o AT TR

28

Optimal Algorithms for
Constrained Reconfigurable Meshes
(Extended Abstract)

Bryan BERESFORD-SMITH* Oliver DIESSEL! Hossam ELGINDY*
Dept. of Computer Science, The University of Newcastle, NSW 2308, Australic

Abstract. This paper introduces a constrained reconfigurable mesh model
which incorporates practical assumptions about propagation delays on large
sized buses, Simulations of optimal reconfigurable mesh algorithms on tke
constrained reconfigurable mesh model are found to be non—optimal. Optimal
solutions for the sorting and convex hull problemsare then presented. For
the problems investigated, the constrained reconfigurable mesh model predicts
a continuum in performance between the reconfigurable mesh and mesh-of-
processors parallel processing architectures.

1. Introduction

The reconfigurable mesh architecture consists of a two—dimensional array of processors
in which each processor is wired to its four neighbours. Each processor has control over
a set of short—circuit switches which allow the imter—processor wires to be connected
together to form a communication bus. All processors participating in the bus config-
uration have access to the data available on it, thereby reducing the communication
diameter of the array to a constant (refer to [1, 3] for a detailed description of this
parallel model of computation).

Since the first papers [9, 15], research on the reconfigurable mesh architecture has
gained considerable momentum and has also received some criticism. A number of mod-
els have been proposed, and various techniques have been introduced to help develop
constent Tunning time algorithms for image processing, geometric and graph theoretic
problems (refer to [6, 1, 3] for a survey of the various models and algorithms). Re-
cent examples include constant time algorithms for sorting » numbers [4, 5] and for
determining the convex hull of n planar points [10, 11].

A common feature of the various reconfigurable mesh models is the assumption that
a packet of data can be broadcast in constant time on a bus component independent
of its size or length. This feature has attracted criticism of these models, and cast a
shadow of doubt on the feasibility of implementing a massively parallel machine based
on a reconfigurable bus system.

Investigation of bus delays [8, 13] has indicated that the broadcast delay is small,
but that it cannot be correctly modeled by a constant independent of the bus size. In

*This researck is supported by grants from the University of Newcastle RMC, and the Australian
Research Council.

This research is supported by an Australian Research Council Postgraduate Scholarship.
*Please address correspondence to Q. Diessel, emnail: odiessel@cs.newcastle.edn.an

29

this paper we report on our study of a new approach to coping with bus delay and its
incorporation into the design of algorithms for reconfigurable meshes. The main idea
is to model the propagation delay on a bus—unit! by a constant, and to only permit
the class of algorithms, denoted by .A4*, that configure the bus system into components
with sizes bounded by k bus—units to run on the model.

We give a detailed description of our reconfigurable mesh model in the following
section. In section 3. we present optimal algorithms for sorting on constrained re-
configurable meshes, and then present optimal convex hull algorithms for constrained
reconfigurable meshes with certain aspect ratios in section 4.. Lower bounds are then
discussed in section 5.. Finally, we conclude with some general remarks and open
problems.

2. The Model

The reconfigurable mesh of size m X n consists of m rows and n columns of processing
elements arranged in a grid. Each processor is connected to its immediate neighbours
to the north, south, east and west, when present, and has four similarly labeled I/0
ports through which it can communicate with its neighbours. Each PE has control
over a local set of short—circuit switches which allow the four I/O ports to be connected
together in any combination. The 15 possible connection configurations consist of those
in figure 1 together with their rotations.

ESIEN R

(N,5,E,W) (NE,5,W) (NS,E,W) (NE,SW) (NS,EW) (NSE,W) (NSEW)

Figure 1: Possible Connection Configurations.

Processors possess a constant number of ©(log mn)-bit word registers and operate
synchronously, in one machine cycle performing an arithmetic, logic or control opera-
tion, setting a connection configuration, and sending (receiving) a datum to (from) each
1/0O port. Processors are numbered from Py in the north-western corner, to Pp_y o1
in the south—eastern corner. Processors may also be numbered from P, to Pran—1 using
other orderings. For example, in row major order, P,; = Piy;. Block shuffled row— _
major ordering has the property that the first quarter of the PEs form one quadrant,
the next quarter form another, and so on, with this property holding recursively, down
to block length sequences of processors, which remain in row—major order.

When a connection is set, signals received by a port are simultaneously available to
any port connected to it. For example, if processors connect their northern and southern
1/0O ports by closing the appropriate switches as in the configuration (NS,E, W), data
“broadcast” onto the “column bus” can be read by all of the processors in a column.
The model allows concurrent reading from 2 bus, requires exclusive writing to a bus, and

1A bus—unit is a segment of the bus that connects two neighbouring processors.

e e p——

30

usually assumes a constant time communication delay on arbitrarily large connected
bus components.

Unfortunately, the constant time model is infeasible for a number of reasons. Due to
the finite resistance and capacitance per unit wire length, signals need to be regenerated
to ensure accurate detection, and the time to broadcast a signal along the wire is
proportional to the square of its length. The speed of light and the clock frequency of
the machine also limit the number of processors which can be reached by a signal in
one cycle. To account for these limits, we propose a k—constrained reconfigurable mesh
model in which connected buses of size at most £ can be formed in any cycle. We use
the notation RMY to refer to a k~constrained reconfigurable mesh of area A.

A Ilinear bus is a bus which never branches, thereby excluding configurations of the
form (NSE,W) and (NSEW). Any reconfigurable mesh algorithm which uses only linear
buses can be simulated by the k~constrained model by propagating signals k processors
at a time. Any algorithm, which in O(1) time broadcasts on a linear bus of length I, can
therefore be simulated by a k—constrained algorithm in O(f) time. The simulation of a
time optimal algorithm does not produce a time optimal solution for the k—constrained
reconfigurable mesh, and unless the area of the mesh is reduced, the algorithm is no
longer optimal according to the AT? metric popularized by Ullman [14].

3. Optimal Sorting Algorithms

The fundamental problem of sorting n items on a reconfigurable mesh of size n x n has
been addressed by several authors, and constant time AT? optimal solutions are now
well known [4, 5]. Straightforward simulations of these algorithms, which use linear
buses of length O(n) on an n x n RM?E,, have O(Z) running time and O(%:“) AT?
complexity. Since the running time has been increased without changing the solution
area, the A7? complexity is no longer optimal when k < n.

In this section, we extend these results to AT*-optimal algorithms for sorting on
RM};, with varying aspect ratio (the ratio of the longer to the shorter side). The
algorithms we use are extensions of those in [7]. In [7], an algorithm is given for sorting
mn itemns on an m X n (standard) mesh of processors in time O(m + n) using only a
constant number of row and column operations. Assuming p < ¢, we show that this
algorithm can be adapted to give a O(Ef)-time algorithm for sorting n items on a
RME, of size p x g. This is AT?~optimal.

For simplicity, it will be assumed that % divides p, ¢ and », and that p and ¢ divide
n.

3.1. Sorting on RME, of sizek x n

 We first show how sorting n items on a RMYE, of size k xn can be achieved in O(Z) time.

This result will be used in the generalisation to k—constrained meshes with arbitrary
aspect ratio.

Lemma 1 Let 'RMﬁ be o linear array of processors Py, ..., P,y and let Py contain
item z;, 0 < ¢ < §. Then the items zo, ..., zp~1 can be sorted in O(%) time.

Proof: A straightforward simulation of odd-even transposition sort on a linear array
will sort the z;. i

31

Lemma 2 Sorting k items stored in the first row of RM%, of size k x k can be done
in O(1) time.

Proof: It is easy to check that the algorithm in [5] for sorting & items on a k& x &
reconfigurable mesh uses only linear buses of length O(k). Hence, the same algorithm
can be used for the k-constrained reconfigurable mesh RMS, of size & x k to sort in
constant time. Hl

In order to sort n items stored in the first Tow of RMJ, of size k x n we assume in
the foHowing that the items have been moved so that .z,k_h, is in processor Fj . for
0<s<%and0 <j<k Eachrow j then contains ¥ items at locations (7, sk) for
0<s<%

In Ma,rberg and Gafni [7] an optimal O{m+n)-time algorithm is given for sorting on
an m x n standard mesh (where 4/ < m). The algorithm uses a constant number of row

and column phases and iseasily adapted for sorting on the k—constrained recon.ﬁgura,ble '

mesh. In this extended abstract we give an outline of the approach.
The Mazberg and Gafni algorithm uses only the following basic operations:

1. Sort columns with m items;
2. Sort or rotate rows (in either direction) with » items;

3. Rotate the colummns of each /7 xn shce of the m x n mesh. Each such column
has. \/n items.

In the context of the RME, of size k x n, the operations of the Marberg and Gafni
algorithm can be simulated on a RME, of size k x n to give an algorithm SORT(n, k)
with the following times for the phases (for our exposition we replace rows by columns
and vice versa):

1. Sorting (or rotating) rows with % items: O(}) time by Lemma I (and since
rotation is no harder than sorting);

2. Sorting (or rotating) columns (in either direction) with % items: O(1) time by
Lemma 2 since there is a & X & block available to sort each column;

3. A rotation operation dependent on the size of & as follows:

(a) if £ > +/k, rotating rows with v/ items in each k x kv/E slice of the £ x n
mesh which takes O(+/k) time since rotation on a linear array is no harder
than sorting on a linear array using Lemma I;

(b) if & < vk, and hence k& > \/%, rotating columns with .‘/%T items in each
\/% x n slice of the £ x n mesh which can be done in O(1) time for each
column by using the RM’:/;E of size \/L—T X k which is available.

The total time is then O(2).
It follows from the above argument that:

Theorem 1 Ifn items are stored in the first row of a RME, of size kxn then algorithm
SORT(n, k) sorts the items correctly in O(%) time, which is AT? optimal.

il 32

.' 3.2. Sorting on RME, of size p x ¢

For a RME, of size px g where p < ¢ the operations of the Marberg and Gafni algorithm
i lead to a corresponding algorithm SORTPQ(n,k) for sorting n items. In this case the
1| mesh is divided into slices of size p x k. By Theorem I, the column operations can be
| - done in O(%) time using the processors in each slice. The row and column phases can
? then be seen to take the following times:

1

§

1. Sorting (or rotating) rows with £ items: O({) time by Lemma I (and since rotation
is no harder than sorting);

i 2. Sorting (or rotating) columns (in either direction) with p items: O(Z) time by
Theorem I since there is a p x k block available to sort each columm;

¥ 3. A rotation operation dependent on the size of p and ¢ as follows:

o (a) if £ > /P, rotating rows with ,/p items in each p x k./p slice of the p x ¢
mesh which takes O(,/p) time since rotation of a linear array is no harder
than sorting a linear array (Lemma 1};

41 (b) if £ < /7 and hence p > \/%_ rotating columns with \/%— items in each \/E X g
E : . ' - . . k .
}i, | slice of the p x ¢ mesh which takes O(\/%/ k) time using the RM S of size
|
|
.

\/E X k& which is available for each column.

The total time is then O(EE2).
e From the above argument it follows that:

| Theorem 2 If n items are stored in the first % rows of a RME, of size p x g where
fi p < g then algorithm SORTPQ(n, k) sorts the items correctly in O(L) time, which is
AT? optimal.

4. Convex Hull Algorithms

! The convex hull of a set & of n planar points is defined as the smallest convex region
! which contains all the points. The problem of computing the convex hull is that of
i , identifying the extreme points which form the boundary of this convex region. The
|

convex hull can be considered to consist of a convex chain of points lying above the
: line joining the westernmost and easternmost extreme points, the upper hull, and a
similarly defined lower hull. To solve the convex bull problem, it suffices to compute
I i the upper and lower hulls separately and then to concatenate the two chains. We shall
|
|
|

describe methods for computing the upper hull which can be used with straightforward
substitutions to find the lower hull.

Two algorithms have recently been proposed for computing the convex hull of n
planar points in constant running time on an n X n reconfigurable mesh [10, 11]. Both
methods form linear buses of O(n) length. Straightforward simulations on an n x n
RME,, in which signals are propagated k processors at a time, have O(%) running time.

However, the AT? complexity of such simulations is O(%), which is not optimal for
k<n. _

33

In this section we present two optimal algorithms to solve the convex hull problem for
RME, with differing aspect ratios. Both algorithms employ the divide-and—conquer
technique together with efficient merging steps. The method used for each TNETEINg
step, which requires computing the supporting line of two separable convex polygons,
1s chosen to suit the aspect ratio.

For simplicity, it will be assumed that % divides n.

£.1. Convez Hull Computation on RME, of size k x n

We use procedure SupportLine in our algorithms to compute the line of support between
two vertically separable upper hulls whose extreme points are in general position. The
procedure expects [and R, the points of the left and right hulls respectively, to be of
size at most n, and computes the left and right endpoints of the line of support from
R to L on an unconstrained reconfigurable mesh of size n X n in a constant number of
steps.

Procedure SupportLine

1. Arrange the points of L, one per row, in the first column of the mesh and broadcast
the points along each row.

2. Similarly, arrange the points of R, one per column, in the last row of the mesh,
and broadcast the points along each column.

3. Each processor containing a point from L and R determines the slope of the line
from the point of R to the point of L.

4. Within each column, each processor containing a slope record checks whether the
slope is locally minimal by checking its neighbours. Convexity ensures only one
slope per column is identified.

Identify the maximum of the slope records found in the previous step using the
method of [9)].

[u1]

end SupportLine

Communicating the endpoints of the line found in each step rather than the slope allows
the line of support to be found in a constant number of steps.

We compute the extreme points on the upper hull of a set of planar points for this
mesh organization as follows:

Procedure UpperHull

1. Load the n points onto the first row of the mesh.

2. Sort the points in order of increasing z—coordinate using the algorithm SORT(n,k)
of section 3..

3. Set the switches of the RMX, to partition the mesh into % components of size
k x k each. Blocks of processors then compute the upper hull of their subsets
independently using the algorithm of Nigam et al [10]. Upon completion the
extreme points are assigned labels in order of their appearance on the upper hull
and compressed into contiguous processors ready for merging.

34

4. Merge the £ disjoint upper hulls by performing O(log(%)) parallel merging stages
as in figure 2. During each stage, odd—numbered components are paired with
the following even—-numbered components and their upper hulls, denoted by L

! and R, are merged. Details of merging two upper hulls during the ith stage,
1 .
i 1< < log(}) are as follows: ‘
b
i
i
i Representation
/ :.. '\\ / .._-—:-:—_-;—-'T"’ of uwpper hull
~ ~ Extreme points after
“ first merging stage
/ ‘,'_ “‘ / ______ Extreme points flipped
; - ~ after step 4(a)
‘f— \\ I :A_fter first stop
' e . in step 4(b)
i / O g Suppert line
[\ / FTm . .
L Iy s caleulations
! ;") Ny / After third stop
JHE ; / - 7/
|| H s . in step 4(b)
‘ ! - / ----------- ‘,r | / 4” = S Support Lines found
‘ it SRR EEUEE e E; imjnaged extrerne
| | / points deactivated
/\ 4 SN Extreme points
d : compressed

Figure 2: A second merging stage of procedure UpperHull.

(a) Partition the upper hull of each L into at most 2"~ contiguous segments of

at most k extreme points each, and flip the extreme points of each segment
! into the leftmost column of each & x k block. The extreme points of each B
([are left in the last row.

i (b) Pipeline the segments of L from left to right, by repeatedly advancing the
: groups k columns at a time. At each stop, compute the support line from the
i segment of R to the segment of L using procedure SupportLine, and store
i the endpoints of the line of support with minimum slope for each segment
of R.

| .
5| After 2+ 21 stops, each segment of R will know its support line with the
j‘ upper hull of L.

: {c¢) Among the support lines of segments in R with the upper hull in L, we select
- the one with the maximum slope as the support line between L and E.

I‘ End points of the support line, which uniquely identify the upper hull of
| LU R, are communicated to the processors of both L and R. The remaining

35

extreme points are identified, assigned labels in order of their appearance on
the upper hull, and compressed ready for the next merging stage.

end UpperHull

Theorem 3 Procedure UpperHull correctly computes the upper hull of asetS ofn
planar points on a RMF, of size k xn in O(%) time, which is AT? optimal.

Proof: Correctness of the procedure follows from simple geometric arguments whose
details are not included in this extended abstract. The running time of procedure
UpperHull, CH(n, k), can be described by the following recurrence relation:

CH(n,k) = LOAD(n)+SORT(n,k) + INIT + Merge(n, k) - (1)
log() :
Merge(n, k) = Y Merge(k2' k) _ (2)

=1

During the ith merging stage of step 4, the procedure merges upper hulls L and R, each
of which is the upper hull of £2°~* points. The operations of routing % elements within
a block of size k x k (step 4(a)) and of applying procedure SupportLine to compute
the line of support between sets of & points in a k x k block (in step 4(b)) require
constant running time. Routing all the segments of L through O(k2f) columns of the
mesh that contain points of L and R requires O(2°) pipelined time. Thereafter, the
remaining extreme points can be identified and resequenced in constant time, and the
remaining extreme points can be compressed in O(2°) time. Therefore, M erge(k2"‘1 k)
of equation 2 is performed in O(2°) time. It follows directly that the running time of -
step 4 is O(%)-

Since LOAD(n), the running time of step 1, and INIT, the running time of step '3,
require O(1) time each, and SORT(n,k) takes O(%) time, it follows that the time com-
plexity of CH{(n,k) is O(%). I

4.2. Conver Hull C’omputatwn on RME, of size v/nk x V/nk

It is easy to see that any algorithm with (%) running time must be executed on a RME,
with smaller diameter. In this section we develop an optimal algorithm for a square
RME, of size v/nk x+/nk, which follows the same outline as that of procedure UpperHull
of section 4.1.. The algorithms differ mainly in the arrangement of blocks and in the
method used to compute the support line of two disjoint upper hulls. Before describing
the algorithm, we present the geometric properties and the basic mesh operations that
are essential to the efficiency of the algorithm.

4.2.1. Preliminaries

Lemma 3 [2] Let P and @ be two disjoint convex polygons and the line passing through
the vertices p € P and q € Q be their upper support line, and let P! = (a1,az2,--.,0m)
and Q" = (by,bs,...,b,) be conver sub-polygons of P and Q respectively. If the line
passing through a; and b; is the upper support line of P' and @', then at least one of
the following statements is true:

1. p is a vertexr of the chain joining a;—; and a;

36

2. p is a vertez of the chain joining a; and a;y;
2. q is a vertez of the chain joining b;_3 and b;

4. q is a vertex of the chain joining b; and b;yy

Lemma 4 Let P and Q be two sorted sequences such that oll elements of @ are larger
than those of P. If the two sequences are arranged in row major order of two adjacent
submeshes of size \/m X \/m in @ k—constrained reconfigurable mesh such that there is
one row of data for every k rows of processors, then the sorted sequence P U) can
be arranged into row major order in the combined mesh of size /m x 2/m in O(l/k—a)
time.

Proof: Omitted due to space restrictions I

A similar statement can easily be derived if the sequences P and Q are originally stored
in rectangular meshes and need to be arranged into a square mesh.

Lemma 5 If n points are stored in row-major order in a k—constrained mesh of size
m X m with one row of data to every k rows of processors, the T—: subsequences of k
points can be moved into block shuffled row-major order in O(%) time.

Proof: Omitted due to space restrictions. Il

4.2.2. The Algorithm

The main idea of the algorithm is to partition the set of points into % groups and
compute the upper hull of each group in a block of size & x k. The % disjoint upper
hulls are then combined into larger groups in parallel merging stages. After each stage,
the extreme points of each group are arranged into row-major order in the combined
square or rectangular submesh. Such arrangement facilitates the efficient execution
of the operations required for merging two upper hulls, namely, the identification of
equally spaced points, and the routing of subsequences through the constrained mesh.
Details of the procedure are as follows:

Procedure UpperHullSM

1. Load the n points by repeatedly presenting the first row with vnk points and
pipelining them through the mesh k rows at a time.

2. Sort the points into row major order on increasing r—coordinate using the proce-
dure SORTPQ(n,k) of section 3..

3. Shuffle k—sized subsequences of points into block shuffled row-major order using
the method of Lemma 5.

4. Set the switches of the RME, to partition the mesh into £ components of size
k x k each. Blocks of processors then compute the upper hull of their subsets
independently using the algorithm of Nigam et al [10]. Upon completion, extreme
points are assigned labels in order of their appearance on the upper hull.

37

5. Compute the final upper hull by performing O(log(%)) parallel stages to merge the
% disjoint upper hulls generated in the previous step as in figure 3. During each
stage, odd-numbered components are paired with the following even-numbered
components and their upper hulls, denoted by L and R, are merged. Recall that
prior to the ith stage, 1 < ¢ < log(%), extreme points of L (R) are stored in
row major order one row of data for every & rows of processors in a block of size
E2U3 x Ralal,

/ Stage 2

G4 %
TR

i

If Stage 3

Line of support
between samples

Sample points

S Extreme points

Sample points

Figure 3: A fifth merging stage of procedure UpperHuliSM .

Details of merging two upper hulls are as follows:

(a) Compute end points of the support line of L and R, which uniquely identify
the upper hull of L U R, as follows:

i. Select a sample of elements, which partitions L into equal length seg-
ments, by choosing a point from each row in the block of processors
storing L. Route the sample to the block storing R. The entire set of
elements is selected if there is only one row of data.

A sample is simultaneously selected from R in a similar fashion.
ii. Compute end points of the support line of the two samples, using pro-
cedure SupportLine.
iii. If possible, identify the segments of I or B, which contain the endpoints
of the support line of I and R as described in [2).
iv. Repeat with the newly identified segment(s) until the support line is
computed. ‘
{(b) End points of the support line are communicated to processors of both I and
R. The extreme points of L U R are labeled and arranged into row major
order using the method of Lemma 4. '

end UpperHullSM

38

Theorem 4 Procedure UpperHullSM correctly computes the upper hull of a set S of n
planar points on @ RME, of size Vnk x v/nk in O(\/%) time, which is AT? optimal.

Proof: Correctness of the procedure follows from simple geometric arguments whose
details are not included in this extended abstract. The running time of procedure
UpperHullSM, CHSM(n,k), can be described by the following recurrence relation:

CHSM(n,k) = Load(n)+ Sortpg(n, k) + Shuffle(-\/EE) + Init + Merge(n, k) (3)
log(%)
Merge(n, k) = Y. Merge(k2™", k) 4)

=1

During the ith merging stage of step 5, the procedure merges upper hulls L and R, each
of which is the upper hull of k2! points stored in a mesh of size k2l x k2Us),

The operations of selecting a sample of L and routing it to the submesh storing R
requires O(2Lz]) time. Procedure SupportLine requires O(2L2]) time, and the identifica-
tion of at least one row of L or R containing an endpoint of the support line, according
to Lemma 8, Tequires further O(2l2]) time. The geometric property of Lemma J ensures
that step 5(a) is executed at most four times, thus O(2l21) time is sufficient to complete
step 5(a). Using the method of Lemma £, step 5(b) can be completed in O(2t2]) time
as well. Therefore, Merge(k2', k) of equation 4 can be performed in 0(2lz]) time. It
follows directly that the running time of step 5 is O(\/%)

To load, sort, and rearrange the data requires Load(n) = Sortpq(n,k) = Shuffle(v/nk)
= O(\/%) time, and it takes Init = O(1) time to perform the initial convex hull com-

putations. It follows that the time complexity of CHSM(n,k) is O(\/%) |

5. Lower Bounds

Using 2 bisection width argument, it can be shown that the VLSI complexity for sorting
n numbers on a square mesh is Q(n®) [14]. As sorting is linear time reducible to
the convex hull problem [12}], it takes at least as much time to solve the convex hull
problem as it does to sort. The recently developed constant time reconfigurable mesh
algorithms for sorting and finding the convex hull of » elements on meshes of size n X n
[4, 5, 10, 11] are therefore optimal with respect to 7' and AT? complexity measures.
Since these algorithms only use linear bus configurations, they can be simulated on a
k-constrained reconfigurable mesh of size n X n using O(%) time, which is no longer
AT? optimal for k < n. We are therefore motivated to develop solutions using less area.

When the solution mesh is no longer square, the AT? complexity needs to be scaled

" by the aspect ratio [14]. For a mesh with p rows and ¢ columns, with p < ¢, the AT?

lower bound to sort » numbers increases to Q(£ x n?) and the lower bound on the time
required to sort on the mesh becomes Q(’—I}) Our algorithms for sorting and for finding

the convex hull of n planar points on a RME, of size k¥ x n run in O(%) time, which
matches the lower bound when % replaces p. Both algorithms have an AT? complexity
of O(% x n?), which matches the lower bound when % and n are substituted for p and
g. SORTPQ(n, k) can be shown to be T" and AT? optimal by a similar argument. The
second convex hull algorithm for the RMX,, of size v/nk x v/nk, has a running time of
O(\/%) and an AT? complexity of O(n?}), both of which are optimal.

39

6. Concluding Remarks

With the algorithms derived using our model, we are able to predict the running time
of the sorting and convex hull problems as functions of the problem size, the degree
of constraint, k, and the aspect ratio. As is to be expected, we observe a continuum
in. performance from the standard mesh of processors, for which & = 1, to the usual
reconfigurable mesh model, for which & is arbitrarily large. It can be argued that the
constrained reconfigurable mesh model is asymptotically no faster than the standard
mesh of processors model, since for large = it is at best k times faster. Furthermore, the
k—constrained reconfigurable mesh requires k times as many processors as the standard
mesh to achieve this speedup.

Further work is needed to determine how to handle non-linear buses, and to find
general techniques for developing optimal A*. We are also interested in developing a
convex hull algorithm for arbitrary aspect ratios, which we see as being of practical use
in general purpose computing environments where the mesh area available to a task
may be restricted.

References

(1] H. H. Alnuweiri, M. Alimuddin, and B. Aljunaidi. Switch models and reconfigurable networks:
Tutorial and partial survey. In Proceedings of the Workshop on Reconfigurable Architectures, 8th
International Parallel Processing Symposium, Apr. 1994.

(2] M.J. Atallah and M. T. Goodrich. Parallel algorithms for some functions of two convex polygons.
Algorithmica, 3:535-548, 1988.

[3] J.~w. Jang, H. Park, and V. X. Prasanna-kumar. A bit model of reconfigurable mesh. In Pro-
ceedings of the Workshop on Reconfigurable Architeciures, 8th International Parallel Processing
Symposium, Apr. 1994.

[4] J.-w. Jang and V. K. Prasanna-kumar. An optimal sorting algorithm on reconfigurable mesh. In
Proceedings of the 6th International Parallel Processing Symposium, pages 130-137, 1992.

[5] A.Kapoor, H. Schrdder, and B. Beresford-Smith. Constant time sorting on a reconfigurable mesh.
In Proceedings of the 16th Australian Computer Science Conference, pages 121-132, Feb. 1993.

[6] H. Li and Q. F. Stout. Reconfigurable Mussively Parallel Computers. Prentice Hall Publishers,
Englewood Cliffs, New Jersey, 1991.

[7] J. M. Marberg and E. Gafni. Sorting in constani number of row and column phases on a mesh.
Algorithmica, 3:561-572, 1988.

(8] M. Maresca and H. Li. Connection autenomny in SIMD computers: A VISI implementation.
Journel of Parallel and Distribuied Computing, 7:302 — 320, 1988.

9] R. Miller, V. K. Prasanna-Kumar, D. I. Reisis, and Q. F. Stout. Parallel computations on recon-
figurable meshes. IEEE Transactions on Computers, 42(6):678-692, June 1993. A preliminary
version of this paper was presented at 5th MIT Conference on Advanced Research in VISI, 1988,

[10] M. Nigam and S. Sahni. Computational geometry on a reconfigurable mesh. In Proceedings of
the 8th International Parellel Processing Symposium, pages 86-93, Apr. 1994.

[11] S. Olariu, J. L. Schwing, and J. Zhang. Optimal convex hull algorithms on enhanced meshes.
BIT, 33:396-410, 1993.

[12] F. P. Preparata and M. I. Shamos. Computational Geomeiry - An Introduction. Springer Verlag,
New York, New York, 1985.

[13] D. B. Shu and J. G. Nash. The gated interconnection network for dynamic programming. In Con-
current compulations : algorithms, architecture, and tecknology Proceedings of the 1987 Princeton
Workshop on Algorithm, Axchitecture, and Technology Issues for Models of Concurrent Compu-
tation, pages 645-658, 1988.

[14] 1. F. Ullman. Computational Aspects of VLSI Corputer Science Press, Rockville, MD, 1984.

[15] C. C. Weems, S. P. Levitan, A. R. Hanson, E. M. Riseman, D. B. Shu, and J. G. Nash. The image
understanding architecture. Iniernational Journal of Compuler Vision, 2:251-282, Jan. 1989.

