## **Moving Run-Time Reconfiguration into the Mainstream**

Oliver Diessel UNSW Asia, Singapore



#### **Overview**

- 1. Outline goals & challenges of Reconfigurable Computing
- 2. Design flows for Reconfigurable Computing with focus on high-level modeling & synthesis
- 3. Look at the implementation layer & run-time support
- 4. Sketch research vision & thrusts intended to make reconfigurable technology more accessible



## **1. What is Reconfigurable Computing?**

- Use of reconfigurable devices to achieve a benefit over processor-based computing and/or custom devices
  - Currently involves FPGAs implementing algorithms as digital circuits
  - Look for enhanced performance, reduced power, reduced part count, greater flexibility, greater reliability
  - Small, but expanding niche; conditions most favorable in applications/markets with one or more of following characteristics:
    - The need to **prototype**
    - Move towards higher levels of integration
    - **Rapid development/need to support alternative** protocols, standards, algorithms, architectures
    - Small to medium volume



## **Sample Reconfigurable Computing applications**

- Network packet processing & sniffing
- Switching
- Encryption
- HD video (de)compression
- Image & video processing
- Signal processing
- Systolic algorithms

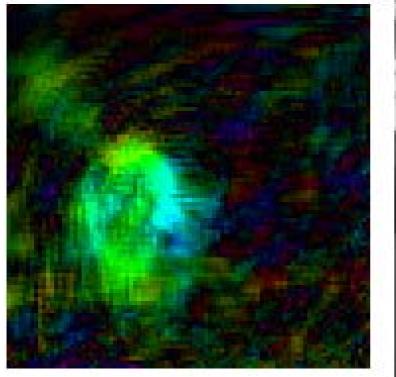


#### **Run-Time Reconfiguration (RTR)**

- RTR is the restructuring of a system's hardware components while the system is operating
- Also known as *dynamic reconfiguration (DR)*
- $\Rightarrow$  Allows computational structures to be adapted to present need
- $\Rightarrow$  Enhances flexibility & robustness
- $\Rightarrow$  Facilitates higher levels of integration
- $\Rightarrow$  Enhances the functional density of the device



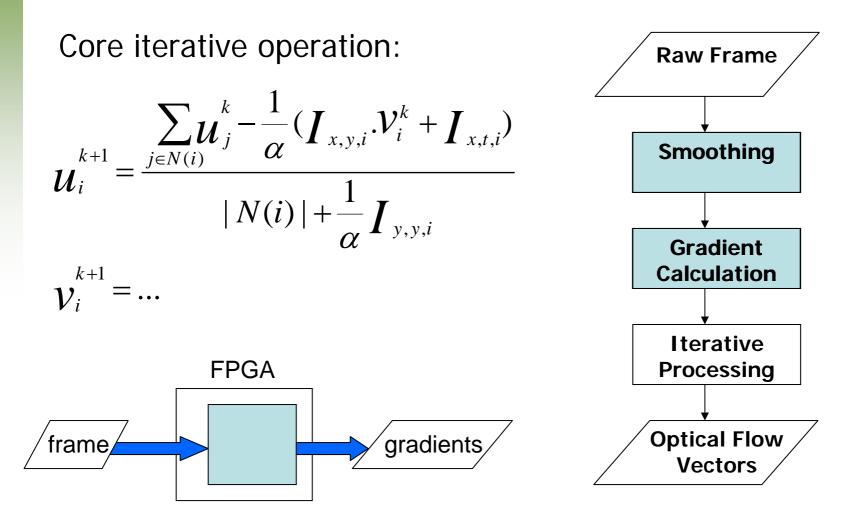
## **Example: Real-time optical flow computation**


- Implement real-time optical flow algorithms using an FPGA
- Why?
  - Prototype a variety of hardware-based techniques
  - Faster processing = faster movement
  - Multiplex multiple functions onto limited hardware
  - Adapt to changing environment





#### **Optical Flow**


Determines velocity of pixels from frame to frame
 ⇒ Closer objects have higher relative velocity

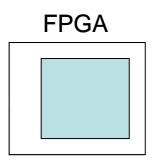


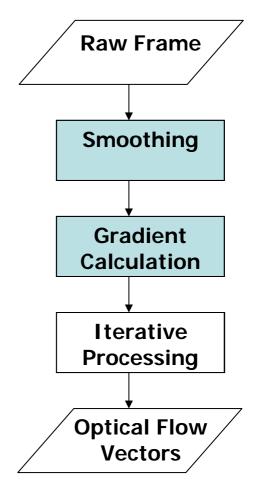




**Overview of algorithm & mapping** 







**Overview of algorithm & mapping** 

Core iterative operation:

$$\boldsymbol{u}_{i}^{k+1} = \frac{\sum_{j \in N(i)} \boldsymbol{u}_{j}^{k} - \frac{1}{\alpha} (\boldsymbol{I}_{x,y,i} \cdot \boldsymbol{\mathcal{V}}_{i}^{k} + \boldsymbol{I}_{x,t,i})}{|N(i)| + \frac{1}{\alpha} \boldsymbol{I}_{y,y,i}}$$

$$\mathcal{V}_i^{k+1} = \cdots$$







#### **Example: Adaptive System**

- Change in requirements:
  - Optical flow  $\rightarrow$  Optical flow + template matching

#### • Change in environment

- Outdoor navigation  $\rightarrow$  navigate indoors

#### • Fault tolerance

- Adapt control equations
- Share additional load



## So if RTR is so great, why isn't it being used?

• Lack of compelling applications?

- Lack of tools & support
- Difficult





## **Features of a Reconfigurable Computing design flow**

- Static:
  - Support high-level and component modeling using multiple modalities
  - Guide partitioning through understanding of tradeoffs
    - Hardware & software components, interfaces, memory, buses, power, cost
  - Efficient mappings
  - Support co-simulation and co-verification of integrated subsystems
  - Rapid prototyping

#### • Dynamic:

- As above, PLUS
  - Model dynamism
  - Multiple partitions
    - Active set is event dependent
    - Optimize over all partitions
  - System management
    - Dynamic system



## 2. High-Level Specification and Synthesis for RC

#### Goals

- To **simplify** the **specification** of reconfigurable systems
- To **automate** the **generation** of dynamically reconfigurable systems

#### Approach

- Model dynamic reconfiguration at the hardware level, i.e. capture capabilities of the hardware
- Develop compilation techniques that target these capabilities
- Embed syntactic structures into appropriate languages

Use bottom-up techniques to derive a model of the hardware capabilities & performance that can be exploited top-down via the design flow



## Modeling Dynamic Reconfiguration using process algebra

#### • Model 2 facets of dynamic systems

- Behavioral change
  - Change in function as mediated by change in logic
- Structural change
  - Change in composition as mediated by change in interconnection
- In a process algebra
  - Behavioral change equates to process evolution transition from one state to another
  - Structural change equates to dynamic composition composition guarded by some event

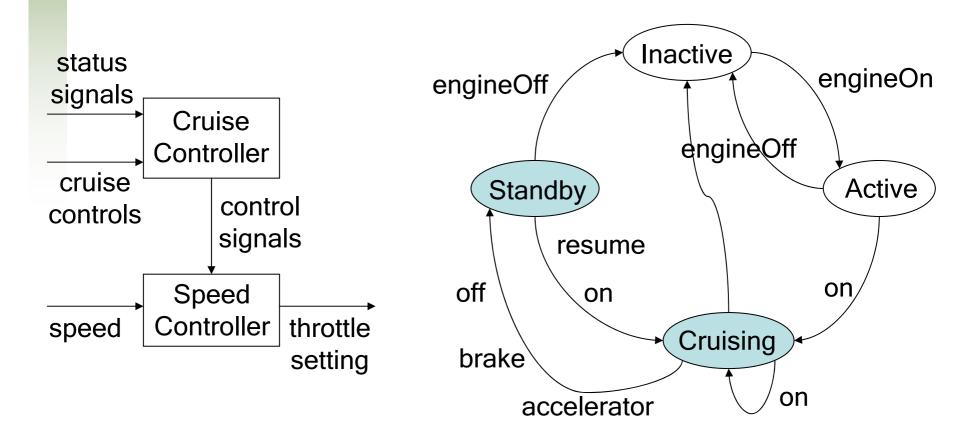
[Milne, 1999]



#### **Progress to date**

- Process descriptions mapped to hardware structures via syntax-directed translation
  - Process behaviours implemented as FSMs in compact logic blocks
  - Hierarchical design achieved through event abstraction and local process synchronisation
- Interpret specifications at run time, and dynamically reconfigure process logic to cope with limited chip area

[Diessel & Milne, 1999][Malik, So & Diessel, 2002]




#### **Example: Car Cruise Control - Initial configuration**





# Example: Car Cruise Control - Final configuration

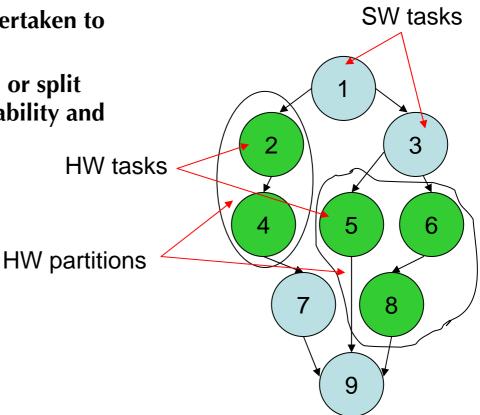




## **Applications**

- Implementing time-varying control strategies
  - Mode switching
- Adjusting to available resources
  - Multi-tasking
  - Graceful degradation

#### • Coping with dynamic updates


- User customizes system by selecting web-accessible modules

Basing the system on a formalism such as a process algebra aids validation and verification



#### **Model definition: Tasks**

- Application modeled as a task graph
- Tasks represent functional modules
- Task graph partitioning undertaken to allocate tasks to HW or SW
- HW partitions are clustered or split according to resource availability and capability



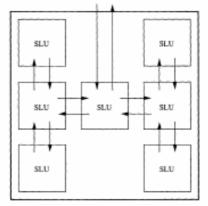


## 3. Implementation model: Swappable Logic Unit

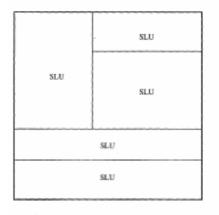
- 2 models:
- Sea of accelerators:
  - Logic flexibility
  - Performance less compromised
  - Potential for high utilisation
  - Problems with fragmentation
  - Problems routing
- Parallel wiring harness
  - Ease of placement
  - Known delays

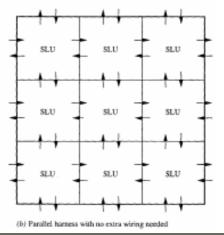
NEW SOUTH WALES

- Lower performance
- Reduced utilisation




# SLU SLU SLU SLU



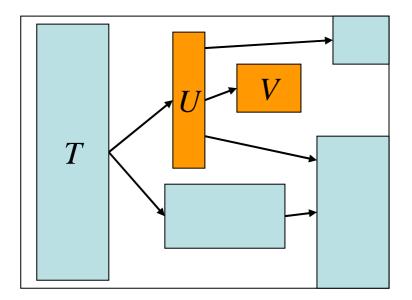



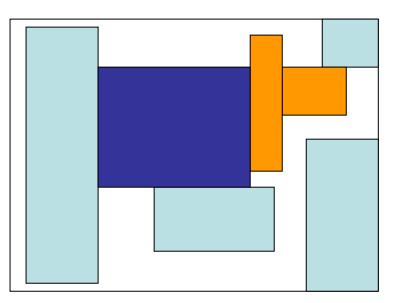

#### Parallel wiring harness



(a) Parallel harness with extra H-tree wiring supplied





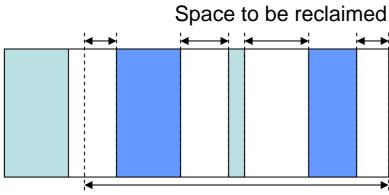


[Brebner, 1996]

(b) Sea with five accelerators present, densely packed

#### **Ordered compaction deals with fragmentation**

• "Slide" tasks along rows of FPGA cells to free space for incoming task

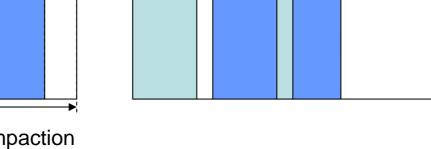





#### [Diessel & ElGindy, 1997]



#### **Logic-based compaction**

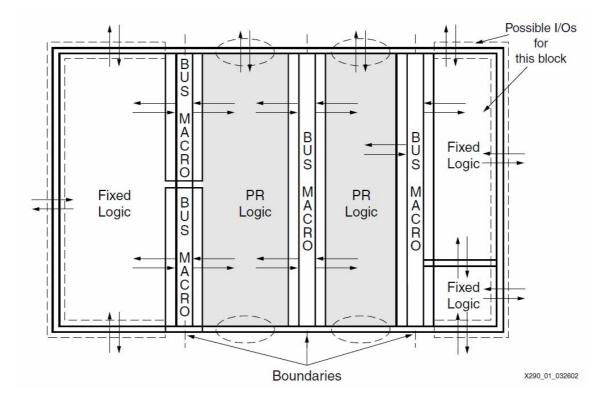

- Ordered compaction frees required space by squeezing a subset of the tasks together
- Requires following enhancements:
  - marking method: shorten pattern as space found
  - compaction method: reloading usually proposed



Columns marked for compaction

#### **Before compaction**

[Brebner & Diessel, 2001]




After compaction to left



MES Workshop Singapore 2007 **Reclaimed space** 

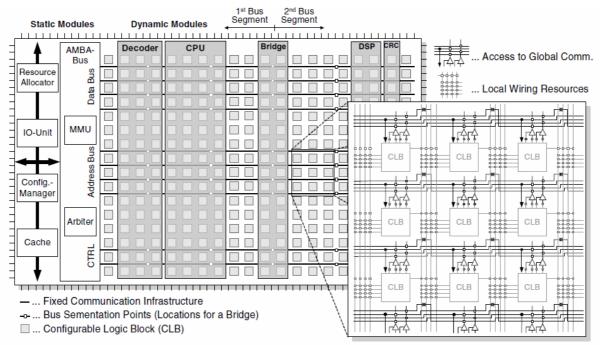
#### **Early communications approaches**

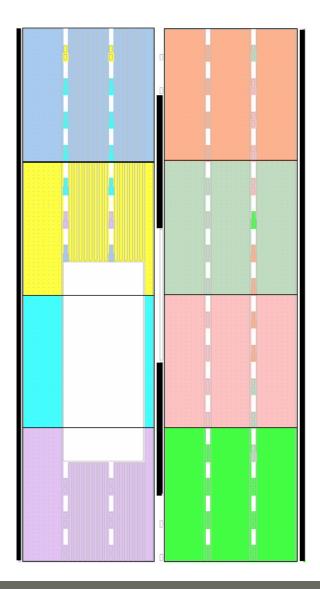


#### [Xilinx XAPP290, 2003]



#### **AMBA-based**



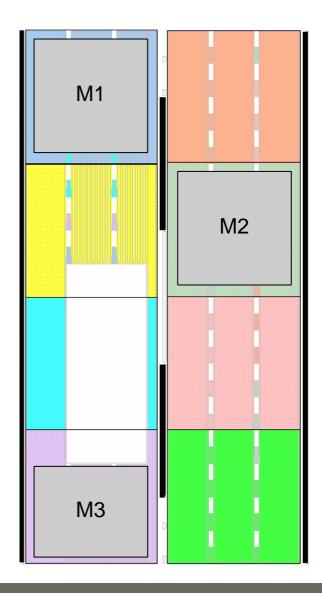


Fig. 5. Overview of the Approach

[Kalte et al., 2004]



## The COMMA Approach Module Placement

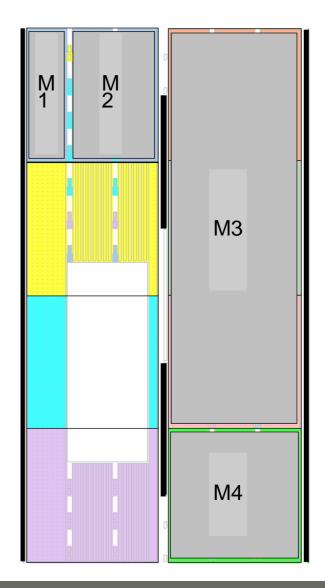
- Reference target device the Virtex-4
  - 41-word vertical frame length (16 CLBs high)
  - External I/Os on sides and middle
    - I/Os on sides may not necessarily be on the periphery




[Koh & Diessel, 2005]



#### The COMMA Approach Module Placement


- One module to be placed in each of these natural "slots"
- Can be reconfigured independently





## The COMMA Approach Module Placement

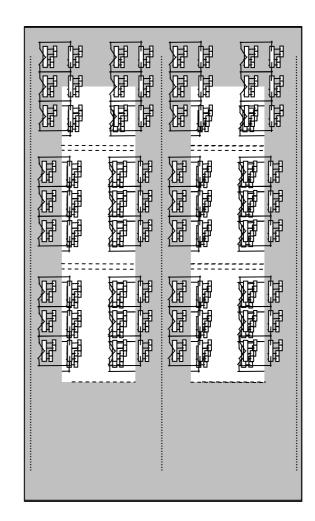
- Slots may be subdivided
  - Accommodates more modules
- May also be aggregated
  - Accommodates larger modules





## **The COMMA Communications Challenge**

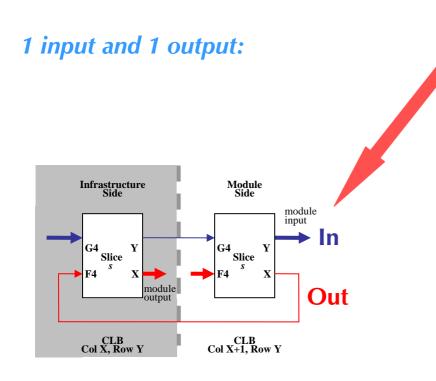
- Assemblies of dynamically swapped modules have dynamic communication needs
  - Different protocols
  - Different communication patterns
  - Different ports: Communication with different modules over time
  - Varying bandwidths: Port sizes
- To minimise reconfiguration overheads, module-based reconfiguration needs to be supported with a communications infrastructure that supports:
  - Different interfaces, behaviour and timing of modules
  - Management of dynamic reconfiguration i.e. pin reassignments and wire reuse/switching


We're focusing on providing the interconnecting wires and minimising the overheads of reconfiguring the interconnect



## The COMMA Approach Wiring Harness

- Supports arbitrary inter-pin interconnection
- Allows modules and wiring infrastructure to be reconfigured independently

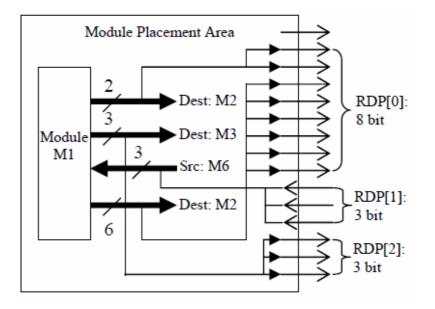

Infrastructure is tailored to the application requirements





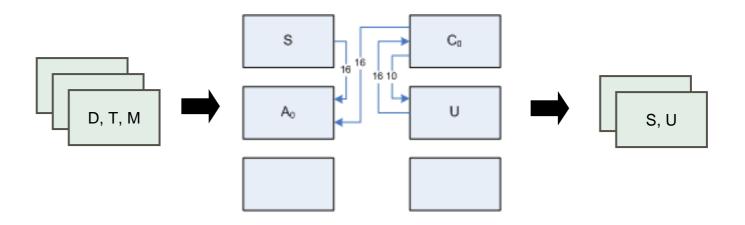
#### The COMMA Approach Pin Virtualisation – Slice Macros

- Slice macros straddle module and infrastructure boundaries
- Support *arbitrary* one-pin and two-pin IO combinations



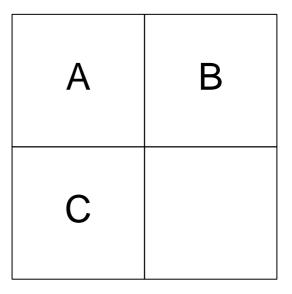

| ] |
|---|
| 3 |
| ] |
| • |
|   |




#### The COMMA Approach Pin Virtualisation – "Reconfigurable Data Ports"

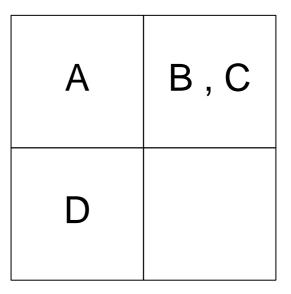
- Map module pins to slice macro pins
- Perform necessary multiplexing or demultiplexing between multiple pins
- Implemented as simple module adapters





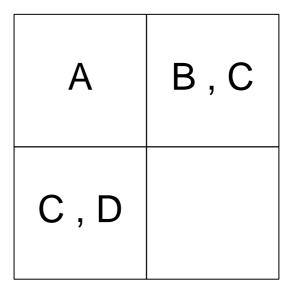

#### **Optimisation problem**





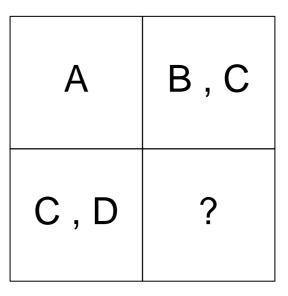

- Static
  - Module arrangement and communication patterns fixed at design time






- Static
- DR1
  - Modules are swapped at run-time
  - Communications patterns known at design-time






- Static
- DR1
- DR2
  - Module placement may not be known at design-time
  - May occur when the order in which modules are placed is unknown





- Static
- DR1
- DR2
- DR3
  - An unknown module may be dynamically placed at run-time





#### 4. Research Vision

- Minimize the barriers and reduce costs of using reconfigurable hardware
- Bridge the gap between vendors and end users
- Integrate reconfigurable devices into mainstream design flows for embedded and high performance systems by assisting in
  - Developing coherent sets of tools for defining and elaborating the space of hardware configurations covered by a proposed system
  - Developing effective run-time support methods that can be automatically generated
  - Developing benchmarks that allow improvements in techniques, algorithms and devices to be measured



#### **Thrust 1 – Design Exploration**

- Design exploration tools that allow RTR to be rapidly modelled and assessed at a high level
  - When does reconfigurable hardware confer a benefit over software?
    What are the performance requirements?
  - Capture the triggers of reconfiguration
  - Scope the complexity of hardware configurations and understand the timing requirements; can the overheads be managed?
  - How is power to be managed?
  - What about \$\$\$ costs?
  - Rapid elaboration of system architecture



#### **Thrust 2 – Synthesis**

- Synthesis tools
  - Optimize across hardware configurations (partitions)
    - Minimize area & power; maximize performance of individual configurations
    - Minimize reconfiguration overheads (delay, energy, buffer size)
  - Automate the provision of supporting run-time infrastructure
    - Controllers, OS,

#### **Thrust 3 – Validation and Verification**



#### Conclusion

- RTR promises better performance for less cost
- Industry appears to be poorly supported in making use of the technology
- ... perhaps that is why compelling applications are hard to find
- More integrated tools that assist with exploration, synthesis, and verification of dynamically reconfigurable systems are needed
- Now is the time to work on these

