=’ h263decoder ’>

<sd f name=”h263decoder ” type=”H263decoder”>

<actor name=”vld ” type=”A0”>

<port name=”p0” type=”out” ra t e=”594”/>

<port name=”p1” type=” in ” ra t e=”1”/>

<port name=”p2” type=”out” ra t e=”1”/>

<port name=” p4” type=” in ” ra t e=”594”/>

</ actor>

<actor name=” iq ” type=”A1”>

<port name=”p0” type=” in ” ra t e=”1”/>

<port name=”p1” type=”out” ra t e=”1”/>

<port name=”p2” type=” in ” ra t e=”1”/>

<port name=”p3” type=”out” ra t e=”1”/>

<port name=” p5” type=”out” ra t e=”1”/>

</ actor>

<actor name=” id c t ” type=”A2”>

<port name=”p0” type=” in ” ra t e=”1”/>

<port name=”p1” type=”out” ra t e=”1”/>

</ actor>

<actor name=”mc” type=”A3”>

<port name=”p0” type=” in ” ra t e=”594”/>

<port name=”p1” type=” in ” ra t e=”1”/>

<port name=”p2” type=”out” ra t e=”1”/>

</ actor>

<channel name=” v ld2 iq ” srcActor=”vld ” srcPort=”p0” dstActor=” iq ”

dstPort=”p0”/>

<channel name=” i q 2 i d c t ” srcActor=” iq ” srcPort=”p1” dstActor=” id c t ”

dstPort=”p0”/>

<channel name=” idct2mc” srcActor=” id c t ” s rcPort=”p1” dstActor=”mc”

dstPort=”p0”/>

<channel name=” vld2v ld ” srcActor=”vld ” srcPort=”p2” dstActor=”vld ”

dstPort=”p1” i n i t i a lTok en s=’ 1 ’ />

<channel name=” i q2 i q ” srcActor=” iq ” srcPort=”p3” dstActor=” iq ” dstPort=

”p2” i n i t i a lTok en s=’ 1 ’ />

72

73

<channel name=”mc2mc” srcActor=”mc” srcPort=”p2” dstActor=”mc” dstPort=

”p1” i n i t i a lTok en s=’ 1 ’ />

<channel name=” v ld2 iqb ” srcActor=” iq ” srcPort=” p5” dstActor=”vld ”

dstPort=” p4” i n i t i a lTok en s=”623”/>

</ sd f>

<s d fP r op e r t i e s>

<a c t o rP rope r t i e s ac tor=”vld ”>

<proce s so r type=” proc 0 ” default=” true ”>

<executionTime time=”26018”/>

<memory>

<s t a t e S i z e max=”10848”/>

</memory>

</ proc e s so r>

<proce s so r type=” proc 1 ” default=” true ”>

<executionTime time=”1”/>

<memory>

<s t a t e S i z e max=”10848”/>

</memory>

</ proc e s so r>

</ a c t o rP rope r t i e s>

<a c t o rP rope r t i e s ac tor=” iq ”>

<proce s so r type=” proc 0 ” default=” true ”>

<executionTime time=”559”/>

<memory>

<s t a t e S i z e max=”1”/>

</memory>

</ proc e s so r>

<proce s so r type=” proc 1 ” default=” true ”>

<executionTime time=”1”/>

<memory>

<s t a t e S i z e max=”400”/>

</memory>

</ proc e s so r>

</ a c t o rP rope r t i e s>

<a c t o rP rope r t i e s ac tor=” id c t ”>

<proce s so r type=” proc 0 ” default=” true ”>

<executionTime time=”1”/>

<memory>

<s t a t e S i z e max=”400”/>

</memory>

</ proc e s so r>

<proce s so r type=” proc 1 ” default=” true ”>

<executionTime time=”1”/>

<memory>

<s t a t e S i z e max=”400”/>

</memory>

</ proc e s so r>

</ a c t o rP rope r t i e s>

<a c t o rP rope r t i e s ac tor=”mc”>

<proce s so r type=” proc 0 ” default=” true ”>

<executionTime time=”10958”/>

<memory>

<s t a t e S i z e max=”8000”/>

</memory>

</ proc e s so r>

<proce s so r type=” proc 1 ” default=” true ”>

<executionTime time=”5479”/>

<memory>

<s t a t e S i z e max=”8000”/>

</memory>

</ proc e s so r>

</ a c t o rP rope r t i e s>

<channe lPrope r t i e s channel=” v ld2 iq ”>

<tokenS ize sz=”512”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=” i q 2 i d c t ”>

74

<tokenS ize sz=”512”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=” idct2mc”>

<tokenS ize sz=”512”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=” vld2v ld ”>

<tokenS ize sz=”8192”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=” i q2 i q ”>

<tokenS ize sz=”512”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=”mc2mc”>

<tokenS ize sz=”304128”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=” v ld2 iqb ”/>

<tokenS ize sz=”512”/>

</ channe lPrope r t i e s>

<graphProper t i e s>

<t imeConstra ints>

<throughput>0.00000003</ throughput> < !−−15 f p s (i t e r a t i o n s) w i th 500

MHz c l o c k −−>

</ t imeConstra ints>

</ graphProper t i e s>

</ sd fP r op e r t i e s>

</ appl icat ionGraph>

</ sd f3>

• H.263 decoder used in Section 4.3:

<?xml version=” 1.0 ” encoding=”UTF−8”?>

<sd f3 type=” sd f ” version=” 1.0 ”

xmlns :x s i=” ht tp : //www.w3 . org /2001/XMLSchema−i n s tance ”

xsi:noNamespaceSchemaLocation=” ht tp : //www. es . e l e . tue . n l / sd f3 /xsd/ sdf3−sd f

. xsd”>

<appl icat ionGraph name=’ h263decoder ’>

<sd f name=”h263decoder ” type=”H263decoder”>

<actor name=”vld ” type=”A0”>

<port name=”p0” type=”out” ra t e=”594”/>

<port name=”p1” type=” in ” ra t e=”1”/>

<port name=”p2” type=”out” ra t e=”1”/>

<port name=” p4” type=” in ” ra t e=”594”/>

</ actor>

<actor name=” iq ” type=”A1”>

<port name=”p0” type=” in ” ra t e=”1”/>

<port name=”p1” type=”out” ra t e=”1”/>

<port name=”p2” type=” in ” ra t e=”1”/>

<port name=”p3” type=”out” ra t e=”1”/>

<port name=” p5” type=”out” ra t e=”1”/>

<port name=” p6” type=” in ” ra t e=”1”/>

</ actor>

<actor name=” id c t ” type=”A2”>

<port name=”p0” type=” in ” ra t e=”1”/>

<port name=”p1” type=”out” ra t e=”1”/>

<port name=” p3” type=”out” ra t e=”1”/>

</ actor>

<actor name=”mc” type=”A3”>

<port name=”p0” type=” in ” ra t e=”594”/>

<port name=”p1” type=” in ” ra t e=”1”/>

<port name=”p2” type=”out” ra t e=”1”/>

</ actor>

<channel name=” v ld2 iq ” srcActor=”vld ” srcPort=”p0” dstActor=” iq ”

dstPort=”p0”/>

<channel name=” i q 2 i d c t ” srcActor=” iq ” srcPort=”p1” dstActor=” id c t ”

dstPort=”p0”/>

<channel name=” idct2mc” srcActor=” id c t ” s rcPort=”p1” dstActor=”mc”

dstPort=”p0”/>

75

<channel name=” vld2v ld ” srcActor=”vld ” srcPort=”p2” dstActor=”vld ”

dstPort=”p1” i n i t i a lTok en s=’ 1 ’ />

<channel name=” i q2 i q ” srcActor=” iq ” srcPort=”p3” dstActor=” iq ” dstPort=

”p2” i n i t i a lTok en s=’ 1 ’ />

<channel name=”mc2mc” srcActor=”mc” srcPort=”p2” dstActor=”mc” dstPort=

”p1” i n i t i a lTok en s=’ 1 ’ />

<channel name=” v ld2 iqb ” srcActor=” iq ” srcPort=” p5” dstActor=”vld ”

dstPort=” p4” i n i t i a lTok en s=”623”/>

<channel name=” i q 2 i d c t b ” srcActor=” id c t ” s rcPort=” p3” dstActor=” iq ”

dstPort=” p6” i n i t i a lTok en s=”2”/>

</ sd f>

<s d fP r op e r t i e s>

<a c t o rP rope r t i e s ac tor=”vld ”>

<proce s so r type=” proc 0 ” default=” true ”>

<executionTime time=”26018”/>

<memory>

<s t a t e S i z e max=”10848”/>

</memory>

</ proc e s so r>

<proce s so r type=” proc 1 ” default=” true ”>

<executionTime time=”13009”/>

<memory>

<s t a t e S i z e max=”10848”/>

</memory>

</ proc e s so r>

</ a c t o rP rope r t i e s>

<a c t o rP rope r t i e s ac tor=” iq ”>

<proce s so r type=” proc 0 ” default=” true ”>

<executionTime time=”559”/>

<memory>

<s t a t e S i z e max=”400”/>

</memory>

</ proc e s so r>

<proce s so r type=” proc 1 ” default=” true ”>

<executionTime time=”450”/>

<memory>

<s t a t e S i z e max=”400”/>

</memory>

</ proc e s so r>

</ a c t o rP rope r t i e s>

<a c t o rP rope r t i e s ac tor=” id c t ”>

<proce s so r type=” proc 0 ” default=” true ”>

<executionTime time=”486”/>

<memory>

<s t a t e S i z e max=”400”/>

</memory>

</ proc e s so r>

<proce s so r type=” proc 1 ” default=” true ”>

<executionTime time=”355”/>

<memory>

<s t a t e S i z e max=”400”/>

</memory>

</ proc e s so r>

</ a c t o rP rope r t i e s>

<a c t o rP rope r t i e s ac tor=”mc”>

<proce s so r type=” proc 0 ” default=” true ”>

<executionTime time=”10958”/>

<memory>

<s t a t e S i z e max=”8000”/>

</memory>

</ proc e s so r>

<proce s so r type=” proc 1 ” default=” true ”>

<executionTime time=”5479”/>

<memory>

<s t a t e S i z e max=”8000”/>

</memory>

76

</ proc e s so r>

</ a c t o rP rope r t i e s>

<channe lPrope r t i e s channel=” v ld2 iq ”>

<tokenS ize sz=”512”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=” i q 2 i d c t ”>

<tokenS ize sz=”512”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=” idct2mc”>

<tokenS ize sz=”512”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=” vld2v ld ”>

<tokenS ize sz=”8192”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=” i q2 i q ”>

<tokenS ize sz=”512”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=”mc2mc”>

<tokenS ize sz=”304128”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=” v ld2 iqb ”/>

<tokenS ize sz=”512”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=” i q 2 i d c t b ”/>

<tokenS ize sz=”512”/>

</ channe lPrope r t i e s>

<graphProper t i e s>

<t imeConstra ints>

<throughput>0.00000003</ throughput> < !−−15 f p s (i t e r a t i o n s) w i th 500

MHz c l o c k −−>

</ t imeConstra ints>

</ graphProper t i e s>

</ sd fP r op e r t i e s>

</ appl icat ionGraph>

</ sd f3>

• H.263 encoder:

<?xml version=” 1.0 ” encoding=”UTF−8”?>

<sd f3 type=” sd f ” version=” 1.0 ”

xmlns :x s i=” ht tp : //www.w3 . org /2001/XMLSchema−i n s tance ”

xsi:noNamespaceSchemaLocation=” ht tp : //www. es . e l e . tue . n l / sd f3 /xsd/ sdf3−sd f

. xsd”>

<appl icat ionGraph name=’ h263encoder ’>

<sd f name=”h263encoder ” type=”H263encoder”>

<actor name=’me ’ type=’ a ’>

<port type=’ in ’ name=’p0 ’ ra t e=’ 1 ’ />

<port type=’ out ’ name=’p1 ’ ra t e=’ 99 ’ />

</ actor>

<actor name=’mbc ’ type=’ a ’>

<port type=’ in ’ name=’p0 ’ ra t e=’ 1 ’ />

<port type=’ out ’ name=’p1 ’ ra t e=’ 1 ’ />

<port type=’ out ’ name=’p2 ’ ra t e=’ 1 ’ />

</ actor>

<actor name=’ v l c ’ type=’ a ’>

<port type=’ in ’ name=’p0 ’ ra t e=’ 99 ’ />

<port type=’ in ’ name=’p1 ’ ra t e=’ 1 ’ />

<port type=’ out ’ name=’p2 ’ ra t e=’ 1 ’ />

</ actor>

<actor name=’mbd ’ type=’ a ’>

<port type=’ in ’ name=’p0 ’ ra t e=’ 1 ’ />

<port type=’ out ’ name=’p1 ’ ra t e=’ 1 ’ />

</ actor>

<actor name=’mc ’ type=’ a ’>

<port type=’ in ’ name=’p0 ’ ra t e=’ 99 ’ />

<port type=’ out ’ name=’p1 ’ ra t e=’ 1 ’ />

77

<port type=’ in ’ name=’p2 ’ ra t e=’ 1 ’ />

<port type=’ out ’ name=’p3 ’ ra t e=’ 1 ’ />

</ actor>

<channel name=’mc2me ’ s rcActor=’mc ’ s rcPort=’ p1 ’ dstActor=’me ’

dstPort=’ p0 ’ i n i t i a lTok en s=’ 1 ’ />

<channel name=’me2mbc ’ s rcActor=’me ’ s rcPort=’ p1 ’ dstActor=’mbc ’

dstPort=’ p0 ’ />

<channel name=’mbc2vlc ’ s rcActor=’mbc ’ s rcPort=’ p1 ’ dstActor=’ v l c ’

dstPort=’ p0 ’ />

<channel name=’mbc2mbd ’ srcActor=’mbc ’ s rcPort=’ p2 ’ dstActor=’mbd ’

dstPort=’ p0 ’ />

<channel name=’mbd2mc ’ s rcActor=’mbd ’ s rcPort=’ p1 ’ dstActor=’mc ’

dstPort=’ p0 ’ />

<channel name=’ v l c 2v l c ’ s rcActor=’ v l c ’ s r cPort=’ p2 ’ dstActor=’ v l c ’

dstPort=’ p1 ’ i n i t i a lTok en s=’ 1 ’ />

<channel name=’mc2mc ’ s rcActor=’mc ’ s rcPort=’ p3 ’ dstActor=’mc ’

dstPort=’ p2 ’ i n i t i a lTok en s=’ 1 ’ />

</ sd f>

<s d fP r op e r t i e s>

<a c t o rP rope r t i e s ac tor=’me ’>

<proce s so r type=’RH’>

<executionTime time=’ 191 ’ />

<memory>

<s t a t e S i z e max=”316352”/>

</memory>

</ proc e s so r>

</ a c t o rP rope r t i e s>

<a c t o rP rope r t i e s ac tor=’mbc ’>

<proce s so r type=’RH’ default=’ true ’>

<executionTime time=’ 8 ’ />

<memory>

<s t a t e S i z e max=”17728”/>

</memory>

</ proc e s so r>

</ a c t o rP rope r t i e s>

<a c t o rP rope r t i e s ac tor=’ v l c ’>

<proce s so r type=’RH’ default=’ true ’>

<executionTime time=’ 13 ’ />

<memory>

<s t a t e S i z e max=”10848”/>

</memory>

</ proc e s so r>

</ a c t o rP rope r t i e s>

<a c t o rP rope r t i e s ac tor=’mbd ’>

<proce s so r type=’RH’ default=’ true ’>

<executionTime time=’ 6 ’ />

<memory>

<s t a t e S i z e max=”6912”/>

</memory>

</ proc e s so r>

</ a c t o rP rope r t i e s>

<a c t o rP rope r t i e s ac tor=’mc ’>

<proce s so r type=’RH’ default=’ true ’>

<executionTime time=’ 5 ’ />

<memory>

<s t a t e S i z e max=”22368”/>

</memory>

</ proc e s so r>

</ a c t o rP rope r t i e s>

<channe lPrope r t i e s channel=”mc2me”>

<tokenS ize sz=”304128”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=”me2mbc”>

<tokenS ize sz=”3072”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=”mbc2vlc”>

78

<tokenS ize sz=”3072”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=”mbc2mbd”>

<tokenS ize sz=”3072”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=”mbd2mc”>

<tokenS ize sz=”3072”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=” v l c 2v l c ”>

<tokenS ize sz=”8192”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=”mc2mc”>

<tokenS ize sz=”304128”/>

</ channe lPrope r t i e s>

<graphProper t i e s>

<t imeConstra ints>

<throughput>0.00000003</ throughput> < !−− 15 f p s (i t e r a t i o n s) w i th

500MHz c l o c k −−>

</ t imeConstra ints>

</ graphProper t i e s>

</ sd fP r op e r t i e s>

</ appl icat ionGraph>

</ sd f3>

• H.264 decoder

<?xml version=” 1.0 ” encoding=”UTF−8”?>

<sd f3 type=” sd f ” version=” 1.0 ”

xmlns :x s i=” ht tp : //www.w3 . org /2001/XMLSchema−i n s tance ”

xsi:noNamespaceSchemaLocation=” ht tp : //www. es . e l e . tue . n l / sd f3 /xsd/ sdf3−sd f

. xsd”>

<appl icat ionGraph name=’ h264decoder ’>

<sd f name=”h264decoder ” type=”H264decoder”>

<actor name=”ed” type=”A0”>

<port name=”p0” type=” in ” ra t e=”1”/>

<port name=”p1” type=”out” ra t e=”256”/>

</ actor>

<actor name=” idctRecon ” type=”A1”>

<port name=”p0” type=” in ” ra t e=”16”/>

<port name=”p1” type=”out” ra t e=”16”/>

</ actor>

<actor name=”mc” type=”A2”>

<port name=”p0” type=” in ” ra t e=”256”/>

<port name=”p1” type=”out” ra t e=”1”/>

</ actor>

<channel name=” ed2 idct ” srcActor=”ed” srcPort=”p1” dstActor=” idctRecon ”

dstPort=”p0”/>

<channel name=” idct2mc” srcActor=” idctRecon ” srcPort=”p1” dstActor=”mc”

dstPort=”p0”/>

<channel name=”mc2ed” srcActor=”mc” srcPort=”p1” dstActor=”ed” dstPort=

”p0” i n i t i a lTok en s=’ 1 ’ />

</ sd f>

<s d fP r op e r t i e s>

<a c t o rP rope r t i e s ac tor=”ed”>

<proce s so r type=” proc 0 ” default=” true ”>

<executionTime time=”120”/>

<memory>

<s t a t e S i z e max=”14304”/>

</memory>

</ proc e s so r>

</ a c t o rP rope r t i e s>

<a c t o rP rope r t i e s ac tor=” idctRecon ”>

<proce s so r type=” proc 0 ” default=” true ”>

<executionTime time=”2”/>

<memory>

<s t a t e S i z e max=”32768”/>

79

</memory>

</ proc e s so r>

</ a c t o rP rope r t i e s>

<a c t o rP rope r t i e s ac tor=”mc”>

<proce s so r type=” proc 0 ” default=” true ”>

<executionTime time=”9”/>

<memory>

<s t a t e S i z e max=”2048”/>

</memory>

</ proc e s so r>

</ a c t o rP rope r t i e s>

<channe lPrope r t i e s channel=” ed2 idct ”>

<tokenS ize sz=”128”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=” idct2mc”>

<tokenS ize sz=”128”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=”mc2ed”>

<tokenS ize sz=”32768”/>

</ channe lPrope r t i e s>

<graphProper t i e s>

<t imeConstra ints>

<throughput>0.00000003</ throughput> < !−−15 f p s (i t e r a t i o n s) w i th 500

MHz c l o c k −−>

</ t imeConstra ints>

</ graphProper t i e s>

</ sd fP r op e r t i e s>

</ appl icat ionGraph>

</ sd f3>

• H.264 encoder:

<?xml version=” 1.0 ” encoding=”UTF−8”?>

<sd f3 type=” sd f ” version=” 1.0 ”

xmlns :x s i=” ht tp : //www.w3 . org /2001/XMLSchema−i n s tance ”

xsi:noNamespaceSchemaLocation=” ht tp : //www. es . e l e . tue . n l / sd f3 /xsd/ sdf3−sd f

. xsd”>

<appl icat ionGraph name=’ h264encoder ’>

<sd f name=”h264encoder ” type=”H264encoder”>

<actor name=”md” type=”A0”>

<port name=”p0” type=” in ” ra t e=”1”/>

<port name=”p1” type=” in ” ra t e=”1”/>

<port name=”p2” type=”out” ra t e=”256”/>

</ actor>

<actor name=”dct ” type=”A1”>

<port name=”p0” type=” in ” ra t e=”16”/>

<port name=”p1” type=”out” ra t e=”16”/>

</ actor>

<actor name=” iq ” type=”A2”>

<port name=”p0” type=” in ” ra t e=”1”/>

<port name=”p1” type=”out” ra t e=”1”/>

</ actor>

<actor name=” id c t ” type=”A3”>

<port name=”p0” type=” in ” ra t e=”16”/>

<port name=”p1” type=”out” ra t e=”16”/>

</ actor>

<actor name=” rc ” type=”A4”>

<port name=”p0” type=” in ” ra t e=”256”/>

<port name=”p1” type=”out” ra t e=”1”/>

<port name=”p2” type=”out” ra t e=”1”/>

</ actor>

<actor name=” ip ” type=”A5”>

<port name=”p0” type=” in ” ra t e=”1”/>

<port name=”p1” type=”out” ra t e=”1”/>

</ actor>

<actor name=”ime” type=”A6”>

80

<port name=”p0” type=” in ” ra t e=”1”/>

<port name=”p1” type=”out” ra t e=”1”/>

</ actor>

<actor name=” in tpo l ” type=”A7”>

<port name=”p0” type=” in ” ra t e=”1”/>

<port name=”p1” type=”out” ra t e=”1”/>

</ actor>

<actor name=”fme” type=”A8”>

<port name=”p0” type=” in ” ra t e=”1”/>

<port name=”p1” type=”out” ra t e=”1”/>

</ actor>

<channel name=”md2dct” srcActor=”md” srcPort=”p2” dstActor=”dct ”

dstPort=”p0”/>

<channel name=” dct2 iq ” srcActor=”dct ” s rcPort=”p1” dstActor=” iq ”

dstPort=”p0”/>

<channel name=” i q 2 i d c t ” srcActor=” iq ” srcPort=”p1” dstActor=” id c t ”

dstPort=”p0”/>

<channel name=” id c t 2 r c ” srcActor=” id c t ” s rcPort=”p1” dstActor=” rc ”

dstPort=”p0”/>

<channel name=” rc2 ip ” srcActor=” rc ” s rcPort=”p1” dstActor=” ip ”

dstPort=”p0”/>

<channel name=”ip2md” srcActor=” ip ” srcPort=”p1” dstActor=”md”

dstPort=”p1” i n i t i a lTok en s=’ 1 ’ />

<channel name=” rc2ime” srcActor=” rc ” s rcPort=”p2” dstActor=”ime”

dstPort=”p0”/>

<channel name=” ime2 intpo l ” srcActor=”ime” srcPort=”p1” dstActor=”

i n tpo l ” dstPort=”p0”/>

<channel name=” intpo l2 fme ” srcActor=” i n tpo l ” s rcPort=”p1” dstActor=

”fme” dstPort=”p0”/>

<channel name=”fme2md” srcActor=”fme” srcPort=”p1” dstActor=”md”

dstPort=”p0” i n i t i a lTok en s=’ 1 ’ />

</ sd f>

<s d fP r op e r t i e s>

<a c t o rP rope r t i e s ac tor=”md”>

<proce s so r type=” proc 0 ” default=” true ”>

<executionTime time=”27”/>

<memory>

<s t a t e S i z e max=”8000”/>

</memory>

</ proc e s so r>

</ a c t o rP rope r t i e s>

<a c t o rP rope r t i e s ac tor=”dct ”>

<proce s so r type=” proc 0 ” default=” true ”>

<executionTime time=”1”/>

<memory>

<s t a t e S i z e max=”32768”/>

</memory>

</ proc e s so r>

</ a c t o rP rope r t i e s>

<a c t o rP rope r t i e s ac tor=” iq ”>

<proce s so r type=” proc 0 ” default=” true ”>

<executionTime time=”3”/>

<memory>

<s t a t e S i z e max=”6688”/>

</memory>

</ proc e s so r>

</ a c t o rP rope r t i e s>

<a c t o rP rope r t i e s ac tor=” id c t ”>

<proce s so r type=” proc 0 ” default=” true ”>

<executionTime time=”3”/>

<memory>

<s t a t e S i z e max=”32768”/>

</memory>

</ proc e s so r>

</ a c t o rP rope r t i e s>

<a c t o rP rope r t i e s ac tor=” rc ”>

81

<proce s so r type=” proc 0 ” default=” true ”>

<executionTime time=”21”/>

<memory>

<s t a t e S i z e max=”8000”/>

</memory>

</ proc e s so r>

</ a c t o rP rope r t i e s>

<a c t o rP rope r t i e s ac tor=” ip ”>

<proce s so r type=” proc 0 ” default=” true ”>

<executionTime time=”5”/>

<memory>

<s t a t e S i z e max=”4096”/>

</memory>

</ proc e s so r>

</ a c t o rP rope r t i e s>

<a c t o rP rope r t i e s ac tor=”ime”>

<proce s so r type=” proc 0 ” default=” true ”>

<executionTime time=”4”/>

<memory>

<s t a t e S i z e max=”8000”/>

</memory>

</ proc e s so r>

</ a c t o rP rope r t i e s>

<a c t o rP rope r t i e s ac tor=” i n tpo l ”>

<proce s so r type=” proc 0 ” default=” true ”>

<executionTime time=”1”/>

<memory>

<s t a t e S i z e max=”8192”/>

</memory>

</ proc e s so r>

</ a c t o rP rope r t i e s>

<a c t o rP rope r t i e s ac tor=”fme”>

<proce s so r type=” proc 0 ” default=” true ”>

<executionTime time=”2”/>

<memory>

<s t a t e S i z e max=”4096”/>

</memory>

</ proc e s so r>

</ a c t o rP rope r t i e s>

<channe lPrope r t i e s channel=”md2dct”>

<tokenS ize sz=”16”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=” dct2 iq ”>

<tokenS ize sz=”16”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=” i q 2 i d c t ”>

<tokenS ize sz=”16”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=” i d c t 2 r c ”>

<tokenS ize sz=”16”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=” rc2 ip ”>

<tokenS ize sz=”2048”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=”ip2md”>

<tokenS ize sz=”2048”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=” rc2ime”>

<tokenS ize sz=”2048”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=” ime2 intpo l ”>

<tokenS ize sz=”2048”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=” intpo l2 fme ”>

<tokenS ize sz=”2048”/>

</ channe lPrope r t i e s>

82

<channe lPrope r t i e s channel=”fme2md”>

<tokenS ize sz=”2048”/>

</ channe lPrope r t i e s>

<graphProper t i e s>

<t imeConstra ints>

<throughput>0.00000003</ throughput> < !−−15 f p s (i t e r a t i o n s) w i th 500

MHz c l o c k −−>

</ t imeConstra ints>

</ graphProper t i e s>

</ sd fP r op e r t i e s>

</ appl icat ionGraph>

</ sd f3>

• JPEG decoder:

<?xml version=” 1.0 ” encoding=”UTF−8”?>

<sd f3 type=” sd f ” version=” 1.0 ”

xmlns :x s i=” ht tp : //www.w3 . org /2001/XMLSchema−i n s tance ”

xsi:noNamespaceSchemaLocation=” ht tp : //www. es . e l e . tue . n l / sd f3 /xsd/ sdf3−sd f

. xsd”>

<appl icat ionGraph name=’ jpegdecoder ’>

<sd f name=”JPEGdecoder” type=”G”>

<actor name=”a” type=”a”>

<port name=”IN” type=” in ” ra t e=”1”/>

<port name=”OUT” type=”out” ra t e=”6”/>

</ actor>

<actor name=”b” type=”b”>

<port name=”IN” type=” in ” ra t e=”1”/>

<port name=”OUT” type=”out” ra t e=”1”/>

</ actor>

<actor name=”c” type=”c”>

<port name=”IN” type=” in ” ra t e=”1”/>

<port name=”OUT” type=”out” ra t e=”1”/>

</ actor>

<actor name=”d” type=”d”>

<port name=”IN” type=” in ” ra t e=”1”/>

<port name=”OUT” type=”out” ra t e=”1”/>

</ actor>

<actor name=”e” type=”e”>

<port name=”IN” type=” in ” ra t e=”1”/>

<port name=”OUT” type=”out” ra t e=”1”/>

</ actor>

<actor name=” f ” type=” f ”>

<port name=”IN” type=” in ” ra t e=”6”/>

<port name=”OUT” type=”out” ra t e=”1”/>

</ actor>

<channel name=” f2a ” srcActor=” f ” s rcPort=”OUT” dstActor=”a” dstPort

=”IN” i n i t i a lTok en s=”1”/>

<channel name=”a2b” srcActor=”a” srcPort=”OUT” dstActor=”b” dstPort

=”IN” />

<channel name=”b2c” srcActor=”b” srcPort=”OUT” dstActor=”c” dstPort

=”IN” />

<channel name=”c2d” srcActor=”c” srcPort=”OUT” dstActor=”d” dstPort

=”IN” />

<channel name=”d2e” srcActor=”d” srcPort=”OUT” dstActor=”e” dstPort

=”IN” />

<channel name=” e2 f ” srcActor=”e” srcPort=”OUT” dstActor=” f ” dstPort

=”IN” />

</ sd f>

<s d fP r op e r t i e s>

<a c t o rP rope r t i e s ac tor=”a”>

<proce s so r type=” proc 0 ” default=” true ”>

<executionTime time=”28”/>

<memory>

<s t a t e S i z e max=”9”/>

</memory>

83

</ proc e s so r>

</ a c t o rP rope r t i e s>

<a c t o rP rope r t i e s ac tor=”b”>

<proce s so r type=” proc 0 ” default=” true ”>

<executionTime time=”2”/>

<memory>

<s t a t e S i z e max=”9”/>

</memory>

</ proc e s so r>

</ a c t o rP rope r t i e s>

<a c t o rP rope r t i e s ac tor=”c”>

<proce s so r type=” proc 0 ” default=” true ”>

<executionTime time=”2”/>

<memory>

<s t a t e S i z e max=”9”/>

</memory>

</ proc e s so r>

</ a c t o rP rope r t i e s>

<a c t o rP rope r t i e s ac tor=”d” >

<proce s so r type=” proc 0 ” default=” true ”>

<executionTime time=”7”/>

<memory>

<s t a t e S i z e max=”9”/>

</memory>

</ proc e s so r>

</ a c t o rP rope r t i e s>

<a c t o rP rope r t i e s ac tor=”e” >

<proce s so r type=” proc 0 ” default=” true ”>

<executionTime time=”2”/>

<memory>

<s t a t e S i z e max=”9”/>

</memory>

</ proc e s so r>

</ a c t o rP rope r t i e s>

<a c t o rP rope r t i e s ac tor=” f ”>

<proce s so r type=” proc 0 ” default=” true ”>

<executionTime time=”36”/>

<memory>

<s t a t e S i z e max=”9”/>

</memory>

</ proc e s so r>

</ a c t o rP rope r t i e s>

<channe lPrope r t i e s channel=”a2b”>

<tokenS ize sz=”512”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=”b2c”>

<tokenS ize sz=”512”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=”c2d”>

<tokenS ize sz=”512”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=”d2e”>

<tokenS ize sz=”512”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=” e2 f ”>

<tokenS ize sz=”512”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=” f2a ”>

<tokenS ize sz=”3072”/>

</ channe lPrope r t i e s>

<graphProper t i e s>

<t imeConstra ints>

<throughput>0.00000003</ throughput> < !−−15 f p s (i t e r a t i o n s) w i th 500

MHz c l o c k −−>

</ t imeConstra ints>

</ graphProper t i e s>

84

</ sd fP r op e r t i e s>

</ appl icat ionGraph>

</ sd f3>

• MPEG4 decoder:

<?xml version=” 1.0 ” encoding=”UTF−8”?>

<sd f3 type=” sd f ” version=” 1.0 ”

xmlns :x s i=” ht tp : //www.w3 . org /2001/XMLSchema−i n s tance ”

xsi:noNamespaceSchemaLocation=” ht tp : //www. es . e l e . tue . n l / sd f3 /xsd/ sdf3−sd f

. xsd”>

<appl icat ionGraph name=’mpegdecoder ’>

<sd f name=”MPEGdecoder” type=”G”>

<actor name=” fd ” type=”A0”>

<port name=”p1” type=”out” ra t e=”99”/>

<port name=”p2” type=”out” ra t e=”1”/>

<port name=”p3” type=” in ” ra t e=”1”/>

</ actor>

<actor name=”vld ” type=”A1”>

<port name=”p0” type=”out” ra t e=”1”/>

<port name=”p1” type=” in ” ra t e=”1”/>

<port name=”p2” type=”out” ra t e=”1”/>

<port name=”p3” type=”out” ra t e=”1”/>

<port name=”p4” type=” in ” ra t e=”1”/>

</ actor>

<actor name=” id c t ” type=”A2”>

<port name=”p0” type=”out” ra t e=”1”/>

<port name=”p1” type=” in ” ra t e=”1”/>

<port name=”p2” type=”out” ra t e=”1”/>

<port name=”p3” type=” in ” ra t e=”1”/>

</ actor>

<actor name=” rc ” type=”A3”>

<port name=”p0” type=”out” ra t e=”1”/>

<port name=”p1” type=” in ” ra t e=”1”/>

<port name=”p3” type=”out” ra t e=”1”/>

<port name=”p4” type=” in ” ra t e=”1”/>

<port name=”p5” type=”out” ra t e=”1”/>

<port name=”p6” type=” in ” ra t e=”99”/>

</ actor>

<actor name=”mc” type=”A4”>

<port name=”p0” type=” in ” ra t e=”99”/>

<port name=”p1” type=” in ” ra t e=”1”/>

<port name=”p2” type=”out” ra t e=”1”/>

<port name=”p3” type=” in ” ra t e=”1”/>

<port name=”p4” type=”out” ra t e=”1”/>

<port name=”p5” type=” in ” ra t e=”1”/>

</ actor>

<channel name=” fd2v ld ” srcActor=” fd ” srcPort=”p1” dstActor=”vld ”

dstPort=”p4”/>

<channel name=”fd2mc” srcActor=” fd ” srcPort=”p2” dstActor=”mc”

dstPort=”p3”/>

<channel name=” v ld2 id c t ” srcActor=”vld ” srcPort=”p2” dstActor=”

id c t ” dstPort=”p3”/>

<channel name=”vld2mc” srcActor=”vld ” s rcPort=”p3” dstActor=”mc

” dstPort=”p0”/>

<channel name=” id c t 2 r c ” srcActor=” id c t ” s rcPort=”p2” dstActor=”

rc ” dstPort=”p6”/>

<channel name=”rc2mc” srcActor=” rc ” s rcPort=”p5” dstActor=”mc”

dstPort=”p1” i n i t i a lTok en s=’ 1 ’ />

<channel name=” rc2 fd ” srcActor=” rc ” s rcPort=”p3” dstActor=” fd ”

dstPort=”p3” i n i t i a lTok en s=’ 3 ’ />

<channel name=”mc2rc” srcActor=”mc” srcPort=”p2” dstActor=” rc ”

dstPort=”p4”/>

<channel name=” vld2v ld ” srcActor=”vld ” srcPort=”p0” dstActor=”

vld ” dstPort=”p1” i n i t i a lTok en s=’ 1 ’ />

85

<channel name=” i d c t 2 i d c t ” srcActor=” id c t ” s rcPort=”p0” dstActor

=” id c t ” dstPort=”p1” i n i t i a lTok en s=’ 1 ’ />

<channel name=” rc2 r c ” srcActor=” rc ” s rcPort=”p0” dstActor=” rc ”

dstPort=”p1” i n i t i a lTok en s=’ 1 ’ />

<channel name=”mc2mc” srcActor=”mc” srcPort=”p4” dstActor=”mc”

dstPort=”p5” i n i t i a lTok en s=’ 1 ’ />

</ sd f>

<s d fP r op e r t i e s>

<a c t o rP rope r t i e s ac tor=’ fd ’>

<proce s so r type=’ proc 0 ’ default=’ true ’>

<executionTime time=’ 25 ’ />

< !−− worst−case e x e cu t i on t ime in t ime un i t s −−>

<memory>

<s t a t e S i z e max=’ 10848 ’ />

< !−− worst−case s t a t e s i z e in b y t e s −−>

</memory>

</ proc e s so r>

</ a c t o rP rope r t i e s>

<a c t o rP rope r t i e s ac tor=’ vld ’>

<proce s so r type=’ proc 0 ’ default=’ true ’>

<executionTime time=’ 16 ’ />

<memory>

<s t a t e S i z e max=’ 400 ’ />

</memory>

</ proc e s so r>

</ a c t o rP rope r t i e s>

<a c t o rP rope r t i e s ac tor=’ i d c t ’>

<proce s so r type=’ proc 0 ’ default=’ true ’>

<executionTime time=’ 11 ’ />

<memory>

<s t a t e S i z e max=’ 400 ’ />

</memory>

</ proc e s so r>

</ a c t o rP rope r t i e s>

<a c t o rP rope r t i e s ac tor=’ rc ’>

<proce s so r type=’ proc 0 ’ default=’ true ’>

<executionTime time=’ 35 ’ />

<memory>

<s t a t e S i z e max=’ 400 ’ />

</memory>

</ proc e s so r>

</ a c t o rP rope r t i e s>

<a c t o rP rope r t i e s ac tor=’mc ’>

<proce s so r type=’ proc 0 ’ default=’ true ’>

<executionTime time=’ 34 ’ />

<memory>

<s t a t e S i z e max=’ 8000 ’ />

</memory>

</ proc e s so r>

</ a c t o rP rope r t i e s>

<channe lPrope r t i e s channel=” fd2v ld ”>

<tokenS ize sz=”512”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=”fd2mc”>

<tokenS ize sz=”512”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=” v ld2 id c t ”>

<tokenS ize sz=”512”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=”vld2mc”>

<tokenS ize sz=”512”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=” i d c t 2 r c ”>

<tokenS ize sz=”512”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=”rc2mc”>

86

<tokenS ize sz=”50688”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=” rc2 fd ”>

<tokenS ize sz=”50688”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=”mc2rc”>

<tokenS ize sz=”50688”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=” vld2v ld ”>

<tokenS ize sz=”50688”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=” i d c t 2 i d c t ”>

<tokenS ize sz=”50688”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=” rc2 r c ”>

<tokenS ize sz=”50688”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=”mc2mc”>

<tokenS ize sz=”50688”/>

</ channe lPrope r t i e s>

<graphProper t i e s>

<t imeConstra ints>

<throughput>0.00000003</ throughput> < !−−15 f p s (i t e r a t i o n s) w i th 500

MHz c l o c k −−>

</ t imeConstra ints>

</ graphProper t i e s>

</ sd fP r op e r t i e s>

</ appl icat ionGraph>

</ sd f3>

• MP3 decoder:

<?xml version=” 1.0 ” encoding=”UTF−8”?>

<sd f3 type=” sd f ” version=” 1.0 ”

xmlns :x s i=” ht tp : //www.w3 . org /2001/XMLSchema−i n s tance ”

xsi:noNamespaceSchemaLocation=” ht tp : //www. es . e l e . tue . n l / sd f3 /xsd/ sdf3−sd f

. xsd”>

<appl icat ionGraph name=’mp3decoder ’>

<sd f name=’mp3decoder ’ type=’MP3decoder ’>

<actor name=’ huffman ’ type=’Huffman ’>

<port name=’p0 ’ type=’ out ’ r a t e=’ 2 ’ />

<port name=’p1 ’ type=’ out ’ r a t e=’ 2 ’ />

<port name=’p2 ’ type=’ in ’ r a t e=’ 1 ’ />

<port name=’p3 ’ type=’ out ’ r a t e=’ 1 ’ />

<port name=” p5” type=” in ” ra t e=”2”/>

<port name=” p6” type=” in ” ra t e=”2”/>

</ actor>

<actor name=’ req0 ’ type=’Req ’>

<port name=’p0 ’ type=’ in ’ r a t e=’ 1 ’ />

<port name=’p1 ’ type=’ out ’ r a t e=’ 1 ’ />

<port name=’p2 ’ type=’ in ’ r a t e=’ 1 ’ />

<port name=’p3 ’ type=’ out ’ r a t e=’ 1 ’ />

<port name=” p5” type=”out” ra t e=”1”/>

</ actor>

<actor name=’ reo rde r0 ’ type=’ Reorder ’>

<port name=’p0 ’ type=’ in ’ r a t e=’ 1 ’ />

<port name=’p1 ’ type=’ out ’ r a t e=’ 1 ’ />

</ actor>

<actor name=’ req1 ’ type=’Req ’>

<port name=’p0 ’ type=’ in ’ r a t e=’ 1 ’ />

<port name=’p1 ’ type=’ out ’ r a t e=’ 1 ’ />

<port name=’p2 ’ type=’ in ’ r a t e=’ 1 ’ />

<port name=’p3 ’ type=’ out ’ r a t e=’ 1 ’ />

<port name=” p5” type=”out” ra t e=”1”/>

</ actor>

87

<actor name=’ reo rde r1 ’ type=’ Reorder ’>

<port name=’p0 ’ type=’ in ’ r a t e=’ 1 ’ />

<port name=’p1 ’ type=’ out ’ r a t e=’ 1 ’ />

</ actor>

<actor name=’ s t e r e o ’ type=’ Stereo ’>

<port name=’p0 ’ type=’ in ’ r a t e=’ 1 ’ />

<port name=’p1 ’ type=’ in ’ r a t e=’ 1 ’ />

<port name=’p2 ’ type=’ out ’ r a t e=’ 1 ’ />

<port name=’p3 ’ type=’ out ’ r a t e=’ 1 ’ />

</ actor>

<actor name=’ a n t i a l i a s 0 ’ type=’ An t i a l i a s ’>

<port name=’p0 ’ type=’ in ’ r a t e=’ 1 ’ />

<port name=’p1 ’ type=’ out ’ r a t e=’ 1 ’ />

</ actor>

<actor name=’ hybridsynth0 ’ type=’ HybridSynth ’>

<port name=’p0 ’ type=’ in ’ r a t e=’ 1 ’ />

<port name=’p1 ’ type=’ out ’ r a t e=’ 1 ’ />

</ actor>

<actor name=’ f r eq inv0 ’ type=’ FreqInv ’>

<port name=’p0 ’ type=’ in ’ r a t e=’ 1 ’ />

<port name=’p1 ’ type=’ out ’ r a t e=’ 1 ’ />

</ actor>

<actor name=’ subbinv0 ’ type=’ SubbInv ’>

<port name=’p0 ’ type=’ in ’ r a t e=’ 1 ’ />

</ actor>

<actor name=’ a n t i a l i a s 1 ’ type=’ An t i a l i a s ’>

<port name=’p0 ’ type=’ in ’ r a t e=’ 1 ’ />

<port name=’p1 ’ type=’ out ’ r a t e=’ 1 ’ />

</ actor>

<actor name=’ hybridsynth1 ’ type=’ HybridSynth ’>

<port name=’p0 ’ type=’ in ’ r a t e=’ 1 ’ />

<port name=’p1 ’ type=’ out ’ r a t e=’ 1 ’ />

</ actor>

<actor name=’ f r eq inv1 ’ type=’ FreqInv ’>

<port name=’p0 ’ type=’ in ’ r a t e=’ 1 ’ />

<port name=’p1 ’ type=’ out ’ r a t e=’ 1 ’ />

</ actor>

<actor name=’ subbinv1 ’ type=’ SubbInv ’>

<port name=’p0 ’ type=’ in ’ r a t e=’ 1 ’ />

</ actor>

<channel name=’ huffman2req0 ’ s rcActor=’ huffman ’ s rcPort=’ p0 ’ dstActor=’

req0 ’ dstPort=’ p0 ’ />

<channel name=’ huffman2req1 ’ s rcActor=’ huffman ’ s rcPort=’ p1 ’ dstActor=’

req1 ’ dstPort=’ p0 ’ />

<channel name=’ req02reorder0 ’ s rcActor=’ req0 ’ s rcPort=’ p1 ’ dstActor=’

r eo rde r0 ’ dstPort=’ p0 ’ />

<channel name=’ req12reorder1 ’ s rcActor=’ req1 ’ s rcPort=’ p1 ’ dstActor=’

r eo rde r1 ’ dstPort=’ p0 ’ />

<channel name=’ r e o rd e r 02 s t e r e o ’ s rcActor=’ r eo rde r0 ’ s rcPort=’ p1 ’

dstActor=’ s t e r e o ’ dstPort=’ p0 ’ />

<channel name=’ r e o rd e r 12 s t e r e o ’ s rcActor=’ r eo rde r1 ’ s rcPort=’ p1 ’

dstActor=’ s t e r e o ’ dstPort=’ p1 ’ />

<channel name=’ s t e r e o 2 a n t i a l i a s 0 ’ s rcActor=’ s t e r e o ’ s rcPort=’ p2 ’

dstActor=’ a n t i a l i a s 0 ’ dstPort=’ p0 ’ />

<channel name=’ s t e r e o 2 a n t i a l i a s 1 ’ s rcActor=’ s t e r e o ’ s rcPort=’ p3 ’

dstActor=’ a n t i a l i a s 1 ’ dstPort=’ p0 ’ />

<channel name=’ an t i a l i a s 02hybr id syn th0 ’ s rcActor=’ a n t i a l i a s 0 ’ s rcPort=’

p1 ’ dstActor=’ hybridsynth0 ’ dstPort=’ p0 ’ />

<channel name=’ an t i a l i a s 12hybr id syn th1 ’ s rcActor=’ a n t i a l i a s 1 ’ s rcPort=’

p1 ’ dstActor=’ hybridsynth1 ’ dstPort=’ p0 ’ />

<channel name=’ hybr idsynth02 f req inv0 ’ s rcActor=’ hybridsynth0 ’ s rcPort=’

p1 ’ dstActor=’ f r eq inv0 ’ dstPort=’ p0 ’ />

<channel name=’ hybr idsynth12 f req inv1 ’ s rcActor=’ hybridsynth1 ’ s rcPort=’

p1 ’ dstActor=’ f r eq inv1 ’ dstPort=’ p0 ’ />

<channel name=’ f req inv02subbinv0 ’ s rcActor=’ f r eq inv0 ’ s rcPort=’ p1 ’

dstActor=’ subbinv0 ’ dstPort=’ p0 ’ />

88

<channel name=’ f req inv12subbinv1 ’ s rcActor=’ f r eq inv1 ’ s rcPort=’ p1 ’

dstActor=’ subbinv1 ’ dstPort=’ p0 ’ />

<channel name=’ huffman2huffman ’ s rcActor=’ huffman ’ s rcPort=’ p3 ’

dstActor=’ huffman ’ dstPort=’ p2 ’ i n i t i a lTok en s=’ 1 ’ />

<channel name=’ req02req0 ’ s rcActor=’ req0 ’ s rcPort=’ p3 ’ dstActor=’ req0 ’

dstPort=’ p2 ’ i n i t i a lTok en s=’ 1 ’ />

<channel name=’ req12req1 ’ s rcActor=’ req1 ’ s rcPort=’ p3 ’ dstActor=’ req1 ’

dstPort=’ p2 ’ i n i t i a lTok en s=’ 1 ’ />

<channel name=” huffman2req0b” srcActor=” req0 ” srcPort=” p5” dstActor=”

huffman” dstPort=” p5” i n i t i a lTok en s=”2”/>

<channel name=” huffman2req1b” srcActor=” req1 ” srcPort=” p5” dstActor=”

huffman” dstPort=” p6” i n i t i a lTok en s=”2”/>

</ sd f>

<s d fP r op e r t i e s>

<a c t o rP rope r t i e s ac tor=’ huffman ’>

<proce s so r type=” encoder ” default=” true ”>

<executionTime time=”75”/>

<memory>

<s t a t e S i z e max=”48544”/>

</memory>

</ proc e s so r>

</ a c t o rP rope r t i e s>

<a c t o rP rope r t i e s ac tor=’ req0 ’>

<proce s so r type=” proc 0 ” default=” true ”>

<executionTime time=”72”/>

<memory>

<s t a t e S i z e max=”832”/>

</memory>

</ proc e s so r>

</ a c t o rP rope r t i e s>

<a c t o rP rope r t i e s ac tor=’ r eo rde r0 ’>

<proce s so r type=” proc 0 ” default=” true ”>

<executionTime time=”34”/>

<memory>

<s t a t e S i z e max=”18816”/>

</memory>

</ proc e s so r>

</ a c t o rP rope r t i e s>

<a c t o rP rope r t i e s ac tor=’ req1 ’>

<proce s so r type=” proc 0 ” default=” true ”>

<executionTime time=”72”/>

<memory>

<s t a t e S i z e max=”832”/>

</memory>

</ proc e s so r>

</ a c t o rP rope r t i e s>

<a c t o rP rope r t i e s ac tor=’ r eo rde r1 ’>

<proce s so r type=” proc 0 ” default=” true ”>

<executionTime time=”34”/>

<memory>

<s t a t e S i z e max=”18816”/>

</memory>

</ proc e s so r>

</ a c t o rP rope r t i e s>

<a c t o rP rope r t i e s ac tor=’ s t e r e o ’>

<proce s so r type=” proc 0 ” default=” true ”>

<executionTime time=”53”/>

<memory>

<s t a t e S i z e max=”544”/>

</memory>

</ proc e s so r>

</ a c t o rP rope r t i e s>

<a c t o rP rope r t i e s ac tor=’ a n t i a l i a s 0 ’>

<proce s so r type=” proc 0 ” default=” true ”>

<executionTime time=”409”/>

89

<memory>

<s t a t e S i z e max=”5088”/>

</memory>

</ proc e s so r>

</ a c t o rP rope r t i e s>

<a c t o rP rope r t i e s ac tor=’ hybridsynth0 ’>

<proce s so r type=” proc 0 ” default=” true ”>

<executionTime time=”74”/>

<memory>

<s t a t e S i z e max=”80”/>

</memory>

</ proc e s so r>

</ a c t o rP rope r t i e s>

<a c t o rP rope r t i e s ac tor=’ f r eq inv0 ’>

<proce s so r type=” proc 0 ” default=” true ”>

<executionTime time=”49”/>

<memory>

<s t a t e S i z e max=”128”/>

</memory>

</ proc e s so r>

</ a c t o rP rope r t i e s>

<a c t o rP rope r t i e s ac tor=’ subbinv0 ’>

<proce s so r type=” subbinv” default=” true ”>

<executionTime time=”93”/>

<memory>

<s t a t e S i z e max=”3736”/>

</memory>

</ proc e s so r>

</ a c t o rP rope r t i e s>

<a c t o rP rope r t i e s ac tor=’ a n t i a l i a s 1 ’>

<proce s so r type=” proc 0 ” default=” true ”>

<executionTime time=”4”/>

<memory>

<s t a t e S i z e max=”5088”/>

</memory>

</ proc e s so r>

</ a c t o rP rope r t i e s>

<a c t o rP rope r t i e s ac tor=’ hybridsynth1 ’>

<proce s so r type=” proc 0 ” default=” true ”>

<executionTime time=”7”/>

<memory>

<s t a t e S i z e max=”80”/>

</memory>

</ proc e s so r>

</ a c t o rP rope r t i e s>

<a c t o rP rope r t i e s ac tor=’ f r eq inv1 ’>

<proce s so r type=” proc 0 ” default=” true ”>

<executionTime time=”4”/>

<memory>

<s t a t e S i z e max=”128”/>

</memory>

</ proc e s so r>

</ a c t o rP rope r t i e s>

<a c t o rP rope r t i e s ac tor=’ subbinv1 ’>

<proce s so r type=” subbinv” default=” true ”>

<executionTime time=”93”/>

<memory>

<s t a t e S i z e max=”29888”/>

</memory>

</ proc e s so r>

</ a c t o rP rope r t i e s>

<channe lPrope r t i e s channel=”huffman2req0”>

<bu f f e r S i z e sz=”2”/>

<tokenS ize sz=”4608”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=”huffman2req1”>

90

<bu f f e r S i z e sz=”2”/>

<tokenS ize sz=”4608”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=” req02reorder0 ”>

<tokenS ize sz=”4608”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=” req12reorder1 ”>

<tokenS ize sz=”4608”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=” r eo rd e r 02 s t e r e o ”>

<tokenS ize sz=”4608”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=” r eo rd e r 12 s t e r e o ”>

<tokenS ize sz=”4608”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=” s t e r e o 2 a n t i a l i a s 0 ”>

<tokenS ize sz=”4608”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=” s t e r e o 2 a n t i a l i a s 1 ”>

<tokenS ize sz=”4608”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=” ant i a l i a s 02hybr id syn th0 ”>

<tokenS ize sz=”4608”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=” ant i a l i a s 12hybr id syn th1 ”>

<tokenS ize sz=”4608”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=” hybr idsynth02 f req inv0 ”>

<tokenS ize sz=”4608”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=” hybr idsynth12 f req inv1 ”>

<tokenS ize sz=”4608”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=” f req inv02subbinv0 ”>

<tokenS ize sz=”4608”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=” f req inv12subbinv1 ”>

<tokenS ize sz=”4608”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=”huffman2huffman”>

<tokenS ize sz=”8192”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=” req02req0 ”>

<tokenS ize sz=”512”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=” req12req1 ”>

<tokenS ize sz=”512”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=” huffman2req0b”/>

<tokenS ize sz=”4608”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=” huffman2req1b”/>

<tokenS ize sz=”4608”/>

</ channe lPrope r t i e s>

<graphProper t i e s>

<t imeConstra ints>

<throughput>0.000000026</ throughput> < !−− 26ms per frame (

i t e r a t i o n) w i th 500MHz c l o c k −−>

</ t imeConstra ints>

</ graphProper t i e s>

</ sd fP r op e r t i e s>

</ appl icat ionGraph>

</ sd f3>

• Samplerate:

91

<?xml version=” 1.0 ” encoding=”UTF−8”?>

<sd f3 type=” sd f ” version=” 1.0 ”

xmlns :x s i=” ht tp : //www.w3 . org /2001/XMLSchema−i n s tance ”

xsi:noNamespaceSchemaLocation=” ht tp : //www. es . e l e . tue . n l / sd f3 /xsd/ sdf3−sd f

. xsd”>

<appl icat ionGraph name=” samplerate ”>

<sd f name=” samplerate ” type=”Samplerate ”>

<actor name=”a” type=”A”>

<port name=”p1” type=”out” ra t e=”1”/>

<port name=” p2” type=”out” ra t e=”1”/>

<port name=” p3” type=” in ” ra t e=”1”/>

<port name=” p4” type=” in ” ra t e=”1”/>

</ actor>

<actor name=”b” type=”B”>

<port name=”p1” type=” in ” ra t e=”1”/>

<port name=”p2” type=”out” ra t e=”2”/>

<port name=” p3” type=”out” ra t e=”1”/>

<port name=” p4” type=” in ” ra t e=”1”/>

<port name=” p5” type=”out” ra t e=”1”/>

<port name=” p6” type=” in ” ra t e=”2”/>

</ actor>

<actor name=”c” type=”C”>

<port name=”p1” type=” in ” ra t e=”3”/>

<port name=”p2” type=”out” ra t e=”2”/>

<port name=” p3” type=”out” ra t e=”1”/>

<port name=” p4” type=” in ” ra t e=”1”/>

<port name=” p5” type=”out” ra t e=”3”/>

<port name=” p6” type=” in ” ra t e=”2”/>

</ actor>

<actor name=”d” type=”D”>

<port name=”p1” type=” in ” ra t e=”7”/>

<port name=”p2” type=”out” ra t e=”8”/>

<port name=” p3” type=”out” ra t e=”1”/>

<port name=” p4” type=” in ” ra t e=”1”/>

<port name=” p5” type=”out” ra t e=”7”/>

<port name=” p6” type=” in ” ra t e=”8”/>

</ actor>

<actor name=”e” type=”E”>

<port name=”p1” type=” in ” ra t e=”7”/>

<port name=”p2” type=”out” ra t e=”5”/>

<port name=” p3” type=”out” ra t e=”1”/>

<port name=” p4” type=” in ” ra t e=”1”/>

<port name=” p5” type=”out” ra t e=”7”/>

<port name=” p6” type=” in ” ra t e=”5”/>

</ actor>

<actor name=” f ” type=”F”>

<port name=”p1” type=” in ” ra t e=”1”/>

<port name=” p2” type=”out” ra t e=”1”/>

<port name=” p3” type=” in ” ra t e=”1”/>

</ actor>

<channel name=”a2b” srcActor=”a” srcPort=”p1” dstActor=”b” dstPort=”p1”

/>

<channel name=”b2c” srcActor=”b” srcPort=”p2” dstActor=”c” dstPort=”p1”

/>

<channel name=”c2d” srcActor=”c” srcPort=”p2” dstActor=”d” dstPort=”p1”

/>

<channel name=”d2e” srcActor=”d” srcPort=”p2” dstActor=”e” dstPort=”p1”

/>

<channel name=” e2 f ” srcActor=”e” srcPort=”p2” dstActor=” f ” dstPort=”p1”

/>

<channel name=”a2a” srcActor=”a” srcPort=” p2” dstActor=”a” dstPort=”

p3” i n i t i a lTok en s=”1”/>

<channel name=”b2b” srcActor=”b” srcPort=” p3” dstActor=”b” dstPort=”

p4” i n i t i a lTok en s=”1”/>

<channel name=”c2c ” srcActor=”c” srcPort=” p3” dstActor=”c” dstPort=”

p4” i n i t i a lTok en s=”1”/>

92

<channel name=”d2d” srcActor=”d” srcPort=” p3” dstActor=”d” dstPort=”

p4” i n i t i a lTok en s=”1”/>

<channel name=”e2e ” srcActor=”e” srcPort=” p3” dstActor=”e” dstPort=”

p4” i n i t i a lTok en s=”1”/>

<channel name=” f 2 f ” srcActor=” f ” s rcPort=” p2” dstActor=” f ” dstPort=”

p3” i n i t i a lTok en s=”1”/>

<channel name=” a2bb” srcActor=”b” srcPort=” p5” dstActor=”a” dstPort=”

p4” i n i t i a lTok en s=”1”/>

<channel name=” b2cb” srcActor=”c” srcPort=” p5” dstActor=”b” dstPort=”

p6” i n i t i a lTok en s=”4”/>

<channel name=” c2db” srcActor=”d” srcPort=” p5” dstActor=”c” dstPort=”

p6” i n i t i a lTok en s=”8”/>

<channel name=” d2eb” srcActor=”e” srcPort=” p5” dstActor=”d” dstPort=”

p6” i n i t i a lTok en s=”14”/>

<channel name=” e2 fb ” srcActor=” f ” s rcPort=” p4” dstActor=”e” dstPort=”

p6” i n i t i a lTok en s=”5”/>

</ sd f>

<s d fP r op e r t i e s>

<a c t o rP rope r t i e s ac tor=”a”>

<proce s so r type=” proc 0 ” default=” true ”>

<executionTime time=”50”/>

<memory>

<s t a t e S i z e max=”100”/>

</memory>

</ proc e s so r>

</ a c t o rP rope r t i e s>

<a c t o rP rope r t i e s ac tor=”b”>

<proce s so r type=” proc 0 ” default=” true ”>

<executionTime time=”20”/>

<memory>

<s t a t e S i z e max=”100”/>

</memory>

</ proc e s so r>

</ a c t o rP rope r t i e s>

<a c t o rP rope r t i e s ac tor=”c”>

<proce s so r type=” proc 0 ” default=” true ”>

<executionTime time=”30”/>

<memory>

<s t a t e S i z e max=”100”/>

</memory>

</ proc e s so r>

</ a c t o rP rope r t i e s>

<a c t o rP rope r t i e s ac tor=”d”>

<proce s so r type=” proc 0 ” default=” true ”>

<executionTime time=”10”/>

<memory>

<s t a t e S i z e max=”100”/>

</memory>

</ proc e s so r>

</ a c t o rP rope r t i e s>

<a c t o rP rope r t i e s ac tor=”e”>

<proce s so r type=” proc 0 ” default=” true ”>

<executionTime time=”40”/>

<memory>

<s t a t e S i z e max=”100”/>

</memory>

</ proc e s so r>

</ a c t o rP rope r t i e s>

<a c t o rP rope r t i e s ac tor=” f ”>

<proce s so r type=” proc 0 ” default=” true ”>

<executionTime time=”60”/>

<memory>

<s t a t e S i z e max=”100”/>

</memory>

</ proc e s so r>

</ a c t o rP rope r t i e s>

93

<channe lPrope r t i e s channel=”a2b”>

<bu f f e r S i z e sz=”1” />

<tokenS ize sz=”512”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=”b2c”>

<bu f f e r S i z e sz=”4” />

<tokenS ize sz=”512”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=”c2d”>

<bu f f e r S i z e sz=”8” />

<tokenS ize sz=”512”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=”d2e”>

<bu f f e r S i z e sz=”14” />

<tokenS ize sz=”512”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=” e2 f ”>

<bu f f e r S i z e sz=”5” />

<tokenS ize sz=”512”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=”a2a”>

<tokenS ize sz=”512”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=”b2b”>

<tokenS ize sz=”512”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=” c2c ”>

<tokenS ize sz=”512”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=”d2d”>

<tokenS ize sz=”512”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=” e2e ”>

<tokenS ize sz=”512”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=” f 2 f ”>

<tokenS ize sz=”512”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=” a2bb”>

<tokenS ize sz=”512”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=” b2cb”>

<tokenS ize sz=”512”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=” c2db”>

<tokenS ize sz=”512”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=” d2eb”>

<tokenS ize sz=”512”/>

</ channe lPrope r t i e s>

<channe lPrope r t i e s channel=” e2 fb ”>

<tokenS ize sz=”512”/>

</ channe lPrope r t i e s>

<graphProper t i e s />

</ sd fP r op e r t i e s>

</ appl icat ionGraph>

</ sd f3>

Appendix B

Application Mapping Order

The order of mapping applications in the simulation in Section 4.3 was as listed

below:

1. MPEG4 decoder

2. H.263 decoder

3. JPEG decoder

4. Samplerate

5. MPEG4 decoder

6. H.264 encoder

7. MP3 decoder

8. MP3 decoder

9. H.264 decoder

10. MP3 decoder

11. H.263 encoder

12. JPEG decoder

13. H.264 decoder

94

95

14. MPEG4 decoder

15. H.264 encoder

16. MPEG4 decoder

17. MPEG4 decoder

18. MP3 decoder

19. H.263 decoder

20. H.263 decoder

21. MP3 decoder

22. JPEG decoder

23. MPEG4 decoder

24. MP3 decoder

25. JPEG decoder

26. H.263 decoder

27. Samplerate

28. JPEG decoder

29. H.263 decoder

30. Samplerate

	Acknowledgements
	List of Acronyms
	List of Figures
	List of Tables
	Introduction
	Background
	Mapping and task migration
	Task migration implementation
	Application models
	Dataflow MoCs
	Application models used in the mapping literature

	Simulators
	Summary

	Simulator
	Overview
	Application model
	Synchronous Data Flow Graphs
	Modelling memory access
	Modelling transient applications
	SDF3

	Architecture
	The network simulator
	Mapping and scheduling SDFGs
	Execution of SDFG actors on the processors
	Task migration
	Performance metrics
	Limitations
	Processors
	Memory Controller
	Central Controller
	Task Migration

	Summary

	Task placement and migration
	Mapping and contention
	Fragmentation
	Runtime mapping and fragmentation
	Task migration
	Implementing task migration policies
	Summary

	Conclusion and Future Directions
	Concluding remarks
	Future directions

	Bibliography
	Appendix SDFGs XML descriptions
	Appendix Application Mapping Order

