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Abstract

There is a growing interest in deploying commercial SRAM-based Field Programmable
Gate Array (FPGA) circuits in space due to their low cost, reconfigurability, high logic
capacity and rich I/O interfaces. However, their configuration memory (CM) is vulnerable
to ionising radiation which raises the need for effective fault-tolerant design techniques.
This thesis provides the following contributions to mitigate the negative effects of soft
errors in SRAM FPGA circuits.

Triple Modular Redundancy (TMR) with periodic CM scrubbing or Module-based CM
error recovery (MER) are popular techniques for mitigating soft errors in FPGA circuits.
However, this thesis shows that MER does not recover CM soft errors in logic instanti-
ated outside the reconfigurable regions of TMR modules. To address this limitation, a
hybrid error recovery mechanism, namely FMER, is proposed. FMER uses selective peri-
odic scrubbing and MER to recover CM soft errors inside and outside the reconfigurable
regions of TMR modules, respectively. Experimental results indicate that TMR circuits
with FMER achieve higher dependability with less energy consumption than those using
periodic scrubbing or MER alone.

An imperative component of MER and FMER is the reconfiguration control network
(RCN) that transfers the minority reports of TMR components, i.e., which, if any, TMR
module needs recovery, to the FPGA’s reconfiguration controller (RC). Although several
reliable RCs have been proposed, a study of reliable RCNs has not been previously re-
ported. This thesis fills this research gap, by proposing a technique that transfers the
circuit’s minority reports to the RC via the configuration-layer of the FPGA. This reduces
the resource utilisation of the RCN and therefore its failure rate. Results show that the
proposed RCN achieves higher reliability than alternative RCN architectures reported in
the literature.

The last contribution of this thesis is a high-level synthesis (HLS) tool, namely TLegUp,
developed within the LegUp HLS framework. TLegUp triplicates Xilinx 7-series FPGA
circuits during HLS rather than during the register-transfer level pre- or post-synthesis
flow stage, as existing computer-aided design tools do. Results show that TLegUp can
generate non-partitioned TMR circuits with 500x less soft error sensitivity than non-
triplicated functional equivalent baseline circuits, while utilising 3-4x more resources and
having 11% lower frequency.
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Chapter 1

Introduction

In contrast to most terrestrial computing systems, spacecraft and satellite electronics need

to operate in a harsh environment and adhere to strict requirements, such as high depend-

ability and performance, subject to limited available resources, e.g., power, mass and

size [40,85,123]. This significantly increases the time and costs associated with the devel-

opment and maintenance of space-grade computing systems. Modern satellite instruments

can generate more than 3 Gbit of raw data per minute at a peak data rate of 300 Mbit per

second, therefore requiring some form of on-board processing to reduce the transmitted

data volume to base stations on Earth and save communications bandwidth [62, 77, 83].

Unfortunately, the low power-performance efficiency of space-qualified general-purpose

processors [11] limits their use in such high-throughput space applications [70]. An al-

ternative solution is to identify which processing tasks are computationally intensive and

optimise their data-path with custom hardware in order to perform operations faster and

more energy efficiently than using processors exclusively [136]. The most efficient solution,

in terms of power and performance, to realise custom hardware are Application-Specific

Integrated Circuits (ASICs). However, the high development cost of ASICs and the in-

ability to modify their architecture after fabrication mitigates their economic viability for

deployment in many missions, especially those designed for low-cost nano-/microsatellites,

such as CubeSats.

An attractive alternative solution to ASICs is the use of Field-Programmable Gate Arrays

(FPGAs) [77, 135]. FPGAs are programmable integrated circuits that, within resource

limitations, can implement any digital circuit after their fabrication [9, 103]. Fig. 1.1

depicts a simplified model of an FPGA, which consists of an array of Programmable

Tiles (PTs), such as Configurable Logic Blocks (CLBs), Block RAMs (BRAMs), Digital
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Figure 1.1: Simplified model of an FPGA architecture [9].

Signal Processing blocks (DSPs) and Input/Output Blocks (IOBs), that are embedded

in a very dense matrix of programmable routing resources called the General Routing

Matrix (GRM). The GRM consists of switch matrices, connection blocks, and horizontal

and vertical wire segments of various lengths. Both switch matrices and connection blocks

contain several programmable interconnection points (PIPs), whereby each PIP is simply

a programmable switch that, when enabled, connects the source with the sink of two wire

segments. Signals between the PTs are routed by enabling and disabling PIPs in the

switch matrices and connection blocks of the FPGA.

In a nutshell, the PTs of the FPGA implement the logic functions of a design, which are

thereafter interconnected with the device’s GRM to form the final digital circuit [9, 103].

Computer-aided design (CAD) tools synthesise, place and route a design – that is typically

specified in a Hardware Description Language (HDL) or a High-Level Synthesis (HLS)

language – on a target FPGA architecture, and finally translate the post-routed netlist

of the design into a collection of configuration bits, namely the configuration bitstream.

The bitstream is thereafter loaded in-situ into the FPGA to realise the digital circuit,

e.g., by appropriately configuring the device’s PTs and GRM. The development cost of

an FPGA system is significantly lower than for a corresponding ASIC, because there is

no need to produce expensive photolithographic masks when implementing or modifying

a circuit [124] – a new circuit can be simply realised by loading a new bitstream into the

FPGA.

Mainstream FPGAs can be classified into one-time-programmable and reprogrammable
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devices, whereby the former commonly use antifuse-based memory to store the configu-

ration of their programmable resources, while the latter use flash- or static RAM-based

memory [77]. Static RAM-based FPGAs, or in short SRAM FPGAs, have two distinct

differences when compared with their flash-based counterparts. Firstly, they can be re-

configured hundreds of thousands of times, and secondly, many of these devices support

Dynamic Partial Reconfiguration (DPR), that is, a portion of the FPGA’s programmable

resources can be selectively reprogrammed during circuit operation. Both virtually un-

limited reconfiguration and DPR are very useful when implementing space computing

architectures. For example, hardware modules that do not need to operate simultane-

ously during a mission can be realised with the same programmable resources of the

FPGA at runtime in a time-division-multiplexed manner in order to save energy, mass

and size [47,62,68,69].

Although, all three types of the anformentioned FPGAs are used in space, this thesis

focuses on SRAM FPGAs, and to be more specific on the state-of-the-art Xilinx 7-series

FPGAs. SRAM FPGAs give scientists and engineers the freedom to upgrade satellite

computing systems as many times as needed in order to support new mission requirements

[136] as well as to avoid any permanent failure in the FPGA by migrating/re-mapping logic

from faulty programmable resources to unutilised ones [129]. Nevertheless, along with the

benefits of implementing space computing systems with SRAM FPGAs also come some

challenges. Space lacks the Earth’s magnetosphere and atmosphere to protect electronics

from radiation, in other words, from energy transmitted to them, predominantly from the

Sun, in the form of waves or particles.

Integrated circuits, such as SRAM FPGAs, which embed a large amount of SRAM in a

relatively small area of silicon, are particularly sensitive to high radiation [88]. One or

more SRAM cells in the chip may become corrupted if a charged particle (e.g., a heavy

ion) strikes the device’s memory cells with sufficient energy to revert their state, i.e., to

change the stored value of one (or more) SRAM cells from 0 to 1 or vice-versa [55]. Such a

radiation effect is called a Single Event Upset (SEU) or a soft-error because the corrupted

memory can be recovered simply by overwriting (reprogramming) the memory with its

initial value [55]. The occurrence of SEUs in electronics is not a recent observation. In

fact, the possibility of SEUs occurring in electronic systems operating in a high radiation

environment was shown theoretically in 1962 [131], while SEUs were first observed in an

operational satellite in 1975 [10]. Since 1975, SEUs have become a major concern when

designing electronic systems for use in high radiation environments.

SRAM FPGAs use SRAM cells to store: 1) the configuration of their programmable
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resources, referred to as configuration memory (CM), 2) the application’s state and data,

referred to as user memory (UM), and 3) the state of various resources essential for the

vital functioning of the FPGA itself, referred to as Internal Proprietary State1 (IPS)

[97,115,136]. For example, Table 1.1 shows how 92 million user accessible bits of a state-

of-the-art Xilinx Kintex-7 325T FPGA are shared across its most important programmable

resources [136]. An SEU occurring in any of these memory types is equivalent to a fault

which in many cases may manifest as a circuit malfunction or otherwise an error. This

means that all errors are caused by faults but there are faults that do not cause any errors.

For example, a UM upset (i.e., a fault) in an unutilised BRAM of an FPGA circuit will

not cause an error since it is not used, but a CM upset that disconnects the clock from

the circuit will certainly cause an error. Fault-tolerant design techniques aim to mask

those faults in the circuit that will cause an error if they occur, that is, to prevent faults

from becoming errors [6,59,79]. The number of successfully detected faults divided by the

number of potential faults in a circuit is referred to as fault-coverage.

Table 1.1: Configuration and user memory bits within the Kintex-7 325T device [136]

Memory Type # Bits %

Configuration Memory* 72,868,672 79.3%

User Memory
Block RAM 18,661,568 20.3%

User Flip-Flops 407,600 0.4%

Total 91,937,840 100.0%

*5.6% (i.e, 4,096K) of the FPGA’s configuration bits
can be used as distributed RAM, i.e., as user memory.

Although, space-grade SRAM FPGAs [144] exist and have higher immunity to radiation-

effects, these devices have lower logic capacity and performance than commercial off-the-

shelf (COTS) SRAM FPGAs, are more expensive [115], and are restricted through export

control regulations, such as the US International Traffic in Arms Regulations (ITAR).

Traditionally, the space industry has implemented electronic systems with space-grade

components that can withstand the harmful radiation of space. However, the advance-

ment of fault-tolerant design techniques has enabled the implementation of much cheaper,

equally effective electronic systems using COTS components.

A noticeable example of building a space application using exclusively COTS components

is the COTS Ultra-high frequency Communication Unit (CUCU) avionics system, which

1The ISP is not visible to the user and it accounts only for a very small amount of the
total memory bits of the FPGA [136].
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was built at the Space exploration Technologies (SpaceX) corporation [110]. CUCU is

installed inside the International Space Station (ISS) in order to assist ISS crew members in

monitoring and commanding the approach and departure of the SpaceX Dragon spacecraft

during cargo delivery missions to the ISS [109]. Interestingly, the CUCU passed NASA’s

test protocol at the first try, and as stated in [128], it cost approximately US$10K. If,

however, CUCU had been implemented with space-grade components, it could have cost

as much as US$10M [128]. The US$10M figure may seem an overstatement, but it is worth

noting that only a single space-graded processor in a space computing system can cost a

few hundred thousand US dollars. For example, the cost of a mainstream space-graded

processor, the RAD750, which operates at 166MHz and achieves 300 Million Instructions

Per Second (MIPS), is approximately US$200K [11].

1.1 Thesis Aims

This thesis aims to develop fault-tolerant design techniques and CAD tools that will help

researchers and practitioners implement low cost dependable circuits with COTS Xilinx

FPGAs.

In more detail, this thesis aims to:

1. Develop techniques that will recover soft-errors in Triple Modular Redundant (TMR)

FPGA circuits [26] in less time and with less energy than current state-of-the-art

error recovery mechanisms;

2. Develop a CAD toolflow that will triplicate FPGA designs for Xilinx 7-series FPGAs

with high-level synthesis techniques;

3. Thoroughly evaluate the performance of the proposed error recovery techniques and

CAD tools by implementing and testing a rich set of TMR FPGA circuits.

1.2 Research Gaps and Thesis Contributions

In the following we present the contributions of this thesis. We provide necessary back-

ground so that the reader can understand which research gaps we have attempted to

address in this thesis. Readers that are new to the field of fault-tolerant FPGA circuits

are however advised to first read Chapter 2 before proceeding to our contributions.
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As mentioned earlier, SRAM FPGAs are well suited for accelerating computational tasks

in space applications without the non-recurring engineering costs of manufacturing ASICs.

However, their inherent sensitivity to user and configuration memory upsets reduces their

usefulness when employed in high-radiation environments. Fortunately, several fault-

tolerant design techniques, such as state-machine encoding, quadded logic, and temporal

redundancy, can mitigate radiation-induced faults in FPGA circuits [78]. However, none

of these techniques provide greater reliability benefits than TMR and in many cases have

higher area overhead than TMR [78]. TMR design techniques implement a circuit three

times and the result of each replicated circuit (also called TMR domain or module of the

TMR scheme) is processed by a majority voter circuit [26]. The majority voter, or in short

voter, simply masks any erroneous result from a faulty TMR domain by outputting the

result corresponding to at least two of its inputs.

A TMR circuit is often referred to as a 2-out-of-3 redundant system, which means that the

output of the circuit becomes erroneous when two or all three of its TMR domains fail.

Such a situation can arise for various reasons, e.g., Common Mode Failures (CMFs) that

occur from a design bug in all three TMR domains of the circuit [61], or from a CM upset

in a routing resource that inadvertently connects or disconnects wires between multiple

TMR domains [25, 118]. Nevertheless, even when no CMFs exist in the TMR circuit, the

possibility still exists that a succession of soft-errors causes a second and a third TMR

domain to fail. This can be alleviated in many ways, of which the following are common:

• Circuit partitioning: Instead of triplicating a circuit as a whole and voting on the

output of its three TMR domains, the circuit is first partitioned into a logical series

network of k ∈ Z≥1 smaller components and thereafter each of these k components

is triplicated and voted upon [73]. In this way, the partitioned TMR circuit can

function correctly even when every one of its k partitions (i.e., TMR components)

are operating with one faulty TMR domain. In other words, the more partitions

a TMR circuit has the more errors in can withstand and operate with correctly,

assuming that these errors do not affect more than one TMR domain per partition.

• Error recovery mechanisms: By incorporating rapid UM and CM error recovery

mechanisms in order to repair a faulty TMR domain before the second or the third

domain of the TMR scheme fail.

SEUs in the UM and the CM of the FPGA are commonly recovered by periodically

refreshing their contents, e.g., by applying UM scrubbing [26,66] and CM scrubbing [21,48],

respectively. However, TMR FPGA circuits that require lower error detection latency and
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energy consumption than periodic CM scrubbing affords often resolve to Module-based

CM Error Recovery (MER) [17,30,86]. With MER, each TMR domain is implemented as

a reconfigurable region [100], also known as a reconfigurable Pblock, according to Xilinx

terminology, and is partially reconfigured when it experiences a functional error. To be

more specific, MER determines that UM or CM upsets have occurred in the device by

executing lock-step comparison between the outputs of TMR domains or, in other words,

by implementing Concurrent Error Detection (CED) mechanisms [76]. CED mechanisms

can easily be realised in TMR circuits by enhancing the voters with additional logic,

such as comparators, that reports which module, in the minority, is experiencing ongoing

errors [34]. Therefore, the voters in TMR circuits with MER have two outputs; one output

for the majority result and one output for the minority report, i.e., a report to indicate

which of the three modules of the TMR circuit, if any, needs reconfiguration.

Research Gap 1 (RG1):

A closer look at TMR FPGA circuits that utilise either device periodic scrubbing or MER

to recover from faults reveals the following limitations that have not been previously stud-

ied. On the one hand, periodic CM scrubbing does not take advantage of the rapid error

detection and localisation capabilities provided by CED mechanisms. Therefore, periodic

scrubbing spends energy and time scanning for CM upsets in the TMR modules of the

circuit although this information can be inferred with CED mechanisms. On the other

hand, MER utilises the circuit’s voters to rapidly detect erroneous modules, but is unable

to detect any radiation-induced errors in logic that is instantiated outside module bound-

aries, i.e., outside Pblocks. FPGA circuits that employ MER therefore become unavailable

in the long run due to an accumulation of SEUs in this unprotected programmable logic

of the device. Additionally, there are situations where only a portion of the circuit can be

triplicated, either because programmable resources are not sufficient in the device, e.g.,

limited Input/Output Block (IOB) pins, or because it is simply difficult, or sometimes

even impossible, to triplicate complex resources, such as the high-speed transceivers of an

FPGA [22]. Therefore, FPGA circuits that employ MER cannot use CED mechanisms to

detect errors in the simplex logic of the design.

Contribution 1 (C1):

The first contribution of this thesis addresses RG1 by proposing a hybrid CM error recovery

mechanism, which we have called Frame- and Module-based CM Error Recovery (FMER).

FMER achieves the fault-coverage of device-periodic CM scrubbing alone, but with less

error recovery latency and energy consumption.
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In particular, FMER uses MER to rapidly and efficiently recover the CM of the Pblocks

hosting the modules of the TMR circuit, and also uses selective periodic scrubbing to

recover the CM of logic located outside the Pblocks, e.g., the interconnection nets be-

tween the Pblocks. We derive models for estimating the reliability, availability and energy

consumption of partitioned TMR FPGA circuits that incorporate either device periodic

scrubbing, MER, FMER, or no recovery at all. By exploring our models under several pa-

rameters, such as the length and the orbit of the mission, the number of circuit partitions,

and the incorporated CM error recovery mechanism, we show that FMER is beneficial for

missions with high reliability or availability requirements subject to a low energy budget.

It should be noted that the CM error recovery models we derive in order to quantify the

energy consumption of MER and periodic scrubbing in partitioned TMR circuits have not

been reported in the literature. We therefore believe these to be a contribution in their

own right.

Research Gap 2 (RG2):

Two very important components in TMR FPGA circuits that incorporate MER or FMER

are the Reconfiguration Control Network (RCN) [15, 29, 120] and the Reconfiguration

Controller (RC) [41, 48]. The RCN simply transfers the minority reports from the voters

of the TMR circuit to the RC of the FPGA in order to inform which modules, if any, need

reconfiguration. As might be expected, the overall reliability of a TMR circuit with MER,

and therefore with FMER, depends significantly on the reliability of both the RCN and

the RC. If the RCN fails, the minority report of a faulty module may never be conveyed

to the RC. Similarly, if the RC fails, a reported faulty module may never be reconfigured.

Either way, the overall reliability of the FPGA circuit will be compromised. The research

community has proposed reliable RCs [41, 48], but has neither considered the design of

reliable RCNs, nor has investigated how the latency and reliability of an RCN affects the

overall reliability of a TMR circuit with MER.

Contribution (C2):

The second contribution of this thesis aims to address RG2 by implementing and comparing

several feasible RCN topologies, e.g, a star, a bus and a token-ring RCN topology, in

terms of reliability, scalability and performance, while also investigating the benefits of

implementing an RCN with the configuration layer [52] of the FPGA.

In more detail, we have implemented a configuration layer RCN that stores the 2-bit

minority report from each voter in the circuit into a 2-bit register (i.e., two flip-flops).

In turn, the RC takes advantage of the Readback Capture feature of Xilinx 4–7 series
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FPGAs [139, 142] to capture the state of all registered minority reports in the CM of the

FPGA and then it selectively reads back the CM containing these reports. The probability

of having radiation-induced faults in the configuration layer RCN is thus significantly

reduced since almost no SRAM configurable resources are used in the implementation

of the RCN; the state of each minority report in the TMR circuit is simply read back

throughout the configuration layer of the FPGA. Our experimental results show that,

of the RCNs studied, the configuration layer RCN is the most reliable despite having a

higher, yet practically acceptable latency.

Research Gap 3 (RG3):

Achieving high reliability in FPGA circuits, however, requires in addition to state-of-

the-art error recovery mechanisms, experienced engineers to produce high quality TMR

designs. Although, the concept of partitioning and triplicating a circuit may feel simple, in

practice it is a relatively complex procedure. Most real-life circuits contain several Finite

State Machines (FSMs) that are formed with registered loop structures, that is, the output

of state registers are fedback to logic instantiated before these registers. To guard against

UM errors becoming trapped in these register loops and to allow for self-synchronisation

between TMR domains, so-called synchronization voters need to be inserted into optimal

locations of the circuit in order to “cut” all feedback paths that form registered loops

while conserving FPGA resources and circuit performance [54]. In fact, synchronization

voters play two important roles. Firstly, they overwrite any incorrect state of a TMR

domain with the majority state result of the TMR scheme, and secondly, since UM errors

are not trapped in TMR domains, repeated erroneous output results from a TMR domain

are indicative of a CM error, and therefore can be used to trigger CM recovery in FPGA

circuits [31].

It quickly becomes evident that manually partitioning and triplicating an FPGA design

as well as finding optimal locations to insert voters is not a trivial task. Fortunately, CAD

tools, such as the BYU-LANL TMR (BL-TMR) [20], R4R [14] and XTMR [141], exist

that take as an input an RTL or post-synthesised FPGA design and automatically produce

a TMR version of the design. Triplicating a design during RTL pre- or post synthesis,

though, has the following limitations that have not been previously investigated.

• The flexibility of pipelining the TMR design in order to mitigate the performance

overheads of voter insertion and hardware redundancy is limited. Inserting registers

into critical paths requires the CAD tools to modify the design’s FSMs (i.e., the

timing), which in turn changes the specifications of the design.
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• Partitioning and triplicating a design at the post-synthesis level is complex because

the CAD tools need to be fully aware of all details of the targeted FPGA architecture,

which limits the flexibility of conducting fast design exploration and of supporting

a broad range of FPGAs. For example, although inserting synchronization voters

between the nets of high-speed carry chains in Xilinx Virtex slices may cut the

feedback paths in a TMR ripple carry adder, it will also negate the performance

gains of utilising the high-speed carry chains [54].

Contribution 3 (C3):

The third and last contribution of this thesis aims to address RG3 by triplicating an FPGA

design during HLS rather than RTL pre- or post-synthesis.

To be more concrete, we have developed a toolflow, namely TLegUp, that automatically

compiles an ANSI C program to a partitioned TMR RTL design and thereafter implements

and floorplans the design on a Xilinx Artix-7 FPGA. In fact, TLegUp leverages a front-end

part for HLS and a back-end part for synthesising and implementing the generated RTL on

a target FPGA. The front-end part has been developed on top of the open-source LegUp

HLS research framework [23] and it performs partitioning and triplication within the

Low-Level Virtual Machine [63] compiler Intermediate Representation (IR) of the design,

before allocation, binding and scheduling take place. On the other hand, the back-end

incorporates the Vivado design suite and an academic tool [100] in order to implement and

floorplan the RTL, respectively. Floorplanning a TMR design firstly minimises resource

sharing between TMR domains, which in turn minimises the probability of CMFs, and

secondly, it aids designers to rapidly realise MER or FMER mechanisms in the FPGA

circuit.

By conducting design triplication during HLS we believe that the limitations presented in

RG3 are addressed for the following reasons:

• The control- and data-path of the final TMR RTL design are synthesised rather than

modified as done when triplication is performed at the RTL pre- or post-synthesis

level. TLegUp extends the delay of LLVM IR instructions that are to be voted upon

before performing HLS binding and scheduling. In this way, the HLS tools account

for the delay of voter insertion during binding and scheduling, and automatically

pipeline and retime the design in order to meet the targeted timing requirements.

• Partitioning and triplicating a design in the LLVM IR level is simpler than doing

so in the more detailed RTL pre- or post synthesis netlist level. This gives the

10
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opportunity to broadly explore various design parameters, e.g., targeted operating

frequency or number of partitions, in less time than doing so in RTL. Alternative

versions of a TMR design are rapidly synthesised and explored in HLS, while the low-

level architectural details of the targeted FPGA are taken care of with the Vivado

tools during RTL synthesis and optimisation.

We implemented a fine- and a coarse-grain approach to partitioning the design into k TMR

components. The fine-grained approach uses a network flow algorithm to partition the

application’s Data Flow Graph (DFG) at the instruction level, which as our experiments

indicated produced TMR circuits with up to 14.6x area overhead. Needless to say,

the fine-grained approach was a research dead-end, which motivated as to find a more

practical solution – the Function Level Partitioning (FLP) approach. As its name suggests,

FLP partitions the design at the C function level rather than at the instruction level

and is therefore able to generate TMR circuits with much less area overhead and higher

performance.

We synthesised and implemented with TLegUp, TMR design versions of 17 HLS bench-

marks on a Xilinx Artix-7 200T FPGA in order to compare their characteristics with

non-triplicated counterpart designs which were produced with the official HLS tools of

the LegUp framework. When comparing the TLegUp generated TMR circuits with their

simplex counterparts, the triplicated circuits that were partitioned at the C function level

for k = 1 and k = 2 had on average:

• 500x reduction in soft error sensitivity, which was further reduced by a factor of

1.3x when the designs were floorplanned;

• 3-4x more resources; and

• 11% and 13% frequency drop off for the non-floorplanned and floorplanned circuits,

respectively.

1.3 List of Publications

Research for this thesis was conducted in the period August 2014 - March 2018 at the

School of Computer Science and Engineering, UNSW Sydney. The Contributions C1 - C3

of this thesis are presented in Chapters 3 - 5, respectively, and are based on the following

publications:
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• Publication 1 (P1): D. Agiakatsikas, E. Cetin, and O. Diessel, “FMER: A

hybrid configuration memory error recovery scheme for highly reliable FPGA SoCs”,

in International Conference on Field Programmable Logic and Applications (FPL),

Lausanne, 2016, pp. 1–4. [Online]. Available: https://doi.org/10.1109/

FPL.2016.7577339

• Publication 2 (P2): D. Agiakatsikas, E. Cetin, O. Diessel, “FMER: an energy

efficient error recovery methodology for SRAM-based FPGA designs”, IEEE Trans-

actions on Aerospace and Electronic Systems (TAES), 2018, vol. 54, no. 6, pp. 2695–

2712. [Online]. Available: https://doi.org/10.1109/taes.2018.2828201

• Publication 3 (P3): D. Agiakatsikas, N. T. H. Nguyen, Z. Zhao, T.Wu, E. Cetin,

O. Diessel, and L. Gong, “Reconfiguration control networks for TMR systems with

module-based recovery,” in IEEE International Symposium on Field Programmable

Custom Computing Machines (FCCM), Washington DC, 2016, pp. 88–91. [Online].

Available: https://doi.org/10.1109/fccm.2016.30

• Publication 4 (P4): N. T. H. Nguyen, D. Agiakatsikas, Z. Zhao, T.Wu, E.

Cetin, O. Diessel, and L. Gong, “Reconfiguration control networks for FPGA-based

TMR systems with modular error recovery,” in Microprocessors and Microsystems,

2018, pp. 86–95. [Online]. Available: https://doi.org/10.1016/j.micpro.

2018.04.006

• Publication 5 (P5): G. Lee, D. Agiakatsikas, T. Wu, E. Cetin and O. Diessel,

“TLegUp: A TMR code generation tool for SRAM-based FPGA applications using

HLS”, in IEEE International Symposium on Field Programmable Custom Computing

Machines (FCCM), Napa, CA, 2017, pp. 129–132. [Online]. Available: https:

//doi.org/10.1109/fccm.2017.57

• Publication 6 (P6): D. Agiakatsikas, G. Lee, T. Mitchell, E. Cetin and O.

Diessel, “From C to fault-tolerant FPGA-based systems”, in IEEE International

Symposium on Field Programmable Custom Computing Machines (FCCM), Boulder,

CA, 2018, pp. 1–1 [Online]. Available: https://doi.org/10.1109/FCCM.

2018.00046 (poster).

Table 1.2 shows the relevant publications and chapters where C1 – C3 contributions are

presented. Details about the publications P1 – P6 as well as the contributions of this

author in each of these publications are provided below:
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• P1, P2: Preliminary results of FMER were presented in the conference paper P1,

while the journal P2 extended P1 by providing the following additional informa-

tion: 1) The derivation of reliability, availability and energy consumption models

for TMR FPGA circuits, 2) a more thorough discussion of the assumptions made

in the derivation of the dependability models, 3) a discussion of the CM upset rate

in Xilinx Artix-7 FPGAs, 4) the implementation of FMER was detailed, and 5) the

practicality and applicability of FMER was demonstrated through the implementa-

tion of several triplicated HLS applications on an Artix-7 200T FPGA. Finally, a

related work section was added to P2. This author wrote the manuscripts of P1 and

P2, which were reviewed by his supervisor Dr. Oliver Diessel and his co-supervisor

Dr. Ediz Cetin. The limitation that MER is unable to recover any logic located

outside the TMR modules of a TMR FPGA circuit was pointed out by this author.

The idea of combining periodic selective scrubbing with MER in order to overcome

the limitation of classic MER was proposed by this author. The idea of providing

dependability and energy consumption models for TMR FPGA circuits that incor-

porate either FMER, MER or device periodic scrubbing so that their benefits and

limitations can be better understood was proposed by Dr. Oliver Diessel. The

dependability and energy consumption models were derived by this author. The

experimental methodology of P1 and P2 was planned and executed by this author.

The tools required to analyse the essential bits of the HLS case study designs in P2

were developed by this author.

• P3, P4: Initial results of the configuration-layer RCN were presented in the confer-

ence paper P3, while the journal P4 provided the following additional information: 1)

A background on common CM error recovery techniques such as periodic scrubbing

and MER, 2) an overview of TMR FPGA circuits with MER as well as discussion

about the advantages and disadvantages of MER compared with periodic CM scrub-

bing, 3) a literature survey of RCN topologies, and 4) fault injection experiments.

The idea of implementing a configuration-layer RCN in order to reduce the RCN’s

resource utilisation and therefore its failure rate was proposed by Dr. Oliver Dies-

sel. This author wrote approximately 50% of P1, namely, the abstract, 50% of the

“introduction” section, 100% of the “reliability evaluation” section as well as 50%

of the “experiments and results” section. This author contributed to the derivation

of the reliability models in P3 and P4, most of which were based on models derived

in P1 and P2. The CM failure rate of the Xilinx Artix-7 FPGA was estimated by

this author and was used in P1 – P4. This author planned most of the experimental

methodology in P3. The tools used to analyse the essential bits and the number

of CM frames in the modules of the TMR components in the RUSH payload were
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developed by this author. In P4, this author mainly contributed to the experimen-

tal methodology, the development of fault-injection tools, as well as, reviewing the

manuscript.

• P5, P6: The initial version of TLegUp was presented in P5. The main contributions

of this author to P5 were: 1) The planning of the experimental methodology, 2) the

development of tools for conducting fault-injection experiments, 3) the implementa-

tion of TMR designs on a Xilinx Virtex-6 FPGA, 4) the collection and analysis of

results, and 5) writing approximately 70% the of the manuscript. The initial idea of

TLegUp was proposed by Dr. Oliver Diessel. The front-end of TLegUp and many

underlying algorithms were developed by Dr. Ganghee Lee. Mr. Tong Wu, Mr.

Thomas Mitchell, and Dr. Ganghee Lee assisted with the experiments of P5 and P6

as well. The manuscript of P5 and P6 were mainly reviewed by Dr. Oliver Diessel

and Dr. Ediz Cetin. The idea of partitioning the TMR designs at the C function

level was proposed by this author as was the idea of investigating how floorplanning

improves the reliability of the TMR circuits. The main contributions of this author

to P6 were the following: 1) wrote the manuscript, 2) planned the experimental

methodology, 3) implemented several TLegUp generated TMR designs on an Artix-

7 FPGA and collected/analysed the results, 4) developed with Mr. Thomas Mitchell

the back-end of TLegUp, and 5) developed tools to inject-faults into the essential

bits of the designs in order to speed up the experiments.

Table 1.2: Correlation between contributions, publications and chapters

Contribution Publications Chapter

C1 P1, P2 3
C2 P3, P4 4
C3 P5, P6 5

Other co-authored publications during my PhD candidature that are not included as

contributions in this thesis are listed below:

• Publication 7 (P7): Z. Zhao, D. Agiakatsikas, N. T. H. Nguyen, E. Cetin and O.

Diessel, “Fine-grained module-based error recovery in FPGA-based TMR systems”,

International Conference on Field-Programmable Technology (FPT), Xi’an, 2016,

pp. 101-108. [Online]. Available: https://doi.org/10.1109/fpt.2016.

7929433

• Publication 8 (P8): Z. Zhao, N. T. H. Nguyen, D. Agiakatsikas, G. Lee, E.

Cetin and O. Diessel, “Fine-grained module-based error recovery in FPGA-based
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TMR Systems”, ACM Reconfigurable Technology and Systems (TRETS), vol. 11,

no. 1, March 2018, pp. 4:1–4:23. [Online]. Available:https://doi.org/10.

1145/3173549

• Publication 9 (P9): N. T. H. Nguyen, D. Agiakatsikas, E. Cetin and O. Diessel,

“Dynamic scheduling of voter checks in FPGA-based TMR systems”, International

Conference on Field-Programmable Technology (FPT), Xi’an, 2016, pp. 169-172.

[Online]. Available: https://doi.org/10.1109/fpt.2016.7929525

• Publication 10 (P10): L. Gong, T. Wu, N.T.H. Nguyen, D. Agiakatsikas, Z.

Zhao, E. Cetin and O. Diessel, “A programmable configuration controller for fault-

tolerant applications”, International Conference on Field-Programmable Technology

(FPT), Xi’an, 2016, pp. 117-124. [Online]. Available: https://doi.org/10.

1109/fpt.2016.7929515

• Publication 11 (P11): L. Gong, A. Kroh, D. Agiakatsikas, N. T. H. Nguyen, E.

Cetin and O. Diessel, “Reliable SEU monitoring and recovery using a programmable

configuration controller”, International Conference on Field Programmable Logic and

Applications (FPL), Ghent, 2017, pp. 1-6. [Online]. Available: https://doi.

org/10.23919/fpl.2017.8056798

1.4 Thesis Organisation

The background and literature review for this thesis is provided in Chapter 2, while Chap-

ters 3 – 5 present the FMER, the RCN, and the TLegUp HLS flow studies, respectively.

The last chapter concludes this thesis.
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Chapter 2

Background and Literature

Review

High energy particles, such as protons, electrons, and heavy ions in space cause several

negative effects in the electronics of satellites and spacecraft.

This chapter firstly provides a background of space radiation and its effects on SRAM

FPGAs and secondly presents in detail mainstream fault-tolerant design techniques and

CAD tools used to mitigate soft-errors in SRAM FPGA circuits.

2.1 Radiation Sources

The energy of charged particles in space commonly ranges from keV to GeV and causes

a number of problems when they interact with spacecraft electronics [115]. The primary

sources of radiation in space are the following [88].

• Sun: Protons, electrons and heavy ions emitted from the sun in a solar energetic

particle event during solar flares. Solar flares can last from a few hours to several

days.

• Radiation belts: Trapped particles in radiation belts around planets, which con-

sist mainly from protons and electrons. Satellites orbiting over the South Atlantic

Anomaly (SAA) – the red area of the map shown in Fig. 2.1 (a) where the Earth’s

inner Van Allen radiation belt comes closest to the Earth’s surface – are exposed
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to high radiation, which commonly consists of energetic protons at 10 MeV. For ex-

ample, Fig. 2.1 (b) shows the locations of 1300 detected SEUs within the on-board

computer of the Autonomous Operational Survivability (TAOS) satellite. Nearly

50% of the total SEUs occurred over the SAA region, although only 5% of orbital

time was spend there [60, 88]. Similarly, results from the Mission Response Module

(MRM) satellite payload that hosted four Xilinx Virtex-4 FPGAs and was deployed

in Low Earth Orbit (LEO) showed that the FPGAs experienced most SEUs when

orbiting over the SAA [97].

• Outer space: Galactic cosmic rays consisting of high-energized protons, electrons,

and fully ionized nuclei coming from outer space toward the Earth.

It is worth mentioning that direct ionization from protons usually does not upset an SRAM

cell. Only approximately one in 105 protons causes nuclear reactions in silicon which in

turn produces heavy ions capable of upsetting the cell [88].

2.2 Radiation Effects

Radiation effects on electronics are classified as either Total Ionizing Dose effects (TID)

or Single Event Effects (SEEs). TID considers the long-term effects of radiation on an

electronic device, while SEEs describe the instantaneous response of the device to a highly

energised particle strike. The following provides an overview of radiation effects on SRAM

FPGAs.

2.2.1 Total ionizing dose effects

TID is the amount of ionizing radiation a device can accumulate before failing to meet

its published specification and is commonly measured in krad. As ionizing radiation

accumulates in an FPGA, the electrical characteristics of its transistors degrade due to

increasing leakage currents and other effects [115]. TID effects slow down the transistors

of the FPGA, which in turn cause several problems, such as operating frequency drop

off and power consumption increase [127]. In more detail, as radiation accumulates in

a CMOS transistor, the required current to switch “on” or “off” the transistor increases

until the point at which it fails to switch in any way [96]. Similarly, the required voltage

to switch on an N-channel MOSFET decreases as TID increases. When TID exceeds a

certain point the MOSFET remains permanently switched on [84].
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(a)

(b)

Figure 2.1: Occurrence of SEUs in the TAOS mission [60,88].

The amount of ionizing radiation an FPGA absorbs during a mission depends on many

factors, such as the length of the mission, the location of the FPGA in the satellite, the

thickness of the satellite’s shielding, as well as the satellite’s location in space [96]. Different

FPGAs can withstand different levels of TID and therefore engineers have to choose the

most suitable device for a given mission. Space-graded SRAM FPGAs can withstand

a large amount of TID and therefore can be used in high-radiation environments for

extended time periods. For example, the Xilinx Virtex-5QV FPGA can accumulate up to

1 Mrad TID and still operate reliable in space. However, space computing systems that are

expected to operate in orbits with lower radiation levels, say in LEO, or for shorter time

periods, say 2 years, can use COTS FPGAs. In fact, COTS SRAM FPGAs can withstand

more than 100 krad TID, while many satellites, especially those operating close to earth

are exposed to only 1 – 5 krad per year [96]. For example, the Netherlands-China Low-
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frequency Explorer (NCLE) mission incorporates a payload that embeds a state-of-the-art

Xilinx Kintex-7 325T FPGA. Radiation experiments revealed that the Kintex-7 FPGA

can withstand a total dose of 340 krad when irradiated with 180 MeV protons [137], while

the expected total dose of the NCLE mission is estimated to be less than 10 krad [127].

2.2.2 Single event effects

Of the many types of SEEs that occur in SRAM FPGA circuits, the most common are:

• Single Event Upset (SEU) is a change of the logic state of one memory cell,

called Single Bit Upset (SBU), or multiple memory cells, called Multi-Bit Upsets

(MBU). An SEU occurs when a charged particle, such as a heavy ion or a proton,

strikes the semiconductor device with sufficient energy to create a charge capable of

reverting the state of one or more of its memory cells [55, 133].

• Single Event Transient (SET) is a temporary voltage variation or glitch in the

FPGA’s programmable logic that propagates through the FPGA circuit and can

either disappear after some time or become an SEU if it is latched by a memory

element [96,115].

• Single Event Latchup (SEL) is a radiation-induced latchup, where the parasitic

thyristor (PNPN structure) in CMOS is turned on from a particle strike, which

in turn shorts the power rails of the CMOS. If an FPGA experiencing a SEL is

not powered off promptly, its current consumption can increase beyond device spec-

ifications and cause a permanent failure [96]. Radiation experiments show that

space-grade Xilinx Virtex-5QV FPGAs as well as some COTS Xilinx FPGAs, such

as the Kintex-7 325T, are immune to SELs at linear energy transfers of more than

100 MeV [65,144].

• Single Event Functional Interrupt (SEFI) is an SEU or SET in the Internal

Proprietary State (IPS) of the FPGA, which can be recovered by resetting or recon-

figuring the device. The effects of SEFIs in SRAM FPGAs include reset or shutdown

of the device, malfunctions in the configuration circuitry of the FPGA, and other

failures that put in danger a mission when not mitigated [96]. Fortunately, the cross

section of the ISP logic in an SRAM FPGA is small and therefore the probability of

the device experiencing SEFIs during most space missions is low [99].
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2.3 Fault-tolerant SRAM FPGA Circuits

Over the last two decades, novel techniques have been proposed to mitigate the negative

effects of radiation in both space-grade and COTS SRAM FPGA circuits [26, 57, 98, 115,

136]. Additionally, several CAD tools have been developed to simplify the application of

these techniques [16, 39, 91, 111, 141]. Most fault-tolerant techniques insert some form of

temporal or spatial redundancy into the design in order to mask functional errors from

the user. Of these, spatial TMR [26] is the most popular technique used to mask Single

Point of Failure (SPF) in FPGA circuits. TMR FPGA circuits are commonly combined

with error recovery mechanisms since they drastically improve their reliability [78].
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Figure 2.2: Triple modular redundancy.

The basic concept of TMR is to replicate a circuit three times, provide the three identical

circuits with the same input stimulus, and perform bit-wise majority voting on the outputs

of each circuit replica [59] as shown in Fig. 2.2. The majority voter (V) simply masks any

erroneous result from a faulty TMR by outputting the result corresponding to at least

two of its inputs. In other words, if A, B and C are the outputs of the three circuit

replicas, respectively, then the result of the voter is determined by the logic function

V = A ·B + B · C + A · C. As mentioned in Chapter 1, each circuit replica is referred

to as TMR domain or module of the TMR scheme.

However, the TMR scheme of Fig. 2.2 is more suited to ASICs, where only the UM of

the circuit can be affected by SEUs since logic such as the voter, the routing wires and

the input/output (I/O) ports are hardwired and therefore immune to SEUs. In contrast,
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Circuit
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Figure 2.3: A fully triplicated SRAM FPGA circuit.

the functionality of most logic in an SRAM FPGA circuit is specified via the device’s

CM, which means that the entire design needs to be triplicated, including the voters, the

routing wires and the I/O ports as shown in Fig. 2.3.

A fully triplicated scheme guards the FPGA circuit against Single Point(s) of Failure

(SPF), or in other words, errors originating from one TMR domain at a time, but there is a

possibility that failures in multiple TMR domains will overcome the TMR scheme [94,118].

Multiple failures in multiple TMR domains are referred to as Domain Crossing Errors

(DCEs). Common causes of DCEs in FPGA circuits include:

• SEUs accumulate in the device over time causing multiple TMR domains to fail;

• Multi-bit upsets (MBUs) cause two or more TMR domains to fail simultaneously [94];

• CMFs in routing resources of the FPGA circuit cause DCEs [25,118]; and

• When mapping circuits onto an FPGA, many inputs of the programmable resources

need to be tied with fixed logic one or logic zero constants. SRAM FPGAs com-

monly use half-latches to provide these logic constants to the circuit, which are

susceptible to SEUs. In contrast to other PL, half-latches cannot be directly pro-

grammed from the FPGA’s CM and therefore require a device power cycle to re-

initialise their state when corrupted by SEUs [43]. Fortunately, from Xilinx Virtex-II

Pro FPGAs on, SEUs in half-latches have only transient effects because their state

recovers naturally due to current leakage [141].

In the following sections we discuss how DCEs can be mitigated in SRAM FPGA circuits.
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2.3.1 Increasing reliability through circuit partitioning

TMR is a 2-out-of-3 redundancy scheme, which means that a TMR circuit can withstand

faults in only one TMR domain at a time. However, if the same circuit is partitioned

into k smaller TMR components, as shown in Fig. 2.4, it can then mask faults in k TMR

domains, assuming that each partition (i.e., TMR component) has no more than one faulty

TMR domain at a time. The more partitions a TMR FPGA has, the less the likelihood

of soft errors affecting the one TMR component and the higher the total reliability of

the circuit. However, when k becomes very large the benefits of circuit partitioning are

overwhelmed by the area and performance overheads of the added voters and additional

routing resources used between the TMR components.
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Figure 2.4: Partitioning a TMR FPGA circuit.

2.3.2 Configuration memory error recovery

The reliability of a TMR FPGA circuit increases considerably when it is combined with

robust error recovery mechanisms that effectively detect and correct soft errors in both the

CM [17,31,48,72,87,105] and the UM [26,66,101] of the FPGA. In fact, when soft errors

are not repaired in a TMR FPGA circuit, its reliability is only higher than its simplex

(i.e., non-triplicated) functionally equivalent circuit in its early operation [59, 112, 132].
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The reason for this counter-intuitive fact is that once one module of the TMR circuit fails,

the remaining two healthy modules have a higher probability of failing than the simplex

circuit itself because the two modules of the TMR scheme expose a higher number of

utilised programmable resources to radiation. However, when a TMR circuit is combined

with error recovery mechanisms, the only time the circuit operates on two healthy modules

alone and therefore has an increased risk of failing is whilst the faulty TMR domain is

recovering.
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Figure 2.5: R(t) for t ∈ [0, 3000] seconds, λ = 0.001, µ = 0.1

The benefits of error recovery in TMR FPGA circuits can be seen in Fig. 2.5, which

compares the reliability1 of three circuit versions for t ∈ [0, 3000] seconds: 1) Simplex (i.e.,

a single circuit copy), 2) TMR with no error recovery (referred to as TMR in the figure)

and 3) TMR with error recovery (referred to as TMR+Recovery in the figure). The failure

rate of each module in the TMR circuits, as well as that of the simplex circuit is λ = 0.001,

while the recovery rate in the TMR+recovery circuit is µ = 0.1.

Most SRAM cells of an SRAM FPGA are devoted to its CM. For example, as shown

in Table 1.1, 79% of the total user-accessible memory bits in the Xilinx Kintex-7 325T

FPGA are devoted to its CM [136]. All these CM bits are vulnerable to SEUs and can

cause functional errors when corrupted, such as by changing the functionality of a CLB

or disconnecting an input from a circuit. Fortunately, although the CM of the device is

large and sensitive to SEUs, most CM upsets do not result in an error. Typical FPGA

circuits utilise only a fraction of their CM bits – especially those devoted to their GRM.

Therefore, most upsets will occur in unutilised CM bits of the device, which commonly do

not affect the circuit, while many upsets that actually corrupt utilised CM bits may cause

faults that are logically masked by the circuit [79]. According to Xilinx terminology, those

1The reliability functions for the simplex, TMR and TMR+recovery circuits are given
in Eqns. (3.8), (3.11), and (3.12) of Chapter 3, respectively.
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CM bits that have the potential to cause a failure when corrupted are called essential bits,

while those that actually cause a failure are referred to as critical bits. Xilinx reports that

on average only 5% of the CM bits in their devices are critical for a typical circuit, while

in the worst case the critical bits never exceed 10% of the total CM bits [143].

Two mechanisms are mentioned in the literature for recovering SEUs in the CM of the

FPGA: 1) periodic scrubbing [21, 48] and 2) Fault Detection, Isolation and Recovery

(FDIR) [49,114]. Both mechanisms correct CM errors, either by completely reconfiguring

the CM of the device or by selectively reconfiguring only the portion of CM that is affected

from SEUs. Either way, reconfiguration is always done by writing into the device one or

more Configuration Frames (CFs), whereby a CF is the atomic unit of configuration in

modern SRAM FPGAs. What differentiates one approach from the other, however, is the

way CM errors are detected.

Figure 2.6: A conceptual model of a Xilinx FPGA [48].

To better understand how each mechanism detects SEUs in the CM of the FPGA we

depict in Fig. 2.6 a conceptual model of an SRAM FPGA that is helpful for illustrating

various radiation-induced failure modes in such devices [48, 115]. The model separates

the chip into two layers, namely the CM layer that holds the configuration of the FPGA

and the application layer that implements the actual circuit. A failure in the application

layer may occur 1) either because highly energised particles, such as heavy ions, strike

and corrupt the CM of resources responsible for the implementation of the circuit, or 2)

because particles strike and corrupt UM elements in the application layer, such as utilised

flip-flops and BRAMs of the circuit.

The first error recovery mechanism, referred to as CM scrubbing, operates exclusively on

the CM layer in order to detect and correct CM errors [21, 48]. Scrubbing consists of

reading and/or writing the CM in order to detect and/or correct bit errors. There are

many ways to detect CM errors with scrubbing, from which the most fundamental and

widely used are the following:
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• Cyclic Redundancy Check (CRC) readback scrubbing periodically reads back the

CM of the device and checks its CRC against that of the initial (i.e., valid) CM

setting in order to detect any number of SEUs during a readback scrub cycle. Note

that a scrub cycle is the completion of reading or writing a set or all CFs of the

device. CRC readback scrubbing is a robust mechanism that can detect MBUs in

the CM, but it takes a relatively long time to calculate the CRC for the CM, since

all CFs need first to be read back from the device. For example, the maximum error

detection latency of performing a CRC readback cycle on the Xilinx Kintex-7 325T

is 47 milliseconds [145]. Nevertheless, a CRC mismatch at the end of a readback

scrub cycle indicates that the CM is corrupted, and a complete reconfiguration of

the device is performed to correct the memory.

• Single Error Correction Double Error Detection (SECDED) readback scrubbing checks

for upsets on a frame-by-frame basis and identifies single or double adjacent bit up-

sets within each CF. The Mean Time to Detect (MTTD) upsets with readback

SECDED scrubbing is also relatively long, since on average half of the devices CFs

need to be checked before detecting a corrupted CF. However, once an upset is lo-

calised within a CF, error correction occurs promptly since only the corrupted CF

needs reconfiguration.

• SECDEC/CRC readback scrubbing combines both SECDEC and CRC mechanisms.

SECDEC localises and corrects single and double adjacent bit upsets within each

CF, while a CRC check at the end of each readback scrub cycle detects any missed

upsets from the SECDEC mechanism. A device reconfiguration is required to recover

any MBUs detected from the CRC checking mechanism.

In addition, a technique referred to as preventative or blind scrubbing [48] prevents SEUs

from accumulating in the device by periodically reconfiguring the CM of the FPGA, with-

out, however, carrying out any error detection strategy whatsoever [27]. In contrast to

readback scrubbing, blind scrubbing is more sensitive to SEFIs because it operates the

internal configuration interface of the FPGA always in write mode. Although, SEFIs oc-

cur extremely rarely in the configuration interface of FPGAs, the whole CM of an FPGA

system incorporating blind scrubbing can become jeopardised when configuration SEFIs

occur [48]. On the other hand, with readback scrubbing, a SEFI in the FPGA’s config-

uration interface will result in the corruption of only one CF, assuming that appropriate

guidelines have been followed, such as to check the Frame Address Register (FAR), the

status register and the control register of the FPGA before writing an CF [28,115].

In general, periodic scrubbing is a well-established CM error recovery mechanism and
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many FPGA manufactures provide a variety of CM scrubbing solutions. For example,

Xilinx has embedded Error Correction Codes (ECC) in each CF from the Virtex-5 FP-

GAs onwards and also include hardwired logic that, when enabled, continuously performs

SECDEC/CRC readback scrubbing [142] in the device. Xilinx, however, suggests to in-

tegrate their Intellectual Property (IP) Soft-Error Mitigation (SEM) scrubbing controller

in circuits with high reliability and availability needs. The SEM controller uses the in-

ternal SECDEC/CRC readback scrubbing circuitry of modern Xilinx FPGAs to detect

CM upsets, but it corrects the upsets with several more advanced mechanisms than the

built-in logic of the FPGA, from which, the most robust is “CF replacement”. When the

SEM controller operates in CF replacement mode, it replaces corrupted CFs with golden

CF copies stored in an external radiation-hardened memory. Therefore, the latency of re-

covering MBUs with the SEM controller operating in CF replacement mode is lower than

the built-in SECDED/CRC readback scrubbing mechanism of the FPGA, which always

resorts to a device reconfiguration when MBUs are detected [142,145].

Although, it is easy to incorporate CM scrubbing in an FPGA circuit (e.g., using the SEM

controller), the error detection latency of such a solution can be prohibitive for demanding

real-time applications, e.g., an automatic landing system [61]. Furthermore, continuously

using a controller to read or write the CFs of the FPGA in order to implement periodic

CM scrubbing increases the energy consumption in the system. Unfortunately, power

availability is limited in many space applications, especially those implemented within

nano- or micro-satellites, and therefore periodic scrubbing may not be possible.

Demand for faster and more energy-efficient CM error recovery mechanisms has motivated

many researchers and practitioners to utilise FDIR in TMR FPGA circuits, which as we

discuss in the following are more responsive to CM upsets and consume less energy than

periodic scrubbing. In contrast to periodic CM scrubbing, FDIR operates on both the

application and the configuration layers of the FPGA in order to detect and correct CM

errors [114]. In more detail, FDIR mechanisms speculate that CM or UM upsets may

have occurred in the device when the user circuit experiences ongoing functional errors.

Fault detection with FDIR is typically implemented by executing lock-step comparison

between the result of redundant modules or in other words with Concurrent Error De-

tection (CED) mechanisms [76]. Therefore, faults are detected at circuit speed, which

considerably reduces the MTTD in the system. In fact, the average time to detect failures

with FDIR is commonly much lower than periodic CM scrubbing, since radiation-induced

faults within a module require typically only a few hundred clock cycles to propagate to its

outputs [31]. This can be beneficial in TMR-based FPGA systems, since their reliability

and availability depend on the time a faulty module remains unrepaired. Furthermore,
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the controller for FDIR does not spend energy searching for CM upsets as the controller

for periodic scrubbing does.

Only when an ongoing failure is detected in the application layer, a device- or module-level

reconfiguration [17, 18, 31, 53, 86, 115] is performed to correct any CM upsets. CM error

recovery occurring at device-level is referred to as device FDIR, while CM error recovery

occurring at the circuit module-level is referred to as MER. MER can be advantageous

over periodic scrubbing or device FDIR for the following reasons:

• The time and energy expended to detect CM upsets is less than for periodic scrubbing

[18];

• CM upsets require less time and energy to recover than device FDIR, since only the

CFs of faulty modules are reconfigured rather than all CFs of the FPGA; and

• The required energy and time to correct CM upsets with MER can be further reduced

by making modules in TMR circuits smaller through design partitioning.

However, FPGA circuits with device FDIR or MER that do not incorporate UM error re-

covery mechanisms can become troublesome. Unrecovered UM errors will cause permanent

circuit failures, which in turn will initiate a sequence of repeated false CM reconfigura-

tions. Commonly, TMR FPGA circuits implement mechanisms in the application layer to

detect and correct UM errors, e.g., utilise mechanisms that synchronise the state between

TMR domains [54] or repair upsets in BRAMs [26, 75, 101]. In such systems, UM errors

typically have a transient effect on the circuit, since these errors are promptly repaired

through UM error recovery mechanisms, while errors due to CM upsets become permanent

until reconfiguration is performed [31].

Normally, the implementation of a TMR system with MER follows a DPR design method-

ology [51, 147]. Fig. 2.7 depicts a typical model of a TMR FPGA system with MER,

whereby the three TMR domains are implemented as dynamically reconfigurable modules

(see grey coloured boxes) [17, 31, 115] or Pblocks in Xilinx terminology [147]. The inter-

connection nets between the Pblocks and other component in a system with MER are

hosted in the static area of the FPGA circuit.

In contrast to the voters depicted in Fig. 2.3, the voters in a TMR FPGA circuit with MER

are enhanced with additional logic, e.g., comparators, that identify which module in the

minority is experiencing ongoing errors [34]. Such a voter is depicted in Fig. 2.8, whereby

a 1-bit output provides the majority voting result (V ) and a 2-bit output provides the
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Figure 2.7: Conceptual model of a TMR-based FPGA system with MER.

minority report (E ), i.e., which module, if any, is experiencing a failure. Table 2.1 shows

the truth table of the voter.

TMR domain A

TMR domain B
V

Minority 

result (E)

Minority 

result (E)

Majority 

result (V)

Majority 

result (V)

2TMR domain C

Figure 2.8: Voter with both fault masking and fault localisation capabilities.

The three input binary variables of the voter are denoted with A, B and C in the first

three columns of the table, while the logic functions of V and E are shown in the fourth

through sixth columns of the table, respectively. Note that the cases where A, B or C are

in the minority are encoded using E=“01”, E=“10” and E=“11”, respectively, while the

case where all inputs agree is encoded using E=“00”.
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Table 2.1: Truth table of the voter shown in Fig. 2.8.

A B C V E

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 1 1 1
1 0 0 0 1 1
1 0 1 1 1 0
1 1 0 1 0 1
1 1 1 1 0 0

Finally, as shown in Fig. 2.7 the minority result of the three voters is transmitted to a

reconfiguration controller (RC) via a reconfiguration control network (RCN) that com-

monly follows a star network topology [15, 120], although more sophisticated topologies,

such as a token-ring network, have been suggested [29]. As might be expected, the duty of

the RC is to fetch from a reliable external memory the partial bitstream of any corrupted

module (i.e., Pblock) and to write it to the device [42]. It is very important that both the

RCN and the RC are reliable. A faulty module may never be repaired if either the RCN

or the RC becomes corrupted. Even worse, a failure of the RC can completely jeopardise

the configuration of the device. Accelerating radiation tests have shown that the more

the CM becomes corrupted, the more current is drawn from the internal supply voltage

(i.e., VCCint) of the FPGA, which may damage the device [28]. In order to reduce the

probability of such a failure, the RC itself is commonly triplicated and combined with self-

recovery mechanisms [8,41,48]. Alternatively, the RC can be implemented on an external

radiation-tolerant device for higher reliability [8, 48].

2.3.3 User memory error recovery

As mentioned earlier, in addition to CM error recovery, mechanisms are also implemented

in the application layer to repair upsets in the UM of the FPGA, or in other words, upsets

in flip-flops, BRAMs, and distributed RAMs. Although, flip-flops occupy the smallest

portion of the total SRAM cells in the UM (see Table 1.1), soft errors occurring in these

memory elements almost always result in failures since they hold important information

of a circuit, such as the state of a finite-state machine (FSM) or the data of a register

file. An upset within the flip-flops of an FSM, for instance, may send the FSM to a state

from which it cannot return, in other words, the FSM may enter a deadlock state. Upsets

in flip-flops either cause transient failures, which naturally flush-out of the circuit after
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some clock cycles of circuit operation or cause permanent failures when they get trapped,

as mentioned, in registered feedback path loops or in short registered loops [26, 54, 90, 91].

Registered loops are formed when the outputs of registers are fedback to logic instantiated

prior to these registers. Such logic structures are common in sequential circuits, whose

transition to a new state partly depends on their current state (e.g., in FSMs).
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Figure 2.9: Simplex circuit with a registered loop.

To better understand how upsets within components of registered loops cause permanent

failures in an FPGA circuit and how these can be recovered, it is worth looking closer at

the design example of Fig. 2.9. In this design, an FSM has been formed by interconnecting

three components, namely the Next-state combinational Logic (NL), the State Register

(SR) and the Output combinational Logic (OL). The FSM receives a set of inputs W and

produces a set of outputs Z. The current state Q of the FSM is held in the SR, which on

every clock cycle is updated with the output value of the NL. The NL determines which

will be the next state of the FSM according to the current state Q and the inputs W of the

FSM. Finally, the OL sets the FSM’s outputs Z according to the current state Q. When CM

upsets corrupt the functionality of the OL, erroneous results will start propagating from

this component to the outputs R of the FPGA circuit. If the FPGA circuit incorporates

CM error recovery (e.g., scrubbing), the OL component will be repaired and the FSM

circuit will become functional again when the Output Register (OR) instantiated just

after the OL gets updated with new healthy values. Similarly, the FPGA circuit will

experience a failure when upsets directly corrupt the state of the OR, and will naturally

recover when the state of the OR gets updated with new values.

Reasoning in a similar way, let us evaluate how the FPGA circuit behaves under radiation-

induced failures in the NL or the SR components within the registered loop of the FSM.

Assume that the FSM circuit transitions in a cyclic way between states A, B, C and D,

and that the FSM is currently in state Q = A. If upsets directly corrupt the state of
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the SR, say change Q from state A to state C, then on the next clock cycle the NL will

send the FSM to state D rather than to the expected state B. From the time the FSM

enters state B onwards, the FSM will enter states A, B, C and D at a different time than

specified, namely, one clock cycle earlier. This will cause the outputs R of the circuit to be

permanently erroneous. Similarly, CM upsets in the NL of the FSM may send the FSM to

an unexpected state which may cause similar permanent failures in the circuit. In simplex

circuits, trapped errors in registered loops can be cleared by simply resetting all registers

(e.g., flip-flops) in the circuit.
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Figure 2.10: TMR circuit without synchronisation voters.

Suppose that a TMR version of the simplex design depicted in Fig. 2.9 is implemented

as shown in Fig. 2.10. In this TMR design, a reset to all registers of the circuit can

be applied only when the TMR scheme fails and all three modules (i.e., TMR domains)

need to recover and start operation in a synchronous state. In cases where an error gets

trapped in the registered loop of only one module, the module’s state will be permanently

desynchronised with the remaining two healthy modules of the TMR scheme. Resetting

the registers of all modules will synchronise their state but will also disturb the operation

of the circuit. Remember that if one of the three modules of a TMR circuit fails, the

output of the circuit will be provided by the remaining two healthy modules. Therefore,

the UM or CM error recovery mechanisms should correct the one faulty module without

affecting the operation of the remaining two healthy modules of the component. In order

to avoid such problems and allow self-synchronisation between TMR domains, voters are

typically inserted within all registered loops of the circuit – commonly after flip-flops with

the highest fan-in or fun-out [54].

For example, the TMR circuit of Fig. 2.11 supports state self-synchronisation since voters
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have been inserted after the SRs of all modules. These so-called synchronisation voters up-

date the state of desynchronised registered loops in a corrupted module with the majority

voting result from the remaining two healthy modules of the TMR scheme.
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Figure 2.11: TMR circuit with synchronisation voters.

Although flip-flops are useful for storing small amounts of data in sequential circuits, such

as in small buffers, synchronisers and delay lines – BRAMs and distributed RAMs are more

commonly used for storing larger amounts of data, such as in FIFOs and shift-registers.

Like for CM upsets, upsets in BRAMs and distributed RAMs do not always result in

errors. For example, upsets occurring in unused address spaces of BRAMs will not affect

the functionality of the circuit. Various mechanisms have been proposed for recovering

SEUs in BRAM and distributed RAM components [66,101] However, in TMR circuits the

most effective solution, in terms of reliability, can be achieved by periodically scrubbing

the BRAMs and distributed RAMs used by the circuit.

Fig. 2.12 illustrates how BRAM scrubbing is realised within an TMR FPGA circuit im-

plemented on a Xilinx 7-series FPGA. Note that the same scrubbing technique can be

applied for distributed RAM. Xilinx 7-series devices embed true dual port BRAMs, from

which, the first port is devoted to storing data for the application, while the second port

is preserved for periodically scrubbing this data. In more detail, a voter is inserted af-

ter the second read port of each BRAM and the majority result of the TMR scheme is

fedback into their second write ports as shown in Fig. 2.12. A scrubbing mechanism is

thereafter implemented to periodically cycle through all memory addresses and repair any

accumulated SEUs [26, 101], i.e., by reading data from each BRAM address and writing

back the majority result from the TMR scheme. In the circuit of Fig. 2.12, scrubbing

is implemented with the TMR counter and the three FSMs. More details for UM error

recovery techniques can be found in Reference [101].
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Figure 2.12: Scrubbing BRAMs in a TMR circuit [101].

2.3.4 Mitigating common mode errors in routing resources

Modern FPGA architectures have a very dense and complex GRM. In many cases, a

single CM upset can enable or disable multiple PIPs in the GRM, which in turn may

short or disconnect nets belonging to multiple TMR domains and compromise the TMR

scheme. Although, such Common Mode Failures (CMFs) occur very rarely, their impact

on the reliability of the TMR FPGA circuit is immense [25]. Sterpone et al [118] studied

the effects of CMFs in the GRM and identified three possibilities: Given two pairs of

connections, (A1, A2) and (B1, B2), as shown in Fig. 2.13 (a), a single CM upset can

create a short between the two pairs of connections (b), an open (disconnect) in both

pairs of connections (c), or a short and an open between the pairs (d) [115, 118]. As

a result, domain crossing errors (DCEs) can occur in the TMR circuit if this pair of

connections belongs to two different TMR domains of the same TMR component. In a

more recent work [25], Cannon et al. observed through fault-injection experiments that in

Xilinx 7-series FPGA only CMFs in the routing muxes of CLB connection blocks can cause

DCEs in TMR circuits when clock nets belonging to two TMR domains are corrupted. In

other words, DCEs occur only due to CMFs in routing resources connecting clock nets to

the slices of CLBs.

Fortunately, one or more of the following techniques can be applied during the development

phase of the design in order to mitigate DCEs caused by CMFs in the routing resources

of the FPGA circuit:

• By placing and routing the design in a way that avoids the use of those PIPs that
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Figure 2.13: Possible CMFs caused by a single bit upset [118].

when corrupted will bridge or disconnect wire segments from multiple TMR domains

[25,118];

• By reducing as much as possible the interconnections – and therefore the utilised

routing resources – between the modules [7]; and

• By physically separating the TMR domains into non-overlapping areas of the device,

for example, by floorplanning the circuit, so that less programmable resources are

shared between the modules [16,45,126]. Floorplanning also mitigates DCEs due to

MBUs in the circuit, since MBUs normally affect programmable resources that are

close in proximity [126].

2.3.5 Computer-aided automation for fault-tolerance

Implementing a TMR circuit on an SRAM FPGA is a difficult task, and this is further

exacerbated when the application is relatively complex. Engineers may require numerous

design revisions in order to properly triplicate the circuit, lengthy soft-error vulnerability

analysis procedures [5,107,117], fault-injection campaigns [4,12,56,82,108] as well as radi-

ation experiments [2, 22, 58] to prove that triplication has been correctly performed. Any

designer trying to manually triplicate an SRAM FPGA circuit will potentially confront

one or more of the following issues:

• Complex circuits, especially those that are control-oriented, contain hundreds of

registered loops. Manually determining where to insert the minimum number of

synchronisation voters within a design in order to cut all feedback paths is a de-

manding and error prone (NP-hard) task [54].

• During the synthesis and implementation phase of a design, CAD tools fight against

you by removing necessary redundant logic of the TMR circuit in order to optimise
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for area and speed. A designer needs to insert constraints, such as the Xilinx-specific

don’t touch constraints, into the design’s HDL in order to prohibit CAD tools from

optimising redundant logic. However, manually inserting such constraints into HDL

can become troublesome. Some redundant parts of the design (e.g., signals, logic)

may be missed, while other parts of the design may be over-constrained, thereby

preventing CAD tools from removing any unnecessary logic;

• CAD tools tend to place and route logic from different TMR domains into nearby

programmable resources in order to reduce the critical path of the circuit. This

increases resource sharing between TMR domains, which, as earlier discussed, makes

the circuit more vulnerable to MBUs and to CMFs in routing resources [96,126];

• MER can be incorporated only within floorplanned TMR circuits. Floorplanning a

TMR design with three modules is normally a simple task. However, floorplanning

a circuit with several TMR components (i.e., partitions) requires considerably more

effort and time to be done properly – especially when floorplanning needs to comply

with design rule checkings for a DPR flow [100];

• Meeting mission requirements, such as reliability, recovery time, area, power and

performance, in a TMR FPGA circuit can be time consuming. Various versions of

the TMR circuit may have to be designed, implemented and verified, from which

the most optimal will be chosen to satisfy these requirements [16].

It quickly becomes clear that some form of automation is needed to simplify the process of

triplicating an FPGA design. Fortunately, several CAD tools that automatically synthesise

a TMR version of a simplex design have been developed, both by academia and industry.

Examples are the commercial Synopsis Simplify Premier [121], Mentor Graphics Precision

Hi-Rel [74] and Xilinx TMRtool [141] products, and the academic BL-TMR [20, 91] and

Reconfiguration for Reliability (R4R) [16] tools. Most of these tools analyse, modify and

apply triplication of a design during the synthesis or post-synthesis phase of the CAD

flow.

TMRtool, or in short, XTMR, is the most popular among the aforementioned commercial

tools and has sparked the interest of many academics and practitioners. XTMR reads a

post-synthesised netlist of a simplex design and generates a post-synthesised TMR netlist

for the design. XTMR provides many helpful features, such as half-latches removal from

Virtex and Virtex-II FPGA circuits and synchronisation voter insertion. However, it does

not support the Spartan, Virtex-6 or 7-series Xilinx FPGA families.
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On the other hand, BL-TMR supports Xilinx’s latest devices and is open-source [19].

BL-TMR provides interesting features, such as design partitioning and sophisticated al-

gorithms that cut all feedback edges in the design by inserting less synchronisation voters

than XTMR [54]. In fact, XTMR inserts a synchronisation voter after the output of ev-

ery utilised flip-flop in the design in order to intersect all registered loops. However, this

considerably increases the area overhead of TMR [54,141].

XTMR and BL-TMR tools are useful for generating post-synthesised TMR designs, but

the designer may need to experiment with several alternative circuit implementations in

order to meet mission requirements. This motivated the development of the design space

exploration tool R4R [13,16]. R4R explores various TMR or Double Modular Redundant

(DMR) schemes which: 1) have been replicated at different levels of granularity; 2) have

been partitioned into a different number of TMR components (see Fig. 2.4); and 3) have

been floorplanned in various ways.

Nevertheless, once a TMR design is synthesised, it needs to be mapped, placed and routed

into the FPGA fabric, and in many cases, it needs to be floorplanned before placement

and routing take place. It is during this phase of the CAD flow, where DCEs due to

MBUs or CMFs in routing resources of the TMR design can be mitigated. For example,

the authors in [16] triplicate and floorplan RTL designs with the R4R tool, localise CMFs

with STAR, and guide V-Place and RoRa [116] to place and route the design in a way that

allows each TMR domain to use only a set of wire segments that do not cause DCEs when

corrupted. Similarly, Cannon et. al. places and routes Xilinx 7-series FPGA designs with

the Vivado design suite and then go through several incremental placement modifications

in a way that forces clock nets connecting the TMR domains to be routed through paths

that do not cause DCEs when corrupted [25].

2.4 Summary

This chapter presented the main sources of radiation in space and explained how radiation

affects electronic devices, particularly SRAM FPGAs. It then provided details about

the most common fault-tolerant design techniques used for implementing high-reliability

FPGA circuits as well as about various CAD tools that automate the application of these

techniques.

Specifically, the reader will be able to answer the following questions after reading this

chapter:
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• What are the main sources of space radiation and what problems does radiation

cause in SRAM FPGA circuits;

• How is TMR implemented and how it improves the reliability of the circuit;

• What is design partitioning and why it is beneficial to partition a TMR circuit into

a logical series network of smaller TMR components;

• What are the most common user and configuration memory error recovery mecha-

nisms in TMR FPGA circuits and what are their operating principles;

• What are the benefits of using MER in an TMR FPGA circuit and what is the

overall architecture of such a system;

• What causes common mode errors in TMR circuits and how does floorplanning

mitigate such errors;

• What are the most popular CAD tools for implementing robust TMR FPGA circuit

implementations and what are their benefits and limitations.
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Chapter 3

Fast and Energy Efficient

Configuration Memory Recovery

3.1 Introduction

This chapter presents FMER (Frame- and Module-based configuration memory Error

Recovery), a combination of selective periodic CM scrubbing and MER that achieves

the fault-coverage of the traditional device-periodic CM scrubbing alone, but with lower

error recovery latency and energy consumption. To demonstrate the efficacy of FMER,

we derive and compare the reliability, availability and energy consumption of partitioned

TMR circuits that incorporate either FMER, MER, device-periodic CM scrubbing and

no recovery at all. We provide both analytical and experimental results that show the

benefits of recovering CM upsets in TMR circuits with FMER.

More importantly, the derived dependability1 and energy consumption models are helpful

for quantifying the benefits of the fault-tolerant techniques presented in Chapter 2 as

well as to evaluate the performance of the proposed RCN in Chapter 4. For example,

in Chapter 2 we stated that MER consumes less energy than periodic CM scrubbing to

recover CM upsets in an TMR circuit, but in this chapter, we quantify the energy savings

of MER. In more detail, we explore various architectural parameters of the design, such as

the number of partitions, its failure and recovery rate, and the type of CM error recovery

mechanism used, so that the trade-off between these parameters can be studied. The

1We use the term dependability to describe both the reliability and the availability of
an FPGA circuit.
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results of this chapter show that partitioning an TMR circuit into several smaller TMR

components improves system dependability and also reduces the energy consumption when

FMER or MER is used. These results motivated as to develop the TLegUp CAD tool in

Chapter 5 in order to automate the procedure of implementing partitioned TMR circuits

that utilize MER or FMER when recovering from CM upsets.

This chapter is organised as follows. Section 3.2 lists several limitations of recovering CM

upsets in FPGA-based TMR systems with periodic CM scrubbing or MER and explains

how FMER addresses these limitations. Section 3.3 derives dependability and energy con-

sumption models for the aforementioned systems. It also presents the CM architecture of

Xilinx 7-series FPGAs. Additionally, Section 3.3 estimates the expected CM upset rate of

Xilinx 7-series FPGAs in several orbits, including Low Earth Orbit (LEO) and Geosyn-

chronous Earth Orbit (GEO). In Section 3.4 we explore our models under various design

parameters and provide analytical results. Section 3.5 provides the implementation details

of FMER, while Section 3.6 compares the dependability and energy consumption of eleven

triplicated HLS CHStone benchmarks that are implemented on an Artix-7 200T FPGA

and incorporate either FMER, MER or periodic CM scrubbing. Section 3.7 provides

related work while the summary of the chapter is given in the final section.

3.2 Problem Statement

Mainstream SRAM FPGAs are perfect candidate ICs for implementing System on Chip

(SoC) space applications, not least because of their role in reducing the overall system

mass, weight and power consumption. FPGA-based SoC applications are typically imple-

mented by integrating several independently developed sub-systems, of which, depending

upon the dependability requirements of the mission, some sub-systems are triplicated to

enhance their reliability. The following paragraphs present such SoCs in more detail and

point out the advantages and disadvantages of using either periodic CM scrubbing or MER

for repairing CM upsets in them. Finally, the benefits of combining these two methods,

as investigated in FMER, are outlined.

Note that we assume that the SoCs presented in this chapter utilise the same UM ER mech-

anisms as described in Subsection 2.3.3. Specifically, we assume that the TMR components

of the SoCs incorporate: 1) TMR BRAMs and TMR distributed RAMs, which are com-

bined with periodic UM scrubbing, and 2) synchronisation voters throughout all feedback

paths of the triplicated components. We also assume that the simplex (non-triplicated)

components of the SoCs initialise their BRAMs, distributed RAMs and flip-flops whenever
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Figure 3.1: (a) Possible sub-systems in an FPGA-based SoC, (b) FPGA-based SoC design
formulation.

these components recover from radiation-induced failures.

Consider an FPGA-based SoC design that is composed of a combination of some or all

of the a1, a2, a3 and a4 sub-systems depicted in Fig. 3.1(a), where each sub-system is

composed of some different number of K TMR components or L simplex components. Of

the sub-systems depicted in Fig. 3.1(a) the most reliable structure is that of sub-system

a1, whose logic is completely triplicated including the voters V and the IO pins P [26].

Although fully triplicated schemes provide better reliability than those with simplex (non-

triplicated) IO pins and voters, there are situations in which this triplication is not possible,

such as when the number of available pins in the device do not suffice [102]. Such a case

is represented by sub-system a2, in which all the logic of the sub-system is triplicated

except for the input pins, and the output pins with their associated voters and their

interconnections. Moreover, as illustrated in sub-system a3, there are situations in which

even the intermediate voters of a sub-system’s components are not triplicated in order to

decrease the cost of the fully triplicated scheme. Even worse from a reliability perspective,

the SoC may include sub-systems, shown as a4, that are not triplicated at all, due to
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performance issues, resource unavailability and inflexibility. An example of an a4 sub-

system is a hardwired high-speed transceiver, found on modern SRAM FPGAs, that is

difficult to triplicate [22].

When periodic CM scrubbing, say blind scrubbing, is incorporated in the SoC model of

Fig. 3.1(a), any logic of the circuit affected by CM upsets will recover after a scrub cycle.

On the other hand, if MER is utilised in the SoC, any permanent functional error caused

by CM upsets in any single TMR domain will be detected by its voters/comparators (see

Fig. 2.8 in Sec. 2.3.2), and corrected by the RC of the SoC. However, functional errors

in the following resources of the SoC will not be detected or corrected with MER: 1) the

triplicated output pins, 2) the non-triplicated voters, 3) the non-triplicated IO pins, 4) the

simplex components of a4 sub-systems, and 5) all interconnections not contained inside

the Pblocks, i.e., interconnections that extend into and pass through the non-shaded area

of Fig. 3.1(a). We refer to those resources that are not included in the Pblocks, but that

are present in the static area of the design, that is, in the non-shaded area of Fig. 3.1(a),

as Support Resources (SRs).

It is evident that periodic CM scrubbing has higher CM fault-coverage than MER since

CM upsets in both the modules of the TMR components and their SRs are corrected by

periodically reconfiguring the CM of the device. However, as discussed in Chapter 2 peri-

odic scrubbing has considerably higher CM error detection latency than MER. Moreover,

periodic scrubbing wastes energy scanning for CM upsets in TMR circuits, although this

information can be inferred by exploiting Concurrent Error Detection (CED) mechanisms

with the replicated modules of the TMR scheme.

Our contribution is a hybrid CM ER mechanism, namely FMER, that combines the ad-

vantages of both scrubbing and MER; FMER periodically scrubs the SRs of the SoC until

it is interrupted by a reconfiguration request from a faulty module, whereupon it recov-

ers the module by MER before resuming its periodic scrubbing of the SRs. Therefore,

FMER achieves the CM fault-coverage of scrubbing, but provides lower Mean Time To

Recover (MTTR) in the SoC since errors within modules (i.e., Pblocks) are recovered

immediately after they are detected. Moreover, the energy expended recovering the SRs

via scrubbing is less than that used were the entire device scrubbed. We model and com-

pare the dependability and energy consumption of four identical SoCs that are composed

of the sub-systems depicted in Fig. 3.1(a), but incorporate either (a) FMER, (b) blind

scrubbing, (c) MER or (d) NR (no error recovery). Firstly, this requires the derivation

of the reliability and availability functions for the components of the a1, a2, a3 and a4

sub-systems when each component is repaired either with blind scrubbing or MER, or is
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left unrecovered depending on the adopted ER mechanism in the SoC.

We explore the proposed SoC models at various radiation levels and design parameters

and show that FMER affords higher reliability and availability to SoCs with lower energy

consumption than obtained with classic CM scrubbing or MER.

3.3 Dependability – Energy Consumption Models

This section provides background on the CM architecture of Xilinx FPGAs and their soft-

error vulnerabilities in various operating orbits. It then provides models for the MTTR of

CM blind scrubbing and MER, while it formulates the reliability, availability and power

consumption models of the SoC when it incorporates either blind scrubbing, MER, FMER

or no recovery (NR) at all. Last, the assumptions made in the derivation of the depend-

ability models are provided. Note that this work presents a new CM ER technique and

compares the dependability of four equivalent SoCs that utilise the same user memory ER

mechanisms. Therefore, our dependability analysis does not account for soft-errors in the

user memory of the designs as their effect on the dependability of each SoC is the same.

3.3.1 Configuration memory architecture

This subsection introduces the CM architecture of Xilinx FPGAs [142], but similar prop-

erties and models also apply to Intel SRAM-based FPGAs. As illustrated in Fig. 3.2, the

programmable logic of Xilinx FPGAs are organised in a grid of columns, with each col-

umn containing fixed numbers of specific types of resources, such as CLBs, BRAMs, DSPs,

IOBs, clock management tiles (CMTs) and configuration tiles (CFGs) like the ICAP. Ver-

tical clock routing resources (GCLKs) in the middle of the device split the FPGA resource

columns into two halves, while each half is further sub-divided by equally distributed

horizontal clock routing resources (HCLKs). This clock tree, consisting of GCLKs and

HCLKs, divides the programmable resources of the FPGA into several rows with HCLK

tiles passing through the middle of the rows, while the GCLK tiles of the FPGA divide

the rows into clock regions.

The CM of the FPGA is accessed by reading or writing one or more CFs into the FPGA,

with each CF spanning the height of a row. A CF consists of a unique frame address

(FAD) that specifies the FPGA resources it configures, as well as the configuration data
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Figure 3.2: Simplified layout of a Xilinx FPGA.

(CFDATA) for these resources. The FAD in Xilinx 7-series FPGAs is 32-bits wide and it

consists of 5 segments:

• [25:23] bits determine the block type of the CF, e.g., CLB, CLK or BRAM content;

• [22] bit selects the top or bottom rows of the device;

• [21:17] bits select the index of the top or the bottom rows of the device;

• [16:7] bits select the column of the row; and

• [6:0] bits select the CF within a column, which is referred to as its minor address

[142]. The minor CFs configure the interconnection resources adjacent to the column,

e.g., the General Routing Matrix (GRM) as well as the functionality of the column

resources, e.g., the LUT contents of an CLB column. In addition, the number of CFs

for each column depends on the column type. For example, CLB and DSP columns

are configured with 36 and 28 CFs, respectively.
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In a nutshell, the reconfiguration of a CF occurs by initialising the configuration process

(i.e., by writing a sequence of commands to specific configuration registers of the device),

setting the Frame Address Register (FAR) with the FAD, and writing the CFDATA to the

frame data input register. In order to speed-up the configuration of a contiguous sequence

of CFs, only the first FAD of the CF sequence is written to the FAR, as the FAR can be

configured to auto-increment whenever the CFDATA of a CF is written (or read) to the

frame data input register [119,142].

The number of CFs, FD, in an FPGA (from the same family) depends on the amount of

programmable logic integrated into the device. The more programmable logic the FPGA

embeds, the more CFs are used for storing their configuration, and the more time it takes

to completely reconfigure the device. Each of the FD CFs of the FPGA can be accessed

via an IB (32-, 16- or 8-bit) wide Internal Configuration Access Port (ICAP) bus when an

internal RC is implemented in the FPGA SoC. Other types of configuration access ports,

such as the SelectMap, are commonly used when accessing the CM of the device via an

external RC. A CF is composed of BF bits and the ideal time, tF , needed to read or write

a CF into the device depends upon the operating frequency, fICAP, of the ICAP primitive,

the IB bus width of the ICAP, and the number of bits a CF embeds:

tF =
1

fICAP
× BF
IB

(3.1)

3.3.2 Error susceptibility of modern FPGAs

The upset rate of a CM bit, λb, in Xilinx 7-series, specifically the Kintex-7 family, is

given in Table 3.1. The results were calculated using SPENVIS [1] for Geosynchronous

Equatorial Orbit (GEO), Global Positioning System (GPS) orbit and Low Earth Orbit

(LEO) in order to be used as CM upset rate references in this thesis.

Table 3.1: Upset rate per configuration bit per second

Orbit
Alt./Incl.

Worst
Week

Worst
Day

Peak
5-Min.

GEO
35,768 km / 0◦

2.16E-11 7.34E-11 2.66E-10

GPS
20,200 km / 0◦

1.43E-11 4,84E-11 1.75E-10

LEO (ISS)
400 km 51.60◦

3.76E-14 1.10E-13 3.86E-13
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In deriving the figures of Table 3.1, we used the Worst Week, Worst Day and Peak 5-

minute CREME96 models [125] and assumed a typical presence of 2.54 millimetres (0.1

inches) of aluminium shielding, while the cross section of the device was obtained from [65].

We used the cross section of a Kintex-7 FPGA to find the CM upset rates in Table 3.1

because we did not have the cross section of the Artix-7 FPGA, which is used in this

thesis. However, we believe that both FPGAs (i.e., the Kintex-7 and the Artix-7) have a

similar cross section since both share a unified architecture and are manufactured using

the TSMC’s 28 nm High-K Metal Gate (HKMG) process [92].

To put our discussion into context and get a feeling for the expected failure rate of a

simplex FPGA circuit deployed in a relatively high radiation environment, we provide the

following scenario. Assume, that a simplex circuit deployed in GEO is implemented on an

Artix-7 200T FPGA. According to the worst week GEO model of Table 3.1, the expected

CM upset rate of the Artix-7 FPGA is:

λdevice = λb × FD ×BF
= 2.16E-11× 18,300× 3,232

≈ 0.0013 SEUs/Device/second,

(3.2)

i.e., one CM upset per 13 minutes. Although the estimated CM upset rate of the FPGA

device may look relatively high, the failure rate of the circuit is much lower since as

mentioned in Sec. 2.3.2, only a portion of the device’s CM cells lead to circuit failures

when corrupted. For example, assuming that the circuit utilises U = 80% of the device’s

programmable resources, and that it has an Architectural Vulnerability Factor (AVF ) =

15% [36,79], then the expected failure rate, λcircuit, of the circuit is the following:

λcircuit = λdevice ×U ×AVF

= 0.0013× 0.8× 0.15

≈ 0.00015 failures per second,

(3.3)

or otherwise one failure per 1.8 hours. Note that the AVF of the FPGA circuit denotes

the portion of UM and CM cells in the device that lead to errors when corrupted. As

already mentioned in Sec. 2.3.2, Xilinx claims that AVF is approximately 15% for an

average circuit [36], i.e., results averaged from a number of circuits that utilise more

than 70% of the FPGA’s available programmable resources. However, accurate AVF

estimations for an FPGA circuit can only be acquired through fault-injection testing and

radiation experiments. The AVF of an FPGA circuit depends on many factors, such as

the architecture of the circuit, how the circuit is placed and routed onto the FPGA, as

well as the architecture of the FPGA itself.
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3.3.3 Mean-time-to-recover models

This subsection provides the MTTR models of blind scrubbing and MER that are then

used to derive our proposed hybrid ER technique.

Blind scrubbing

The simplest way to recover CM upsets in an SRAM FPGA circuit is to periodically

reconfigure the CFs of the FPGA device with golden CF data, which are typically stored

externally in a radiation-tolerant memory, e.g., in a radiation-hardened flash or an SRAM

when high memory throughput is required [93]. The maximum time to repair a CM upset

with blind scrubbing occurs when the nth CF of the FPGA gets corrupted and the scrubber

has just started to reconfigure the nth + 1 CF of the device. Thus, the CM upset will not

be corrected until after a whole scrub cycle. Hence, on average the FPGA requires half

a scrub cycle to recover from an CM upset, in addition to any waiting time w that is

inserted between the scrub cycles to adjust the scrubbing period:

MTTR =

(
FD
2
tF

)
+ w (3.4)

Note that the reciprocal of Eq. (3.4) gives the rate, µs, at which CM upsets recover with

periodic CM scrubbing.

MER

TMR FPGA SoCs inherently incorporate redundant logic into the circuit and therefore

can steadily implement CED mechanisms to benefit from their low error detection latency.

The time it takes to recover a faulty module in a TMR component with MER depends

on the error manifestation delay, tP , to the SoC’s RC [31], and on the time required to

reconfigure the FM CFs of the Pblock hosting the faulty module. However, tP is neglected

from the calculation since typically (tP � FM tF ):

MTTR = tP + FM tF ≈ FM tF (3.5)

Similarly, the reciprocal of Eq. (3.5) gives the rate, µm, at which the CM of replicated

modules recover when MER is incorporated in the FPGA.

In this chapter, we demonstrate FMER by combining blind scrubbing and MER. However,

FMER can be implemented by combining any type of CM scrubbing (e.g., SECDED

readback scrubbing) with MER. The provided dependability and energy consumption

models of FMER can support any type of CM scrubbing by simply modifying Eq. (3.4)

with the MTTR model of the scrubbing method used.
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3.3.4 Hierarchical dependability models of the SoC

By definition, the reliability function R(t) represents the probability that a system has

operated according to its specifications over the interval [0, t ], where t ∈ R ≥ 0 denotes

the mission duration. In contrast, the availability function A(t) is the probability of the

system operating correctly at time t. When the system does not incorporate any ER

mechanism, then R(t) = A(t). Additionally, the steady state availability A = limt→∞A(t)

is a useful dependability metric which estimates the probability of the system operating

in the long term.

There are many ways to model the dependability of a system. Models range from simple

combinatorial models that hold only under specific assumptions, such as when compo-

nents in the system fail and are repaired independently, to more complex models, like

Markov-chain models [104], which are able to capture these dependencies. On the other

hand, one can selectively apply Markov-chain models to those components for which the

accuracy of the dependability modelling would be negatively impacted if the failure or

repair dependencies were not modelled. This work uses simple combinatorial models to

capture the dependability of the SoC as a whole, while Markov-chain reliability and avail-

ability models are used to capture failure and repair dependencies in each sub-system’s

components.

In more detail, an SoC that is composed of a number of the a1 - a4 sub-systems depicted

in Fig. 3.1(a), in which each sub-system is composed of a different number of components

can be viewed as a series logical structure of components with the following combinatorial

system reliability and availability functions [104]:

R(t) =

K∏
i=1

Rtype
i (t)×

L∏
j=1

Rtype
j (t) (3.6)

A(t) =
K∏
i=1

Atype
i (t)×

L∏
j=1

Atype
j (t), (3.7)

where variables K and L denote the total number of components that realise the a1,2,3

(TMR-based) and a4 (simplex-based) sub-systems respectively. The sub-products of the

K and L components denote the total reliability and availability of the a1,2,3 and the

a4 sub-systems respectively. Eqs. (3.6) & (3.7) simply state that the total reliability

and availability of the SoC depends on the reliability and availability of each individual

component in the a1,2,3,4 sub-systems of the SoC.

Depending on the properties of a sub-system’s component, i.e., whether or not it is trip-
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licated and whether or not it recovers with MER or periodic CM scrubbing (when ER is

applicable in the SoC), then the reliability and availability of each type of component in

the SoC is given by one of the following type of functions:

(a) Simplex & NR: Simplex component that does not recover from CM upsets;

(b) Simplex & Scrub: Simplex component that recovers with periodic CM scrubbing;

(c) TMR & NR: TMR component that does not recover from CM upsets;

(d) TMR & Scrub: TMR component that recovers with periodic CM scrubbing; and

(e) TMR & MER: TMR component that recovers with MER.

The following subsections provide the reliability and availability functions for the above

types of components, which are derived with Markov-chain models. Moreover, Sec. 3.3.9

specifies the assumptions made for the derivation of these models and also discusses their

accuracy and flexibility.

3.3.5 Reliability and availability of SoC components

S0 S1 S22 λm3 λm

S0 S1λm

μs

S0 S1 S22 λm3 λm

μ0

μ1

S0 S1λm

R(t) = 
pSO + pS1 μ0

R(t) = 
pSO

A(t) = 
pSO + pS1

A(t) = 
pSO(a)

(c)

(b)

(d)

Figure 3.3: Markov-chain dependability models for the types of components encountered
in sub-systems a1 − a4.

In this section we use continuous-time discrete-state Markov chains to derive dependability

functions for the types of components encountered in the a1,2,3,4 sub-systems of Fig. 3.1(a).

The derived functions are thereafter substituted into Eqs. (3.6) and (3.7) to calculate the

overall reliability and availability of the SoCs, respectively.

Markov chains generate a set of differential equations that are solved in order to derive

the probability distribution of the chain’s states, where each state represents a distinct

behaviour of the modelled component. We use Mathematica [71] to apply the methodolo-

gies presented in [73], [112] and [104] in order to find the R(t) and A(t) functions for each
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type of component. We assume that all components start in state S0 (error-free state).

In other words, we assume that the initial probability distribution of the Markov chains

depicted in Fig. 3.3 is pS0 = 1 and 0 elsewhere.

(a) Simplex & NR

The reliability of a simplex (i.e., non-redundant) component that has no means of recover-

ing from errors is presented with the two states (S0: functional, S1: failed) of the Markov

chain depicted in Fig. 3.3(a), where λm represents the failure rate with which the compo-

nent (simplex module) transitions to the failed S1 state. The probability distribution of

the functional state pS0 gives the reliability function of the Simplex & NR component:

Ra(t) = pS0 = e−λmt, (3.8)

which corresponds to the well-known reliability function of a non-redundant component

[104]. The availability function of the component is also given by Eq. (3.8), i.e., Aa(t) =

Ra(t), since the component is never repaired.

(b) Simplex & Scrub

The reliability function of a simplex component that incorporates periodic CM scrubbing

is the same as for a simplex component with no recovery at all; it can therefore be modelled

with the Markov chain depicted in Fig. 3.3(a). This underscores the fact that that CM

scrubbing will simply recover the component when it fails, but will not avoid the occurrence

of a failure. The reliability of the Simplex & Scrub component is therefore:

Rb(t) = Ra(t) = e−λmt. (3.9)

On the other hand, the availability of a simplex component that is periodically scrubbed

is modelled with the Markov chain depicted in Fig. 3.3(b). This figure augments the

reliability Markov chain of the component shown in Fig. 3.3(a) with a transition from S1

to S0 with rate µs, which represents the ER rate of the component. The Simplex & Scrub

component is available when it is in state S0 and therefore the chain is solved for pS0 [112]:

Ab(t) = pS0 =
µs

λm + µs
+
λme

−t(λm+µs)

λm + µs
. (3.10)

The availability function of Eq. (3.10) is given by two terms. The first term expresses the

steady-state availability of the component, while the second term expresses the transition

to the component’s steady state as shown in Fig. 3.4.
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Second 

term

First 

term

Figure 3.4: Expressing the availability by two terms.

In this thesis, all A(t) functions are presented in the above form, i.e., a first term, that

captures the steady state expression for the component, and a second term, that captures

the transitory behaviour as it approaches steady state.

(c) TMR & NR

The reliability model of a TMR component without any form of ER is illustrated in

Fig. 3.3(c). States S0 (no faulty modules) and S1 (one faulty module) represent the

functional states of the component, while state S2 (two or more faulty modules) represents

its failed state. If the three modules of the TMR component are identical, i.e., all modules

have on average the same failure rate λm, then the chain transitions from S0 to S1 with

rate 3λm since in S0 all modules are functional. Similarly, the chain transitions from S1

to S2 with rate 2λm since in S1 one module has already failed. The reliability function

is given by summing the probability distribution of states S0 and S1, i.e., the functional

states of the TMR & NR component, which yields:

Rc(t) = pS0 + pS1 = 3e−2λmt − 2e−3λmt (3.11)

Additionally, since the component does not incorporate any recovery mechanism, then the

availability of the component is also given by Eq. (3.11), i.e., Ac(t) = Rc(t).

(d) TMR & Scrub or (e) TMR & MER

The reliability model of a TMR component that recovers from errors with periodic CM

scrubbing or with MER is given in Fig. 3.3(c). The rate at which a module fails, λm, in

both TMR & Scrub or TMR & MER components is the same, while the rate at which

a module recovers, µ0, depends on the adopted ER method. As mentioned in Sec. 3.3.3,

the average time to recover an error in a module with scrubbing, µ−1
s , is a function of
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the device’s size, given in FD CFs, and the performance of the RC, i.e., the required

time, tf , for reconfiguring a CF. Similarly, the average time to recover one module of

a TMR component with MER, µ−1
m , depends on the RC’s performance, i.e., tf , and on

the size of the Pblock hosting the module, which is given in FM CFs. For this reason,

the same reliability Markov chain can be applied to both cases by just substituting the

corresponding recovery rate for periodic CM scrubbing, µ0 = µs, or for MER, µ0 = µm,

respectively. The probability distribution of S0 and S1 (pS0 + pS1) gives the reliability of

both the TMR & Scrub and the TMR & MER components:

Rd(t) = Re(t) =
e−

1
2

(at)
(
a sinh

(
bt
2

)
+ b cosh

(
bt
2

))
b

, (3.12)

where a = 5λm + µ0 and b =
√
λ2
m + 10λmµ0 + µ2

0, while µ0 = µs in the case of periodic

CM scrubbing and µ0 = µm in the case of MER.

The availability model for a TMR component with periodic CM scrubbing is given in

Fig. 3.3(d), where µ0 = µ1 = µs since one, two or all three modules of the component

recover on average after half a scrub cycle. The probability distribution of S0 and S1 gives

the availability function of the TMR & Scrub component:

Ad(t) = pS0 + pS1 =
µs(5λm + µs)

ab

+
6λme

−bt (−2λm − µs + µse
λmt + 3λme

λmt
)

ab
,

(3.13)

where a = 2λm + µs and b = 3λm + µs.

Similarly, the availability model for a TMR component that recovers with MER is given

by the Markov chain of Fig. 3.3(d), where µ0 = µm and µ1 = µm
3 , since either one or three

modules need to be recovered when the component is in state S1 or S2, respectively. The

availability function of the TMR & MER component is:

Ae(t) = pS0 + pS1 =
µm(5λm + µm)

b

+
18λ2e−

1
6

(ct)
(
c sinh

(√
at
6

)
+
√
a cosh

(√
at
6

))
√
ab

(3.14)

where a = 9λm
2 + 60λmµm + 4µm

2 , b = 18λm
2 + 5λmµm + µm

2 and c = 15λm + 4µm.

Taking the limit of Eqs. (3.8), (3.10), (3.11), (3.13) and (3.14), as t → ∞, yields the

steady state availability of; (a) simplex & NR, (b) simplex & Scrub, (c) TMR & NR, (d)
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TMR & Scrub, and (e) TMR & MER components respectively:

Aa = lim
t→∞

Ra(t) = 0 (3.15)

Ab = lim
t→∞

Ab(t) =
µs

λm + µs
(3.16)

Ac = lim
t→∞

Rc(t) = 0 (3.17)

Ad = lim
t→∞

Ad(t) =
µs(5λm + µs)

6λm2 + 5λmµs + µs2
(3.18)

Ae = lim
t→∞

Ae(t) =
µm(5λm + µm)

18λm2 + 5λmµm + µm2
(3.19)

3.3.6 SoC design formulation

Fig. 3.1(b) models the distribution of CFs across the components of a TMR FPGA SoC

composed with the illustrated a1 – a4 sub-systems of Fig. 3.1(a). As shown at the top of

Fig. 3.1(b), the FPGA’s CFs have been divided into two subsets, FD = {F1, F2} where:

• F1 = FD − F2 CFs are devoted to mapping (implementing) the logic of the 3K

modules (shaded dashed boxes in Fig. 3.1(a)) of the K TMR components in a1 −
a3 sub-systems that can either be recovered by MER, FMER or periodic scrubbing.

• F2 = FD − F1 CFs are devoted to mapping the SRs of the SoC, that is, the CFs of

the non-shaded area in Fig. 3.1(a) that recover from CM upsets when either FMER

or periodic CM scrubbing is utilised in the SoC. Note that upsets in the F2 CFs of

the SoC do not recover with MER.

Moreover, Fig. 3.1(b) shows F2 being further subdivided into two subsets, F2 = {F3, F4}
in the middle of the figure where:

• F3 = F2 − F4 CFs are devoted to mapping the SRs for the a1,2,3 sub-systems, e.g.,

their simplex IO pins, their triplicated output pins, their simplex voters and any

interconnections associated with these resources.

• F4 = F2 − F3 CFs are devoted to mapping the logic for the simplex components in

a4 sub-systems, e.g., high-speed transceivers with their IO pins and interconnection

resources.

Last, F3 is further subdivided at the bottom of the figure into two subsets, F3 = {F5, F6}
where:
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• F5 = F3 − F6 CFs are devoted to mapping the triplicated SRs of the a1,2,3 sub-

systems, e.g., triplicated output pins and any triplicated routing resources between

the modules of the TMR components in a1,2,3 sub-systems.

• F6 = F3−F5 CFs are devoted to mapping the simplex SRs of the a1,2,3 sub-systems,

e.g., simplex IO pins, simplex voters, or simplex interconnections.

The proposed model includes three parameters, f, g, h ∈ [0, 1] in order to distinguish

between F1 and F2, F3 and F4, and F5 and F6, respectively:

FD = F1 + F2 = [f × FD] + [(1− f)× FD]

F2 = F3 + F4 = [g × (1− f)× FD] + [(1− g)× (1− f)× FD]

F3 = F5 + F6 = [h× g × (1− f)× FD] + [(1− h)× g × (1− f)× FD]

The average number of CFs of one module in a TMR component is given by:

FM =
F1

3×K
=
f × FD
3×K

, (3.20)

i.e., the modules of each TMR component in the SoC occupy F1/K CFs on average and

therefore each individual module occupies (F1/K)/3 CFs.

Additionally, it is assumed that each TMR component in the a1,2,3 sub-systems require

FSS =
F6

K
=

(1− h)× g × (1− f)× FD
K

(3.21)

CFs for the implementation of their simplex SRs, while each module in the TMR compo-

nents require

FTS =
F5

3×K
=
h× g × (1− f)× FD

3×K
(3.22)

CFs for the implementation of their triplicated SRs.

The remaining CFs of the device, i.e., the F4 CFs, implement the simplex components

of the a4 sub-systems, whereby each component with its interconnections and IO pins

occupies:

FSysSRs =
F4

L
=

(1− g)× (1− f)× FD
L

(3.23)

CFs on average.

Moreover, the total CM upset rate of the device is modelled as follows:

λD = FD ×BF × λb, (3.24)
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where as we mentioned earlier, FD denotes the total number of CFs in the FPGA device,

BF denotes the bits per CF, while λb denotes the upset rate per CM bit.

Consequently, the average failure rates of logic implemented with the FM , FSS , FTS and

FSysSRs CFs are:

λm = f×λD
3×K ×UM ×AVF, (3.25)

λSS = (1−h)×g×(1−f)×λD
K ×US ×AVF, (3.26)

λTS = h×g×(1−f)×λD
3×K ×US ×AVF, (3.27)

λSysSRs = (1−g)×(1−f)×λD
L ×UC ×AVF, (3.28)

respectively. Note that the UM and US variables denote the resource utilization of each

triplicated module and their SRs in the TMR components of the a1,2,3 sub-systems re-

spectively, while UC denotes the resource utilization in the simplex components of the a4

sub-systems.

3.3.7 Recovery technique: Impact on SoC reliability and availability

This section formulates the reliability and availability of four SoC implementations: 1)

SoC/FMER, 2) SoC/Scrub, 3) SoC/MER, and 4) SoC/NR (No Recovery), which follow

the model of Fig. 3.1(b).

1) SoC/FMER: CM upsets in the F1 CFs (modules of the TMR components) recover

with MER, while in the F2 CFs (SRs) with selective periodic scrubbing;

2) SoC/Scrub: CM upsets in both the F1 and the F2 CFs recover with device periodic

scrubbing;

3) SoC/MER: CM upsets in the F1 CFs recover with MER. CM upsets in the F2 CFs

(i.e., those CFs that are not included in Pblocks) are not recovered; and

4) SoC/NR: The SoC does not incorporate any CM ER mechanism.

The difference between the above SoC implementations is the incorporated CM ER mech-

anisms and therefore the rate at which their components recover. The average rate at

which the modules and the associated SRs fail is the same irrespective of the repair mode.

In the following paragraphs of this subsection we derive the total reliability and availability

of the SoC/FMER.
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The rate, µm, at which the average module replica recovers with MER in F1 can be found

by substituting Eq. (3.20) into the reciprocal of Eq. (3.5):

µm = (FM × tF )−1

= (
F1

3K
× tF )−1

= (
f × FD

3K
× tF )−1

(3.29)

Moreover, the rate, µs, at which the F2 CFs of the SRs recover with scrubbing can be

found by replacing FD with F2 in the reciprocal of Eq. (3.4):

µs = (
F2

2
× tF + w)−1

=

(
(1− f)× FD

2
× tF + w

)−1 (3.30)

Therefore, the reliability of the SoC follows from Eq. (3.6) and is given by the product of

two sub-products:

R(t) =
K∏
i=1

Rei (t)R
d
i (t)R

b
i (t)×

L∏
j=1

Rbj(t) (3.31)

The first sub-product of Eq. (3.31) denotes the reliability of the a1,2,3 sub-systems, while

the reliability function of each of their K components depends on their type and is given

as follows:

• The reliability function of the modules of the ith TMR component is

Rei (t)|
(3.29)⇒µm
(3.25)⇒λm since they are recovered with MER, while

• the reliability of the ith triplicated SRs associated with the ith TMR component is

given by Rdi (t)|
(3.30)⇒µs
(3.27)⇒λm since they are recovered by selective CM scrubbing,

• and that of the ith simplex SRs associated with the ith TMR component is given by

Rbi (t)|(3.26)⇒λm

The second sub-product of Eq. (3.31) denotes the reliability of the a4 sub-systems where

the reliability of its jth simplex module with its associated pins and interconnection is

Rbj(t)|(3.28)⇒λm .

Similarly, the availability of the SoC/FMER is calculated as

A(t) =

K∏
i=1

Aei (t)A
d
i (t)A

b
i(t)×

L∏
j=1

Abj(t), (3.32)
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whereby Aei (t)|
(3.29)⇒µm
(3.25)⇒λm , Adi (t)|

(3.30)⇒µs
(3.27)⇒λm and Abi(t)|

(3.30)⇒µs
(3.26)⇒λm are substituted in the first

sub-product of the equation, and Abj(t)|
(3.30)⇒µs
(3.28)⇒λm is substituted in the second sub-product

of the equation.

The reliability and availability functions of the other implementations, namely SoC/Scrub,

SoC/MER and SoC/NR are similarly derived and are summarised in Tables 3.2 and 3.3,

respectively.

Table 3.2: Reliability functions of SoC/FMER, SoC/Scrub, SoC/MER and SoC/NR.

SoC R(t)

SoC/FMER
K∏
i=1

Rei (t)|
(3.29)⇒µm
(3.25)⇒λm ×R

d
i (t)|

(3.30)⇒µs
(3.25)⇒λm ×R

b
i (t)|(3.26)⇒λm ×

L∏
j=1

Rbj(t)|(3.28)⇒λm

SoC/Scrub
K∏
i=1

Rdi (t)|
(3.30)⇒µs
(3.27)⇒λm ×R

d
i (t)|

(3.30)⇒µs
(3.27)⇒λm ×R

b
i (t)|(3.26)⇒λm ×

L∏
j=1

Rbj(t)|(3.28)⇒λm

SoC/MER
K∏
i=1

Rei (t)|
(3.29)⇒µm
(3.25)⇒λm ×R

c
i (t)|(3.27)⇒λm ×Rai (t)|(3.26)⇒λm ×

L∏
j=1

Raj (t)|(3.28)⇒λm

SoC/NR
K∏
i=1

Rci (t)|(3.25)⇒λm ×Rci (t)|(3.27)⇒λm ×Rai (t)|(3.26)⇒λm ×
L∏
j=1

Raj (t)|(3.28)⇒λm

Table 3.3: Availability functions of SoC/FMER, SoC/Scrub, SoC/MER and SoC/NR.

SoC A(t)

SoC/FMER
K∏
i=1

Aei (t)|
(3.29)⇒µm
(3.25)⇒λm ×A

d
i (t)|

(3.30)⇒µs
(3.27)⇒λm ×A

b
i(t)|

(3.30)⇒µs
(3.26)⇒λm ×

L∏
j=1

Abj(t)|
(3.30)⇒µs
(3.28)⇒λm

SoC/Scrub
K∏
i=1

Adi (t)|
(3.30)⇒µs
(3.25)⇒λm ×A

d
i (t)|

(3.30)⇒µs
(3.27)⇒λm ×A

b
i(t)|

(3.30)⇒µs
(3.26)⇒λm ×

L∏
j=1

Abj(t)|
(3.30)⇒µs
(3.28)⇒λm

SoC/MER
K∏
i=1

Aei (t)|
(3.29)⇒µm
(3.25)⇒λm ×A

c
i (t)|(3.27)⇒λm ×Aai (t)|(3.26)⇒λm ×

L∏
j=1

Aaj (t)|(3.28)⇒λm

SoC/NR
K∏
i=1

Aci (t)|(3.25)⇒λm ×Aci (t)|(3.27)⇒λm ×Aai (t)|(3.26)⇒λm ×
L∏
j=1

Aaj (t)|(3.28)⇒λm

3.3.8 Error Recovery: Impact on SoC energy consumption

This section estimates the energy consumption of each SoC implementation, depending

upon which CM ER method is used and the mission’s length (T).

56



3.3. DEPENDABILITY – ENERGY CONSUMPTION MODELS

As mentioned in Sec. 2.3.2, a CF is the atomic unit of reconfiguration in modern SRAM

FPGAs. Irrespective of which CM ER technique is used in the SoC, CM upsets always

recover by reconfiguring one or more CFs of the FPGA. One can calculate how much

energy will be consumed recovering CM upsets with periodic scrubbing, MER or FMER

during a mission when the following two parameters are known or can be estimated:

1. The required energy to write or read a CF, denoted EF .

2. The average number of CF reads and writes during the mission.

The energy consumed reading or writing a CF depends on the architecture of the RC

and on the utilised FPGA. For instance, a resource-hangry Microblaze-based RC is not as

energy efficient as a highly optimised low-resource RC [41,145]. Similarly, a Xilinx Virtex-

7 FPGA consumes more power than an Artix-7 FPGA. A methodology to estimate EF is

presented in [122].

Energy consumption of SoC/Scrub

The time it takes to reconfigure all FD CFs of SoC/Scrub is (FDtF ), where, as previously

stated, tF is the time it takes to reconfigure one CF. Therefore, the CM of the SoC with

periodic blind scrubbing will be reconfigured ( T
FDtF +w ) times during a mission of length

T . Recall that w denotes the waiting time between scrub cycles. The energy required

to reconfigure all FD CFs of the FPGA is (FDEF ). Thus, the energy consumption of

SoC/Scrub is:

EScrub =
T

FDtF + w
FDEF (3.33)

The first term, ( T
FDtF +w ), denotes the number of executed scrub cycles during the mission

and the second term, (FDEF ), denotes the energy consumption of a scrub cycle.

Energy consumption of SoC/MER

Recall that the failure rate of an average sized TMR module in SoC/MER is λm, which

is given in failures per units of time.

One can estimate how many times, on average, TMR modules will fail during a mission

by multiplying 3λm with the length T of the mission. As shown in Fig. 3.3(c), a module

is reconfigured whenever any of the three modules of the TMR component fails. For

example, when 3λm = 90 failures
month and T = 100 months, then the expected failures are

90 failures
months × 100 months = 9, 000 failures, which triggers 9,000 module reconfigurations.
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Since the average-sized TMR module is configured with FM frames, the energy consumed

by MER at the end of the mission will be:

EMER = 3λmT FMEf (3.34)

The first term, (3λmT ), represents the expected number of failures in the modules of the

TMR components during the mission, while the energy needed to recover a faulty module

is given by the second term of the equation, (FMEf ).

Energy consumption of SoC/FMER

The energy consumption of recovering CM upsets in SoC/FMER can be calculated as

follows. The RC of the SoC recovers the F1 CFs (that implement the modules of the

TMR components) with MER for:

TMER = 3λmT FM tF (3.35)

time of the mission. Thus, during the remaining time of the mission:

TScrub = T − TMER = T (1− 3λm FM tF ) (3.36)

the RC is either scrubbing the F2 CFs of the SRs or is waiting between scrub cycles. Thus,

the energy consumption of SoC/FMER for a mission time T is:

EFMER = EMER + EScrub

= (3λmT FMEF ) +

(
T (1− 3λm FM tF )

(1− f)FDtF + w
(1− f)FDEF

)
,

(3.37)

where (1−f)FD denotes the F2 portion of the device’s CFs, which is scrubbed periodically.

3.3.9 Assumptions

The reliability and availability functions in this section were derived given the following

assumptions.

Failures in the SoC follow a Poison distribution, while Eqs. (3.6) and (3.7) hold if all

K+L components fail and recover independently in the SoC. The assumption of inde-

pendent failures between the SoC’s components hold when appropriate design techniques

are followed during the implementation of the FPGA circuit. CAD tools that isolate the

modules of a TMR circuit have been proposed. These include the Xilinx Isolation Design

Flow (IDF) [44], the academic IPRDF tool that enhances the IDF so that it supports DPR
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Figure 3.5: Comparison of R(t) for t ∈ [0,3000] seconds between Eq. (3.6) and the Markov
model of [73].

FPGA circuits [89], as well as the Intel/Altera design separation flow [50]. Additionally,

the assumption of independent ER between the SoC’s components holds when the sys-

tem is completely scrubbed, since a complete reconfiguration of the FPGA is equivalent

to having a dedicated repair facility for each component in the SoC, which requires on

average t = Eq. (3.4) time to recover the component from a fault.

As mentioned earlier, our reliability analysis models use simple combinatorial functions,

i.e., Eq. (3.31), for calculating the dependability of the SoC as a whole, while the reliability

of each individual component in a1 – a4 sub-systems is calculated with the simple Markov-

chain models shown in Fig. 3.3. An alternative way to calculate the reliability of the SoCs

would have been to exclusively exploit Markov-chain models as has been done in [73]. We

checked if our assumptions hold by comparing our combinatorial reliability model (see

Eq. (3.31)) with that of the model presented in [73], which uses Markov chains exclusively.

The comparison between the two models is shown in Fig. 3.5, where we plot the reliability

of a TMR circuit with 50 partitions (K = 50) using Eq. (3.6) and the Markov model

(52 states) of [73]. We assume that each TMR module fails with rate, λm = λdevice/3K,

where λdevice = 0.1 SEU/dev/s. Moreover, the rate at which faulty modules recover with

periodic CM scrubbing is µs = 10λdevice. Fig. 3.5 shows that Eq. (3.6) yields the same

results as the Markov model given in [73] despite being considerably more straightforward

to evaluate.

In addition, when the SoC incorporates MER an independent reconfiguration process

(recovery) for every faulty module holds as long as the repair rate of the module is much
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larger than its failure rate, µm � λm, i.e., when the probability of executing a recovery

process in a faulty TMR component while another TMR component is waiting to be

repaired, is negligible [112]. In practise, this is usually the case, since the rate at which

modules fail and recover in a typical TMR-based SoC that incorporates scrubbing or MER

is on the order of hours and milliseconds or microseconds, respectively [25,31].

The energy consumption models of MER assume that the RC does not consume energy

during fault detection. This assumption holds when the RC consumes negligible energy

while waiting for a module reconfiguration request. For example, during the mission the

RC may always be in sleep mode in order to save energy and wake up only for short

time periods to reconfigure faulty modules. Additionally, the energy consumption models

for MER and FMER do not account for the energy spent to recover a TMR component

from two or more simultaneous module failures. That is to say, energy consumption is

estimated only for when transitioning from state S1 to state S0 in the Markov-chain

models of Fig. 3.3(c) and (d). This assumption holds because the probability of finding a

TMR component in state S2 is much lower that of finding it in state S1.

3.4 Analytical Results

This section explores and compares the reliability, availability and energy consumption of

the four SoC implementations presented in Sec. 3.3, namely the SoC/FMER, SoC/Scrub,

SoC/MER and SoC/NR. We recall and summarize the most relevant parameters that are

frequently used in this section:

• K ∈ N+: number of TMR components (i.e., partitions) in the a1 – a3 sub-systems

of the SoC.

• f ∈ [0, 1]: the fraction of the FPGA’s CFs devoted to the 3K modules of the TMR

components in the a1 – a3 sub-systems. All CFs are devoted to the SRs of the SoC

when f = 0, while all CFs are devoted to the 3K modules when f=1.

• h ∈ [0, 1]: the fraction of CFs devoted to the triplicated SRs of the a1 – a3 sub-

systems of the SoC. All CFs are devoted to simplex SRs of the a1 – a3 sub-systems

when h = 0.

• AVF ∈ [0, 1]: denotes the portion of UM and CM cells in the device that lead to

errors when corrupted.
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• w ∈ R+ ∪ {0}: waiting time between scrub cycles given in seconds (s).

• λb ∈ R+: upset rate of a configuration bit given in SEUs/bit/s.

• T ∈ R+: denotes the mission duration given in hours (hrs) or years (yrs).

• UM ∈ R+ ∪ {0}: resource utilisation of the 3K modules in the a1 − a3 sub-systems.

• US ∈ R+ ∪ {0}: resource utilisation of the SRs for the 3K modules in the a1 − a3

sub-systems.

• UC ∈ R+∪{0}: resource utilisation of the simplex components in the a4 sub-systems.

We assume that each SoC is implemented with a Xilinx Artix-7 200T FPGA, which has the

following specifications; FD = 18,300 CFs, BF = 3,232 bits and tF = 1.01 microseconds

(considering the maximum configuration speed of the FPGA). We feel that the following

base parameters for our models capture a fully triplicated FPGA SoC that operates in

a relatively high radiation environment; λb = 2.66E-11 SEU/bit/s, w = 0 s, f = 0.6, g

= 1.0, h = 1.0, AVF = 0.15, US = 0.1, UM = 0.8, UC = 0.8, K = 5 and T = 5 yrs.

However, we explore all possible values of our model’s parameters, i.e., we vary λb, w,K,

etc. Similarly, we explore the proposed models from LEO up to GEO radiation levels, i.e.,

λb ∈ [3.76E-14, 2.66E-10], which were estimated in Sec. 3.3.2.

The reliability, availability and energy consumption results are captured on the y-axis of

2D and 3D plots in the sub-figures of Fig. 3.6, while the other dimensions are devoted to

the model’s parameters. All plots use the aforementioned base parameter values unless

otherwise stated. We report energy consumption in Joules (J ) and assume that the RC

requires on average Ef = 535E-9 J to reconfigure a CF [122]. Note that Ef is not measured

on an actual Artix-7 FPGA. Instead, Ef is referenced from [122]. Please note that the

authors in [122] conducted experiments on a Xilinx Virtex-5 FPGA (rather than the Artix-

7 FPGA used in this thesis) in order to find the energy consumption of reconfiguring a CF

of the device. Although, EF , may be different for the Artix-7 FPGA, this will not change

the shape of the provided energy results, since Ef is a constant.

3.4.1 Reliability results

Fig. 3.6(a) shows the reliability of all SoCs for a 24-hour mission (T = 24 hrs). As

expected, SoC/MER is considerably less reliable than both SoC/FMER and SoC/Scrub

since SoC/MER leaves CM upsets in its SRs (F2 CFs in Fig. 3.1(b)) unrecovered. On
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Figure 3.6: Reliability, availability and energy consumption results.

the other hand, the SoC/NR has the lowest reliability of all implementations since no ER

technique is incorporated into the SoC whatsoever. Therefore, SoC/FMER and SoC/Scrub

have the lowest probability of experiencing a failure during their first 24 hrs of operation,

and their difference in reliability at T = 24 hrs is negligible, i.e., ∆R(24 hrs) ≈ 43E-6.

However, for a longer mission the reliability of SoC/FMER is significantly higher than

that of SoC/Scrub. For example, Fig. 3.6(b) shows the reliability of SoC/FMER and
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SoC/Scrub, and their difference in reliability (FMER-Scrub) for a 15-year mission, at the

end of which SoC/FMER has R(15 yrs) ≈ 0.94, much higher than SoC/Scrub, which has

R(15 yrs) ≈ 0.47, i.e., ∆R(15 yrs) = 0.94 − 0.47 ≈ 0.47.

Nevertheless, when the CM upset rate is low, both SoC/FMER and SoC/Scrub achieve

high reliability. This can be seen in Fig. 3.6(c), where we plot the reliability of SoC/Scrub

and SoC/FMER at T = 5 yrs for λb ∈ [E-15, E-10]. At the lower end of this range,

λb ∈ [E-15, E-13] (e.g., the expected CM upset rates at the ISS orbit), the SoC/Scrub

achieves high reliability since periodic CM scrubbing achieves a much higher recovery rate

than the failure rate when λb ∈ [E-15, E-13]. In other words, µ of periodic CM scrubbing

is adequate to reduce the probability of having more than one faulty module per TMR

component to a negligible level when λb ∈ [E-15, E-13].

Additionally, the 3D plot of Fig. 3.6(d) shows the difference in reliability ∆R(T) between

SoC/FMER and SoC/Scrub for T ∈ [1, 15] yrs and λb ∈ [E-12, E-10]. The figure shows

that ∆R(T ) → 0 as λb, T → 0. The results of Fig. 3.6(d) indicate that SoC/FMER

achieves substantially better reliability than SoC/Scub, particularly in higher radiation

environments or on longer missions. Moreover, FMER should be considered in missions

with a tight energy budget, i.e., the waiting time between scrub cycles, w, in SoC/FMER

can be increased to the level of achieving the same reliability as SoC/Scrub does, but by

consuming less energy. For example, Fig. 3.6(e) shows the reliability of a mission with

λb ∈ [E-12, E-10] and w ∈ [0,30] s. The figure reveals that the reliability of SoC/Scrub

is affected more than the reliability of SoC/FMER as w increases. The reason behind

this observation, is that SoC/FMER scrubs only the SRs, i.e., only the F2 CFs shown

in Fig. 3.1(b), while SoC/Scrub scrubs all CFs of the FPGA device, i.e., both the F1

and F2 CFs. Therefore, SoC/FMER can have a longer w than SoC/Scrub and still re-

cover CM upsets with the same rate as SoC/Scrub does. In other words, SoC/FMER

achieves the reliability of SoC/Scrub but with less frequent scrub cycles, which results

in saved energy. For instance, in Fig. 3.6(e) we observed that both SoC/FMER and

SoC/Scrub have R(5 yrs) ≈ 0.992 when λb = E-11, however, with w = 30 s in the

case of SoC/FMER and w = 0.198 s in the case of SoC/Scrub. Using Eqs. (3.33) and

(3.37) we calculated that SoC/Scrub consumes 347 times more energy than SoC/FMER

(EFMER ≈ 20,297 J , EScrub ≈ 7.03E6 J ) during the mission, in order to achieve the same

reliability as SoC/FMER does.

However, the above results only hold when the SoC is fully triplicated, i.e., when g, h = 1.

As shown in Fig. 3.6(f), the reliability of all SoCs is dramatically reduced, even in low

radiation orbits (λb = 3.76E-14), when the proportion of simplex components increases
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in the a1,2,3 sub-systems, i.e., when h → 0. Note that similar results are observed when

simplex a4 sub-systems are included in the SoC, i.e., when g → 0. In more detail, the

reliability of the SoCs is reduced because any included simplex resources become SPFs. In

other words, the reliability of a TMR SoC is mostly determined by the reliability of any

simplex component in the SoC. For example, let as assume a fully triplicated SoC that

has RSoC(1 yr) = 0.9999. If an additional simplex component with RSimplex(1 yr) = 0.5 is

included in the design, then the overall reliability of the SoC will be RSoC(1 yr) = 0.9999

× 0.5 ≈ 0.5 ≈ RSimplex(1 yr).

Nevertheless, when the SoC is fully triplicated, i.e., when g, h = 1, then the reliability

of the system can be further increased by partitioning the design at a finer granularity

(K → ∞), e.g., by triplicating every stage of a processor rather than the processor as a

whole. Firstly, as K increases, the number of TMR modules in the system increase and

the likelihood of multiple errors affecting the one TMR component is reduced. Moreover,

the average number of CFs per TMR module decreases, and thus the overall MTTR in

SoC/FMER (not in SoC/Scrub) decreases since less CFs have to be reconfigured per

faulty TMR module with MER according to Eq. (3.5). The improvement in reliability

as K increases is captured in Fig. 3.6(g), which depicts the reliability of SoC/FMER and

SoC/Scrub for K ∈ [1,50]. As can be observed, the reliability of SoC/FMER improves

faster than for SoC/Scrub as K increases.

3.4.2 Availability results

Achieving high availability in an FPGA-based SoC is easier than achieving high reliability.

The ratio between the CM upset rate and the CM ER rate in modern SRAM FPGAs makes

them attractive SoC candidates for high-availability space missions [113].

For example, Fig. 3.6(h) depicts the transition to steady state availability of SoC/FMER,

SoC/Scrub and SoC/MER for an extremely high CM upset rate, λb = 1,000 × 2.66E-10

(1,000x the Peak-5-Min GEO λb), which is more likely to be encountered in high-energy

physics experiments [137] than in space. As can be observed, even with this extremely

high CM upset rate the steady state availability of SoC/Scrub is 4 nines, while the steady

state availability for SoC/FMER is even higher. In contrast, the availability of SoC/MER

does not reach a steady state since the SRs never recover when MER alone is applied to

the SoC.

Nevertheless, SoC/FMER and SoC/Scrub achieve high availability even when h→ 0 and

US = 1, i.e., when the SRs are not fully triplicated and are highly utilised. This is shown
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in Fig. 3.6(i) where in the worst case (h = 0, US = 1), the steady state availability of

SoC/FMER and SoC/Scrub is 0.999997 and 0.999991 respectively. However, FMER can

be used in an FPGA SoC to achieve high availability with less energy consumption than

when periodic CM scrubbing alone is used. Fig. 3.6(j) shows the steady state availability

of SoC/FMER and SoC/Scrub as w is varied. SoC/FMER achieves 5 nines availability

when w = 60 s, while SoC/Scrub achieves approximately 3 nines for the same w. However,

EFMER ≈ 10,163 J , while EScrub ≈ 25,369 J , i.e., SoC/FMER achieves higher availability

than SoC/Scrub with 2.5 times less energy. Note that similar results are obtained when

the SoC incorporates simplex a4 sub-systems, i.e., when g → 0.

3.4.3 Energy consumption results

We found that SoC/FMER and SoC/Scrub energy consumption decreases geometrically as

w increases. Fig. 3.6(k) illustrates the energy consumption for both systems in logarithmic

scale for w ∈ [0,60] and f ∈ [0,1]. We observe that EFMER is always less than EScrub for

equal values of w and for f > 0. When f = 0 in SoC/FMER then the system is completely

scrubbed, thus EFMER = EScrub. Additionally, as K increases, the energy consumption

of SoC/MER decreases. This is because the system is partitioned at finer granularity,

which means faulty TMR modules can be localised and corrected more precisely as K

increases, thus the RC reconfigures less CFs per fault. This is shown in Fig. 3.6(l), in

which we plot the energy consumption of SoC/FMER, SoC/Scrub and SoC/MER against

a logarithmic energy scale for K ∈ [1,10] and w = 1 s. We observe that EMER decreases

as K in SoC/MER increases. In the case of SoC/FMER the energy consumption that

is expended in repairing TMR modules is negligible compared to the energy consumed

periodically scrubbing the SRs. Therefore, K does not significantly affect the overall

energy consumption of SoC/FMER. Furthermore, the energy consumption of SoC/Scrub

is not affected at all as K varies, since µ depends on FD and not on FM . Last, we observe

that EMER is less than EFMER and EScrub since SoC/MER does not involve periodic CM

scrubbing as it only reconfigures the CFs of faulty TMR modules when errors are detected.

3.5 Implementation of FMER

FMER can be implemented with any internal or external RC that is able to reliably

configure the CM of the FPGA by fetching CFs located in an external radiation-hardened

memory. In principle, FMER can be realised by: (i) constraining the implementation of
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modules to specific regions of the FPGA, i.e., Pblocks, and (ii) generating lists of frame

addresses (FADs) for each Pblock and for the SRs of the design so that the CFs of the SR

FAD list are periodically scrubbed and the CFs of any corrupted Pblock are reconfigured

on-demand. In order to generate the lists of FADs for the Pblocks and SRs, we execute

the following steps: (i) generate a FAD list for the whole device, (ii) generate a FAD list

for each Pblock, and (iii) create a FAD list for the SRs by subtracting the Pblock FAD

lists from the device’s FAD list.

3.5.1 Generating frame address lists

To the best of our knowledge, two methods have been described in the literature to create

a FAD list for a Xilinx device. The first method extracts the FAD from the bitstream with

custom bitstream manipulation tools [105,107], that can be implemented using academic

CAD frameworks such as RapidSmith [64]. However, to use this method, the bitstream

has to have a format in which the FAD for each CF in the bitstream is associated with

its configuration data (CFDATA). This bitstream format can be obtained from the Xilinx

Vivado design suite by enabling the CRC-per-frame flag or the debug flag during bitstream

generation. The second method to generate the FAD list for the device is to readback the

CM of the FPGA and capture the Frame Address Register (FAR) as it auto-increments

[119]. Reading back the CM of the FPGA is the best method for creating a FAD list for a

Xilinx FPGA device. As pointed out in [119], Xilinx FPGAs contain several CFs that are

not included in the bitstream; bitstream manipulation tools do not therefore cover these

CFs. We currently use tools that have developed within the RapidSmith framework to

extract the FAD list for the device from its bitstream and the FAD list for each Pblock

from its partial bitstream. However, we intend to develop tools that create FAD lists by

reading back the CM of the device.

In addition, we have developed tools that create the FAD lists of a TMR-based FPGA

circuit that does not follow a DPR flow and therefore only one bitstream for the circuit

is generated. In fact, the DPR flow is useful for developing FPGA circuits that share the

resources of a Pblock among different hardware modules in order to save area and power.

However, the CAD tools interconnect the static area with the dynamic area (i.e., Pblocks)

of the DPR-based FPGA circuit using proxy pins, that unfortunately introduce area and

timing overheads. In a TMR circuit with FMER or MER, only a single hardware module

is assigned per Pblock and therefore proxy pins are not required. Therefore, we avoid

the DPR flow and generate FAD lists for the device and the Pblocks using the following

method.
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The TMR modules of the SoC are assigned to Pblocks that are always aligned to the

configuration rows (see Fig. 3.2) of the FPGA, i.e., each Pblock has its height set to one

or more rows. Algorithm 1 is then used to generate the FAD list for the device. The

Algorithm 1 Generation of the FAD list of the FPGA device

Initialisation

BlockType b ← “000”

FAD list L ← new list

for topBottom t ← 0 to 1 do

for row r ← 0 to getMaxRows(t)-1 do

forall column c in DeviceColumns do

for minor m ← 0 to getMaxMinors(c)-1 do
FAD ← createFAD( b, t, r, c, m )

Insert FAD into L
end

end

end

end

return L

algorithm consists of 4 nested loops that create values for the top/bottom, row, column

and minor address of each FAD in the list. The three outer loops iterate through the

coordinates of all resource columns in the device, i.e., the top/bottom, row and column

address, while the innermost loop iterates over the minor addresses of each column. The

body of the innermost loop creates a FAD with block type (b), top/bottom (t), row

(r), column (c) and minor (m) addresses and adds the FAD into the FAD list (L). Note

that the block type is always set to “000” in order to exclude CFs that configure BRAM

contents. In a similar way, we have implemented an algorithm to iterate through the

resource columns of each Pblock in order to generate FAD lists for the Pblocks.

3.5.2 Obtaining data for each configuration frame address of the FPGA

The CFDATA for each FAD is obtained from Vivado’s .ebc file. This file is generated by

Vivado when the essential bits flag is enabled during bitstream generation. The .ebc file

contains the CFDATA, in ASCII representation, as obtained from reading back the CM

of the device [119, 142]. The .ebc file is converted into binary form and is stored in the

external memory of the FPGA SoC, together with the FAD lists and the bitstream of the

design. The device is initially configured with a complete bitstream, and while it is in
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operation, CM upsets recover with the CFDATA from the .ebc file. The same .ebc file can

also be used to recover CFs using blind scrubbing or MER. For example, the Xilinx Soft

Error Mitigation (SEM) controller uses the .ebc file to implement readback CM scrubbing

with frame replacement [145].

3.6 Practicality and Applicability of FMER

In order to demonstrate the practicality and applicability of FMER in real-world, fault-

tolerant SoCs, we implemented TMR versions of various HLS applications on a Nexys

Video board, which hosts a Xilinx Artix-7 XC7A200T FPGA. We tested each design

with either blind scrubbing, MER or FMER, which were implemented using the internal

TMR reconfiguration controller presented in [41]. The reliability, availability and power

consumption of all SoCs were compared for a 2-year LEO mission.

The following subsections provide a description of the SoC implementations and outline

how we derived their dependability and their CM ER consumption during the 2-year LEO

mission. Experimental results are presented at the end of the section.

3.6.1 Benchmarks and implementation of the SoCs

We implemented a range of different SoCs with applications from the CHStone, DWARV

and Bambu HLS benchmark suites [46,80] that fit onto the XC7A200T device when trip-

licated. These benchmarks come from various application domains, such as communica-

tions, encryption, compression, arithmetic, compute and media.

We used our TLegUp HLS tool, which will be presented in detail in Chapter 5, to gener-

ate TMR register-transfer level Verilog code for each HLS application. Each TMR design

consisted of 3 modules (i.e., the 3 replicas of the TMR design), while each module incor-

porated a 2-bit health status port to report which modules of the TMR circuit, if any,

were corrupted by soft errors. Additionally, each HLS application included three 1-bit

input ports: clock, reset and start, as well as three output ports: finish (1-bit) and result

(32-bit). Test vectors for each application were provided by the benchmark suite and were

stored on chip to perform functional verification during their operation. The architecture

of TLegUp generated TMR designs is detailed in Chapter 5.

We used the RC of [41] to implement each CM ER technique and to control the ports of
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the application in order to verify its operation. The three modules of the TMR RC were

placed into one Pblock that was located in one of the ten available clock regions of the

Artix-7 200T FPGA. In more detail, the three modules of the RC were placed in a single

Pblock because the authors in [41] found that the RC achieves higher performance with

this layout. The resources of the remaining nine clock regions of the FPGA were used to

create three additional Pblocks, with each one hosting a module of the TMR design.

All designs were synthesised, floorplanned [100] and implemented with the 2017.2 Vivado

design suite.

3.6.2 Utilised configuration frames, essential bits and resources

With the essential bits flag enabled, Vivado generates a “mask” for the .ebc file described in

Sec. 3.5.2 that is called an .ebd file or essential bits (Ebits) file. This mask indicates which

bits in the CM may produce a functional error when upset [105, 107, 145]. We analysed

the .ebd file with custom tools [107] that were implemented using the RapidSmith CAD

framework [64] in order to count the Ebits in each Pblock and the SRs of each SoC. The

number of Ebits and CFs of the Pblocks and SRs were used to estimate the dependability

and energy consumption of each SoC, depending on the utilised error recovery mechanism.

Note that the number of CFs of each Pblock and the SRs is equal to their FAD list size.

The CFs, Ebits and resource utilization of each SoC are listed in Table 3.4. The sub-

columns f and 1− f under the FD column denote the fractions fFD and (1− f)FD of the

device’s CM devoted to the Pblocks (including the RC Pblock) and the SRs respectively.

Columns 2-4 of the table report the number of CFs and Ebits of the 1st, 2nd, and 3rd

HLS application Pblocks (PBs), respectively, while column 4 shows the same information

for the SRs of each SoC. The Ebits of the SRs are further divided into bits located in

the configuration (Cfg), IO Block (IOB) and clock (Clk) resource frames of the device.

Note that the CM bits for the ICAP primitive are included under the Cfg column. The

bits allocated to the remaining resource frames of the SRs are shown in the “Rem” field

of the table. These configuration bits realise the routing of the triplicated nets between

the Pblocks of the SoC. Column 6 provides the post-routing resource utilization of each

HLS design in terms of number of slices, BRAM16 (BM) and DSP48 (DSP), in order to

show the relationship between utilised CFs and resources, respectively. The bottom row

of the table provides the geometric mean (GMean) of the results. Information for the

RC is excluded from the table, since the same RC is instantiated in all SoCs; the RC is

realised with 1062 CFs and 1476.51K Ebits, as averaged over all SoC implementations.
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Note that the number of Ebits for the RC changes slightly between each case study due

to the heuristic nature of the algorithms used in the CAD tools.

The SoC with the largest fraction of CM devoted to Pblocks is motion, with f = 0.43,

while the smallest is mmult, with f = 0.09. Motion utilises 14 times more slices than

mmult, which is also reflected in the considerably higher number of Ebits for this design.

All SoCs have on average (geometric) f = 0.20.

It is worth mentioning that the analytical results of Sec. 3.4 show that FMER achieves

higher dependability with less energy consumption as f → 1. Therefore, the benefits of

FMER in our experimental results would have been more pronounced if the implemented

SoCs had greater f .

3.6.3 Dependability and energy consumption

In the following, we outline the derivation of the dependability and energy consumption

for each SoC depending on which CM ER mechanism it utilises.

The SoCs include three simplex sub-systems, namely the ICAP, the clock (e.g., clock

buffers, clock manager etc.) and IO (e.g., clock input pin) sub-systems, that are imple-

mented with the Cfg, IOB and Clk Ebits of Table 3.4, respectively. The SoCs also include

three TMR sub-systems: (i) the HLS application, that is implemented with the 1st, 2nd

and 3rd HLS PB Ebits of Table 3.4, (ii) the RC, that is implemented with 1476.51K Ebits,

and (iii) the interconnection nets between the modules of the application and the RC, that

are implemented with the Rem. Ebits of Table 3.4.

Reliability of the SoCs

The reliability of the simplex SR sub-systems in each SoC is:

Rsimplex(t) = Rcfg(t)×RIOB(t)×Rclk(t), (3.38)

where Rcfg(t), RIOB(t), and Rclk(t) are the reliabilities of each of the simplex sub-systems,

and the reliability of each of these sub-systems is given by Eq. (3.9). In more detail, the

Ebits of each sub-system (i.e., Cfg., IOB and Clk in Table 3.4) multiplied by the failure

rate of a configuration bit, λb, gives its failure rate, λm, which is then used in Eq. (3.9).

The reliability of the TMR sub-systems in each SoC is:

RTMR(t) = Rapp(t)×RRC(t)×Rinet(t), (3.39)
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where Rapp(t), RRC(t) and Rinet(t) is the reliability of the TMR HLS application, the

TMR RC, and the triplicated interconnection nets between them, respectively, and the

reliability of each sub-system is given by Eq. (3.12), except for SoC/MER, where Rinet(t)

is given by Eq. (3.11).

The average Ebits of the 1st, 2nd and 3rd Pblock of Table 3.4 are used to calculate the

average failure rate, λm, of each of the three modules in the HLS application. On the other

hand, all three modules of the TMR RC are placed in one Pblock, which is implemented

with 1476.51K Ebits. Therefore, the average failure rate per RC module is 1476.51K
3 λb

upsets/s. Similarly, the average failure rate of 1/3 of the triplicated interconnection nets,

that are modelled as belonging to one module in our dependability analysis, is Rem.
3 λb

upsets/s.

The average recovery rate, µs, for all TMR sub-systems in SoC/Scrub is given by the

reciprocal of Eq. (3.4). In SoC/MER and SoC/FMER, the average number of CFs of the

three Pblocks of the HLS application is used in the reciprocal of Eq. (3.5) to calculate the

recovery rate, µm, of each module of the HLS application.

In contrast, all three modules of the RC are reconfigured whenever any module fails, since

all RC modules have been placed into a single Pblock. The recovery rate for the RC is

calculated as the reciprocal of Eq. (3.5), with FM = 1062 CFs, i.e., the total number of

CFs for the RC Pblock.

According to Eq. (3.31), the total reliability of SoC/Scrub, SoC/MER and SoC/FMER is:

R(t) = Rsimplex(t)×RTMR(t), (3.40)

where Rsimplex(t) and RTMR(t) are the corresponding reliabilities of the simplex and TMR

sub-systems of each SoC.

Availability of the SoCs

Similar to the Xilinx SEM controller [145], the RC outputs a heartbeat that stops when

a fatal failure occurs in the SoC. Fatal failures may occur in the RC when one or more

simplex SR sub-systems fail or when two or more modules of the RC fail. For example,

the heartbeat of the RC may stop when a clock manager, the ICAP or the clock input pin

of the SoC fails. Fatal failures are recovered by a complete reconfiguration of the FPGA.

On average it takes half the period of the heartbeat (THB), plus the latency of a complete

reconfiguration of the FPGA (Treconfig.) to detect a heartbeat stop and to recover the SoC:
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Tfatal-recovery =
THB

2
+ Treconfig. (3.41)

Therefore, the availability of the simplex sub-systems of all SoCs is:

Asimplex(t) = Acfg(t)×AIOB(t)×Aclk(t), (3.42)

where Acfg(t), AIOB(t), and Aclk(t) are given by Eq. (3.10) and µm = (Tfatal-recovery)−1.

Similarly, the availability of the triplicated sub-systems in each SoCs is:

ATMR(t) = Aapp(t)×ARC(t)×Ainet(t), (3.43)

where Aapp(t) and Ainet(t) are given by Eq. (3.13) for SoC/Scrub, and Eq. (3.14) for

SoC/FMER. In SoC/MER, Aapp(t) and Ainet(t) are given by Eqs. (3.14) and (3.11), re-

spectively. Lastly, ARC(t) in SoC/Scrub is calculated by adding the probability distribu-

tions pS0 and pS1 in the Markov model of Fig. 3.3(d), with µ1 = µs, i.e., the scrub rate of

the device, and µ2 = (Tfatal-recovery)−1, i.e., the rate at which the device recovers from a

fatal failure. Similarly, ARC(t) in SoC/MER and SoC/FMER is calculated by adding pS0

and pS1 of the same Markov model, where µ1 = (1062 ×tF )−1, i.e., the recovery rate of

the RC Pblock, and µ2 = (Tfatal-recovery)−1.

The total availability of each SoC is the product of their simplex and TMR sub-system

availabilities:

A(t) = Asimplex(t)×ATMR(t) (3.44)

Energy consumption of recovering CM upsets in the SoCs

The CM ER energy consumption of SoC/Scrub is given by Eq. (3.33), while for SoC/MER

it is:

E = EHLS-app + ERC, (3.45)

where both EHLS-app and ERC are given by Eq. (3.34). However, FM in the ERC part is

equal to 1062 CFs since all three modules of RC are placed in one Pblock and all three

modules are reconfigured when one or more modules of the RC fail, i.e., FM is equal to

the number of CFs contained in the RC’s Pblock.

The energy consumption of SoC/FMER is given by Eq. (3.37), except for TMER, which is

derived as follows. The RC and the modules of the HLS application in the SoCs/FMER

recover with MER for TMER = THLSapp + TRC time of the mission. Both THLSapp and TRC
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are equal to 3λmTFM tF , however in TRC, 3λm and FM are substituted with 1,476.51K

and 1062, respectively.

Calculation of “w” in SoC/Scrub and SoC/FMER

Xilinx suggests scrubbing at a rate at least 10 times faster than the expected CM upset

rate [138]. Therefore, the scrub rate, µs, of SoC/Scrub should be:

µs = kλD, k > 10, (3.46)

where λD is as in Eq. (3.24) and k determines how many times faster to scrub than the

expected CM upset rate. By setting µs equal to the reciprocal of Eq. (3.4) in Eq. (3.46)

we get: (FD
2
× tF + w)−1 = kλD (3.47)

Solving for w in Eq. (3.47) sets:

w =
1

kλD
− FDtF

2
(3.48)

Similarly, values for w in SoC/FMER are also calculated with Eqs. (3.24) and (3.48), but

by substituting FD with the number of CFs for the SRs.

3.6.4 Experimental results

The reliability, availability and energy consumption of all SoCs were calculated with the

following parameters: (i) T = 2 years, i.e., the mission’s length, (ii) λb = 1.10E-13, i.e.,

the configuration bit upset rate of the worst day value for LEO from Table 3.1, (iii) tF

= 16.56 microseconds, i.e., the time required for the RC to read a CF from the external

SPI flash of the Nexys Video board and to write it to the CM of the FPGA, (iv) THB =

100 milliseconds, i.e., the heartbeat period of the RC, (v) Treconfig. = 400 milliseconds, i.e.,

the time the device takes to completely reconfigure the FPGA, and (vi) k = 100, i.e., the

scrub rate was set to 100 times the expected CM upset rate of the mission.

Table 3.5 provides the reliability, R(T), availability, A(T), in number of nines [59] and

energy consumption, E, in Joules for all SoCs.

A noticeable observation is that SoC/Scrub, SoC/MER and SoC/FMER have equal R(T)

in Table 3.5. Our experimental and analytical results show that Rsimplex(T) in Eq. (3.40)

determines the total R(T) of the SoC. For example, the Rsimplex(T) and RTMR(T) of the

aes SoC/Scrub in Table 3.5 is 0.75 and 0.99 respectively. By substituting these values

74



3.6. PRACTICALITY AND APPLICABILITY OF FMER

Table 3.5: R(t), A(t) and energy consumption for a 2-year LEO mission

SoC
R(T) A(T) [# of 9s] E [Joules]

Any Srub MER FMER Scrub MER FMER

aes 0.76 8.67 2.47 8.70 396 0.017 236
aesdec 0.86 8.92 2.24 8.96 396 0.018 229
bell 0.96 9.49 1.85 9.52 396 0.008 293
dfadd 0.87 8.98 2.88 9.01 396 0.014 238
dfmul 0.88 9.02 3.08 9.04 396 0.010 261
gsm 0.79 8.71 0.45 8.76 396 0.030 188
mips 0.91 9.13 3.59 9.15 396 0.008 307
mmult 0.92 9.21 2.72 9.21 396 0.006 325
motion 0.67 8.41 1.37 8.54 396 0.081 128
satd 0.96 9.49 2.63 9.52 396 0.008 282
sha 0.91 8.94 1.39 9.15 396 0.037 195

Gmean 0.86 8.99 2.00 9.05 396 0.015 237

into Eq. (3.40) we obtain the total R(T) of the SoC, i.e., R(T) = 0.75 × 0.97 = 0.74 ≈
Rsimplex(T). The satd and motion applications use the lowest and highest number of

Ebits respectively for the implementation of their simplex SRs (Total−Rem. in Table 3.4);

this is reflected in their reliability, where R(T) = 0.96 for satd and R(T) = 0.67 for

motion. All SoCs achieve on average R(T) = 0.86.

Further, all SoC/Scrub and SoC/FMER designs achieve more than 8 nines A(T). SoC/FMER

has on average a slightly higher A(T) than SoC/Scrub, because the TMR sub-systems of

the SoC recover faster with FMER. In fact, the A(T) of SoC/FMER would have been

much greater than SoC/Scrub if the designs where fully triplicated; the availability of

the SoCs is mostly determined by the availability of their simplex sub-systems, not by

their triplicated sub-systems, whereby their reliability depends significantly on the CM

ER mechanism used. On average, SoC/MER has approximately 7 nines less A(T) than

SoC/Scrub and SoC/FMER, since the triplicated interconnection nets between the Pblocks

are not recovered from SEUs. However, in the long term the availability of SoC/MER be-

comes zero when T → ∞, except if a heartbeat is included in the application to trigger

a reconfiguration of the device when the interconnection nets between the Pblocks of the

SoC fail.

The energy consumption of SoC/Scrub depends only on the FPGA used, i.e., it depends on

FD and λD, which determines µs. Therefore, SoC/Scrub requires 396 Joules to recover CM

upsets for the 2-year LEO mission. In contrast, the energy used to recover with SoC/MER

and SoC/FMER depends on the device and on the FPGA circuit, since the Ebits of

each Pblock determines how often a fault in the Pblock will trigger its reconfiguration.

SoC/MER and SoC/FMER will have consumed, respectively, 19,812 and 1.68 times less

75



CHAPTER 3. FAST AND ENERGY EFFICIENT CONFIGURATION MEMORY
RECOVERY

energy than SoC/Scrub during the 2-year mission. Of all SoCs, mmult and motion SoCs

have the lowest and highest f . This is reflected in the energy consumed recovering from CM

upsets, where mmult and motion SoC/MER have the lowest and highest consumption,

respectively. On the other hand, motion SoC/FMER consumes the lowest amount of

energy to recover from CM upsets of those applications studied, since f is large and not

many CFs of the SRs have to be recovered with periodic scrubbing.

3.7 Related Work

Demand for fast and energy-efficient CM ER techniques has led to a number of interesting

proposals, some of which are described in the following paragraph [48,115].

Sari et al. [105] reduces both the time and energy expended to recover CM errors by

placing the design in a highly utilised Pblock, in order to gather the design’s essential bits

into a small chip area, and scrub only the CFs that contain at least one essential bit, also

called essential CFs. The authors in [87] use a deadline-aware scrubbing scheme which

dynamically chooses the frame to commence scrubbing with in real-time FPGA systems so

as to reduce the number of missed deadlines. Tonfat et al. [122] introduced a customised

design flow that places and routes the three modules of a TMR design in a way that

all modules have identical CFDATA and MBUs can be corrected by using information

from the TMR scheme. A novel technique that uses a lightweight error detection code

and erasure codes to detect and correct MBUs in CFs, respectively, is presented in [38].

Bolchini et al. [17] investigated how the number of partitions and the location of inserted

voters affect the size and recovery time of modules in a TMR design that incorporates

MER. Cetin et al. [31] proposed a scalable token-ring network to transfer to an RC the

health status from the modules of TMR designs that incorporate MER. A follow up

paper [3] showed that the most reliable and scalable solution for the implementation of

such a network is to use the ICAP to readback CFs containing the health status of these

modules.

Our work considers the advantages of scrubbing and MER and proposes FMER as a way

to reliably and efficiently recover CM errors in SRAM FPGA SoCs of current and future

space missions.
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3.8 Chapter Summary

In summary, this chapter proposes FMER, an energy-efficient ER technique that targets

TMR-based FPGA SoC designs. To demonstrate the efficacy of this ER technique the

reliability, availability and energy consumption of various SoC implementations that incor-

porate either FMER, blind scrubbing, MER or no recovery were modelled and compared.

It was shown that MER was the most energy-efficient CM ER mechanism. However, since

MER does not recover CM upsets in the SRs of the SoCs it has the lowest CM fault cover-

age compared with FMER or periodic CM scrubbing alone. Moreover, it was shown that

in SoC/Scrub unnecessary energy is consumed refreshing the contents of the FPGA’s CM

when no upsets are present in this memory. The results demonstrate that SoC/FMER

consumes less energy than SoC/Scrub while it always achieves higher reliability and avail-

ability than SoC/Scrub and SoC/MER, especially in high radiation environments or on

long missions.

As mentioned in Chapter 2, the reliability of a TMR FPGA SoC with FMER depends

heavily on the reliability of the RC and the RCN. Although several studies have proposed

reliable RCs, the design of reliable RCN architectures has not been studied. We investigate

this question next.
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Chapter 4

Reconfiguration Control Networks

4.1 Introduction

Two very important infrastructural components in TMR-based FPGA SoCs with MER

or FMER are the Reconfiguration Control Network (RCN) and the Reconfiguration Con-

troller (RC). If the RCN fails, the minority report, i.e., which, if any, module is faulty,

from the voters of TMR components may never be conveyed to the RC. Similarly, if the

RC fails, a reported faulty module may never be reconfigured. Either way, the overall

dependability of the SoC will be reduced. Although, several reliable RC architectures

have been reported in the literature, an evaluation of RCN architectures and topologies

has not previously been conducted.

In this chapter we compare the latency, reliability, scalability and power consumption of

several feasible RCN topologies in order to understand how these properties affect the

performance of MER mechanisms. Additionally, we explore the idea of using the con-

figuration layer of the FPGA to transfer the minority reports from the voters of TMR

components to the centralised RC of the SoC [52]. That is to say, an ICAP-based RCN

is implemented, whereby the RC selectively reads back the CFs of the FPGA contain-

ing the minority report of each voter in the SoC. The resulting area and failure rate of

the ICAP-based RCN is negligible, since almost no programmable routing resources or

logic is used between the RC and the minority reports of voters. We refer to those net-

works implemented on the FPGA’s application layer, i.e., with programmable logic, as

application-layer networks, and those RCNs that are implemented on the FPGA’s config-

uration layer as configuration-layer networks, or in short fabric networks.
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In order to compare the properties, such as the reliability and scalability, of various RCN

topologies we conducted the following experiments:

• We deployed star, bus and token-ring application-layer RCNs, as well as ICAP-based

configuration-layer RCNs in several synthetic designs that incorporated either 7, 15

or 31 voters.

• The aforementioned RCNs were also deployed in the RUSH CubeSat payload which

incorporates 9 TMR components [32]. Please note that both the synthetic and the

RUSH designs utilise TMR components with simplex voters. In other words, the

TMR components of the designs have the structure of the a3 sub-systems shown in

Fig. 3.1 (a) of Sec. 3.2.

An analysis with respect to the reliability, latency and scalability of the synthetic and the

RUSH designs showed that the designs that incorporated the ICAP-based RCN had the

best reliability and scalability results, but the worst, yet practically acceptable latency.

Finally, we implemented a version of the RUSH payload that incorporated blind scrubbing

instead of MER, in order to determine which of the two CM error recovery mechanisms

provides the highest reliability for a GEO mission. Our results show that the RUSH/blind

scrubbing payload achieves the highest reliability for the assumed GEO mission unless

the simplex RCN in the RUSH/MER payload is itself triplicated and repaired when it

is corrupted. These findings come as no surprise. The RUSH/MER payload utilises a

simplex RCN, while the RUSH/blind scrubbing design does not utilise an RCN at all.

As we showed in Sec. 3.4.1 and Sec. 3.6.4, the reliability of a TMR FPGA SoC is most

significantly determined by any simplex component it incorporates.

This chapter is organised as follows: Sections 4.2 and 4.3 present the overall architecture

of a TMR FPGA SoC that incorporates MER or FMER, while also providing more details

in regards to the RCN of the SoC which is the focus of this chapter. Sections 4.4 and

4.5 present the models we used to evaluate the reliability of our RCN implementations.

Section 4.6 presents the fault-injection methodology we followed in order to estimate the

soft-error sensitivity of all RCN implementations. Section 4.7 describes our experimental

methodology and reports our findings while Section 4.8 reviews the literature available on

RCN topologies. A summary of the chapter is given in Section 4.9.
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4.2 Overview of Reconfiguration Control Networks

Both the synthetic designs and the RUSH payload that were implemented in this chapter

follow the architecture of the design example shown in Fig. 4.1. In more detail, Fig. 4.1

illustrates the overall architecture of a TMR-based FPGA SoC that incorporates MER

or FMER for recovering CM upsets. The components of the SoC are divided into three

groups:
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Figure 4.1: Architectural layout of TMR FPGA SoCs with MER or FMER.

• The first group is the main application, which has the structure of the a3 sub-system

shown in Fig. 3.1 (a) of Sec. 3.2, and consists of the lightly-shaded K TMR com-

ponents at the top-left of Fig. 4.1. Please note that depending on the requirements

of a mission, the main application can have the structure of any of the a1 − a3

sub-systems shown in Fig. 3.1 (a) of Sec. 3.2.

• The second group is referred to as the RCN and consists of the darkly-shaded compo-

nents at the bottom of Fig. 4.1, i.e., the K Network Terminals (NTs), a centralised

Network Controller (NC) and an interconnection network between these compo-

nents. Each NT incorporates a 2-bit register for buffering the 2-bit minority report

(E)1 from each of the K voters in the main application, as well as a network interface

1As mentioned in Chapter 2, the 2-bit minority report of the voters in Fig. 2.7, sets
E = “01”, E = “10” and E = “11” when the 1st , the 2nd or the 3rd module of a TMR
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for establishing a connection with the centralised NC. Similarly, the NC incorporates

one or more network interfaces for communicating with the NTs, as well as three

ports for communicating with the RC: 1) an Interrupt output port that notifies the

RC that a module has failed, 2) a dlog2(K)e + 2 bit wide Module ID output port

that indicates which module has failed, and 3) an input Done port that is controlled

from the RC to notify the NC that a faulty module has been repaired.

• The third group, referred to as the “reconfiguration machinery”, consists of the non-

shaded components at the top-right of Fig. 4.1, i.e., the internal RC that uses the

ICAP primitive to gain access to the FPGA’s CM and an off-chip radiation-hardened

memory for storing the partial bitstreams of the 3K modules of the main application.

In normal operation the NC of the SoC continuously collects the minority reports from

the K voters in the main application in a round-robin manner until any of these reports

indicates that a module is corrupted and therefore needs reconfiguration. In such an

event, the NC stops collecting the minority reports and immediately asserts the Interrupt

signal in order to notify the RC that a module needs reconfiguration. In turn, the RC

downloads the partial bitstream corresponding to the faulty module, which is reported on

the Module ID port of the NC. Once the faulty module has been reconfigured, the RC

waits for tsync time and then asserts the Done signal, which in turn notifies the NC to

continue collecting the minority reports of the SoC.

As mentioned in Chapter 2, TMR circuits include synchronisation voters throughout all

registered feedback paths of the circuit in order to resynchronise the state of any corrupted

single TMR domain with the state of the TMR scheme. The time, tsync, it takes to

synchronise the state of a module corresponds to the module’s latency, or in other words,

the time it takes for new input values to propagate to the module’s outputs. Naively

checking for errors as soon as a faulty module is reconfigured otherwise results in an

endless loop of reconfigurations, since not enough time has elapsed for the reconfigured

module to resynchronise its state with the state of the TMR scheme.

component needs reconfiguration, respectively. The case where no module needs reconfig-
uration is encoded with E=“00’.
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4.3 RCN Architecture

In this section, we provide more details about the architecture of the star, bus, token-ring

and ICAP-based RCNs that have been implemented and compared in this chapter.

4.3.1 Star RCN
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Figure 4.2: Architecture of a star-based RCN.

In the star RCN, shown in Fig. 4.2, each NT is simply a 2-bit register that buffers the

minority report of each voter. The NC consists of an arbiter (Counter & FSM) and a

multiplexer (Mux). The output Q of the counter drives the sel port of the multiplexer so

that the minority report from each voter is collected in round-robin order. The counter

is controlled through the FSM, which has two states, namely the Collect (C) state and

the Repair (R) state. The default state of the FSM is C, in which the counter is enabled,

i.e., Check = 1, and each minority report of the SoC is sequentially collected through the

multiplexer of the NC. The FSM transitions to state R in the event of a Reconfiguration

Request (RR) or in other words whenever a minority report indicates that a module needs

reconfiguration. In state R the FSM asserts the Interrupt signal and sets the Module ID

signal with the ID of the reported faulty module. The RC then reconfigures the faulty

module, waits for tsync time and finally asserts the Done signal, which triggers the FSM

to transition to its default state C. Please note that the Module ID port is simply a

concatenation of the counter (Q) value and the minority report (E) value.
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4.3.2 Bus RCN

Fig. 4.3 illustrates the bus RCN, which has the same NC as the star RCN, but without

a multiplexer. In the star-based RCN, the output Q of the counter is driving the mul-

tiplexer, whereas in the bus-based RCN it is driving the Address-bus of the RCN. The

2-bit registered minority report from each NT is connected on a shared Data-bus through

a 2-bit OR gate. In order to guarantee that only the result of one NT is transmitted

on the data bus at a time, the 2-bit registers in the NTs are always held in reset mode

except when they are selected for communication by the NC of the RCN. The reset control

signal of the 2-bit register in each NT is controlled through an address decoder as shown

in Fig. 4.3.
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Figure 4.3: Architecture of a bus-based RCN.

4.3.3 Token-ring RCN

Fig. 4.4 shows an abstract schematic of the token-ring RCN. The NTs and the NC are

connected in a daisy chain manner and a token continuously traverses the nodes of the

ring clockwise. The token acts as permission for an NT to communicate an RR to the

NC, which in case of the token-ring RCN, is a message containing the ID of a module in

error. In other words, only one NT at a time can transmit an RR message to the NC –

the NT that has the token.

When the minority report indicates that all three modules of a TMR component are

healthy, the token is simply re-transmitted to its neighbouring node. Otherwise, when the

minority report of a voter indicates that a module needs reconfiguration, the NT waits

until it receives the token, keeps the received token, and passes a RR message with the ID

of the corrupted module to its neighbouring node. The RR message is passed around the
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Figure 4.4: Architecture of a token-ring based RCN.

ring until it reaches the NC. Once the NC receives the RR message, it notifies the RC that

a module in the SoC needs reconfiguration, i.e., by setting the Interrupt and Module ID

ports with appropriate values. The RC reconfigures the module, waits for tsync time and

then raises the Done signal, which in turn triggers the NC to send an RDone message

to the NT of the recovered module. Finally, the token is released when the NT (that

transmitted the RR message) receives the RDone message. Details of the architecture of

the token-ring RCN can be found in Chapter 3 of the master thesis [148].

4.3.4 ICAP RCN

The ICAP RCN does not utilise any programmable logic for its implementation except for

a 2-bit register at each NT to store the 2-bit minority report of each voter in the SoC, i.e.,

it uses the same NTs as shown in Fig. 4.2. The RC in the SoC continuously reads back the

CFs containing the registered 2-bit value of each minority report until a report indicates

that a module requires reconfiguration. In such an event, the RC reconfigures the faulty

module, waits for tsync time, and finally resumes reading back the minority reports of the

SoC.

The RC takes advantage of the Readback Capture feature of Xilinx 4–7 series FPGAs

[139, 142] to capture and readback the minority report of each NT in the SoC. In more

detail, the RC executes the following three step procedure whenever it reads back the

minority report from a NT:

1. Capture the state of the FPGA’s UM, i.e., the state of flip-flops, LUTRAM, BRAM

84



4.3. RCN ARCHITECTURE

etc., by issuing the “GCAPTURE” command to the ICAP primitive.

2. Selectively, read back the CF containing the captured state of the two flip-flops

(mapped to a CLB slice) that store the minority report of the currently checked NT.

3. Check the state of the corresponding captured minority report bits within the read

CF.

The exact CF address and bit offset within the CF that corresponds to the captured state

of the two flip-flops in each NT of the SoC is given in the logic allocation (*.ll) file

that can be generated with the Xilinx Vivado Design Suite [139]. The logic allocation file

includes four fields as illustrated in Fig. 4.5:

• Bit offset : The bit position within the complete read back CM data of the FPGA;

• Frame address: The address of the frame containing the state of the minority report;

• Frame offset : The exact position of a captured UM bit within the specified frame

address;

• Resources: Information about the captured UM resources in the design, e.g., the

slices containing the two flip-flops that store the minority report from each NT.

<Bit offset> <Frame address> <Frame offset> <Resources>

Bit 7487688 0x0001839f 104 Block=SLICE X10Y141 Latch=CQ Net=NT[1]/minority report[0]

Bit 7487710 0x0001839f 126 Block=SLICE X10Y141 Latch=DQ Net=NT[1]/minority report[1]

Bit 7487944 0x0001839f 360 Block=SLICE X10Y145 Latch=CQ Net=NT[2]/minority report[0]

Bit 7487966 0x0001839f 382 Block=SLICE X10Y145 Latch=DQ Net=NT[2]/minority report[1]

...

...

Bit 7676999 0x0001859f 487 Block=SLICE X19Y147 Latch=CQ Net=NT[K]/minority report[0]

Bit 7677021 0x0001859f 509 Block=SLICE X19Y147 Latch=DQ Net=NT[K]/minority report[1]

Figure 4.5: Extract of a Xilinx logic allocation file.

As mentioned in Chapter 3, Xilinx devices expect a specific sequence of commands to be

issued to the ICAP in order to read data from a specific CF address [142]. A CF read

request necessitates the read of a dummy word and a pad frame before the desired data of

the CF can be read. The time to read a frame in Xilinx 7–Series FPGAs is approximately

230 clock cycles. This includes 20 clock cycles for initialising the configuration process,

203 clock cycles to read the CF data (i.e., to read the dummy word, the pad frame and

actual CF data), and 10 clock cycles to terminate the configuration process [142].
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We calculated that the RC requires approximately 2.3 microseconds to read back a CF

when it operates the ICAP tile at its highest frequency (100 MHz) and uses the 32-bit data

bus of the ICAP tile. However, the 2.3 microseconds readback latency can be reduced to

approximately 1 microsecond by placing the the minority report registers in slices located

at the bottom of clock regions. When this is done, the readback of a CF can be aborted

after the slices containing the minority reports have been read back.

4.4 Latency of each RCN type

RCN latency is defined as the average period of time needed for the NC to receive a

reconfiguration request from a voter. As described in Sec. 4.2, all four networks that we

have implemented check voters in round-robin order.

Thus, assuming a system with K TMR components, K NTs and one NC, the average

latency of the token ring network is given by

latency = (K + 1)× chop ×
1

Fnetwork
, (4.1)

where chop denotes the number of clock cycles per node hop, and Fnetwork denotes the

maximum clock frequency of the RCN. Eq. (4.1) corresponds to the average time needed

for the token to arrive (half the ring) and the time for the request to make it back to the

NC (also half the ring).

The RCN latency for all other topologies is given by

latency =
K

2
× chop ×

1

Fnetwork
, (4.2)

which corresponds to the time it takes to check half the voters in the system before the

one that wishes to raise a reconfiguration request is checked.

4.5 Reliability Analysis

In this section, we analyse the reliability of the synthetic and the RUSH SoC designs by

using the reliability models that were derived in Chapter 3. In more detail, we outline

how we model the reliability of a simplex component, the reliability of a TMR component

and the reliability of a complete FPGA SoC composed of both simplex (the RCN) and

TMR components (the main application). Our analysis is based on the number of critical
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bits per component for which we use the number of essential bits reported by the vendor’s

tools as a worst case estimate.

In the following, we assume that the flip of an essential bit leads to a module failure. With

this assumption, the module failure rate λm is given by the product of the bit error rate,

λbit, and the number of essential bits (Ebits) in module m. We also assume that the three

modules of an TMR component have the same failure rate λm.

We use the Peak 5-minute GEO CM upset rate model of Table 3.1, i.e., we assume

that the upset rate of each CM bit in the Artix-7 FPGA (used in our experiments) is

λbit = 2.7× 10−10 upsets/bit/s.

We assume that module reliability decreases exponentially over time t as expressed by the

function:

Rm(t) = e−λmt, (4.3)

whereby the reliability, Rm(t), of a module at time t denotes the probability that the

module operates without any failure in the interval [0, t].

When module m is triplicated, its reliability function becomes:

RTMR
m (t) = 3R2

m(t)− 2R3
m(t). (4.4)

In order to achieve higher reliability, for a given SEU rate, we employ TMR with MER.

The reliability function is then given by

RTMR+Recovery
m (t) =

e−
1
2

(at)
(
a sinh

(
bt
2

)
+ b cosh

(
bt
2

))
b

, (4.5)

where a = 5λm + µm, b =
√
λ2
m + 10λmµm + µ2

m.

The term µm denotes the repair rate of a module, which is the reciprocal of the time

needed to recover the faulty module:

µm =
1

trepair
=

1

td + tc + tsync
≈ 1

td + tc
, (4.6)

where td denotes the average error detection time, tc denotes the error correction time

and tsync denotes the synchronisation time, which we omit in our case study because it

normally only accounts for a small fraction of the recovery time.

Note that td depends on the method used to detect errors and corresponds in our case to

the average latencies that were derived in Eqs. (4.1) and (4.2), whereas tc, which depends
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on parameters of the target system and the size of the module, is given by the number of

32-bit words per frame, the number of frames in the given TMR module and the ICAP

write throughput.

The reliability of an FPGA-based system composed of K TMR components that use MER

to recover from CM errors and an RCN for aggregating reconfiguration requests can be

derived as follows. We model the reliability of the RCN RRCN (t) using Eqs. (4.3, 4.4

or 4.5). Respectively, the reliability of each TMR component RTMR
i,r (t) in the system is

modelled using Eq. (4.5). Finally, the reliability of the system is given by the product of

the reliability of each individual component, namely the RCN and the K TMR components

[112]:

RTMR
s (t) = RRCN (t)

K∏
i=1

RTMR
i,r (t). (4.7)

In this derivation, it is assumed that failures follow a Poison distribution and the occur-

rence of errors in modules or components are statistically independent and uncorrelated.

Note that Eq. (4.7) holds true only if µ� λ, which ensures repairs are completed indepen-

dently [112]. Moreover, since the main objective of this paper is to evaluate the impact of

various RCN architectures on the total reliability of FPGA-based designs that incorporate

MER, we omit inclusion of the reconfiguration controller and the voters in our reliability

analysis.

4.6 Fault Emulation System

In this section, we outline the fault emulation system we implemented to assess the soft

error sensitivity (SES) of the RCNs we studied. A typical fault emulation system requires

mechanisms to emulate CM upsets in the FPGA by flipping CM bits (i.e., injecting faults),

as well as mechanisms to stimulate and test the application circuit after a fault has been

injected [95]. We incorporated a Xilinx MicroBlaze (MB) processing system into our

experimental platforms in order to inject faults into the CM of the RCNs and to check their

functionality. The complete fault-injection procedure is controlled by a program running

on a PC. The MB processing system incorporates the Xilinx UART, HWICAP [140] and

GPIO IP cores for communicating with the PC, injecting CM faults and testing the RCN

circuits, respectively. Please note that we inject faults into random CM bits of the RCNs.

Of the 18,300 configuration frames in the Artix-7 XC7A200T targeted in our study, 14,250

frames are contained in the clock regions we used to implement the RCNs.

Fig. 4.6 outlines the fault-injection procedure we followed in order to evaluate the SES
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of each RCN. Once the FPGA is configured and initialised, the MicroBlaze informs the

PC that it is ready to inject a CM fault. In turn, the PC sends to the MB the address

of a random CM bit that is to be tested, i.e, the address of a random CM bit in the

14,250 frames used to implement the RCNs. The MB reads the corresponding CF, flips

the corresponding bit within the CF and writes the CF back into the FPGA’s CM to

emulate a CM upset.

Boot FPGA

Device Initialization

Ready to Inject
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Injection 

Address

Inject into Specified 
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Stimulate NT Inputs
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Figure 4.6: Fault-injection flowchart.

Once a fault is inserted into the CM of the FPGA, the input of each NT in the RCN is

driven with all four possible minority report (E) values that can occur during a mission.

The input stimuli for each NT is provided through LUTRAM as shown in Fig. 4.7. In

more detail, the LUTRAM is composed from two SLICEM LUT (LUTM) primitives that

are configured as distributed RAM or in short LUTRAM. These LUTMs are reconfigured

at runtime via the ICAP to stimulate the inputs of the NTs. Given the site number and
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Figure 4.7: Input stimulus of each network terminal in the SoCs.

logic locations, the positions of the LUTM bits can be obtained from the *.ll file as

described in Sec. 4.3.4.

The MB processing system, injects a fault into the RCN, i.e., the NTs, the NC and their

interconnections, and then checks the integrity of the design by observing the output of the

NC, while stimulating the inputs of the NTs. As mentioned above, for each NT we iterate

through every possible combination of the minority report values (E = “01”, E = “10”,

E = “11”) while holding the inputs to every other NT constant at E = “00’, which signifies

the “no error” condition. Whenever a new minority report value is written to a NT, the

MB checks that the correct RR is received. In the case of the application-layer RCNs,

we always wait for the maximum number of clock cycles required for the NC to receive

an RR, before reading the Interrupt and Module ID signals of the NC. In the case of the

ICAP-based RCN, the MicroBlaze processor utilises the ICAP to read back the values of

each NT’s 2-bit register in order to determine the RR. If the RR is as expected, we change

the minority report signal to the next value. When we have cycled through every possible

status and there is no unexpected RR, we move on to the next NT. If an unexpected RR

is received, an error report is sent to the PC.

The fault emulation tool must also remove the injected fault and return the circuit to a

known functioning state before injecting the next fault. In our system, the injected fault

is fixed by writing back the frame as it was before injection, all NT inputs are set to “00”,

the RCN is reset to its initial state (i.e., the registers and the FSMs of the NTs and NC

are reset to their initial default state) and the MB returns to wait for a new fault-injection

address from the PC.

4.7 Experiments and Results

In this section we evaluate the performance of the RCNs presented in Section 4.3, in terms

of post-routing resource utilisation, latency, operating frequency, power consumption and

soft-error sensitivity. All networks have been implemented on a Xilinx Artix-7 XC7A200T
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FPGA using the vendor’s Vivado design suite 2014.4 with default settings.

4.7.1 Experimental Methodology

Synthetic layout designs

In a first experiment we studied “synthetic” layouts in which the TMR components, their

voters, and thus the NTs were distributed in a checkerboard pattern across the majority

of the device area. Moreover, the NTs and the NC were always located in partitions that

utilised the same FPGA resources irrespective of the RCN topology under test. To obtain

resource utilisation and performance results, we initially implemented designs that only

contained the components of the RCNs being tested and constrained the implementation

tools to prevent optimisations across the port interfaces of the NTs and the NC. To perform

the fault-injection experiments, we added a MicroBlaze-based RC for injecting faults and

connected a distributed RAM-based test vector (Fig. 4.7) to the input of each NT in the

RCN under test. We tested each RCN type for K equal to 7, 15 and 31 NTs. The synthetic

layout of a 31-voter design (in this case for testing the star network topology) is shown in

Fig. 4.8(a), in which the RCN into which faults were injected is depicted as the shaded

region to the right of the RC.
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Figure 4.8: a) Synthetic layout of a 31-voter design and b) RUSH floorplan.

RUSH payload designs

In a second experiment, we investigated the utilisation and performance of each RCN

when used to collect reconfiguration requests for the RUSH CubeSat payload board [32].

For this case study, we implemented the four RCN types (i.e., star, bus, token-ring and
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ICAP) with the 9 TMR components comprising the RUSH payload. These components

include a single MAC-based 21-tap Finite Impulse Response (FIR) filter with 16-bit signal

width, an 8-to-3-bit Block Adaptive Quantizer (BAQ), an 8,096-word deep 32-bit FIFO,

three 32-bit Shift Registers (SRs) having different lengths and a range of combinational

logic between the stages and three 32-bit Binary Search Trees (BSTs) of different heights

and a range of combinational logic at each node. A MicroBlaze soft-processor with the

HWICAP IP [140] was used to implement the RC. The layout of this system is depicted

in Fig. 4.8(b).

4.7.2 Implementation results of the synthetic layout designs

Table 4.1 presents information extracted from the the vendor’s implementation tools. The

results are listed according to the resource utilisation of each design; the dynamic power

consumption and the number of essential bits follow the same pattern. An exception to

this trend is the static power consumption which was the same for all RCN designs. Given

that the designs utilised less than 0.2% of the total FPGA resources on average, we believe

that the contribution of the RCN to the total static power consumption of the FPGA is

negligible, and due to this we have obtained the same result for all designs.

As expected, the ICAP-based RCN was realised with the fewest resources compared to

the other RCN architectures. This is primarily because the ICAP NTs are implemented

with just two FFs and a small amount of support logic being mapped to LUTs. As

expected, the number of PIPs and Switch Matrices (SMs) used by the ICAP approach

is significantly lower than for the other approaches. As a consequence, the ICAP-based

RCN has on average 2.7, 3.6 and 6.0 times fewer essential bits than the synthetic layouts

of the star, bus and ring networks respectively. However, the ICAP-based RCN suffers

from high network latency. It requires two to three orders of magnitude more time than

the other RCNs to transfer reconfiguration requests to the NC. In contrast, the ring has

the lowest latency, since it can achieve a higher operating frequency and only needs 1 clock

cycle per node hop. We used Eqs. (4.1) and (4.2) to calculate the latency for each RCN.

The latency of the ICAP approach is on average over 175 times that of the ring and the

latency of the star and bus networks was about 1.4 times that of the ring for the synthetic

layouts.

We investigated an optimisation of the ICAP RCN that entails constraining the registers

of those groups of NTs that are located within each clock region. These registers are forced

to be placed into a single configuration frame so that they can be accessed in a single frame
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CHAPTER 4. RECONFIGURATION CONTROL NETWORKS

read. With reference to Fig. 4.8(a), which depicts 4 voters per clock region (the 10 grey

rectangles), this optimisation resulted in the creation of horizontal wires leading from each

voter to a frame that was centrally located in each clock region. Instead of requiring 31

separate frame reads to check all voters, this approach reduced the number of frame reads

needed to 8 in total — one for each clock region used by the design. The results of this

implementation are reported in Table 4.1 in the ICAP column headed L1*. As can be

seen, this optimisation reduced the latency of the ICAP approach by a factor of 4 while

increasing the number of essential bits used over the unoptimised 31-voter ICAP design

by 32%.

4.7.3 Fault-injection results

Table 4.2 tabulates the average number of functional errors (FEs) we found after five trials

of one million fault-injections as described in Sec. 4.6. These results demonstrate that the

ICAP-based RCN is more reliable than the other approaches. Additionally, the number

of errors that occur in each RCN is directly proportional to the number of voters and thus

the number of essential bits per design.

Table 4.2: Average number of functional errors (FEs)

Type ICAP STAR BUS RING

# voters FEs SD FEs SD FEs SD FEs SD

7 7.0 1.5 8.2 2.3 16.8 2.1 51.0 4.7

15 8.2 3.5 17.0 3.0 36.6 5.0 122.1 16.7

31 20.7 1.4 38.6 4.6 78.6 7.9 213.4 27.3

SD: Standard deviation

4.7.4 RUSH case study results

Table 4.3 presents the resource utilisation and essential bits of each TMR component in the

RUSH payload. Additionally, the 6th column of the table presents the average failure rate,

λm, per module in each TMR component, while the last two columns of the table present

their average number of CFs, FM , and recovery time, tc, respectively. Please note that of

all TMR components in the RUSH payload, only the FIFO component utilises BRAMs,

and to be more specific, 15 BRAM16 (2.05%). Moreover, we calculated the failure rate

per module with λbit = 2.7 × 10−10 upsets/bit/s, and as mentioned, we assumed that

all CM upsets are critical. Last in our design, since we were using the AXI HWICAP,
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4.7. EXPERIMENTS AND RESULTS

Table 4.3: Results of implementing 9 TMR components on a Xilinx Artix-7 XC7A200
FPGA

Cmpnt
Utilisation Essential Bits λm FM

tc
LUTs FFs DSP Ebits upsets/s ms

FIR 33 (0.02%) 16 (0.01%) 1 (0.13%) 12,0K (0.02%) 3.25× 10−6 65 1.2

FIFO 72 (0.05%) 111 (0.04%) – 41,8K (0.07%) 1.13× 10−5 192 3.5

BAQ 305 (0.22%) 197 (0.07%) – 49,0K (0.08%) 1.32× 10−5 73 1.3

BST1 1,4K (1.04%) 2,5K (0.94%) – 281,6K (0.46%) 7.60× 10−5 145 2.6

SR1 1,6K (1.20%) 3,3K (1.22%) – 285,9K (0.46%) 7.72× 10−5 378 6.8

SR2 2,6K (1.96%) 5,5K (2.05%) 20 (2.70%) 515,9K (0.84%) 1.39× 10−5 474 8.5

BST2 3,8K (2.84%) 6,2K (2.32%) 31 (4.18%) 793,5K (1.30%) 2.14× 10−4 610 11.0

SR3 7,0K (5.24%) 14,6K (5.44%) 40 (5.40%) 1,403,6K (2.30%) 3.79× 10−4 1,1K 19.6

BST3 9,1K (6.82%) 12,2K (4.56%) 31 (4.18%) 1,833,2K (3.00%) 4.95× 10−4 1,5K 26.7

the ICAP throughput using the MicroBlaze was limited to 10 MB/s, considerably less

than the maximum possible throughput of 400 MB/s. The reduction in ICAP bandwidth

also affected the latency for checking a voter using the ICAP to 60 us, and we therefore

observed a much higher network latency.

Fig. 4.9 plots the system reliability for each RCN type and the 9 RUSH application circuits

using Eq. (4.7) against the reliability of a blind scrub implemented on the same system.

The MicroBlaze RC and off-chip flash configuration storage used by the RUSH system

supports a random FPGA configuration frame read latency of 60 us and a sustained

frame write period of 18 us per frame. Blind scrubbing, which entails rewriting each

configuration frame of the device, therefore takes 330 ms on the Artix-7 200T used, and

errors are recovered by scrubbing after 165 ms on average. Please note that in Fig. 4.9,

the scrub plots only account for the 9 application components; they specifically exclude

an RCN component, which is not needed for blind scrubbing. Fig. 4.9(a) assumes the four
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RCNs are implemented as simplex components. While the ICAP RCN results in the best
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reliability for MER, all four RCNs weigh down the reliability of the system because they

are single points of failure.

Fig. 4.9(b) assumes the RCNs are implemented as triplicated components, but that errors

that occur in these components are not repaired. The RCN is implemented outside the 3K

PBlocks hosting the 3K modules, and therefore do not recover from CM upsets when MER

is used. Only some limited error mitigation is therefore in place. Only the ICAP outper-

forms scrubbing over the time period shown. However, eventually (when t > 120, 000 s)

even this approach succumbs to errors that remain unrepaired and scrubbing once again

dominates.

In Fig. 4.9(c) we assume that the device is partially reconfigured in its entirety when an

error in the triplicated RCN component is detected. This error recovery period is longer

than desired, but the approach ensures any error in the network is corrected. Despite

the long recovery time (equivalent to reconfiguring the complete device), the reliability

is not significantly affected because errors occur infrequently in the relatively small RCN

components.

4.8 Related Work

Several network topologies and architectures have been proposed for Network-on-Chip

(NoC) communications in TMR-based SRAM FPGA circuits, from which, some, were

explicitly proposed for RCNs, [15, 29, 120], while, others, for more general-purpose NoCs

[81,130].

This section provides a literature survey of star, bus and token-ring application-layer

networks, as well as fabric (i.e., configuration-layer) networks. Fig 4.10 illustrates the

conceptual models of star, bus, ring and fabric RCNs.

4.8.1 Star-based RCNs

Star-based RCNs use simple network interfaces to connect the minority reports from each

voter in the SoC to a central NC [15,120]. However, the interconnecting nets between the

NTs and the NC typically span a large area across the FPGA, as shown in Fig. 4.10(a),

therefore passing through numerous programmable interconnection resources which in-

creases the failure rate as well as the critical path in the design. Most star-based RCNs
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described in the literature utilise an NC that polls the minority reports in a round-robin

manner, but it is also feasible to consider an interrupt-driven approach, whereby the voters

in the SoC interrupt the NC or the RC when a module requests reconfiguration.

4.8.2 Bus-based RCNs

Several works have utilised bus networks in TMR circuits, but none of these explicitly

targeted RCN communications. For example the authors in [81] used the Advanced eX-

tensible Interface (AXI) bus to transfer the outputs of individual TMR modules to a

centralised voter, thereby reducing the area overheads of the TMR scheme.

Bus networks can be advantageous over star networks since their shared data and address

bus wires allow new modules to be readily integrated into the system. On the other hand,

the network interfaces of nodes in bus networks are more complex than those in star

networks, which increases their resource utilisation and soft-error sensitivity.

4.8.3 Token-ring RCNs

A token-ring RCN that supported several interesting features, such as transferring the

minority report between TMR components with different operating frequencies, as well as

forward error correction techniques to mitigate soft-errors during data transmission was

proposed in [29]. In this chapter we implemented a simpler version of the token-ring RCN

proposed that utilises less resources in order to reduce its failure rate.

An important aspect of token-ring RCNs is that they scale better than star or bus networks

as the number of NTs increase in the SoC. Token ring RCNs typically link nearby NTs
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and therefore utilise more local than global wire segments of FPGA to interconnect these

NTs. In contrast, star and bus topologies interconnect NTs at a range of distances,

thereby utilising both local and global wire segments of the FPGA. However, SRAM-based

FPGAs integrate more local than global wires and therefore token-ring RCNs, which tend

to utilise more local wires, are considered to be more scalable than star and bus RCNs

when implemented in such devices.

4.8.4 Configuration-layer RCNs

Like bus RCNs, configuration-layer RCNs have not been reported in the literature. How-

ever, the idea to utilise the configuration layer of the FPGA in order to transfer data

between the components of FPGA circuits was first introduced in [52], and it was first

applied in TMR circuits in [130]. In more detail, the authors in [130] used the ICAP prim-

itive in a Xilinx FPGA to transfer the results from triplicated modules to a centralised

processor, which in turn applied software-based majority voting on the read back results.

The centralised majority voting technique was used as a secondary backup mechanism in

case the hardware voters of the TMR circuit failed due to soft-errors [130].

Needless to say, an FPGA SoC without an RC cannot implement a configuration-layer

network. However, TMR FPGA SoCs that employ MER or FMER integrate an RC

anyway, and therefore can take advantage of the DPR features of modern Xilinx FPGA

to implement a lightweight configuration-layer RCN. The most important benefit of fabric

network implementations is that they utilise a negligible amount of programmable routing

resources. This overcomes problems such as increased routing congestion or increased

area (and therefore failure rate) when the FPGA SoC embeds a large number of TMR

components that need to connect to the RCN.

4.9 Chapter Summary

In this chapter, we compared four RCN types in terms of reliability, scalability, resource

utilisation, power consumption and soft error sensitivity. The utilisation and performance

of these RCNs were assessed for synthetic designs with 7, 15 and 31 voters. The results

demonstrate that the ICAP-based readback approach, which uses the configuration layer

of the FPGA to transfer reconfiguration requests, utilises the least resources of those

networks studied.
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The experimental results of a case study that was implemented on the RUSH payload

reveal that the ICAP-based readback approach has the highest system reliability despite

having a relatively high latency. This higher latency may not be too problematic except

when radiation levels become much higher than the high rate assumed in our work. We

have shown that the latency of the ICAP approach can be reduced by clustering the

registers that are to be read from one clock region into a single frame. This optimisation

does not have a significant impact on the resource utilisation. We have also determined

that for the reliability of an FPGA SoC with MER to be competitive with a system with

periodic device scrubbing, the RCN must be triplicated and repaired when SEUs affect

it. Therefore, our TLegUp toolflow, that is presented in the next chapter, incorporates a

triplicated RCN when FMER is incorporated in the FPGA SoCs.
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Chapter 5

TLegUp: High-Level Synthesis of

TMR FPGA circuits

5.1 Introduction

State-of-the-art SRAM FPGA SoCs embed numerous scalar processing units (e.g., CPUs),

vector processing units (e.g., DSPs), as well as a large amount of programmable logic

(PL) [146], which makes them key components for implementing complex computing

systems on a single chip. This trend is enhanced by the development of sophisticated

high-level synthesis (HLS) tools that enable researchers and practitioners to increase their

productivity and rapidly realise high-performance and energy efficient FPGA SoCs [33,80].

Although HLS is not a new concept, it has only recently started gaining traction in the

FPGA design industry, selectively, or completely replacing HDL, such as Verilog, in which

a digital circuit is described at the RTL rather than at a more abstract algorithmic level.

Typically, hardware/software FPGA SoCs are developed by coding the hardware part

of the design with RTL HDL and the software part of the design using a programming

language such as C or C++. However, the escalating complexity of these systems has

motivated engineers to specify the functionality of the entire design using a high-level

language, avoiding RTL coding altogether. This development methodology also affords

the opportunity to conduct rapid design space exploration, such as to experiment with

and verify various algorithms, hardware/software partitioning styles and to explore trade-

offs between area, power and performance. Moreover, it is common these days to use a

high-level modelling language, such as the SystemC transaction-level modelling (TLM)
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language, to explore and verify design architectures at a very early development stage of

the SoC. Once a suitable architecture is found and verified, it is much simpler to turn the

HLS program into an RTL specification using HLS tools rather than having to proceed

to manual re-coding in RTL. Finally, the design cycle of an SoC is significantly shorter

when it is developed in a high-level language. For example, describing the functionality of

a 1M-gate design with RTL typically requires 300K lines of code, while with a high-level

programming language, e.g., with ANSI C, the same 1M-gate design can be described with

30K – 40K lines [33].

Given the significance of HLS tools for developing SoC designs, this chapter explores the

benefits of triplicating a design at the HLS stage, rather than at the RTL or post-synthesis

stages, which most mainstream tools, such as the XTMR or BLTMR tools do. In more

detail, we propose an HLS toolflow, which we have called TLegUp, in order to compile

HLS programs specified in ANSI C to TMR RTL designs that can be implemented on

Xilinx 7-series FPGAs. TLegUp is an extension of the LegUp HLS research framework

[24] and the triplication of the HLS designs is performed within the Low-Level Virtual

Machine (LLVM) [63] compiler Intermediate Representation (IR)1 of the framework, before

allocation, scheduling, and binding take place. TLegUp triplicates a design, partitions it

into k TMR components, and optionally floorplans the modules of the TMR components

using the academic tool [100]. As mentioned in Sec. 2.3.4, floorplanning the design reduces

resource sharing between TMR domains and therefore mitigates Domain Crossing Errors

(DCEs). Automatic floorplanning also enables designers to readily employ MER or FMER

mechanisms in their SoCs.

We have investigated a fine- and a coarse-grained approach to partitioning the TMR

generated designs into a network of k TMR components, as shown in Fig. 2.4 of Sec.2.3.1.

The fine-grained approach, which we refer to as Instruction-Level Partitioning (ILP), uses

a max-flow, min-cut algorithm [67] to partition the Data Flow Graph (DFG) of the entire

computation of the C program at the LLVM IR instruction level, after all C function

calls of the program are inlined and translated into LLVM IR. In contrast, the coarse-

grained approach, which we refer to as Functional Level Partitioning (FLP), prohibits the

C functions from being inlined during C compilation and uses the same max-flow, min-

cut algorithm as used in the ILP approach to cluster the application’s C functions into

partitions. Both, the ILP and the FLP approaches aim to balance resource utilisation

between partitions while minimising the total bit-width of signals interconnecting them.

As shall be further explained, we examined the FLP approach with a view to reducing

1LLVM IR is a machine-independent RISC-like instruction set.
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the number of wires and voters used to interconnect partitions, in order to overcome

routing congestion problems when implementing the designs, especially when they are

floorplanned. As we show in Sec. 5.2.3, LegUp generates a hardware module for each C

function call in the main C function, and each of these modules has its own local FSM

for controlling its datapath. Therefore, a TMR design that is partitioned with the ILP

approach has only one centralised FSM to control the datapath of the entire circuit since,

as mentioned, ILP inlines all C function calls into the application’s main function in order

to generate a DFG of the entire computation and partition the design. Therefore, more

partitions result in more wires and as a consequence in more voters to interconnect the

centralised FSM with the partitions (TMR components) of the circuit. This has negative

effects on the resource utilisation, operating frequency and the resource balance between

the partitions of the ILP circuits. In contrast, the TMR circuits that are partitioned with

the FLP approach do not suffer from any of the aforementioned negative effects since each

partition consists of several Verilog modules (which correspond to C function calls) and

each of these Verilog modules contains its own private FSM. Please note that hereinafter

we refer to Verilog hardware modules as Vmodules in order to distinguish them from

the triplicated modules (TMR domains) of a TMR scheme. Also note that a partition

is equivalent to a TMR component as shown in Fig. 2.4 of Sec.2.3.1, and that TLegUp

specifies in RTL each TMR domain with one Vmodule in the case of ILP designs, and

with multiple Vmodules in the case of FLP designs.

Currently, there are three ways to compile an HLS design description to a TMR RTL

design. The first way is to code TMR schemes directly into the HLS design (e.g., directly

in C), which, as investigated in [37], results in a partially triplicated circuit. The reason

for this partial triplication of the circuit is the inflexibility of inserting synchronisation

voters throughout all feedback paths of the design as well as triplicating the design’s

FSMs when a TMR scheme is coded directly into the HLS program [37]. The second

way is to first compile the C HLS program to an RTL design and then to use a tool

like R4R [14], BLTMR [20] or XTMR [141] to triplicate the design at the pre-synthesis

or post-synthesis level. The third way is to triplicate a design during HLS as proposed

in [111,134] and in this chapter. In contrast to TLegUp, the tool of [111,134] does not insert

synchronisation voters into the TMR design and also has not been validated with fault-

injection experiments. As we show in our experimental results, inserting synchronisation

voters is not a straightforward procedure. Voter insertion can have considerable side-effects

on the resource utilisation and operating frequency of the design. Additionally, during the

development of TLegUp, we had to go through a lengthy cycle of implementation and

fault-injection experiments in order to be sure that redundant logic was not optimised

during RTL synthesis.
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Fig. 5.1 illustrates how an HLS C program can be synthesised to RTL and then triplicated

with BLTMR. The HLS program is first compiled to RTL source with an HLS tool, say

LegUp, and thereafter synthesised to a proprietary post-synthesis netlist. The netlist is

thereafter converted to an Electronic Design Interchange Format (EDIF) netlist before

being provided as input to the BLTMR tool. The BLTMR tool triplicates the design and

the EDIF netlist (TMR design) is converted back to a proprietary netlist, in order to be

technology mapped, placed and routed with vendor CAD tools like the Vivado design suite.
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Figure 5.1: Typical design flow for generating a TMR design version of an HLS program.

In contrast to the work of dos Santos et al. [37], the toolflow illustrated in Fig. 5.1 is able

to generate a fully triplicated design with TMR FSMs and synchronisation voters inserted

throughout all feedback paths of the design. However, we believe that the opportunity for

rapidly modelling, exploring and verifying TMR designs using this flow is diminished for

the following reasons.

Firstly, it is difficult to quickly explore trade-offs between reliability, performance, area,

and power of various TMR design versions because there is a lengthy design cycle from

compilation to synthesis and profiling, which makes it difficult to conduct rapid design

space exploration.

Secondly, triplicating a design at the RTL pre- or post-synthesis stages has the considerable

drawback that the circuit’s schedule needs to be preserved while voters are inserted into

the data- and control-paths; the design’s critical path length is consequently increased and

the flexibility to pipeline and retime the design are hampered. In contrast, triplicating a

design at the HLS level, before scheduling and binding occur, provides the opportunity to

pipeline and retime the design in order to mitigate the negative timing effects of design

triplication and voter insertion. This is possible because the FSM and the datapath of the

TMR design are synthesised (i.e., not modified during the pre- or post-synthesis stages)

when triplication is conducted during HLS.
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Finally, tools that triplicate the design and insert voters at the post-synthesis stage need

to be fully aware of all low-level architectural details of the targeted FPGA. For example,

Fig. 5.2 depicts a 2-bit ripple-carry adder that is mapped to two slices (i.e., one CLB)

of a Xilinx Virtex FPGA [54]. Let as assume that the adder illustrated in Fig. 5.2 is

triplicated and used in a TMR design and that nets A and B are chosen as optimal

locations for inserting synchronisation voters in order to cut feedback paths in the design

with the least cost (e.g., area or performance). Although net A may be an optimal location

for inserting a synchronisation voter in the TMR design, doing so, will corrupt the post-

synthesis netlist of the design because there is no PL between the output of MULTAND

and the input of MUXCY primitives of the FPGA’s slice to implement the voting logic.

On the other hand, inserting a voter on net B may be possible but doing so will negate

the benefits of using the FPGA’s high-speed curry chain and the ripple-curry adder will

experience a considerable performance penalty.

Figure 5.2: Implementation of a 2-bit ripple adder on a Xilinx Virtex FPGA [54].

TLegUp triplicates a design at the HLS stage and the output RTL is synthesised with

the Vivado design suite tools. This reduces the complexity of triplication since Vivado

accounts for the low-level architectural details of the FPGA when synthesising and opti-

mising the TMR RTL design. However, as discussed in Sec. 2.3.5, TMR RTL designs need

to be carefully constrained in order to prevent the Vivado synthesizer from optimising the

redundant logic of the design. In contrast, such problems do not exist when triplication

is performed at the post-synthesis stage, e.g., like XTMR and BLTMR tools do, since

redundancy is inserted into an already optimised netlist of the design.

We have triplicated, implemented, analysed and tested numerous TLegUp generated TMR
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RTL designs in order to assure that the Vivado tools do not optimise redundant logic and

that the generated designs are of high-quality. In more detail, we used the TLegUp tooflow

to implement non-floorplanned and floorplanned TMR designs of 17 CHstone, DWARV

and Bambu HLS benchmarks [80] on a Xilinx Artix-7 200T FPGA and compared them

against simplex (non-triplicated) design versions. The TMR designs were automatically

partitioned with ILP and FLP into k = 1, 2, 4 and 8 TMR components. The quality of

these designs was quantified in terms of resource utilisation, maximum frequency, latency,

execution time and soft error sensitivity (SES).

Our experimental results show that both the FLP and ILP circuits utilise approximately

3 – 4× more resources than the simplex circuits when k = 1. However, the ILP circuits

suffer an exponential utilisation increase as k increases. On the other hand, results of

FLP circuits are consistently more balanced than the results of the ILP circuits across all

metrics we considered as k increases. Finally, fault-injection experiments show that both

the ILP and the FLP circuits with k = 1 and 2 are approximately 500× less sensitive to

CM upsets, which can be further improved by a factor of 1.3× – 3.4×, on average, when

these circuits are flooplanned.

This chapter is organised as follows. Sec. 5.2 provides the background information needed

to understand the development of TLegUp described in this chapter. Sec. 5.3 discusses the

challenges we had to address in order to partition the TLegUp generated designs. Sec 5.4

presents the architecture of the TLegUp toolflow. Sec 5.5 describes the experimental

methodology of this work, while Sec. 5.6 presents our results. Finally, the chapter is

summarised in Sec. 5.7.

5.2 Background

In this section, we briefly present the architecture of the official LegUp flow, the design

methodology for implementing FPGA systems with LegUp, as well as the architecture

and RTL hierarchy of LegUp generated designs. This information will help the reader to

better understand the architectural details of our TLegUp toolflow.

5.2.1 LegUp high-level synthesis flow

HLS is the procedure of turning a timed (e.g., SystemC) or untimed (e.g., C or C++)

high-level algorithm into a cycle-accurate RTL design [33]. Fig. 5.3 illustrates how LegUp
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compiles a program that is specified in ANSI C to synthesisable Verilog [24].
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Target H/W
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Library

Figure 5.3: LegUp high-level synthesis flow.

At step 1© (C compilation), the LLVM Clang C compiler reads an ANSI C program as

well as any optimisation settings (e.g., function inlining cost) and produces an optimised

LLVM IR.

At step 2© (allocation), the optimised IR code, the user constraints file, as well as the

characterisation library for the target hardware are analysed in order to define the con-

straints of the HLS problem. In LegUp the hardware units corresponding to LLVM IR

instructions are pre-synthesised for the target FPGA in all supported bit-widths so that

the FPGA resources needed to implement a given instruction as well as their associated

delay can be determined. This information is stored in the characterisation library shown

on the right side of Fig. 5.3 which is used to annotate each LLVM instruction in order

to make early circuit speed and area predictions. The constraints file contains several

allocation parameters, such as which functional units (e.g., multipliers, dividers etc.) can

be shared across multiple IR instructions and what is the intended post-route clock period

of the target FPGA circuit. The user can perform design space exploration by modifying

the default allocation settings in LegUp. For example, a shorter target clock period will

result in a more deeply pipelined circuit.

At step 3© (scheduling), each IR instruction is assigned to a specific clock cycle and this

information is used in step 4© (binding) to synthesise an FSM per Vmodule. Depending

on data dependencies and on the delay of each instruction, several instructions can be

either chained or executed in parallel in the same clock cycle.
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At step 4© (binding), IR instructions and IR variables are assigned to hardware units

and registers (flip-flops and BRAMs), respectively. Several instructions and variables can

be implemented on shared hardware units or registers, which, however, utilise additional

multiplexers to realise resource sharing that can be expensive in terms of area and de-

lay. For example, both a 32-bit adder and a 32-bit 2-to-1 multiplexer require 32 4-input

LUTs when implemented on an FPGA [24]. Therefore, LegUp commonly avoids sharing

hardware units among multiple instructions since the potential area savings are lost in

implementing the multiplexers needed to share these resources.

Finally, the IR instructions and the scheduling and binding results are analysed at step 5©
(RTL generation) in order to generate a suitable FSM and datapath for the output RTL

design that meet the user constraints that were specified during allocation at step 2©.

In short, step 5© generates the corresponding RTL description of the HLS C program

according to the user constraints and the scheduling and binding results.

5.2.2 LegUp design methodology

LegUp can synthesise an ANSI C HLS program entirely into hardware, or into a hard-

ware/software co-design. Implementing the HLS program entirely into hardware is simple.

It only requires compiling the C program to RTL and then implementing the circuit on

the FPGA as shown in Fig. 5.4(a).

The hardware/software co-design methodology, as shown in Fig. 5.4(b), is more complex.

The user typically profiles the input C HLS program in order to determine which regions

of the program will be implemented with custom hardware and which regions of the

program will run on a Tiger MIPS soft-processor [24]. In LegUp, profiling is performed at

the granularity of C functions by compiling and executing the C program directly on the

MIPS processor. Any C function that is chosen for implementation in hardware, as well as

any nested C functions within this chosen hardware-based function, are synthesised into

separate Vmodules. Finally, LegUp re-compiles and runs the C program on the MIPS

processor, while replacing the body of the C functions that are implemented in hardware

with simple code that sends and receives data between the hardware accelerators and the

MIPS processor.

The current version of TLegUp does not support hardware/software co-design SoC imple-

mentations.
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Figure 5.4: LegUp design methodology: (a) Pure hardware implementation; (b) Hard-
ware/software implementation.

5.2.3 Architecture and RTL hierarchy of pure hardware LegUp gener-

ated designs

This section presents the architecture and RTL hierarchy of an official LegUp generated

design.

LegUp generates a separate Vmodule (Verilog module) for each C function call in the HLS

program, except for very small functions that are typically inlined into the root caller func-

tion [24]. The threshold for inlining functions is configured by the -inline-threshold=N

setting of the Clang C compiler, which is set to N=100 by default.

Nevertheless, a Vmodule consists of a local memory as well as an FSM that controls the

Vmodule’s datapath, as shown in Fig. 5.5, and has the following IO ports:

• Data ports

– Input port for providing the stimulus data to the Vmodule.
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– Result port for receiving the result data from the Vmodule.

• Control ports

– Start port to start the execution of the computation.

– Reset port for resetting the Vmodule if required.

• Status port

– Finish port that indicates that the Vmodule has processed all input data

and the result data is ready for collection.

• Memory ports that exist only when a Vmodule needs to connect to a global memory

controller of the design

– Mem data ports that connects the Vmodule’s datapath to the design’s global

memory controller.

– Mem address port that connects the Vmodule’s FSM to the address bus of

the global memory controller.

– Mem control ports that connect the Vmodule’s FSM to the control ports

of the global memory controller, e.g., write enable control port etc.

Local

Memory
FSM

Verilog Module

Datapath
Result

Finish

Input

Start

Reset

Mem_data

Mem_address

Mem_control

Figure 5.5: Architecture of a Verilog module in LegUp generated designs.

By default, LegUp generates RTL code that has the same hierarchy as given by the

compiled call graph of the C application, whereby C functions deeper in the call graph

correspond to Vmodules instantiated deeper in the RTL hierarchy [24]. An exception to

this rule is the main function that is always instantiated under a top Vmodule as shown

in Fig. 5.6(b).

LegUp uses the top Vmodule in order to instantiate and interconnect the mentioned

global memory controller with the main Vmodule so that global variables can be accessed

109



CHAPTER 5. TLEGUP: HIGH-LEVEL SYNTHESIS OF TMR FPGA CIRCUITS

(a)

main

A

C D

B

C

main

A

C D

B

C

A

C D

B

C

main

(b)

Memory 

Controller

BRAM

top

FSM

Datapath

Result

Finish

Input

Start

Reset

Figure 5.6: (a) Call graph of an HLS C program. (b) Architecture and RTL hierarchy of
a pure hardware LegUp generated design.

across multiple Vmodules in the design. For example, if a C program has the program call

graph of Fig. 5.6(a), LegUp will generate an RTL design with the hierarchy of Fig. 5.6(b).

Please note that each Vmodule that is instantiated in the main Vmodule of Fig. 5.6(b)

has the architecture depicted in Fig. 5.5, in other words, each Vmodule has both its own

local FSM and its own local memory.

5.3 Challenges of Partitioning LegUp Generated RTL De-

signs

As mentioned in Sec. 5.1, we explored ILP and FLP approaches to partitioning the TLegUp

generated TMR designs. In the following, we discuss the challenges we encountered when

partitioning the designs with ILP and how these challenges were eventually addressed with

FLP.

Our goal with the ILP approach was to balance the utilisation of each partition while

minimising the interconnections, and thus the number of partitioning voters, required

between partitions. Balancing the resource utilisation between the partitions of a TMR

circuit firstly increases its reliability and secondly reduces the worst case recovery time of

the circuit when MER or FMER is used. Nevertheless, to achieve this goal, we reasoned

we should within LegUp create a flattened DFG representing the complete computation of

the application before applying a min-cut, max-flow algorithm [67] to form the individual

partitions based on the LUT area consumed by the instructions and the data-widths

of their operands and results. Building the DFG is straightforward within the LegUp

framework once the C code has been translated into the LLVM IR using Clang [24].
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However, since LegUp synthesises each C function as a Vmodule with its own data- and

control-flow, we decided to inline all functions into the main as an efficient means of

building a single DFG representing the entire computation.

A consequence of LegUp’s HLS strategy and our decision to inline all C function calls into

main is that LegUp synthesises a single FSM to control the datapath of the entire design

as shown in Fig. 5.7(a), which has flow-on effects for the efficacy and scalability of the ILP

approach. Namely, the status and control signals for each partition are tightly-coupled

with this single, central FSM controller. As the number of partitions used increases, the

central FSM becomes relatively larger and more unbalanced, and the distribution of signals

between the FSM and the k partitions becomes increasingly complex, congested and slow.

For example, Fig. 5.7(b) illustrates how the design of Fig. 5.7(a) is partitioned with ILP

into k partitions. The more partitions the ILP design contains the more interconnection

wires and voters are required to connect these partitions to the central FSM. The impact of

the central FSM becomes more prominent when the ILP designs are floorplanned. Each of

the k datapath partitions is constrained for implementation into a PBlock, which implies

that the FPGA CAD tools cannot place the logic of the design’s FSM and the datapath

in close proximity, thereby increasing the critical path of the circuit.

Please note that we do not depict the Vmodules of the remaining two modules of the TMR

scheme in Figs. 5.7 for clarity reasons. Specifically, the TMR design of Fig. 5.7(a) contains

three instances of the main Vmodule and three instances of the memory controller, but

we do not depict these in the figure.

A further problem we found with the ILP approach was that although we had calculated

resource usage based on implementing instructions with LUTs, many were eventually

mapped to DSPs and BRAMs, as they should be for enhanced performance. Our estimates

of resource usage based on LUT requirements did not, therefore, assist in balancing the

partition sizes.

In order to overcome the signal distribution problem resulting from having a centralised

FSM in the ILP design, we explored the FLP approach. Since LegUp synthesises a Vmod-

ule with its own local FSM controller for each C function, we explored forming partitions

based on clustering functions together to balance the partition sizes, thereby distributing

the single FSM produced for ILP and reducing the number of interconnections between

the partitions.

Secondly, to more accurately balance the partition sizes, we use estimates of the number

111



CHAPTER 5. TLEGUP: HIGH-LEVEL SYNTHESIS OF TMR FPGA CIRCUITS

main Memory 

Controller

BRAM

top

Central

FSM

Datapath

Result

Finish

Input

Start

Reset

Datapath of 1
st
 partition

Datapath of 2
nd

 partition

Datapath of k
th
 partition

main Memory 

Controller

BRAM

top

Central

FSM

Datapath

Result

Finish

Input

Start

Reset

(a)

(b)

Figure 5.7: (a) Architecture of a TLegUp generated design with all C function calls inlined,
(b) Architecture of a TLegUp generated design that is partitioned with ILP.

of CFs needed to implement the functions within each partition since these are more

representative of the partition’s soft error sensitivity and recovery time. These estimates

are obtained by synthesising and mapping the HLS designs on the FPGA after a first pass

through the front-end. We estimate the number of CFs needed per function by scaling the

number of resources (i.e., number of LUTs, slices, DSPs and BRAMs) used to implement

the function by the number of CFs used to implement a column of the corresponding

resource type. These estimates are then back-annotated into the hardware library used by

TLegUp. On a second pass through TLegUp, the max-flow, min-cut algorithm [67] uses

these estimates to balance the resource utilisation of the partitions based on the functions

they contain.

Although the FLP approach solved the routing congestion problems that were caused by

the central FSM of the ILP designs, the RTL hierarchy of the FLP designs however was not

suited for implementing each TMR domain of the designs in a separate Pblock. To be more

specific, when floorplanning either an ILP design or an FLP design, each TMR domain

needs to be implemented into a separate Pblock in order to 1) avoid resource sharing

between the TMR domains, and 2) selectively reconfigure the corresponding Pblock of a

faulty TMR domain as described in Sec. 2.3.
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In order to understand why the RTL hierarchy of the FLP designs did not assist in prop-

erly floorplanning them, it is important to understand the following restriction: Vivado

prohibits any children of a Vmodule to be assigned to a Pblock other than the Pblock of

the parent.

For example, Vivado prevents the user from assigning the Vmodules A inst and B inst

of the RTL hierarchy shown in Fig. 5.8(a) to Pblock 1 and Pblock 2 of Fig. 5.8(c),

respectively, because B inst is a child of A inst.

One can overcome this limitation by modifying the RTL hierarchy of the design to that

of Fig. 5.8(b), in which B inst is not a child of A inst. This necessitates:

• Converting signals connecting A inst and B inst in Fig. 5.8(a) to external ports

of A inst in Fig. 5.8(b); and

• Connecting A inst and B inst with signals in the main inst of Fig. 5.8(b).

(a)

main_inst

A_inst

B_inst C_inst

top FPGA

Pblock_1

Pblock_2

(c)(b)

main_inst

A_instB_inst

C_inst

top

Figure 5.8: (a) RTL hierarchy of a random design, (b) Modifying the RTL hierarchy, (c)
FPGA floorplanning layout.

Due to the floorplanning limitation mentioned above, only the ILP designs can be floor-

planned without modifying their RTL hierarchy because their TMR domains are imple-

mented with Vmodules at the same level of the hierarchy, for instance, like A inst and

B inst in Fig. 5.8(b). In contrast, floorplanning an FLP design may require placing

sub-Vmodules in different Pblocks to their parents, which, as mentioned, is prohibited

in Vivado. In order to be able to place the Vmodules (corresponding to C functions) of

a TMR domain into a single Pblock when floorplanning an FLP design, we flatten their

RTL hierarchy. In other words, irrespective of depth, nested functions are instantiated at

the same RTL hierarchy level as function main.
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The following two examples show how ILP and FLP designs are floorplanned.

Floorplanning an ILP design

An ANSI C HLS program with the C function call graph of Fig. 5.9(a) has the RTL hierar-

chy of Fig. 5.9(b) when triplicated and partitioned using ILP with k=2. The three modules

(i.e., TMR domains) of partition 1 are the Vmodules partition 1A, partition 1B and

partition 1C shown in Fig. 5.9(b) and Fig. 5.10(a), respectively. Similarly, the second

partition consists of Vmodules partition 2A, partition 2B and partition 2C.

ILP inlines all C functions of the main program depicted in Fig. 5.9(a) in order to create

a single DFG for the whole computation and then partitions it. This results in the TMR

design of Fig. 5.9(b), whereby the Vmodules corresponding to its TMR domains are all

instantiated at the same RTL hierarchy level and can thus be floorplanned without mod-

ification. The six TMR domains of the ILP design are simply assigned to six separate

Pblocks, as shown in Fig. 5.10(b).
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main_inst_3
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(b)

Figure 5.9: (a) Function call graph of an HLS application, (b) TLegUp RTL hierarchy
output when the HLS application is partitioned with ILP for k = 2.
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Figure 5.10: Floorplanning an ILP partitioned design: (a) Conceptual floorplanning lay-
out, (b) FPGA floorplanning layout

Floorplanning an FLP design

Let us assume that the C program of Fig. 5.9(a) is partitioned using FLP with the TMR

design with the RTL hierarchy of Fig. 5.11. TLegUp creates three copies of main inst,

A inst and C inst, to implement the three TMR domains of the first partition (i.e.,

TMR component) and three copies of B inst, D inst and E inst to implement the

three TMR domains of the second partition. Please note that in Fig. 5.11 we do not

depict the child Vmodules of main inst 2 (TMR domain B) and main inst 3 (TMR

domain C) for the sake of clarity.

TLegUp firstly flattens the RTL hierarchy of the design as shown in Fig. 5.12 and then

floorplans the design as shown in Fig. 5.13. As Fig. 5.13 depicts, the first, the sec-

ond and the third TMR domains of Partition 1 are implemented in PBlock A1,

PBlock B1, and PBlock C1, respectively, while the first, second and third TMR do-
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Figure 5.12: An FLP partitioned design with flattened RTL hierarchy.

mains of Partition 2 are implemented into PBlock A2, PBlock B2, and PBlock C2,

respectively.

In TLegUp, Vmodule flattening is performed in the LLVM IR before RTL code genera-

tion by identifying those signals that cross function boundaries and adding ports to the

function’s interface if these are not already present.

Needless to say, the relative sizes of the specified functions impact the balancing of the

partition sizes. TLegUp provides feedback to the user regarding the number of resources

and the estimated number of frames used to implement each function. Together with

feedback on the partitioning of the functions derived by the system, the total bitwidth

of the signals crossing the partitions, and the number of partitioning and synchronisation

voters added to each partition, we believe the designer has the necessary information to

re-factor the C specification to achieve a better resource balance if desired.

Finally, both the ILP and FLP designs experience a further drawback similar to that

caused by the central FSM in the ILP designs. All partitions that contain code that uses

the shared global memory need to connect with it. This feature of the framework can,
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Figure 5.13: Floorplanning an FLP partitioned design.

therefore, lead to a proliferation of wires between the partitions and the shared memory

block when we try to adapt it to automatically produce TMR designs. This is primarily a

drawback of the approach taken by LegUp to provide a global memory to the Vmodules

of the design. But it becomes more prominent when the designs are triplicated and even

worse when triplicated and floorplanned. For example, Fig. 5.14 illustrates the required

multiplexing that is instantiated in the LegUp generated design of Fig. 5.6(b) in order to

share the global memory between all Vmodules of the design. The deeper the instantiation

of a Vmodule in the RTL hierarchy the more multiplexing required to reach the memory

controller which can considerably reduce the maximum operating frequency of the circuit.

5.4 Architecture of the TLegUp Toolflow

Fig. 5.15 illustrates the architecture of the TLegUp toolflow, which is divided into two

parts, a front- and a back-end part. The front-end of TLegUp involves high-level syn-

thesis of the C program as done in the official LegUp flow, as well as three additional
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Figure 5.14: Memory hierarchy of the LegUp generated design shown in Fig. 5.6(b).

tasks: 1) design triplication, 2) design partitioning and 3) voter insertion. The RTL is

then implemented on an Artix-7 200T FPGA with the back-end, which involves netlist

synthesis, technology mapping, optional floorplanning, placement, routing, and bitstream

generation. The following sections provide more detail about the architecture and imple-

mentation of both parts in TLegUp.
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Figure 5.15: The TLegUp toolflow.

However, before providing the details of our proposed TLegUp flow, it is helpful to il-

lustrate the structure of the TegUp generated designs as well as the locations in which

TLegUp inserts voters. At the top level, as depicted in part 1) of Fig. 5.16, three copies

of the partitioned design are implemented. Reducing voters (RV) are inserted to convert

each triplicated output of the circuit to a single signal. Each circuit replica consists of a

partitioned circuit as illustrated in part 2). Each partition corresponds to a TMR compo-
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nent that has three functionally identical modules (TMR domains). Partition voters (PV)

are inserted on the partition boundaries for each exiting signal. In order to re-synchronise

the state between TMR domains and to prevent error proliferation, synchronisation voters

(SV) are inserted into every datapath cycle in part 3). These are of course also needed

within the next state logic of FSMs, as illustrated in part 4). Finally, TLegUp inserts PVs

on the output of the global memory controller as depicted in part 5).
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Figure 5.16: TLegUp generated TMR code and voter locations.

TLegUp supports the generation of TMR circuits that can be either repaired with periodic

CM scrubbing, MER or FMER. In case of TMR circuits that incorporate MER or FMER,

TLegUp automatically instantiates voters with a 2-bit minority report output as shown

in Fig 2.8 of Sec. 2.3.2. Additionally, the user can instruct TLegUp to insert registers to

the PVs of the global memory controller in part 5) in order to decrease the critical path

between the memory controller and the Vmodules, especially for those Vmodule that are

instantiated deeper in the RTL hierarchy (e.g., as shown in Fig. 5.14). Finally, it should

be noted that TLegUp does not triplicate the clock and reset signals in the generated

TMR RTL designs.

5.4.1 Front-end

TLegUp uses two different front-end versions to implement the ILP and the FLP approach,

which have a similar architecture. In this section, we present the architecture of the ILP

front-end and show the extensions we made in order to realise the FLP front-end.
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5.4.1.1 Instruction-Level Partitioning

Fig. 5.17 illustrates the design flow of the ILP front-end in TLegUp.
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Compiler

(LLVM)

ANSI C 

Program
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3
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Figure 5.17: The architecture of the TLegUp ILP front-end.

At step 1©, the LLVM Clang compiler reads an ANSI C program and inlines all C function

calls of the program in order to produce an optimised LLVM Intermediate Representation

(IR) of the whole computation. The LLVM Clang compiler inlines all C function calls

when the -inline-threshold cost of functions is set to an extremely large value (e.g.,

-inline-threshold=10,000,000). In other words, it is almost impossible for any of

the HLS application’s C functions to have a cost larger than 10,000,000, which therefore

forces all C function calls to be inlined during compilation.

At step 2©, the LLVM IR is converted into a DFG. Nodes in the DFG represent IR in-

structions, edges represent data dependencies between nodes, while edge weights represent

the bit-widths of the LLVM instruction operands and results. In more detail, each node

in the DFG is a data structure that stores an IR instruction as well as a Boolean flag to

indicate that the specific IR instruction should be voted on at step 7©.

At step 3©, a modified version of the max-flow, min-cut algorithm presented in [67] is used
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to partition the DFG of the C program into k sub-graphs, while minimising both the total

number of interconnection nets between partition boundaries and the standard deviation

between the average utilised LUTs of all k partitions. The outputs of this step are: 1) a

list of LLVM instructions per partition that do not overlap, and 2) a list of instructions

per partition that would be voted on in the final RTL design, i.e., at step 7©.

At step 4©, the delay of each LLVM IR that will be voted on at step 7© is modified so

that these instructions account also for the delay of the voters. This is very useful when

scheduling the LLVM IR instructions at step 5©. It enables the HLS tools to minimise

the negative timing effects of inserting partitioning voters (PVs) into the design during

scheduling and binding. In more detail, the LegUp HLS tools try to achieve the targeted

clock period (given in the configuration file as shown in Fig. 5.17) by pipelining the design,

i.e., by inserting registers into critical paths.

At step 5©, allocation, scheduling, and binding are performed on the updated list of LLVM

IR instructions using LegUp HLS as descried in Sec. 5.2.1 for steps 2 – 4 of Fig. 5.3.

At step 6©, a Depth First Search (DFS) algorithm [35] is used to find all cycles (feedback

paths) in the application’s DFG. The output of the DFS algorithm is a list of cycles, where

each cycle is represented as a sequence of LLVM IR instructions. The list of cycles, as

well as the scheduling table (created at step 5©) is analysed, and synchronisation voters

(SVs) are inserted into each cycle of the application’s DFG. In order to minimise the

performance penalty caused by inserting SVs in the design, we first find the delay of

chained instructions between all pairs of registers in the LLVM IR and then insert the SVs

into those paths with the most slack. For example, Fig. 5.18(a) illustrates three LLVM

IR instructions in the DFG that form a registered loop. The scheduling table of these

three instructions is shown in Fig. 5.18(b), while the datapath of the RTL design that

would have been generated if we used the unmodified LegUp flow is shown in Fig. 5.19(a).

Assuming that each instruction shown in Fig. 5.19(a) has a delay of 5 ns, the logic “add”

between the output of R1 and the input of R2 registers will have a 5 ns delay, while the

logic “sub+phi” between the output of R2 and the input of R1 will have 5 ns + 5 ns =

10 ns delay. Assuming that the delay of an SV is 3 ns, the maximum operating frequency

of the circuit will not be affected when an SV is inserted at the output of R1, since the

overall delay of the “add” logic and the “SV” logic is 7 ns. This is less than the delay of

the “sub” logic and the “phi” logic that sums to 10 ns. TLegUp creates a graph for each

cycle in the DFG, where nodes represent registers and edges the delay between registers

as shown in Fig. 5.19(b). It then iterates through all nodes in the graph in order to find

and insert an SV on the edge with the least delay.
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Figure 5.18: (a) A sequence of IR instructions forming a registered loop, (b) Scheduling
table of the IR instructions.
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Figure 5.19: (a) Datapath of the IR instructions, (b) Graph for capturing the clock slack
of instructions between registers in a cycle.

Finally, at step 7©, Verilog code for the TMR design is generated. The RTL generation

step is seamlessly coupled with triplicating the logic of the RTL design and inserting the

voter logic. Because the RTL generation is a simple translation step that converts LLVM

IR instructions into Verilog RTL code, we do not triplicate the LLVM IR instructions in

previous steps. Instead, we translate each LLVM instruction into RTL code, replicate this

RTL code two more times and insert RTL code for voters and interconnection signals if

the output of the LLVM instructions was identified as a voter insertion location at steps 3©
or 6©. Triplication is postponed until step 7© because all three TMR modules must be
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identical in their datapaths, FSMs and voter locations.

5.4.1.2 Function-Level Partitioning

This section presents how the TLegUp ILP front-end has been extended in order to en-

able FLP, which, as discussed earlier forms partitions by clustering the C function calls

(Vmodules in RTL) of the HLS application.

Fig. 5.20 illustrates the FLP design flow, which in contrast to the ILP flow shown in

Fig. 5.17 incorporates the following two additional steps:

• Step 8©: A preliminary RTL synthesis of the design is executed in order to obtain

an accurate estimation of the resource utilisation per Vmodule.

• Step 9©: The RTL hierarchy of the final FLP partitioned design is flattened in order

to be properly floorplanned as described in Sec. 5.3.

In more detail, the FLP design flow can be coarsely divided into two parts as shown in

Fig.5.20. In the first part of the flow, steps 1©, 2©, 5©, 6©, 7©, and 8©, TLegUp compiles

the HLS C application into a non-partitioned TMR RTL design and synthesises it with

the Vivado design suite in order to extract the resource utilisation per Vmodule (i.e., C

function call in the HLS application) as well as the total interconnection signals between

each pair of Vmodules. This information is stored in the characterisation library shown in

the bottom-left of Fig. 5.17 and is used in the second part of the flow, namely, steps 3©, 7©,

and 9©, in order to partition the design with the FLP approach. In particular, the second

part of the FLP flow uses the resource utilisation per VModule and the total number of

interconnections between each pair of Vmodules in the design in order to apply function-

level partitioning at step 3©, RTL hierarchy flattening at step 9©, and finally triplicate and

generate the RTL of the final design during the second invocation of step 7©.

Steps 2© and 3© in the FLP flow are also modified as follows:

• At step 2© of the FLP flow two different kinds of DFGs are generated: 1) an

instruction-level DFG, as used in the ILP design flow, in order to find and insert

SVs into the design, and 2) a function-level DFG that is used for partitioning the

design. In the function-level DFG, nodes represent the corresponding Vmodules of

C function calls in the HLS application, while edges represent the data dependencies
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Figure 5.20: The FLP design flow of TLegUp.

between nodes. Specifically, each edge is simplified with a directed edge, with the

edge weight being the sum of the bit-widths of interconnections between Vmodules.

Please note that at step 2© of the ILP flow, only the instruction-level DFG of the

HLS application is generated and used for both SV and PV insertion.

• Like the ILP design flow, the same network-flow algorithm is used for the FLP de-

sign partitioning at step 3©, but the algorithm is modified in a way that balances

the number of configuration frames (CFs) between Vmodules instead of the num-

ber of LUTs. By using the number of CFs instead of the number of LUTs, we

can balance the area between the partitions more accurately, and also estimate the

reconfiguration time of each TMR domain.

5.4.2 Back-end

The back-end part of our TLegUp flow incorporates the Xilinx Vivado 2017.2 design suite

in order to synthesise and implement the generated TMR RTL designs on a Xilinx Artix-7

200T FPGA as well as an academic floorplanner [100] to optionally floorplan the designs.

A flag to enable the floorplanning of a design is included in the back-end configuration file

shown in Figs. 5.15 and 5.21.

As mentioned, each TMR domain in the ILP design is described with a single Vmodule,

while a TMR domain in the FLP design is described though a list of Vmodules. The

names of Vmodules corresponding to each TMR domain of the design, as well as the

total bitwidth of interconnections between each pair of TMR domains, are reported by

the front-end and stored in the back-end configuration file.

Fig. 5.21 illustrates how the back-end part of the TLegUp toolflow automatically floorplans

a TMR design. At step 1©, the floorplanner analyses the post-mapping netlist of the design
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Figure 5.21: The architecture of the floorplanning flow.

and extracts the required number of slices, DSPs and BRAMs for each TMR domain of

the design as reported in the back-end configuration file.

At step 2©, the floorplanner generates a list of all possible Pblocks that can be created on

the fabric of an Artix-7 200T FPGA. Note that the Pblocks span one or more complete

configuration rows and are aligned to slice, DSP and BRAM columns so that partial

reconfiguration can easily and effectively be applied [100]. Subsequently, a set of feasible

Pblocks is assigned to each TMR domain of the design. The selection of Pblocks for

the TMR domains is determined by the availability of resources a Pblock has for each

TMR domain. For example, in our experiments, we only assign a Pblock to a TMR

domain if its utilisation ranges between 40% and 87% (i.e., similar to the default values of

Vivado’s 2017.4 automatic floorplanner), on average, for all resource types (CLBs, DSPs,

and BRAMs) we consider.

At step 3©, the floorplanning solver [100] is used to find a near-optimal floorplanning

solution for the design. The solver uses a genetic algorithm to select a suitable Pblock

from the set of Pblocks that were assigned to each TMR domain in step 2© in a way that

reduces the overall wire-length and resource utilisation of the final circuit.
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Finally, at step 4© the solution from the solver is translated into XDC constraints so

that all TMR domains are placed and routed into specific Pblocks of the FPGA during

implementation.

5.5 Experimental Methodology

5.5.1 Resource utilisation, performance, resource balance and imple-

mentation time

We used LegUp to produce simplex (non-triplicated) designs and TLegUp to produce

triplicated designs of the 17 CHstone, DWARV and Bambu HLS benchmark applications

[80]. For each benchmark, we generated the following designs:

• Two simplex versions: we created one simplex version in which we prevented LegUp

from inlining any functions (Simplex/NIF) and a second version in which all func-

tions were inlined (Simplex/IF); and

• Eight TMR versions: we created four TMR designs using FLP with k = 1, 2, 4 and

8 partitions, and four TMR designs using ILP, also with k = 1, 2, 4 and 8 partitions.

We refer to these sets of designs as TMR/FLP and TMR/ILP, respectively. Both

the ILP and the FLP designs were implemented on the FPGA with and without

floorplanning them, which we denote with the acronyms FL and NFL, respectively.

The above naming convention is summarised in Table 5.1.

In our results, we compare the utilisation, performance, soft error sensitivity (SES) and

implementation time of the TMR/ILP circuits against the Simplex/IF circuits as the

degree of partitioning, k, is varied. Similarly, we compare the results for the TMR/FLP

circuits with those for the Simplex/NIF circuits as k is varied. Last, we compare the

resource balance achieved by TMR/FLP with that achieved by TMR/ILP as k is varied.

We used the following metrics in order to evaluate and compare the quality of all circuits:

• number of utilised Slices (SLI), BRAM16 (BM) and DSPs;

• maximum operating frequency (FM) given in MHz;
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Table 5.1: Naming convention used to describe the designs that were implemented on the
Artix-7 FPGA.

Name Description

Simplex/NIF Simplex designs with none of the application’s C func-
tions inlined.

Simplex/IF Simplex designs with all of the application’s C functions
inlined.

TMR/FLP TMR designs with none of the application’s C functions
inlined that were partitioned with the FLP approach.

TMR/ILP TMR designs with all of the application’s C functions
inlined that were partitioned with the ILP approach.

• latency (LT) given in number of required clock cycles to obtain the result from the

application; and

• execution time (ET), that is ET = LT
FM , given in µs.

Note that LT was measured via functional simulation of the designs, while resource util-

isation and FM were extracted from post-routed circuits. The FM for all designs was

derived from the critical path slack for an FM target of 66.7 MHz.

Additionally, for the TMR circuits we report:

• The total number of instantiated synchronisation (SV) and partitioning (PV) voters

in the designs;

• The coefficient of variation (CV), i.e., standard deviation / arithmetic mean, of the

utilised LUTs and the number of CFs for the circuit’s partitions to assess how well

FLP and ILP algorithms balance resources between partitions. Smaller values of CV

imply more resource-balanced partitions.

• The implementation time (IT) of each design which is given in minutes. The IT

consists of the time it takes to generate the RTL TMR designs with our front-end

plus the time it takes to implement the designs on the FPGA with our back-end.
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5.5.2 Estimating the soft error sensitivity

In order to evaluate the SES of all circuits, we re-implemented the designs, but this time

incorporating a MicroBlaze (MB) soft-processor to perform fault injection experiments.

Fault-injection testing involves randomly flipping an essential bit (EB) of the Design Under

Test’s (DUT’s) CM and subsequently checking whether the DUT still functions correctly.

Please note that each DUT contains test vectors stored in BRAM.

The MB was programmed to flip a random EB using the ICAP, to test the functionality

of the circuit by setting the start bit and comparing the result with a golden reference

value stored in the MB. After a test, the injected fault was reversed and the circuit was

reset prior to the next test. We injected faults into a random 15% of the EBs of each DUT

in order to speed up the fault-injection campaign [106], and counted as functional errors

those tests for which the circuit’s output did not match the golden result or for which the

finish signal was not asserted after the expected ET had elapsed. We report the SES of

each DUT, which is calculated as the number of functional errors observed divided by the

number of injected bits. Needless to say, we did not inject faults into the CM of the MB,

since it forms part of the test harness rather than the DUT.

5.5.3 Configuration of the tool flow

In order to prevent the inlining of C function calls for Simplex/NIF and TMR/FLP, we

set the inlining cost to 10,000,000, while it was set to 0 to force inlining of C functions for

Simplex/IF and TMR/ILP. We synthesised the RTL designs by setting Vivado’s synthe-

sizer to target “design performance” as this is the default configuration for LegUp. We

also disabled all resource sharing options in Vivado to prevent the tools from optimising

redundant logic. We used the default settings for the the genetic algorithm of the floor-

planner, which was run for 30 minutes to floorplan the design, while the mutation and

crossover probabilities were set to 0.15 and 0.85 respectively. We used a server with two

Intel Xeon X5660 CPUs (48 cores running at 2.80GHz) and 64GB of RAM to run our

flow on Ubuntu 64-bit 16.04 LTS, but we assigned only one core for the implementation

of each circuit in order to be able to compile 48 designs in parallel at a time.
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5.6 Experimental Results

5.6.1 Simplex circuits

In Table 5.2, we report the resource utilisation, performance, implementation time (IT),

essential bits (EB) and SES of simplex circuits with non-inlined functions (NIF) and with

inlined functions (IF), while at the bottom of the table we report the geometric mean

(Gmean) of the results for all circuits excluding jpeg for which the C Clang compiler failed

to inline the application’s C function calls.

When comparing the NIF results with those for IF, there is a noticeable difference in

FM (31% higher), LT (69% higher) and ET (28% higher than for IF). The shorter mean

execution time for the IF circuits is primarily due to a significantly lower latency, despite a

lower circuit speed. We believe this reduction in latency is primarily due to the increased

parallelism present when all functions are inlined in the DFG.

While there are some significant individual differences between the NIF and IF designs,

apart from the difference in performance between the two design types, there is no signif-

icant difference in mean utilisation, soft error sensitivity or implementation time.

All circuits required on average 6 minutes to implement, i.e., from C to bitstream.

5.6.2 TMR circuits

Table 5.3 reports the implementation time (IT) – from C to bitstream – of the TMR/FLP

and TMR/ILP circuits that were partitioned into k = 1, 2, 4 and 8 TMR components and

were either not floorplanned (NFL) prior to implementation, or were floorplanned (FL)

before being implemented. Designs that could not be partitioned into k ≥ 4 with FLP,

due to an insufficient number of C functions, are reported with the letter C in the table.

Similarly, circuits that failed implementation, due to routing congestion or unavailability

of resources are reported with the letters R and L, respectively. As mentioned, jpeg was

not implemented because the Clang C compiler fails to inline all of its C functions, which

is reported with the letter I.

We found that although ILP was able to synthesise designs for any k, many of these

designs failed routing when floorplanned due to routing congestion. On the other hand,

not all values of k could be explored with FLP due to a lack of C functions in their HLS
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5.6. EXPERIMENTAL RESULTS

specification, but all feasible FLP designs were successfully routed since they were less

congested than the ILP designs.

We found our flow was able to implement 90% of completed TMR designs in 123 minutes

or less, which, while it represents a significant increase from the time to implement the

simplex designs, we believe to be relatively low when compared to the time needed to

handcraft implementations. We found that the times to implement the non-floorplanned

results were fairly constant and similar between the FLP and ILP designs, although the ILP

results for adpcm, gsm, motion and sha are noticeably higher than for FLP. Floorplanning

appeared to lead to more variability in the results, particularly as we pushed up against

resource constraints. Only jpeg required excessive time to finish because we targeted

FM = 66.7 MHz, an unrealistic target for Vivado’s router. For example, jpeg finishes

implementation in 1 hour, when the FM target is set to 10 MHz.

Note that we do not report averaged implementation times since the lack of results as k

increases provides insufficient data for meaningful comparison.

5.6.3 Resource balancing

Table 5.4 reports on the coefficient of variation (smaller is better) in the LUTs and CFs

utilisation for the k = 1, 2, 4 and 8 partitions generated with FLP and ILP. The Gmeans

are calculated over those entries for which we have a result for both FLP and ILP, e.g.,

for k = 8, we have only included the dfadd and motion results in our calculations. The

results show that the FLP designs balance the number of LUTs better than the ILP

designs across all values of k. This happens for the following two reasons: 1) although

many LLVM instructions in the ILP designs are expected to be implemented with LUTs

in the final circuit, they are eventually implemented using different resources, such as

DSPs and BRAMs, which leads to poor resource estimates, and 2) the single FSM of an

ILP design is generated only after the design is partitioned, which depending on the HLS

design, such as whether or not it is control oriented, may be much smaller or larger than

the partitions of the design.

Contrary to our goal, the FLP designs are worse in terms of CF balance than the ILP

designs. We believe that these unexpected results are observed for the following reason.

The FLP approach triplicates and implements a design before partitioning in order to

obtain from post-routing results the resource utilisation per Vmodule and uses the result to

estimate the CFs per Vmodule. However, after partitioning the design, Vivado packs and

maps differently because the characteristics of the design have been altered. For example,
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CHAPTER 5. TLEGUP: HIGH-LEVEL SYNTHESIS OF TMR FPGA CIRCUITS

the RTL hierarchy of the design is modified, many Vmodules incorporate additional ports,

and partitioning voters have been inserted.

Table 5.4: Coefficients of variation (standard deviation/average) of resource balance (LUTs
and CFs) between partitions.

DUT

FLP ILP

k=2 k=4 k=8 k=2 k=4 k=8

LUT CF LUT CF LUT CF LUT CF LUT CF LUT CF

adpcm 0.13 0.44 0.70 0.66 - - 0.54 0.36 1.20 0.26 1.88 0.32
aes 0.53 0.04 0.85 0.28 - - 0.49 0.00 1.22 0.12 2.05 0.38
aesdec 0.59 0.34 0.96 0.36 - - 0.67 0.20 1.00 0.95 2.06 0.76
bell 1.01 0.61 - - - - 0.69 0.02 1.19 0.28 2.18 0.59
blowf. 0.11 0.32 0.79 0.40 - - - - - - - -
dfadd 0.37 0.02 1.20 0.24 2.05 0.20 0.82 0.28 1.27 0.39 2.05 0.31
dfdiv 0.41 0.58 0.73 0.96 - - 0.07 0.97 1.31 1.21 2.13 1.73
dfmul 0.65 0.05 1.16 0.37 - - 0.73 0.30 1.27 0.44 2.11 0.66
gsm 0.22 0.09 0.50 0.50 - - 0.32 0.10 0.83 0.19 1.89 0.44
jpeg 0.33 0.17 0.70 0.11 1.04 0.15 - - - - - -
mips 0.02 1.03 - - - - 0.87 0.86 1.56 0.59 2.05 0.70
mmult 0.72 0.08 - - - - 1.03 0.42 1.42 0.29 1.91 0.44
motion 0.51 0.02 1.09 0.22 1.63 0.46 0.56 0.13 1.11 0.27 1.72 0.33
satd 0.54 0.53 - - - - 0.63 0.38 1.25 0.59 2.20 0.78
sha 0.49 0.15 0.86 0.35 - - 0.80 0.32 1.18 0.39 1.89 0.60
sobel 1.11 1.29 - - - - 0.84 0.95 1.29 1.08 1.50 1.37

Gmean 0.39 0.18 0.87 0.39 1.83 0.30 0.57 0.11 1.14 0.37 1.88 0.32

5.6.4 Utilization and performance

In Fig. 5.22 (a) we report on the number of inserted synchronisation and partitioning voters

in the TMR designs. In Fig. 5.22 (b) we show how these voters affect the slice utilisation.

In Fig. 5.22 (c) we show how triplication affects the FM of the circuits when the designs

are not floorplanned, while in Fig. 5.22 (d) we show how FM is affected when they are

floorplanned. We found that the slice utilisation of the floorplanned implementations

is similar to that of the non-floorplanned implementations. In more detail, Fig. 5.22 (a)

reports the actual number of inserted voters, while Figs. 5.22 (b), (c), and (d) report results

that are normalised to the corresponding simplex results (Simplex/NIF for TMR/FLP, and

Simplex/IF for TMR/ILP).

The left and right sides of the figure illustrate the results for the FLP and ILP circuits

respectively. As expected, the number of voters in the ILP circuits increased much more

than for the FLP circuits as k increases from 1 → 8, due to the increasing number of nets
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CHAPTER 5. TLEGUP: HIGH-LEVEL SYNTHESIS OF TMR FPGA CIRCUITS

and therefore utilised voters between the central FSM and the partitions.

We found the slice utilization of the FLP designs to be more consistently around 3–4× that

of the Simplex/NIF designs and that it did not suffer the exponential utilization increase

ILP designs exhibit as k increases.

For the non-floorplanned circuits, the performance penalty suffered by FLP is generally

less than that suffered by the ILP circuits. The FLP results also appear to be more

stable as k increases, and there is less variability in the results across the circuits. With

floorplanning, the performance hit is greater and there is a more pronounced deterioration

in performance for ILP with increasing k. When comparing the FLP TMR circuit with

their simplex counterparts for k=1 and k=2, the triplicated circuits had on average 11%

frequency drop when they were not floorplanned and 13% when they were. We do not

compare the ILP TMR circuits with their simplex counterparts since most triplicated

circuits that were floorplanned failed to finish routing.

5.6.5 Soft error sensitivity

Table 5.5 reports on the SES of the TMR/FLP and the TMR/ILP designs relative to the

Simplex/NIF and the Simplex/IF designs, respectively, for both NFL and FL implementa-

tions. Since comparable data is lacking, we computed Gmeans across all designs excluding

blowfish, dfsin, jpeg and sha for k = 1 and 2, and found that TMR affords approximately

500× improvement in SES over the corresponding simplex circuits. This improvement is

enhanced by a factor of 1.3× – 3.4×, on average, when the circuits are floorplanned. For

k ≥ 4, we feel that there is insufficient data to produce meaningful results.

We generally observe a decrease of SES in both the NFL and FL designs across all values

of k. Exceptions to this observation, such as mmult, satd, sha and sobel, may simply be

due to the different AVF of each circuit.

5.7 Chapter Summary

In this chapter we presented an automated flow that produces fault-tolerant FPGA imple-

mentations of TMR circuits from C specifications using a high-level synthesis tool based

on LegUp, and an academic floorplanner to isolate the modules of each component and

to facilitate recovery from configuration memory errors. We presented and compared two
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CHAPTER 5. TLEGUP: HIGH-LEVEL SYNTHESIS OF TMR FPGA CIRCUITS

automated approaches to partitioning the circuits into a number of equally-sized TMR

components for the sake of enhancing the reliability of the circuit and reducing the error

recovery time when MER or FMER is used.

Our experimental analysis, using standard HLS benchmark designs, found that parti-

tioning the designs at the C function level (FLP) afforded a number of advantages over

partitioning the designs at the more fine-grained instruction level (ILP). The advantages

of triplicating with FLP over ILP, and relative to corresponding circuits that are not trip-

licated, include: lower resource utilization, less performance impact, and better resource

balancing. We found little difference between FLP and ILP in the improvement in SEU

sensitivity (SES) gained from triplication, which was found to be equally good for both

methods. We also found that floorplanning resulted in a marked further improvement in

SES compared with not floorplanning the circuit implementations. Overall, we observed

that most circuits could be implemented in under 123 minutes after the C specification

was available. This is a significant improvement over manually implementing partitioned,

TMR circuits. Our automatic flow effectively relieves the designer of a good deal of com-

plex and tedious labour.
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Chapter 6

Conclusions

Traditionally, researchers and practitioners have used space-grade Field Programmable

Gate Arrays (FPGAs) in space applications. These devices are more immune to SEUs

than commercial SRAM FPGAs and can withstand a higher level of total ionising dose

(TID). However, this thesis argues that space-grade FPGAs are not practical for developing

low-cost, high-performance space applications, for instance, computing systems used in

CubeSats, due to their high cost, restricted availability, and outdated characteristics.

This thesis proposed fault-tolerant techniques and computer-aided design (CAD) tools to

enable commercial SRAM FPGA to operate reliably in space. In summary, a mechanism

for rapidly and efficiently recovering configuration memory (CM) upsets in Triple Modular

Redundancy (TMR) FPGA was proposed. Dependability and energy consumption models

were derived to better understand how TMR FPGA circuits perform in space, depend-

ing on several design parameters, such as the utilised CM error recovery mechanism, and

the number of TMR partitions. A technique to reliably transfer the minority reports of

TMR circuits, i.e., which TMR domains require recovery, to the reconfiguration controller

(RC) of the FPGA circuits was proposed. A computer-aided design (CAD) tool, namely

TLegUp, that automatically triplicates and partitions Xilinx 7-series FPGA designs with

high-level synthesis (HLS) techniques was proposed. An investigation of how floorplanning

affects the soft error sensitivity (SES) in TMR FPGA circuits was conducted. Finally, a

rich set of analytical and experimental results were provided to demonstrate the effective-

ness and practicality of the thesis contributions.

This chapter summarises the contents of this thesis, draws conclusions, and finally provides

future research directions.
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6.1 Thesis Summary and Concluding Remarks

As Chapter 1 reported, instruments and sensors in space applications can generate a

large amount of raw data in short time periods. This raises the need for onboard high-

performance computing systems to perform computationally intensive tasks, such as data

compression and real-time data mining, in order to reduce bandwidth saturation and

enable data transmission to ground stations. Commercial SRAM-based FPGAs provide

attractive specifications for developing high-performance computing systems but cannot

reliably operate in the space radiation environment. As mentioned, SRAM FPGAs store

their user memory (UM), internal proprietary state (ISP) and CM in SRAM cells which

may become corrupted when struck by high-energy particles in space. Such events are

called Single Event Upsets (SEUs) and often corrupt the functionality of the FPGA cir-

cuit. To overcome these limitations, engineers incorporate fault-tolerant techniques, such

as hardware redundancy and error recovery mechanisms when developing SRAM FPGA

circuits for space applications.

To better understand how ionising radiation affects the functionality of commercial SRAM

FPGA circuits and how these have been handled by previously reported fault-tolerant

techniques, Chapter 2 provided a thorough literature survey. In more detail, information

about the sources of radiation in space and the classification of radiation effects in SRAM

FPGAs was reported. Chapter 2 pointed out that state-of-the-art commercial SRAM

FPGAs, such as the Xilinx 7 Series FPGAs, can withstand 100 krad TID and are immune

to Single Event Latchups (SELs) at a linear energy transfer (LET) of more than 100 MeV.

As related work revealed, many space missions operating in Low Earth Orbit (LEO) for

short time periods, e.g., low-cost CubeSat applications, do not surpass these TID and

LET limits. Therefore, it is clear that commercial SRAM FPGA circuits can be used in

such space missions if the effects of upsets in their CM and UM are mitigated. Chapter 2

provided a survey of existing TMR design techniques for FPGA circuits. The survey

revealed that the reliability of TMR circuits is significantly increased when combined with

rapid error recovery mechanisms, design partitioning, as well as, circuit floorplanning.

Chapter 3 showed that Module-based CM error Recovery (MER), which is a faster and

more energy efficient mechanism to recover CM upsets in TMR circuits than classic device

periodic scrubbing, has a considerable limitation; Soft-errors in programmable resources

that reside outside the reconfigurable regions of TMR modules (referred to as support

resources) are not recovered. Therefore, both the reliability and availability of the circuit

are decreased. To overcome this limitation a so-called Frame- and Module-based CM

Error Recovery (FMER) technique was proposed. FMER uses selective periodic CM
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scrubbing and MER to recover the support resources and the TMR modules of the circuit,

respectively. The efficacy of this method was evaluated by deriving and comparing the

reliability, availability and energy consumption of TMR FPGA circuits that incorporated

either FMER, MER, blind scrubbing or no recovery at all. The results indicated that

FMER is particularly beneficial in missions with high-reliability requirements as well as in

missions where the mission’s energy budget prohibits periodically scrubbing the FPGA.

For example, it was found that FMER is able to provide the same reliability in a TMR

circuit as device periodic scrubbing does. However, the circuit with FMER consumed

347 times less energy. FMER was also demonstrated on 11 HLS designs which were

triplicated with TLegUp. These circuits were implemented on an Artix-7 200T FPGA

and incorporated FMER, MER or blind scrubbing. For a 2-year LEO mission, the energy

consumption of the circuits utilising FMER was found to be on average 1.68x less than

of those utilising device periodic scrubbing. However, the reliability and availability of

all HLS circuits was found to be identical, independent of the utilised error recovery

mechanism. Both, the analytical and experimental results of Chapter 3 revealed that the

reliability and availability of a TMR FPGA circuit are dictated by the dependability of

any simplex logic they have incorporated. It also showed that the reliability of simplex

logic is independent of the utilised error recovery mechanism. The TMR HLS circuits

used in Chapter 3 experiments included simplex components and therefore all had similar

dependability.

Chapter 4 evaluated the impact of Reconfiguration Control Networks (RCNs) on the re-

liability and performance of TMR FPGA circuits with MER. The RCN can significantly

compromise the reliability of TMR circuit with MER as it is used for conveying the minor-

ity reports from TMR components to a central RC. The RC will not recover a faulty TMR

module if not reported from a faulty RCN. To reduce the possibility of this happening, a

reliable RCN was proposed. Instead of using the programmable resources of the FPGA to

transfer the minority reports to the RC, the proposed RCN used the configuration-layer of

the FPGA. In this way, the failure rate of the RCN was reduced since a negligible amount

of programmable resources were used for its implementation. Both classic application-

layer RCNs that utilised programmable resources for their implementation as well as the

proposed configuration-layer RCNs were implemented on a Xilinx Artix-7 FPGA. The

post-routing utilization and performance of the designs as well as their SES were evalu-

ated through analytical modelling and fault injection experiments. Results showed that

of the RCN topologies studied, the configuration-layer RCN was the most reliable, despite

having the highest network latency.

Finally, Chapter 5 presented the TLegUp CAD tool which is an extension of the open
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source LegUp framework. TLegUp takes an algorithm expressed in the ANSI C program-

ming language and produces partitioned TMR design descriptions in Verilog, which are

implemented on Xilinx 7-series FPGAs with the Vivado design suite. TLegUp can also be

configured to floorplan the design in order to reduce shared resources between redundant

logic of the TMR scheme and decrease the single points of failure in the circuit. TLegUp

improves the productivity of application designers for space; allows designers to experi-

ment with alternative application partitioning; and supports the automatic insertion of

the infrastructure needed to run a fault-tolerant system. As Chapter 5 reports, TLegUp

is able to use voters with registered outputs in order to alleviate the frequency drop-off

caused by voter insertion and circuit triplication. In contrast, current tools that triplicate

the design during the register-level transfer (RTL) pre- or post-synthesis stages of the

CAD flow are constrained to use only combinational voters so as to preserve the timing

specification of the design; critical path lengths are consequently increased. Two circuit

partitioning approaches were investigated in TLegUp: 1) an instruction level approach

which inlined all C functions into a single Data Flow Graw (DFG) to partition the design

at a fine level of granularity, and 2) a more coarse-grained approach that forms partitions

by grouping C functions. TLegUp was evaluated by implementing non-floorplanned and

floorplanned TMR designs of several HLS benchmarks. All designs were implemented on

a Xilinx Artix-7 200T FPGA and compared against non-triplicated baseline designs. The

TMR designs were partitioned at the instruction level (ILP) as well as at the C function

level (FLP) for k = 1, 2, 4 and 8 partitions. The quality of these designs was evalu-

ated in terms of post-routing resource utilisation, resource balancing between partitions,

maximum frequency, latency and execution time, and SES. The experimental results of

Chapter 5 illustrated that circuits that were partitioned with the FLP approach utilised

approximately 3 – 4× more resources than simplex baseline circuits, irrespective of the

number of circuit partitions. In contrast, circuits that were partitioned with ILP suffered

an exponential resource utilisation growth as k increased as well as a significant perfor-

mance penalty. We, therefore, conclude that the ILP approach is not practical. When

comparing the TMR FLP circuit with their simplex counterparts for k=1 and k=2, the

triplicated circuits had on average 11% and 13% frequency reduction when they were not

floorplanned, respectively. Finally, fault-injection experiments showed that the SES of the

ILP and the FLP circuits for k = 1 and 2 was approximately 500× less than the simplex

baseline designs. This figure was further improved by a factor of 1.3× – 3.4×, on average,

when the circuits were flooplanned.
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6.2 Future Research Directions

This thesis proposed several novel ideas to mitigate the effects of CM errors in commercial

SRAM FPGA. These ideas can be further improved and complemented by the following:

• A thorough analysis of how the essential bits of TMR FPGA circuits are distributed

across the configuration memory and resources of the device as proposed in [105]

can be insightful to further improve FMER. The experimental results in Chapter 3

indicated that the programmable resources located outside the reconfigurable re-

gions of TMR modules are not utilised as much as those located inside the regions.

This suggests that the configuration frames for the non-utilised resources that reside

outside the TMR modules may avoid scrubbing in order to reduce the recovery time

or energy consumption of FMER.

• A hardened Network on Chip (NoC) was recently embedded on Xilinx’s next gen-

eration Versal FPGAs. It would be interesting to investigate if an RCN can be

implemented with the NoC of these devices and what would be its performance and

reliability.

• It would be useful to provide a means for the designer to manually specify which

C functions to include in which partitions in TLegUp. Additionally, it would be

interesting to compare the soft error sensitivity, operating frequency and resource

utilisation of designs triplicated at the HLS level with those triplicated at the RTL

pre- or post-synthesis level. For example, to compare TMR designs produced by

TLegUp with those produced by BL-TMR.
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