Microprocessors and Microsystems 60 (2018) 86-95

Contents lists available at ScienceDirect

EMBEDDED
HARDWARE
DESIGN

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

Reconfiguration Control Networks for FPGA-based TMR systems with)

Check for

modular error recovery s
Nguyen T.H. Nguyen™™", Dimitris Agiakatsikas®, Zhuoran Zhao®, Tong Wu?, Ediz Cetin®,

Oliver Diessel”, Lingkan Gong"

@ School of Computer Science and Engineering, UNSW Sydney, Australia
® Faculty of Computer Science and Engineering, HCMC University of Technology, Vietnam
€ School of Engineering, Macquarie University, Australia

ARTICLE INFO ABSTRACT

Field-Programmable Gate Arrays (FPGAs) provide ideal platforms for meeting the computational requirements of
future space-based processing systems. However, FPGAs are susceptible to radiation-induced Single Event Upsets
(SEUs). Techniques for dynamically reconfiguring corrupted modules of Triple Modular Redundant(TMR) com-
ponents are well known. However, most of these techniques utilize resources that are themselves susceptible to
SEUs to transfer reconfiguration requests from the TMR voters to a central reconfiguration controller. This paper
evaluates the impact of these Reconfiguration Control Networks (RCNs) on the system’s reliability and perfor-
mance. We provide an overview of RCNs reported in the literature and compare them in terms of dependability,
scalability and performance. Most importantly, we compare the performance of soft networks with that of a hard
network that utilizes the Internal Configuration Access Port(ICAP) available in advanced Xilinx devices to peri-
odically read the TMR voter states. We have implemented our designs on a Xilinx Artix-7 FPGA to assess the
resulting resource utilization and performance as well as to evaluate their soft error vulnerability using analy-
tical and fault injection techniques. Results show that, of the RCN topologies studied, the ICAP-based approach is
the most reliable despite having the highest network latency. We also conclude that a module-based recovery
approach is less reliable than scrubbing unless the RCN is implemented with redundancy and repaired when it
suffers from configuration memory errors.

Keywords:

Reconfiguration Control Networks
Dynamic Partial Reconfiguration
SRAM-based FPGA

Fault injection

Radiation effects

Scrubbing

Single Event Upsets

Triple Modular Redundancy
Reliability

three functionally equivalent modules. TMR raises system reliability by
masking errors that affect both the implemented circuit as well as the
underlying configuration memory. However, TMR is unable to correct
errors that are trapped within a cyclic user circuit, or within the con-

1. Introduction

In order to reduce mass and power consumption and to achieve
desired processing performance, space missions are increasingly in-

tegrating a number of applications, e.g., flight control, signal and image
processing, data compression and encryption, within a single SRAM-
based FPGA. However, a major challenge for deploying such FPGAs in
space, particularly if they are commercial, off-the-shelf devices, is to
mitigate radiation-induced soft errors, primarily Single Event Upsets
(SEUS). Soft errors can alter the contents of user memory elements, such
as flip-flops and block RAM as well as the SRAM configuration memory,
thereby producing both transient and permanent circuit malfunctions
[1,2].

A popular SEU mitigation approach is Triple Modular Redundancy
(TMR) [3,4]. TMR involves the triplication of the user circuit and the
use of majority voters to detect and mask SEUs affecting one of the

figuration memory. Errors trapped in user circuitry can be corrected by
resetting the faulty module or by resynchronizing the module with its
siblings. To deal with configuration memory errors, TMR is usually
combined with error recovery techniques, such as with scrubbing [2,5],
or with modular reconfiguration [6-8].

Both scrubbing and modular reconfiguration rely on Dynamic Partial
Reconfiguration (DPR) to correct configuration memory errors.
Scrubbing is typically initiated periodically and commonly involves
reading back each configuration memory frame, checking for errors,
correcting any that are found and writing back the corrected frame,
when necessary. In contrast, modular reconfiguration is commonly
triggered when repeated errors are detected by the voter associated

* Corresponding author at: School of Computer Science and Engineering, UNSW Sydney, Australia.
E-mail addresses: h.nguyentran@student.unsw.edu.au, nthnguyen@hcmut.edu.vn (N.T.H. Nguyen), d.agiakatsikas@student.unsw.edu.au (D. Agiakatsikas),
zhuoran.zhao@student.unsw.edu.au (Z. Zhao), tong.wu@student.unsw.edu.au (T. Wu), ediz.cetin@mgq.edu.au (E. Cetin), o.diessel@unsw.edu.au (O. Diessel),

lingkang@cse.unsw.edu.au (L. Gong).

https://doi.org/10.1016/j.micpro.2018.04.006

Received 31 May 2017; Received in revised form 9 April 2018; Accepted 16 April 2018
Available online 17 April 2018

0141-9331/ © 2018 Elsevier B.V. All rights reserved.

http://www.sciencedirect.com/science/journal/01419331
https://www.elsevier.com/locate/micpro
https://doi.org/10.1016/j.micpro.2018.04.006
https://doi.org/10.1016/j.micpro.2018.04.006
mailto:h.nguyentran@student.unsw.edu.au
mailto:nthnguyen@hcmut.edu.vn
mailto:d.agiakatsikas@student.unsw.edu.au
mailto:zhuoran.zhao@student.unsw.edu.au
mailto:tong.wu@student.unsw.edu.au
mailto:ediz.cetin@mq.edu.au
mailto:o.diessel@unsw.edu.au
mailto:lingkang@cse.unsw.edu.au
https://doi.org/10.1016/j.micpro.2018.04.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2018.04.006&domain=pdf

N.T.H. Nguyen et al.

with a TMR component and involves rewriting the configuration
memory for the module that has been found to be in error. Scrubbing,
which could be referred to as a frame-based recovery technique, is thus
more fine-grained in its corrective action but involves reading or
writing the entire configuration memory contents On the other hand,
module-based recovery methods are more coarse-grained in that the
configuration memory contents of a complete module are rewritten.
Multiple configuration memory errors affecting the one module can
thus be corrected in a single action and correction is typically com-
pleted more promptly.

Scrubbing consumes more energy than modular reconfiguration [9]
because it is invoked periodically rather than when errors are present.
Scrubbing also has a higher Mean Time To Detect (MTTD) errors than
modular reconfiguration. While modular reconfiguration is triggered by
a voter signalling the presence of an error, state-of-the-art FPGAs may
include on the order of a billion configuration bits and the time re-
quired to read back the entire configuration memory during a scrub
cycle may exceed 120 ms at least. This means that SEUs will be detected
in the system after 60 ms on average, which could be too large for
critical systems.

Modern FPGAs, such as those offered by Xilinx, include built-in
resources and provide soft IP to aid scrubbing [10], but use of a module-
based error recovery approach is not supported nearly as well and de-
sign complexity is noticeably increased. For example, a designer who
wishes to employ module-based error recovery needs to design a sui-
table reconfiguration controller, a method for signaling reconfiguration
requests, storage for partial bitstreams and a data resynchronization
mechanism.

In this paper, we focus on the choice and design of a Reconfiguration
Control Network (RCN), which is an infrastructural component that
collects reconfiguration requests from the system’s TMR voters and
communicates these to an internal or external reconfiguration con-
troller [1,2]. The performance and reliability of the RCN is important
for a number of reasons. On the one hand, the latency of the RCN has a
direct impact on the Mean Time To Detect (MTTD) errors in the system.
On the other hand, the RCN is often implemented in a non-redundant
manner and therefore introduces a single point of failure that can easily
compromise system reliability. It is also possible to trigger a scrub cycle
using an RCN to collect status messages from the voters of TMR com-
ponents rather than relying on a periodic or error rate-based trigger.
Hence the results presented in this paper are of relevance to any SRAM
FPGA-based TMR system irrespective of the type of error recovery
method used.

Considering the importance of the RCN in module-based recovery
mechanisms, we provide a comprehensive study of the variety of RCNs
mentioned in the literature. The RCN is typically realized by utilizing
configurable resources such as Configurable Logic Blocks (CLBs) and
programmable interconnection resources. However, an RCN can also be
implemented using the FPGA’s hardwired configuration network. In
this work we distinguish between RCNs that are implemented in pro-
grammable logic, which we refer to as soft networks, and those that are
implemented using hardwired non-programmable resources, which we
refer to as hard networks.

Soft RCNs can be realized with simple star networks [6,7] or with
more complex networks such as bus networks [11] and token ring
networks [8]. In soft networks, routing congestion may occur as the
number of TMR components in the system increases. In contrast, hard
networks [12] rely on the built-in configuration network of the FPGA to
provide access to the state of health of TMR components. This results in
reduced demand for routing resources.

In this paper, we compare four RCNs with respect to reliability,
latency, scalability and power consumption. Fault injection experi-
ments are conducted to evaluate the impact of each RCN on system
reliability. We demonstrate that the hard network, which uses the
Internal Configuration Access Port (ICAP) to read the voter state, achieves
the highest reliability in a case study that is implemented on the RUSH

87

Microprocessors and Microsystems 60 (2018) 86-95

(Rapid recovery from SEUs in Reconfigurable Hardware) payload [13].
We also show that MTTD is greatest for the ICAP-based approach due to
the relatively large latency involved in retrieving user state this way but
demonstrate an effective optimization that significantly narrows the
gap between this hard approach and the soft RCNs. Finally, we assess
the reliability of a real system employing module-based recovery re-
lative to the same system using blind scrubbing. We have determined
that scrub-based error recovery results in higher reliability unless the
RCN is itself triplicated and repaired when its configuration becomes
corrupted.

The paper is organized as follows: Section 2 provides an overview of
TMR systems that employ modular reconfiguration for configuration
memory error recovery. Section 3 reviews the literature available on
RCN designs, with Section 4 describing the architecture of the various
RCN types we studied. Sections 5-7 provide background on the frame
readback technique employed by the ICAP, the fault emulation system
we implemented to assess the soft error vulnerability of our designs and
the model we used to evaluate the reliability of our implementations.
Section 8 describes our experimental method and reports our findings
while concluding remarks and directions for further study are given in
Section 9.

This paper extends the previous work [14] in the following ways:

— We provide a background on common error recovery techniques
such as scrubbing and MER that have been described in the litera-
ture (Section 1).

— We provide an overview of TMR systems using modular error re-
covery (MER) and describe the advantages and disadvantages of
MER compared with scrubbing (Section 2).

— We detail the RCN topologies that have been mentioned in the lit-
erature and that are studied in our evaluation. We particularly focus
on use of the Internal Configuration Access Port (ICAP) that avail-
able in advanced Xilinx FPGAs to readback configuration frames
that contain information regarding the health of the systems TMR
components (Sections 4 and 5).

— We describe details of our fault injection experiment, which is
completely novel in terms of how to stimulate the inputs of the
Design Under Test (DUT) (Section 6).

2. An overview of TMR with module-based configuration memory
error recovery

SRAM-based FPGAs can be considered to be devices that consist of
two layers, namely an application layer and a configuration layer. The
former is composed of all programmable logic and memory resources
that are used to implement user designs while the latter comprises the
configuration memory and the logic needed to access this memory. User
designs are configured by means of the configuration memory bits.
Module-based configuration memory Error Recovery (MER) takes ad-
vantage of this to allow for the run-time modification of a user design
by loading a partial configuration file [15]. While a TMR component in
the system is running, a partial configuration file can be loaded to
overwrite a reconfigurable module without compromising the integrity
of its two sibling modules. Module-based partial reconfiguration can
therefore be combined with TMR to alleviate SEUs that have affected
configuration memory. This is because the voters associated with TMR
components can localize faulty areas, while the use of modular re-
configuration can swiftly clean these errors [6].

Fig. 1 illustrates an FPGA-based TMR system that employs MER. The
voter associated with each TMR component identifies which module, if
any, is suffering from a persistent fault, and raises a reconfiguration
request. Requests from the voters of different TMR components across
the device are transmitted through a Reconfiguration Control Network
(RCN). The RCN identifies which module needs to be reconfigured and
sends identifying information to a Reconfiguration Controller (RC). The
RC fetches the corresponding partial bitstream from off-chip memory

N.T.H. Nguyen et al.

Microprocessors and Microsystems 60 (2018) 86-95

dynamic dynamic
regionl region2
[_modulel module2 <
§ H» replica replica o
o
“Epf replica replica N
K 2 !
User Degign P S
Partial Partial
Config. Config.
Memory Memory
A 3 \ 4

-

dynamic
regionN
- moduleN
replica

replica

EEEE
partial

bitstream

Reconfiguration
Controller

Configuration Fabric

Fig. 1. An example TMR with MER system diagram.

and reconfigures the faulty module via the configuration fabric which is
accessed through the ICAP. (We use the terminology used by Xilinx for
their partially reconfigurable devices, however, the concepts we de-
scribe are equally applicable to any partially reconfigurable devices,
such as the Stratix 10 family, available from Altera.) After the faulty
module has been reconfigured and resynchronized with the remaining
two modules of the TMR component, the voter resumes its normal
operation.

As mentioned in Section 1, the use of MER with TMR affords several
benefits over scrubbing (frame-based error recovery), but also in-
troduces several additional costs. The main benefits of MER are that the
system is able to respond more dynamically to configuration memory
errors.

Configuration memory errors are detected by individual voters
when faults occur repeatedly within the one module. Rather than
having to read back half of the FPGAs configuration frames on average
to detect an error when incorporating scrubbing recovery [16], MER
utilizes the voters of the system to rapidly detect errors within a few
tens to hundreds of clock cycles. When an error is detected by a voter, a
reconfiguration request that identifies the module to be reconfigured
must be conveyed to the RC. The performance of the RCN determines
the latency in transmitting this request. As the investigation of this
paper indicates, this is typically possible within a few microseconds at
most. Overall, the time to detect errors with MER is therefore in the
order of microseconds, compared to milliseconds for scrubbing.

Repairing errors by MER is also typically much faster than for
scrubbing since MER is usually achieved by reconfiguring the faulty
module, whereas scrubbing necessitates reading the entire memory
contents of the device to check the CRC or writing the full device
configuration. Thus the size of the module to be repaired, rather than
the device size, determines the correction time. Most work focuses on
modules of the size of a small number of device resources (a few CLBs,
FFs and routing) to medium-sized components such as linear filters, a
processor stage, etc. Typical module sizes range between 10s and 100s
of configuration memory frames (several kB) as opposed to 10,000s of
frames (several MB) available at device level. It can therefore be ex-
pected that error repair also takes two to three orders of magnitude less
time for MER. This responsiveness to errors afforded by MER can be
crucial to the success of a mission when errors occur in rapid succession
at critical stages such as during spacecraft maneuvers, communications
with Earth and during remote sensing when particular areas of interest
are observed.

Since MER replaces all the configuration memory contents for a
module, it inherently repairs multiple errors such as Multiple Bit Upsets
(MBUs), which simple scrubbing modes, such as Single Error Correction,

88

Double Error Detection (SECDED) [10], are generally unable to fix. Only
more complex methods of scrubbing, such as frame replacement, which
comes with many of the costs of MER, are capable of dealing with MBUs
efficiently [10].

MER comes with some considerable costs, however, most of these
have not yet been quantified as they mainly deal with greater design
complexity. The designer needs to consider modifications to the voter
design to be able to detect configuration memory errors; an RCN is
needed to convey reconfiguration requests to the RC; an RC that can
process reconfiguration requests and manage modular reconfiguration
needs to be designed; secure storage for the module-based partial bit-
streams needs to be incorporated; a module-based resynchronization
method also needs to be developed. If the designer were to choose a
simple scrubbing-based configuration memory recovery method in-
stead, most of these design modifications are not needed. Instead, the
designer could make use of IP provided by the device vendor and in-
built hardware to perform the scrubbing. This is the case when SECDED
is used [10]. If a frame replacement scrubbing method is used, then the
designer also needs to develop a more sophisticated scrub controller,
implement a method for securely storing the device configuration, and
implement a method for accessing the golden configuration on a frame-
by-frame basis.

Of considerable concern is that much of the additional logic used to
implement and support MER may be implemented in a non-redundant
manner and therefore introduces additional single points of failure. In
this paper, we consider the impact of the RCN on system reliability. In
this work we focus on non-redundant RCN topologies. This provides a
base-line from which greater reliability could be achieved if the RCN
itself were triplicated. Nevertheless, irrespective of the configuration
memory error recovery approach taken, FPGA-based TMR systems in-
evitably include non-redundant components such as clock managers,
ICAP, off-chip ports, etc. Periodically invoked recovery, such as
scrubbing, is likely to deal with configuration memory errors that occur
in these components better than MER does, since non-redundant com-
ponents don’t have voters to trigger MER.

3. Related work

Several types of networks for aggregating reconfiguration requests
from TMR voters have been described in the literature. These include
examples of a star network [6,7], a bus network [11], a token ring
network [8], and an ICAP-based readback approach [12].

Star networks use simple interfaces to connect the voter outputs,
which are distributed across the device, to a central Network Controller
(NC) [6,7]. In star networks, the interconnecting wires may need to

N.T.H. Nguyen et al.

span the entire device and therefore pass through numerous program-
mable interconnection resources. This not only increases their sus-
ceptibility to SEUs, but also introduces latency. Star networks described
in the literature typically involve polling of the remote (voter) inter-
faces by a central controller implementing a round-robin algorithm. It
would be feasible to also consider an interrupt-driven approach
whereby voters interrupt a central arbiter to transfer a reconfiguration
request.

In [11] the authors utilized the Advanced eXtensible Interface (AXI)
core to transfer the outputs of individual modules to a central voter.
While not serving as an RCN, any shared messaging resource, such as
this bus, could be used to convey reconfiguration requests from dis-
tributed components to a central controller. The use of a shared bus
allows new modules to be readily integrated into the system while
avoiding the use of the dedicated routing resources found in star net-
works. However, a bus requires more complex interconnection inter-
faces than star networks, which results in an increased soft-error vul-
nerability, power consumption and latency.

In [8] a token ring network is implemented that spans all voters in a
daisy-chained manner. The design uses complex network interfaces that
require significantly more logic than the endpoints of the point-to-point
connections found in the star networks in [6]. However, token ring
topologies usually link neighbouring components and therefore utilize a
reduced number of global wires for interconnecting them. In contrast,
star and bus topologies realize mixed distance connections and thus
utilize various interconnection resources, including both local and
global wires. Usually, SRAM-based FPGAs integrate more local than
global wires and therefore token ring networks, which tend to utilize
more local wires, are considered to be more scalable than star and bus
networks. However, in token ring networks, the latency increases with
the number of components on the network. A drawback of this topology
is that when a link suffers a configuration memory error the ring no
longer functions as intended, whereas the star topology is inherently
more robust as all links are independent.

A fourth approach that has been described in the literature makes
use of the ICAP to read the outputs of the TMR modules or to read the
voter states in a round-robin fashion [12]. The former uses software to
centrally compare the outputs of each module in order to reduce the
overheads of distributed voting and to reduce the likelihood of the voter
mechanism becoming corrupted. An ICAP-based communications
scheme eliminates the need for a soft network and therefore reduces
routing pressure, implementation time, and improves reliability. Re-
liability is enhanced since the built-in hard reconfiguration network is
utilized to obtain module or voter outputs. This approach has the po-
tential to be scalable as it does not require user routing resources and
utilizes a moderate amount of logic to implement the central controller.

4. RCN architectures

In this section, we describe the architecture of the four RCN types
found in the literature and provide average latencies for obtaining a
reconfiguration request.

4.1. RCN types

Each RCN is composed of distributed Network Interfaces (NIs), a
central Network Controller (NC) and an interconnection network between
them as illustrated in Fig. 2. In the figure, each majority voter provides
a 2-bit error info signal to the corresponding NI. Three possible values of
the error info signal — 00, 01, and 10 — represent the error states of the
triplicated modules respectively, while the value 11 indicates there is
no error. Note that a voter raises a Reconfiguration Request (RR) to the
NC by means of the error info value. Once the NC receives an RR, it
issues a req and a (log,N + 2)-bit module id signal to the Reconfiguration
Controller (RC), which invokes the module-based error recovery (MER)
process to recover the faulty module. After MER is completed, the RC

89

Microprocessors and Microsystems 60 (2018) 86-95
asserts a done signal to the NC.

4.1.1. Star network

Fig. 3(a) illustrates at an overview level a typical star network im-
plementation. Each NI contains a 2-bit buffer that connects directly to
the NC. The NC consists of two modules, namely an arbiter and a
multiplexer. The arbiter selects which voter is to be checked in a round
robin manner while the multiplexer transfers the error info from the
selected voter to the arbiter. When the arbiter receives an RR, it sends
req and module id signals to the RC. The RC invokes modular re-
configuration for the faulty module before issuing a reconfiguration
done signal to the arbiter for it to resume voter checking.

4.1.2. Bus network

We detail a simple bus network that aggregates the error message
from the voters as illustrated in Fig. 3(b). The bus network works si-
milarly to the star network. The multiplexer architecture of the star
network is replaced with a global address signal. The registers in the NI
are controlled by the address decoder (dec) and the register outputs
drive the common bus signal through an OR gate. If the bus signal in-
dicates an RR, the NC triggers the reconfiguration process in the RC.

4.1.3. Token ring network

Fig. 4 shows the basic token ring network architecture. In contrast
to the star architecture, the NIs provide a (log,N + 2)-bit message that
indicates which module is in error. When the val signal toggles and the
message on the data signal is a token, the OutRegs in the NI latch the
token before passing it on to downstream NIs. If an NI needs to send an
RR, it keeps the token and its OutRegs latch the corresponding module id.
The downstream NIs pass this message to the NC. The NC operates in a
similar manner to that described for the star network. When a modular
reconfiguration has occurred, a done message is released to signal to the
requesting NI that the reconfiguration has been completed and to re-
lease the token.

4.1.4. ICAP-based voter checking

The ICAP-based readback approach eliminates the soft inter-
connection network by using a modified RC component to check on the
TMR component voters directly. The voter error info signal is registered
and the RC polls these register outputs in a round-robin manner via
ICAP readbacks. The method is further detailed in Section 5. When the
RC receives a reconfiguration request, it triggers a reconfiguration op-
eration to correct the faulty module.

4.2. RCN latency

RCN latency is defined as the average period of time needed for the
NC to receive a reconfiguration request from a voter. As described in
Section 4.1, all four networks check voters in a round-robin manner.
Thus, assuming a system with N TMR components or NIs and one NC,
the average latency of the token ring network is given by
latency = (N + 1) X Chop X ! ,

network

@

where cp,p, denotes the number of clock cycles per node hop, and Frenyork

denotes the maximum clock frequency of the RCN. Eq. (1)corresponds

to the average time needed for the token to arrive (half the ring) and the

time for the request to make it back to the NC (also half the ring).
The RCN latency for all other topologies is given by

1
X Chop X =,

N
latency = —
2 Ele[work

(2)
which corresponds to the time it takes to check half the voters in the
system before the one that wishes to raise a reconfiguration request is
checked.

N.T.H. Nguyen et al.

Microprocessors and Microsystems 60 (2018) 86-95

l;lodﬁi.Lel :§ — Ve FPGA
Rgpligg _)E o2y Interface .
L — e Network
1 ")
l;lod;I.LeZ :§ error Network z 3 Controller
eplica g Interface] & 2
Replica P ® info2 3 5 3
> 0
- ~ 0
: e
o
Modu}eN —>§ —— el = Reconfiguration
EEEEE: :i InfoN 5 Interface Controller
Fig. 2. Components of an RCN.
Network Controller req
b —>
arbiter id, |
logic logoN+2
" | done
. sel addri 1
: - log.Np r‘eg : logzn 2
er“r‘-cF)r‘ : — arbiter || 1d
info = ;
> Re » logic
: ___,.-/ Network
. Controller l
(a) : (b) i

Fig. 3. The architecture of a star network (a) and of a bus network (b).

5. Configuration frame readback

The Xilinx FPGA configuration memory is arranged in frames that
are tiled about the device. These frames are the smallest addressable
segment of the configuration memory space. The frame size varies
among FPGA families; in the case of Xilinx 7-Series FPGAs, it consists of
101 32-bit words. Each frame possesses a unique address that can be
used to dynamically read or write to the configuration memory.

Xilinx 4—7 Series devices allow users to read the configuration
memory via the ICAP. There are two modes of readback, namely
Readback Verify (RbV) and Readback Capture (RbC) [15]. We use the
RbC mode to check the voter state of each TMR component since this
mode allows the state of the CLB configuration memory cells to be read.
This can be done by issuing a GCAPTURE command to the ICAP so as to
sample all CLB register values into configuration memory cells. These
values can then be read back along with the configuration frame con-
taining the voter status bits. However, designers must know the frame
address and configuration bit offset of the SRAM cell corresponding to
the desired output of the voter for this approach to work. These para-
meters are given in the logic allocation (*.11) file, which is auto-
matically generated by the Xilinx ISE/Vivado design tools. The logic
allocation file includes four fields, namely a bit offset, a frame address, a
frame offset, and information for each configured resource as depicted in
Fig. 5. The registers corresponding to the voter status of a TMR com-
ponent are determined from the information fields that then allow the
frame addresses and frame offsets to be extracted.

Xilinx devices expect a specific sequence of commands to be sent to
the ICAP in order to read a data frame [15]. A frame read request ne-
cessitates the read of a dummy word and a pad frame before the desired
data frame can be read. The time to read a frame in Xilinx 7-Series
FPGA:s is approximately 230 clock cycles. This includes 20 clock cycles
for issuing initialization commands, 203 clock cycles for the frame read,
and 10 clock cycles for issuing concluding commands [15]. The frame
read time depends on the throughput of the ICAP, which supports 32-

90

[————

e Network

I_Inter‘face Network
2+10g2N - - Controller
dataj |val v req
error idl
info Rdone [lroken 1ogoN+2
2 bypass done
4 QutRegs
val{ {data
—_——— 2+1og,N
Network e———

|_I Interface I

Fig. 4. The architecture of a token ring network.

logic location file *.11

<bit offset> <frame addr> <offset> <Information>
Bit 19488835 0x0042021f 3107 Block=SLICE_X4Y48 Latch=AQ Net=voters[6]/status_bits[1]

Fig. 5. Extract of a Xilinx logic allocation file.

bit transfers at a rate of 100 MHz. At the maximum rated speed, the
time for reading a frame through the ICAP primitive in 7-Series FPGAs
is thus approximately 2.3 us. This latency can be reduced if voter reg-
isters are placed at the bottom of each clock region so that the voter
registers are located at the beginning of the data frame. When this is
done, the frame read can be aborted after the voter registers have been
read. The frame read time can thus be reduced by as much as 1 us [15].

6. Fault emulation system

In this section, we outline the fault emulation system we im-
plemented to assess the soft error vulnerability of the RCNs we studied.

N.T.H. Nguyen et al.

Boot FPGA

Device Initialization

l PC Sends
» Ready to Inject Injection
Address

P

Inject into
Specified Address

Fix Injected
Fault
& Reset
Network

Done
For Each Voter

Not Done

4

For Each Status

Not Done

Stimulate NI Inputs
(00,01,10 or 11)

Check RRs

PC Records
Error

No

Fig. 6. Fault injection flowchart.

Fault emulation involves the use of hardware-based methods to artifi-
cially insert faults into FPGAs. A typical fault emulation system needs to
provide an ability to access internal memory to inject a fault, an ability
to stimulate and execute the circuits, an ability to determine output
errors and an ability to clear errors [17].

Fig. 6 outlines our fault emulation procedure. We use the Xilinx AXI
HWICAP IP for flipping configuration memory bits and a MicroBlaze
processor to control this process. Once the system has been initialized,
the MicroBlaze halts and waits for a fault injection address from a PC
host. A uniformly distributed random configuration bit address is gen-
erated. The MicroBlaze reads the corresponding frame, flips the ad-
dressed bit and writes the frame back using the HWICAP to emulate an
SEU. Note that we do not inject faults into either the MicroBlaze or the
HWICAP in order to avoid their corruption through the fault injection
campaign. Of the 18,300 configuration frames in the Artix-7
XC7A200TFBG-484 targeted in our study, 14,250 frames are contained
in the region that represents the design under test.

Once a fault is inserted the circuit is tested using all possible input
stimuli. In our case, there are four possible error info values that would
normally be presented to a Network Interface (NI). An input stimulus is
usually provided through external pins on the FPGA. However, we felt

@ Interconnect NT |Error n LUTM
Network infoi 2 LUTM
RePin

Fig. 7. RePin architecture for input stimulus.

91

Microprocessors and Microsystems 60 (2018) 86-95

that errors injected into the nets leading from the external pins to the
NIs of the network would influence the results of our experiments. We
therefore developed a different method for stimulating input values. As
can be seen in Fig. 7, the input stimulus of each NI is realized through
what we call a “RePin” architecture which is composed of two SLICEM
LUT (LUTM) blocks configured as distributed RAM. Each LUTM pro-
vides a single bit of stimulus that can also be changed using the ICAP.
Given the site number and logic locations, the positions of the LUTM
bits can be obtained from the *.11 file as described in Section 5.

An essential step in the fault emulation procedure involves detecting
system errors. The MicroBlaze processor checks the integrity of the
design while the LUTMs are manipulated to simulate different error info
signals arising from a voter. For each NI, we iterate through every
possible combination of the error info signal (11, 00, 01 and 10) while
holding the inputs to every other NI constant at 11, which signifies the
“no error” condition. Whenever a new error info value is written, the
MicroBlaze processor checks that the correct reconfiguration request
(RR) is received. In the case of the soft networks, we wait for the
maximum number of clock cycles required for the Network Controller
(NC) to receive an RR, then the req and module id signals are read using
the AXI GPIO interface. In the case of the ICAP-based RCN, the
MicroBlaze processor utilizes the ICAP to read back the values of each
NTI’s status flip-flops in order to determine the RR. If the RR is as ex-
pected, we change the error info signal to the next value. When we have
cycled through every possible status and there is no unexpected RR, we
move on to the next NI If an unexpected RR is received, an error report
is sent to the PC.

The fault emulation tool must also remove the injected fault and
return the circuit to a known functioning state before injecting the next
fault. In our system, the injected fault is fixed by writing back the frame
as it was before injection, all NI inputs are set to 11, the RCN is reset and
the software returns to wait for a new fault injection address from the PC.

7. Reliability evaluation

In this section, we outline how we model the reliability of a non-
replicated component, the reliability of a TMR component and the re-
liability of a complete FPGA-based system composed of both non-re-
plicated and triplicated components. Our analysis is based on the
number of critical bits per component for which we use the number of
essential bits reported by the vendor’s tools as a worst case estimate.
Whereas essential bits define the configuration of a user circuit on the
target FPGA, the critical bits lead to a change in circuit behaviour if
flipped.

Since without lengthy, exhaustive testing it is not possible to iden-
tify the critical bits, we pessimistically assume that the flip of a single
essential bit leads to a module failure if the module is not triplicated.
With this assumption, the module failure rate A, is given by the product
of the bit error rate, Ap;, and the number of essential bits in module m.
Since all three modules are functionally identical, we also assume that
the three modules of a TMR component have the same failure rate A,,.

Using SPENVIS [18], we calculated that the configuration memory
of Xilinx 7 Series FPGAs, specifically the Kintex-7 family will upset at a
peak rate of Ap; = 2.7 X 1071° upsets/bit/s in equatorial geosynchro-
nous orbit. To determine this upset rate, we used the peak 5-minute
average flux of the CREME-96 model [19] and, as is typically done,
assumed the presence of 2.54 mm of aluminium shielding. The cross
section of the Kintex-7 family was obtained from [20]. In this paper, we
use this estimate as a “relatively high radiation level” for our analysis.

As is usual [21], we assume that module reliability decreases ex-
ponentially over time t as expressed by the function:

Ry (t) = e, 3

whereby the reliability, R,,(t), of a module at time t denotes the prob-
ability that the module operates without any failure in the interval [0,

t].

N.T.H. Nguyen et al.

jlo
(V)
(N,
o
o
o

Microprocessors and Microsystems 60 (2018) 86-95

2

Fig. 8. (a) Synthetic layout of a 31-voter design and (b) RUSH floorplan.

When module m is triplicated, its reliability function becomes:
RyME(8) = 3Ry (1) = 2R; (0).)

In order to achieve higher reliability, for a given SEU rate, we em-
ploy TMR with MER. The reliability function is then given by [22]:

et (a sinh(%) +b Cosh(%))
2 , 5)

where a = 54, + f,,, b = A5 + 104, + 7.

The term y,,, denotes the repair rate of a module, which is the re-
ciprocal of the time needed to recover the faulty module:

Ryt (1) =

1 1 o1
ta+ b+ byne o+t

Hm ®)
where t; denotes the average error detection time, t, denotes the error
correction time and t,. denotes the synchronization time, which we
omit in our case study because it normally only accounts for a small
fraction of the recovery time.

Note that t; depends on the method used to detect errors and cor-
responds in our case to the average latencies that were derived in
Egs. (1) and (2), whereas t., which depends on parameters of the target
system and the size of the module, is given by the number of 32-bit
words per frame, the number of frames in the given TMR module and
the ICAP write throughput.

The reliability of an FPGA-based system composed of N TMR com-
ponents that use MER to recover from configuration memory errors and
an RCN for aggregating reconfiguration requests can be derived as
follows. We model the reliability of the RCN Rgcn(t) using Egs. (3, 4 or
Egs 5). Respectively, the reliability of each TMR component R/M?(¢) in
the system is modelled using Eq. (5). Finally, the reliability of the
system is given by the product of the reliability of each individual
component, namely the RCN and the N TMR components [21]:

trepair

RM(1) = Rpen (1) H RIMR(0).

i=1

)

In this derivation, it is assumed that failures follow a Poison distribution
and the occurrence of errors in modules or components are statistically
independent and uncorrelated. Note that Eq. (7) holds true only if
u>A, which ensures repairs are completed independently [21].
Moreover, since the main objective of this paper is to evaluate the
impact of various RCN architectures on the total reliability of FPGA-
based designs that incorporate MER, we omit inclusion of the

92

reconfiguration controller and the voters in our reliability analysis.

8. Experiments and results

In this section we evaluate the performance of the networks pre-
sented in Section 4, in terms of resource utilization, latency, operating
frequency, power consumption and soft-error vulnerability. All net-
works were implemented on a Xilinx Artix-7 XC7A200TFBG484-1
FPGA, as hosted on the RUSH experiment board [13], using the ven-
dor’s Vivado 2014.4 implementation tools with default settings. The
comparison of the networks is based on data obtained from the im-
plementation tools and also on fault-injection experiments.

8.1. Experiments

As mentioned in Section 4, an RCN consists of NIs, a central NC and
the interconnection network between them. In our experiments the
same voter interface and RC designs were used in each experiment ir-
respective of the RCN type being tested. The same NI and NC locations
were also used for all RCN designs. In a first experiment we studied
“synthetic” layouts in which the TMR components, their voters, and
thus the NIs were assumed to be distributed in a checkerboard pattern
across the majority of the device area. Moreover, the NIs and the NC
were always located in partitions that utilized the same FPGA resources
irrespective of the RCN topology. To obtain resource utilization and
performance results, we initially implemented designs that only con-
tained the components of the RCNs being tested and constrained the
implementation tools to prevent optimizations across the port interfaces
of the NIs and the NC. To perform the fault injection experiments, we
added a MicroBlaze-based RC for injecting faults and distributed RAM-
based test vectors to each of the RCNs we tested. We tested each RCN
type for networks comprising 7, 15 and 31 voters. The synthetic layout
of a 31-voter design (in this case for testing the star network topology)
is shown in Fig. 8(a), in which the design under test into which faults
were injected is depicted as the shaded region to the right of the RC.

In a second experiment, we investigated the utilization and per-
formance of each RCN when used to collect reconfiguration requests for
the RUSH board [13]. For this case study, we implemented the four
network types with the 9 TMR components comprising the RUSH ex-
periment. These components include a single MAC-based 21-tap Finite
Impulse Response (FIR) filter with 16-bit signal width, an 8-to-3-bit Block
Adaptive Quantizer (BAQ), an 8096-word deep 32-bit FIFO, three 32-bit
Shift Registers (SRs) having different lengths and a range of

N.T.H. Nguyen et al.

Microprocessors and Microsystems 60 (2018) 86-95

Table 1

Results of mapping four RCNs to Xilinx Artix-7 XC7A200TFBG-484.
Type ICAP STAR BUS RING
Layout L1 L1* L2 L1 L2 L1 L2 L1 L2
NIs 7 15 31 31 9 7 15 31 9 7 15 31 9 7 15 31 9
Slices 7 15 31 31 9 12 29 50 18 21 33 60 21 30 50 141 35
LUTs 0 0 0 0 0 14 27 30 16 28 50 108 33 54 130 279 87
FFs 14 30 62 62 18 26 44 77 32 35 61 110 43 61 134 295 87
PIPs 440 889 1770 1858 557 1101 1996 3513 1,243 1341 2553 4625 1729 2057 3894 7986 2724
SMs 38 62 102 181 55 277 453 792 274 351 616 1074 466 426 496 861 426
Freq. (MHz) 100 112 109 107 126 109 107 104 114 132 203 186 145
Clocks / Hop 230 2 2 1
hops 7 15 31 8 9 7 15 31 9 7 15 31 9 8 16 32 10
Latency (us) 8.05 17.25 35.65 9.20 300 0.06 0.14 0.29 0.5 0.06 0.14 0.30 0.5 0.07 0.08 0.18 0.5
Static (mW) 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138
Dynamic (mW) 3 4 5 5 3 4 7 7 4 6 7 9 5 4 5 8 4
Ess. bits (Kb) 3.42 5.6 10.4 13.7 4.1 9.4 15.8 26.0 10.1 11.9 20.1 38.6 14.9 18.3 33.7 69.4 24.3

L1: Synthetic layout.
L2: RUSH layout.
L1*: optimized ICAP layout.

combinational logic between the stages and three 32-bit Binary Search
Trees (BSTs) of different heights and a range of combinational logic at
each node. A MicroBlaze processor was used to implement the RC and
the AXI HWICAP IP was used to reconfigure faulty modules. The layout
of this system is depicted in Fig. 8(b).

8.2. Results

8.2.1. Implementation results

Table 1 presents information extracted from the vendor’s im-
plementation tools. The results are listed according to the resource
utilization of the design; the dynamic power consumption and the
number of essential bits follow the same pattern. In contrast, the ven-
dor’s power analysis tools reported the same amount of static power
consumption for all RCN designs. However, given that the RCN designs
utilized less than 0.2% of the total FPGA resources on average, we
believe that the contribution of the RCN to the total static power con-
sumption of the FPGA is negligible, and due to this we have obtained
the same result for all designs.

It can be seen that the ICAP-based RCN was realized with the fewest
resources compared to the other RCN architectures. This is primarily
because the ICAP NIs are implemented with just two Flip-Flops (FFs)
and a small amount of support logic being mapped to Look-Up Tables
(LUTs). As expected, the number of Programmable Interconnection
Points (PIPs) and Switch Matrices (SMs) used by the ICAP approach is
significantly lower than for the other approaches. As a consequence, the
ICAP-based RCN has on average 2.7, 3.6 and 6.0 times fewer essential
bits than the synthetic layouts of the star, bus and ring networks re-
spectively. However, the ICAP-based RCN suffers from high network
latency. It requires two to three orders of magnitude more time than the
other RCNs to transfer reconfiguration requests to the NC. In contrast,
the ring has the lowest latency, since it can achieve a higher operating
frequency and only needs 1 clock cycle per node hop. We used Egs. (1)
and (2) to calculate the latency for each RCN. The latency of the ICAP
approach is on average over 175 times that of the ring and the latency
of the star and bus networks was about 1.4 times that of the ring for the
synthetic layouts.

We investigated an optimization of the ICAP RCN that entails con-
straining the registers of those groups of NIs that are located within
each clock region. These registers are forced to be placed into a single
configuration frame so that they can be accessed in a single frame read.

93

With reference to Fig. 8(a), which depicts 4 voters per clock region (the
10 grey rectangles), this optimization resulted in the creation of hor-
izontal wires leading from each voter to a frame that was centrally
located in each clock region. Instead of requiring 31 separate frame
reads to check all voters, this approach reduced the number of frame
reads needed to 8 in total — one for each clock region used by the
design. The results of this implementation are reported in Table 1 in the
ICAP column headed L1*. As can be seen, this optimization reduced the
latency of the ICAP approach by a factor of 4 while increasing the
number of essential bits used over the unoptimized 31-voter ICAP de-
sign by 32%.

8.2.2. Fault injection results

We implemented the fault emulation system described in Section 6
to conduct fault injection experiments for the synthetic layouts of each
of the four RCN types. Table 3 tabulates the average number of errors
we found after five trials of one million fault injections. These results
demonstrate that the ICAP-based RCN is more reliable than the other
approaches. Additionally, the number of errors that occur in each RCN
is directly proportional to the number of voters and thus the number of
essential bits per design.

8.2.3. RUSH case study results

Table 2 presents the number of essential bits (n,), the failure rate of
each module assuming Ap; = 2.7 X 107 upsets/bit/s, the number of
frames (ny) and the correction time (t;) of each TMR module. Note that
in our design, since we were using the AXI HWICAP, the ICAP
throughput using the MicroBlaze was limited to 10 MB/s, considerably
less than the maximum possible throughput of 400 MB/s. The reduction
in ICAP bandwidth also affected the latency for checking a voter using
the ICAP to 60 us per voter, and we therefore observed a much higher
network latency.

Fig. 9 plots the system reliability for each RCN type and the 9 RUSH
application circuits using Eq. (7) against the reliability of a blind scrub
implemented on the same system. The MicroBlaze RC and off-chip flash
configuration storage used by the RUSH system supports a random
FPGA configuration frame read latency of 60 us and a sustained frame
write period of 18 us per frame. Blind scrubbing, which entails re-
writing each configuration frame of the device, therefore takes 330 ms
on the Artix-7 XC7A200TFBG-484 used, and errors are recovered by
scrubbing after 165 ms on average. Please note that in Fig. 9, the scrub

N.T.H. Nguyen et al.

Microprocessors and Microsystems 60 (2018) 86-95

Table 2
Results of mapping 9 TMR components to Xilinx Artix-7 XC7A200TFBG-484.
Design Utilization Essential Bit Failure rate (Ap,) ng te (ms)
LUTs FFs DSP BRAM (ne) (upsets/s/module) MicroBlaze
FIR 33 (0.02%) 16 (0.01%) 1 (0.13%) - 12,042 (0.02%) 3.25 x 1076 65 1.2
FIFO 72 (0.05%) 111 (0.04%) - 7.5 (2.05%) 41,842 (0.07%) 1.13 x 10~ 192 3.5
BAQ 305 (0.22%) 197 (0.07%) - - 48,963 (0.08%) 1.32 X 10~ 73 1.3
BST1 1396 (1.04%) 2519 (0.94%) - - 281,604 (0.46%) 7.60 X 10> 145 2.6
SR1 1619 (1.20%) 3273 (1.22%) - - 285,914 (0.46%) 7.72 x 1075 378 6.8
SR2 2630 (1.96%) 5499 (2.05%) 20 (2.70%) - 515,904 (0.84%) 1.39 x 10~ 474 8.5
BST2 3779 (2.84%) 6198 (2.32%) 31 (4.18%) - 793,534 (1.30%) 2.14 x 1074 610 11.0
SR3 7022 (5.24%) 14,573 (5.44%) 40 (5.40%) - 1,403,647 (2.30%) 3.79 x 1074 1090 19.6
BST3 9126 (6.82%) 12,214 (4.56%) 31 (4.18%) - 1,833,235 (3.00%) 495 x 104 1483 26.7
Table 3 not significantly affected because errors occur infrequently in the re-
Fault injection results. latively small RCN components.
Type ICAP STAR BUS RING
voters Avg o Avg o Avg o Avg o 9. Concluding remarks and future work
7 7.0 L5 8.2 23 16.8 21 51.0 4.7 In this paper, we have compared four RCN types in terms of relia-
15 8.2 3.5 17.0 3.0 36.6 5.0 122.1 16.7 bili labili ilizati . d .
31 20.7 1.4 386 46 786 7.9 213.4 273 ility, scalability, resource utilization, power consumption and sensi-

Avg: Average number of observable errors.
o: Standard deviation.

plots only account for the 9 application components; they specifically
exclude an RCN component, which is not needed for blind scrubbing.

Fig. 9(a) assumes the four RCNs are implemented as single, non-
replicated components. While the ICAP RCN results in the best relia-
bility for MER, all 4 RCNs weigh down the reliability of the system
because they are single points of failure.

Fig. 9(b) assumes the RCNs are implemented as triplicated compo-
nents, but that errors that occur in this component are not repaired.
Some limited error mitigation is therefore in place. Only the ICAP
outperforms scrubbing over the time period shown. However, even-
tually (when t > 120, 000 s) even this approach succumbs to errors that
remain unrepaired and scrubbing once again dominates.

In Fig. 9(c) we assume that the device is partially reconfigured in its
entirety when an error in the triplicated RCN component is detected.
This error recovery period is longer than desired, but the approach
ensures any error in the network is corrected. Despite the long recovery
time (equivalent to reconfiguring the complete device), the reliability is

tivity to configuration memory errors. The utilization and performance
of these RCNs were assessed for networks with 7, 15 and 31 voters. The
results demonstrate that the ICAP-based readback approach, which uses
the built-in reconfiguration mechanism available in FPGAs, requires the
least resources of those networks studied.

The results of a case study that was implemented on the RUSH
payload and of fault injection testing indicate that the ICAP-based
readback approach has the highest system reliability despite having a
relatively high latency. This higher latency may not be too problematic
except when radiation levels become much higher than the high rate
assumed in our work. We have shown that the latency of the ICAP
approach can be reduced by clustering the registers that are to be read
from one clock region into a single frame. This optimization does not
have a significantly impact on the resource utilization. We have also
determined that for the reliability of MER to be competitive with
scrubbing in a real system, the RCN must also be triplicated and re-
paired when errors affect it.

One direction for further study is to consider the order in which
TMR components are checked. Further work is also envisaged to derive
more comprehensive reliability models for complete FPGA-based TMR
systems with MER. This work is just the first step in this direction.

[-0-ICAP - P2P -a-BUS -A-RING — SCRUB)

0.95

0.9

Reliability

0.85

7
0

20000 40000
time (s)

8
0

]
N
0.99
0.98
(c)
K
0.97
20000 40000 0 20000 40000

time (s)

time (s)

Fig. 9. (a) Unprotected RCN (b) TMR triplicated (c) TMR triplicated with recovery.

94

N.T.H. Nguyen et al.

Acknowledgement

This research was supported in part by the Australian Research
Council’s Linkage (LP140100328) and Discovery (DP150103866)
Projects funding schemes.

References

[1] F. Siegle, T. Vladimirova, J. llstad, O. Emam, Mitigation of radiation effects in
SRAM-based FPGAs for space applications, ACM Comput. Surv. 47 (2) (2015)
37:1-37:34, http://dx.doi.org/10.1145/2671181.

[2] 1. Herrera-Alzu, M. Lopez-Vallejo, Design techniques for Xilinx Virtex

FPGAconfiguration memory scrubbers, IEEE Trans. Nuclear Sci. 60 (1) (2013)

376-385, http://dx.doi.org/10.1109/TNS.2012.2231881.

J. von Neumann, Probabilistic logics and the synthesis of reliable organisms from

unreliable components, Autom. Stud. (1956) 43-98.

R.E. Lyons, W. Vanderkulk, The use of triple-modular redundancy to improve

computer reliability, IBM J. Res. Dev. 6 (2) (1962) 200-209, http://dx.doi.org/10.

1147/rd.62.0200.

C. Carmichael, M. Caffrey, A. Salazar, Correcting Single Event Upsets Through

Virtex Partial Configuration, Xilinx, 2000. XAPP216

C. Bolchini, A. Miele, C. Sandionigi, A novel design methodology for implementing

reliability-aware systems on SRAM-based FPGAs, IEEE Trans. Comput. 60 (12)

(2011) 1744-1758, http://dx.doi.org/10.1109/TC.2010.281.

M. Straka, J. Kastil, Z. Kotasek, L. Miculka, Fault tolerant system design and SEU

injection based testing, Microprocess. Microsyst. 37 (2) (2013) 155-173, http://dx.

doi.org/10.1016/j.micpro.2012.09.006. Digital System Safety and Security

E. Cetin, O. Diessel, L. Gong, V. Lai, Reconfiguration network design for SEU re-

covery in FPGAs, IEEE International Symposium on Circuits and Systems (ISCAS),

(2014), pp. 1524-1527, http://dx.doi.org/10.1109/ISCAS.2014.6865437.

J. Tonfat, F.L. Kastensmidt, P. Rech, R. Reis, H.M. Quinn, Analyzing the effective-

ness of a frame-level redundancy scrubbing technique for SRAM-based FPGAs, IEEE

Trans. Nuclear Sci. 62 (6) (2015) 3080-3087, http://dx.doi.org/10.1109/TNS.

2015.2489601.

PG036: Vivado design suite soft error mitigation controller v4.1, 2015.

B. Navas, J. berg, I. Sander, The upset-fault-observer: a concept for self-healing

adaptive fault tolerance, NASA/ESA Conference on Adaptive Hardware and Systems

(AHS), (2014), pp. 89-96, http://dx.doi.org/10.1109/AHS.2014.6880163.

F. Veljkovi, T. Riesgo, E. de la Torre, Adaptive reconfigurable voting for enhanced

reliability in medium-grained fault tolerant architectures, NASA/ESA Conference

on Adaptive Hardware and Systems (AHS), (2015), pp. 1-8, http://dx.doi.org/10.
1109/AHS.2015.7231165.

E. Cetin, O. Diessel, T. Li, J.A. Ambrose, T. Fisk, S. Parameswaran, A.G. Dempster,

Overview and Investigation of SEU Detection and Recovery Approaches for FPGA-

Based Heterogeneous Systems, Springer International Publishing, Cham, 2016, pp.

33-46, http://dx.doi.org/10.1007/978-3-319-14352-1_3.

D. Agiakatsikas, N.T.H. Nguyen, Z. Zhao, T. Wu, E. Cetin, O. Diessel, L. Gong,

Reconfiguration control networks for TMR systems with module-based recovery,

IEEE International Symposium on Field-Programmable Custom Computing

Machines, (2016), pp. 88-91, http://dx.doi.org/10.1109/FCCM.2016.30.

[3]

[4]

[5]

[6]

[71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

95

Microprocessors and Microsystems 60 (2018) 86-95

[15]
[16]

UGA470: Xilinx 7 series FPGAs configuration user guide v1.10, 2015.

A. Sari, M. Psarakis, Scrubbing-based SEU mitigation approach for systems-on-
programmable-chips, International Conference on Field-Programmable Technology
(FPT), (2011), pp. 1-8, http://dx.doi.org/10.1109/FPT.2011.6132703.

H. Quinn, M. Wirthlin, Validation techniques for fault emulation of SRAM-based
FPGAs, IEEE Trans. Nuclear Sci. 62 (4) (2015) 1487-1500, http://dx.doi.org/10.
1109/TNS.2015.2456101.

D. Heynderickx, B. Quaghebeur, E. Speelman, E. Daly, ESAs space environment
information system (SPENVIS): a WWW interface to models of the space environ-
ment and its effects, in AIAA, 371, 2000.

A. Tylka, J. Adams, P. Boberg, B. Brownstein, W. Dietrich, E. Flueckiger,

E. Petersen, M. Shea, D. Smart, E. Smith, CREME96: a revision of the cosmic ray
effects on micro-electronics code, IEEE Trans. Nuclear Sci. 44 (6) (1997)
2150-2160, http://dx.doi.org/10.1109/23.659030.

D. Hiemstra, V. Kirischian, Single event upset characterization of the Kintex-7 Field
Programmable Gate Array using proton irradiation, REDW, (2014), pp. 1-4, http://
dx.doi.org/10.1109/REDW.2014.7004593.

M.L. Shooman, Reliability of Computer Systems and Networks: Fault Tolerance,
Analysis and Design, John Wiley & Sons, Inc., New York, NY, USA, 2002.

D. McMurtrey, K.S. Morgan, B. Pratt, M.J. Wirthlin, Estimating TMR reliability on
FPGAs using Markov models, 2008, http://scholarsarchive.byu.edu/facpub/149.

[17]

[18]

[19]

[20]

[21]

[22]

Nguyen T. H. Nguyen is a Lecturer in the Faculty of Computer Science & Engineering, at
the Ho Chi Minh City University of Technology. He received B.E., M.S. and Ph.D. degrees
from the Ho Chi Minh City University of Technology, Vietnam, Kanazawa University,
Japan and UNSW Sydney, Australia respectively. He is interested in methodologies for
design and analysis of computing system with a focus on fault tolerant techniques and
reliability-related analyses.

Dimitris Agiakatsikas is a Ph.D student at the University of New South Wales, Australia.
He received a B.Sc. in Electronics from the Technological Educational Institute of Athens,
Greece and a M.Sc. in technology of Embedded Systems from the University of Piraeus,
Greece. Before commencing his Ph.D studies, he was an Electronics Engineer at the
National Observatory of Athens, Greece. His research interests include fault-tolerant
computing, computer-aided design for fault-tolerant FPGA-based systems and depend-
ability modelling.

Ediz Cetin is a Senior Lecturer in the School of Engineering, at Macquarie University,
Sydney, Australia. He received his B.Eng. (Hons) degree in Control and Computer
Engineering and Ph.D. degree in Unsupervised Adaptive Signal Processing for Wireless
Receivers from the University of Westminster, London, United Kingdom. His research
interests encompass interference detection and localization, fault-tolerant reconfigurable
circuits for space applications, adaptive techniques for RF impairment mitigation for
communications and Global Navigation Satellite Systems (GNSS) receivers and design
and low-power implementation of digital circuits.

Oliver Diessel is an Associate Professor in the School of Computer Science & Engineering,
at the University of New South Wales in Australia. He gained B.E., B. Math., and Ph.D.
degrees from the University of Newcastle, Australia. His research interests encompass the
design and application of dynamically reconfigurable systems and technology, including
modelling, design methods, and run-time support.

http://dx.doi.org/10.1145/2671181
http://dx.doi.org/10.1109/TNS.2012.2231881
http://refhub.elsevier.com/S0141-9331(17)30277-6/sbref0003
http://refhub.elsevier.com/S0141-9331(17)30277-6/sbref0003
http://dx.doi.org/10.1147/rd.62.0200
http://dx.doi.org/10.1147/rd.62.0200
http://refhub.elsevier.com/S0141-9331(17)30277-6/sbref0005
http://refhub.elsevier.com/S0141-9331(17)30277-6/sbref0005
http://dx.doi.org/10.1109/TC.2010.281
http://dx.doi.org/10.1016/j.micpro.2012.09.006
http://dx.doi.org/10.1016/j.micpro.2012.09.006
http://dx.doi.org/10.1109/ISCAS.2014.6865437
http://dx.doi.org/10.1109/TNS.2015.2489601
http://dx.doi.org/10.1109/TNS.2015.2489601
http://dx.doi.org/10.1109/AHS.2014.6880163
http://dx.doi.org/10.1109/AHS.2015.7231165
http://dx.doi.org/10.1109/AHS.2015.7231165
http://dx.doi.org/10.1007/978-3-319-14352-1_3
http://dx.doi.org/10.1109/FCCM.2016.30
http://dx.doi.org/10.1109/FPT.2011.6132703
http://dx.doi.org/10.1109/TNS.2015.2456101
http://dx.doi.org/10.1109/TNS.2015.2456101
http://dx.doi.org/10.1109/23.659030
http://dx.doi.org/10.1109/REDW.2014.7004593
http://dx.doi.org/10.1109/REDW.2014.7004593
http://refhub.elsevier.com/S0141-9331(17)30277-6/sbref0018
http://refhub.elsevier.com/S0141-9331(17)30277-6/sbref0018
http://scholarsarchive.byu.edu/facpub/149

	Reconfiguration Control Networks for FPGA-based TMR systems with modular error recovery
	Introduction
	An overview of TMR with module-based configuration memory error recovery
	Related work
	RCN architectures
	RCN types
	Star network
	Bus network
	Token ring network
	ICAP-based voter checking

	RCN latency

	Configuration frame readback
	Fault emulation system
	Reliability evaluation
	Experiments and results
	Experiments
	Results
	Implementation results
	Fault injection results
	RUSH case study results

	Concluding remarks and future work
	Acknowledgement
	References

