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Abstract

Task compaction has been examined as a means of reducing fragmentation in par-
titionable machines based on multi-stage, hypercube, mesh and linear array inter-
connection networks. Ordered partial task compaction involves moving a subset of
executing tasks without permuting their relative order to accommodate a request for
a large submesh that would otherwise be blocked from entering the system. In this
paper we develop the algorithms needed to find good allocation sites and to perform
one—dimensional ordered partial compactions simply on mesh of processor and re-
configurable mesh architectures. We find that significant performance gains can be
obtained in heavily loaded systems even when link delays are large.

Keywords: centralized control, cost and performance measures, partitionable architec-
tures, reconfigurable networks, simulation, task allocation, task compaction.



1 Introduction

The partitionable multiple-SIMD /MIMD model allows compute processors to be shared
among multiple, independently controlled tasks [10, 12, 3]. Such systems make effective use
of the compute processors by adjusting the sizes of processor partitions to the sizes of the
tasks, thereby allowing the number of tasks executed in parallel to be increased. Several
contiguous processor allocation schemes have been proposed to manage the partitioning
and allocation of contiguous blocks of processors under this model (see, for example, [6,
14]). Contiguous allocation schemes suffer from fragmentation of the available processors as
variously sized tasks are allocated and deallocated. Tasks end up waiting in a queue to enter
the system despite there being sufficient, albeit non—contiguous free processors available to
service them. The time to complete a set of tasks is consequently longer, and the utilization
of the compute resource is lower than it could be. When a task is blocked from entering the
system because the available processors are fragmented, partial task compaction moves a
subset of the allocated tasks to combine the free fragments between them if doing so allows
the task to enter the system sooner.

The use of task migration to reduce fragmentation in partitionable multiple-SIMD ma-
chines was first investigated for multi—stage interconnection networks as part of the PASM
project [8, 9]. Several full and partial task compaction methods were subsequently proposed
for MIMD hypercubes, with efforts directed at devising optimal edge—disjoint migration al-
gorithms (see, for example, [5, 2]). Results for the mesh architecture were reported in
[13]. The use of reconfigurable buses and ordered partial task compaction were investigated
for partitionable linear array machines in [4]. Significant performance improvements were
found to be possible with task sets derived from field—collected traces and small link delays
(1 second).

In this paper we extend the investigation of the use of reconfigurable buses to perform partial
task compaction on two—dimensional reconfigurable meshes. We consider the problem of
allocating a task by partial compaction to a reconfigurable mesh executing n tasks when
it is not possible to allocate the task by other means. We describe methods by which
the potential allocation sites can be found in O(n?) time and by which each of them can
be assessed for feasibility and cost in O(n) time. We propose three simple compaction
scheduling algorithms — one for the mesh of processors architecture, and two for the
reconfigurable mesh. We report on the experimental evaluation of their performance for a
range of link transfer costs and discuss the significance of the results.

In the following section we describe the architecture, our assumptions, and our notation in
detail. We then describe our ordered partial task compaction method before presenting and
analyzing algorithms to perform the task compaction efficiently in Section 3. Results on the
use of task compaction to improve the performance of reconfigurable meshes that employ
bottom—left processor allocation and first—come, first—served scheduling are then reported
in Section 4. Our findings are discussed in Section 5. We conclude with Section 6, which
also mentions areas for future research.



2 Model

We consider a partitionable multi-SIMD reconfigurable mesh of compute processors, in
which arbitrarily sized blocks of contiguous processors are independently controlled to op-
erate in SIMD mode. An overview of this model is given in Figure 1. The compute resource
consists of n interconnected processing elements (PEs) that are controlled by a set of m
control processors (CPs) under the global control of a host. The host orchestrates the op-
eration of the CPs, each of which broadcasts instructions for the PEs under its control over
the CP—PE interconnection network.
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Figure 1: The multi-SIMD model of parallel computation.

In our model, the PEs are interconnected by a reconfigurable mesh of size M(H, W), that
consists of H rows and W columns of PEs arranged in a grid, as in Figure 2. FEach
processor is connected to its immediate neighbours to the north, south, east and west,
when present, and has four similarly labeled 1/O ports through which it can communicate
with its neighbours. Each PE has control over a local set of short—circuit switches that
allow the four I/O ports to be connected together in any combination. The 15 possible
connection configurations are depicted in Figure 3. The PEs operate synchronously, in one
machine cycle performing an arithmetic, logic or control operation, setting a connection
configuration, and sending (receiving) a datum to (from) each I/O port. Processors are
numbered from P ; in the bottom-left corner, to Py in the top-right corner.

When a connection is set, signals received by a port are simultaneously available to any port
connected to it. For example, if processors connect their northern and southern 1/O ports
by closing the appropriate switches as in the configuration (NS,E,W), data “broadcast”



Figure 2: A reconfigurable mesh of size 3 x 3.
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Figure 3: Reconfigurable mesh connection configurations.




onto the “column bus” can be read by all of the processors in a column. The model allows
concurrent reading from a bus, requires exclusive writing to a bus, and usually assumes
a constant time communication delay on arbitrarily large connected bus components. In
Section 4.2 we investigate the effect of varying the communication latency over a range of
reasonable values.

Moving a task involves switching the task out of context and setting the mesh to form buses
to move the task elements (processor contexts and local memories). The source (target)
processors of a move then write (read) their task elements to (from) their I/O ports. When
all the elements of a task have reached their destination, the task is switched back into
context. Compute processors have storage for two task elements between which they can
switch in a single step. Storage for a task element that is switched out of context may be
accessed from the compute processor’s I/O port in a single step while the processor partic-
ipates in the execution of another task. Compute processors participate in the execution of
at most one task at a time, and all of the elements of a task need to be switched in for the
task to be able to execute.

Overall management of tasks is accomplished in the following way: Tasks are queued by
a sequential host as they arrive. A task allocator, executing on the host, attempts to
find a location for the next pending task. If some executing tasks need to be compacted
to accommodate the task, then a schedule for switching those tasks out of context, and
moving their task elements is computed by the allocator. The allocator coordinates the
switching of the reconfigurable mesh, task processors and task controllers according to the
compaction schedule, and associates an available control processor with the new task and
its allocation. If a location for the next pending task cannot be found, the task waits until
one becomes available following one or more deallocations as tasks complete processing.

The following notation is used in this paper: A task T;(s;, b;) of size s; = (r;, ¢;) and base
b; = P, » is allocated to a submesh of r; rows and ¢; columns of processors with bottom-—
leftmost processor Py, ;.. 1 < y;,1 < x; and top-rightmost processor Py 4,1 s1¢,—1 With
y;+1r;,— 1 < H and x; + ¢; — 1 < W. The task T} is said to be based at b;. We denote the
ith row of processors R; and the jth column of processors C;. The intersection of R; and
C; is the processor P; ;. The interval of processors P, g, Pigi1,- ., Pigtm in the ith row is
denoted R;[k,k +m]. A similar definition applies to C;[l,+ n]. The intervals R;[k, k + m)]
and C;[l, [+ n] intersect at processor P, ; iff [ <i < [l+nand k < j < k+m. This notation
is illustrated in Figure 4.

3 Algorithms

3.1 Bottom-Left Task Allocation

Bottom—Left allocation identifies the bottom—leftmost allocation site for an incoming task.
In this study we adopt a method described by Zhu for finding the site [14]. Zhu’s approach is
to set a bit array corresponding to the tasks allocated to the mesh, and disallowed locations
for the base of an incoming task. The array is then scanned row by row from left to right
commencing with the bottommost row. The first clear bit found is the bottom-leftmost
possible allocation site for the base of the request. While the technique is simple and
guaranteed to find a location when one is available, it requires O(H x W) time.
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Figure 4: Notation.

The Bottom—Left approach to allocation is free of internal fragmentation, that is, it allocates
precisely as many processors as requested, although like all contiguous allocation schemes,
it suffers from external fragmentation over time as tasks are allocated and deallocated.
External fragmentation is a problem when it prevents a request from entering the system
because the free processors are not available in a sufficiently large contiguous block. In this
study, we examine the benefits and costs of partially compacting the tasks allocated to the
mesh in order to allocate tasks that would otherwise be blocked from entering the system
due to external fragmentation.

3.2 Task Compaction

Task compaction is the process of squeezing tasks together so as to combine the interstitial
free processors. When compaction is used to reduce fragmentation, these combined pro-
cessors may then be allocated to the incoming task. Compactions are classified as either
full or partial, depending on whether all allocated tasks are moved, or just a subset of
them. In a planar architecture, such as a mesh, we can identify the class of linear com-
pactions that move each task in a single direction only. When a compaction is linear, it may
be order—permuting or order—preserving according to whether the relative order of tasks
in each direction is altered or not. In this work we extend our investigation of one—way
one—dimensional order—preserving partial compactions from linear reconfigurable arrays to
two—dimensional reconfigurable meshes [4]. On a mesh, a one-way one-dimensional order—
preserving compaction has the effect of sliding the set of tasks to be compacted in a single
direction along a single dimension while preserving their relative order. Without loss of
generality, we describe compacting the tasks to the right along the rows of the mesh. In
VLSI circuit compaction this technique has been called “ploughing”, which is a graphic
term for describing the effect [7]. However, the process of moving the tasks according to
a compaction schedule need not necessarily proceed in a single sweep. For the remainder



of this paper we use the term compaction to refer to one-way, one-dimensional order—
preserving partial compaction unless we qualify the type of compaction we wish to refer to.
Figure 5 contains an example of a compaction.
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Figure 5: An example of a partial compaction. The initial arrangement on the left shows
the tasks to be compacted so as to allocate a task of size 5 x 6. The final arrangement on
the right indicates the allocation site.

3.2.1 Compaction Goals

We are interested in allocating a task 7,41 of size $,41 = (rnq1,ut1) to a reconfigurable
mesh M(H,W) that is executing the tasks T;(s;,b;),1 < i < n when it is not possible to
allocate T,, 11 without compaction. Two subproblems arise naturally:

1. how to identify a good allocation site, a submesh of size s,1, efficiently, and
2. how to schedule the compaction so as:

(a) to free the allocation site as quickly as possible,
(b) to delay the tasks to be compacted as little as possible, and

(¢) to complete compacting the tasks as quickly as possible.

A “good” allocation site is one that facilitates the compaction goals. Central to satistying
these goals is the cost of moving a task. We address this issue next.

3.2.2 Cost of Moving a Task

On a mesh, a task element can only be moved over the links that connect neighbouring
processors. To move a task it is switched out of context, processors then send the context
they hold to their mesh neighbours until the task reaches its destination where it is switched
back into context again. The time to move a task is proportional to the distance the task



has to move. The actual time spent needs to take into account the time to switch processes
out of and into context, the size of a process, and the bandwidth of the mesh link. However,
the task switch time for SIMD tasks is conceivably small compared with the link transfer
time.

On a reconfigurable mesh, a task element can make use of reconfigurable buses to move to
a non—local destination in constant time.

Lemma 1 On a reconfigurable mesh, a task of size s = (r,¢) can be moved d processors to
the right in ©(min(c,d)) communication cycles, which is optimal.

Proof: When ¢ < d the task elements of each row of the task must be moved past the right
edge of the task. At least ¢ cycles are needed to transfer these elements. The elements of a
row can be moved to their destinations one after another in ¢ cycles by forming buses that
connect each source with its destination. All rows can be moved in parallel. When ¢ > d,
d task elements per row need to move past the right edge of the task. One element can
move on a bus crossing the edge per cycle. Moving all elements of a row spaced d apart in
parallel along buses of length d, all elements can be moved in d cycles. B

3.2.3 Identifying Potential Allocation Sites

A request of size s,41 = (rp41, Cop1) May not be satisfiable, even with compaction, although
the number of free processors exceeds r, 11 X ¢,11 because the system may be fragmented
in such a way so as to prevent recombination of unallocated processors into a sufficiently
large block of contiguous processors. (Consider, for example, a request of size s = (| H/2| +
L, [W/2] + 1) to a mesh M(H,W), HW > 4 executing a single task of that size already.)
Our first challenge is to find a quick method for determining whether a task can be allocated
with compaction or not. In this subsection we show that it is possible to reduce the number
of potential allocation sites from O(H x W) to O(n?), which is a considerable saving when
the number of tasks is relatively small. Thereafter, we describe the construction of a direct
dominance graph over the executing tasks that allows us to determine the feasibility of
freeing the executing tasks from each candidate site in O(n) time. In the worst case, we
therefore spend O(n?) time determining whether the incoming task can be allocated with
compaction.

Definition 1 For the incoming task T,41 of size sp41 = (rig1, Cog1) and the executing tasks
Ti(si,0;),1 <@ <n with s; = (r;,¢;) and b; = P,, ., we define a top processor interval for
each executing task T;, consisting of the interval of processors abutting its top edge, extending
from its right edge to the left for a total length equal to one less than the combined widths
of T; and T, 11, or until the left edge of the mesh is encountered. The leftmost processor
of this interval is the base of T, 1 were its rightmost column placed on top of the leftmost
column of T;. The top processor intervals is defined to be the set { R, 1, [max(1,¢; — ¢py1 +
Dymin(e;+a;— 1, W —copn+ )] 1 <i<n,ri+y < H—rpp1 +1IFUR[ILW —cppr + 1]

Stmilarly, we define for each executing task T; a right processor interval, consisting of the
the interval of processors abutting its right edge, extending from its top edge downward
for a total length equal to one less than the combined lengths of T; and T,11, or until the



bottom edge of the mesh is encountered. The right processor intervals is defined to be the
set {Criqp[max(l,r; — rppr + D)ymin(r; + 4, — LH —rppn + )] 0 1 <0 < nye+a; <
W — Cn41 + 1} U Cl[l,H — Tn41 + 1]

These intervals define the minimum cost locations for placing the base of the incoming task
T,11 if 1t is to be allocated in the neighbourhood of T;. The definitions are illustrated in
Figure 6.

Top processor interval

Right processor interval

Figure 6: Definition of a top and right processor interval for a task of size 2 x 2 and an
incoming task of size 3 x 4.

In the proof of the following theorem, we show that the set of processors at the intersection of
the top and right processor intervals, which we denote B, consists of the potential allocation
site bases that cost least to free of executing tasks. For the example of Figure 5, the set is
shown in Figure 7.

Theorem 1 [If T, 11 can be allocated by means of compaction, then the cost of freeing the
executing tasks is minimized for an allocation site based at some processor in B.

Proof: The proof considers the time needed to free the space for the incoming task for all
possible base positions as it is shifted along a row from the left edge of the mesh to the
right. A similar argument applies to shifting the task up a column from the bottom edge
of the mesh.

Let us consider the allocation site based at F,;,1 <r < H —r,4; + 1. Executing tasks
lying within the allocation site are to be compacted to the right. The maximum number of
allocated processors found on any row within the allocation site places a lower bound on the
time needed to free the site by horizontal movements only. Assume the leftmost allocated
processor(s) within the allocation site are in column C.. As the base of the allocation site
is shifted to the right from P,; to P, ., additional allocated processors potentially become
covered by the right edge of the allocation site, thereby increasing the time to free the site
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Figure 7: Potential allocation site bases for an incoming task of size 5 x 6.

of occupying tasks. However, it is not until the first task occupying the allocation site, T}
say, is completely uncovered by the left edge of the allocation site that the time needed
to free the site of occupying tasks potentially decreases, since while any processors of T}
remain within the allocation site 7T; must move to the right of it. Thus it is only necessary
to check allocation sites based in the columns of processors C, 4., immediately to the right
of executing tasks T;. The base is constrained from moving to either side with the potential
of reducing the cost to free the allocation site by the presence of T; to the left, and the
possibility of covering additional tasks to the right. However, the columns C, 4., need only
be checked over the interval in which the task T; potentially intersects the allocation site,
namely Cy,qc [max(1l,r; —rpqp1 + 1), min(r; +y; — 1, H — rpqq + 1))

By a similar argument it follows that it is only necessary to check sites in the rows of
processors R, 4., immediately above executing tasks 7;. These rows R, ;,, need only be
checked in the interval in which the task 7; intersects the allocation site, Ry, 4, [max(1,¢; —

Cop1 + 1), min(e; + @, — L, W — ¢pq + 1))

Consider the top processor interval associated with a task 7;. The allocation site is con-
strained from moving below or above it without potentially increasing the cost to free the
site. Allocation sites based to the right or left of the interval are potentially more costly
than sites within the chosen column that intersect other top processor intervals. A similar
argument applies to a right processor interval. Therefore if we consider potential bases
within the top interval, the cost to free the allocation site is least where it intersects right
intervals. These intersections are guaranteed to exist due to the fact that 7,41 cannot be
allocated without compaction. W

Note that the bottom and left edges of the mesh play a similar role to the top and right
edges of a task, and therefore have top and right processor intervals associated with them.
Since it is not possible for the base of the incoming task to be located in rows above
Ry, ,,+1 and columns to the right of Cyw_.,,, 41, processor intervals within these regions
are excluded from consideration.

10



Constructing the set B of potential bases for the incoming task requires O(n?) time if each
member of the set of right processor intervals is used to check for intersections against each
member of the set of top processor intervals. Since O(n*) potential base locations have to
be identified, this is optimal in the worst case.

Allocation sites based at processors in B are not guaranteed to be feasible, since it may not
be possible to compact the executing tasks within the allocation site to the right due to a
lack of free processors. Determining the feasibility of the site is addressed next.

3.2.4 Assessing Allocation Site Feasibility

In order to determine whether the executing tasks within an allocation site can be moved
out of the site by a right ordered compaction, we need to know whether sufficient free space
exists to move the tasks within the allocation site beyond the site by compaction. With
O(n?) sites to search, we need an efficient means of answering this question. Our solution
is to build a direct dominance graph of the executing tasks, that also contains quantitative
information about the arrangement of tasks, in order for us to determine the feasibility of
a site in O(n) time.

Definition 2 (After [11]) Task V dominates a task T if, for some processor P, ., of V
and some processor P, .. of T', rv = rp and cy > c¢p. Where V dominates T', we say that
V directly dominates T' if there s no task U such that V dominates U and U dominates T'.
The direct dominance graph is the directed graph having the collection of evecuting tasks
as vertex set; for each pair of tasks T and V it contains an edge from T to V iff V' directly
dominates T'.

We build the direct dominance graph in O(n?) time in the following way. The list of
executing tasks is sorted into increasing base column order, where if two or more tasks
share a column, they are sorted into increasing row order. For each task we create a graph
vertex and insert it in sorted order. A vertex already in the graph has associated with
it the bottom— and topmost rows covered by tasks in its subgraph. Vertex insertion can
therefore be done in linear time by a depth first search of vertices not visited before to
determine whether the task is to the right of the subgraph or not. For each edge inserted,
we associate the distance from the parent to the newly added child. After the graph has
been built, we compute and store at each vertex the maximum distance the task can be
moved to the right by summing the edge distances in a bottom—up fashion. Note that the
distance the terminal nodes can be moved is given by their base columns and their widths.
This final step, which takes O(n) time, eliminates the need to search the subgraph of a
vertex in order to determine how far it can be compacted each time we check the feasibility
of a site. Figure 8 depicts the direct dominance graph for the arrangement of tasks in our
example.

The graph can be searched in O(n) time with each potential base location b € B to determine
whether the allocation site based at b can be freed of executing tasks by compaction. This
procedure also involves a depth first search of those subgraphs whose covered rows intersect
the allocation site based at b. Once the depth of the leftmost task(s) that intersects the
allocation site is reached, each can be checked to determine whether it can be moved out

11
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Figure 8: Arrangement of labeled tasks with its direct dominance graph.

of the way of the incoming task. By implication, if a task can be moved far enough to the
right, its subgraph can as well.

With the means of identifying feasible allocation sites, we go on to describe three methods
for scheduling the compaction.

3.2.5 Compacting Using Mesh Links

Given a set of tasks to be compacted, and for each, a distance it has to move, which is
calculated by traversing the direct dominance graph, compaction by mesh links proceeds in
the following way. The tasks to be compacted are simultaneously switched out of context
and processors send their task elements to their mesh neighbours to the right. Processors
receiving a task element check whether the task element has reached its destination and pass
it onto the right if not. All task elements for a task arrive at their destination in the same
cycle, after which the task elements are switched back into context to resume execution.
Individual tasks are delayed for the time they are in motion, which is proportional to the
distance they move. The time needed to free the allocation site is proportional to the
distance the leftmost column of the leftmost occupying task has to travel.

3.2.6 Sequential Reconfigurable Compaction

This method attempts to delay the executing tasks as little as possible by three means:
tasks are not switched out of context until moved; reconfigurable buses are used to move
individual tasks in minimum time according to Lemma 1; and tasks are not moved onto
executing tasks, where they would contend for use of the buses and use of the processors.
These means are enforced by moving tasks according to the direct dominance graph: a task
is not moved until all tasks in its subgraph have moved. Siblings may of course move in
parallel. Individual tasks are delayed for the minimum time needed to move them, which
is proportional to the distance they have to move, or their width, whichever is least. The
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time needed to free the allocation site is proportional to the time needed to sequentially
move the tasks on the critical path to the roots of the subgraph within the allocation site.

3.2.7 Parallel Reconfigurable Compaction

The allocation site is freed in minimum time by moving the leftmost task elements remaining
within it in consecutive cycles. We apply this approach to the set of tasks that are to be
compacted, whether they lie within the allocation site, or not. Consider a row of the mesh
that intersects tasks that are to be moved. In each step we move the leftmost task element
remaining to be moved. For a task element that moves in some cycle, we also move the task
element at its destination, if it exists and has not moved yet, or the next task element to the
right that is yet to move. In this way, the method makes greedy use of the reconfigurable
row bus, and the compaction schedule requires minimum time to complete. However, some
tasks may be delayed for the entire length of the schedule, which may exceed the minimum
number of cycles required to move the task according to Lemma 1. The time needed to
free the allocation site is proportional to the maximum number of task elements on any
row that lie within it.

3.2.8 Selecting the Best Allocation Site

Given the means for assessing the cost of compacting a set of tasks using the compaction
methods discussed in Sections 3.2.5 to 3.2.7, the feasible allocation sites can be compared
on the basis of cost to free the site of occupying tasks in minimum time. For example,
the compaction illustrated in Figure 5 is of minimal cost for the three methods discussed.
The time required to free the allocation site using mesh links is 3 cycles. Using sequential
reconfigurable compaction, 4 cycles are needed, while parallel reconfigurable compaction
clears the allocation site in 2 cycles.

We have discussed partial ordered compaction to the right in this section. It is not difficult
to establish that the minimum cost may not be as low as is possible for some compaction
to the left, or to the top or bottom of the mesh. All four directions need to be considered if
the compaction cost is to be minimized. However, the computational effort may in practice
not be worth it.

4 Experimental Results

We conducted a series of experiments to evaluate the benefits of one-dimensional ordered
partial task compaction over a range of process transfer costs. Requests for service consist-
ing of task sizes and service times were derived from trace data obtained from a 400 node
Intel Paragon at San Diego Supercomputer Center (SDSC) [1]. This data set was reduced
from 33,343 records to 33,058 after removing records with unknown start times and records
with processing times of less than one unit (second). The linearly given task sizes were
converted into requests for the most square rectangles of the given size, if the rectangles did
not exceed the dimensions of the mesh, or fitted into the most square rectangles that could
accommodate the request when not. The observed performance in simulation experiments
using this data set compares reasonably well with entirely random data while in addition
removing the “unreality” of randomly generated task sizes and run times. The requests
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were presented to a reconfigurable mesh simulator in their original order using uniformly
distributed random intertask arrival periods. We examined the performance of the simu-
lated system as the maximum intertask arrival period and the process transfer time per
link was varied using three allocation and four compaction costing methods:

1. Bottom—Left (BL) — task were allocated to the bottom-leftmost free block of con-
tiguous processors large enough to satisfy the request.

2. Non—contiguous (NC) — tasks were allocated non—contiguously whenever sufficient
processors were available.

3. Bottom—Left with one-dimensional ordered partial task compaction — tasks were
allocated BL. whenever it was possible to do so. When not, compaction was performed,
if possible, using the following cost methods:

(a) Cost Free Compaction (CFC)— executing tasks were compacted instantaneously.
Compaction costs were therefore not accounted for.

(b) Mesh Link Compaction (MLC) — executing tasks were compacted using mesh
links to transfer task element contexts, as described in Section 3.2.5.

(c¢) Sequential Reconfigurable Compaction (SRC) — tasks used reconfigurable bus
links to move according to the directed dominance graph, as described in Sec-
tion 3.2.6.

(d) Parallel Reconfigurable Compaction (PRC) — task elements were transfered
greedily using reconfigurable bus links, as described in Section 3.2.7.

Although Section 3.2.8 describes how the best allocation site could be found for each com-
paction method, in this evaluation we allocated at the first feasible site found so as to
reduce the simulation times. Nevertheless, with the aim of allocating blocked tasks as soon
as possible, the simulator checked the feasibility of all possible allocation sites in all four
directions with both possible task orientations whenever a task was deallocated.

The costs of finding allocation and compaction sites were considered negligible compared
with the cost of loading and unloading a task or performing a compaction. They were
therefore ignored. Since the cost of loading and unloading tasks is independent of the
allocation method, these too were not included in the simulation. Our results reflect the
cost of performing compaction for link transfer costs ranging from 10 ps to 10 ks per task
element transter. The unit of computation time was a second. We modeled the transfer
time of a task element across a reconfigurable bus as a constant independent of distance,
and equal to the delay incurred in traveling a mesh link.

In order to compare the performance of the allocation methods, a request’s arrival time, the
time its allocation commenced (request reached the head of the pending queue), the time its
processing commenced (the request was satisfied), and the time its processing completed
were logged. The results of 10 runs on a 20 x 20 reconfigurable mesh were averaged to
obtain the results presented here.
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4.1 Comparison of Allocation Methods

We first compare the performance of BL. with CFC in order to gain an appreciation for the
maximum possible performance benefit due to one-dimensional ordered partial compaction.
The results for NC provide an upper bound on the benefit obtainable with any compaction
method assuming the available processors could always be compacted. Note that the results
for NC do not provide a tight upper bound, since the message contention and latency
resulting from non—contiguous allocation increases the response time of affected tasks.

The mean allocation delay is the amount of time the request at the head of the pending
queue waits for sufficient processors (for the allocation method) to become available to
commence processing on average. The mean allocation delay for BL, CFC and NC is
plotted in Figure 9. At maximum intertask arrival periods of less than 300s the system was
saturated with work as tasks arrived more frequently than they could be allocated. The
rate at which tasks were allocated was dependent on the ability of the allocation method to
find a suitable free block for the task at the head of the pending queue. Only a fraction of
blocks freed as a result of tasks leaving the system satisfied the next request. We therefore
observed a constant allocation delay in the saturated system. While the next request was
frequently blocked for BL, it was sometimes possible to combine the free processors to
satisfy the next request with CFC, and with NC this was always possible once sufficient
free processors became available.
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Figure 9: Mean allocation delay to SDSC tasks arriving at uniformly random intervals on
a 20 x 20 mesh using Bottom—Left, Cost Free Compaction, and Non—Contiguous allocation
methods.

The reduction in mean allocation delay at saturation due to CFC was approximately 18%,
while with NC, the reduction was over 29%. These reductions increased as the system came
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out of saturation due to an increased ability to overcome fragmentation problems when the
packing of the mesh became less.

Positive feedback as a result of allocating tasks more effectively led to a reduction in the
maximum intertask arrival period at which CFC and NC came out of saturation as indicated
in the leftmost dips in their curves. NC, which has the least trouble allocating tasks, began
coming out of saturation at a maximum intertask arrival period of approximately 300s.
CFC came out of saturation at a maximum intertask arrival period of about 400s, while BL
did not leave the saturated region until the maximum intertask arrival periods approached
500s. These turning points correspond to the mean allocation delay at saturation.

When the system is saturated, the average amount of time a request spends advancing to
the head of the pending queue, the mean queue delay, is proportional to the difference in
the rate at which tasks arrive, and the rate at which they are allocated. This behaviour
is observed in Figure 10, which plots the mean queue delays for BL., CFC and NC. In the
saturated region, the benefit due to CFC rises from 20% for an intertask arrival period
of 1s, while for NC it increases from over 30%. As the system came out of saturation,
the decrease in mean allocation delay and the increase in mean intertask arrival period
contributed to reduce the mean queue delay. At high maximum intertask arrival periods,
tasks were rarely queued because the allocation delay was small, even when successive tasks
arrived shortly after one another
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Figure 10: Mean queue delay to SDSC tasks arriving at uniformly random intervals on a
20 x 20 mesh using Bottom—-Left, Cost Free Compaction, and Non—Contiguous allocation
methods.

Figure 11 charts the mean completion time for the task set. The mean completion times
were roughly constant in saturation and increased linearly with maximum intertask arrival
period out of saturation. This is because during saturation the completion times depend
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on the rate at which tasks can be allocated, while at higher intertask arrival periods, they
depend on the rate at which tasks arrive. The benefit due to CFC was just over 18% in the
saturated region, and that for NC was over 29%. As the system came out of saturation,
the reduction rapidly fell to 0.
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Figure 11: Mean completion time for SDSC task set arriving at uniformly random inter-
vals on a 20 x 20 mesh using Bottom—Left, Cost Free Compaction, and Non—Contiguous
allocation methods.

From Figure 12, we observe that the utilization of the array was constant for all allocation
methods when the system was saturated. When the system was no longer saturated, the
utilization became inversely proportional to the maximum intertask arrival period, since
for a given amount of work, computing resource and allocation method, the utilization is
inversely proportional to the completion time. In saturation, the utilization was therefore
inversely proportional to the mean allocation delay, which was constant, and out of satu-
ration, the utilization was inversely proportional to the maximum intertask arrival period.

The increases in utilization due to the CFC and NC allocation methods were approximately
23% and 42% respectively when the system was saturated. This benefit rapidly decreased to
0 as the system came out of saturation. Since CFC and NC reduced mean allocation delay
but did not influence the intertask arrival period, compaction only improved utilization
during saturation.

4.2 Comparison of Compaction Methods

In the previous section we found that the reduction in mean allocation delay at saturation is
a good indicator for the reduction in mean queue delay and completion time at saturation.
The percentage increase in utilization was found to exceed the percentage reduction in mean
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2D Utilization (SDSC Task Set)
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Figure 12: Processor utilization for SDSC tasks arriving at uniformly random intervals on
a 20 x 20 mesh using Bottom—Left, Cost Free Compaction, and Non—Contiguous allocation
methods.

allocation delay at saturation. In this section we compare the performance of the mesh,
sequential, and parallel compaction methods for a range of transfer costs with that of Cost
Free Compaction. The presentation is restricted to a comparison of mean allocation delays,
which is indicative of the relative performance on other metrics.

We present plots of the mean allocation delay for link delays of 10 seconds/transfer, be it
over a mesh link or reconfigurable bus, (Figure 13), 100 seconds/transfer (Figure 14), and
1,000 seconds/transfer (Figure 15). The mean allocation delay curve for the BL allocation
method is included as a reference.

At a link delay of 10 seconds/transfer, we found that the performance of PRC, SRC and
MLC was almost identical with that of CFC, which is free of transfer costs. Experiments at
link delays of less than 10 seconds/transfer produced similar results. In this range, almost
imperceptible variations in performance do occur when the delay to executing tasks results
in differing task arrangements. When the cost was set to 100 secs/transfer we observed a
2% increase in mean allocation delay over CFC in all three methods. At a delay of 1,000
seconds/transfer, significant increases in the mean allocation delay were observed. However,
PRC was still below the mean allocation delay of BL, despite the enormous link delay.

5 Discussion
The results for Cost Free Compaction indicate that significant performance gains can be

obtained for one—dimensional ordered partial task compaction if the cost is low. We have
found that compaction methods using link delays of less than 100s, be it a connection to a
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Reconfigurable compaction methods at a cost of 10 seconds/transfer.
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Figure 14: Mean allocation delay for SDSC tasks arriving at uniformly random intervals
on a 20 x 20 mesh using Cost Free, Parallel Reconfigurable, Mesh Link, and Sequential
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2D Mean Allocation Delay (SDSC Task Set - 1,000 secs/transfer)
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Figure 15: Mean allocation delay for SDSC tasks arriving at uniformly random intervals
on a 20 x 20 mesh using Cost Free, Parallel Reconfigurable, Mesh Link, and Sequential
Reconfigurable compaction methods at a cost of 1,000 seconds/transfer.

mesh neighbour, or a reconfigurable bus segment, yield performance benefits close to those
of Cost Free Compaction. Surprisingly, this is the case even for partial compaction using
mesh links, contrary to the popularly held view that task migration is costly in mesh—
based parallel architectures. The factors influencing the maximum link delay sustainable
without loss of performance remain to be identified, however, these may well include the
distribution of requested service times. The performance gap between Cost Free one—
dimensional ordered partial compaction and Non—Contiguous allocation indicates that there
may be scope for improvement, perhaps through the use of multi—-dimensional compactions
or arbitrary rearrangements of tasks, depending upon how close the results for NC are to
contiguous allocation with any compaction method.

The use of reconfigurable buses to transtfer task elements was found to be only marginally
better than using mesh links in the range of reasonable transfer costs, although some
dependence on the distribution of task sizes may be possible. The benefit resulting from the
use of buses should be greater when arbitrary rearrangements are considered, since it is more
likely that tasks will be moved beyond their boundaries. A parallel compaction schedule
that reduces the delay to executing tasks will probably improve the performance of Parallel
Reconfigurable Compaction only slightly, since within the range of reasonable transfer costs,
the Sequential Reconfigurable Compaction method that delays tasks as little as possible,
performs almost as well as the parallel method that does not attempt to minimize the delay
to executing tasks. In any case, the performance resulting from both of these methods is
close to that obtained with Cost Free Compaction.

Further investigation is needed to determine whether greater benefits are possible through
the selection of a compaction site that minimizes the cost of compaction rather than com-
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pacting at the first site identified. Some tasks, especially long-lived ones, participate in
many compactions and are therefore delayed on several occasions. Methods that avoid this
problem are sought.

In [4] we found that performance gains from partial task compaction are dependent on the
task size distribution. The benefits are not nearly as great when the task set contains a
significant number of tasks requesting more than halt of the total resource. Performance
gains of approximately 20% were obtained on linear array systems using partial task com-
paction when the size of the requests was kept below one third of the total resource. In
this study we have assessed performance with a task set, 0.2% of whose requests are for
more than half of the total resource. To be confident of the expected gains from partial
task compaction, the results of running the experiment on several field—collected data sets
are needed.

6 Concluding Remarks

We found that partial task compaction reduces the allocation delay to tasks, which in
turn reduces the queue delay and the time to complete a given task set, and increases the
utilization of the compute resource. These benefits are greatest when tasks arrive more
frequently than they can be processed although significantly reduced allocation and queue
delays can be expected even when tasks arrive infrequently. It was found that allocating
tasks with compaction increases the load that can be sustained by the system before it
saturates. The load—bearing capacity was found to increase in proportion to the reduction
in mean allocation delay. Performance benefits of over 18% were obtained at saturation for
data derived from trace files in spite of link delays of up to 100s. For transfer costs in this
range, performance differences between simple compaction methods using mesh links and
reconfigurable bus links were small. Since for large transfer costs the benefit is considerable,
we feel that partial task compaction ought to be considered on MIMD meshes as a practical
means of reducing fragmentation, for combining subtasks to reduce message contention and
latency, and for unifying time—slots in gang—scheduled systems.

Many research problems remain to be solved. These include: examining the possibility of
improving the time complexity of algorithms used to find good allocation sites; determining
the scheduling complexity of one—dimensional ordered compaction on meshes, and devel-
oping better compaction scheduling algorithms; developing methods to relocate the tasks
occupying an allocation site to arbitrary locations on the mesh; taking into account tasks
with deadlines; and minimizing the delay incurred by individual tasks in the interests of
group performance benefits.
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