
On Scheduling Dynamic FPGA Recon�gurations

Oliver Diessel� and Hossam ElGindy�

� School of Computer and Information Science� University of South Australia�
Mawson Lakes SA ����� AUSTRALIA

� Department of Electrical and Computer Engineering� The University of Newcastle�
Callaghan NSW ����� AUSTRALIA

Abstract� The ability to partially recon	gure dynamically recon	g

urable Field�Programmable Gate Arrays �FPGAs
 at run�time allows
them to be shared among multiple independent tasks� When the se

quence of tasks to be performed is unpredictable the FPGA controller
needs to make allocation decisions on�line� Since on�line allocation suf

fers from fragmentation� tasks can end up waiting despite there being
su�cient� albeit non�contiguous resources available to service them� The
time to complete tasks is consequently longer and the utilization of the
FPGA is lower than it could be�
We propose rearranging a subset of the tasks executing on the FPGA
when doing so allows the next pending task to be processed sooner� We
describe and evaluate methods for overcoming the NP�hard problems of
identifying feasible rearrangements and scheduling the rearrangements
when moving tasks are reloaded from o��chip� However� reloading tasks
face an I�O bottleneck that must be eliminated if partial rearrangements
are to be practical for short�lived tasks� Techniques for copying tasks to
their destinations over on�chip routing resources are therefore developed
and assessed�

� Introduction

Dynamically recon�gurable �eld�programmable gate arrays �FPGAs� are com�
posed of uncommitted logic cells and routing resources whose functions and
interconnections are determined by user�de�ned con�guration data stored in
static RAM� This memory can be modi�ed at run�time� thereby allowing the
con�guration for some part of the chip to be altered while other circuits operate
without interruption�

The ability to recon�gure parts of a chip while it is operating allows func�
tional components	tasks to be swapped in and out of the chip as needed� thereby
reducing required chip area at the cost of some recon�guration overhead� control
circuitry� and memory� Embedded applications that have successfully exploited

This paper appears in Kenneth A Hawick and Heath A James� editors�

Proceedings of the Fifth Australasian Conference on Parallel and Real�Time
Systems �PART����� pages ��� � ���� Singapore� ���	� Springer�Verlag�



this feature to conserve hardware include an image processing system 
��
� a
recon�gurable crossbar switch 
�
� and a postscript driver 
��
� Successful de�
signs for cryptographic applications 
��
� video communications 
��
� and neural
computing 
�
� attest to the suitability of the architecture for high performance
array�based computations�

As more ambitious systems are developed� it is conceivable that it becomes
possible and desirable for related or even disparate functions to share a single
hardware platform 
�� �
� A purely time�shared approach to multi�tasking may
not be appropriate because of the overhead in loading a con�guration� and the
limited availability of on�chip memory for caching� Space�sharing is a way of
partitioning the FPGA logic resource so that each function or task obtains as
much resource as it needs and executes independently of all others as if it were
the sole application executing on a chip just large enough to support it� When
the logic resource of an FPGA is to be shared among multiple tasks� each having
their own spatial and temporal requirements� the resource becomes fragmented�
If the requirements of tasks and their arrival sequence is known in advance�
suitable arrangements of the tasks can be designed and su�cient resource can
be provided to process tasks in parallel� However� when placement decisions
need to be made on�line� it is possible that a lack of contiguous free resource
will prevent tasks from entering although su�cient resource in total is available�
Tasks are consequently delayed from completing and the utilization of the FPGA
is reduced because resources that are available are not being used� The system
designer may be tempted to provide additional resource� thereby increasing the
physical and economic needs of the system�

To maintain system speed� and to contain size and cost� we propose rear�
ranging a subset of the executing tasks when doing so allows the next waiting
task to be processed sooner� Our goal is to increase the rate at which waiting
tasks are allocated while minimizing disruptions to executing tasks that are to
be moved� We describe two methods by which feasible rearrangements� ones
that allow the waiting task to be accommodated as well� may be identi�ed� We
present techniques for scheduling the task movements so as to minimize delays
to the moving tasks when their con�guration bit streams are reloaded at new
locations� Unfortunately� when several tasks are to be moved at once they face
an I	O bottleneck recon�guring� To overcome this problem� we propose mak�
ing use of on�chip resources to move tasks in parallel� Although infeasible at
present� we simulate pipelining task movements over nearest neighbour links in
order to demonstrate the performance bene�t compared with that of reloading�
We conclude with a summary and directions for further investigation�

� The techniques

Partial rearrangement proceeds in two steps� The �rst step identi�es a rear�
rangement of the tasks executing on the FPGA that frees su�cient space for the
waiting task� and the second schedules the movements of tasks so as to minimize
the delays to executing tasks� The schedule for each feasible rearrangement is



evaluated for the maximum delay to the executing tasks and the time needed
to complete the schedule� The scheduling strategies employed depend upon the
methods available to move the tasks� Thus the problem of identifying the best
rearrangement is linked by feedback through the schedule to the underlying
hardware and its capabilities� Current FPGA architectures allow tasks to be
moved by reloading them� Simulation results indicate that signi�cant reductions
in allocation delays are possible when the FPGA is saturated with work and the
time to load a task is relatively short� However� the reloading tasks face an I	O
bottleneck that must be eliminated if partial rearrangements are to be practi�
cal for short�lived tasks� Techniques for copying tasks to their destinations over
on�chip routing resources are seen as one way out of the dilemma�

The following assumptions are made� A space�shared dynamically recon�g�
urable FPGA is a rectangular array of con�gurable logic and routing resources
that may be partitioned among multiple independent tasks 
�� ��
� Each task is
controlled by a process executing on a host� Tasks are queued and processed in
arrival order� they are assumed to be independent and to be contained within
orthogonally aligned� non�overlapping� rectangular sub�arrays of the FPGA� In�
terdependent sub�tasks are assumed to be con�ned to the task�s bounding box�
We assume I	O with individual tasks is handled via user de�ned registers rather
than through wires routed from the chip�s periphery� We therefore do not exam�
ine the interesting problem of rerouting I	O to a task when it is moved�

��� Identifying feasible rearrangements

The problem of deciding whether or not a waiting task can be accommodated
on an FPGA executing a set of tasks is equivalent to the problem of deciding
whether a set of non�overlapping orthogonal rectangles can be packed into a
larger rectangle� which is NP�complete 
��
� Heuristic solutions are therefore
sought� In the following� we present two solutions which we refer to as local
repacking and ordered compaction�

Local Repacking The local repacking method 
�
 attempts to repack the tasks
within a sub�array so as to accommodate the waiting task as well� A quadtree
decomposition of the free space in the array is used to identify those sub�arrays
having the potential to accommodate the waiting task by virtue of the total
number of free cells they contain� A depth��rst search of the tree allows promis�
ing sub�arrays to be identi�ed and evaluated� A repacking of those tasks both
partially and wholly contained within the sub�array is then attempted using a
two�dimensional bin packing method with good absolute performance bounds

��
� If the resulting packing represents a feasible rearrangement of the tasks�
movement of the tasks can be scheduled in order to evaluate the cost of the
rearrangement�

Ordered compaction The ordered compaction heuristic 
�
 places the wait�
ing task at a favourable location� and moves those tasks that initially occupy



the site o� to one side� Ordered compaction therefore has the e�ect of sliding
the executing tasks that are to be compacted closer together while preserving
their relative order� Without loss of generality� consider ordered compaction to
the right� It can be shown that in order to minimize the time to complete a
compaction it su�ces to attempt to place the waiting task adjacent to a pair of
tasks such that one abuts the allocation site on its left� and the other abuts the
allocation site below� The number of potential allocation sites worth checking
is thus signi�cantly reduced� The feasibility of a site can then be decided by
searching a visibility graph that is de�ned over the executing tasks�

��� Scheduling task rearrangements I � Reloading tasks

We assume the time to load or con�gure a task is proportional to its area�
The choice of tasks to move therefore �xes the time needed to complete the
rearrangement� We assume a task may continue executing until it is suspended
prior to moving and that a task is resumed as soon as it has been reloaded� If its
destination is not free when it is reloaded� the tasks occupying the destination
are immediately suspended and removed�

In this work� we distinguish between the minimum possible cost of moving a
task� and the actual cost of moving it� The minimum cost is the time needed to
save and reload the task� which is unavoidable� However� the actual cost needs
to account for the time a task is suspended while other tasks are being reloaded�
The di�erence between the actual and minimum costs represents a schedule de�
lay that is to be minimized for all tasks� The problem of scheduling FPGA task
rearrangements to realize this goal is NP�complete 
�
� Further heuristics are
therefore needed� We �rst describe an approximation algorithm for scheduling
rearrangements with arbitrary overlaps between the initial and �nal arrange�
ments� Then we describe a method that does not delay the moving tasks more
than the minimum if they are to be orderly compacted�

Arbitrary rearrangements The problem of optimally scheduling the tasks
can be viewed as a search for an optimal path in a state�space tree 
�
� Each
node represents the choice of task to place into the �nal arrangement next� and a
path from the root to a leaf represents the sequence in which tasks are chosen to
be placed� A depth��rst search heuristic that uses a simple local cost estimator
to determine which node to expand next can be used to �nd a near�optimal path
� While the actual delay to tasks already moved is known� the delay to tasks that
have not yet been moved is approximated by determining the maximum delay
to the suspended tasks were they scheduled optimally assuming they did not
cause any additional suspensions when placed� This method can be constrained
to place the waiting task �rst of all�

� Empirical evidence suggests maximum schedule delays incurred by the heuristic are
usually less than twice those of optimal solutions ���� Theoretical bounds have not
yet been established�



Ordered compaction If tasks are moved as they are discovered in a depth��rst
traversal of the visibility graph of the executing tasks� they are moved to free
destinations� and therefore do not intersect or suspend further executing tasks

�
� Tasks are not delayed more than the minimum because they are moved as
soon as they are suspended� Although the waiting task is allocated last of all�
the rate at which waiting tasks can be allocated is una�ected�

��� Scheduling task rearrangements II � Moving tasks on�chip

The main drawback to performing task rearrangements by reloading is the I	O
bottleneck at the chip boundary� Schedule delays are introduced because tasks
are forced to be reloaded sequentially� Larger chip sizes or larger numbers or sizes
of moving tasks would exacerbate the problem� We therefore consider moving the
tasks on�chip as a possible method for overcoming this drawback� For example�
the FPGA routing resource might be harnessed to move the con�guration and
state for multiple cells at a time and several tasks could use the available bisection
width to move in parallel� Reductions in schedule delays to individual tasks and
reductions in the schedule length could lead to additional performance gains�

To investigate this idea further we assume each FPGA logic element can store
the con�guration and state �collectively known as task element� for two tasks at
a time� The time needed for a cell to switch contexts between task elements is
assumed to be a constant and is assumed to be equivalent to the time needed to
con�gure the cell� We assume the routing resource can be switched in constant
time so as to form a circuit for routing a task element from its source to its
destination� We consider a model in which the time to move a task element over
a circuit from source to destination is a constant�

Unfortunately� the complexity of scheduling even linear array task movements
over a one�dimensional array so as to minimize execution delays appears to be
NP�hard 
�
� Although we have found approximation algorithms with reasonable
performance bounds for the ordered compaction of one�dimensional tasks� we
have not yet found an e�ective algorithm for the more complicated problem of
minimizing the delay to two�dimensional tasks when they are to be rearranged
arbitrarily� However� the potential bene�ts of performing task movements on�
chip are illustrated by the use of nearest neighbour links to pipeline the ordered
compaction of FPGA tasks�

Ordered Compaction Given a set of tasks to be orderly compacted to the
right� compaction over nearest neighbour links proceeds as follows� The tasks to
be compacted are simultaneously halted and switched out of context� Cells con�
taining task elements that are to be moved then send them to their right neigh�
bours� Cells receiving a task element from the left check whether it has reached
its destination and pass it onto the right if not� These steps are repeated until
all task elements reach their destination� When a task arrives at its destination�
the task elements are switched back into context to resume execution�

In order to implement the proposed method e�ciently� several hardware en�
hancements to current FPGAs are required� First� a mechanism for e�ciently



halting and resuming a subset of the executing tasks that does not a�ect the
remaining tasks is needed� Second� the pipelining of task elements over nearest
neighbour links needs to be supported� It should be possible to instruct the cells
in speci�ed regions of the FPGA to pass task elements from left to right� and to
instruct them to stop doing so at the appropriate time�

� Performance assessment

For an FPGA of width W and height H � with m � maxfW�Hg� and n exe�
cuting tasks� the local repacking heuristic requires O�mn logn� time to check
for the existence of a feasible rearrangement� Ordered compaction� on the other
hand� needs O�n�� time� Local repacking requires O�n� logn� time to produce a
schedule� whereas an ordered compaction can be scheduled in O�n� time�

A series of experiments was conducted to assess the performance of the meth�
ods with synthetic task sets� For each experiment� sets of ������ tasks charac�
terized by � independently chosen uniformly distributed random variables were
generated� Two of these variables� representing the task row and column sizes�
were permitted to range from � cell to a speci�ed common maximum task side
length� A variable representing the tasks� service period was allowed to range
from � to ����� time units� and the intertask arrival period was chosen between
� time unit and a speci�ed maximum intertask arrival period� These tasks were
queued and placed in arrival order to a simulated FPGA of size �� � ��� The
time needed to load a task was determined by the availability of space and the
time used to con�gure the cells needed by the task� The con�guration delay per
cell was thus also a parameter� Each experiment averaged the results of �� runs�

Fig� � compares the performance of the local repacking and ordered com�
paction heuristics when tasks are moved by reloading� The bene�t of reallocating
tasks was gauged by also examining the performance of the �rst �t allocation
method 
��
� which does not move the tasks once placed�

Fig� ��a� shows the e�ect of varying the task load on the mean allocation
delay� The results were obtained by varying the maximum intertask arrival period
while the maximum task side length and con�guration delay per cell were kept
�xed� In the left part of the graph the FPGA was saturated while tasks arrived
faster than they could be allocated� However� performance di�erences between
the methods are caused by their di�ering abilities to make or �nd room for the
task at the head of the queue� The bene�t of partially rearranging the tasks
placed on the FPGA disappeared when tasks arrived infrequently enough for
them to be accommodated immediately and the FPGA came out of saturation�

Fig� ��b� depicts the e�ect on the mean allocation delay of varying the max�
imum task side length when the FPGA was saturated with work� The intertask
arrival period was �xed at � time unit for this experiment� The bene�t of par�
tially rearranging the tasks under these conditions was found to be as high as
���� The superior performance of local repacking when tasks are small re�ects
the bene�t of collecting free space in two dimensions� The superiority of ordered



0102030405060

1
10

10
0

10
00

Mean Allocation Delay (time units)

M
ea

n 
C

on
fig

ur
at

io
n 

D
el

ay
 p

er
 T

as
k 

(ti
m

e 
un

its
)

M
ea

n 
A

llo
ca

tio
n 

D
el

ay
 a

t S
at

ur
at

io
n 

(M
ax

 T
as

k 
S

id
e 

Le
ng

th
 3

2)

Lo
ca

l R
ep

ac
ki

ng
O

rd
er

ed
 C

om
pa

ct
io

n
Fi

rs
t F

it

02040608010
0

12
0

14
0

1
10

10
0

10
00

Mean Execution Delay (time units)

M
ea

n 
C

on
fig

ur
at

io
n 

D
el

ay
 p

er
 T

as
k 

(ti
m

e 
un

its
)

M
ea

n 
E

xe
cu

tio
n 

D
el

ay
 a

t S
at

ur
at

io
n 

(M
ax

 T
as

k 
S

id
e 

Le
ng

th
 3

2)

Lo
ca

l R
ep

ac
ki

ng
O

rd
er

ed
 C

om
pa

ct
io

n

�c
 �d


0102030405060

10
10

0
10

00

Mean Allocation Delay (time units)

M
ax

im
um

 In
te

rta
sk

 A
rr

iv
al

 P
er

io
d 

(ti
m

e 
un

its
)

M
ea

n 
A

llo
ca

tio
n 

D
el

ay
 (M

ax
 T

as
k 

S
id

e 
Le

ng
th

 3
2)

Lo
ca

l R
ep

ac
ki

ng
O

rd
er

ed
 C

om
pa

ct
io

n
Fi

rs
t F

it

11010
0

10
00

8
16

24
32

40
48

56
64

Mean Allocation Delay (time units)/Percentage Reduction

M
ax

im
um

 T
as

k 
S

id
e 

Le
ng

th
 (c

el
ls

)

M
ea

n 
A

llo
ca

tio
n 

D
el

ay
 a

t S
at

ur
at

io
n

Lo
ca

l R
ep

ac
ki

ng
O

rd
er

ed
 C

om
pa

ct
io

n
Fi

rs
t F

it
P

er
ce

nt
ag

e 
re

du
ct

io
n,

 L
oc

al
 R

ep
ac

ki
ng

P
er

ce
nt

ag
e 

re
du

ct
io

n,
 O

rd
er

ed
 C

om
pa

ct
io

n

�a
 �b


Fig� �� Moving tasks reloaded� �a
 E�ect of varying the task load� �b
 maximum task
size� and �c
 con	guration delay on allocation performance� �d
 E�ect of con	guration
delay on execution delays�



compaction when tasks are large highlights the need for better two�dimensional
packing heuristics�

In Fig� ��c� the e�ect on the mean allocation delay of varying the con�gura�
tion delay per cell is plotted� For this experiment� the maximum task side length
was �xed at �� cells and the intertask arrival period was �xed at � time unit�
The plot shows that both methods become ine�ective with modest increases in
the con�guration delay due to the I	O bottleneck when tasks are reloaded� An
examination of the mean execution delay to tasks �Fig� ��d�� indicates that the
bene�ts of local repacking were overwhelmed by delays to moving tasks at con�
�guration delays of less than �� of the service period� Since ordered compaction
delays moving tasks less� it was capable of sustaining a bene�t at con�guration
delays as high as ��� of the service period�

Fig� � illustrates the bene�t of moving tasks over nearest neighbour links�
In these experiments� the ordered compaction heuristic was used to �nd partial
rearrangements of the tasks� which were executed by simulating the pipelining
of task element movements over nearest neighbour links on the chip� The time
needed to move a task element was considered to be equal to the time needed
to con�gure a cell were it loaded from o� the chip� Because this approach allows
multiple task elements and indeed multiple tasks to be recon�gured simulta�
neously� schedule lengths were reduced and the mean execution delay to tasks
became negligible �see Fig� ��b��� The next rearrangement could therefore com�
mence sooner� and space became available more frequently due to tasks �nishing
earlier� Interestingly� bene�ts over �rst �t were obtained at very high link delays�

� Concluding remarks

When tasks arrive more quickly than they can be processed� partial rearrange�
ments can reduce queue delays signi�cantly� As a consequence� tasks are com�
pleted earlier� the utilization of the hardware is improved� and the system is more
resilient to saturation� Current FPGA technology supports task movement by re�
con�guration� When the mean time to recon�gure a task is small compared to the
mean processing time� this approach is adequate� However� the I	O bottleneck
imposed by recon�guration needs to be overcome for partial rearrangements to
be practical for short�lived tasks� Moving the tasks on�chip results in improved
performance but introduces additional scheduling complexity and the need for
additional hardware support�

Areas for further investigation include elucidating the hardware support nec�
essary for on�chip task movements� developing algorithms for arbitrary on�chip
task rearrangements� designing algorithms that avoid relocating tasks too often�
and developing techniques for decentralized or autonomous garbage collection
to further reduce overheads�

References

�� Atmel� AT���� FPGA con	guration guide� Document ����B� Atmel� Aug� �����



0102030405060

1
10

10
0

10
00

Mean Allocation Delay (time units)

M
ea

n 
C

on
fig

ur
at

io
n 

D
el

ay
 p

er
 T

as
k 

(ti
m

e 
un

its
)

M
ea

n 
A

llo
ca

tio
n 

D
el

ay
 a

t S
at

ur
at

io
n 

(M
ax

 T
as

k 
S

id
e 

Le
ng

th
 3

2)

O
rd

er
ed

 C
om

pa
ct

io
n 

ov
er

 n
ea

re
st

 n
ei

gh
bo

ur
 li

nk
s

O
rd

er
ed

 C
om

pa
ct

io
n 

by
 re

lo
ad

in
g

Fi
rs

t F
it

05101520

1
10

10
0

10
00

Mean Execution Delay (time units)

M
ea

n 
C

on
fig

ur
at

io
n 

D
el

ay
 p

er
 T

as
k 

(ti
m

e 
un

its
)

M
ea

n 
E

xe
cu

tio
n 

D
el

ay
 a

t S
at

ur
at

io
n 

(M
ax

 T
as

k 
S

id
e 

Le
ng

th
 3

2)

O
rd

er
ed

 C
om

pa
ct

io
n 

ov
er

 n
ea

re
st

 n
ei

gh
bo

ur
 li

nk
s

O
rd

er
ed

 C
om

pa
ct

io
n 

by
 re

lo
ad

in
g

�a
 �b


Fig� �� Tasks moved over nearest neighbour links� �a
 E�ect of varying the link delay
�equal to the con	guration delay per cell
 on allocation performance� �b
 E�ect of link
delay on execution delays�



�� G� Brebner� A virtual hardware operating system for the Xilinx XC����� In
R� W� Hartenstein and M� Glesner� editors� Field�Programmable Logic� Smart Ap�
plications� New Paradigms and Compilers� �th International Workshop� FPL���
Proceedings� pages ��� � ���� Berlin� Germany� Sept� ����� Springer�Verlag�

�� O� Diessel� On Scheduling Dynamic FPGA Recon	gurations 
 A Partial Rear�
rangement Approach� PhD thesis� Department of Computer Science and Software
Engineering� The University of Newcastle� Jan� ����� Available by anonymous ftp�
ftp�cs�newcastle�edu�au�pub�theses�phd�odiessel���ps�Z�

�� O� Diessel and H� ElGindy� Partial FPGA rearrangement by local repacking� Tech

nical report ������ Department of Computer Science and Software Engineering�
The University of Newcastle� Sept� ����� Available by anonymous ftp�
ftp�cs�newcastle�edu�au�pub�techreports�tr������ps�Z�

�� O� Diessel and H� ElGindy� Run�time compaction of FPGA designs� In W� Luk�
P� Y� K� Cheung� and M� Glesner� editors� Field�Programmable Logic and Appli�
cations� �th International Workshop� FPL��� Proceedings� pages ��� � ���� Berlin�
Germany� ����� Springer�Verlag�

�� O� Diessel� H� ElGindy� and B� Beresford
Smith� Partial task compaction reduces
queuing delays in partitionable�array machines� In Proceedings of the Third Aus�
tralasian Conference on Parallel and Real�Time Systems� pages ��� � ���� Bris

bane� Australie� Sept� ����� Gri�th University�

�� P� Dillien and I� Phillips� ASIC design �exibility with ERAs� Electronic Product
Design� �����
��� � ��� Oct� �����

�� H� Eggers� P� Lysaght� H� Dick� and G� McGregor� Fast recon	gurable cross

bar switching in FPGAs� In R� W� Hartenstein and M� Glesner� editors� Field�
Programmable Logic� Smart Applications� New Paradigms and Compilers� �th In�
ternational Workshop� FPL��� Proceedings� pages ��� � ���� Berlin� Germany�
����� Springer�Verlag�

�� J� G� Eldredge and B� L� Hutchings� Density enhancement of a neural network
using FPGAs and run�time recon	guration� In D� A� Buell and K� L� Pocek�
editors� Proceedings IEEE Workshop on FPGAs for Custom Computing Machines�
pages ��� � ���� Los Alamitos� CA� ����� IEEE Computer Society�

��� K� Li and K� H� Cheng� Complexity of resource allocation and job scheduling
problems on partitionable mesh connected systems� In Proceedings 
st IEEE Sym�
posium on Parallel and Distributed Processing� pages ��� � ���� Los Alamitos� Ca�
����� IEEE Computer Society�

��� S� Singh� J� Patterson� J� Burns� and M� Dales� PostScript rendering with vir

tual hardware� In W� Luk� P� Y� K� Cheung� and M� Glesner� editors� Field�
Programmable Logic and Applications� �th International Workshop� FPL��� Pro�
ceedings� pages ��� � ���� Berlin� Germany� ����� Springer�Verlag�

��� D� D� K� D� B� Sleator� A ��� times optimal algorithm for packing in two dimen

sions� Information Processing Letters� ����
��� � ��� Feb� �����

��� J� Villasenor� C� Jones� and B� Schoner� Video communications using rapidly
recon	gurable hardware� IEEE Transactions on Circuits and Systems for Video
Technology� ���
���� � ���� Dec� �����

��� J� E� Vuillemin� P� Bertin� D� Roncin� M� Shand� H� H� Touati� and P� Boucard�
Programmable active memories� Recon	gurable systems come of age� IEEE Trans�
actions on Very Large Scale Integration �VLSI� Systems� ���
��� � ��� Mar� �����

��� M� J� Wirthlin and B� L� Hutchings� Sequencing run�time recon	gured hardware
with software� In FPGA��� 
��� ACM Fourth International Symposium on Field
Programmable Gate Arrays� pages ��� � ���� New York� NY� Feb� ����� ACM
Press�



��� Xilinx� XC���� Field Programmable Gate Arrays� Technical report� Xilinx� Inc��
Apr� �����

��� Y� Zhu� E�cient processor allocation strategies for mesh�connected parallel com

puters� Journal of Parallel and Distributed Computing� ����
���� � ���� Dec� �����


