
NoC support for dynamic FPGA pages

Eduard Warkentin

Bachelor of Computer Science, TU Darmstadt, 2007

A thesis submitted in fulfilment

of the requirements for the degree of

Master of Science

Darmstadt University of Technology,
Department of Computer Science

March 2009

Copyright c© 2009, Eduard Warkentin

Originality Statement

‘I hereby declare that this submission is my own work and to the best of

my knowledge it contains no materials previously published or written by

another person, or substantial proportions of material which have been ac-

cepted for the award of any other degree or diploma at UNSW or any other

educational institution, except where due acknowledgement is made in the

thesis. Any contribution made to the research by others, with whom I have

worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I

also declare that the intellectual content of this thesis is the product of my

own work, except to the extent that assistance from others in the project’s

design and conception or in style, presentation and linguistic expression is

acknowledged.’

Signed ..

Acknowledgements

I would like to thank my supervisor, Dr. Oliver Diessel, for his great support

in this project. His supervision was exceptionally good and was critical

for achieving such results. From the first moment he supported me in any

reasonable way. I would also like to thank my examiner Prof. Dr.-Ing. Sorin

A. Huss, who gave me the chance to investigate an interesting area of research

abroad. Further, he provided excellent support from afar. I would like to

thank my family which supported me throughout my initiatives.

Abstract

Module-based FPGA reconfiguration offers virtualization and multitasking

capabilities, but to support this, many problems need to be solved. Current

methodologies are very specific and are not capable of scaling or of being

reused for other applications. This thesis proposes a methodology whereby

the use of dynamic reconfiguration is supported for every core independent

of the communication interface and communication needs. The infrastruc-

ture introduces a general interface for attaching and detaching dynamically

reconfigurable modules and a Network on Chip (NoC) to provide commu-

nication between modules and off-chip resources. The approach advocates

the regular layout of modules on the device, which are connected with a

network, helping to generalize the interface and share the communication

lines. The NoC provides essential advantages such as scalability, increased

parallelism and simplifying the process of partial dynamic reconfiguration.

The interface between NoC and reconfigured modules requires a glue logic.

Guidelines were composed for designing a simple, working and reusable Net-

work Interface core (NWIF) for a general types of cores. This allows to use

the regular layout with the NoC as a communication medium for multitasking

or virtualiziation, where the modules may be easily replaced. The results of

implemented examples using the guidelines are presented. The performance

compared to the conventional design is worse in the NoC design and the

overhead is significant, but the reusability, generalism of the interface and

the scalability of the framework are improved for future applications. Several

avenues for improving the prototype developed in this work are exposed.

Contents

List of Figures x

List of Tables xiv

1 Introduction 1

1.1 Thesis Contributions . 5

1.2 Thesis Organization . 6

2 Background and Related Work 8

2.1 Introduction . 9

2.2 FPGA Pages - Distinct Clock Regions 10

2.2.1 The Virtex-4 FPGA Family 10

2.2.2 The Virtex-5 FPGA Family 11

2.2.3 The Virtex-6 FPGA Family 11

2.3 NoC - Previous Work . 13

2.4 Support for Module-based Dynamic Reconfiguration 17

2.4.1 On-Demand Run-Time System by Ulmann 17

2.4.2 Erlangen Slot Machine (ESM) by Majer 18

2.4.3 Dynamic Network-on-Chip architecture (DyNoC) by

Bobda . 20

2.5 Conclusion . 21

vi

3 NoC Support for FPGA Pages 23

3.1 Requirements of the system 23

3.1.1 NoC . 24

3.1.2 Page/Network Communication Interface 25

3.1.3 Inter Page Communication 27

3.1.4 Shared Access to Common Ports 28

3.2 Constraining the Degrees of Freedom 28

3.2.1 Clock and Clock Regions 29

3.2.2 IP-Cores . 29

3.3 HERMES - NoC Infrastructure 29

3.3.1 Network on Chip . 30

3.3.2 HERMES Router and Interface 30

3.3.3 HERMES Interface Adaptation for PDR 34

3.4 Network Interface cores - Translator between Cores and NoC . 37

3.4.1 Role of the Network Interface 37

3.4.2 Design guidelines for Network Interface 38

3.4.3 Packet Layout and different Formats 41

3.5 Summary . 42

4 Custom Design for Dual AES 44

4.1 Introduction . 44

4.2 AES . 45

4.3 Custom Design without NoC and two AES Cores 46

4.3.1 Dual AES Interface . 46

4.3.2 Dual AES Controller 49

4.3.3 Design Area and Timing Analysis 52

4.4 Host Control Application . 53

5 NoC Version Design and Implemantaion 55

vii

5.1 General Design with NoC, Memory Controller and Two AES

Cores . 56

5.1.1 Splitting the Dual AES Interface into two Network In-

terfaces . 56

5.1.2 Packet Formats . 58

5.1.3 Operational Interface 60

5.1.4 Design of the AES Core NWIF 64

5.1.5 Design of the Memory Controller NWIF 68

5.1.6 Simulation . 69

5.1.7 Design Area and Timing Analysis 71

5.2 Host Control Application . 73

5.3 Conclusion . 73

6 Benchmarks and Results 74

6.1 Comparison between Area and Timing Analysis for all Designs 74

6.2 Benchmark Results . 76

6.2.1 Test Pattern . 76

6.2.2 One AES . 77

6.2.3 Two AES . 78

6.2.4 NoC with three AES Cores 82

6.3 Discussion . 83

6.3.1 Judgment of the Results 84

6.3.2 Differences between the designs 85

6.3.3 Potential improvements for the Designs 86

6.4 Conclusion . 88

7 Conclusions and Future Work 89

7.1 Summary and Conclusions . 89

7.2 Future Work . 91

viii

Bibliography 94

ix

List of Figures

2.1 Pages in an XC4VLX15 device. It consists of 8 independent

clock regions. The figure shows the bottom half of the device

and indicates the smallest reconfiguration unit (row) as well

distinct clock regions [25] . 12

2.2 On-demand run-time system (Ullmann et al.) 18

2.3 The Erlangen Slot Machine (Majer et al.) 19

2.4 DyNoC (left: conceptual, right: implemented) by Bobda et al. 21

3.1 NoC mesh layout with intermediate Routers 27

3.2 HERMES router architecture. B indicates input buffers . . . 31

3.3 Physical interface between routers in HERMES framework . . 32

3.4 Interface between Artemis routers 35

3.5 GAPH macros: (a) Fixed to Reconfigurable area (F2R); (b)

Reconfigurable to Fixed area (R2F) [20] 35

3.6 Interface between Router and page, supporting partial dy-

namic reconfigurable. Consists of Bus Macros from Figure 3.5

and control signals . 36

3.7 General packet Layout, illustrating the layout in terms of OSI

layers . 41

x

4.1 AES core having three inputs and two outputs. Inputs are key

and dataIn both 128 bits and start. The outputs are encData

which is also 128 bits and ready. The AES core encrypts the

data with a given key. The start signal is a control signal; the

ready signal indicates when the data is finished with encryption 45

4.2 Design module implementing a custom design with memory

controller, dual AES controller and two AES cores 48

4.3 Memory map of the communication model between the Host

and both designs . 49

4.4 Dual AES controller, it has one controll FSM and five buffer

registers . 50

4.5 FSM 1 . 51

4.6 FPGA floorplan for custom implementation for dual AES core

design . 52

5.1 Design of the NoC based implementation for multi AES core

support. The dual AES core controller is split into two parts:

the memory controller NWIF and an AES core NWIF. Custom

connections are replaced by the HERMES NoC 57

5.2 Packet formats used in the current implementation. The first

general packet Layout illustrates the arrangement and inter-

pretation of each 8-bit flit . 59

5.3 Sequance diagram representing an example of communica-

tion among the three pcomponents Host, Memory Controller

NWIF and AES Core NWIF. In the example the Host writes

n blocks (each 128 bits) into memory, encrypts n − 1 blocks

and write the result back into the local memory and notifies

the Host via an interrupt that it is ready 62

5.4 The AES NWIF module consists of 3 FSMs and intermediate

buffers. FSM 1 receives packets, FSM2 sends packets and FSM

3 controls the AES core and estimates addresses for requesting

and reading data . 64

xi

5.5 AES core NWIF FSM 1. Implements the packet receiving and

disassembling routines . 65

5.6 AES core NWIF FSM 3. Implements the control logic for the

AES core and the next step including all relevant registers for

the next packet . 67

5.7 AES core NWIF FSM 2. Implements the packet assembling

and sending routines . 68

5.8 The memory NWIF module consists of 3 FSMs and interme-

diate buffers. FSM 1 receives packets, FSM2 sends packets

and FSM 3 controls the memory controller 69

5.9 Timing diagram example for NoC design with two AES cores,

where each AES core receives a job to encrypt 5 blocks. The

rectangles marks different packets and the number in the rect-

angles defines the packet format according to Figure 5.2 70

5.10 FPGA floorplan of the NoC design with two AES cores 72

6.1 Benchmark for single AES core in custom and NoC Design

with one and two hops . 78

6.2 Benchmark for two AES core in custom and NoC designs. The

core 00 and core 11 lies one hop away from the Mem Ctrl. with

ID 01. The arrangement maybe obtained in Figure 6.3 79

6.3 Constellation where the core 00 and core 10 share, according

to the XY routing algorithm, the output link. The Mem. Ctrl

is the ID 01. The core 11 does not have any core attached . . 80

6.4 Constellation where the core 11 and core 10 share the input

link . 81

6.5 Benchmark for two AES cores, where the core 00 and core 10

share, according to the XY routing algorithm, the output link.

The Mem. Ctrl is the ID 01. The core 00 does not have any

core attached . 81

6.6 Benchmark for two AES cores where, the core 11 and core 10

shares the input link . 82

xii

6.7 Benchmark for three AES cores in the NoC design. The topol-

ogy is illustrated in Figure 6.6 83

xiii

List of Tables

1.1 Virtex-4 LX FPGA costs in US Dollars (source: Avnet Febru-

ary 2008) . 4

2.1 State of the art in NoCs [22] 13

6.1 Area and timing analysis of custom single AES design, cus-

tom dual AES design and NoC multi AES. First column gives

the names of modules, second column shows the area of each

modules in slices and the third column shows the maximum

speed for each module . 75

xiv

List of Abbreviations

ASIC Application-Specific Integrated Circuit
PCI Peripheral Component Interconnect
CLB Configurable Logic Block
DES Data Encryption Standard
DSP Digital Signal Processing
DyNoC Dynamic Network-on-Chip
ESM Erlangen Slot Machine
FIFO First-In First-Out
FPGA Field-Programmable Gate Array
HDL Hardware Description Language
ICAP Internal Configuration Access Port
IEEE Institute of Electrical and Electronics Engineers
I/O Input/Output
IOB Input-Output Block
LUT Look-Up Table
NoC Network-on-Chip
NP Non-deterministic Polynomial time
RAM Random Access Memory
RMB Reconfigurable Multiple Bus
RPM Relatively Placed Macro
VHDL Very-high-speed integrated circuit

Hardware Description Language

Chapter 1

Introduction

Field-Programmable Gate Arrays (FPGAs) are reprogrammable integrated

circuits (ICs), comprising an array of logic blocks (cells) placed in an in-

frastructure of interconnections, which can be programmed at three distinct

levels: (1) the function of the logic cells, (2) the interconnections between

cells, and (3) the inputs and outputs. All three levels are configured via a

string of bits, called a bitstream, that is loaded from an external source, either

once or several times while the device is powered on. However, this potential

power necessitates a suite of tools in order to design a system. Essentially,

these tools generate the configuration bitstring, given such inputs as a logic

diagram or a high-level functional description.

FPGA design tools start by synthesizing an application circuit specified

in a design language such as VHDL [12] or Verilog [13] into a netlist, which is

mapped to a particular FPGA, thereby creating a circuit description, and fi-

nally generating the configuration bitstream for this circuit description. Once

the bitstream is loaded into the configuration memory of the FPGA, it be-

1

haves like the application circuit description that was synthesized at the start

of the design flow. Thereafter, loading a different bitstream to change the

circuit on the device is known as a reconfiguration.

FPGAs like the Xilinx Virtex-4 family [30] offers an opportunity to re-

configure the device in a partial and dynamic manner. After the bitstream

is loaded and the FPGA is operating it is possible to reconfigure a part of

the device, while the remaining parts are continue running. This reduces the

amount of data that needs to be transfered as well the time needed for re-

configuration. In the literature ,the names for this procedure are not unique,

the common variants are runtime partial reconfiguration or partial dynamic

reconfiguration (PDR).

The Virtex FPGA family supports two basic styles of partial reconfigu-

ration: module-based and difference-based. Module-based partial reconfig-

uration uses modular design concepts to reconfigure large blocks of logic.

The distinct portions of the design to be reconfigured are known as reconfig-

urable modules. Because specific properties and specific layout criteria, such

as communication interface and 2D communication layout, must be met with

respect to a reconfigurable module, any FPGA design intending to use partial

reconfiguration must be planned and laid out with that in mind [29].

Partial dynamic reconfiguration opens up a variety of applications across

many industries. It potentially increases system performance. Although a

portion of the design is being reconfigured, the rest of the system can continue

to operate. There is no loss of performance or functionality with unaffected

portions of a design i.e., no down time. It also allows for multiple applications

on a single FPGA [31].

2

Embedded systems often use FPGAs, because they offer the ability to pro-

vide alternative hardware components. If the system requires two or more

hardware components and only one is active at the time, it may be possible

to use a FPGA and reconfigure it as the situation demands. Some industries

already uses this approach, e.g. in aeronautic, automotive, multimedia, in-

dustrial process control. But most designs targeted at the FPGA are static

and do not change during operation.

The potential to partially reconfigure FPGAs at run time, introduces

many benefits to the designer. The most relevant for this thesis is supporting

so-called hardware virtualization, where a design is generally partitioned and

swapped over time onto the FPGA. This allows the designer to fit a larger

design onto a smaller FPGA [28]. Because of the high cost of the larger

FPGAs it may be beneficial to partition the design and run it on a smaller

FPGA in order to reduce part cost and power consumption. This is especially

advantageous, since a larger device is almost twice the cost of the next smaller

alternative, shown as the multiplicative factor in parentheses in Table 1.1,

which lists the average prices of Virtex-4 devices from Avnet as of February

2008. Note that the price per logic cell also increases as the device size

grows [16].

Since the size of modern FPGA scales gradually, an alternative use of

partial dynamic reconfiguration in FPGA may be preferred, where by the

high cost of resources (e.g. chip cost, power consumption) may be be shared

among many applications. This would enable multitasking systems and in-

crease the overall utilization of a device. Multitasking on an FPGA-based

processor is one possibility to explore the efficacy of reconfigurable comput-

3

Device Logic Cells Average Price Price/Logic Cell
XC4VLX15 13,824 $206.22 $0.0149
XC4VLX25 23,192 $420.63 (×2.04) $0.0181
XC4VLX40 41,472 $608.13 (×1.45) $0.0147
XC4VLX60 59,904 $928.75 (×1.53) $0.0155
XC4VLX80 80,640 $1493.75 (×1.61) $0.0185
XC4VLX100 110,592 $2816.25 (×1.89) $0.0255
XC4VLX160 152,064 $4560.63 (×1.62) $0.0300
XC4VLX200 200,448 $8320.00 (×1.82) $0.0415

Table 1.1: Virtex-4 LX FPGA costs in US Dollars (source: Avnet February
2008)

ing. Conventional computers and operating systems have demonstrated the

many advantages of sharing computational hardware by several tasks over

time. The ability to do run-time configuration allows the opportunities of

multitasking to be investigated.

Design complexity, verification, and time-to-market pressures encourage

reuse of components and designs that are tried and proven. Module-based

design methodologies form a class of higher-level design methods that focus

on implementing a design that is specified or described in terms of its con-

stituent modules [6][14]. As such, dynamic reconfiguration at the module

level is ideal for implementing hardware virtualization or multitasking [16].

Modular dynamic reconfiguration is currently not widely used in the in-

dustry, the reason could be the lack of practical methods and frameworks. If

the vendor wants to design a partial reconfigurable system, it has to develop

all the communication interface between static and reconfigurable part from

scratch. This entails that the system designer must have intimate knowl-

edge of the FPGA device architecture and partial reconfiguration, and how

to best design an application for dynamic reconfiguration. If this step would

4

be generalized and developed into a well known procedure, maybe vendors

would use it more often.

This thesis investigates a general approach for communication and a gen-

eral communication interface between IP blocks. In doing so, it presents a

specific Network on Chip (NoC) and proposes a top-down methodology for

implementing the interfaces used by the NoC. This work proposes a frame-

work in which the partial dynamic reconfiguration can be done without caring

about the connections between modules. This framework is implemented on

the the Virtex-4 FPGA family [30] and has some limitations, which makes it

possible to focus on the investigation in a relevant scope.

1.1 Thesis Contributions

This thesis focus on difficulties using FPGAs in a multitasking manner. Con-

current usage of the input and output resources, while using an NoC infras-

tructure, is the main focus of this work. Another point of investigation is

a general interface for communication between IP modules and the NoC,

allowing partial dynamic reconfiguration of modules without errors in the

NoC. The decision was made to use an already available NoC infrastructure

named HERMES from the GAPH group [22] and to examine the sufficiency

of this Infrastructure for the needs of the multitasking FPGA environment

with highly concurrent inputs and outputs.

A general guide is presented for designing so-called glue logic or wrappers

between the modules and the NoC interfaces. A top-down methodology is

presented, in which a custom design is modified into an NoC design. An

5

extension is also made for general signals, where different signal approaches

were examined and the implementation models into NoC infrastructure were

worked out.

This thesis also proposes a test implementation of a custom design, which

uses two AES cores for test purposes. The custom design uses conventional

design methods and implements a single purpose system in which the speed

is optimized. This custom system serves the role of a reference design against

which the NoC infrastructure is tested. Further the thesis proposes an im-

plementation of an NoC - based design with multiple AES core. The AES

cores network interface is designed in a general manner, and this allows reuse

of the implementation.

This work advocates the use of NoC infrastructure and proving the feasi-

bility by proposing some experiments, where the performance of the custom

design and NoC designs are evaluated.

This work discovers also some possible improvements, which are presented

and are a target for future development.

1.2 Thesis Organization

The relevant background and state of the art is discussed in the Chapter 2.

It gives an overview of the idea to use pages for implmenting reconfigurable

modules and possible advantages. Further it addresses the general discussion

about benefits and drawback of an NoC for communication.

Chapter 3 presents the main methodologies and constraints in this work.

It gives an overview of the general requirements for page-based communi-

6

cation and of the NoC infrastructure (HERMES). The methodology for for

designing of network interfaces forms the main part of this Chapter.

The custom design for two AES cores is presented in details in the Chap-

ter 4. The implementation of the interface between the memory, PCI bus

and the host application is systematically illustrated.

Chapter 5 addresses the implementation design of the NoC with multiple

AES cores, where the relevant NoC parameters are discussed, the particu-

lar example of the designing a network interface for an AES core ,memory

controller and a PCI bus, is presented. Further, the packet formats that are

proposed to be used in this particular implementation are outlined.

The Chapter 6 presents an evaluation of the effectiveness of NoC commu-

nications compared to a conventional custom design. Experimental bench-

marks for assessing the performance of custom designs and NoC designs are

introduced and the results of the experiments are presented and explained.

Further the results are discussed and a preliminary evaluation is made. Based

on the results, some suggestions for further improvement are presented.

The last Chapter 7 concludes this thesis with a summary of the work

and its evaluation. Further directions for future work and improvement are

proposed.

7

Chapter 2

Background and Related Work

This chapter presents the relevant background for the scope of the thesis:

the support for pages in todays FPGAs is presented (Section 2.2), a general

approach to page-based communication is described in Section 2.1, and an

overview of the previous work is given.

This thesis is based on NoC communication, which has to replace the

static wiring concept between modules of earlier work by Shannon Koh [15].

This chapter illustrates in the Section 2.3 the previous work done on NoC,

and introduces aspects such as topology, flit size, buffering, router area, per-

formance and implementation.

The last section presents an overview of previous work in support for

module-based dynamic reconfiguration.

8

2.1 Introduction

To divide the FPGA into fixed pages and use the pages for virtualization

of designs comes from the well known approach of virtual memory. But

the concept of virtual memory is quite simple, it requires to store the data

for some period of time. In the FPGA world this approach needs more

capabilities, such as communication ability to other pages and to the off chip

resources.

The next section analyzes the Xilinx FPGA families for feasibility for

FPGA paging. One of the newest capabilities of the Virtex 4/5 families is

the option to run particular parts of the FPGA with distinct clock speeds.

This option allows the FPGA to be shared and run several applications with

different timing, where by those can still communicate with each other. How-

ever, it is exactly this option that causes some new issues for the communi-

cation interface, since it connects different clock regions and still has to be

general.

The paged FPGA approach allows the FPGA resources to be used for

various applications running in parallel. Today, FPGAs are mostly used for

single applications. Using pages, it becomes feasible not just to reconfigure

the FPGA during the operation as the autonomous system demands, but

to use the FPGA for multitasking purposes. FPGAs are playing the role of

a multipurpose processor which is controlled by an operating system. The

methodologies used by virtual memory approach are similar to the framework

introduced by FPGA paging.

9

The communication between pages needs to describe a general in-

terface in terms of supporting partial dynamic reconfiguration for swap-

ping/programming a page. Some approaches to this communication problem

are already presented by other research work, but the main problem with this

is a lack of scalability and generality. In Section 2.4 some related research

works are presented and discussed.

2.2 FPGA Pages - Distinct Clock Regions

Each Xilinx Virtex FPGA Family has specific characteristics, which need

to be known to be able to design a page-based application framework. For

example, the distinct clock regions and the smallest partial reconfiguration

frame are different in each generation. This Section gives an overview about

last three Virtex FPGA generations and their ability to support paging.

2.2.1 The Virtex-4 FPGA Family

Since the Virtex-4 FPGA Family [30] was introduced by Xilinx in 2004, the

support for partial reconfiguration has changed and allows more flexibility

for users and introduces the ability for page oriented reconfiguration.

Previous Virtex Families, such as Virtex-2, allowed reconfiguring a frame

spanning the entire hight of a FPGA device as a smallest unit . This makes

use of pages not feasible. The Virtex-4 family introduces new architecture

improvement specific to partial reconfiguration, where the smallest reconfig-

uration frame consists of 16 CLB in the hight and the entire hight consists

of multiple of 16 CLB rows.

10

Independant clock regions were introduced first in Virtex-4 Family, this

allows applications to run inside one or more clock regions with different

timing constrains. So the smallest Virtex-4 FPGA has 8 such independent

clock domains and the largest device has 24.

New options provided in Viretex-4 were the intention to introduce the idea

of paging. So a page is an area on a chip with an independent clock region,

where each row of 16 CLBs may be reconfigured dynamically. Figure 2.1

shows the bottom half of the layout in a smallest Virtex-4 FPGA, overall it

has 8 distinct clock domains.

2.2.2 The Virtex-5 FPGA Family

In 2006 the Virtex-5 FPGA generation was introduced and brought some

new options [32].The architectural structure for partial reconfiguration re-

mains the same and does not have any impact on the proposed paged-based

reconfiguration scheme, except that the smallest reconfigurable unit consists

of 20 CLB rows in this device family.

Important improvements to the Virtex-4 architecture included 6-input

LUTs, diagonal routing and an increased maximum clock frequency of 550

MHz compared to the Virtex-4 at 500 MHz.

2.2.3 The Virtex-6 FPGA Family

In February 2009, Xilinx introduced the next generation of Virtex family -

the Virtex-6 FPGA [33]. The changes made to the architectural structure

11

Figure 2.1: Pages in an XC4VLX15 device. It consists of 8 independent
clock regions. The figure shows the bottom half of the device and indicates
the smallest reconfiguration unit (row) as well distinct clock regions [25]

for partial reconfiguration is an increase to the page size, now it is doubled

compared to Virtex-5 family and the smallest unit is a column of 40 CLBs.

Since the smallest unit consists of 40 CLB rows, the amount of the clock

regions has slightly decreased compared to previous generations to 6 - 18. If

before there were some concerns about the size of a page, now the page is

quite large and it allows fitting larger cores into it.

12

2.3 NoC - Previous Work

NoC Topology Flit Size Buffering Router

Area

Perfor. QoS Impl.

aSOC-
2000 [17]

2D Mesh
Scalable/ De-
termined by
application

32 bits None 50,000
transistors

Circuit
switch-
ing(no
wormhole)

ASIC lay-
out CMOS
0.35m

Dally-
2001 [8]

Folded 2D
Torus 4x4/
XY Source

256 bits
data +
38 bits
control

Input
queue

0.59 mm2

CMOS
0.1m

4 Gbits/s
per wire

Guarant.
Through-
put (vir-
tual chan-
nels)

No

Marescaux-
2002 [19]

2D Torus
(scalable) /
XY blocking,
hop-based,
deterministic

16 bits
data +
3 bits
control

Virtual
output
queue

446 slices
Virtex-
II(4.8%
area over-
head for
XCV800)

320Mbits/s
per vir-
tual
channel
at 40
MHz

2 time mul-
tiplexed
virtual
channels

FPGA
Virtex-II

Rijpkema-
2002 [23]
[24]

2D Mesh 32 bits Input
queue

0.26 mm2
CMOS
0.12m

80Gbits/s
per
switch

Circuit-
switching
(guar-
anteed
through-
put)

ASIC lay-
out

Hermes-
2003 [22]

2D Mesh (scal-
able) / XY

8 bits
data +
2 bits
control
(paramet-
erizable)

Input
queue
(paramet-
erizable)

631 LUTs
316 slices
Virtex-II

500
Mbits/s
per
switch at
25 MHz

No FPGA
Virtex-II

MultiNoC-
2005 [20]

2D Mesh (scal-
able) / XY

8 bits
data +
2 bits
control
(paramet-
erizable)

Input
queue
(paramet-
erizable)

631 LUTs
316 slices
Virtex-II

1 Gbit/s
per
switch at
50 MHz

No FPGA
Virtex-II

DyNoC-
2005 [3]

2D Mesh
/ custom
routing

32 bits
data + 4
control

six 32-
bit FIFO
buffers

0,5% of
Virtex-II
6000

Timing
391 MHz

No Virtex-II
6000

Table 2.1: State of the art in NoCs [22]

This Section is intended to provide a big picture of the state of the art in

Network on Chip (NoC) propositions. The results of the review are sum-

marized in Table /reftab:NoCs. In this Table, each row corresponds to an

NoC model that could be found in a liturature. The NoC parameters con-

sidered relevant can be divided into three groups: (i) structural information,

presented in the four first columns; (ii) performance information, in the fol-

13

lowing three columns; (iii) prototyping or silicon implementation details, in

the last column.

Although the authors do not pose claims about the completeness of this

review, they consider it rather comprehensive. Benini, De Micheli and Ye

made important contributions to the NoC subject area in their conceptual

papers [21] [2] [27]. However, none of these documents contains any NoC

implementation details, except HERMES NoC [22], where MultiNoC is based

on HERMES NoC

Each NoC defining parameter is described in detail below, together with

an evaluation of the relative merits of each reviewed NoC proposition.

Almost all reviewed NoCs are based on packet switching and this is not

stated in the table. The exception is the paper proposing the aSOC NoC [17],

where the connection for each packet is fixed after the synthesis step. The

first column in the Table 2.1 describes the topology of the NoC and the

switching strategy. The most common topology used by many authors is

a 2D mesh topology, it offers facilitated implementation using current IC

planar technologies, simplicity of the XY switching strategy and network

scalability. Another approach is to use the 2D torus topology, to reduce

the network diameter [19]. The folded 2D torus presented by Dally [8] is

an option to reduce the increased cost in wiring compared to a standard

2D torus. Concerning switching strategies, there is a clear lack of published

information on specific algorithms. This indicates that further research is

needed in this area. For instance, it is widely known that XY adaptive

algorithms are prone to deadlock, but solutions exist to improve XY routing

without causing deadlock risk.

14

The second important quantitative parameter of NoC switches is the flit

size. From Table 2.1 it is possible to classify approaches into two groups,

those focusing on future SoC technologies and those adapted to existing lim-

itations. The first group includes the proposal of Dally [8], where switching

channels are supposed to be 300-wire wide without significantly affecting the

overall SoC area. However, this is clearly not feasible for today’s FPGAs.

The second group comprises works with flit sizes ranging from 8 to 64 bits, a

data width similar to current processor architectures. The works providing

an NoC prototype, Marescaux [19] and Moeller [22], have the smallest flit

sizes, 16 and 8 bits, respectively.

The next parameter in Table 2.1 is the switch buffering strategy. Most

NoCs employ input queue buffers. Since input queuing implies a single queue

per input, this leads to lower area overhead, justifying the choice. Another

solution is to use virtual output queuing associated with time-multiplexed

virtual channels, as proposed in [19].

Another important parameter is the queue size, which implies the need

to solve the compromise among of the amount of network contention, packet

latency and switch area overhead. A bigger queue leads to small network

contention, higher packet latency, and bigger switches. Smaller queues lead

to the opposite situation.

The fourth column collects results concerning the size of the switch. It

is reasonable to expect that the adoption of NoCs by SoC designers be tied

to gains in intra-chip communication performance. On the other hand, low

area overhead when compared with e.g. standard bus architectures is an-

other important issue. A SoC design specification will normally determine

15

a maximum area overhead allowed for intra-chip communication, as well as

minimum expected communication performance, possibly on an IP by IP ba-

sis. Switch size, flit size (i.e. communication channel width) and switch port

cardinality are fundamental values to allow estimating the area overhead and

the expected peak performance for intra-chip communication.

Estimated peak performance, presented in the fifth column of Table 2.1,

is a parameter that needs further analysis to provide a meaningful compari-

son among different NoCs. In this way, this column displays different units

for different NoCs. This column must accordingly be considered as merely

illustrative of possible performance values. Most of the estimates are derived

from the product of three values: number of switch ports, flit size, and es-

timated operating frequency. The wide variation of values is due mostly to

the last two values. No measured performance data could be found in any

reviewed publication.

Next comes the quality of service (QoS) support parameter. The most

commonly found form of guaranteeing QoS in NoCs is through circuit switch-

ing. This is a way of guaranteeing throughput and thus QoS for a given com-

munication path. The disadvantage of the approach is that bandwidth may

be wasted if the communication path is not used at every moment during

the time the connection is established. In addition, since most approaches

combine circuit switching with best effort techniques, this brings as conse-

quence the increase of the switch area overhead. This is the case for NoC

proposals presented in [8] and [23]. Virtual channels are one way to achieve

QoS without compromising bandwidth, especially when combined with time

division multiplexing (TDM) techniques. This last technique, exemplified

16

in [19] avoids that packets remain blocked for long periods, since flits from

different inputs of a switch are transmitted according to a predefined time

slot allocation associated with each switch output. It is expected that cur-

rent and future SoC utilization will be dominated by streaming applications.

Consequently, QoS support is regarded as a fundamental feature of NoCs by

the authors. [22]

Finally, it is possible to state that NoC implementation results are still

very scarce. None of the two ASIC implementations found in the literature

gives hints to whether the design corresponds to working silicon. In addition,

four NoCs have been reported to be prototyped in FPGAs, those proposed

in [19],[22] and [3].

2.4 Support for Module-based Dynamic Re-

configuration

2.4.1 On-Demand Run-Time System by Ulmann

Ullmann et al. [26][10][11] proposed the On-Demand Run-Time System as

shown in Figure 2.2. This system implements a custom bus system, and

attached to it, four areas for dynamically reconfigured modules. It also im-

plements bitstream decompression and self-reconfiguration via the ICAP.

17

Figure 2.2: On-demand run-time system (Ullmann et al.)

The bus protocol overheads still exist. In addition, there can be long

routing paths from the top of the modules to the bus interfaces at the bottom

and then through the bus network (labeled as “Bus-Macro” in Figure 2.2).

It is also unclear as to how one designs applications targeted to this system.

2.4.2 Erlangen Slot Machine (ESM) by Majer

One-dimensional, slot-based approach is the Erlangen Slot Machine (ESM)

by Majer et al. [18]. The ESM is composed of two boards: a BabyBoard

and a MotherBoard, as shown in 2.3. The MotherBoard is composed of a

crossbar switch that links external I/O to the BabyBoard, and a PowerPC

that runs software to control the application. The BabyBoard has a recon-

figurable Virtex-II FPGA, SRAM and a reconfiguration manager responsible

18

for bitstream relocation and loading. Modules are loaded into fixed-sized

slots M1-M3 on the Virtex-II FPGA.

Figure 2.3: The Erlangen Slot Machine (Majer et al.)

There are four levels of inter-module communications provided on the

ESM: shared SRAM gives access to two neighboring modules among each

other, direct communication between adjacent modules by using bus macros,

non-neighboring modules can communicate via a modified version [1] of a

Reconfigurable Multiple Bus (RMB) [9] and the crossbar is used for off-chip

communication.

This approach also suffers from area and timing overheads required to

manage the system and its communications. The RMB requires crosspoint

modules consisting of a controller, FIFOs and data network. External I/O

is very expensive as it has to go off-chip into another FPGA, which in turn

has to be routed through the crossbar and then off-chip again to the actual

19

peripherals or off-chip logic. The delay of the crossbar itself is 15 ns with an

18 clock-cycle setup time.

Programming such a system is an extremely complex task. The multiple

levels of communication and application management add a high degree of

complexity at the application design level.

2.4.3 Dynamic Network-on-Chip architecture

(DyNoC) by Bobda

Two-dimensional approaches offer more flexibility in placement and thus the

possibility of shorter intermodule wiring paths. The Dynamic Network-

on-Chip architecture (DyNoC) proposed by Bobda et al. [3] [4] is a two-

dimensional network-on-chip with routers laid out in a grid on an FPGA

(see Figure 2.4). Rectangular modules of any size can be placed onto the

network. Routers are disabled if they are temporarily obscured by a module

placed over them, and are re-enabled when the module is removed.

It is a complex task to determine the appropriate set of shapes and place-

ments of the modules in the application such that area and timing constraints

are met. This is accentuated by the fact that it is very difficult to provide

network bandwidth guarantees. The complete temporal communication pat-

terns of the application must be known. Even then, doing so requires that

multiple NP-hard problems be solved, as determined by Chan et al. [5] in

addressing a similar problem in NoC topology generation and module shap-

ing.

20

Figure 2.4: DyNoC (left: conceptual, right: implemented) by Bobda et al.

Finally, some area of the chip is underutilized because a ring of unob-

scured routers must surround every module in order to ensure routability.

Technically speaking, a two-dimensional layout such as this is counter-

intuitive to the reconfiguration mechanism of the Virtex and Virtex-II de-

vices. Since a configuration frame spans the entire height of the device re-

configuring a module that is wider than it is high will take longer than one of

the same size that is rotated 90 degrees. This tends to indicate that the best

way to lay out modules would be to pack them into the narrowest possible

rectangles, thereby reverting to a one-dimensional layout.

2.5 Conclusion

This Chapter discussed the background found in the literature about NoC

implementations and their support for partial dynamic reconfiguration. The

approaches provide quite complex frameworks with impracticable limitations.

21

Further, the approaches provide an overview of how they are supposed to be

implemented, but do not give application examples where they would be

suitable.

The scope of paged design in newer FPGA families was also analyzed and

the benefits stated. The main advantages offered by pages is virtualization

and multitasking ability, but the proposed requires a general interface and

suitable NoC support. After the research of previous work, it was concluded

to use the HERMES [22] NoC framework because of its simplicity, low level

of overhead, provided examples, and available simulation framework.

22

Chapter 3

NoC Support for FPGA Pages

The concept of ”pages” supported by todays FPGAs is the main idea of this

thesis and it is explored in this chapter. In Section 3.1 this chapter presents

the requirements of the system for supporting pages. The NoC HERMES,

configured as a suitable communication media, is presented in Section 3.3.

The degree to which the design freedom was constrained is explained in

Section 3.2. Furthermore, Section 3.4 presents the importance and design

guidelines followed for the Network Interface Core (NWIF) in this work.

3.1 Requirements of the system

This Section gives an overview of the requirements imposed by the ”paged”

use of an FPGA. Paged use of an FPGA refers to capability of modern

FPGAs to reprogram independent, rectanglular areas. Further, each of such

rectangles forms an independent clock domain (See Section 2.2.1).

23

One of the main requirements of a paged dynamic reconfiguration method

is a generalized communication approach. This requirement is presented in

Section 3.1.1. The appropriate requirements of the interfaces supporting

pages is described in Section 3.1.2. The model of communication, required

to be supported by interpage and off-chip communications, is presented in

Sections 3.1.3 and 3.1.4.

3.1.1 NoC

Network on Chip (NoC) is a new approach to System on a chip (SoC) de-

sign. NoC-based systems can accommodate multiple asynchronous clocking

as used in many of today’s complex SoC designs. The NoC solution brings a

networking methodology to on-chip communication and brings notable scal-

ability and performance improvements over conventional bus systems.

The paged design introduced in Section 2 requires an appropriate commu-

nication framework to be able to exchange data between pages and off-chip

resources. Previously a point-to-point communication scheme based on static

wiring between modules was investigated and implemented [16]. The results

were not sufficient in terms of scalability and simplifying the process of partial

dynamic reconfiguration.

The need for a more general communication method and a general support

for partial dynamic reconfiguration were the reasons why the NoC concept

was chosen to implement the page-based communication. NoC provides en-

hanced scalability in comparison with previous communication architectures

such as point-to-point and shared bases communications. Further, on one

hand it allows the wires in the links of the NoC to be shared, which reduces

24

the demand for wiring resources, and on the other hand it is capable of op-

erating simultaneously on different data packets on independent links, which

achieves a high level of parallelism.

The NoC selected in this Thesis is static and so it does not need to be

reprogrammed during run time, but it has to to provide a general interface

to each communication partner such as each page and off-chip resource, via

an interface, as described in the next section.

3.1.2 Page/Network Communication Interface

Since the communication infrastructure is defined once at the outset, a gen-

eral communication interface has to be defined, which is suited to every con-

nection between network nodes and pages as well as off-chip communication

port. We want the pages and off-chip communication ports to be partially

reconfigurable FPGA areas. To decrease the complexity, the ports could be

also predefined and configured once at the beginning.

To delimit the partial reconfiguration area from the network the interface

between them has to use a reliable attach/detach mechanism. There are

several approaches for realize this. One of the common methods is provided

by Xilinx, but this approach is superseded. The bus macros from Xilinx are

based on tri-state buffers, which are scarce resources in Xilinx FPGAs. An-

other approach, presented in Section 3.3.3, is proposed by the group GAPH

from Catholic University of Rio Grande do Sul, Brasil [20].

The communication interface has to provide support for partial dynamic

reconfiguration, where during a partial reconfiguration process the network

25

should not be affected by glitches in the interface between page and net-

work. These glitches may introduce spurious data into the network, causing

malfunctions or even circuit blocking. In addition, packets transmitted to

an area undergoing reconfiguration, must be discarded, since it is typically

impossible to know if these packets are targeted to the previous configuration

in this area or to the next one.

Another requirement of the network and interfaces is the ability to scale

with future devices and provide the same operational utilization. For this

purpose the NoC is supposed to be fully parametrized and provide a high

level simulation framework.

Figure 3.1 shows a lower half of the XC4VLX15 Virtex-4 device. The

XC4VLX15 Virtex-4 device has overall 8 pages. The figure shows just the

lower 4 pages, which are connected to each other using an NoC. The topol-

ogy of the NoC is a mesh, chosen because of its simplicity and small imple-

mentation overhead [22]. The routing algorithm used here is XY Routing,

according to which all routers have a unique, fixed address. An XY Routing

algorithm requires a strict mesh topology to perform well and in a determin-

istic, deadlock and starvation free manner [20]. In our case it is required, that

intermediate routers are located on the Y-axis to satisfy this requirement.

The Figure 3.1 also shows the routers with address 30 and 31, which are con-

nected to the IO blocks. To achieve low area overhead and high performance,

the off-chip ports have to be chosen well.

26

Figure 3.1: NoC mesh layout with intermediate Routers

3.1.3 Inter Page Communication

This section introduces some general communication scenarios, imposed by

paged-based architecture, which need to be supported by the NoC and which

need a deeper investigation to find optimal solution.

The first scenario is page to page communication in which one page com-

municates with another one and the NoC does not have any congestion on

the link between two pages. This is a best case in which the communication

is possible with the full bandwidth of the NoC.

If two or more pages want to communicate with one specific page over one

link, then congestion occurs in the network, since the link has to be shared

between many pages. At this point, the order in which access to the link is

27

provided is determined by an arbiter in a particular NoC router, where one

page needs to wait (is blocked) and another can communicate. Since the link

is shared and the bandwidth is fixed, the data of both pages needs more time

to arrive at its destination. To prioritize one of the pages, the communication

infrastructure can provide QoS and give more priority to a specific task.

If a task has a realtime constraint and relies on communication with

another component it is very hard to predict the behaviour of the network,

except when QoS is implemented and used. It is possible to allocate the page

in a cluster with no link sharing and so it is also possible to predict the run

time of the communication.

3.1.4 Shared Access to Common Ports

Another scenario is the communication between many pages and one off-chip

resource. The resource is accessible through some dedicated I/O pins. This

is similar to the scenario above, but the potential communication need is

higher. To avoid congestion and blocking of some applications a solution

could be increasing throughput to the off-chip resource or choosing a large

buffer for critical ports. This decision can be made if the Interface of external

resources is known. The goal is to maximize the utilization of the off-chip

resources such as memory read and write operations

3.2 Constraining the Degrees of Freedom

To assess the main problems, as outlined in the previous sections some sim-

plifications are made to the model and described below.

28

3.2.1 Clock and Clock Regions

The first simplification is the clock speed, which can be set independently

for each page region, and ideally the clock speed is allowed to vary for every

page region according to the IP. This requires the ability to operate different

routers at different clock speeds. In this work it is assumed that page IP

operates with the same clock speed as the NoC model and constrains the

whole FPGA to operate at one clock speed for the sake of prototyping. The

network as well the cores operate with the same clock speed and are limited

by the slowest component.

3.2.2 IP-Cores

In this work it is assumed that the page is large enough to fit any core on

it, and not constrained to a fix region or timing constrains on the device,

which would be needed for a mesh structure. Further, this work uses just

cores which provide a built-in blocking mechanism, or does not need such

communication type.

3.3 HERMES - NoC Infrastructure

HERMES is the name of a NoC infrastructure developed by the group GAPH

from Catholic University of Rio Grande do Sul, Brasil [20] and proposed in by

Moares et al. in [22]. This section gives a top-down overview of important

details of this NoC. Section 3.3.1 gives a role of the HERMES NoC and

provided services. The routers and interface implemented in HERMES are

29

described in detail in Section 3.3.2. Section 3.3.3 presents an adaptation of

the interface to support partial dynamic configuration.

3.3.1 Network on Chip

HERMES is an infrastructure used to generate NoCs with packet switching,

which is adaptable for different topologies, flit sizes, buffer depths and rout-

ing algorithms. The HERMES name is also employed to refer to the NoCs

implemented with this infrastructure and to the other components of this

network, like routers and buffers.

With the HERMES infrastructure it is possible to implement the three

lower levels of the ISO OSI Reference Model: (i) physical - corresponding

to the definition of the router physical wiring interface; (ii) link - which

defines the data transfer protocol between routers (the HERMES infrastruc-

ture adopts an explicit handshake protocol for sending and receiving data

reliably) (iii) network - corresponding to the level at which the switching

mode employed by the NoC is defined.

3.3.2 HERMES Router and Interface

The HERMES infrastructure assumes wormhole packet switching is used.

The main component that implements this characteristic is the HERMES

router shown in Figure 3.2. This router contains two parts: control logic

and a set of up to 5 bidirectional ports: East, West, North, South and Local.

Each port contains a queue to temporarily store packet flits, and whose size

is parameterizable at design time. The Local port establishes the commu-

30

nication path between the processing core and the NoC, and from the local

router to any other core in the system. The remaining ports connect routers

together. The control logic is composed of two modules: routing and arbitra-

tion. The routing module implements one of the algorithms made available

by the HERMES infrastructure. The arbitration module determines which

packet must receive priority to be switched inside the router when more than

one packet arrives simultaneously at the router requiring the same output

port. A dynamic arbitration scheme(round-robin) is assumed by the HER-

MES infrastructure [22].

Figure 3.2: HERMES router architecture. B indicates input buffers

The routing algorithm defines the path taken by a packet between the

source and the destination. The deterministic XY routing algorithm is taken.

The HERMES NoC follows a mesh topology, justified to facilitate routing,

IP cores placement and chip layout generation. The routers use an 8-bit flit

size in parallel (bandwidth of the link n = 8), and the maximum number of

flits in a packet is fixed at 2(flitsizeinbits). The first and the second flits of a

packet are header information, being respectively the address of the target

router, named header flit, and the number of flits in the packet payload. An

asynchronous handshake protocol is used between neighboring routers. The

31

physical interface between routers is shown in Figure 3.3 and is composed of

the following signals:

• tx : control signal indicating data availability;

• data out : data to be sent;

• ack tx : control signal indicating successful data reception.

• rx : control signal indicating data availability;

• data in: data to be received;

• ack rx : control signal indicating successful data reception.

Figure 3.3: Physical interface between routers in HERMES framework

The control logic implements the routing and arbitration algorithms.

When a router receives a header flit, arbitration is performed, and if the

incoming packet request is granted, an XY routing algorithm is executed to

connect the input port data to the correct output port. If the chosen port

is busy, the header flit, as well as all subsequent flits of this packet, will be

blocked in the input buffers. The routing request for this packet will remain

active until a connection is established in some future execution of the proce-

dure in this router. When the XY routing algorithm finds a free output port

32

to use, the connection between the input port and the output port is estab-

lished. After routing all flits of the packet the connection is closed. At the

operating frequency of 50MHz, with a word size (flit) of 8 bits the theoreti-

cal peak throughput of each HERMES router over one link is 1 Gbits/s [22].

This is because a router can establish up to five connections simultaneously

(Lin->Eout, Ein->Nout, Nin->Wout, Win->Sou, Sin->Lout, as referred in

Figure 3.2).

Arbitration logic is used to grant access to an output port when one or

more input ports require a connection at the same time. At the first step

round-robin arbitration scheme is used to avoid starvation. Thereafter a

prioritized arbitration scheme is implemented, to grant priorities to differ-

ent packets, depending upon type or source. When a flit is blocked in a

given router, the performance of the network is affected, since several flits

belonging to the same packet may be blocked in several intermediate routers.

To lessen the performance loss, a 4-flit buffer is added to each input router

port, reducing the number of routers affected by the blocked flits. Larger

buffers can provide enhanced NoC performance. Buffers work as circular FI-

FOs. The minimal latency in clock cycles to transfer a packet from source

to destination is given by:

latency (min) = (
n∑

i=1

Ri) + P ∗ 2

where: n is the number of routers in the communication path (source and

target included), Ri is the time required by the routing algorithm at each

router (at least 7 clock cycles), and P is the packet size. This number is

33

multiplied by 2 because each flit requires 2 clock cycles to be sent in case the

path is free, due to the handshake protocol.

3.3.3 HERMES Interface Adaptation for PDR

NoCs are good choices due to their scalability, increased parallelism and

short-range wires that reduce power consumption. This section proposes

Artemis, a NoC that supports specific reconfiguration services and is based

on the HERMES NoC [22]. This Section describes the modifications carried

out in HERMES to allow its use in dynamically reconfigurable systems. Sec-

tion 3.1 presented the requirements of a partial reconfiguration process. To

fulfill these, a set of services is added to the NoC.

Three services are implemented in Artemis: (i) reconfigurable area insula-

tion; (ii) packet discarding; (iii) reconfigurable area reconnection. HERMES

added of two functionalities to support these services: (i) definition of con-

trol packets, enabling IPs to send packets to routers, not only to other IPs;

and (ii) the capacity to disconnect/connect routers to its associated recon-

figurable area.

The addition of two sideband signals per port to the original HERMES

router serves to differentiate control packets from data packets. These sig-

nals, depicted in Figure 3.4, are ctrl in and ctrl out. For each flit sent by

data out, the ctrl out is asserted together with tx if the flit is a control packet.

The target router receives flits analogously, using data in, rx and ctrl in sig-

nals. When the reconfigurable area is insulated, the router discards any data

packets sent to the area under reconfiguration. Insulation also protects the

network, since during reconfiguration transients can occur in the reconfig-

34

urable interface. Once the new IP is configured, a control packet reconnects

IP and router, enabling normal operation.

Figure 3.4: Interface between Artemis routers

The reception and forwarding of control and data packets is similar. The

major change in the router is the addition of one bit at each position of

the input buffer. This is required to propagate the value of the ctrl out

signal to the reconfigurable IP router. When the control packet arrives at its

destination router, it decodes and executes the corresponding operation.

Figure 3.5: GAPH macros: (a) Fixed to Reconfigurable area (F2R); (b)
Reconfigurable to Fixed area (R2F) [20]

To delimit the static region and the partial reconfiguration region GAPH

macros are used, it is a new reconfigurable interface that does not impose

the use of a specific communication infrastructure. This interface uses LUTs.

35

Two unidirectional macros compose the reconfigurable interface, as depicted

in Figure 3.5. The first one, named F2R, is responsible to send data from the

fixed part of the system to a reconfigurable IP, while the second one, named

R2F, implements the communication in the reverse direction. Both macros

allow the simultaneous transmission of 8 data bits. The F2R macro is an

identity function, while the R2F uses special logic to avoid transient glitches

during the reconfiguration process from reconfigurable to fixed areas [20].

The complete interface between the Artemis router and a reconfigurable

IP appears in Figure 3.6. It uses two R2F macros to connect 10 bits from

right to left and two F2R macros to connect 11 bits in the opposite direction.

The interface between the router and the reconfigurable IP does not contain

the ctrl in and ctrl out signals because reconfigurable IPs neither send nor

receive control packets. The reset is a global signal used to initialize the entire

system. The router asserts the reconf signal to initialize the reconfigurable

core connected to the local port. The reconf n signal in Figure 3.6 connects

to the control signal in Figure 3.4, controlling the connection from the router

to the reconfigurable core.

Figure 3.6: Interface between Router and page, supporting partial dynamic
reconfigurable. Consists of Bus Macros from Figure 3.5 and control signals

36

3.4 Network Interface cores - Translator be-

tween Cores and NoC

This section addresses the network interface core, which has the central role

in interpreting signals coming from the NoC to a custom core or page and

vice versa. In the literature common names for it are glue logic, adapter

or wrapper. This thesis will use the more specific NoC name Network In-

terface Adapter (NWIF). Section 3.4.1 lists all the responsibilities and issues

involved in creating a NWIF. A guideline for designing an NWIF is presented

in Section 3.4.2, where various aspects which need to be kept in mind are

presented and discussed.

3.4.1 Role of the Network Interface

The NWIF plays the role of glue logic between a router and a logic page.

The page logic is producing some serial or parallel data: this data has to be

assembled by the adapter into packets accepted by the router. Furthermore,

the NWIF is responsible for the packet format and its destination. In the

opposite direction the NWIF disassembles arriving packets from the NoC

and translates them to serial or parallel data for the core/page. Another

important role of the NWIF is the handling of blocking, where the core/page

is blocked and the state of the core/page is recorded in the NWIF for further

processing after unblocking.

The complexity of a NWIF is related to the interface of a given core/page,

because it has to implement all translations from NoC to the core and back

37

for a given set of functionalities. Ususally the NWIF needs to be implemented

by the designer who wants to use a custom core in an NoC environment.

The interface between NWIF and router is well known (see Figure 3.6),

but the interface between NWIF and core/page may vary. A this point it

is desirable to develop a method for automatically generating the NWIFs

for a set of IP’s or a guideline for designing NWIF to assure reusability,

functionality and complexity reduction.

3.4.2 Design guidelines for Network Interface

The design guide is split into two parts: the first part describes general

construction suggestions, such as the role of different FSMs, blocking mech-

anisms and decoupling of control, the second part in this guide is concerned

with a set of communication types and how they are supposed to be handled

in the NWIF core.

It is very important to design a NWIF in a reusable manner and to try

to keep the complexity of the design as low as possible to optimize the power

and space consumption. These ideas were implemented and showed good

performance and reusability:

• Decoupling - this is a very important property for a well-designed

NWIF. The state of the core is supposed to be saved and managed

strictly by the NWIF of a particular core. For example if there is a

core which writes/reads data to/from memory the NWIF must save all

relevant data locally and the memory NWIF must provide the capa-

bility to write and read to or from memory. So the address of data is

38

kept at the local NWIF of a core and a request is sent to the memory

controller (controlled by memory NWIF) to read data from a particular

address. This allows the complexity to be kept low, since every NWIF

implements just the capabilities of the local core.

• Receiving FSM - senses the NoC for new packets addressed to the local

core. If the local core is required to process a new packet, this FSM

receives the packet, determines the format of the packet and finally

disassemble/interprets it. To be able to do so it needs to implement

all packet formats intended for the associated core and needs routines

for disassembling the packets. The role is of the Receiving FSM is over

when the FSM has received a packet, written all relevant data into

registers, and given a sign to the Control State FSM that new data

needs to be processed. Since it plays a role in the blocking mechanism,

it is supposed to receive a packet only if the local core can handle it,

this is determined in the Control State FSM.

• Control State FSM - is the FSM which communicates directly with

the local core. The role of this FSM is to control the local core, by

implementing the core side of the interface. The Control State FSM

also saves relevant state of the local core and according to this chooses

the next control action. All the data coming from the core is buffered

in registers, where the data is assembled into packet form. A Further

responsibility is to provide signals to other FSMs: blocking signals from

the Receiving FSM during processing of current packet and signaling

the Sending FSM when packet is ready for sending.

39

• Sending FSM - senses the ready signal set by Control State FSM for

sending a packet into NoC. It assemble the packet from registers preset

by other FSMs and sends the packet. During sending it also releases a

signal for the Receiving FSM to be able to receive the next packet.

The following describes the more detailed NoC support for different types

of communication. Here the target is some design rules to handle some signals

in the NoC NWIF. Each type of communication needs to be modeled by an

asynchronous, blockable communication construct.

Synchronous communication causes problems when blocking needs to be

implemented. The easiest way is to implement clock disable, which would

allows the core to hold in a particular state and wait on the further activation

through the Control State FSM. The same is the case for other signal types

which absolutely needs to be translated into asynchronous communication

type.

An example with synchronous communication would be a pipelined di-

vider which needs each clock cycle an input and after a specific number of

cycles the corresponding results are at the output, which needs to be read

in a synchronous manner. For NWIF it means that either the operation is

made at once synchronous and the results are transmitted over the NoC or

the core is blocked after each results is read and waiting for the next request

for the next result. The same techniques can be used for all other signal

types such as level sensitive, edge sensitive.

To support different signal types the NWIF needs to implement a set of

packet formats which have the role of transmitting data and controlling in-

40

formation flow between cores/pages. The general layout and custom example

set of packets is described in the next section.

3.4.3 Packet Layout and different Formats

As previously described, the wormhole mode implies dividing packets into

flits. The flit size for the Hermes infrastructure is parameterizable, and the

number of flits in a packet is fixed at 2(flitsizeinbits). Figure 3.7 shows a general

layout, where the first and the second flit of a packet are header information

for the IP layer, being respectively the address of the target switch, named

header flit, and the number of flits in the packet payload. The third and

fourth flits are packet format and sender information for the application

layer and are evaluated only in the NWIF.

Figure 3.7: General packet Layout, illustrating the layout in terms of OSI
layers

A set of general formats could be:

1. read from memory, is used to request data from memory controller from

a specific location specified in the payload;

2. write data to memory, is used to write the data to memory at a specific

location, this format may also be used to deliver different results on

different requests;

41

3. return data, delivering data from one core to another, some subformats

could be implemented as payload header to achieve general formats

which are supported by all NWIFs;

4. new request, start a new process in the core, here the relevant informa-

tion is also in the payload, which may vary between different cores;

5. request ready, signalizing that a process from a particular core is ready;

3.5 Summary

This chapter described the requirements of a paged FPGA design which are

necessary for partial dynamic reconfiguration support. The main requirement

is for a general communication method, which supports inter-page commu-

nication and off-chip communication. The best technique to support this re-

quirement, is a NoC with fixed, general infrastructure. As a part of the com-

munication method a general interface is needed for detaching and attaching

a reconfigured page to the communication method. A general interface needs

to be implemented by both sides: NoC and a dynamic reconfigurable part.

This makes it possible to reprogram the pages while the device is running

and without any further adaptation of the communication interface.

HERMES NoC was determined to be a suitable communication frame-

work, as it offers a network which has a low area overhead and offers

parametrized implementation. Further, it offers an generic interface which

supports partial dynamic reconfiguration and which protect the network dur-

ing reconfiguration by insulating it from unwanted data.

42

Since glue logic is required for cores to support easy communication, some

guidelines are presented in this chapter as well as a rough structure of such

an Network Interface (NWIF) with a standardized set of packet formats. The

main idea here is to decouple the control logic and allocate it directly to the

NWIF responsible for a particular core/page. Overall, the design of NWIF is

supposed to consider only the functionalities of a given core. This simplifies

the design complexity and reduce potential pitfalls.

43

Chapter 4

Custom Design for Dual AES

4.1 Introduction

The decision was made to implement a conventional design as a reference

and to then examine the performance against a NoC based implementation.

This chapter is about implementation details of the custom design for two

AES cores. The role of one AES core is to encrypt 128 bit data with a 128 bit

key. The design contains two AES cores, so as to examine the concurrency

behaviour on the off-chip communication. Section 4.2 gives an overview of

the function and interface of an AES cores. In Section 4.3, the custom design

implementation and module interaction is described. The interface between

the host computer, as well the implementation of the host application, is

presented in Section 4.4.

44

4.2 AES

Advanced Encryption Standard (AES) [7] is an encryption standard, adopted

in 2000 by National Institute of Standards and Technology (NIST) as a suc-

cessor to the Data Encryption Standard (DES). Each AES cipher has a 128-

bit block size, with key sizes of 128, 192 or 256 bits, respectively. The AES

ciphers have been analyzed extensively and are now used worldwide.

This work uses an AES core, provided by the ISS institute of Darmstadt

University of Technology, as a prototypical core for simulating a real applica-

tion in the reference design. The interface of the AES core is shown in Figure

4.1. The core has three inputs and two outputs. The inputs are dataIn and

Key, respectively 128 bits, and a start aes signal, which asserts the start of

the encryption with the given data. The outputs are aes ready signal, which

signals that the encryption is finished, and the encrypted data is available

on the output encData.

Figure 4.1: AES core having three inputs and two outputs. Inputs are key
and dataIn both 128 bits and start. The outputs are encData which is also
128 bits and ready. The AES core encrypts the data with a given key. The
start signal is a control signal; the ready signal indicates when the data is
finished with encryption

The AES core needs 20 clock cycles after the aes start is asserted to

encrypt the data and rise the aes ready signal.

45

4.3 Custom Design without NoC and two

AES Cores

The custom design is implemented using conventional techniques, which are

usual for implementing in todays FPGA applications. The modules are con-

nected via point-to-point connections and the design is optimized for a single

task application which has the role to encrypting parallel two blocks of data

with two AES cores. Section 4.3.1 provides a top view of the module organi-

zation and communication scheme and presents the memory allocation ap-

proach. Section 4.3.2 describes in detail the implementation of the dual AES

controller with memory interface. Finally Section 4.3.3 gives an overview of

the timing and area for the given implementation.

4.3.1 Dual AES Interface

The Dual AES Interface is the central control unit which connects and con-

trols three different modules: the local bus which constitutes the connection

to the host application over the PCI bus, the memory controller which allows

application modules to write and read from/to memory and two AES cores,

which perform the encryption.

The intermodule interconnection is shown in Figure 4.2. The Sequence

of performing encryption is as follows:

1. Direct Memory Access (DMA) burst : The host application transmits a

block of data to the memory located locally on the Alpha-Data board.

46

The data is transfered via the PCI Bus and Local Bus over the Dual

AES Controller and Mem Controller to memory.

2. Control Registers : The control registers on the FPGA may be written

and read from the host application, so the host application controls the

start of encryption and is able to sense the end of encryption caused

by an interrupt. Usually after the data is written to the memory the

host controller sets appropriate registers on the FPGA which provide

the memory address and the length of data, and asserts the start of the

encryption.

3. Read data: The Dual AES Controller first reads the key and data from

the memory by communicating appropriate with the Mem Controller

and stores these values into registers connected to the key and dataIn

inputs of the AES core.

4. Encryption start : After the data is read aes start is asserted and so

the encryption process is started.

5. Encryption ready : The signal aes ready is asserted when the encryption

is ready, when the data on the AES output encData is valid and is

written to a buffer register.

6. Write data: after the encryption is finished the data is written back to

the memory to an appropriate location.

7. Loop if there is more data to be encrypted, the procedure is repeated

from step 3, except only the next data is read, otherwise there is no

more data to be encrypted and processing continue with the next step.

47

8. Interrupt the Host After encryption is done an interrupt is set in a

control register and the host application may read the encrypted data.

Figure 4.2: Design module implementing a custom design with memory
controller, dual AES controller and two AES cores

The address of the data and the length of the block of data to be encrypted

is stored in the Dual AES Controller and is automatically adjusted with

each encryption step. The address and the length of data is used for storing

encrypted data back into the memory.

The memory arrangement is very simple. A number of blocks (each 128

bits long) is written over DMA to a free memory address and area. The first

block is the key for AES encryption, all following blocks are data blocks for

encryption. The encrypted blocks are stored directly at the end of the last

input block. The detailed presentation of the data arrangement is shown in

Figure 4.3, where two areas for an example using two AES cores is drawn.

The memory storage concept may be expanded to any number of AES cores.

48

Figure 4.3: Memory map of the communication model between the Host
and both designs

4.3.2 Dual AES Controller

TheDual AES Controller forms the central control unit. It is connected to all

crucial modules and also directly accesses each module except the Host. The

internal structure is shown in Figure 4.4. The module consists of one Finite

State Machine (FSM) and a couple of buffer registers. In the 32-bit register

DataAddr the address of the memory location is stored where the first block

is located. The 32-bit register Length contains the length of the data block

49

array. The 128-bit registers Key and Data are the buffer registers storing

the current key and data for encryption connected directly to the AES core.

The register EncData buffers the encrypted results before it is stored into

the memory. Since an equivalent set of registers is needed for both AESs

Figure 4.4 only shows one set.

Figure 4.4: Dual AES controller, it has one controll FSM and five buffer
registers

The central control unit of the Dual AES Controller is the FSM1 (see

Figure 4.4). The details of the FSM are illustrated in Figure 4.5. The FSM

is started with the top left state, which is dependent on a control register

accessed by the host. Basically, the FSM implements steps 3 to 8 from

the Section 4.3.1. It also has an extension in the state Change AES, this

state simply changes between processing data from the first AES core to the

second, e.g. key read states are composed of two states: Read Key and Read

Status, after the Key for the first AES is read the state Change AES changes

relevant data, such as data addr and reads the key for the second AES. This

happens also by reading data and storing data back to the memory.

50

The termination of the FSM and going to the IDLE state back, is located

in the state Next data, if the block counter is less than the length it indicates

that not all blocks were encrypted yet, so the next block is encrypted and

stored to the memory. If the counter is equal length, it means, that the

encryption is completed and the FSM changes the state to the IDLE state,

where it can be started again from the host.

Figure 4.5: FSM 1

51

4.3.3 Design Area and Timing Analysis

The custom design, represented in this Section, serves as a reference for tim-

ing performance and for area consumption. The timing of the current design

is 153 MHz, which is the best speed performance compared to the NoC de-

sign. The critical path lies in the implementation of the dual AES controller,

all other components may run faster. This provides an opportunity to in-

crease the performance, but it was not the goal of this work.

Figure 4.6: FPGA floorplan for custom implementation for dual AES core
design

52

The area of the design is 1787 slices, where the Dual AES controller

allocates 258 slices. The floorplan of the dual AES custom design is shown

in Figure 4.6, in which only the AES cores are marked.

4.4 Host Control Application

Alpha-Data provides a Software Development Kit (SDK), where a library of

routines is available, so for example it is possible to load a bitstream directly

from the PCI bus. Another option of the SDK is to map the board registers

to an address and access it from the host. After the mapping is successful it

is possible to access the local board registers as an array, of course it requires

a small VHDL code on the FPGA to save them.

So a couple of control registers were defined to build an interface between

the custom design and the host application. Registers which are written from

the host to the FPGA are as follows (the number in the brackets identifies

the offset to the mapped address):

• AES DATA REG (8): register which contains the address of the local

memory where a block array is stored for encryption.

• AES LENGTH REG (9): register which contains the length of the

array.

• PAGE REG (10): defines the ID of the AES core, which is supposed

to perform the encryption

• AES START REG (11): registers which asserts the start of a given

encryption job.

53

The appropriate set of the registers above will start the AES encryption

on a given core with a given address and length. After encryption is done,

the following registers are sensed from the host to receive the information:

• AES RDY (14): causes an interrupt on the host side.

• AES NUM (15): provides the ID of the AES core which finished with

an interrupt.

The initialization of the FPGA and establishing a connection to the board

is also provided by the Alpha-Data SDK. For the memory access it offers some

functions which makes it possible to write and read to/from a given address,

this simplifies the access to the local board memory.

The access to the memory and also the communication infrastructure to

the local bus requires a special FPGA design, which is also provided by the

Alpha-Data SDK as an example. They were adopted in both designs.

54

Chapter 5

NoC Version Design and

Implemantaion

Following the discussion about different communication approaches in Chap-

ter 2, an NoC framework was identified to be suitable for the requirements

presented in Chapter 3. The HERMES NoC framework was chosen to im-

plement the custom design by swapping the point-to-point communication

interface to an NoC framework and corresponding core interfaces. This chap-

ter presents an example how, based on a custom design, an infrastructure is

built using an NoC as the communication method.

Section 5.1 presents a top-down review of the design implementation: the

NoC parameters, packet formats for NoC design, and the procedure for parti-

tioning the interface. Section 5.2 provides an overview of the host application

and communication approach between the host and the Alpha-Data board.

55

5.1 General Design with NoC, Memory Con-

troller and Two AES Cores

The design involves several steps, including: (i)identifying appropriate NoC

framework parameters such as the bandwidth, the buffer size and the topol-

ogy (presented in Section 3.3.2), (ii) the allocation of the control logic (Sec-

tion 5.1.1) and specifying of the control sequence (Section 5.1.3) with appro-

priate packet formats (Section 5.1.2), and (iii) implementation, simulation

and testing as presented in Sections 5.1.4 to 5.1.7.

5.1.1 Splitting the Dual AES Interface into two Net-

work Interfaces

The method for transforming a custom Dual AES design into an NoC de-

sign, in which the interconnections are fixed and are shared between different

cores/pages, necessitates a split of the functions covered by the Dual AES

Controller. The functions of the custom controller are as follows: (i) con-

trolling the communications to the host, (ii) providing read/write access to

the local memory, (iii) controlling relevant address and counter registers for

memory access, and (iv) controlling the AES cores.

The functions are split or partitioned across two NWIF cores, namely,

the Mem. Ctrl. NWIF and the AES Core NWIF. Both of these controllers

are attached to a router in the NoC. Basically the original custom controller

is split into two controllers and the connections between these controllers

56

is provided by the NoC. The Figure 5.1 represents a high level view of the

resulting design.

Figure 5.1: Design of the NoC based implementation for multi AES core
support. The dual AES core controller is split into two parts: the memory
controller NWIF and an AES core NWIF. Custom connections are replaced
by the HERMES NoC

The functions of the original controller are distributed over both NWIF

cores. The Mem. Ctrl. NWIF implements the functions (i) controlling

the communications to the host and (ii) providing read/write access to the

local memory and the AES Core NWIF implements (iii) controlling relevant

address and counter registers for memory access, and (iv) controlling the

AES cores. The partitioning of functions in such a way allows the relevant

57

control functions to be decoupled and decentralized. This leads to a lower

complexity for each core. In this design the Mem. Ctrl. NWIF only has

the functionality to communicate with the host and to access the memory,

but does not store any control information locally. The AES Core NWIF

stores all relevant data such as the address and the length of the block array,

and computes the control information necessary to access the memory before

transmitting it to the Mem. Ctrl. NWIF.

By designing the cores in a manner in which the control information is

decoupled, it becomes possible to reuse the implementation. In particular, it

becomes possible to add more routers to the design and to reuse the design

of the AES Core NWIF to attach further AES cores without any further

design efforts. This was done during the evaluation phase and is described

in the Chapter 6.

5.1.2 Packet Formats

The AES Core NWIF stores control information, such as the memory address

where the first block of the block array is stored and the length of the array.

This information is sent from the host application to the Mem. Ctrl. NWIF,

which sends it on to the AES Core NWIF : this type of message forms the

first packet format and is shown in Figure 5.2 as Send new Request. It has

the cmd number 00 and the payload contains the address and the length of

the array, which are both 32 bits long.

The AES Core NWIF, after receiving the control information, requests a

key from the Mem. Ctrl. NWIF with a packet format called Request Key as

58

shown in Figure 5.2. It has the cmd 01 and the payload contains only the

32 bit address of the requested key.

Figure 5.2: Packet formats used in the current implementation. The first
general packet Layout illustrates the arrangement and interpretation of each
8-bit flit

59

The Mem. Ctrl. NWIF provides the functionality to access the memory,

but only after a request such as a request key command. The packet format

Return Key is a format which delivers the requested information after the

request is evaluated and the appropriate data from the memory has been

read. This packet format has also cmd 01 and contains the 128 bit key as a

payload.

The two following packet formats are designed to makes the key available

for the Mem. Ctrl. NWIF. The packet formats Request Data and Return

Data from Figure 5.2 are doing exactly the same as Request Key and Return

Key, except they have the cmd 02 to be able to distinguish between key and

data. After the key and data are available, the AES Core NWIF controls

the AES core and performs the encryption. The encrypted data is sent back

to the Mem. Ctrl. NWIF with an appropriate address where to store it in

the memory. The packet format for this transaction is the Return Encrypted

Data shown in Figure 5.2. It has a cmd 03 and the payload contains the

encrypted data with an address.

The last packet format indicates an end of encryption job. It is sent from

the AES Core NWIF to the Mem. Ctrl. NWIF to inform the host that

processing is finished. The packet format used is Encryption Ready, which

has the cmd 04 and does not have any payload.

5.1.3 Operational Interface

The communication protocol for encrypting some data on one or more AES

cores is designed to support the NoC communication and is derived from the

packet formats stated above. The sequence of communication is very similar

60

to the sequence used by the custom design, except that it is standardized

into a sequence of messages which share the NoC.

The memory allocation and arrangement is described in detail in Chap-

ter 4 and a diagram presentation is shown in the Figure 4.3.

The UML sequence diagram of Figure 5.3 represents an example of a

communication between Host, Mem. Ctrl. NWIF and one AES core NWIF.

The example is generic, in so far as it describes a communication method for

a general size of problem in which the amount of data is n − 1.

The first step for encrypting data is initiated by the host application,

which writes an array of data with a certain length to the local Alpha-Data

board memory into a defined area of memory. This is done via DMA. After

the data is written, the start address the length of the data array and the

AES ID of the core that is supposed to perform the encryption are transfered

from the host application to the Mem. Ctrl. NWIF. After this step is done,

the host application starts the encryption by asserting the start signal, by

writing to the appropriate FPGA register. The host application starts a

timer with the last action and waits for an interrupt signalizing the end of

the encryption.

After the Mem. Ctrl. NWIF receives a start signal from the host ap-

plication, it sends a packet Request new Job with the appropriate memory

address and length of the data array. This packet arrives at the AES Core

NWIF and the information is stored in local registers. The AES Core NWIF

starts a routine for performing the job, the first step in this routine is to

request a key from the Mem. Ctrl. NWIF and in response a packet with

such an request is sent containing the memory address of the key.

61

Figure 5.3: Sequance diagram representing an example of communication
among the three pcomponents Host, Memory Controller NWIF and AES
Core NWIF. In the example the Host writes n blocks (each 128 bits) into
memory, encrypts n−1 blocks and write the result back into the local memory
and notifies the Host via an interrupt that it is ready

62

After receiving the key request, the Mem. Ctrl. NWIF reads the key

from the given address and sends it back to the requested AES Core NWIF.

After the key is received, the routine requests a datum from the Mem. Ctrl.

NWIF. The data is read and transfered back to the requesting AES Core

NWIF.

Now the key and data are available on the AES Core NWIF, so the AES

core is started to perform the encryption. During the encryption phase, the

next block of data is requested so as to make use of the link. After the

encryption is finished, the encrypted data is sent back to the Mem. Ctrl.

NWIF with the target address where the encrypted data is to be stored in

the local memory.

Previously requested data arrives at the AES Core NWIF next, which

again is going to be encrypted with AES, where by during the encryption,

another block is requested. This represents a loop, which ends when the

last datum is received for encryption. After all the data has been encrypted

and sent to the Mem. Ctrl. NWIF for storage, the AES Core NWIF sends

an Encryption Ready packet to the Mem. Ctrl. NWIF, which accordingly

asserts an interrupt to the host application.

After the host application receives an interrupt, it stops the timer, reads

a register from the FPGA which indicates which AES has finished the job

and can upload the encrypted data.

63

5.1.4 Design of the AES Core NWIF

This section presents the detailed implementation of the AES Core NWIF.

The interface consists of three Final State Machines (FSM), buffer registers,

an interface to the NoC router and an interface to an AES core.

The role of an AES Core NWIF is to receive and disassemble packets from

the NoC, to control the AES core and to assemble new packets and to send

them. The first FSM depicted in Figure 5.4 is responsible for receiving new

packets and storing the payload in the appropriate registers. The registers

Address and Length are both 32 bits long and are used to store the memory

location and the length of the block array. The registers Cmd in and Source

are used to interpret the packet format and to buffer the source address.

The registers Key and Data are buffers for current key and address and are

directly connected to the appropriate input pins of the AES core.

Figure 5.4: The AES NWIF module consists of 3 FSMs and intermediate
buffers. FSM 1 receives packets, FSM2 sends packets and FSM 3 controls
the AES core and estimates addresses for requesting and reading data

64

FSM3 is the heart of the AES Core NWIF. After a packet is received,

the FSM3 decides what to do next according to the packet type: either to

request a new key or to request data, to start the encryption, or to send the

encrypted data or to send the Encryption ready packet. FSM3 controls the

AES and sets the Cmd and MemAddr registers, which indicate the packet

type and the address to be used for the packet.

Figure 5.5: AES core NWIF FSM 1. Implements the packet receiving and
disassembling routines

65

The Cmd and MemAddr and EncData registers store information for the

next packet to send. EncData is directly connected to the output of the AES

core. The sending and assembling of packets is the responsibility of FSM2,

which reads the relevant registers for a given packet format and sends the

packet to the NoC.

Figure 5.5 shows the detailed implementation of FSM1. Initially, the

FSM is in state IDLE. After a packet becomes available the packet size flit

is received. Packets without a valid size are discarded. If the size is valid

the next flit is received and stored into the Source register. The next flit is

the packet format which is processed in the state Record cmd and stored in

the register Cmd in. Depending on the packet format, the next state stores

the key or the data or the address and the length in appropriate registers.

After the data is stored, FSM3 is triggered and the receiving routine is done.

FSM1 reenters state IDLE, where it waits for the next packet.

After a packet is received, FSM3, which is shown in Figure 5.6, is triggered

and changes according to the packet format received in the IDLE state to the

Request Key or Request Data state in which the appropriate registers are set

and FSM2 is triggered to assemble and send a particular request packet. If

the cmd in register is 2 then the Start AES state is entered, and the start aes

signals are triggered.

If there is more data to encrypt, FSM3 changes state to Request Data,

where relevant registers are set and FSM2 is triggered to request new data.

After the request is done, FSM3 changes to a state where it waits for the

completion of the encryption process on the AES core. After the encrypted

66

Figure 5.6: AES core NWIF FSM 3. Implements the control logic for the
AES core and the next step including all relevant registers for the next packet

data is available the data is stored in intermediate registers and other registers

are set and FSM2 is triggered to transmit the encrypted data.

FSM2 is initially in the IDLE state and is started with a trigger signal

from FSM3. If FSM2 is triggered, it sends according to the registers set by

FSM3 and the Source register of the packet. The detailed send behaviour is

showed in Figure 5.7. The most relevant register is the cmd register, which

67

Figure 5.7: AES core NWIF FSM 2. Implements the packet assembling
and sending routines

indicates the format of the next packet, according to which the length of the

packet is set, and the data is sent.

5.1.5 Design of the Memory Controller NWIF

The Memory Controller NWIF has two key responsibilities: it implements

the interface to registers which are written by the host application and con-

trols the memory controller. Figure 5.8 shows the internal structure of the

core. It also consists of three FSMs like the AES Core NWIF. FSM1 re-

ceives the packets, FSM2 sends the packets and FSM3 controls the memory

controller.

68

Figure 5.8: The memory NWIF module consists of 3 FSMs and intermediate
buffers. FSM 1 receives packets, FSM2 sends packets and FSM 3 controls
the memory controller

The detailed implementations of the FSMs are not listed here, since they

are very similar to those described above. FSM1 and FSM2 are almost iden-

tical to FSM1 and FSM2 from the AES Core NWIF and FSM3 is basically

described in Section 4.3.1. The implementation of FSM3 in the Memory

Controller NWIF is less complex than for custom design and implements

only the write and read access to the memory controller.

5.1.6 Simulation

Figure 5.9 shows a simulation of the complete system executing two encryp-

tion jobs in parallel. Each encryption job involves encrypting 5 blocks of

data. Figure 5.9 combines three different simulation traces aligned on the

time axis.

69

Figure 5.9: Timing diagram example for NoC design with two AES cores,
where each AES core receives a job to encrypt 5 blocks. The rectangles marks
different packets and the number in the rectangles defines the packet format
according to Figure 5.2

70

The widest part of the figure contains the simulation of the Mem Ctr.

NWIF ; both smaller parts are respectively the AES Cores NWIF for first

AES and second AES cores.

The Simulation of each NWIF is organized aligned to the interface of

the NWIF: the output link is attendant with a tx and ack tx signals to

show the detailed handshake communication protocol. The input link is

attendant respectively with the rx and ack rx signals. The Mem Ctr. NWIF

simulation part contains the signals read c and write c to see the memory

access utilization.

The simulation shows concurrent encryption on two AES cores. The Mem

Ctr. NWIF provides memory access for both encryptions in a specific, de-

terministic manner, mediated through requests from each AES Cores NWIF.

The packets are depicted in Figure 5.9 through dotted rectangles. Some of

these rectangles are very wide and this is to be interpreted as a waiting state,

because of the network congestion induced by the concurrent access to the

Mem Ctr. NWIF.

The numbers in the rectangles represent the command numbers corre-

sponding to the packet types presented in Figure 5.2 and the sequence pre-

sented in Figure 5.3.

5.1.7 Design Area and Timing Analysis

The NoC consists of an overhead compared to the custom design presented

in Chapter 4. An analysis of the timing as well as the area consumption is

provided in this section.

71

The design runs with clock speed of 97 MHz, which is constrained by

the implementation of the NoC. Other components such as the AES core,

NWIF’s allow for better timing performance.

The area required by the design is 4281 slices, where the largest portion

is used by the two AES cores, followed by the NoC and the NWIF’s. A more

detailed evaluation of the area consumption and timing analysis is presented

in Section 6.1

Figure 5.10: FPGA floorplan of the NoC design with two AES cores

Figure 5.10 shows the floorplan of the NoC design. The floorplan shows

the allocation of FPGA area to individual system components. It shows one

72

Mem Ctr. NWIF, two AES Cores NWIF including their associated AES

cores, and three routers which are attached to each NWIF.

5.2 Host Control Application

The Host application is the same and uses the same interface as for the

custom design and is described in Section 4.4.

5.3 Conclusion

This chapter proposed an NoC-based design implementing an AES encryp-

tion application. A top-down description shows the top view of the design

followed by the detailed representation of individual components and control

sequences.

The custom design was partitioned according to the guidelines proposed

in Section 3.4.2 and implemented. Different packet formats were defined and

built and a deterministic control sequence of communication was developed.

The simulation of the design confirmed the proposed functionalities were

successfully designed.

After the design was implemented a variety of tests were conducted to

assess the performance of the design. The results and evaluation of the NoC

based design are presented in Chapter 6, which also contains some proposals

for improvement.

73

Chapter 6

Benchmarks and Results

This Chapter gives an overview about evaluation of the results, their judg-

ment and their potential improvements, which are given by area and timing

analysis in Section 6.1, by representing of benchmarks results in Section 6.2,

by results discussion in Section 6.3 and by conclusion in Section 6.4.

6.1 Comparison between Area and Timing

Analysis for all Designs

An Area and timing analysis of a custom single AES design, a custom dual

AES design and an NoC multi AES design are presented in this section. For

a better overview of the results the analysis covers every single module of

each design as well as the entire designs.

Table 6.1 reports on the area and timing of all three designs as described

in Chapters 4 and 5. All designs share the components: Mem and Bus Ctrl.

74

and AES Core, which have good timing behavior, and do not limit the overall

design performance. The best timing of all submodules was achieved by the

Mem and Bus Ctrl. at 291 MHz. The AES Core has the second best timing

of 223 MHz.

All designs have different timing performances, whereby the best timing

was achieved by the implementation of the custom design for a single AES

core with 163 MHz. The custom design for dual AES cores is the second

fastest implementation with timing of 153 MHz. And the Implementation of

NoC design for three AES cores is the slowest design with timing of 97 MHz.

It is constrained by the timing behavior of the NoC framework (107 MHz)

as well as by the AES Core NWIF (108 MHz). The Mem Ctrl. NWIF has

a timing performance of 152 MHz and like router, with timing of 195 MHz,

there is room for improvements.

Module Area in Slices Max. Timing

Mem and Bus Ctrl. 686 291 MHz

AES 586 223 MHz

Custom Single AES 1787 163 MHz
AES Ctrl. 183 216 MHz

Custom Dual AES 2656 153 MHz
AES Ctrl. 258 211 MHz

NoC 3 AES 6567 97 MHz
NoC 876 107 MHz
Router 205 195 MHz
AES Core NWIF 723 108 MHz
Mem Ctrl. NWIF 528 152 MHz

Table 6.1: Area and timing analysis of custom single AES design, custom
dual AES design and NoC multi AES. First column gives the names of mod-
ules, second column shows the area of each modules in slices and the third
column shows the maximum speed for each module

75

The second column in the Table 6.1 represents the area in slices for each

design and module. The areas of Memory and Bus Controller (686 slices)

and AES core (586 slices) are fixed for all designs.

The area differs between the modules involved in controlling the AES and

NoC communication. The AES Ctrl. in the custom single AES design uses

183 slices, the AES Ctrl. for the custom dual AES design allocates 258 slices.

The area used by the NWIF controllers is significant bigger and needs for

AES Core NWIF 723 slices and for Mem Ctrl. NWIF 528 slices. The area

allocated by the NoC including the routers and communication is 876 slices,

where one router uses 205 slices.

6.2 Benchmark Results

After implementation it were necessary to evaluate the performances of all

designs. For this purpose some test patterns were formulated, which are

described in Section 6.2.1. In Sections 6.2.2 and 6.2.3 benchmark results

for one and two AES cores, in custom and in NoC designs, are represented.

Section 6.2.4 represents the results for three AES cores in an NoC design.

6.2.1 Test Pattern

This Section introduces some test patterns, which are used in the bench-

marks. Defining concrete test patterns allows us to observe and to compare

the performance of different designs. The pattern is a simple linear progres-

sion: 5K, 10K, 15K . . . 50KBlocks. A limitation is made for the benchmark

with three simultaneously running AES cores in NoC design. Because the

76

memory size, used by all designs, is constrained to 4096 Kb, the test pattern

for the benchmark with three cores ends at 40K.

The benchmark sends a job to the particular design and start the time

measurement. After the encryption is complete, as signalized by an interrupt,

the encryption time is recorded in milliseconds. This happens iteratively for

each value in the progression, afterwords a table is produced for evaluation.

Based on this table, the results are plotted and presented in the next Sections.

6.2.2 One AES

The first test is made with one AES core. The AES core was running in

two different designs: the custom design and the NoC design. The test in

NoC is split into two variations, whereby, in the first variation the AES core

is located one hop away from the Mem Ctrl. NWIF, and in the second

variation the AES core is located two hops away. This should demonstrate

delays dependent on the hop distance between communication partners. For

one hop one flit needs at least 2 clock cycles, this is the case if the NoC does

not have a congestion on the particular path. The results are plotted in the

Figure 6.1.

The main characteristic of the plot, is the strong linear nature of all

graphs. The time needed by AES for encryption in the custom design is

significantly less (by approx. a factor of 4) than the time needed in the

NoC designs. It can be seen from the plot, that the one hop version needs

lees time (a factor of 1.12) compared to the twohop version.

The evaluation of the results is presented in Section 6.3

77

Figure 6.1: Benchmark for single AES core in custom and NoC Design with
one and two hops

6.2.3 Two AES

This section presents the benchmarks results for two simultaneously operated

AES cores: The first benchmark (Figure 6.2) is designed to compare the time

needed by a custom and NoC designs to perform the encryption, with two

AES cores, on the test patterns. The second benchmark (Figure 6.5, 6.6)

is intended to obtain the difference due to the XY routing approach as the

allocation of the two AES cores within the 2x2 NoC mesh is varied.

The plot in Figure 6.2 shows the same behaviour as the previous test,

it has a strong linear slope in all three graphs. The performance of the

custom design is significantly better (by approx. a factor of 3, 5) than the

performance of the NoC design. The performance within the NoC for core

11 is better by a factor of 1, 23 compared that of core 00.

78

Figure 6.2: Benchmark for two AES core in custom and NoC designs. The
core 00 and core 11 lies one hop away from the Mem Ctrl. with ID 01. The
arrangement maybe obtained in Figure 6.3

Figures 6.3 and 6.4 represent the constellations for the next test, where

the core 00 is one hop away from Mem Ctrl. NWIF and the core 10 is two

hops away, the routing for the second core differs for input and output. It

can be seen in the Figure 6.3, that the output connection (in red/blue) for

core 00 shares the output communication link with the out-traffic produced

by core 10.

79

Figure 6.3: Constellation where the core 00 and core 10 share, according
to the XY routing algorithm, the output link. The Mem. Ctrl is the ID 01.
The core 11 does not have any core attached

The opposite constellation is shown in Figure 6.4, where the input link

for core 11 shares the in-traffic for the core 10.

The payload of packet formats presented in Section 5.1.2 differs according

to the format. If the traffic of an AES NWIF is considered, then the amount

of output data is 1.5 times more than the input data since the output also

contains a data request. This means, that to perform encryption of one block

it sends 256 bits in two packets and receives 192 with one packet.

Since the input data for one AES core, which flows over the network,

is less than the output data by a factor of 1, 5 the performance of these

two constellations needs to be evaluated. This results are plotted in the

Figures 6.5 and 6.6.

80

Figure 6.4: Constellation where the core 11 and core 10 share the input
link

Figure 6.5: Benchmark for two AES cores, where the core 00 and core 10
share, according to the XY routing algorithm, the output link. The Mem.
Ctrl is the ID 01. The core 00 does not have any core attached

The plot on Figure 6.5 shows, that the encryption made by core 10 needs

more time than the core 00. This behaviour was expected when one AES

core is two hops away and another one hop from the Mem Ctrl. NWIF. To

observe the results in both constellations it is necessary to compare both

plots (Figure 6.5 and Figure 6.6) where it can be seen that the constellation

in Figure 6.6 has worse performance compared to the plot in the Figure 6.5:

81

the performance (Figure 6.6) is better for the core 10 than in the plot in

the Figure 6.5, but the performance of the second core is more worse. By

combining results of both cores the constellation shown in the Figure 6.3 has

a slightly better performance.

Figure 6.6: Benchmark for two AES cores where, the core 11 and core 10
shares the input link

6.2.4 NoC with three AES Cores

This section shows the results for the test with three AES cores, running

simultaneously, in the NoC design. As previous mantioned the test pattern

for this benchmark is limited to 40K, because the memory is limited to 4096

Kb.

The most conspicuous feature here is the performance of the core 00 and

core 11, which are both one hop away from the Mem Ctrl. NWIF. The

Performance of those cores is exactly equal during the entire benchmark and

like in other benchmark the slope for each core is also linear. The core 10

82

needs in this benchmarks more time (factor 1, 21) to encrypt the test pattern

than both other cores.

Figure 6.7: Benchmark for three AES cores in the NoC design. The topol-
ogy is illustrated in Figure 6.6

6.3 Discussion

This section deals with the evaluation of the results presented in Sections 6.2

and 6.1. It is organized as follows: the evaluation of the results is presented in

Section 6.3.1, for better understanding the results Section 6.3.2 composes the

differences between the designs, which are responsible for the performances.

Afterwards, Section 6.3.3 introduces some potential improvements.

83

6.3.1 Judgment of the Results

As can be seen in Section 6.2, the performances vary between designs. The

custom design has in every benchmark better results and it was never the

goal to achieve a better performance with NoC. The key points in the NoC

framework are the standardized interfaces, small overhead in performance

and reusability.

The benchmarks show, that the performance of the NoC implementation

is worse by a factor of 3, 5−4, which causes a significant overhead compared

to the custom design. A good characteristic of the benchmarks is, that all

graphs have a linear slope, that means that every improvement on the NoC

will linearly affect the benchmark results, for each test.

The AES core specification is described in the Section 4.2, it has an 128-

bit for data in and out. In the NoC implementation this data is serialized

into 8-bit flits, so the custom design needs 2 cycles for input and output,

where as the NoC design needs at least 32-bit cycles. Then the NoC design

has routers, which also cause delays that are constant. But the biggest delay

potentially comes from the congestion in the network. Considering these

facts, the results are very good. Of course, the NoC will have in every design

worse performance than the custom design, but it is possible to improve the

performance and decrease the gap.

The results are also only relevant for a small subset of problems. The

results will be better for different problems, where, for example, the data

transfered over NoC would only be one flit. Another scenario, which would

cause an increase of performance, would be when there is less concurrency

84

on a communication link, this can be the case when two cores communicate

with each other and handshake, rather than contend for the link.

In terms of area, for NoC design, the implementation presented in this

work, is also a trade off between performance and area. The design was

designed to have a small area overhead and to be as general as possible, so

this had an impact on the performance.

6.3.2 Differences between the designs

Each benchmark for the NoC design needs more time for encryption com-

pared to the custom design, but except for the flit size and the subset of

problems being processed there are other differences in the designs, which

are also responsible for the gap in the performance and we may introduce

improvements by adopting them.

The first difference is described in Section 6.1; it is the different timing

in all designs. The clock speed of the NoC design is slower by approximately

a factor of 1, 5. If the NoC could be improved, it would potentially have

better performance by a factor of 1, 5.

The second significant difference is the utilization of the memory con-

troller. In the custom design it is possible to achieve a higher utilization for

both read and write operations. The reason is the determinism for accessing

the memory; for the custom design, it is designed in advance and the mem-

ory access is predefined. The first operation is to read a block from memory,

afterwards it will be encrypted and written back. This happens in a loop

until the encryption is done for all blocks. The memory controller needs 4

85

cycles to read 32 bits and is able to write every cycle 32 bits back. To read

128 bits, it takes 12 cycles, the encryption needs 20 cycles and to write back

the result it takes 4 cycles. The utilization of the read channel is so 33, 3%

in the custom design and respectivaly the utilization for the write channel is

11, 1%.

The utilization for the NoC is not predictable, since it is dependent on the

rate of the packets and they are dependent on the rate of the sender and on

the congestion in the network. The optimal utilization for a NoC design with

one AES core is approximately 8, 5% for read and 2, 8% for write (Obtained

through the simulation). This is significantly less than the utilization in the

custom design. Utilization of the mem controller is just possible if the NoC

delivers the memory requests faster. This could be done either by increasing

the bandwidth, or processing the data in a pipilined mode (see next section

for more details).

6.3.3 Potential improvements for the Designs

In this section some improvements which do not have much area overhead,

but could have a great impact on the performance, are described. Some of

the improvements were mentioned already in the previous section, here they

are described in more detail.

The performance could be improved not only in the NoC design. During

the tests some new ideas were developed as well for the custom design:

• Since the timing of the AES core and memory and bus controller is

higher, it could be possible to design the custom design to be able run

86

with higher clock speed. This would lead to improvement, based on the

overall speed. The maximum could be around 210 MHz, this would be

an improvement by a factor of 1, 3.

• The custom design does not have pipeline steps in the design for the

design with two AES cores. The inserting of the pipeline step could

save 20 out 60 of cycles in every block processed by the design and so

could potentially decrease the encryption time by a factor 0.66

The improvements for the NoC design are similar to the improvements

for the custom design, some of them are completely different and dependent

on the specifics of the NoC;

• The clock speed is a big issue in the NoC design, it is 1,5 times worse

than the timing in the custom design. If the timing of NoC design could

be increased, the performance would be significant better. If the timing

could be increased around 200 MHz, what is potentially possible, than

the improvement would be doubled compared to the current design.

• The data is first red in the Mem Ctrl. NWIF and than send to the

network, it is possible to send first flits already when the first 32 bits

are read, this would save 12 cycles out of 144 cycles. That would cause

an improvement by a factor of 0,91. The area overhead would be small

for realization.

• NoC specific improvement would be the size of the buffers, which are

located in each router. This is very crucial for the performance, since

if the buffer is small and all flits are spread over the network, the net-

work become potential more congestion. Some cores would be blocked

87

as a consequence. The optimal size of buffers is dependent on the rate,

the size of the packets and on the area requirements. So for this opti-

mization it is necessary to constrict the set of problems which will use

the NoC for communication. Furthermore the area overhead caused by

additional buffers has to be considered in the decision. This problem

may be not solvable for all problems, so each subset of problems needs

a separate simulation and estimation.

• Increase the link width from 8 bits to 32 bits. This would reduce

the number of flits needed by a factor of 4 and therefore significantly

reduce communications overhead.

6.4 Conclusion

The results, described in this chapter, are very positive. The performance

in the custom AES design is better than the results of the NoC design,

as expected originally. The deterioration of the performance for the NoC

design compared with the custom design is linear and has a factor 3,5-4.

The benchmarks with a different hop amount show very good performance,

the time overhead is very small.

Further this chapter described some design improvement opportunities,

which could boost the performance considerably. Three modifications, which

would bring the most improvements are: the timing needs to be opti-

mized,increasing the link width to reduce the number of flits needed for

messages, and the buffer size needs to be estimated for the similar subset of

the problems.

88

Chapter 7

Conclusions and Future Work

7.1 Summary and Conclusions

Module-based dynamic reconfiguration of FPGAs enables the virtualization

and multitasking of todays devices to be enhanced. It also provides greater

flexibility by allowing user-dependent loading of modules when they are

needed.

This thesis discussed and identified a feasible NoC approach to support

general and simplified methodologies for implementing applications that use

module-based dynamic reconfiguration. The novel approach of using fixed

FPGA pages to virtualize and support multitasking was proposed and ini-

tially explored by Shannon Koh in the PhD Thesis: Generating the Commu-

nications Infrastructure for Module-based Dynamic Reconfiguration of FP-

GAs [16]. The idea of using fixed FPGA pages and supporting fast general

module-based dynamic reconfiguration for those pages enables new oppor-

tunities for using FPGA devices. The reconfiguration ability of the device

89

becomes highly dynamic, since it supports fixed, general communication in-

terfaces and communication methods. The only part which needs to be

designed for an application is the Network Interface core (NWIF) which

matches given core interfaces to the NoC interface.

To implement such an infrastructure, the methodology uses a fixed mod-

ule slot layout on the FPGA with an NoC infrastructure providing inter-

module and off-chip communication. The layout takes advantage of the two-

dimensional paged reconfiguration architecture of the Virtex-4 FPGA family

by allowing independent reconfiguration of each slot in each page.

This thesis proposed requirements for the paged FPGA design which are

necessary for partial dynamic reconfiguration support. The main requirement

is a general communication method, which supports inter-page communica-

tion and off-chip communication. The best technique to support it, is NoC

with fixed, general infrastructure. As a part of the communication method

a general interface is needed for detaching and attaching a reconfigured page

to the communication method. A general interface needs to be implemented

by both sides: the NoC and the dynamically reconfigurable part. This makes

it possible to reprogram the pages while the device is running without any

adaptation of the communication interface.

The thesis also presents guidelines for designing a good NWIF with a

rough structure with a standardized set of packet formats. The main idea

here is to decouple the control logic and allocate it directly to the NWIF of a

particular core/page. The design of a specific NWIF is supposed to consider

just the functionality of a given core. This simplifies design complexity and

reduces potential pitfalls.

90

The NoC HERMES used in this work is developed by the group GAPH

from Catholic University of Rio Grande do Sul, Brasil [20] and proposed by

Moares et al. in [22]. It offers a network which has a low area overhead and

parametrized implementation. Further, it offers a generic interface which

supports partial dynamic reconfiguration and protects the network during

reconfiguration by insulating it from unwanted data.

Two designs were proposed: one, as a reference, of a conventional custom

design, and a second NoC-based implementation using the guidelines. The

custom design was implemented first and afterwards a partitioning process

was applied to the design to create a new design using and NoC as the central

communication method for inter-page and off-chip communication.

An experimental framework was developed and the custom and NoC de-

signs were assessed using various benchmarks. The results show that such an

implementation is feasible. Although the performance of the NoC design was

clearly worse compared to the custom, reference design, the benefits of scal-

ability, increased parallelism and a simplified partial reconfiguration process

are of great values to future applications.

The implementation process and evaluation identified some improvement

potential for both designs, so they were also stated in this work.

7.2 Future Work

Several immediate directions for further investigation can be identified from

the methodology proposed in this thesis and from the results that were ob-

tained.

91

This thesis investigates NoC support for dynamic pages, where a fixed

application with fixed interfaces and needs were chosen for implementation.

This limits the set of problems to a small subset. It would be desirable to

state a general set of problems, which need to be supported by the NoC and

their interfaces. This would allow designers to choose good parameters for

NoC implementation, such as bandwidth and buffer size, in order to reach

an optimal support for a wide set of problems.

The implementation in this thesis does not have any constraints regarding

allocation to lower the complexity. The next step would be to implement a

general mesh structure over the entire device and to constrain the position

of each router with a general interface for dynamic reconfiguration.

The assumption was made in this work to use a single clock speed for

all components as limited by the slowest part. Each page needs to have

the capability to run with a distinct clock speed, this also affects the router

attached to a specific page. The behaviour of the NoC needs to be investi-

gated by such an scenario, despite the asynchronous handshake protocol of

the NoC.

The guidelines were proposed for creating a NWIF between the NoC in-

terface and a core. These guideline are the first step for potential automation

of creating such NWIFs. This problem needs further investigation.

The NoC represented in this work uses simple components for easier in-

vestigation of a general problem, but the possibilities for improvement are

manifold. Other routing algorithm exists which provide better performance.

The arbitration could implement Quality of Service which would be beneficial

for many applications.

92

The timing of the design needs to be improved. Relevant details and

potential improvements are stated in Chapter 6.

All future work stated above potentially increases the area of the imple-

mentation. This point also needs to be investigated, since the area of a page

is limited.

93

Bibliography

[1] Ahmadinia, A., Bobda, C., Ding, J., Majer, M. and Teich, J. A prac-

tical approach for circuit routing on dynamic reconfigurable devices.

In International Workshop on Rapid System Prototyping, pages 84–90,

Montréal, Canada, 2005.

[2] Luca Benini and Giovanni De Micheli. Networks on chips: A new soc

paradigm. Computer, 35(1):70–78, 2002.

[3] Bobda, C., Ahmadinia, A., Majer, M., Teich, J., Fekete, S. and Veen,

J.v.d. DyNoC: A dynamic infrastructure for communication in dynam-

ically reconfigurable devices. In International Conference on Field Pro-

grammable Logic and Applications, pages 153–158, Tampere, Finland,

2005.

[4] Bobda, C., Majer, M., Koch, D., Ahmadinia, A. and Teich, J. A dynamic

NoC approach for communication in reconfigurable devices. In Interna-

tional Conference on Field-Programmable Logic and Applications, pages

1032–1036, Antwerp, Belgium, 2004.

[5] Chan, J. and Parameswaran, S. NoCOUT : NoC topology genera-

tion with mixed packet-switched and point-to-point networks. In Asia

94

and South Pacific Design Automation Conference, COEX, Seoul, Korea,

2008.

[6] Chaouat, L., Garin, S., Vachoux, A. and Mlynek, D. Rapid prototyping

of hardware systems via model reuse. In IEEE International Work-

shop on Rapid System Prototyping, pages 150–156, Chapel Hill, North

Carolina, USA, 1997.

[7] J. Daemen and V. Rijmen. Aes proposal: Rijndael. 1999.

[8] William J. Dally and Brian Towles. Route packets, not wires: on-chip

inteconnection networks. In DAC ’01: Proceedings of the 38th conference

on Design automation, pages 684–689, New York, NY, USA, 2001. ACM.

[9] Elgindy, H., Schröder, H., Spray, A., Somani, A.K. and Schmeck, H.

RMB — a reconfigurable multiple bus network. In International Sympo-

sium on High-Performance Computer Architecture, pages 108–117, San

Jose, CA, USA, 1996. IEEE.

[10] Hübner, M., Becker, T. and Becker, J. Real-Time LUT-Based Net-

work Topologies for Dynamic and Partial FPGA Self-Reconfiguration.

In Symposium on Integrated Circuits and Systems Design, pages 28–32,

Lafayette, Los Angeles, USA, 2004.

[11] Hübner, M., Schuck, C., Kühnle, M. and Becker, J. New 2-dimensional

partial dynamic reconfiguration techniques for real-time adaptive mi-

croelectronic circuits . In IEEE Computer Society Annual Symposium

on VLSI: Emerging VLSI Technologies and Architectures, pages 97–102,

Karlsruhe, Germany, 2006.

95

[12] IEEE. IEEE Standard VHDL Language Reference Manual. IEEE Stan-

dard P1076 2004-10, 2004.

[13] IEEE. IEEE Standard for Verilog Hardware Description Language.

IEEE Standard 1364 -2005, 2006.

[14] Janac, G., Poltronetti, T., Herbert, A. and RuDusky, D. IP supply

chain-the design reuse paradigm comes of age. Integrated System Design,

13(141):66–70, 2001.

[15] Koh, S. and Diessel, O. COMMA: a communications methodology for

dynamic module reconfiguration in FPGAs. In IEEE Symposium on

Field-Programmable Custom Computing Machines, pages 273–274, Napa

Valley, California, 2006.

[16] Koh, Shannon. Generating the Communications Infrastructure for

Module-based Dynamic Reconfiguration of FPGAs, PhD Thesis. Uni-

versity of New South Wales, 2008.

[17] Jian Liang, Sriram Swaminathan, and Russell Tessier. aSOC: A Scal-

able, Single-Chip Communications Architecture. Parallel Architectures

and Compilation Techniques, International Conference on, 0:37, 2000.

[18] Majer, M., Teich, J., Ahmadinia, A. and Bobda, C. The Erlangen Slot

Machine: A dynamically reconfigurable FPGA-based computer. The

Journal of VLSI Signal Processing, 47(1), 2007.

[19] Théodore Marescaux, Andrei Bartic, Diederik Verkest, Serge Vernalde,

and Rudy Lauwereins. Interconnection networks enable fine-grain dy-

namic multi-tasking on fpgas. In FPL ’02: Proceedings of the Reconfig-

96

urable Computing Is Going Mainstream, 12th International Conference

on Field-Programmable Logic and Applications, pages 795–805, London,

UK, 2002. Springer-Verlag.

[20] Aline Mello, Leandro Moeller, Ney Calazans, and Fernando Moraes.

Multinoc: A multiprocessing system enabled by a network on chip. De-

sign, Automation and Test in Europe Conference and Exhibition, 3:234–

239, 2005.

[21] Giovanni De Micheli and Luca Benini. Powering networks on chips:

Energy-efficient and reliable interconnect design for socs. System Syn-

thesis, International Symposium on, 0:33–38, 2001.

[22] Fernando Moraes, Ney Calazans, Aline Mello, Leandro Möller, and Lu-

ciano Ost. Hermes: an infrastructure for low area overhead packet-

switching networks on chip. Integr. VLSI J., 38(1):69–93, 2004.

[23] E. Rijpkema, K. G. W. Goossens, A. Radulescu, J. Dielissen, J. van

Meerbergen, P. Wielage, and E. Waterlander. Trade offs in the design

of a router with both guaranteed and best-effort services for networks

on chip. In DATE ’03: Proceedings of the conference on Design, Au-

tomation and Test in Europe, page 10350, Washington, DC, USA, 2003.

IEEE Computer Society.

[24] Edwin Rijpkema, Kees Goossens, and Paul Wielage. A router architec-

ture for networks on silicon. In In Proceedings of Progress 2001, 2nd

Workshop on Embedded Systems, pages 181–188, 2001.

97

[25] P. Sedcole, B. Blodget, T. Becker, J. Anderson, and P. Lysaght. Mod-

ular dynamic reconfiguration in virtex fpgas. Computers and Digital

Techniques, IEE Proceedings-, 153(3):157–164, 2006.

[26] Ullmann, M., Hübner, M., Grimm, B. and Becker, J. On-demand FPGA

run-time system for dynamical reconfiguration with adaptive priorities.

In International Conference on Field Programmable Logic and Applica-

tions, pages 454–463, Leuven, Belgium, 2004.

[27] Mário P. Véstias and Horácio C. Neto. Area and performance optimiza-

tion of a generic network-on-chip architecture. In SBCCI ’06: Proceed-

ings of the 19th annual symposium on Integrated circuits and systems

design, pages 68–73, New York, NY, USA, 2006. ACM.

[28] Villasenor, J., Jones, C. and Schoner, B. Video communications using

rapidly reconfigurable hardware. IEEE Transactions on Circuits and

Systems for Video Technology, 5(6):565–567, 1995.

[29] Xilinx. Two flows for partial reconfiguration: Module based or difference

based. Xilinx Application Note 290, 2003.

[30] Xilinx. Virtex-4 family overview. Datasheet DS112, 2004.

[31] Xilinx. Early access partial reconfiguration user guide. User Guide

UG208, 2007.

[32] Xilinx. Virtex-5 family overview: LX, LXT and SXT platforms. Xilinx

Datasheet DS100, 2007.

[33] Xilinx. Virtex-6 family overview: LX, FXT and SXT platforms. Xilinx

Datasheet DS150, 2009.

98

	List of Figures
	List of Tables
	Introduction
	Thesis Contributions
	Thesis Organization

	Background and Related Work
	Introduction
	FPGA Pages - Distinct Clock Regions
	The Virtex-4 FPGA Family
	The Virtex-5 FPGA Family
	The Virtex-6 FPGA Family

	NoC - Previous Work
	Support for Module-based Dynamic Reconfiguration
	On-Demand Run-Time System by Ulmann
	Erlangen Slot Machine (ESM) by Majer
	Dynamic Network-on-Chip architecture (DyNoC) by Bobda

	Conclusion

	NoC Support for FPGA Pages
	Requirements of the system
	NoC
	Page/Network Communication Interface
	Inter Page Communication
	Shared Access to Common Ports

	Constraining the Degrees of Freedom
	Clock and Clock Regions
	IP-Cores

	HERMES - NoC Infrastructure
	Network on Chip
	HERMES Router and Interface
	HERMES Interface Adaptation for PDR

	Network Interface cores - Translator between Cores and NoC
	Role of the Network Interface
	Design guidelines for Network Interface
	Packet Layout and different Formats

	Summary

	Custom Design for Dual AES
	Introduction
	AES
	Custom Design without NoC and two AES Cores
	Dual AES Interface
	Dual AES Controller
	Design Area and Timing Analysis

	Host Control Application

	NoC Version Design and Implemantaion
	General Design with NoC, Memory Controller and Two AES Cores
	Splitting the Dual AES Interface into two Network Interfaces
	Packet Formats
	Operational Interface
	Design of the AES Core NWIF
	Design of the Memory Controller NWIF
	Simulation
	Design Area and Timing Analysis

	Host Control Application
	Conclusion

	Benchmarks and Results
	Comparison between Area and Timing Analysis for all Designs
	Benchmark Results
	Test Pattern
	One AES
	Two AES
	NoC with three AES Cores

	Discussion
	Judgment of the Results
	Differences between the designs
	Potential improvements for the Designs

	Conclusion

	Conclusions and Future Work
	Summary and Conclusions
	Future Work

	Bibliography

