
Partial Task Compaction Reduces Queuing Delays
in Partitionable�Array Machines

O� Diessel H� ElGindy B� Beresford�Smith

Department of Computer Science and Software Engineering
The University of Newcastle

Callaghan NSW ����
Australia

fodiessel�hossam�bbsg�cs�newcastle�edu�au

Abstract

Partitionable�array machines have emerged as pop�
ular target architectures for e�orts to devise e�ec�
tive on�line processor allocation strategies� As the
available processors become fragmented� contiguous
processor allocation schemes can fail to allocate
a task despite there being su�cient processors in
total to service the request� Tasks consequently
wait longer to be serviced� and the system response
degrades� In this paper� we report on the use of par�
tial task compaction to improve the performance of
contiguous processor allocation methods for parti�
tionable linear arrays� A quadratic sequential time
algorithm to schedule the ordered compaction of
tasks on a recon�gurable bus system is presented�
The length of the schedule is shown to be within
twice that of the minimum schedule length� Ex�
perimental results indicate that the algorithm al�
most eliminates the problem of fragmentation� and
reduces the system response time by signi�cantly
reducing allocation delays�

� Introduction

The partitionablemultiple�SIMD�MIMDmodel al�
lows compute processors to be shared amongmulti�
ple� independently controlled tasks ��� ��� 	
� Such
systems make e�ective use of the compute proces�
sors by adjusting the sizes of processor partitions to
the sizes of the tasks� thereby allowing the number
of tasks executed in parallel to be increased� Sev�
eral contiguous processor allocation schemes have
been proposed to manage the partitioning and al�
location of contiguous blocks of processors under
this model
see� for example� ��� ��
�� Contiguous
allocation schemes su�er from fragmentation of the
available processors as variously sized tasks are
allocated and deallocated� Tasks end up waiting
in a queue to enter the system despite there be�
ing su�cient� albeit non�contiguous free processors
available to service them� The time to complete a
set of tasks is consequently longer� and the utiliza�
tion of the compute resource is lower than it could
be�

In this paper� we report on our investigation
into the use of partial task compaction to reduce
fragmentation in linear processor arrays� When a
task is blocked from entering the system because
the available processors are fragmented� we move
a subset of the allocated tasks to combine the free
fragments between them if doing so allows the task
to enter the system sooner� In linear arrays the
method almost eliminates the problem of fragmen�
tation at the cost of introducing some execution
delays due to task movements� Our partial task
compaction algorithm reduces the allocation de�
lays due to fragmentation as much as possible and
attempts to minimize the execution delays due to
task movements�

The use of full and partial task compactionmeth�
ods to reduce fragmentation has previously been
reported for hypercubes
see� for example� ��
� and
meshes ���
� In this paper partial task compaction
is investigated for a partitionable multiple�SIMD
linear array of processors that� in addition to the
local connections between neighbouring processors�
is equipped with a recon�gurable bus to support
rapid task compaction� We demonstrate how the
allocation delay can be minimized by selecting a
suitable compaction site� A heuristic compaction
scheduling algorithm that allows a blocked task to
be allocated in minimum time is developed� We
also present results of an experiment to assess the
e�ectiveness of our scheduling algorithm�

In the following section we describe the archi�
tecture and our assumptions in detail� We then de�
scribe our ordered partial task compaction method
before presenting and analyzing algorithms to per�
form the task compaction e�ciently in Section 	�
Results on the use of task compaction to improve
the performance of linear arrays augmented with
recon�gurable buses that employ �rst��t processor
allocation and �rst�come� �rst�served scheduling
are then reported in Section �� Our �ndings are
summarized in Section �� which also mentions ar�
eas for future research�

� Model

We consider a partitionable multi�SIMD linear ar�
ray of compute processors� in which arbitrarily sized
blocks of contiguous processors are independently
controlled to operate in SIMD mode� An overview
of this model is given in Figure �� The compute
resource consists of n interconnected processing el�
ements
PEs� that are controlled by a set of m
control processors
CPs� under the global control
of a host� The host orchestrates the operation of
the CPs� each of which broadcasts instructions for
the PEs under its control over the CP�PE inter�
connection network�

PEn

CPm

Host

CP�CP�

PE�PE�

Host�CP Communication Network

CP�PE Interconnection Network

PE Interconnection Networks

Figure �� The multi�SIMD model of parallel
computation�

In our model� the PEs are connected to their
neighbours to the east and west for intra�task com�
munications� In addition� PEs are connected to the
base of a recon�gurable mesh of switching elements
to the north� as illustrated in Figure �� for the
purpose of task movements�

T�

Task to allocate

T� T� T�

Recon�gurable mesh of switchiung elements

con�gured to move task T�

Linear array of processing elements

executing tasks T�� T�� and T�

Figure �� Problem model depicting the move of T�
to accommodate T��

A recon�gurable mesh ��
 of size m�n� consists
of m rows and n columns of processing elements
arranged in a grid� Traditionally� these processors

are fully��edged SIMD processors� However� for
this application� a simple sequential circuit capable
of the comparisons and address calculations needed
to set the recon�gurable mesh switches will su�ce�
For the remainder of this paper we refer to such
a circuit as a switching element
SE�� Each SE
is connected to its immediate neighbours to the
north� south� east and west� when present� and
has four similarly labeled I�O ports through which
it can communicate with its neighbours� Each SE
has control over a local set of short�circuit switches
that allow the four I�O ports to be connected to�
gether in any combination�

The SEs operate synchronously� in one machine
cycle performing an arithmetic� logic or control
operation� setting a connection con�guration� and
sending
receiving� a datum to
from� each I�O
port� When a connection is set� signals received
by a port are simultaneously available to any port
connected to it� For example� if the SEs connect
their northern and southern I�O ports by closing
the appropriate switches� data �broadcast� onto
the �column bus� thus formed can be read by all
of the processors in a column� The model allows
concurrent reading from a bus� requires exclusive
writing to a bus� and assumes a constant time
communication delay on arbitrarily long connected
bus components� A similar recon�gurable mesh of
switching elements can be used to implement the
CP�PE interconnection network�

Moving a task involves switching the task out
of context and setting the mesh to form buses to
move the task elements
processor contexts and
local memories�� The source
target� processors
of a move then write
read� their task elements to

from� their mesh ports� When all the elements of
a task have reached their destination� the task is
switched back into context� Compute processors
have storage for two task elements between which
they can switch in a single step� Storage for a task
element that is switched out of context may be
accessed from the compute processor�s mesh port
in a single step while the processor participates in
the execution of another task� Compute processors
participate in the execution of at most one task
at a time� and all of the elements of a task need
to be switched in for the task to be able to exe�
cute� Compute processors can participate in the
execution of a task at the same time as communi�
cating with the mesh� Forming a bus within the
recon�gurable mesh� and writing
reading� a task
element to
from� context storage can be done in
a single step� However� several bus�forming and
broadcasting phases may be needed to compact
tasks unless the height of the mesh� H� is equal to
its width� W � If H � W � then it is straightforward
to see that compaction can be accomplished in
O
�� steps�

Overall management of tasks is accomplished
in the following way� Tasks are queued by a se�
quential host as they arrive� A task allocator�
executing on the host� attempts to �nd a loca�
tion for the next pending task� If some executing
tasks need to be compacted to accommodate the
next pending task� then a schedule for switching
those tasks out of context� and moving their task
elements over the mesh is computed by the allo�
cator� The allocator coordinates the switching of
the recon�gurable mesh� task processors and task
controllers according to the compaction schedule�
and associates an available control processor with
the new task and its allocation� If a location for
the next pending task cannot be found� the task
waits until one becomes available following one or
more deallocations as tasks complete processing�

� Algorithms

In this section we address the problem of allocating
the task at the head of the queue
henceforth called
the incoming task� as quickly as possible when no
contiguous block of free processors is large enough
to satisfy the request although su�cient free pro�
cessors in total are available� The task compaction
process consists of� selecting a suitable location for
the incoming task� moving occupying tasks to new
locations� and allocating the new task�

Task compaction methods in linear arrays may
be classi�ed according to whether they preserve or
permute the spatial order of tasks� and whether
they move tasks in one or two directions� In this
paper� we focus on order�preserving compaction of
tasks� and discuss the one�way case in detail� We
derive a lower bound on the time needed to move a
task and use it to select a location for the incoming
task that minimizes the time needed to allocate
it� We then describe a scheduling algorithm to
sequence the task moves so as to free the space
needed by the incoming task in minimum time�

��� Left Ordered Compaction

The idea behind Left Ordered Compaction is to
choose a suitable location for the incoming task�
and to move the tasks already occupying the pro�
cessors at that location to the left while preserving
their spatial order� In general� these tasks will be
moved to locations occupied by other tasks that
will need to be moved as well� Our Left Ordered
Compaction protocol identi�es a sequence of tasks
that needs minimal time to be compacted� and
computes a schedule for compacting the tasks so
that they abut one another and vacate su�cient
processors on their right for the incoming task�

��� Selecting an optimal location for
the incoming task

In order to minimize the time to allocate the task�
we choose a location for the incoming task that
takes minimum time to free of executing tasks�
The following lemma describes the criterion for
computing the optimal time required to move a
task� This information allows us to compute the
ordered compaction schedule length for a subset of
tasks� and thus to choose a location that requires
minimum time to free of executing tasks� To sim�
plify the presentation� we assume all lengths and
distances are multiples of the recon�gurable mesh
height� H�

Lemma � 	
� A task of length l can be moved d

processors to the left in �
min
 l
H
� d
H
�� steps using

a recon�gurable mesh of height H� This is optimal�

Let us say a task Ti is covered by another task
Tj � if the processors allocated to Ti would need
to be reallocated to Tj were Tj to be based at
a particular location� From Lemma �� the time

cost� to move a task T completely covered by
the incoming task is proportional to the length of
T � whereas the cost to move a task T partially
covered by the incoming task is dependent on the
direction it is moved in� if the uncovered portion
of T is moved away from the incoming task� then
the cost to move it is proportional to the number
of processors covered� otherwise� the cost is pro�
portional to the length of T � Let each executing
task Ti be associated with a free block fi to its
left� possibly of zero length� We say the tasks
Ti� Ti��� � � � � Tj� i � j are a contiguously allocated
sequence of tasks if the free blocks fi��� fi��� � � � � fj
between them all have zero length� The sequence
is a maximal contiguously allocated sequence if the
free blocks fi to the left of Ti� and fj�� to the
right of Tj � have non�zero length� The following
theorems allow us to identify an optimal location
for the incoming task e�ciently�

Theorem � 	
� The time needed to free proces�
sors for the incoming task using Left Ordered Com�
paction is minimized when the rightmost task ele�
ment of the incoming task is allocated to the right�
most processor of a free block of non�zero size�

Theorem � 	
� It is necessary to consider both
Left� and the symmetric Right Ordered Compaction
of tasks in order to minimize the time needed to
free the processors for the incoming task using an
Ordered Compaction approach�

Theorem � allows us to only consider the right�
most processors of each non�zero sized free block as
possible locations for aligning a window as wide as
the incoming task� For each such location we com�
pute the time to move the allocated tasks� which is

equal to the total number of allocated processors
within the window� The location that minimizes
the time� and that has su�cient free processors
to the left to accommodate the allocated proces�
sors within the window� is the best location for
the incoming task using Left Ordered Compaction�
Theorem � asserts that the times required by Left
and Right Ordered Compaction to free the pro�
cessors for the incoming task are not necessarily
equal� so both need to be considered to minimize
the compaction time� The optimal location can
be found in linear sequential time by scanning a
list of task and free block records in base processor
order as outlined in Procedure SelectTasksTo�

CompactLeft� A list of tasks that need to be
moved� together with their new base locations� can
be compiled during the scan�

Procedure SelectTasksToCompactLeft

Input Doubly linked list of task and free block
records containing the size of records in base
processor order� The size of the request�

Output Pointers to the rightmost and leftmost
tasks in the sequence of tasks to compact�

begin

�� scan forwards through the list with pointer R
until R points to a non�zero sized free block
record and the total free space to the left of
R�next exceeds the request

�� repeat

a� if the incoming task location that allo�
cates the rightmost task element to the
rightmost processor of R covers the least
allocated processors so far then

i� scan forwards through the list with
pointer L until the free space between
R�next and L�next is less than the
size of the request

ii� save pointers to the rightmost
R�prev�
and leftmost
L�next� tasks in the se�
quence to compact

b� scan forwards through the list with R

until R points to a non�zero sized free
block record or the list has been scanned

until the list has been scanned

	� return saved pointers

end

��� Scheduling the task moves

A schedule to compact the tasks is needed when
the height of the recon�gurable mesh is less than
the number of task elements that are to be moved�
Our scheduling goals are�

�� to move the tasks occupying processors that
are to be allocated to the incoming task as
quickly as possible�

�� to avoid delaying the tasks that are to be com�
pacted anymore than necessary to move them�
and

	� to complete compacting the tasks as soon as
possible�

In the remainder of this section� we motivate the
need for a schedule and specify the requirements
of a partial task compaction schedule� We obtain
a lower bound on the schedule length� and outline
our strategy for minimizing delays to tasks� We
then present an algorithm that allocates the in�
coming task in minimal time� and obtain bounds
on the maximum delay to executing tasks and the
maximum schedule length�
For a sequence of tasks at given locations and

a given recon�gurable mesh height� a Left Ordered
partial task compaction schedule de�nes for each
task element that is to be moved� the step of the
schedule it is to be switched out of context in�
the step it is to be moved in� the step it is to be
switched back into context in� and designates the
row of the mesh to be used for the transfer�

De�nition � We use the symbol SO to denote the
number of blocks of H task elements covered by the
incoming task�

Lemma � 	
� Any Left Ordered partial task com�
paction schedule will require at least SO or SO � �
steps to complete� depending on whether the block
of H processors immediately to the left of the in�
coming task location is free or not� respectively�

In general� more than SO �H task elements in
total will need to be moved� since the occupying
tasks are moved on top of other executing tasks�
Several tasks therefore need to be moved simul�
taneously� and in each step several task elements
will need to share a row of the recon�gurable mesh
in order for the compaction schedule to meet the
lower bound�
The tasks occupying processors that are to be

allocated to the incoming task need to be switched
out of context or moved in order to commence
executing the incoming task� If these tasks are
not moved as soon as they are switched out� they
are delayed from executing� which is to be avoided
since delays increase response times� Tasks oc�
cupying the processors that are to be allocated

to the incoming task therefore need to be moved
before the incoming task can commence executing�
To avoid delaying executing tasks any more than
necessary� they are moved just once as soon as
they are switched out of context� the task elements
are moved in a minimum number of consecutive
steps� and tasks are switched into context again
as soon as they complete their moves� Whether
or not it is always possible to move the tasks oc�
cupying processors that are to be allocated to the
incoming task in minimum time without delaying
any executing tasks more than the minimum time
necessary to move them is still under investigation�
Our ordered compaction schedule is obtained

by identifying sequences of task elements that can
be moved in parallel� The sequences are de�ned so
that the task elements within each sequence can be
moved without a�ecting the moves of task elements
in neighbouring sequences� Task elements within
a sequence commence moving with the rightmost
element in the �rst step of the schedule� and pro�
ceed to move in decreasing address order until the
leftmost element has been moved� If the rightmost
sequence does not include all of the task elements
that occupy processors that are to be allocated
to the incoming task� then it does not commence
moving until its rightmost element is unimpeded
by movements in the �rst sequence to its left� The
schedule is complete when the leftmost task el�
ements of all sequences have been moved� Fig�
ure 	 illustrates a schedule for a Left Ordered Com�
paction instance assuming H � �� Sequence �
covers the � task elements at processors ����������
��� and 	�� These can be moved in parallel with
those of sequence �
��� ����������� The rightmost
sequence does not include all the allocated proces�
sors covered by the incoming task
��� �������		��
hence the rightmost task element of the rightmost
sequence is impeded from moving until the �fth
step of the schedule�

�� ���� �� ��� ����

t � �

t � �

t � �

t � �

t � 	

t � �

t � �

Array addresses

S
eq
u
en
ce
�

S
eq
u
en
ce
�

S
eq
u
en
ce
�

S
eq
u
en
ce
�

S
eq
u
en
ce
�

R
ig
ht
m
os
t

S
eq
u
en
ce

Final task arrangement
Task element moves

at time step t

Initial task arrangement

Incoming task positioned over its �nal location

Figure 	� A Left Ordered Compaction schedule�

We compute a candidate schedule commencing
with the rightmost task element of each task that
occupies processors that are to be allocated to the

incoming task� From among these candidates� we
choose the schedule that minimizes the delay to
moved tasks� and if there are two or more such
schedules� then one that minimizes the schedule
length� To complete this section� we describe in
detail how the sequences for a candidate schedule
are found� give bounds on the schedule length and
delay caused to executing tasks� and derive the
time complexity of a sequential algorithm to �nd
the best schedule�
Let us assume a sequence of tasks has been

selected for Left Ordered Compaction� For each
task that occupies processors that are to be al�
located to the incoming task� the sequences are
identi�ed by �nding those task elements that can
be safely moved in parallel with the rightmost task
element� These form the rightmost task elements
of the sequences for a candidate schedule� As de�
scribed below� the candidate schedule length� and
the maximum delay to a task can be computed
during the sequencing operation� thus the schedule
that minimizes the maximum delay to executing
tasks and the total schedule length can be chosen
once all candidate sequences have been computed�
Say task Ti of length li� with free block fi
possibly
of zero size� to its left� is to be moved a distance
di to the left� We refer to the task elements of Ti
as Ti
j�� � � j � li�
Suppose the sequence of tasks to be moved is

Tr � Tr��� � � � � Tr�s� and that some task element Tj
v��
r � j � r � s� � � v � lj has been chosen to be
moved in the �rst step� We consider where Tj
v�
is moved to to �nd the next task element to the
left that can be moved in parallel with it on the
same row of the recon�gurable mesh� To simplify
the discussion� we assume H � �� There are three
cases�

�� If Tj
v� is moved to a free processor of some
free block fi� then Ti��
li���� if it exists and
needs to be moved� can be moved to the left
together with Tj
v��

�� Should Tj
v� be moved to a processor occu�
pied by Ti
u�� i � j� � � u � li� of a task Ti
with di � li� then no task element from tasks
to the right of Ti are moved to the left of Ti
since the processor abutting Ti on the left will
be occupied by a task element of Ti� If u � ��
then the processors allocated to the task ele�
ment Ti
u���� and those to its left� can write
to the left� At the same time� the processors
allocated to Ti
u�� and the task elements to
its left� read from the right� After Ti��
��
has moved� the task elements Ti
li�� � � � � Ti
u�
are moved by the sequence commencing with
Tj
v�� If u � �� then Ti��
li���� if it exists
and needs to be moved� can be moved to the
left together with Tj
v��

	� When Tj
v� is moved to a processor occupied
by Ti
u�� i � j� � � u � li� of a task Ti with
di � li� then some task element from tasks to
the right of Ti is moved to the left of Ti since
the processor abutting Ti on the left will not
be occupied by a task element of Ti� Since
the task elements of Ti to the right of� and
including Ti
u� cannot move while the tasks
Ti��� � � � � Tj are moved to the left of Ti
u�� Ti
must wait until after they have moved for it to
be able to move in the least possible number of
consecutive steps� In this case� Ti��
li���� if
it exists and needs to be moved� can be moved
in parallel with Tj
v��

The above selection is repeated for the task
element just found until it is not possible to choose
another task element to the left that can be moved
in parallel with Tj
v�� The identi�ed task elements
form the rightmost task elements of the sequences
for a candidate schedule commencing with Tj
v� �
Tj
lj� for some task Tj� r � j � r � s occupying
processors to be allocated to the incoming task� If
Tj
lj� �� Tr�s
lr�s�� then the rightmost sequence

commences with Tr�s
lr�s� after SO �
Pr�s

i�j�� li
steps if the processor to the left of the incoming
task location is free� or one step later� if not�

Lemma � 	
� The distance moved by a task Ti
whose leftmost task element is not covered by the
incoming task is at most SO processors�

Lemma � 	
� The number of allocated processors
spanned by a bus used to move a task element is at
most SO � ��

The number of steps needed to complete a can�
didate schedule� SL� is given by the maximumnum�
ber of task elements spanned by any sequence in
the schedule� The rightmost sequence completes
after SO steps if the processor to the left of the
incoming task is free� or after one more step� if
not�

Lemma � 	
� A candidate schedule length SL is
at most �SO�

An executing task is delayed if it is switched
out of context for more steps than the minimum
number needed to move it� The delay to an exe�
cuting task is the number of steps it is switched
out and none of its elements is moving�

Lemma 	 	
� The maximum delay to an executing
task is at most SO � � steps�

Theorem � 	
� For Left Ordered compaction of
tasks� there is a schedule with length at most �SO
that delays no task more than SO � � steps� More�
over� such a schedule can be found in quadratic
sequential time�

Corollary � 	
� Two�way ordered compaction has
the potential of reducing the maximum schedule length
and the maximum delay to executing tasks due to
Left Ordered compaction by a factor of two�

Procedures ComputeLeftOrderedSequences

and ComputeBestLeftOrderedSchedule con�
tain an outline of the algorithm�

Procedure ComputeLeftOrderedSequences

Input Doubly linked list of task records Tr � Tr���
� � � � Tr�s containing the size of each task and
the distance it is to be moved in base processor
order� Pointer to a task Tk whose rightmost
task element Tk
lk� is to be moved in the �rst
step�

Output A list of task elements to be moved in
parallel with Tk
lk� in decreasing address or�
der� The maximum delay �max to any task�
The candidate schedule length SL

begin

�� set Tk
lk� to be the task element Tj
v� to be
moved in the �rst step

�� while a task element Tj
v� remains to be moved

a� append the task element to the list of
task elements to be moved in the �rst
step

b� �nd the next task element to the left of
Tj
v� that can be safely moved in parallel
with it

c� if Tj
v� is moved to Ti with li � di then
compute and save the maximum delay

d� compute and save the length of the se�
quence commencing with Tj
v�

e� set Tj
v� to be the next task element to
the left to be moved

end

Procedure ComputeBestLeftOrderedSchedule

Input Doubly linked list of task records Tr � Tr���
� � � � Tr�s containing the size of each task and
the distance it is to be moved in base processor
order� The size of the request�

Output A schedule specifying for each time step
the addresses of task elements that are to be
switched in and out of context� and the source
and destination addresses of task elements that
are to be moved�

begin

�� for each task Tk whose rightmost processor is
to be allocated to the incoming task

a� call ComputeLeftOrderedSequences

with Tr � � � � � Tr�s� and pointer to Tk� re�
turning the list of task elements to be
moved in the �rst step of a schedule com�
mencing with Tk
lk�� the maximumdelay
to tasks �max� and the candidate schedule
length SL

b� if
�max � �min or
�max � �min and SL �

SLmin
�� then save the list of task elements�

�min and SLmin

�� derive the schedule for the sequences de�ned
by the saved list of task elements

end

� Experimental Results

We conducted a series of experiments to evalu�
ate the bene�ts of task compaction and to assess
the e�ectiveness of the Left Ordered Compaction
method� Requests for service consisting of task
sizes and service times were derived from trace
data obtained from a ��� node Intel Paragon at
San Diego Supercomputer Center
SDSC� ��
 and
a ��� node iPSC���� at Numerical Aerodynamic
Simulation
NAS� Systems Division� NASA Ames
Research Center ��
� These were presented to a
linear array simulator in their original order us�
ing uniformly distributed random intertask arrival
periods� We examined the performance of the sim�
ulated system as the maximum intertask arrival
period was varied using three allocation methods�

�� First��t
FF� � a task was allocated to the
leftmost free block of contiguous processors
large enough to satisfy the request�

�� Left Ordered Compaction
LOC� � used the
Left Ordered Compaction method to allocate
a task when the total number of free proces�
sors exceeded the request and the request could
not be satis�ed by FF�

	� Cost Free Compaction
CFC� � executing tasks
were compacted instantaneously when the re�
quired number of free processors were avail�
able� but not contiguously� Scheduling and
compaction costs were not accounted for� CFC
used FF when compaction was not necessary�

Our results are summarized in the following
sections� A more detailed description of the ex�
perimental method and results is available from
��
�

��� SDSC Trace Results

When tasks arrive more rapidly than they can be
processed� the system is said to be saturated � Un�
der these conditions� the average amount of time a

request spends advancing to the head of the pend�
ing queue� the average queue delay � is proportional
to the di�erence in the rate at which tasks arrive�
and the rate at which they are allocated� We ob�
served a reduction in average queue delay from
FF to LOC
CFC� of ����
���� � when all re�
quests were assumed to have arrived at the same
instant� This improvement increased as the aver�
age intertask arrival period increased to levels at
which the system did not saturate� The closeness
of the results for LOC and CFC indicates that the
costs associated with compaction are insigni�cant�
The reduction in average queue delay was a result
of a reduction in average allocation delay due to
compaction�
The average allocation delay is the amount of

time the request at the head of the pending queue
waits to commence processing on average� This
includes the time the request waits for su�cient
processors
for the allocation method� to become
available� as well as the time to allocate those pro�
cessors and to load the incoming task� We ob�
served a reduction in average allocation delay from
FF to LOC
CFC� of ����
���� � in the satu�
rated system� See Figure �� The average allocation
delay� and the improvement due to compaction�
were constant until the maximum intertask arrival
period exceeded the average allocation delay at
saturation� The reduction in average allocation
delay with compacting allocationmethods is due to
their ability to combine the free processors in order
to satisfy the request at the head of the queue� The
amount of reduction at saturation is dependent
on the size of the system� and the distribution of
task sizes and task service times� The compacting
allocation methods were also observed to sustain
higher intertask arrival rates before saturating due
to their lower average allocation delay at satura�
tion�

0

5

10

15

20

25

30

35

40

45

50

0 500 1000 1500 2000 2500 3000

A
ve

ra
ge

 A
llo

ca
tio

n
D

el
ay

 (
tu

s/
10

)/
P

er
ce

nt
ag

e
D

ec
re

as
e

(%
)

Maximum Intertask Arrival Period (tus)

Average Allocation Delay (SDSC Task Set)

FF allocation delay
LOC allocation delay
CFC allocation delay

LOC decrease in allocation delay
CFC decrease in allocation delay

Figure �� Average allocation delay to SDSC tasks
arriving at uniformly random intervals on a linear
array of ��� nodes using First��t� Left Ordered�
and Cost Free Compaction allocation methods�

For the LOC
CFC� allocation method� we ob�
served a ���	
���� � reduction from FF in the

amount of time needed to complete processing the
task set
completion time� at saturation� and we
also obtained a ����
���� � increase in system
utilization due to LOC
CFC�� Bene�ts of this size
were to be expected� since at saturation� comple�
tion time is proportional to the average allocation
delay� and utilization is inversely proportional to
the completion time�
As the average intertask arrival period rose above

the average allocation delay at saturation� the av�
erage queue and allocation delays were observed
to fall towards zero� The completion times were
observed to increase linearly� and the utilizations
to decrease inversely with further increases in aver�
age intertask arrival period� While average queue
and allocation delays were still signi�cantly less for
LOC and CFC than for FF at high intertask arrival
periods� there was no reduction in completion time
or increase in utilization due to compaction when
the system was no longer saturated because these
performance measures then depend upon the rate
at which tasks arrive rather than the rate at which
they are allocated�
The delay to tasks resulting from moving them

was investigated for individual tasks in the SDSC
task set at saturation when the number of alloca�
tions using compaction was highest� The average
results for �� runs are recorded in Table ��

Tasks Tasks Tasks
�nishing �nishing �nishing
later at the earlier
with same with
LOC time LOC

Num tasks ���� ���� 	�������
Max
incr
decr�
�nish time ��� ���
�����
Mean
incr
decr�
�nish time ��� ���
�����
Num tasks
delayed ���� ��� �������
Max incr
run time ��� ��� ����
Mean incr
run time ��� ��� ���

Table �� Delays to SDSC tasks due to task
movements at saturation using Left Ordered Com�
paction� compared with times for the same tasks
allocated using First Fit�

Although ���� of tasks experienced extended
running times as a result of being moved� only
���	 of tasks �nished later than they would have
with FF allocation� These were tasks that ar�
rived early enough for them to be allocated at the
same time under both FF and LOC� but that were
moved at some time due to their extremely long

execution times� The overwhelming majority of
tasks �nished earlier with LOC� even when their
running times were extended� Running times were
extended on average by less than � �

��� NAS Trace Results

When the NAS task set was processed on a ���
node array we obtained a similarly shaped response
in the key performance indicators� however� the
magnitude of the bene�ts due to compaction were
much lower� A reason for the depressed perfor�
mance of compaction was found in the distribution
of task sizes relative to the size of the array� The
NAS task set contained relatively more large re�
quests than the SDSC task set did� Since the per�
formance of compaction appeared to depend quite
dramatically on the task sizes relative to the array
size� we examined the relationship between per�
formance and array size at saturation more closely
using the NAS task set� The results appear plotted
in Figure ��

0.1

1

10

128 256 384 512 640 768 896 1024

P
er

ce
nt

ag
e

(%
)

Array size (PEs)

Performance at Saturation (NAS Task Set)
40

LOC decrease in allocation delay
CFC decrease in allocation delay

Allocations using compaction
Delayed compaction schedules
Overrun compaction schedules

Figure �� Dependence of LOC performance on
array size when the NAS task set was processed
with a maximum intertask arrival period of � time
units�

The reduction in average allocation delay due to
compaction increased to approximately �� when
the array was about three times as large as the
largest request� This observation is supported by
Knuth�s �nding regarding segmented memoryman�
agement� that requests for more than one third
of memory would be refused with high probabil�
ity ��
� The performance gap between LOC and
CFC increased and the number of allocations using
LOC compaction decreased with increasing array
size� We think the higher degree of parallelism on
larger arrays increased the cost of LOC relative to
CFC due to the increase in the cost of selecting
a compaction location� The number of allocations
using LOC would have decreased with higher levels
of parallelism due to the increased likelihood that
suitable tasks would have been deallocated dur�
ing the scheduling phase� thereby causing LOC to
abort compaction more frequently� We attribute

the increase in the number of delayed and over�
running compaction schedules to increasing paral�
lelism as well� since it would have made it more
likely that tasks would be moved to processors oc�
cupied by other tasks�

� Concluding Remarks

Partial task compaction reduces the allocation de�
lay to tasks� which in turn reduces the queue delay
and the time to complete a given task set and
increases the utilization of the compute resource�
These bene�ts are greatest when tasks arrive more
frequently than they can be processed� although
signi�cantly reduced allocation and queue delays
can be expected even when tasks arrive infrequently�
It was found that allocating tasks with compaction
increases the load that can be sustained by the sys�
tem before it saturates� The load�bearing capacity
increased in proportion to the reduction in the av�
erage allocation delay� The bene�ts of compaction
vary according to the task mix� and appear to be
more signi�cant when the sizes of the tasks are
small compared to the system size� Performance
bene�ts of over �� were obtained for task sets
derived from actual trace data assuming tasks were
waiting to be processed� Under these conditions�
the overwhelming majority of tasks �nished ear�
lier when realistic compaction costs were included�
The reduced �nishing times resulted from signi��
cantly reduced queue delays� which were o�set by
slight increases in processing times�
Partial task compaction reduces the allocation

delay to linear SIMD tasks by alleviating the prob�
lem of fragmented idle processors� While the prob�
lem cannot be eliminated entirely� since there is
some cost involved in scheduling and carrying out
task movements� simulations of the simple Left
Ordered Compaction method performed almost as
well as if these costs did not exist� Although our
Left Ordered Compaction scheduling algorithm is
not optimal� it appears to be practical� The prob�
lem of deciding whether a Left Ordered Compaction
instance can be scheduled in the minimum time
needed to free the incoming task location of oc�
cupying tasks without delaying executing tasks re�
mains open�

References

��
 S� D� S� Center� Intel Paragon trace data�
Available by ftp from ftp�cs�uoregon�edu�

pub�lo�trace�sdsc�tar�gz�

��
 H��L� Chen and N��F� Tzeng� Task migration
in hypercubes using all disjoint paths� In
Proceedings of the Seventh International Con�
ference on Parallel and Distributed Computing
Sy stems� pages 	���	�	� Oct� �����

�	
 Cray Research� Inc� Cray T�D system archi�
tecture overview� Sept� ���	�

��
 O� Diessel� H� ElGindy� and B� Beresford�
Smith� Partial task compaction reduces
queuing delays in partitionable�array ma�
chines� Technical report ������ Depart�
ment of Computer Science and Software
Engineering� The University of Newcas�
tle� ����� Available by anonymous ftp�
ftp�cs�newcastle�edu�au�pub�

techreports�tr������ps�Z�

��
 D� E� Knuth� The Art of Computer Pro�
gramming Vol
� Fundamental Algorithms�
Addison�Wesley� Reading� Massachusetts�
second edition� ���	�

��
 K� Li and K��H� Cheng� A two�dimensional
buddy system for dynamic resource allocation
in a partitionable mesh connected system�
Journal of Parallel and Distributed Comput�
ing� ��
�������	� May �����

��
 R�Miller� V� K� Prasanna�Kumar� D� I� Reisis�
and Q� F� Stout� Parallel computations on
recon�gurable meshes� IEEE Transactions on
Computers� ��
����������� June ���	�
A pre�
liminaryversion of this paper was presented at
�th MIT Conference on Advanced Research in
VLSI� ������

��
 B� Nitzberg� NAS iPC���� Workload Data
�Q�	� Personal communication� Available by
ftp from ftp�cs�uoregon�edu�pub�lo�

trace�nas�tar�gz� July �����

��
 H� J� Siegel� L� J� Siegel� F� C� Kemmerer�
P� T� Mueller Jr�� H� E� Smalley Jr�� and S� D�
Smith� PASM� A partitionable SIMD�MIMD
system for image processing and pattern
recognition� IEEE Transactions on Comput�
ers� C�	�
�����	������ Dec� �����

���
 Supercomputer Systems Division� Intel Cor�
poration� Beaverton� OR� Paragon XP�S
Product Overview� �����

���
 H��y� Youn� S��M� Yoo� and B� Shirazi� Task
relocation for two�dimensional meshes� In
Proceedings of the Seventh International Con�
ference on Parallel and Distributed Computing
Systems� pages �	���	�� Oct� �����

���
 Y� Zhu� E�cient processor allocation strate�
gies for mesh�connected parallel computers�
Journal of Parallel and Distributed Comput�
ing� ��
���	���		�� Dec� �����

