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Abstract

The ability to partially recon�gure dynamically recon�gurable Field
Pro�

grammable Gate Arrays �FPGAs� at run
time allows them to be shared among

multiple independent tasks� When the sequence of tasks to be performed is known

in advance� the FPGA controller can optimize the use of shared resources� However�

when the sequence is not predictable� or the task designs are not �xed� the controller

needs to make allocation decisions on
line� Since on
line allocation su�ers from

fragmentation as variously sized tasks arrive and depart� tasks can end up waiting

despite there being su�cient� albeit non
contiguous resources available to service

them� The time to complete tasks is consequently longer and the utilization of the

FPGA is lower than it could be�

This thesis proposes rearranging a subset of the tasks executing on the

FPGA when doing so allows the next pending task to be processed sooner� Partial

rearrangement proceeds in two steps� The �rst step identi�es a rearrangement of

the executing tasks that frees su�cient space for the waiting task� and the second

schedules the movement of the tasks so as to minimize the delay in executing them�

The scheduling strategies employed depend upon the methods available to move the

tasks� Thus the problem of identifying the best rearrangement is linked by feedback

through the schedule to the underlying hardware and its capabilities�

Current FPGA architectures allow tasks to be moved by reloading them�

Simulation results indicate that signi�cant reductions in allocation delays are possi�

ble when the FPGA is saturated with work and the time to load a task is relatively

short� However� the reloading tasks face an I�O bottleneck that must be eliminated

if partial rearrangements are to be practical for short
lived tasks� Techniques for

copying tasks to their destinations over on
chip routing resources are therefore devel�

oped� These methods appear to be e�ective� even when link delays are long� giving

hope that they may also be of use in boosting the performance of multiple
SIMD

mesh connected computers�



�

Chapter �

Introduction

This thesis proposes and assesses methods for rearranging a subset of the

tasks con�gured on a Field
Programmable Gate Array �FPGA�� The thesis considers

moving the tasks by reloading them from o�
chip storage and by copying them over

on
chip routing resources� This chapter motivates and outlines the work described

in the thesis�

The �rst section of this chapter describes the inspiration for developing

space�shared multi
tasking FPGAs� The second section motivates the theme after

summarizing the challenges facing the designers of space
shared FPGA systems�

The contributions of this thesis and those of earlier investigators are reviewed in the

third section� The fourth section then presents an outline of the thesis� The chapter

concludes with a statement on related publications�

��� Historical Developments

Field
Programmable Gate Arrays occupy an increasingly important niche

in the price�performance spectrum of computing hardware� At one end of the spec�

trum� a general purpose processor makes use of the von Neumann model of compu�

tation to execute a program by stepping through a sequence of stored instructions�

The strength of this model lies in the �exibility of performing di�erent computations

by altering the instruction sequence� Unfortunately� the rate at which instructions

are executed and the number of bits operated upon by each instruction limit the

speed of processing� Specialized architectures and techniques that exploit parallelism

are therefore sought when applications require levels of performance that cannot be

delivered by sequential processors� For the majority of applications however� they
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are perfectly adequate� and large production volumes thus allow manufacturers to

market popular processors for relatively low prices�

At the other end of the spectrum� application
speci�c integrated circuits

�ASICs� are designed to compute a particular function� thereby gaining a perfor�

mance advantage over general purpose processors in a number of ways� First� com�

ponents such as decoders and multiplexors that are intended to support arbitrary

instruction streams but which take time for signals to pass through can be removed

from the circuit� Second� by eliminating the need for hardware to fetch� decode�

or cache instructions� additional chip area can be allocated to performing computa�

tional tasks� Third� instructions that are performed serially at both the bit and word

level on the sequential processor can be performed in parallel on the di�erent bits

of a word and the di�erent stages of a pipeline� However� once fabricated� ASICs

are �xed in function� and their function is limited to the one intended at the design

stage� ASICs thus sacri�ce �exibility to achieve maximum performance� More�

over� the complexity of designing and testing ASICs leads to long manufacturing

lead times and high non
recurring engineering costs� However� for large production

volumes� the cost of ASICs can be lower than for general purpose processors�

Current FPGAs� on the other hand� consist of two
dimensional arrays of

programmable logic elements and interconnections on a single chip that can be mass


produced and then customized in software to suit speci�c purposes� The function of

the FPGA is programmed by con�guring the function of individual logic cells and

the interconnections between them� As with ASICs� performance advantages over

general purpose processors can be gained by performing instructions in parallel on

the bits of a word and the stages of a pipeline� However� as with general purpose

processors� supporting �exibility comes at the cost of electrical delays due to con�

�gurable components and increased area due to the size of these components and

the need to provide su�cient resources to implement circuits of varying complexity�

Nevertheless� for small to medium volumes� these costs are o�set by signi�cantly

lower implementation costs than for ASICs�

Historically� FPGA circuits were con�gured by programming anti
fuse�

UV
EPROM� or EEPROM ����� and were therefore static� The introduction of

FPGAs with con�guration memory implemented in static RAM allowed the con�g�

uration to be modi�ed by altering memory contents during normal operations �����

However� altering the FPGA function necessitated halting the device and loading

a new con�guration for the entire chip� Since con�guration data had to be loaded
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serially� the time needed to recon�gure a circuit was large and depended upon the

area of the chip� FPGAs that provide random access to con�guration memory were

recently introduced to overcome the excessive recon�guration delay ��� ���� Such FP�

GAs are able to reduce recon�guration delays in two important ways� First� parts

of the FPGA not being recon�gured may continue to operate and are therefore not

delayed at all� Second� the time to con�gure a circuit depends upon its size since

the con�guration bit stream need only load relevant cells�

FPGAs that provide random access to con�guration memory while the

device is active are known as dynamically or partially recon�gurable� Dynamically

recon�gurable FPGAs are used by decomposing the application or FPGA task into a

number of mutually time exclusive modules or subtasks that are loaded at run
time

as needed ����� When a module is no longer needed� its resources can be reused by

modules that are required but not yet loaded� The range and number of applications

reported for dynamically recon�gurable FPGAs is rapidly increasing� Examples of

applications so far reported are digital signal processing ����� image processing ��
��

neural processing ����� video coding ����� simulation ��	�� string searching ����� and

postscript processing ����� Application areas that may bene�t from dynamic recon�

�guration include video
on
demand hardware� mobile computing� data encryption�

content
based searching� and multiprocessor cache coherence protocols ����� As

more ambitious systems are developed� it is conceivable that it will become possi�

ble and desirable for related or even disparate functions to share the one hardware

platform�

Partial recon�guration recycles resources that are not currently used for

circuits that are currently needed� A good example of partial recon�guration is

the DISC system� which makes use of a well
de�ned global context to implement

relocatable FPGA tasks of arbitrary size ��
�� Tasks that occupy the entire width

and an arbitrary number of rows of the FPGA may be located at any row� allowing

physical placement of hardware to be determined at run
time� When a new task is

to be executed on the FPGA and there is insu�cient contiguous space for it� the

least recently used tasks are removed from the system to allow for the new task to

be placed� The e�ective area of the FPGA is thus increased by simulating many

FPGAs or a much larger FPGA on a small one� While the well
de�ned global

context simpli�es DISC task design� it restricts the use of the FPGA to a single

task or user at a time so as to prevent tasks from contending for the use of control

lines that span the length of the chip� Interest in exploiting partial recon�guration
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to share the FPGA amongst multiple simultaneous tasks and�or users is� however�

growing ���� ��� ����

Switching between con�gurations to time
share an FPGA among several

tasks or users is under investigation for the Garp system ����� which consists of a

multi
tasking MIPS processor and an FPGA coprocessor integrated onto a single

die� Garp tasks are also prevented from contending for the use of globally spanning

control lines by executing one at a time� However� the system supports multiple

users by providing instructions to save and restore con�gurations in array memory

when a context switch occurs� The number of multiple users supported in this fash�

ion is limited by the amount of on
chip memory� However� current dynamically

recon�gurable FPGAs already use several bytes of valuable space per cell to store

con�guration and register data� and saving FPGA contexts o�
chip becomes infeasi�

ble as FPGA sizes grow� A purely time
shared approach to multi
tasking therefore

limits the maximum number of users�

While DISC and Garp allow the low
level parallelism inherent in applica�

tions to be exploited� much of the FPGA resource may remain idle because tasks

are processed sequentially� This ine�ciency is exacerbated as FPGA sizes grow� In

order to utilize the unused portions of devices and to reduce response times by pro�

cessing tasks in parallel� future FPGA systems need to support the partitioning of

available resources amongst independent tasks that can be processed simultaneously�

This technique� known as space
sharing� allows each of the multiple tasks to exe�

cute without interruption within its own partition as if it were the sole application

executing on an FPGA that is just large enough to support it�

��� Motivation � The Space�Sharing Challenge

The design and implementation of space
shared FPGAs poses many chal�

lenging problems� Multi
tasking systems not only need to support individual users

with design tools and monitors� they also need to manage the resources shared by

all users� At the lowest operating system level� the sharing amongst several users

of logic elements� wires� and input�output �I�O� pins needs to be managed� At a

higher level� access to resources needs to be scheduled according to task priorities�

Some of the challenging optimization problems that need to be solved to support

multiple simultaneous tasks are listed below�
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Hardware support

How should the hardware be made partitionable so that multiple independent

tasks can execute� Can multiple simultaneous I�O streams be supported�

If so� can multiple tasks be con�gured and controlled simultaneously� Do

multiple clocks need to be supported�

Task design

The operating system should be responsible for the choice of task location� a

task must therefore be relocatable� How should relocatable tasks be designed

so that they do not interfere with neighbouring tasks� What are the global

requirements for supporting arbitrary task location�

Run�time binding

Since tasks need to be relocatable� there is a need for some run
time binding�

Task partitioning� placement� and routing need to adapt according to temporal

and spatial constraints� How much preprocessing of the �nal design can be

done� What needs to be done on
the
�y� How can it be done e�ciently�

Task relocation

In order to maximize utilization and to be fault tolerant� the system also

needs to support preemption and to implement garbage collection� How can

the overheads of the operating system be minimized� Should operating system

functions be implemented as dynamically recon�gurable tasks� If so� how�

E�ective solutions to these problems will make space
shared FPGA systems easier

to use� more powerful� and more cost e�ective� These factors in turn will contribute

to the attractiveness and more general use of systems employing recon�gurable hard�

ware�

This thesis examines one strategy for boosting performance by defragment�

ing space
shared FPGAs� Performance loss due to fragmentation comes about as

follows� When the sequence of tasks to be performed by an FPGA is known in

advance the designer can optimize the use of resources o�
line and design an ap�

propriate static controller� However� when the set of tasks to be executed is not

closed� the controller needs to make task placement �cell allocation� decisions on


line� The layout of a task is assumed to comprise a contiguous block of logic cells

and interconnections that are known before the task is to be con�gured onto the
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array� Thus �allocating� a task is the process of deciding where on the array to

place the layout� On
line allocation of contiguous resources is by nature subopti�

mal� Since users want rapid response� the goal of allocation is to allocate as quickly

as possible because task execution times are �xed� However� when the task sequence

and�or execution times are not known� it is impossible for the allocator to place a

task so as to guarantee minimum impact on subsequent tasks because contiguous

allocation schemes su�er from fragmentation as variously sized tasks are allocated

and deallocated� Tasks consequently end up waiting in a queue despite there being

su�cient� albeit non
contiguous resources available to service them� The response

times of tasks are therefore longer and the utilization of FPGA resources is lower

than they could be� There is thus a need for a means of minimizing the consequences

of fragmentation�

��� Contributions

This thesis proposes rearranging� at run
time� a subset of the tasks ex�

ecuting on the FPGA so as to aggregate su�cient contiguous space for the next

waiting task when doing so allows it to be allocated sooner� The rearrangement

goals are to minimize the delay to the next waiting task� to minimize the delays to

executing tasks that have to move� and to minimize the time needed to complete

the rearrangement�

A partial rearrangement at run
time involves moving a subset of the tasks

executing on the FPGA while the remaining tasks continue to execute� When the

task at the head of the pending queue cannot be allocated immediately because of

fragmentation� a procedure that attempts to identify a rearrangement of a subset

of the currently allocated tasks to accommodate the waiting task is invoked� If

such a rearrangement is found� then a schedule for moving the executing tasks that

allocates the waiting task as soon as possible and minimizes the delays to executing

tasks that are to be moved is computed� The thesis considers three task movement

models� moving the tasks by reloading them from o� the chip� copying the tasks

on
chip over nearest neighbour links� and copying the tasks over segmentable buses�

The scheduling methods needed are unique to each model�

The main contributions of this thesis are�

� Two new heuristics for the NP
complete problem of identifying rearrange�

ments of FPGA tasks that will accommodate an additional task� These solu�
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tions� respectively known as local repacking and ordered compaction� apply to

rectangle packing situations which permit repacking� In particular� they apply

to the problem of allocating mesh of processor tasks�

� A proof that it is NP
hard to schedule arbitrary rearrangements of FPGA

tasks so as to minimize delays to tasks when they are moved by reloading�

� A depth
�rst ordered search heuristic for scheduling local repackings by reload�

ing�

� An optimal algorithm for scheduling ordered compactions by reloading�

� An optimal algorithm for the ordered compaction of unit sized one
dimensional

tasks over segmentable buses�

� A heuristic for the ordered compaction of arbitrarily long one
dimensional

tasks over segmentable buses that bounds the maximum delay to a task�

� An assessment and comparison of the costs and bene�ts of FPGA task rear�

rangement methods for varying con�guration delays when tasks are reloaded

from o�
chip and copied on
chip�

The use of task rearrangement to reduce fragmentation was �rst investi�

gated for multi
stage interconnection networks as part of the PASM project� with

e�orts directed at modelling and performing the movement of a single task ���� �
��

Several task rearrangement methods that moved some or all of the executing tasks

were subsequently proposed for MIMD hypercubes� with e�orts directed at devising

optimal edge
disjoint migration algorithms �see� for example� ���� ����� Algorithms

for rearranging the tasks on a star graph were described in ��	�� The �rst results for

the mesh� which is a natural model for a generic FPGA architecture� were reported

by Youn� Yoo� and Shirazi ��	�� Youn et al� proposed a complete� parallel task

rearrangement method that moved all of the tasks executing on the mesh� They

also proposed a sequential method for performing partial rearrangements� Their

results suggest that modest performance improvements are possible with the com�

plete method� but that the partial method is not particularly bene�cial� especially as

communication overheads rise� In contrast to Youn s �ndings� this thesis indicates

that� depending upon the operating conditions� substantial performance bene�ts are

possible with partial rearrangements irrespective of the communication overhead�
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There are alternative approaches to overcoming fragmentation which are

not discussed in this thesis� They include scaling tasks down or up in size to in�uence

task execution times or to �t them into available blocks� and partitioning the waiting

task at run
time into appropriately sized subtasks that can be placed immediately�

��� Outline

Chapter � presents the hardware and operating system models upon which

this thesis is based� The chapter �rst describes the space
shared FPGA and seg�

mentable bus models� Next� it outlines the allocation of tasks with partial rearrange�

ment� Then� it details the three models for moving tasks considered� by reloading�

by copying over nearest neighbour links� and by copying over segmentable buses�

Chapter � describes two proposals for identifying and scheduling task rear�

rangements on FPGAs when tasks can only be loaded one after another from o� the

chip� The chapter begins with a statement of the FPGA task rearrangement prob�

lem and the solution goals� It then describes the proposals for identifying partial

task rearrangements on conventional FPGAs and describes how optimal allocation

sites for the next pending task can be found� After proving the NP
hardness of task

rearrangement scheduling� the chapter presents polynomial time scheduling meth�

ods for each of the rearrangement identi�cation methods� The chapter compares

the time complexity and summarizes the empirical performance of the algorithms

before concluding with a description of possible improvements�

Chapter � describes the use of nearest neighbour links and segmentable

buses to move tasks in parallel on the chip� First of all� a method for performing

ordered compactions� described in Chapter �� using nearest neighbour links to move

the tasks is described� The remainder of the chapter then presents and analyzes

algorithms for the ordered compaction of unit length and arbitrarily sized one


dimensional FPGA tasks over a segmentable bus� The further development of these

methods� including the extension to two dimensions� is considered at the conclusion

of the chapter�

Chapter � reports on an empirical study into the impact of the proposed

methods on simulated FPGAs� To begin with� the e�ectiveness of the arbitrary task

rearrangement scheduling algorithm is examined� Then� the e�ects of varying the

system load� the con�guration delay� and the task size distribution when tasks are

reloaded are investigated� Finally� the e�ect of varying the link delay when tasks are
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moved over nearest neighbour links is assessed To conclude the chapter� the results

are compared with those of Youn et al� for the mesh� and areas for improvement are

identi�ed�

Chapter � concludes the thesis with a review of the results and their sig�

ni�cance as well as a description of the unresolved issues and directions for further

study�

��	 Related Publications

Chapters � and � contain material that has appeared in ��	� and �����

Chapters � and � contain material reported in ���� and ����� A summary of the

results will appear in �����



�	

Chapter �

Architectural Models

This chapter describes the hardware platforms and operating system envi�

ronment for the algorithms in this thesis� First� it describes the partitionable array

models considered� Next� it presents the multi
tasking operating environment that

supports task rearrangements� Finally� it details the various models investigated for

moving tasks�

The space
shared FPGA model is a multi
tasking model in which the

programmable resources are partitioned among multiple independent tasks� Ideally�

each task executes in its own partition as if it were the sole task executing on

an FPGA just large enough for its own needs� Each task is served by its own

controller� which has the responsibilities of loading� interrupting� and recon�guring

interdependent subtasks� and of directing the �ow of communications to and from

the task�

The �rst section of the chapter presents a high
level model for a parti�

tionable Single Instruction� Multiple Data �SIMD� machine that forms the basis for

the hardware architectures discussed in this thesis� Because of its generality� this

model is also suitable for describing partitionable FPGAs� Indeed the fundamen�

tal similarities between SIMD and FPGA computing models are touched upon in

this and the second section� which describes the dynamically recon�gurable FPGA�

recon�gurable mesh� and segmentable bus models used in the thesis�

The algorithms of Chapter �� which use reloading to move tasks� are de�

signed for the dynamically recon�gurable FPGA model� In Chapter �� two methods

for moving tasks on
chip are considered� Since nearest neighbour links are commonly

found on current FPGA architectures� the dynamically recon�gurable FPGA model

applies when these are used to rearrange the tasks� However� to move tasks over
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buses� dynamic switching is needed� Since this is not a feature of currently available

FPGAs� a segmentable bus model which incorporates the distinctive features of the

recon�gurable mesh is developed�

The third section outlines the multi
tasking operating system environment

that allows tasks to be rearranged� The description focuses on the task allocation

function with particular emphasis on allocation with task rearrangement but is nec�

essarily high
level so as to remain implementation independent�

Detailed models for moving tasks by reloading them and by copying them

over nearest neighbour links and buses are provided in the �nal section of the chapter�

��� A Space�Shared Multi�Tasking Model

The Single Instruction� Multiple Data �SIMD� model of parallel computa�

tion is characterized by a large number of simple compute processors all executing�

at the same time� the same instruction� which is broadcast by a centralized control

processor� The model achieves high performance through massive data parallelism�

Of the many network topologies that have been investigated� the SIMD

array has gained supremacy� not just for its design simplicity� but also because

many real world problems naturally map to it� Indeed� the �rst parallel machine

built� the ILLIAC IV ���� was a SIMD mesh� Like ILLIAC� the MPP �
� was a

bit
slice mesh� and the MasPar MP
� ����� a word
width processor array� achieved

commercial success�

As early as ���
 ���� designers of massively parallel computers recognized

that e�ective use of the processing elements in such machines can be achieved

through the ability to partition a large
scale multiprocessor into independent SIMD

subsystems� The ILLIAC IV supported partitioning at the processor and array level�

The �� bit
wide processing elements were able to be split into two �� bit
wide or

eight 
 bit
wide elements� and the array could be split into two or four indepen�

dently controlled� equally sized machines� The Connection Machine ���� was also

partitionable into one� two� or four machines of equal size� each of them controlled

by its own front end processor� However� this coarse type of partitioning is static

and limiting�

The partitionable multiple
SIMD model� �rst proposed by Nutt in ����

��	�� allows for the set of compute processors to be shared by multiple control units�

Systems adhering to this model make e�ective use of the compute processors by
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adjusting the sizes of processor partitions to the sizes of the tasks� thereby allowing

several tasks to be executed in parallel� Possible implementations were subsequently

investigated by the MOPAC ����� PASM ��	�� and GPA ���� projects�

An overview of this model is illustrated in Figure ���� The compute resource

consists of N interconnected processing elements �PEs� that are controlled by a set of

M control processors �CPs�� The CPs in turn are under the global control of a host�

The host orchestrates the operation of the CPs� each of which broadcasts instructions

for the PEs under its control over the CP
PE interconnection network� It is assumed

that partitions involve non
overlapping sets of consecutive or contiguous processors

and behave like a dedicated machine of the corresponding size �����

Host�CP Communication Network

CP�PE Interconnection Network

Host

PE Interconnection Networks

CP�CP�

PE�PE�

CPM

PEN

Figure ���� Nutt s multi
SIMD model of parallel computation�

��� Compute Resource Models

����� Dynamically Recon�gurable FPGA Model

Bolotski� DeHon and Knight describe a model of computational arrays that

uni�es SIMD arrays and FPGAs ��	�� Their model consists of a grid of array elements

with interconnection resources linking array elements together� Each array element

performs a simple function on some state and some inputs from the array and either

updates its own state to record the result of its computation or shares the results

with other elements in the array� An instruction speci�es the computation performed
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by each array element� The instruction is also used to specify communications and

state manipulation� In their model� the transform from input values to outputs

is modelled as a look up table addressed by the input value� The instruction is

modelled as either the programming of the look up table or as additional inputs�

Ideally� each array element should be able to perform a di�erent instruction each

cycle� However� the instruction bandwidth that would be needed for reasonably

sized arrays would be too large� Both FPGAs and SIMD therefore weaken the model�

While SIMD arrays compromise in the spatial variation of instructions to allow a high

rate of instruction dispatch� FPGAs compromise in the rate of instruction dispatch

to allow the instructions to vary spatially through the array� FPGAs achieve high

performance by pipelining data through multiple stages� each of them performing

di�erent logic functions simultaneously�

In broad terms� an FPGA task is a sequential or combinational circuit

that is laid out in space rather than time� The logic functions of an FPGA circuit

are performed by con�gurable logic cells that are interconnected through wires and

programmable routing switches� A �program� not only instructs the cells which

functions to perform but also determines how they are to be interconnected by

setting the routing switches� The circuit is con�gured before the data arrives and

remains con�gured until a new con�guration is loaded�

The cells of common dynamically recon�gurable FPGAs ��� ��� are laid out

in a two
dimensional grid and are usually directly connected with their neighbours

to the north� south� east� and west via nearest neighbour links� In addition� FPGAs

usually incorporate some network of bus segments for fast communications over

longer distances� Routing switches are used to connect cells to bus segments and to

interconnect bus segments for turns or longer paths�

De
nition � A space�shared FPGA of width W and height H is a two�dimensional

grid of con�gurable cells and routing resources denoted G����� ��� �W�H��with bottom�

left cell labelled ��� �� and top�right cell labelled �W�H��

Current FPGA cells typically consist of no more than a few logic gates�

or a small look up table� a �ip
�op� and some multiplexors for con�guring the cell

function� Cells typically operate on two or four bits of input and produce a single

output bit� The output of the cell is a boolean combination of the inputs� �ip
�op

contents� and constants�
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Con�guration involves loading the look up table and�or memory selectors

for the multiplexors associated with each cell to select the cell s function� Several

bytes of con�guration data per cell are serially loaded as a con�guration bit
stream

via pins on the periphery of the chip� The con�guration of the routing switches is

also determined by the program�

With current technology� the time to con�gure a cell is an order of mag�

nitude greater than the signal delay through it or along a wire� The signal delay

along interconnections composed of several bus segments is approximately linear in

the number of switches along the path from the source cell to the destination cell

�����

It is assumed that an FPGA task and the used routing resources surround�

ing its perimeter can be modelled as a rectangular subarray of arbitrary yet speci�ed

dimensions� Some internal fragmentation therefore results when task designs can�

not be optimized to a rectangular shape� The size of a task is assumed �xed for the

duration of its execution�

De
nition � The FPGA task t�l�� l�� with l�� l� � Z� requires an array of size l��l�
to execute�

Tasks are assumed to be independent� However� when a task is decomposed

into several recon�gurable subtasks� they are allocated to the largest bounding box

required throughout the task s instantiation� In this way� routing con�icts and

interference with other tasks are avoided�

Tasks are assumed to be deadline
free and to have unknown service periods�

However� it is possible to check whether or not tasks for which service periods are

known can be rearranged without exceeding deadlines�

No limit is placed upon the number of tasks that can execute simultane�

ously� To support multi
tasking� the FPGA should be able to support multiple

simultaneous I�O streams� The idealized model considered in this thesis assumes

any number of I�O streams can be supported without slowdown� The relatively

small and �xed number of I�O pins on FPGA packaging necessitates the use of

time multiplexing for I�O� Techniques for doing so are being investigated by MIT s

virtual wires project ����

Each task is allocated a subarray of the required size within a larger par�

titionable array� Usually a subarray will simply be referred to as an array as well�

De
nition � The orientation or�t� ! �x� y� of a task t speci�es the number of cell
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columns x and rows y allocated to the task from the array� Given the orientation of

a task� its width w�or�t�� ! x and height h�or�t�� ! y are known�

Tasks may be rotated and relocated� Task t�l�� l�� may be oriented such

that or�t� ! �l�� l�� or such that or�t� ! �l�� l��� If or�t� ! �l�� l��� then it may be

allocated to any array G���x� y�� �x" l� � �� y " l� � ��� where � � x � W � l� " �

and � � y � H � l� " �� If tasks make use of hierarchical routing networks� then

they might not in practice be relocated anywhere� The FPGA abstraction assumes

the routing interface to all cells is identical�

The dynamically recon�gurable FPGA model assumes the I�O architecture

permits random access to the con�guration memory of a single logic cell or routing

switch in a single step� Moreover� it is assumed that a cell or switch can be con�gured

in a constant amount of time�

It is assumed that the time needed to con�gure a subarray

tconf�G
���x�� y��� �x�� y���� ! CD� �x� � x� " ���y� � y� " �� �����

is proportional to the con�guration delay per cell CD and the size of the subar�

ray since� at worst� cells are con�gured sequentially� Since the delay properties of

commercially available chips are isotropic and homogeneous� CD is assumed to be

constant� i�e�� the time needed to con�gure a task and route I�O to it is independent

of the task s location and orientation�

The logic cells are assumed to have storage for a single task context� Con�

�guration memory contents are assumed to be overwritten when a cell is con�gured�

����� Recon�gurable Mesh Model

The recon�gurable mesh ��� �
� ��� is a more traditional SIMD model of

computation that is also based on a two
dimensional grid of processors architecture

�see Figure �����

The model is distinguished by its recon�gurable bus system� Internal to

each processing node is a set of locally controlled short circuit switches that allow

the interprocessor wires to be connected together to form a communications bus� A

di�erent connection con�guration can be established during each machine cycle� and

all processors participating in a bus con�guration have access to the data available

on it� The model is said to display connection autonomy because the connection

con�guration of a PE can be set according to local state information� The �� possible

connection con�gurations are depicted in Figure ����
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W

S

E

N

Figure ���� A recon�gurable mesh of size �� ��

�N�SEW� �NSW�E� �NEW�S� �NSE�W� �NW�SE� �NE�SW� �NS�EW� �NSEW�

�N�S�E�W� �NW�S�E��NS�E�W� �N�S�EW� �NE�S�W� �N�W�SE��N�E�SW�

Figure ���� Recon�gurable mesh connection con�gurations�

Recon�gurable mesh processors operate synchronously� in one machine cy�

cle setting a connection con�guration� sending �receiving� a datum to �from� each

I�O port� and performing an arithmetic� logic or control operation� When a con�

nection is set� signals received by a port are simultaneously available to any port

connected to it� For example� if processors connect their northern and southern I�O

ports by closing the appropriate switches as in the con�guration �NS�E�W�� data

�broadcast� onto the �column buses� so formed can be read by all of the processors

in a column� The model allows concurrent reading from a bus but requires exclusive

writing to the bus� If in a single cycle multiple broadcasts are to be made over mul�

tiple buses� those buses are required to be disjoint� The model usually assumes the

delay along a bus is a constant independent of length� For buses of bounded length

this assumption is reasonable� Techniques for coping with buses of unconstrained

length have also been proposed ��� ����
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����� Segmentable Bus Model

The segmentable bus model used in this thesis adopts the central assump�

tions of the recon�gurable mesh model while simplifying the hardware considerably�

The model makes use of the ability to establish a new bus con�guration each cycle

and to communicate in one cycle irrespective of distance� The former is not di�cult

to implement� and the adoption of the latter is motivated by the assumption that

the buses formed will not branch and will span the width of the FPGA chip at most�

For a review of the computational power of this model see �����

In Chapter �� a hybrid model comprising a linear array of FPGA cells as

the compute resource and a linear array of switching elements for the con�gurable

interconnect is used to investigate the complexity and power of using segmentable

buses to rearrange tasks� See Figure ����

Linear array of dynamic switching elements

� � � � � � � � �

� � � � � � � � �
Bi Bj

Si�� Si Sj�� Sj

C� C� Ci�� Ci

Bi��

Ci�� Cj�� Cj Cj�� CL�� CL

Linear array of logic cells

Figure ���� The segmentable bus FPGA model�

The one
dimensional grid or linear array of L cells G���� L� is labelled

C�� � � � � CL from left to right� Each cell Ci is connected to a bus segment of unit

length labelled Bi directly to its north� Between each pair of consecutive bus seg�

ments Bi and Bi�� there is a short circuit switch labelled Si which can be opened

or closed at the commencement of each communication cycle or step�

Cells Ci and Cj with i � j communicate in a single cycle in the following

manner�

�� Switches Si�� and Sj open� and switches Si� Si��� � � � � Sj�� close� and

�� Ci and Cj communicate via their northern ports and the bus formed between

them�

Opening the switches Si�� and Sj isolates the bus spanning cells Ci and Cj from

the rest of the bus system� thereby allowing additional buses to be formed to the

left of Si�� and to the right of Sj in the same cycle�
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Setting a bus con�guration and transferring a cell s contents is assumed to

take a single step irrespective of transfer distance� The length of a step is there�

fore normalized to the longest period needed to establish the switch settings and

propagate a cell s contents across the width of the FPGA at most�

Logic cells are assumed to have storage for two task contexts between which

they can switch in a single step� Storage for the cell con�guration and state that is

switched out of context may be accessed from the bus segment attached to the cell

while the cell executes a second task context�

��� Task Management with Partial Rearrangement

Overall management of tasks is accomplished in the following way� Refer

to Figure ��� for an overview� Note that the model applies equally well to one


dimensional arrays�

Space�shared FPGA

task controllers

� � �

allocator

defragmenter

Pending task queue

TASK MANAGEMENT

�

Figure ���� An overview of task management with partial rearrangement�

Requests for service are queued in arrival order by a sequential host� A task

allocator� executing on the host� attempts to �nd an allocation site to satisfy the

next pending request when it arrives� If the allocator succeeds in �nding a suitable

site� it associates a controller with the new task and its partition and allows the

controller to assume responsibility for loading the task and establishing I�O to it�

When the allocator fails to �nd a suitable allocation site for the next pend�

ing request� it invokes a defragmenter� which determines whether or not the request
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can be satis�ed with partial rearrangement� If allocation with rearrangement is pos�

sible� the defragmenter performs the rearrangement and returns the allocation site

thereby created to satisfy the request� If on the other hand allocation with rear�

rangement is not possible� then all requests are blocked until allocation is attempted

once more�

Subsequent allocation attempts are made whenever a task completes and

there is a request for service pending� If some executing tasks can be rearranged

to accommodate the task� then a schedule for suspending and moving them is com�

puted� The defragmenter then coordinates the partial recon�guration of the FPGA

by signalling individual task controllers to suspend a task s operation� save the task s

context� move the task and its context to a new location� and to resume the task s

operation�

For the sake of fairness and simplicity� requests for service are processed

in �rst
come �rst
served �FCFS� order� However� the methods discussed in this

thesis do not depend upon the scheduling method� Non
FCFS methods with better

performance� such as back
�lling ����� could therefore be used�

The task allocator uses bottom
left allocation� which is a �rst �t method

����� The bottom
leftmost free block large enough to satisfy the request is allocated

to the task� The advantages of the �rst �t method are that it is simple and that it has

complete recognition capability� i�e�� it recognizes all possible allocation sites� Many

other contiguous allocation schemes have been proposed� For example� the two


dimensional buddy method ���� and frame
sliding ���� are more e�cient than �rst �t�

as originally proposed� but they su�er from high fragmentation� and have incomplete

recognition capability� The busy
list method ��
� is e�cient� and it attempts to

reduce fragmentation by using a best
�t approach� However� it is considerably

more complicated to implement� It should be noted that partial rearrangement can

be successfully used with any allocation method�

De
nition � Let T ! fti�l��i� l��i� � � � i � ng be a set of tasks allocated to an

FPGA G����� ��� �W�H��� The arrangement of tasks A�G����� ��� �W�H��� ! fa�ti� �

ti � Tg is the set of non�overlapping orthogonally aligned rectangular allocations

a�ti� ! G��bl�ti�� tr�ti�� in the array G����� ��� �W�H��� The allocation for task

ti is said to be based at the cell allocated to the bottom�left corner of the task

�x�bl�ti��� y�bl�ti��� and to extend to the cell allocated to the top�right corner of

the task �x�tr�ti��� y�tr�ti����
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��� Task Rearrangement

Rearranging the tasks executing on an FPGA requires moving them� Mov�

ing a task involves� suspending input to the task and waiting for the results of the

last input to appear or waiting for the task to reach a checkpoint� storing register

states if necessary� recon�guring the portion of the FPGA at the task s destination�

loading stored register states if necessary� and resuming the supply of input to the

task for execution� The problem of rerouting I�O to a task that is moved is not

addressed in this thesis�

Since tasks are assumed to be without deadlines� any task is considered

preemptable and may therefore be suspended with its inputs being bu�ered and

necessary internal states being latched until the task is resumed� The time needed

to wait for the results of an input to appear or for the task to reach a checkpoint

is considered to be proportional to the size of the task which in the absence of

feedback circuits is the worst case� However� since with current technology the time

to con�gure a cell and associated routing resources is typically an order of magnitude

greater than the signal delay of a cell or the latency of a wire� the latency of the

design is considered negligible compared with the time needed to con�gure the task�

A task cannot be moved without some cost� The approach in this thesis is

to distinguish between the minimum possible cost of moving a task and the actual

cost of moving it� The minimum cost is the time needed to suspend� move and

resume the task� which is unavoidable� However� the actual cost needs to account

for the time a task is suspended while other tasks are being moved� The di�erence

between the actual and minimum costs represents a scheduling delay that is to be

minimized for all tasks�

����� Moving Tasks by Reloading

In Chapter �� the e�ectiveness of recon�guring the destination region of a

task by reloading the con�guration stream with a new o�set is investigated� This

approach naturally re
incurs the cost of con�guring the task� given above in Equa�

tion ���� but is applicable to any dynamically recon�gurable device�

Moving tasks by reloading them is inherently sequential� Tasks are reloaded

one after another� cell by cell� In Chapter �� techniques for using on
chip resources

to overcome this bottleneck are developed� It should also be noted that if I�O

to tasks is performed using direct addressing� then tasks not being moved may be
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delayed by the con�guration stream of tasks being moved�

����� Moving Tasks over Nearest Neighbour Links

The time required to move a task over the links connecting neighbouring

cells is signi�cantly less than that required to reload it� Assume a task is to be

moved d cells to the right along the rows of the FPGA and that there are no tasks

in its way to impede its movement� See Figure ��� for an illustration�

De
nition � The con�guration bits for a cell and the cell�s state are collectively

referred to as a task element�

All task elements in the rightmost column of task cells can be moved simul�

taneously by writing them onto port E and having them read by the neighbouring

cells from port W� Moreover� the task elements in each row of task cells can be

moved simultaneously as well by having all cells write their task element to port E�

and having all cells that are to receive a task element read it from port W� The task

elements of each row are said to be pipelined to the right� The task can thus be

moved one column of cells to the right in each move cycle� and d cycles in total are

needed to move the task to its destination�

�a� �b� �c�moving a column
of cells at a time

moving a row of
cells at a time

moving all cells
at once

Figure ���� Moving a task over nearest neighbour links�

To move a task it must be halted� Cells then repeatedly send their task

elements to their neighbours until the task reaches its destination� All task elements

reach their destination in the same cycle� Once the task reaches its destination it is

resumed again�

The time to move a task is proportional to the distance the task has to

move� The actual time spent moving depends upon the time needed to transfer a task

element to the neighbouring cell� which depends upon the amount of con�guration

and state information that needs to be transferred� as well as the bandwidth of

the link� Current FPGAs allow con�guration bits to be loaded one byte or word
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at a time while their nearest neighbour links are usually one bit wide� However�

transferring con�guration data over a nearest neighbour link may be faster than

loading it from o�
chip because absolute addresses may not need to be decoded

and wire lengths are shorter� The time spent moving a task also needs to take into

account the time required to halt and resume the task� This task or design latency

is considered negligible compared with the time needed to load the task� Assuming

tasks are not moved too often� this cost can therefore be ignored�

����� Moving Tasks over a Segmentable Bus

Moving a linear array task over a segmentable bus involves switching the

task out of context and con�guring the buses needed to move the task elements

over a sequence of steps� During each step� the source �destination� cells of a move

then write �read� their task elements to �from� the bus segments to which they are

connected� When all the elements of a task have reached their destination� the task

is switched back into context and task execution is resumed�

Case l � d�

Case l � d�

d l

� � �

d l

� � �

� � � � � � � � �

Figure ���� Moving a linear array task over a segmentable bus�

The time required to move the task is derived in the following lemma�

Lemma � A one�dimensional task of length l can be moved d cells to the left in

#�min�l� d�� steps over a segmentable bus� This is optimal�

Proof� Refer to Figure ���� When l � d� all task elements must be moved over

and past the bus segment connected to the leftmost cell occupied by the task� Since
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the buses used to move task elements are required to be disjoint� at most one task

element can be moved per cycle or step� At least l steps are therefore required to

move the task� Moving them one at a time achieves the lower bound�

When l � d� d task elements need to be moved to the left of the leftmost

cell occupied by the task� The need to form disjoint buses implies d steps are needed

for these movements� Furthermore� the cell initially occupied by the leftmost task

element cannot be the destination of a task element move during one of these cycles�

Therefore d" � steps at least are required to complete the task move� To complete

the move in a minimum number of steps� task elements whose index mod �d" �� is

equal to i are moved in parallel during step i� This movement maximizes the use of

the segmentable bus and is therefore optimal�
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Chapter �

Partial FPGA Rearrangement

This chapter proposes and evaluates methods by which feasible rearrange�

ments can be identi�ed and scheduled when tasks are moved by reloading them from

o�
chip memory�

The purpose of partial FPGA rearrangement is to allocate waiting tasks as

quickly as possible so as to reduce task response time� This bene�t to the waiting

task does not come without some cost to the executing tasks since they must be

interrupted in order to be moved� It is therefore desirable to delay as few executing

tasks as possible and to minimize the maximum amount any single task is delayed �

the net e�ect of the delays to executing tasks should not outweigh the net bene�t to

the waiting tasks� The current FPGA model� described in Chapter �� moves tasks by

reloading their con�guration bit streams with new o�sets� This approach limits the

time needed to complete the rearrangement since the time to move a task is assumed

to be proportional to its area� and the tasks that need to be moved must be reloaded

one after another� The time to complete a rearrangement is therefore proportional

to the total area of the tasks moved� Since the rate at which tasks can be allocated

is limited by the rate at which allocations can be found or rearrangements can be

performed� it is desirable to complete rearrangements as quickly as possible� These

factors contribute to the formulation of the FPGA rearrangement problem as follows�

FPGA REARRANGEMENT PROBLEM

INPUT� A set of executing tasks T ! ft�� � � � � tng� an arrangement A�G����� ��� �W�

H��� ! fa�ti� � ti � Tg of the executing tasks� and a waiting task tn���l��n��� l��n���

that cannot be allocated to the array without overlapping the allocation of some

other task in T �

OUTPUT� A new arrangement A��G����� ��� �W�H��� ! fa��ti� � � � i � n " �g of
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the tasks� if possible� and a schedule p � T � Z�
� for moving the tasks in fti � a�ti� �!

a��ti�g such that�

�� the allocation for tn�� is freed of executing tasks in minimum time�

�� the maximum delay to executing tasks that must be moved is minimized� and

�� the time needed to complete the rearrangement is minimized�

The statement of the problem suggests two subproblems are to be solved�

First� a new arrangement of the executing tasks that accommodates the unallocated

or waiting task is needed� Second� a schedule for moving the tasks from their initial

to their �nal allocations is to be found� The work involved in solving these problems

represents an overhead to the system� An additional requirement therefore� is to

�nd e�cient solutions�

In Section ��� it is shown that the problem of identifying a rearrangement

of the executing tasks that accommodates the waiting task is NP
complete� A rea�

sonably quick approximate approach to �nding suitable or feasible rearrangements

is therefore needed� Two heuristic solutions are presented in this chapter� The �rst

is based on the idea of repacking the tasks in a suitable local area of the array using

a two
dimensional strip
packing algorithm� Local area candidates are identi�ed by

means of a quadtree decomposition of the free cells� Since strip
packing algorithms

are approximation algorithms� some feasible local areas remain unidenti�able by this

method� The second method constrains the range of task movements and thus the

number of initial arrangements that can be successfully rearranged� This second

method identi�es all possible sites for the waiting task that moves a subset of the

executing tasks closer together in one direction�

Each feasible rearrangement must be evaluated for the time needed to free

the allocation site� for the time needed to complete the rearrangement� and for the

maximum delay to moving tasks� The problem of identifying the best rearrange�

ment is thus linked by feedback to the problem of scheduling the rearrangement of

the tasks� While the geometric problem of identifying possible rearrangements of

the tasks is independent of the hardware model� the choice of optimal rearrange�

ment varies according to the di�erent scheduling techniques and outcomes possible

with di�erent technologies� In this chapter� task movements are constrained to be

performed sequentially by reloading tasks from o� the chip�
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In Section ���� scheduling the rearrangement of tasks on the FPGA so

as to minimize the delays to the waiting and moving tasks is shown to be NP


complete� A greedy heuristic that minimizes the increase in delay to tasks with each

sequencing choice is thus developed� The time complexity and performance of this

heuristic depends upon the depth to which the state
space is explored before making

a choice� Methods for on
chip task movements and their e�ect on rearrangement

scheduling are examined in the next chapter�

Section ��� presents a comparison of the time complexity of partial rear�

rangement heuristics and summarizes the results of the experimental investigation

of allocation performance reported on in Chapter ��

This chapter concludes with a chapter summary and avenues for improve�

ment in Section ����

��� Identifying Feasible Rearrangements

A feasible rearrangement of the executing tasks is a new arrangement of the

executing tasks that allows the waiting task to be allocated as well� Although it is

assumed that tasks may be rotated before allocation� the rearrangements considered

in this thesis do not rotate the executing tasks�

In this section� it is �rst shown that the problem of identifying feasible

rearrangements is NP
complete� Two heuristics are subsequently presented to over�

come this intractability� Local repacking hierarchically decomposes and assesses the

array for suitable subarrays of tasks that� when repacked using known methods� may

accommodate the next waiting task� This method may translate tasks in several di�

rections� Ordered compaction� on the other hand� makes use of a novel scanning

procedure to identify subsets of tasks that can be squeezed together in one direction

to make room for the waiting task�

����� Identifying Feasible Rearrangements is NP�Complete

In ����� Li and Cheng show that it is NP
complete to decide the RECT�

ANGLE PACKABILITY problem� which is to determine whether or not a set of

oriented rectangles can be orthogonally packed without overlap into a larger con�

taining rectangle� Their proof was by reduction from the PARTITION problem

����� the sizes of the elements of a given PARTITION instance determine the widths

of corresponding rectangles having height ���� These can be packed into an ar�
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ray of width one half the total size of the PARTITION elements and height ��� in

polynomial time if and only if P ! NP� The following theorem thus follows�

Theorem � ��	
�� RECTANGLE PACKABILITY is NP�complete�

Corollary � REARRANGEMENT FEASIBILITY� the problem of deciding whe


ther a set of executing tasks can be feasibly rearranged to accommodate the next

waiting task is NP�complete�

Proof� By equivalence with RECTANGLE PACKABILITY� A procedure for decid�

ing RECTANGLE PACKABILITY can decide whether or not the set of executing

tasks taken together with the next waiting task can be packed into the array� Sim�

ilarly� an algorithm for deciding REARRANGEMENT FEASIBILITY can be used

iteratively to determine RECTANGLE PACKABILITY� The problems are therefore

computationally equivalent�

Since the problem of deciding REARRANGEMENT FEASIBILITY is NP


complete� it is unlikely to have a polynomial time solution� The corresponding

optimization problem� that of �nding a feasible rearrangement� is therefore also

unlikely to be easy� Consequently� heuristic solutions are sought� The remainder of

this section presents two such solutions�

����� Local Repacking

The idea behind local area repacking is to repack the tasks initially allo�

cated to some rectangular region of the array so as to accommodate the waiting

task within the subarray as well� A hierarchical decomposition of the array known

as a free area tree is used to keep track of the number of free cells within each

subarray� In so doing� regions that contain su�cient free area to accommodate the

waiting task can be quickly identi�ed� and rearrangements of the tasks they contain

can be attempted� Two
dimensional bin packing algorithms with good performance

bounds are used for this last step� the tasks� viewed as rectangles� are packed from

scratch into an in�nitely long strip whose width is determined by the length of one

side of the subarray� If the tasks are packed using total height less than the length

of the other side of the subarray� then the rearrangement is feasible� and its cost is

then assessed�

Following a de�nition of a free area tree and a description of its use� algo�

rithms for constructing and searching it are presented� The subsection concludes
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with a brief review of known strip
packing algorithms available for use by the

method�

������� Free Area Trees

A free area tree is a type of quadtree ���� ��� that need not necessarily be

de�ned over a square grid and whose leaves may have just one rather than three

siblings� Each node of the tree� which represents a portion of the array� stores the

number of free cells contained within the region and pointers to its children� If the

array covered by a node is completely free� or if it is entirely allocated to a single

task� then it is not further decomposed� Otherwise� the array represented by the

node is partitioned evenly into two or four disjoint subarrays� depending upon its

size� and represented by child nodes� A formal de�nition of a free area tree follows�

De
nition � Array G�
���x�� y��� �x�� y��� is said to intersect array G�

���x�� y��� �x	�

y	�� i� �x� � x	� and �x� � x�� and �y� � y	� and �y� � y��� The intersection of

arrays

G�
���x�� y��� �x�� y��� �G�

���x�� y��� �x	� y	�� !

G���max�x�� x���max�y�� y���� �min�x�� x	��min�y�� y	���

if �x� � x	� and �x� � x�� and �y� � y	� and �y� � y��� otherwise it does not exist

and is de�ned to be 	�

De
nition � The area of the array G���x�� y��� �x�� y��� is

ar�G�
���x�� y��� �x�� y���� ! �x� � x� " ���y� � y� " ���

By de�nition� ar�	� ! 	�

The free area of the array G���x�� y��� �x�� y��� is the number of unallocated

cells fa�G���x�� y��� �x�� y���� in the array�

For the arrangement of tasks A�G����� ��� �W�H��� ! fa�ti� � � � i � ng
the free area

fa�G���x�� y��� �x�� y���� ! ar�G���x�� y��� �x�� y�����
i
nX
i
�

ar�G���x�� y��� �x�� y����G��bl�ti�� tr�ti����

De
nition 	 The predicate P�G���x�� y��� �x�� y���� is de�ned to be true if some task

ti exists such that some but not all of the cells in G���x�� y��� �x�� y��� are allocated to
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it� i�e�� if for some allocated task ti� 	 � ar�G���x�� y��� �x�� y����G��bl�ti�� tr�ti��� �

ar�G���x�� y��� �x�� y�����

De
nition 
 �After ��
�� The free area tree F ��x�� y��� �x�� y��� covering G
���x�� y���

�x�� y��� is de�ned recursively as follows�

�� F ��x� y�� �x� y�� is a leaf node�


� F ��x� y��� �x� y��� with y� � y� is a node�

If P�G���x� y��� �x� y����� then F ��x� y��� �x� y��� has two children�

�a� F ��x� y��� �x� b�y� " y����c��� and
�b� F ��x� b�y� " y����c" ��� �x� y����

�� F ��x�� y�� �x�� y�� with x� � x� is a node�

If P�G���x�� y�� �x�� y���� then F ��x�� y�� �x�� y�� has two children�

�a� F ��x�� y�� �b�x� " x����c� y��� and

�b� F ��b�x� " x����c" �� y�� �x�� y���

	� F ��x�� y��� �x�� y��� with x� � x� and y� � y� is a node�

If P�G���x�� y��� �x�� y����� then F ��x�� y��� �x�� y��� has four children�

�a� F ��x�� y��� �b�x� " x����c� b�y� " y����c���
�b� F ��b�x� " x����c" �� y��� �x�� b�y� " y����c���
�c� F ��x�� b�y� " y����c" ��� �b�x� " x����c� y���� and
�d� F ��b�x� " x����c" �� b�y� " y����c" ��� �x�� y����

Figure ����a� depicts the arrangement of a pair of tasks on a rectangular

array� The array is partitioned to show the regions delimiting the extent of the leaf

nodes in the free area tree representation of the arrangement� The free area tree

corresponding to the arrangement of Figure ����a� is illustrated in Figure ����b��

The left to right order of nodes on each level corresponds to the order in which the

children of a node are listed in De�nition ��

When invoked� the local repacking method commences by building the free

area tree for an arrangement of tasks on the array� Next the tree is searched for

nodes that contain more free cells than are needed by the waiting task� For each

such node� a repacking of the tasks allocated to the array covered by the node is

attempted� These tasks are found in linear time by checking for intersections with
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�a�

Node completely free

Node entirely allocated to task 

Node partially allocated to one or more tasks

2

43

1

Key:

1 2 3 4

�b�

Figure ���� �a� The arrangement of a pair of tasks on an array with free area tree

leaves marked� �b� The free area tree for the arrangement of �a��

the node s array� If the new arrangement accommodates the waiting task within the

array covered by the node as well� then the rearrangement of the tasks to achieve

the packing can be scheduled in order to evaluate its optimality�

Tasks which only partially intersect the array covered by a node need to

be handled in some way� Should they be included in the packing� moved elsewhere�

or left where they are to be packed around� The approach adopted in this work is

to attempt to repack these tasks completely into the rectangular array covered by

the node as well� This approach avoids further searching and avoids the complexity

of packing into arbitrary rectilinear polygons� At each node� therefore� the area

available for the waiting task needs to account for the total area of tasks that are

only partially covered by the region�
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De
nition �� If the allocation for task ti intersects the array G
���x�� y��� �x�� y����

then the uncovered area

ua�ti� G
���x�� y��� �x�� y���� ! ar�G��bl�ti�� tr�ti����

ar�G��bl�ti�� tr�ti�� �G���x�� y��� �x�� y�����

Otherwise� ua�ti� G
���x�� y��� �x�� y���� ! 	

De
nition �� The attached area

aa�F ��x�� y��� �x�� y���� !
i
nX
i
�

ua�ti� G
���x�� y��� �x�� y����

is the total number of cells allocated to the uncovered portion of tasks that are par


tially intersected by the free area tree node F ��x�� y��� �x�� y����

If the free area less the attached area at a node exceeds the area of the

waiting task� then a packing into the array covered by the node of all the tasks

intersected by it and the waiting task is attempted�

������� Building the Free Area Tree

The free area tree is expanded iteratively by inserting each of the executing

tasks into an initially empty root�� The procedure InsertTaskIntoFAT of Figure ���

updates the free and attached area for the current node and task and recurses with

those children that are partially intersected by the task� It expands the tree by

creating the children that don t already exist�

Except for step ��b�� each step requires constant time� Since the cost of

step ��b� can be attributed to the descendents of the node input to the procedure�

the time spent updating each node in the tree per invocation is thus constant�

Dyer has analyzed the size of the quadtree representation of square objects

in square images ����� He showed that O��p�� � p " q� nodes at worst are needed

to represent a square of size �p � �p in an image of size �q � �q� This expression

accounts for the perimeter of the square� the logarithm of its diameter� and the

height of the root of the tree above the expanded subtree covering the object� If

m ! max�W�H�� then it follows that O�m� nodes of the free area tree are updated

per task insertion since no task can be larger than the array� For n tasks therefore�

O�mn� time is needed to build the free area tree� The worst case is attained by

�An empty node has free area set to the area of the array covered by the node and attached area

set to zero�
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Procedure InsertTaskIntoFAT

Input A pointer to a node in a free area tree and a pointer to the descriptor of a

task that is to be inserted into the tree�

Output A free area tree that has been expanded or modi�ed to account for the

task inserted into it�

begin

�� Compute the area of intersection �AI� between the node array and the task�

�� Update the free area for the node�

�� If the area of the task is greater than AI �the node does not wholly contain

the task�� then

�a� Update the attached area for the node�

�� If the area of the node is greater than AI �the node is not completely allocated

to the task�� then

�a� If the children of the node have not yet been created� then

i� Create child nodes with free area initialized to the child s area and

attached area set to zero�

�b� For each child that intersects the task�

i� Recurse with the task descriptor and a pointer to the child node�

end

Figure ���� Procedure InsertTaskIntoFAT �
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any arrangement of tasks that occupy entire rows of a square array� for example�

A�G����� ���W�W ��� ! fa�ti� ! G����� i�� �W� i�� � � � i � n � Wg�
It would be possible to reduce the O�mn� time required to build the free

area tree if it were updated as allocations� deallocations� and rearrangements oc�

curred� Insertions or deletions into the free area tree require O�m� time� However�

a local repacking can potentially rearrange all of the tasks executing on the array�

thereby entirely changing the structure of the tree� Nevertheless� rebuilding the tree

after each rearrangement would represents a saving over building it each time the

feasibility of rearrangement were to be checked�

������� Searching the Free Area Tree

It is desirable that the free area tree be searched in some way that allows

promising regions to be discovered early in the search� Ideally the region that is

known to cost least to repack should be discovered �rst� Searching the tree breadth


�rst allows schedules a�ecting successively fewer tasks to be discovered and allows

the search to be abandoned at a time when the marginal bene�t of �nding arrange�

ments with lower allocation and execution delays is o�set by the growing allocation

delay due to the search� A �deepest layer �rst� search examines those nodes that

a�ect the least number of tasks but have the least chance of accommodating the

waiting task �rst of all� An ideal search therefore starts somewhat higher in the tree

and works its way up�

The local repacking method reported upon in Chapter � implements a

depth
�rst search of the free area tree and abandons the search once the �rst feasible

arrangement is found�

������� Repacking the Tasks

The search of the free area tree identi�es those subarrays that might ac�

commodate the waiting task if the tasks allocated to it are rearranged� Well
known

strip
packing algorithms can be used to check whether such an arrangement exists�

Given a set of oriented rectangles and a two
dimensional bin of a given

width and unbounded height� the strip
packing problem is to �nd a minimum height

non
overlapping orthogonal packing of the rectangles into the bin ���� This variant

of the two
dimensional bin
packing problem is NP
complete� Much attention has

therefore been given to �nding polynomial time approximation algorithms� i�e�� fast

algorithms that come within a constant times the height used by an optimal packing
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����� For L an arbitrary list of rectangles� let OPT�L� denote the minimum possible

bin height into which the rectangles in L can be packed� and let A�L� denote the

height actually used by a particular algorithm when applied to L ����� An absolute

performance bound � for A is a bound of the form

A�L� � �OPT�L��

On the other hand� in asymptotic performance bounds of the form

A�L� � �OPT�L� " ��

the constant � is intended to characterize the behaviour of the algorithm as the

ratio between OPT�L� and the maximum height rectangle in L goes to in�nity� The

height of the tallest rectangle is usually normalized to �� whereby any other choice

would only a�ect the constant ��

So as to minimize the frequency with which an algorithm fails to �nd a

feasible arrangement when such an arrangement is possible� its absolute performance

bound should be as small as possible� The algorithm should also be e�cient so as

to keep the scheduling component of the allocation delay to a minimum�

Sleator proposed an O�n logn� time strip
packing algorithm with

A�L� � �OPT�L� " 	��htall

where htall is the height of the tallest rectangle ����� Since htall � OPT�L�� A�L� �
���OPT�L� in the worst case� Asymptotically� however� A�L� 
 �OPT�L� as

htall 
 	� Sleator suggested using his algorithm together with the Split
Fit al�

gorithm of Co�man et al� ���� that has better asymptotic performance� Their

algorithm� which has time complexity O�n logn�� is characterized by the equation

A�L� � ���OPT�L� " �

when the height of the tallest rectangle is normalized to �� Should even better

asymptotic performance be desired the O�n logn� time ��� algorithm of Baker et

al� ��� has the characteristic equation

A�L� � �

�
OPT�L� "

��



htall�

Sleator s suggestion can be extended to include an O�n logn� stacking algorithm�

due to Co�man and Shor ���� that has good asymptotic average case performance�
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For their algorithm� the expected height of a unit width strip
packing of rectangles

from the uniform model �side lengths in �	���� is

E�A�L�� ! n�� " #�
p
n��

i�e�� #�
p
n� space is wasted�

Chapter � reports on the e�ectiveness of using Sleator s algorithm to at�

tempt the repacking� Given the node F ��x�� y��� �x�� y��� has been identi�ed as a

likely candidate� a �strip� of width �x� � x� " �� is tried �rst� While the orienta�

tion of the allocated tasks relative to the width of the strip needs to be preserved

to obtain the performance of known strip
packing algorithms� a packing with each

orientation of the waiting task is attempted� A feasible rearrangement results if the

height of the packing is less than �y��y�"��� Otherwise� the orientation of the strip

is �ipped so that its width is considered to be �y� � y� " ��� and a packing within a

height of �x�� x� " �� is attempted� As mentioned in Section �������� the algorithm

attempts to pack tasks that are partially intersected by the subarray into the array

as well� If� however� a partially intersected task couldn t possibly �t because one of

its sides is too long� the repacking is aborted�

����� Ordered Compaction

Ordered compaction is a second approach to identifying feasible rearrange�

ments� The ordered compaction heuristic places the waiting task at a favourable

location and moves those tasks that initially occupy the allocation site o� to one

side� Ordered compaction therefore has the e�ect of moving the subset of the exe�

cuting tasks that is to be compacted closer together while preserving their relative

order� Without loss of generality� ordered compaction to the right is considered� In

VLSI circuit compaction this technique has previously been referred to as �plough�

ing� ����� which is a graphic term for describing the e�ect � a subset of the executing

tasks is ploughed to the right parallel to the rows of the array so that the waiting

task can be inserted into the enlarged free space abutting the leftmost tasks moved�

Figure ��� depicts an example of a right ordered compaction�

In this section� it is shown that in order to minimize the time to complete

a compaction it is best to attempt to place the waiting task adjacent to a pair of

tasks such that one abuts the allocation site on its left and the other abuts the

allocation site below� The number of potential allocation sites worth checking is

thus signi�cantly reduced� It is then shown how the feasibility of a site can be
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Allocation SiteTasks to be compacted

(a) Initial arrangement (b) Final arrangement

t� t�

t�

t� t�

t�

t� t�

t� t�
t�

t�t�
t�

t�

Figure ���� An example of a right ordered compaction� The initial arrangement on

the left shows the tasks to be compacted so as to allocate a waiting task of size ����

The �nal arrangement on the right indicates the allocation site for the waiting task�

decided by searching a visibility graph de�ned over the executing tasks� The time

needed to free the allocation site of executing tasks is also determined during the

decision process�

In the following� the right ordered compaction of tasks for a given orienta�

tion of the waiting task is discussed� It is assumed that or�tn��� ! �w� h�� However�

it is necessary to consider both orientations of the waiting task and to consider com�

pacting the executing tasks to the left� top� and bottom of the array in order to �nd

the best allocation site� In each case the method is identical� albeit with orientations

and directions switched in the natural way� For the remainder of this section the

term compaction is used to refer to right ordered compaction�

������� Identifying Potential Allocation Sites

The following de�nitions� which appear illustrated in Figure ���� are used

to pinpoint the minimum cost locations for placing the base of the waiting task tn��

if it is to be allocated in the neighbourhood of ti�

The �rst de�nition arises from considering where the waiting task can be

based were it placed as close as possible on the right of ti without intersecting it�

De
nition �� For the waiting task tn��� assumed to be oriented such that or�tn��� !

�w� h�� and for each executing task ti� � � i � n� the right cell interval for ti�

rci�ti� tn��� consists of the set of possible base locations for tn�� were some cell in

its leftmost column placed adjacent to and in the same row as a cell in the rightmost

column of ti�
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on the top

by the array boundary on the right

do not exist

on the top

on the right

t�

t�

t� abutting t�

Topmost placement of

t�

t�

Rightmost placement of

t� abutting t�

Bottommost placement of

t� abutting t�

Top and right placements

of t� constrained

Leftmost placement of

t� abutting t�

Top cell interval for t�

Top and right cell

intervals for t�

Right cell

interval for t�

Figure ���� De�nition of top and right cell intervals for four executing tasks and the

darkly shaded waiting task� t�� with or�t�� ! ��� ���

The existence and extent of the right cell interval for ti given or�tn��� is

constrained by the boundaries of the array but disregards the intersection of tn��

with other executing tasks�

De
nition �� The right cell interval

rci�ti� tn��� ! G���x�tr�ti�� " ��maxf�� y�bl�ti��� h " �g��
�x�tr�ti�� " ��minfy�tr�ti��� H � h " �g��

exists i� x�tr�ti�� " � � W � w " ��

De
nition �� The right cell intervals for tn�� is the set

R�tn��� ! frci�ti� tn��� � � � i � n� x�tr�ti�� � W � wg �G����� ��� ���H � h " ����

which includes an interval that is de�ned with respect to the left edge of the array�

Similar de�nitions can be made regarding the placement of the waiting task

in the vicinity of the other edges of executing tasks� Those that can be made with

respect to the topmost row of an executing task follow�
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De
nition �� For the waiting task tn�� the top cell interval for ti is the set of pos


sible base locations tci�ti� tn��� were some cell in the bottommost row of the waiting

task placed adjacent to and in the same column as a cell in the topmost row of ti�

The top cell interval

tci�ti� tn��� ! G���maxf�� x�bl�ti��� w " �g� y�tr�ti�� " ���

�minfx�tr�ti���W � w " �g� y�tr�ti�� " ���

exists i� y�tr�ti�� " � � H � h " ��

The top cell intervals for tn�� is the set

T �tn��� ! ftci�ti� tn��� � � � i � n� y�tr�ti�� � H � hg � G����� ��� �W � w " �� ����

which includes an interval de�ned with respect to the bottom edge of the array�

The cells at the intersection of the set of right and top cell intervals for

tn�� are of particular interest�

De
nition �� The set of cells at the intersection of the set of right and top cell

intervals for tn�� is denoted I�tn��� ! R�tn��� � T �tn����

De
nition �� Let the set B�tn��� denote the union of the set of cells in I�tn���

with the bottommost cells of each rci�ti� tn��� � R�tn��� and the leftmost cells of

each tci�ti� tn��� � T �tn����

Figure ��� illustrates the set B�tn��� for the example of Figure ����

t�

t�

t�t�

t�t�

Top and right cell intervals

Infeasible region

Potential allocation
site bases B�t��

t�

Figure ���� Potential allocation site bases for a waiting task t� with or�t�� ! ��� ��

appear shaded darkly�
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Theorem � If the waiting task tn�� can be allocated by right ordered compaction�

then the time needed to complete the compaction is minimized for an allocation site

based at some cell in B�tn����

Proof� The proof considers the time needed to free the allocation site for all possible

base locations of the waiting task� The assumption is that the time needed to

complete the compaction is at least proportional to the area of tasks that need to

be moved out of the allocation site�

The right cell interval for ti is the leftmost column in ti s neighbourhood

where tn�� can be placed without intersecting ti� Refer to Figure ���� Were the

placement of tn�� to intersect ti� ti would have to be moved to the right of the

allocation site for tn�� by the right ordered compaction strategy� thereby increasing

the time needed to complete the compaction� Placing tn�� to the right of the right

cell interval for ti does not reduce the cost of freeing the area needed by tn��� Indeed�

it could increase the cost by intersecting additional tasks on the right boundary

of the allocation site� For example� see task tk in Figure ���� These additionally

intersected tasks would need to be moved as well� thereby increasing the time needed

to complete the compaction�

Right cell
interval for ti

Top cell
interval for tj

Cell �r� c�

tmti

tj

tl

tk

Boundary of allocation site based at cell �r� c�

Figure ���� Allocation sites based at the intersection of right and top cell intervals are

locally optimal� Minor displacements from these local optima can force additional

tasks to have to be removed from the allocation site�
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If the right cell interval for ti intersects the top cell interval for tj at cell �r� c�

say� then if tn�� were based at �r� c�� it would� as described above� be constrained

from being placed further to the left or right without potentially increasing the time

needed to free the allocation site� The waiting task would also be constrained from

being located above or below the top cell interval for tj by a similar argument since

a slightly lower placement of the site would intersect tj � forcing it to be moved�

and a slightly higher placement would force the movement of any tasks that become

intersected at the top edge of the site� In Figure ���� for example� task tl is intersected

if the allocation site is based above the top cell interval for tj �

If the right cell interval for ti is not intersected by a top cell interval� then

it is possible for an allocation site based at a cell in the interval to intersect another

task in one way only� The site could intersect a task tj � to the right of and in

the vicinity of ti� whose top edge is �ush with� or above the top edge of ti� See

Figure ��� for an example� Basing the waiting task at the bottommost cell of the

right cell interval avoids the need for compaction if the site does not intersect such

a task� On the other hand� no more time is needed to complete the compaction for

a site based at this cell than at any other cell in the right cell interval for ti since

each location forces tj to have to move�

Right cell
interval for ti

interval for tj
Top cell

Optimal allocation site in the vicinity of ti

Extension of tj forcing compaction

ti tj

Figure ���� Right cell intervals that are not intersected may o�er opportunities for

allocating the waiting task without compaction� In any case� checking the bottom�

most cell is optimal�
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A similar argument can be used to show that it is only necessary to check

the leftmost cell of each top cell interval when the interval is not intersected by a

right cell interval�

Constructing the set B�tn��� of potential bases for the waiting task requires

O�n�� time if each member of the set of right cell intervals is used to check for inter�

sections against each member of the set of top cell intervals� Since O�n�� potential

base locations have to be identi�ed� this is optimal in the worst case� The time

complexity of the average case can be improved by processing the tasks in sorted

order�

������� Assessing Allocation Site Feasibility

Allocation sites based at cells in B�tn��� are not guaranteed to be feasible

because it may not be possible to compact the executing tasks within such a site to

the right due to lack of space� An e�cient way of assessing feasibility is to build a

visibility graph of the executing tasks�

De
nition �	 �After ����� A task v is said to dominate a task t if� for some cell

�rv� cv� of v and some cell �rt� ct� of t� rv ! rt and cv � ct� Where v dominates t�

v is said to directly dominate t if there is no task u such that v dominates u and u

dominates t� A visibility graph is a directed graph having the collection of executing

tasks as vertex set and for each pair of tasks t and v it contains an edge from t to v

i� v directly dominates t�

Figure ��
 depicts the visibility graph for the example of Figure ����

The visibility graph is built in O�n�� time in the following way� The list of

executing tasks is sorted into increasing base column order� whereby if two or more

tasks share a column� they are sorted into increasing row order� For each task a

graph vertex is created and inserted in sorted order� A vertex already in the graph

has associated with it the bottommost and topmost rows intersected by tasks in

its subgraph� Vertex insertion can therefore be done in linear time by a depth �rst

search of vertices not visited before to determine whether or not the task dominates

some task in the subgraph� The distance from the parent to a newly added child is

associated with each inserted edge� After the graph has been built� the maximum

distance the task can be moved to the right is stored at each vertex� The distance

the terminal nodes can be moved is given by their base columns and their widths�
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Figure ��
� An arrangement of tasks on the left� with its visibility graph depicted

on the right�

The distance non
terminal nodes can be moved can be computed in O�n� time by

summing the edge distances in a bottom
up fashion� This �nal step saves time

during searching by eliminating the need to traverse subgraphs for allocation sites

that cannot be freed of executing tasks�

It is possible to reduce the O�n�� time needed to build the visibility graph

if it is updated as allocations� deallocations� and rearrangements occur� Node inser�

tions or deletions into the visibility graph can be performed in linear time because

at most n arcs need to be updated� Since ordered compactions only a�ect the dis�

tances nodes can be moved� not the graph topology� their impact can be propagated

in linear time as well�

For each potential base b � B�tn���� the subgraphs that span rows inter�

sected by the allocation site were it based at b are searched� The leftmost tasks that

intersect the potential allocation site can be identi�ed by a depth �rst search� Once

they have been found� the feasibility of moving them right the required distance can

be checked� These checks require O�n� time in total because it is possible that each

task needs to be examined� If the potential base admits a feasible rearrangement�

the set of tasks that need to be moved can be listed in linear time by searching the

subgraphs of the leftmost tasks intersecting the allocation site�

The order in which potential allocation site bases are searched in�uences

the e�ciency of the ordered compaction method� It is desirable to search the bases
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as they are identi�ed in a left to right sweep across the array because tasks that

intersect potential allocation sites based closer to the left edge have a better chance

of being accommodated on the right� To this end� it is useful to check potential

allocation site bases in the order generated when right cell intervals are chosen in

increasing column order� However� sites closer to the left may involve moving a

greater total area of tasks than sites further to the right� These potentially less

costly sites become more sparse as the sweep progresses because it becomes more

di�cult to compact the intersected tasks� The search for the best allocation site

could therefore be abandoned when the cost of further searching exceeds the marginal

bene�t of �nding less costly compaction schedules�

The array geometry suggests there are many avenues for improving the

performance of the algorithms by parallelizing them� In particular� searching the

visibility graph could be done locally were the graph embedded in a mesh� The best

site would then be identi�ed by a reduction operation�

The ordered compaction method experimented and reported upon in Chap�

ter � abandoned the search when the �rst feasible allocation site was identi�ed�

��� Scheduling FPGA Rearrangements

In this section� the problem of scheduling FPGA task rearrangements so as

to minimize delays for executing tasks is shown to be NP
complete by a reduction

from the PARTITION problem� It is then shown that the problem of optimally

scheduling the tasks can be viewed as a search for an optimal path in a state
space

tree� and an optimal heuristic search procedure that is based on the A� algorithm

is derived� Since this exact algorithm can use exponential time and space to �nd

an optimal path� a polynomial time depth
�rst search heuristic is also presented� A

simple local cost estimator that results in reasonable performance for both heuristics

is described� For ordered compaction� an algorithm that minimizes the delay to

executing tasks at the cost of delaying the allocation of the waiting task is described�

����� FPGA Rearrangement Scheduling is NP�Complete

De
nition �
 Given two arrangements of a set of FPGA tasks� an initial arrange


ment A�G����� ��� �W�H��� ! fa�ti� � ti � Tg and a �nal arrangement A��G����� ���

�W�H��� ! fa��ti� � ti � Tg� the intersection set of task ti� I�ti� � T � ftig� is the
set of tasks in the initial arrangement that are intersected by ti when it is placed into
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its �nal position� i�e�� I�ti� ! ftj � a�tj� � a��ti� �! 	g�

Given an initial and a �nal arrangement of a set of FPGA tasks� a method

for rearranging the tasks� i�e�� moving the tasks from their initial to their �nal

partitions� is sought that minimizes the delay �de�ned below� to tasks subject to

the following constraints� These constraints arise as a consequence of the FPGA

model and the scheduling goals� which are listed at the introduction to this chapter�

C�� A task must be removed from its initial position on the array before it can

be placed into its �nal position� The removal of a task from the array is

instantaneous�

C�� Only one task at a time can be placed� A task can only be placed into its �nal

position and its placement cannot be interrupted� The time needed to place a

task is equal to its size s�ti� ! w�or�ti��� h�or�ti���

C�� Any tasks in I�ti� that have not yet been removed from the array at the instant

the placement of ti commences are simultaneously removed from the array�

C�� The waiting task tn��� which is assumed to be initially removed from the array

and therefore without an initial position� is the �rst task placed into its �nal

position�

De
nition �� The elapsed time between the removal of a task from the array and

the commencement of its placement represents a delay to the task�

Let r�ti� be the time ti is removed from the array� p�ti� be the time the

placement of ti commences� and d�ti� ! p�ti��r�ti� be the delay to ti� The sequenc�

ing constraints can then be formulated in the following way�

r�ti� � p�ti� �C���

p�ti� � p�tj� 
 p�ti� 
 p�tj� " s�tj� �C���

�tj � I�ti�� r�tj� � p�ti� �C���

r�ti� � minfp�ti�� fp�tj� � ti � I�tj�gg �C� � C��� and

r�tn��� ! p�tn��� ! 	 �C���

The problem now is to determine the complexity of �nding a schedule

p � T � Z�
� that minimizes maxfd�t��� d�t��� � � � � d�tn�g�
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FPGA REARRANGEMENT SCHEDULING

INSTANCE� A set T ! ft�� � � � � tn��g of tasks and a delay bound D � Z�� For each

task ti � T � a size s�ti� � Z� and an intersection set I�ti� � T � ftig�
QUESTION� Is there a schedule p � T � Z�

� subject to C� through C� with

maxfp�tj�� p�ti� � tj � I�ti�g � D for all i�

Theorem � FPGA REARRANGEMENT SCHEDULING is NP�complete�

Proof� It is easy to see that FPGA REARRANGEMENT SCHEDULING is in NP

since a non
deterministic algorithm need only guess a schedule and then check in

polynomial time that the placement constraints and the delay bound are met� To

show that the FPGA REARRANGEMENT SCHEDULING is NP
complete� the

well
known PARTITION problem is reduced to it �����

Let the non
empty set A ! fa�� � � � � ang with size s�ai� � Z� for each

ai � A constitute an instance of PARTITION� and let S !
Pn

i
� s�ai�� Then

construct an instance of the FPGA REARRANGEMENT SCHEDULING problem

consisting of n " � tasks with D ! �S " bS��c such that the delay bound can be

met if and only if the set A can be partitioned into two subsets A� � A and A� A�

such that jA�j ! jA� A�j ! bS��c�
Let ti ! �w�or�ti��� h�or�ti��� denote a task oriented with width w�or�ti���

height h�or�ti��� and size s�ti� ! w�or�ti��� h�or�ti��� Set

t� ! tn�� ! ��S� ���

t� ! �S� ���

and construct a further n tasks corresponding to the items in A�

ti�� ! �s�ai�� ��� �� i � n�

The initial arrangement of the tasks for a particular instance is illustrated

in Figure ���� Task t� initially occupies the second and third rows from the bottom

of an array of width �S and height �� Tasks t� through tn�� are arranged in sequence

from left to right along the fourth row from the bottom of the array�

The �nal arrangement of the tasks of the example is shown in Figure ���	�

The bottom
left corner of task tn�� is aligned with the bottom
left corner of the

array� and tasks t� through tn�� have been shifted up a row�

From the initial and �nal arrangements it can be seen that the intersection

set of t� is I�t�� ! T � ft�� tn��g� of tn�� is I�tn��� ! ft�g� and of all other tasks
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t�

t� t�t� t� t� t�

Figure ���� The initial arrangement of the tasks for an instance of PARTITION with

A ! f�� �� �� �� �g�

t� t�t� t� t�t�

t�

t�

Figure ���	� The �nal arrangement of the tasks for an instance of PARTITION with

A ! f�� �� �� �� �g�

is empty� The tasks ti��� � � i � n� their intersection sets� and the intersection

set of task t� can be constructed in a linear scan of the set A� The magnitude of

S can be established at the same time� whereupon the tasks t�� t�� and tn�� can

be constructed in constant time� The initial and �nal arrangement of tasks need

not be computed since the intersection information is conveyed by the intersection

sets� The transformation from an instance of PARTITION to an instance of FPGA

REARRANGEMENT SCHEDULING can thus be done in linear time�

As tn�� is placed �rst of all� t� is removed from the array at time p�tn��� !

	� If t� is placed next� then the remaining tasks are removed from the array at time

p�t�� ! p�tn��� " s�tn��� and can only be placed after t� has been placed� In order

to minimize the delay to the remaining tasks� they are best placed in non
decreasing

order of size� But this ordering places t� last of all and delays it for a total of �S �the

size of tasks t� and t� through tn���� If this delay is to be reduced� some tasks from

T � ft�� tn��g must therefore be moved before t� is placed� However� tasks totaling

no more than bS��c in size can be placed after tn�� and before t� if the delay on t�

is not to exceed D�

Since s�t�� ! S� it must be placed after t�� and placing t� before any other

tasks that are also chosen to be placed after t� forces those tasks to be delayed by

�S at least since they would be delayed by the time taken to place tasks t� and t��

Any correct schedule must therefore place t� last of all� Placing tasks with a total

size of less than bS��c after tn�� and before t� leaves tasks with a total size of more
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than bS��c to be removed from the array with t� when t� is placed� thereby delaying

task t� by more than �S " bS��c�
Therefore� if the tasks t� through tn��� can be partitioned into a pair of

disjoint sets of size bS��c in total� then a schedule satisfying the bound D can be

found� Since there is a one
to
one correspondence between these tasks and the

elements of A in the given PARTITION instance� it can be seen that if and only if

a partition of the set exists� a schedule meeting the bound can be found�

Similarly� if the bound of the FPGA REARRANGEMENT SCHEDULING

problem corresponding to an instance of the PARTITION problem can be met� then

one of the possible partitions is given by the elements corresponding to the tasks

placed respectively between tasks tn�� and t� and between t� and t� in the schedule�

If a valid partitioning of the set A does not exist� then no schedule can meet the

bound�

Corollary � With the constraint of placing the waiting task �rst of all� scheduling

the ordered compaction of FPGA tasks to minimize delays to executing tasks is NP�

complete in one or two dimensions�

Proof� The construction of the proof of Theorem � orderly rearranges the tasks� so

it is clear the proof holds in two dimensions�

The proof is easily adapted to one dimension by converting the two


dimensional arrangements of Figures ��� and ���	 to arrangements in one dimension�

The conversion maps the cells of each array as they appear in row major order� from

the bottom of the array to the top� to the cells of the linear array as they appear

from the left to the right�

Corollary � Without the constraint of placing the waiting task �rst of all� FPGA

rearrangement scheduling is NP�complete�

Proof� Consider an arrangement in which the tasks representing the elements of

the PARTITION set completely �ll a single row� and an additional task� which also

�lls a single row� is to be rearranged such that the two rows containing the tasks

are to be exchanged� In this case there is a cyclic dependency between the solitary

task and the tasks of the PARTITION set� Delays to tasks are therefore minimized

by moving tasks totaling half the area of the PARTITION set �rst� followed by the

solitary task� and then the remainder of the PARTITION set�
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����� FPGA Rearrangement Scheduling as Heuristic Search

The FPGA rearrangement scheduling problem may be thought of as a

search for a task recon�guration sequence that minimizes the maximum delay to

tasks� With n tasks to rearrange after con�guring the waiting task� there are n$

di�erent ways of sequencing the rearrangement� Each of these can be viewed as a

path from the root of a tree to a leaf� in which a node ci� 	 � i � n� represents the

ith sequencing choice� From the speci�cation of the problem� the waiting task tn��

is chosen to be placed at the root c�� The initially executing tasks are then chosen to

be recon�gured in the sequence c�� c�� � � � � cn� The state of the search at any node ci

can be deduced from the unique path c�� c�� c�� � � � � ci taken from the root to ci� The

sizes of the tasks determine the times at which a choice can be carried out� and thus

the time at which tasks are suspended as they become intersected� It is therefore

also possible to determine which tasks have not yet been suspended or relocated�

and by how much the placed tasks have been delayed� In FPGA rearrangement

scheduling� each path has a cost associated with it� which is the maximum of the

execution delays to the tasks when they are relocated in the sequence given by the

path� The FPGA rearrangement scheduling problem is to �nd a cost
minimal path�

which is known as a solution path�

At a node� the search for a cost
minimal path proceeds by calculating the

cost associated with each arc leaving the node� This process is called expanding the

node� After a node has been expanded� a decision is made about which node to

expand next� For the search for a solution path to be e�cient� as little as possible of

the tree is expanded� Searching for a cost
minimal path blindly in a breadth
�rst

or depth
�rst manner is impractical because there are n� i possibilities for the next

sequencing choice at node ci � one for each task remaining to be placed into its

�nal position� However� the search can be made more e�cient through the use of

heuristic information to guide the choice� The idea is to expand the node that seems

most promising� Such a search is called an ordered search or best��rst search ����

One way of judging the promise of a node is to estimate the cost of a solution path

which includes the node being evaluated� This estimate� made by an evaluation

function� is based on the current state and knowledge about the problem domain�

How well the evaluation function discriminates between promising and unpromising

nodes determines the e�ectiveness of the search�
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����� Optimal Heuristic Search � the A� Algorithm

A well
known optimal ordered search algorithm applicable to �nding mi�

nimal
cost paths in directed acyclic graphs is the A� algorithm ���� Its distinctive

feature is its de�nition of the evaluation function f�� In a tree� the evaluation

function f��ci� estimates the minimal cost of a path from the root to a leaf passing

through node ci by summing the exact cost of reaching the node from the root� g�ci��

and an estimate h��ci� of the minimal cost of reaching a leaf from ci� It can be shown

that A� is guaranteed to �nd a solution path if h� is a nonnegative under
estimator

of the minimal cost of reaching a leaf from the node being evaluated and all arc

costs are positive� Although h��ci� is required to be a lower bound on h�ci�� the

actual cost of reaching a leaf from ci� the more nearly h� approximates h the better

the algorithm performs� Algorithm A� is said to be more informed than algorithm

A� if� whenever a node ci� 	 � i � n� is evaluated� h���ci� � h���ci�� If algorithm A�

is more informed than algorithm A� then A� never expands a node that is not also

expanded by A� It is in this sense that A� is considered optimal� The procedure

EFRS of Figure ���� �nds a solution path based on the A� algorithm�

It remains for the nature of the evaluation function f� to be described�

The cost of reaching a node g�ci� is given by the maximum of the delays to the

relocated tasks� which is known� A simple estimator of the minimal
cost path

to reach a leaf from the node is also available� in calculating h��ci�� ignore the

executing tasks� and determine the maximum amount by which the suspended tasks

could be delayed� This approach is examined in more detail below� With this

estimate in hand� the minimum cost of a path to a leaf through ci is then given by

f��ci� ! maxfg�ci�� h��ci�g�
Ignoring the list of executing tasks allows the suspended tasks to be opti�

mally scheduled in polynomial time� This fact is proved next by proving a slightly

stronger result� Since the suspended tasks are scheduled such that the maximum

delay to them is minimized� h��ci� is guaranteed to be an underestimate of the ac�

tual delays incurred by them when tasks that remain to be moved are considered as

well�

Lemma � If r�ti� is the time at which an FPGA task ti is removed from the ar


ray and s�ti� is its size� then the suspended tasks are optimally scheduled in non�

decreasing r�ti�"s�ti� order if none of them causes additional tasks to be suspended�

�In Procedures EFRS and AFRS � if ti is suspended� then its source list is the list of suspended

tasks� otherwise it is the list of executing tasks�
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Procedure ExactFPGARearrangementScheduling �EFRS�

Input A list of n tasks to be rearranged� and a description of the waiting task� For

each task� its size and intersection set is given�

Output A sequence in which the tasks ought to be rearranged so as to minimize

the maximum execution delay to tasks�

Note The algorithm is based on the A� heuristic search algorithm ����

begin

�� Create an open state with the waiting task placed onto a list of recon�gured

tasks� Place the tasks intersected by the waiting task onto a list of suspended

tasks� and place the remaining tasks onto a list of executing tasks�

�� Calculate f� for this state� and place the state on the list of open states�

�� While a solution path has not been found�

�a� Remove that state from the list of open states for which f� is minimal�

and save it as the current state�

�b� If the list of suspended tasks and the list of executing tasks for the current

state are both empty� then iterate �a solution path has been found��

�c� For each task ti not yet relocated�

i� Create an open state copy of the current state with task ti removed

from its source list� and appended to the list of recon�gured tasks�

Remove the remaining executing tasks intersected by ti from the list

of executing tasks� and insert them into the list of suspended tasks�

ii� Update f� for the open state� and place it on the list of open states�

�d� Discard the current state�

�� Report the sequence in which tasks were recon�gured�

end

Figure ����� Procedure ExactFPGARearrangementScheduling �EFRS��
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Proof� Consider the expressions for the delay to suspended tasks ti and tj assuming

r�ti� " s�ti� � r�tj� " s�tj� and neither causes additional tasks to be suspended� If

at time 	 � ti commences recon�guration before tj � then ti is delayed for 	 � r�ti�

time units� and tj is delayed for at least �	 " s�ti�� � r�tj� time units� On the

other hand� were tj scheduled �rst� it would be delayed for 	 � r�tj� time units�

and ti would be delayed for at least �	 " s�tj�� � r�ti� time units� It is assumed

that s�ti�� r�tj� � s�tj�� r�ti�� hence 	 " s�ti�� r�tj� � 	 " s�tj�� r�ti�� Clearly�

	 � r�ti� � 	 " s�tj�� r�ti� as well� so the delays to tasks when ti is scheduled �rst

are no greater than the delay to ti were tj scheduled �rst�

To see that the ordering is suboptimal if additional tasks are suspended�

consider the example in which r�ti� ! r�tj� ! � and � � s�ti� � s�tj�� Let us assume

that ti is recon�gured at 	 ! � and that it causes a task tk with s�tk� 
 s�tj� to be

suspended when it is placed� thus r�tk� ! �� The speci�ed ordering schedules tj to

be recon�gured after ti at time �"s�ti� and tk to be recon�gured at �"s�ti�"s�tj��

giving delays of �� � " s�ti�� and s�ti� " s�tj� respectively for ti� tj � and tk � However�

the maximum delay can be reduced by scheduling tj to be placed �rst of all at 	 ! ��

Task ti is then recon�gured at � " s�tj�� and tk is only suspended at � " s�tj� and

recon�gured at time �"s�tj�"s�ti�� The delays to ti� tj � and tk are then �"s�tj�� ��

and s�ti� respectively� which are all less than s�ti� " s�tj��

����� Local Versus Global Choice of the Most Promising Node

The running time of the A� algorithm potentially requires exponential time

and space because it attempts to make a globally optimal choice of the most promis�

ing node at each step� This section presents a simpli�cation of the algorithm that

achieves an acceptable solution most of the time for lower cost� The idea is to make

a locally optimal choice of the next node to expand by always expanding the most

promising successor of the last node expanded� Such a search is known as an or


dered depth��rst search ���� The procedure AFRS of Figure ���� implements the

algorithm�

If the evaluation function f� of the exact algorithm is used by algorithm

AFRS as well� it is useful to keep the list of suspended tasks in sorted order� and

therefore to implement it using a priority queue with #�logn� insertion and deletion

time� Step � of AFRS then requires O�n logn� time in the worst case� since O�n�

tasks may be intersected by the waiting task� Step ��b�i will also require O�n logn�



Partial FPGA Rearrangement ��

Procedure ApproximateFPGARearrangementScheduling �AFRS�

Input The list of n tasks to be rearranged� and the waiting task� For each task� its

size and intersection set is given�

Output An approximately minimal
cost sequence for rearranging the tasks�

Note The algorithm is an ordered depth
�rst heuristic search ����

begin

�� Create a current state with the waiting task placed onto a list of recon�gured

tasks� Place the tasks intersected by the waiting task onto a list of suspended

tasks� and place the remaining tasks onto a list of executing tasks�

�� Repeat n times�

�a� Initialize f�min to a large value�

�b� For each task ti not relocated yet�

i� Create an open state copy of the current state with task ti removed

from its source list� and appended to the list of recon�gured tasks�

Remove the remaining executing tasks intersected by ti from the list

of executing tasks� and insert them into the list of suspended tasks�

ii� Calculate f� for the open state� and save it and a new value for f�min

if f� � f�min�

�c� Copy the saved state to the current state�

�� Report the sequence in which tasks were recon�gured�

end

Figure ����� Procedure ApproximateFPGARearrangementScheduling �AFRS��
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time� and Step ��b�ii requires a scan of the suspended task list in O�n� time� The

running time of algorithm AFRS is therefore O�n� logn��

Note that Step � examines all possible next states from the previously

expanded state and closes all but the best� It was felt that the estimator may not

look far enough ahead to be useful when the number of tasks to be rearranged is

large� The experimental evaluation reported upon in Chapter � therefore compares

the performance of AFRS and EFRS with one
 and two
state lookahead� The

drawback with looking two states ahead in Step � is that it adds another factor of

n to the time complexity of the algorithm�

The time complexity of the approximate FPGA rearrangement scheduling

procedure might be reduced by a parallel algorithm�

Local repacking was evaluated experimentally using AFRS with two
state

lookahead for rearrangement scheduling� The results are summarized in the following

section and are described in detail in Chapter �� For ordered compaction� a more

straightforward scheduling method was used� A description of the method concludes

this section�

����	 Scheduling Ordered Task Movements with Minimum Delay

Given a set of tasks that are to be orderly compacted it is possible to

move the tasks without delay according to the visibility graph if a task is not moved

until all tasks in its subgraph that must move have moved� This scheduling policy

minimizes delays to executing tasks by suspending each task that is to be moved

just for the period needed to reload it� and by moving it onto a region of the FPGA

that does not overlap any other executing tasks� Scheduling the compaction is

straightforward and requires time linear in the number of tasks to be compacted�

The only drawback with the policy is that it moves the tasks occupying the allocation

site last of all and therefore does not minimize the time needed to free the allocation

site� However� this may not be a serious disadvantage since it is the rate at which

compactions are completed that determines the rate at which waiting tasks can be

allocated�

��� Evaluation of Partial Rearrangement Heuristics

This section compares the time complexity and allocation performance of

the local repacking and ordered compaction heuristics� Section ����� compares the
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time complexity� and Section ����� summarizes the results and �ndings of the exper�

imental investigation described in detail in Chapter �� The section concludes with a

brief discussion of the �ndings� which motivates the work of the following chapter�

����� Time Complexity

For an FPGA of width W and height H with m ! maxfW�Hg and n

executing tasks� the local repacking heuristic requires O�mn� time to build the free

area tree� With O�m� nodes� the tree can be searched in O�mn logn� time for the

existence of a feasible rearrangement� Ordered compaction� on the other hand� needs

O�n�� time to identify potential allocation sites and build the visibility graph� Each

of the potential sites can be checked in O�n� time� which leads to a time complexity

of O�n�� for ordered compaction to determine whether a feasible compaction exists

or not� These costs can be reduced by dynamically maintaining the free area tree

and visibility graph�

In the worst case it is di�cult to know which method requires more time�

However� in practice only a few nodes at the root of the free area tree are searched�

which means O�mn� time is spent building the tree� and a few searches at a cost

of O�n logn� time each are performed� For ordered compaction� the visibility graph

needs to be built� and if the potential allocation sites are checked in a left to right

sweep� the search can be abandoned after checking the right cell interval on the left

array border� which usually su�ces to determine compaction feasibility� The cost

for ordered compaction is therefore more likely to be O�n��� which is unlikely to be

greater than the O�mn� time needed by local repacking�

Without the constraint of placing the waiting task �rst of all� ordered

compaction needs O�n� time to schedule the rearrangement so as to minimize the

delays to the executing tasks whereas local repacking requires O�n� logn� time with

one
state lookahead� or O�n	 logn� time with two states of lookahead� When the

waiting task is to be placed �rst of all� both methods need to use the approximate

scheduling method�

����� Empirical Performance

Analytical assessments of the ability of the local repacking and ordered

compaction heuristics to identify rearrangements whenever they might be feasible

are beyond the scope of this thesis� Instead� a simulation study of the performance

of the methods was carried out and is reported upon in detail in Chapter �� This
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section presents the main results and conclusions of that study in order to complete

the analysis of these methods and to motivate the work on parallel task movements

described in the following chapter�

Simulation experiments were carried out to compare the performance of

the static �rst �t allocation method with dynamic allocation methods employing lo�

cal repacking and ordered compaction whenever �rst �t failed� Local repacking used

procedure AFRS with two
state lookahead� while ordered compaction adopted a

scheduling strategy that minimized the delay to executing tasks� Both local repack�

ing and ordered compaction were programmed to abandon the search for feasible

rearrangements when the �rst feasible rearrangement was found� This rearrange�

ment was then scheduled�

Several experiments were conducted to compare the performance of the

di�erent allocation�rearrangement methods� The �rst experiment investigated the

e�ect on performance of varying task loads with nominal con�guration delays� Both

local repacking and ordered compaction performed signi�cantly better than �rst �t

when the FPGA was saturated with work as tasks arrived more quickly than they

could be processed� Local repacking appeared to perform marginally better than

ordered compaction when tasks were small� whereas ordered compaction performed

better when task sizes grew to encompass the entire array� When the FPGA was

saturated with work� partial rearrangement reduced the mean allocation delay by

up to ��%� The response times were correspondingly lower and the utilization

correspondingly higher� When tasks arrived less frequently than they could be

processed� the bene�ts of rearrangement were insigni�cant�

A second experiment investigated the e�ect on performance of varying the

con�guration delay in the saturated operating region� Both methods performed well

when the mean con�guration delay was very low �less than �% of the mean service

period�� However� local repacking began performing worse than �rst �t at mean

con�guration delays less than �% of the mean service period� By comparison� ordered

compaction sustained mean con�guration delays corresponding to approximately

�	% of the service period before performing worse than �rst �t� The very high

execution delays experienced by tasks using the local repacking method is the main

factor contributing to its poor performance� Ordered compaction� which delays no

task longer than is needed to move it� and which may move tasks with less total

area� delays tasks much less� It therefore sustains better performance than �rst �t

over a larger range of con�guration delays�
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����� Discussion

Partial rearrangement has the potential to o�er considerable performance

advantages with acceptable computational e�ort� Unfortunately� these bene�ts may

be jeopardized by execution delays which render partial rearrangement ine�ective at

con�guration delays that are relatively small compared with the mean task service

period�

These execution delays need to be substantially reduced if partial rear�

rangement is to become more broadly applicable� Since the ratio of the con�guration

delay to the computational latency of cells is unlikely to change signi�cantly� unless

heuristics that reduce the total area of tasks involved in rearrangements are found�

new approaches to moving tasks are needed�

The main bottleneck with the current approach is that tasks are reloaded

from o�
chip in a sequential process that takes time proportional to the area of

each task� If it were possible to use the con�gurable interconnect for moving tasks�

then it would be possible to eliminate the sequential reload step and to recon�gure

a number of target cells at a time� Furthermore� several tasks might make use

of the available bandwidth to move at the same time� Additional performance

gains could be expected from reductions in execution delays to individual tasks and

rearrangement schedule lengths� Techniques for moving tasks on
chip are described

and analyzed in the next chapter�

��� Conclusions

Partial FPGA rearrangement aims to reduce allocation delays for waiting

tasks by reducing the fragmentation of free cells through the movement of executing

tasks� In order to minimize the delay to waiting tasks� the rearrangements should

be performed as quickly as possible� When tasks are reloaded� this aim equates to

minimizing the total area of the set of tasks to be moved� So as not to o�set the

bene�ts of rearrangement� the delay to executing tasks that are to be moved needs

to be minimized as well�

Considering identifying feasible rearrangements of FPGA tasks is NP


complete� two heuristics were developed in this chapter� Local repacking uses a

quadtree decomposition of the FPGA to identify subarrays that may be capable of

accommodating the waiting task if they are repacked� Known strip
packing algo�

rithms are used to attempt the repacking� Ordered compaction� on the other hand�
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searches a visibility graph of the executing tasks to determine whether tasks can be

moved together in one direction so as to �t the waiting task in the resulting gap

� the method can also be used to identify allocation sites when compaction is not

required� The �xed costs associated with constructing the data structures needed

to search for feasible rearrangements could be reduced by dynamically maintaining

them� However� the e�ciency of both methods depends upon the search strategy

used� It is not clear how the search e�ort can be minimized�

Scheduling rearrangements so as to minimize the delays to the executing

tasks that must be moved was shown to be NP
complete� Exact and approximate

scheduling heuristics based on state�space search strategies were therefore developed�

and a simple linear time cost function was proposed to guide the order in which nodes

are expanded� The more constrained task movements of ordered compaction allow

a scheduling method that minimizes the delay to the moving tasks to be used�

It is di�cult to distinguish between the heuristics for identifying rearrange�

ments on the basis of worst case performance� It is likely that the cost of identifying

feasible ordered compactions is no more than the cost of identifying feasible local

repackings� However� the existence of a linear time scheduling algorithm for or�

dered compaction gives it a scheduling advantage� Moreover� analytical performance

bounds on procedure AFRS are needed�

It is felt that parallel solutions o�er scope for further reducing the time

complexity of identifying and scheduling rearrangements�

An experimental assessment of the performance of the methods indicates

dynamic allocation by partial rearrangement can be of signi�cant bene�t when the

con�guration delay is a small fraction of the mean service period and when tasks

arrive more quickly than they can be processed� Local repacking appears to be

slightly more e�ective than ordered compaction when task sizes are small� however�

both methods become ine�ective with modest increases in the con�guration delay�

In order to increase the range of application� it is proposed to move tasks

on
chip as a means of overcoming the I�O bottleneck of reloading con�guration bit

streams from o� the chip� This proposal is developed in the next chapter�



�


Chapter �

On�Chip Compaction

The results of the experimental evaluation of partial rearrangements re�

ported upon in Chapter � demonstrate that partial rearrangements are an e�ective

means of reducing allocation delays in heavily loaded systems� Unfortunately� the

costs associated with reloading tasks from o�
chip mitigate the bene�ts when tasks

are short
lived� The costs of rearranging the tasks must therefore be reduced if the

technique is to be more broadly applicable� This chapter investigates techniques for

using on
chip routing resources to move tasks for less cost�

Of primary interest is the development of fast algorithms for performing

arbitrary two
dimensional partial rearrangements using dynamically recon�gurable

buses to move the tasks� However� this goal was found to be too ambitious� more

modest results are therefore reported� The main contributions of this chapter are to

demonstrate the potential bene�ts of performing task movements on
chip� and to

report on the progress towards developing e�ective one
dimensional ordered com�

paction scheduling algorithms�

Currently available dynamically recon�gurable FPGAs typically have com�

munication links connecting cells to their nearest neighbours� The �rst section of

this chapter describes the use of these links to perform ordered compactions and

then summarizes the results of an experimental study to assess the performance of

on
chip compaction�

In the following section� the focus shifts to the use of segmentable buses�

which have the potential to improve upon the use of nearest neighbour links when

tasks are moved beyond their boundaries� that is� when the �nal allocation for a task

does not overlap its initial allocation� Methods for orderly compacting linear array

tasks are investigated because it is hoped that they will provide some of the insights
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needed to develop two
dimensional methods and because notable FPGA coprocessor

applications that could make use of compaction to improve performance are based

on one
dimensional architectures�

The chapter concludes with a summary of the �ndings and describes av�

enues for future research�

��� Compacting with Nearest Neighbour Links

This section describes the use of nearest neighbour links to perform two


dimensional ordered compactions as described in the previous chapter� The descrip�

tion focuses on the method for scheduling the compaction given that a rearrangement

has already been identi�ed� The results of a simulation study to assess the perfor�

mance of on
chip compaction over nearest neighbour links� which is reported upon

in detail in Chapter �� are then summarized�

����� Scheduling Ordered Compactions

It is assumed that the methods for identifying and assessing potential allo�

cation sites described in Section ����� and the method for moving a task over nearest

neighbour links described in Section ����� are used� Given that a set of tasks to be

orderly compacted has been chosen� compaction by nearest neighbour links proceeds

as follows�

The tasks to be compacted are simultaneously halted and switched out of

context� Cells containing task elements that are to be moved then send them to

their right neighbours� Cells receiving a task element from the left check whether

it has reached its destination and pass it onto the right if not� These steps are

repeated until all task elements reach their destination� When a task arrives at its

destination� the task elements are switched back into context to resume execution�

Individual tasks are delayed from executing for the time they are in motion�

which is proportional to the distance that they move� The time needed to free the

allocation site is consequently proportional to the distance the leftmost column of

the leftmost task occupying the allocation site must move� The best allocation site

thus minimizes this distance and is equal to the number of steps in the ordered

compaction schedule� Figure ��� illustrates the steps in a schedule to compact the

tasks in the example of Figure ��� over nearest neighbour links�
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Figure ���� Compacting the set of tasks from Figure ��� using nearest neighbour

links�

����� Performance Evaluation

A simulation study to investigate the performance of ordered compaction

using nearest neighbour links to move tasks is reported upon in detail in Chapter ��

In this section� the main results and conclusions of that study are summarized�

Ordered compaction was used to try to partially rearrange the tasks execut�

ing on the FPGA whenever a �rst �t allocation method failed to �nd an allocation

site for the next waiting task� Instead of moving tasks by reloading them� as con�

sidered in the previous chapter� tasks were moved over nearest neighbour links� The

delay to a moving task was calculated by scaling the distance it moved by the con�

�guration delay per cell� The e�ect of moving tasks without cost was also examined

for comparative purposes� The time to load the tasks onto the FPGA was calculated

by taking the product of the con�guration delay per cell and the task s area� It was

assumed that a task could be suspended and resumed in a single clock cycle�

The results indicate that ordered compaction using nearest neighbour links

eliminates the degradation in performance that occurs when tasks are moved by

reloading� Compaction over nearest neighbour links reduces the allocation delay

because execution delays are small compared with those that occur when tasks are

reloaded� At high con�guration delays� the cost of using nearest neighbour links

to perform ordered compactions was found to be negligible� These performance im�
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provements are achieved by reducing the time needed to move tasks and to complete

rearrangements�

����� Hardware Enhancements

In order to implement the proposed method e�ciently� several hardware

enhancements to current FPGAs are required�

�� A mechanism for e�ciently halting and resuming a subset of the executing

tasks that does not a�ect the remaining tasks is needed�

�� There is a need to support the pipelining of task elements over nearest neigh�

bour links� That is� it should be possible to instruct the cells in speci�ed

regions of the FPGA to pass task elements from left to right� and to instruct

them to stop doing so at the appropriate time� A local method is desirable�

��� Compacting with Segmentable Buses

Ordered compaction over nearest neighbour links performs better than

reloading tasks from o�
chip� However� when tasks are to be moved large dis�

tances� they are suspended longer� and the bene�ts of compaction may once again

be eroded� In order to extract maximum bene�t from compaction� longer point
to


point connections are needed� The use of segmentable buses o�ers the possibility

of communicating between arbitrary points in constant time� thereby reducing the

time to move tasks� For the remainder of this chapter� techniques for compacting

tasks using segmentable buses are discussed�

The investigation of techniques for performing one
dimensional compaction

is primarily motivated by the desire to gain insight into the problem or perform�

ing arbitrary two
dimensional rearrangements on
chip� However� one
dimensional

methods could also �nd practical use in current and proposed FPGA applications�

The throughput and utilization of essentially one
dimensional architectures such as

DISC ��
� and Garp ���� could be increased by partially rearranging the tasks re�

siding on the array� A DISC or Garp machine can be rearranged by performing a

one
dimensional compaction on all columns simultaneously�

Ordered compaction in one dimension proceeds� as in two dimensions� in

two steps� First� a feasible rearrangement of the executing tasks is identi�ed� and
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second� the rearrangement of the tasks is scheduled� This section discusses one


way ordered compaction� which compacts the executing tasks in one direction only�

The simple extension of the techniques described here to two
way compactions is

discussed at the conclusion of the section� Without loss of generality� the ordered

compaction of tasks to the left is considered�

The idea behind left ordered compaction is to choose a suitable site for

the waiting task and to move the executing tasks occupying it to the left as little as

necessary to free the site� Moreover� the spatial order of the moved tasks is preserved�

In general� these tasks will be moved to cells allocated to other tasks� which will be

moved as well� The left ordered compaction protocol identi�es a sequence of tasks

that can be moved in minimal time to free space for the waiting task and attempts

to minimize the maximum execution delay to the moving tasks� Figure ��� depicts

an example of a left ordered compaction

t� t� t� t� t�

Incoming task
location

Compacted tasks

Task to be allocated

Task arrangement before compaction

t�t� t�t� t�t�

Figure ���� An example of a left ordered compaction to accommodate the waiting

task t
�

After deriving a lower bound on the time to move a task� a procedure for

identifying an optimal allocation site is described� The compaction scheduling prob�

lem is then formalized and conjectured to be NP
complete� An optimal polynomial

time algorithm for scheduling the compaction of unit length tasks without delays

is presented and discussed� A heuristic for compacting arbitrary length tasks on a

linear array is then described� The heuristic frees the space for the waiting task in

minimum time and bounds the delay to moving tasks as well as the schedule length�

The concluding remarks discuss the extension of these methods to two dimensions�
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����� Notation

The following notation is used in this section� The linear array G���� L�

is assumed to be processing a set of n tasks T ! ft�� � � � � tng� Each executing task

ti has an associated length li with � � li � L and is assumed to be allocated to a

block of li contiguous cells based at the cell Cbi on the left with bi � ��� L� li " ���

Task ti is composed of li task elements labelled ti���� � � � � ti�li� from left to right with

element ti�j� assumed allocated to the cell numbered bi�j ! bi " j � ��

The interval of cells G��i� j� with i � j contains jG��i� j�j ! j � i " �

contiguous cells� The intersection of cell intervals�

G��i� j��G��k� l� !

��
�

G��max�i� k��min�j� l��� i� i � l and j � k

	� otherwise

Task ti is thus allocated to the interval of cells G��bi��� bi�li�� The executing tasks

are arranged such that bi � bj for i � j� and G��bi��� bi�li� � G��bj��� bj�lj � ! 	 for all

ti� tj � T with i �! j�

The possibly empty block of free cells between tasks ti�� and ti is labelled

fi� The leftmost and rightmost free blocks are labelled f� and fn�� respectively�

The symbol fi is used to refer to the free block as well as to its size�

It is assumed that the waiting task tn�� with ln�� � fi for all i is to be

allocated�

����� Selecting an Optimal Allocation Site

In order to minimize the time to allocate the waiting task� it is desirable to

place it at a location that takes minimum time to free of executing tasks� Lemma �

in Section ����� describes the criterion for computing the optimal time required to

move a task� This fact is used to �nd an optimal allocation site for the waiting task

and to compute the length of an optimal schedule for clearing it of executing tasks�

When tasks are to be orderly compacted in a single direction� identifying

the optimal rearrangement so as to minimize the allocation delay to the waiting task

is easier in one dimension than in two because the allocation site can only intersect

tasks in a single dimension� In two dimensions� the cost to free the allocation site can

be a�ected by vertical and horizontal displacements of the site� In one dimension

there is only one degree of freedom� The following de�nitions prepare the way for

the characterization of an optimal allocation site�
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De
nition �� A task ti is said to be totally �partially� covered by another task tj

if all �respectively some� but not all� of the cells allocated to ti need to be reallocated

to tj �

From Lemma �� the cost to uncover a task that is totally covered by the

allocation site is proportional to its length because it must be moved further than

its size� However� the cost to uncover a task that is partially covered at one end

by the incoming task is dependent on the direction it is moved in� If the uncovered

portion is moved away from the incoming task� then the cost to move it is at least

proportional to the number of cells covered� Otherwise� the cost is proportional to

its length since the uncovered end of the task must be moved past the covered end�

Should the task be so long as to be covered in the middle by the allocation site but

be uncovered at both ends� then the cost to uncover the task is given by the sum

of the uncovered length that is moved towards the allocation site and the length of

the site�

De
nition �� The sequence of tasks ti� ti��� � � � � tj with i � j is said to be a con


tiguously allocated sequence of tasks if the free blocks fi��� fi��� � � � � fj between them

all have zero length� The sequence is said to be a maximal contiguously allocated

sequence if the free blocks fi� to the left of ti� and fj��� to the right of tj� each have

non�zero length�

Theorem � The time needed to free an allocation site for the waiting task using

left ordered compaction is minimized when the rightmost task element of the waiting

task is allocated to the rightmost cell of a free block of non�zero size�

Proof� The proof considers the time needed to free the allocation site for all possible

positions for the rightmost task element of the waiting task as it is shifted from the

rightmost cell of a non
empty free block across the maximal contiguous sequence of

allocated tasks to the left�

Assume there is su�cient free space to accommodate the tasks partially or

totally covered by the waiting task wherever it is placed� Consider the cost to free

an allocation site that allocates the rightmost task element of the waiting task to

the rightmost cell of a non
empty free block� The incoming task will cover some

cells allocated to other tasks because no free block is large enough to accommodate

it� Since all partially or totally covered tasks are moved away from the allocation

site to the left� the time to free it is proportional to the number of allocated cells
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covered by it� As the position of the rightmost task element of the incoming task

is shifted to the left� additional allocated cells potentially become covered� thereby

increasing the time to free the site� However� as the allocation site is shifted to the

left over a contiguously allocated sequence of tasks� the time needed to free the site

of occupying tasks can only decrease when an occupied task is completely uncovered�

Thus the theorem follows�

Theorem � It is necessary to consider both left� and the symmetric right ordered

compaction of tasks to minimize the time needed to free an allocation site for the

waiting task when tasks are compacted in a single direction

Proof� It is easy to show that the minimum times needed by left and right ordered

compaction to free the incoming task location of occupying tasks are not necessarily

equal� For example� the allocated task set may consist of a single task of length n��

allocated to cells C�� � � � � Cn���� and the request to be satis�ed is for n�� cells as

well� The only feasible site for left ordered compaction is the rightmost n�� cells�

which covers � task element of the allocated task� On the other hand� the only

feasible site for right ordered compaction is the left half of the array� which covers

n��� � task elements of the allocated task�

An allocation site that takes minimal time to free of executing tasks by a

one
way ordered compaction can be found in linear sequential time by scanning a

list of task and free block records in base order� The procedure SelectTasksToCom


pactLeft of Figure ��� selects the optimal sequence of tasks to compact�

����� Scheduling One�Dimensional Compaction

In choosing an allocation site� a sequence of tasks that is to be compacted

is selected� It is necessary to know the source� destination� and length of each task

that is to be compacted in order to perform a left ordered compaction� A left ordered

compaction schedule speci�es for each task in which step of the schedule it should

be suspended and resumed� for each task element in which step it should move from

its source to its destination� and for the segmentable bus how it should be switched

in each step� The program for switching the bus is assumed to be implied by the

schedule for moving the task elements�

After describing the scheduling goals and their in�uence on the schedul�

ing problem� the complexity of one
dimensional ordered compaction is examined�
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Procedure SelectTasksToCompactLeft

Input The size of the request and a doubly linked list of task and free block records

containing their sizes in base order�

Output Pointers to the left
 and rightmost tasks in the sequence of tasks to com�

pact�

begin

�� Scan forwards through the list with a pointer R until R points to a non
zero

sized free block record and the total free space to the left of R�next exceeds

the request�

�� Repeat until the list has been scanned�

�a� Scan forwards through the list with a pointer L until the free space be�

tween R�next and L�next is less than the size of the request�

�b� If the allocation site that allocates the rightmost task element of the

waiting task to the rightmost cell of R covers the least number of allocated

cells of any site considered so far� then

i� Save pointers to the rightmost �R�prev� and leftmost �L�next� tasks

in the sequence to compact�

�c� Scan forwards through the list with R until R points to a non
zero sized

free block record or until the list has been scanned�

end

Figure ���� Procedure SelectTasksToCompactLeft �



On�Chip Compaction ��

It is thought likely that the corresponding decision problem is NP
complete� An

algorithm for optimally compacting unit length tasks and a heuristic for scheduling

arbitrarily long tasks are then described and analyzed�

������� Scheduling goals

The goals of left ordered compaction scheduling are to schedule the move�

ment of tasks from their initial base positions to their destinations in such a way as

to�

�� minimize the time needed to allocate the waiting task�

�� minimize the delay to executing tasks� and

�� minimize the length of the compaction schedule�

These goals are constrained by the model� which does not allow the use of cells to

be shared for execution� and which requires the buses used to move task elements

to be disjoint�

Minimizing Allocation Delay To meet the �rst objective� the tasks occupying

the allocation site need to be moved in a minimum number of steps� To com�

mence executing the waiting task� the tasks covered by the allocation site need to

be switched out of context or moved� If these tasks are not moved as soon as they are

switched out of context� they are delayed from executing more than the minimum

number of steps needed to move them� Tasks covered by the allocation site should

therefore be moved as soon as possible so as to be able to commence executing the

waiting task and to be in a position to meet the lower bound on the schedule length

given by Lemma � below�

Minimizing Execution Delay A task must be suspended before it can be moved

and the linear order of its task elements prior to suspension must be reestablished

over a contiguous set of destination cells before it can be resumed� If the execution

delay to a task that must move is to be minimized� it should be suspended im�

mediately prior to moving� its task elements should be moved in the least possible

number of steps� and it should be resumed as soon as its task elements have been

reassembled at the destination� It is assumed that a cell can store the con�gurations

for two task elements at a time� but that only one of them can be switched in and
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taking part in the execution of a task at any time� Thus if some task ti is moved to

cells initially allocated to some other task tj � tj must be suspended at the time that

ti is resumed� Furthermore� unless tj is moved immediately after being suspended�

it will be delayed more than the minimum amount of time needed to move it� This

constraint appears to have a profound e�ect on the scheduling complexity�

Rather than minimize the total delay to a task from the time it is suspended

until it is resumed� an attempt is made to minimize the component of the delay

during which the task is suspended and not moving� This choice is motivated by

the decision to place primary emphasis on the allocation delay to the waiting task�

An executing task is therefore considered delayed if it is switched out of context for

more steps than the minimum number needed to move it� The amount of the delay

is the number of steps it is switched out and none of its elements are moving�

Minimizing Schedule Length The following de�nition assists in the derivation

of a lower bound�

De
nition �� Let the symbol N� denote the number of task elements occupying

the allocation site that are to be compacted left� and let Smin denote the minimum

number of steps in a left ordered compaction schedule�

The minimum number of steps needed to be able to allocate the waiting

task is given by the following lemma� which also places a lower bound on the length

of any left ordered compaction schedule�

Lemma � The minimum number of steps needed to complete a left ordered com


paction schedule� Smin� is N� if the cell immediately to the left of the allocation site

is initially free� and is N� " � steps otherwise�

Proof� N� steps are needed to move the N� task elements occupying the allocation

site� If the cell abutting the allocation site is not initially free� then the task element

occupying it cannot be moved while other task elements are moved to it or past it

from the right because the buses used to move these are all required to be disjoint

from the bus needed to move its occupant to the left�

In general� more than N� task elements in total have to be moved since

the covered tasks are moved to cells occupied by other executing tasks� Several

task elements therefore need to share the bus each step in order for the compaction

schedule to meet the lower bound�
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������� Complexity of One�Dimensional Left Ordered Compaction

Without loss of generality� assume that the complete set of n executing

tasks is to be compacted left as a consequence of having to satisfy a request for

ln�� !
P

i fi cells� The compaction therefore moves task tj to the lj cells commencing

with the cell numbered � "
Pj��

i
� li on the left� i�e�� tj is moved a distance dj !

bj � �� "
Pj��

i
� li� to the left�

Let mi�j� denote the step in which task element ti�j�� �� j � li� moves� In

step mi�j�� ti�j� moves from the cell numbered bi�j ! bi " j � � to the cell numbered

bi�j � di using a bus that is said to span the interval of cells G��bi�j � di� bi�j��

A task is suspended prior to moving and resumes execution as soon as all

its task elements have moved to their destination� Letting the symbol ri denote the

step in which ti resumes execution following movement� it is given by

ri !
max
j fmi�j� � � � j � lig" ��

A task is suspended in the step immediately before it commences move�

ment� or when its cells are switched out in order to resume a reallocated task� Thus

if si is the step in which ti is suspended�

	 � si ! minfmin
k fmi�k� � � � k � lig � ��

min
j frj � G��bi��� bi�li� �G��bj�� � dj � bj�lj � dj � �! 	gg�

It is desired to move the tasks covered by the allocation site �assumed to

be based at bn�� ! L � ln�� " �� as early as possible in the schedule� In order to

meet the lower bound of Lemma �� a schedule with

max
i�j fmi�j� � G��bij � di� bij�� G��bn��� L� �! 	g !

X
i

jG��bi�� bili� �G��bn��� L�j

is sought�

A decision problem corresponding to the left ordered compaction scheduling

problem follows�

�D ORDERED COMPACTION SCHEDULING

INSTANCE� A list of tasks t�� � � � � tn to be compacted left� for each task a base bi

and length li� and three positive integers A�D� and S�

QUESTION� If di is set to be equal to bi � � �Pi��
j
� lj� and bn�� ! L � ln�� " ��

does an assignment of task element moves m � ti�j� � Z� exist such that�
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� whenever mi�j� ! mk�l� and �i �! k or j �! l�� G��bi�j � di� bi�j� � G��bk�l �
dk� bk�l� ! 	 �task element movements are disjoint��

� max
i�j fmi�j� � G��bi�j�di� bi�j��G��bn��� L� �! 	g � A �the allocation site is freed

in at most A steps��

� for all i� ri � �si " ��� minfdi " �� lig � D �no task is delayed by more than

D steps longer than needed to move it�� and

� max
i fri � � � i � ng � � � S �the schedule is completed in at most S steps��

�D ORDERED COMPACTION SCHEDULING can be visualized as a two


dimensional packing problem as in Figure ���� Let each task element have associated

with it a vector of unit width directed from its source cell to its destination� Assign

each task and its associated vectors a unique colour� The problem is to pack these

vectors layer by layer using as few layers as possible to pack all vectors of the

same colour� A packing of height at most S is sought such that the vectors leaving

task elements occupying the allocation site are packed within the lowest A layers�

Moreover� no more than D positive layers should separate the lowest layer containing

a vector leaving a task from the highest layer containing a vector coloured the same

as one destined for a cell allocated to the task�

SA

t�t� t� t� t� t� t� t	t� t�


Figure ���� A clustered vector packing with D ! 	�

Lack of success in �nding a polynomial time solution to the problem leads

to the following conclusion�

Conjecture � �D ORDERED COMPACTION SCHEDULING is NP�complete�

����� Compacting Unit Length Tasks

While ordered compaction scheduling of arbitrary length one
dimensional

tasks appears to be NP
complete� unit length one
dimensional tasks can be opti�

mally scheduled in linear time on a sequential machine� For this problem� each task
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ti is completely characterized by the cell it occupies� called its source src�ti� ! bi�

Left ordered compaction moves each task as far left as possible without altering the

left to right ordering of the tasks� Thus the destination of task ti is dst�ti� ! Ci�

De
nition �� The region of the array the n executing tasks are moved to� G���� n��

is known as the compaction zone� The array is further subdivided into regions� The

region to the right of the compaction zone is denoted R�� R� plays the role of the

allocation site and is assumed to contain N� tasks to be moved� as in De�nition 
��

The region these tasks are moved to� the destination or target of the tasks in R��

is denoted R�� By de�nition� this region consists of the N� contiguous cells labelled

Cn�N
��� � � � � Cn� Let this region contain N� tasks initially� Regions R�� R�� � � � � Rr

are de�ned respectively as the target regions of the N�� N�� � � � � Nr�� tasks in regions

R�� R�� � � � � Rr��� That is� region Ri consists of Ni�� contiguous cells abutting region

Ri�� on the left� and Nr ! 	�

The procedure CompactUnitLengthTasks �CULT� of Figure ��� schedules

the optimal movement of unit length tasks� An example of the schedule produced

by procedure CULT is depicted in Figure ����

In the remainder of this section� the time complexity of procedure CULT

is analyzed� and its correctness is proved� A lower bound on the length of a left

ordered compaction schedule is derived� and it is shown that the procedure achieves

this lower bound� Finally� it is shown that the delay to each task is a minimal

constant�

It is assumed that the source of each task is presented as input in increasing

order� As the input is read� a doubly linked list having a node for each task is built�

For each node� an additional pointer is created to point to the node corresponding

to the destination of a task� should it be occupied by a task� or to the rightmost

task to the left of the destination� if it is initially free� If such a node does not exist�

then it su�ces to set the pointer to null� Such a list can be built in linear sequential

time since the task destinations are also ordered�

The time complexity of procedure CULT is given by the following theorem�

Theorem � Procedure CULT computes the schedule of task movements in O�n�

steps on a sequential machine� This is optimal�

Proof� Step ��a� of the procedure takes constant time if the pointers from tn back

to its destination and then forward to the next task in the list are followed� Step
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Procedure CompactUnitLengthTasks �CULT�

Input A list of unit length task records containing the source of each task�

Output An assignment of tasks to be moved in each step of the schedule�

begin

�� Schedule the tasks to be moved in the �rst step�

�a� Select the leftmost task in R� to be moved�

�b� While there is a task whose source lies to the left of the destination of

the previously selected task�

i� Select the rightmost of these to be moved in the �rst step of the

schedule as well�

�� While R� contains a task to be moved� in parallel�

�a� Move the tasks out of R� from leftmost to rightmost in consecutive steps

of the schedule�

�b� Move tasks within the compaction zone in the step after they become the

target of a move�

�� If the rightmost task in R� was moved to an allocated cell in the previous step�

then

�a� Move the rightmost task of R� and any other tasks moved to in the

previous iteration of ��b� in a �nal step of the schedule�

end

Figure ���� Procedure CompactUnitLengthTasks �CULT��
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�
 �	 �� �� ��
Schedule step �

Task moved by step ��a� of procedure CULT
Tasks moved by step ��b� of the procedure
Tasks moved by step 	�a�
Tasks moved by step 	�b�
Tasks moved by step ��a�

R	R�R�R�R�R�

step �
step 

step �
step �
step �
step 	

� � �
 ��

Legend�

� 	 �

Figure ���� Left ordered compaction of unit length tasks by procedure CULT �

��a� requires constant time by following the pointers to the next task each iteration�

This step is executed N� � � times� Thus O�N�� time is needed to move the tasks

occupying R�� The remaining tasks are moved by steps ��b�� ��b�� and ��a� of the

procedure� Step ��b� requires constant time each iteration when pointers to the

previous task and to the destination nodes are followed� When tasks become the

target of a move� which can be noted by following the pointers to the destinations of

moves� pointers to the targeted tasks can be stored so that they can be moved in the

following schedule step� Any data structure requiring constant insertion and removal

time such as a linked list allows steps ��b� and ��a� to be executed in constant time

per task� The remaining n�N� tasks can therefore be scheduled in O�n� time� Since

the schedule needs to associate a possibly unique step with each task� &�n� time is

needed to perform the scheduling sequentially� The procedure therefore schedules

in optimal time�

Theorem � Procedure CULT correctly schedules the left ordered compaction of unit

length tasks�

Proof� To prove procedure CULT correct� it needs to be shown that all tasks are

moved to their correct destination and that the buses formed to move tasks are

disjoint�

The procedure does not make use of the destinations of task moves other

than to select tasks to be moved in the �rst step of the schedule and to determine
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that a task should be moved in step ��b�� It can therefore be assumed that when a

task is moved� it is moved to its correct destination assuming that the bus needed

to move it does not interfere with any others�

The following propositions� which are proved in Lemmas � and � below�

establish the basis for showing that all tasks are moved�

�� The tasks occupying R�� to the right of the compaction zone� are moved in

the �rst N� steps of the schedule�

�� Apart from the tasks moved in the �rst step of the schedule and those moved

out of R�� a task is moved in the step after its source receives a task�

Since the sizes of the regions are de�ned so as to accommodate the tasks arriving

from the neighbouring region to the right� the tasks allocated to a region Ri are

moved at the latest in the step after they become the destination of a move from

the region Ri�� to the right� Since all tasks in R� are explicitly moved by steps ��a�

and ��a� of the procedure� it follows that all tasks are moved�

Tasks chosen in step ��b� of the procedure are selected so as to avoid

interference of the buses used to move them� The buses used to move the tasks

occupying R� do not con�ict with any others� as shown in Lemma �� In Lemma �

it is proved that tasks that are forced to move as a result of becoming the target of

a move in the previous schedule step are free to do so�

Lemma � The N� tasks to the right of the compaction zone �occupying R�� are

moved in the �rst N� steps of the schedule�

Proof� The N� tasks occupying R� are moved from leftmost to rightmost in N�

schedule steps according to the actions of steps ��a� and ��a� of the procedure�

These tasks are moved into region R� by de�nition� Any such task tk is free to move

since it cannot con�ict with any forced moves out of R� in step ��b�� A task ti that

is forced to move can only have been the target of a task tj � originating from the

left of tk � and thus the source of ti must be to the left of the destination of tk�

Lemma � If the destination in Ri of a move from Ri�� during step 
 of the schedule

is occupied by a task tj then tj is scheduled and is free to be moved during step 
"��



On�Chip Compaction ��

Proof� Step ��b� of the procedure forces a task to be moved in the step immediately

following the step in which it becomes the target of a move� Thus if task tj becomes

the target of a move in step 
� it is moved in step 
 " ��

Task tj is free to move in step 
 " � unless some cell spanned by the bus

used to move tj is the source or destination of a forced move in step 
 " � as well�

But if a task that is allocated to such a cell is forced to move in step 
 " �� then it

must have been the target of a task coming from the right of tj in step 
 because

the order of tasks is preserved� This is not possible since the segment of the bus

immediately to the right of the source of tj was used during step 
 to move the task

destined for tj �

By a similar argument� the forced movement of tj during step 
"� cannot

con�ict with the forced movement of any task to a cell spanned by the bus used to

move tj since any such task must occupy a cell that would have been spanned by

the bus used to move the task destined for tj during step 
�

Lemma � For all 	 � i � r� the number of tasks initially allocated to Ri�� is less

than or equal to the number of tasks initially allocated to Ri� Thus the sequence

N�� N�� � � � � Nr� is non�increasing�

Proof� By de�nition� the Ni tasks allocated to region Ri are compacted left to

region Ri��� which consists of the Ni contiguous cells abutting the region Ri on the

left� At most all of the cells in Ri�� are initially allocated� so the number of tasks

initially allocated to Ri�� is Ni�� � Ni�

In Lemma � a lower bound on the number of steps needed by any left

ordered compaction scheduling algorithm was provided� In the following theorem it

is proved that procedure CULT produces a schedule of optimal length�

Theorem 	 The schedules produced by procedure CULT are at most Smin steps long�

Proof� The statement is proved by induction on each region� The tasks initially

allocated to R� are moved in N� steps by instructions ��a� and ��a� of the procedure�

According to Lemma �� all tasks initially allocated to R� are moved out within

N� steps as well unless the rightmost cell is occupied by a task� in which case an

additional step is used by R� to move this task� In either case� no more than Smin

steps are used to move the tasks initially allocated to regions R� and R�� Now� the

rightmost task of region R� is moved in the �rst step since it is the �rst task chosen
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by step ��b� of the procedure� Irrespective of whether this task was allocated to the

rightmost cell of R� or not� when the rightmost cell of R� becomes the target of the

move of the rightmost task from R�� it is already free� and thus its arrival does not

force a move out of R� in the following step� Since the last move into R� occurs in

step Smin at the latest� all tasks are moved out of R� into R� within Smin steps�

Assume that the tasks initially allocated to regions R�� � � � � Ri�� are moved

out in at most Smin steps� and consider when the last task is moved out of Ri� There

are two cases� It may be that the last task to be moved into region Ri is moved

in step � � Smin� Since the number of tasks initially allocated to Ri is at most as

many as arrive from Ri��� as shown in Lemma �� and the tasks initially allocated

to Ri are moved at the latest in the step after they become the target of a move� as

shown in Lemma �� the last task to be moved out of region Ri must be moved in

step � " � � Smin at the latest�

On the other hand� suppose that the last task is moved into Ri in step

Smin� In the following� it is proved that in this case its destination is either initially

free or freed in the �rst step of the schedule� The arrival of the last task into Ri

therefore does not force a move out of Ri in the following step� and from Lemmas �

and �� the last task to move out of Ri does so in step Smin at the latest�

In Lemma � below it is established that tasks are moved into a region

in cyclic order from left to right� There are three subcases to consider �refer to

Figure ��� below��

�� The leftmost cell in Ri is hit by the leftmost task 	 from Ri�� in the �rst step�

Due to Lemmas � and �� all other tasks leave Ri�� before src�	� becomes the

destination of a move from Ri��� In particular� the last task to leave Ri�� is

the rightmost task occupying the region� and it leaves before src�	� becomes

the destination of a move� Since src�	� is hit in step Smin at the latest� the last

task leaves Ri�� before step Smin� contradicting the assumption that it leaves

Ri�� in step Smin�

�� Some cell Ci other than the leftmost one in Ri is the target of a move in the

�rst step� In this case the rightmost task to the left of Ci is moved in the

�rst step by instruction ��b� of the procedure� If this task is allocated to the

adjacent cell to the left� Ci��� then this cell is freed in the �rst step of the

schedule and thus becomes a free destination for the last move into region Ri�

Otherwise� Ci��� which is the last cell moved to in Ri� is already free�
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�� No cell in Ri is hit in the �rst step because the rightmost task to the left of

the cell hit in the �rst step in Ri�� is in Ri� In this case� the rightmost task

in Ri is moved in the �rst step� The last task moved to Ri is moved to the

rightmost cell in Ri due to Lemma �� and this cell was either initially free� or

allocated to the task moved in the �rst step�

cell hit in �rst step are free

Cells in Ri�� to left of

Rightmost task in

Ri moved out

� � �

���

is last cell moved to

Task move into Ri��

in �rst step

Case ��
Ri Ri��

in �rst step

Ri

Rightmost cell in Ri

� � �

���

Last task move into Ri is before src��� is hit

� is moved into Ri in the �rst step

Case ��
Ri Ri��

Ci

Ri

Ci

�
��

�
��

First task

moved out

First task

moved out

First cell moved to in Ri

Last cell moved to in Ri

First cell moved to in Ri

Last cell moved to in Ri

Case ��a� Ci�� freed in �rst step� Case ��b� Ci�� initially free�

� � �

Figure ���� The destination of the last move into region Ri is either initially free� or

it is freed in the �rst step�

Lemma � Tasks are moved into each region Ri for 	 � i � r in cyclic order�

Proof� Tasks are moved into region R�� �lling the cells in the region from leftmost

to rightmost� When a task is hit it is moved in the following step into R�� as shown
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in Lemma �� Region R� is therefore also �lled from the leftmost cell to the rightmost

by tasks arriving from R�� Instruction ��b� selects the rightmost task of region R�

to be moved in the �rst step of the schedule� Its destination is the rightmost cell of

R�� following which R� is �lled from the leftmost to the rightmost but one cell with

tasks arriving from R��

Let the cells in region Ri�� with i � � be labelled Cj � Cj��� � � � � Cj�Ni�����

Let Cj�k with 	 � k � Ni�� � � be the cell moved to in the �rst step of the

schedule� and suppose that tasks move into Ri�� in cyclic order� i�e�� the cells

Cj�k��� Cj�k��� � � � � Cj�Ni���� are �lled in that order in subsequent steps� followed

by the cells Cj� Cj��� � � � � Cj�k��� According to instruction ��b� of the procedure�

the rightmost task to the left of cell Cj�k is chosen to be moved in the �rst step

of the schedule� If there is no task in Ri�� initially allocated to the left of Cj�k �

then the rightmost task in Ri is selected� and Ri is �lled from the leftmost to the

rightmost cell in the region as tasks in Ri�� are hit�

On the other hand� suppose that the rightmost task to the left of Cj�k is

the lth task from the left in region Ri�� and that it is allocated to cell Cj�m with

m � k� Then the lth task in Ri�� is chosen to be moved in the �rst step of the

schedule to the lth cell from the left in region Ri� the cell labelled Ct ! Cj�Ni���l���

The Ni�� � l cells in Ri to the right of Ct are �lled in subsequent steps as the tasks

allocated to the right of Cj�k�� in Ri�� are hit� Similarly� those cells in Ri to the

left of Ct are �lled as the tasks to the left of Cj�m in Ri�� are hit� In either case�

tasks are moved into Ri in cyclic order as well�

Finally� it can be shown that the delay to each task is bounded by a constant

number of cycles�

Theorem 
 No task is suspended by procedure CULT for more than � steps� Given

the assumptions of the model� this is optimal

Proof� All tasks are switched out of context in the cycle before they are moved� get

moved in the schedule step allocated them by the procedure� and are switched into

context again in the following cycle� Since the destination of a move is either free

when the task arrives or is occupied by a task that is switching out of context prior

to being moved� each task is free to be switched into context in the step following

its arrival at its destination� The total number of cycles in which a task could not

execute therefore is ��
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����	 Compacting Arbitrary Length Tasks

Unfortunately� straightforward applications of the unit task length solution

to the arbitrary task length problem are not likely to be satisfactory� While proce�

dure CULT readily compacts tasks of arbitrary length in a linear array in the least

possible number of steps� it may delay some tasks for O�Smin� steps� For instance�

see Figure ��
� With the regions de�ned by counting the number of allocated cells

rather than the number of tasks occupying a region� a task of length � whose left

cell is the rightmost cell of region R� and whose right cell is the leftmost cell of R�

would be suspended for Smin " � steps were procedure CULT used to compact the

tasks although as few as � steps are needed to move the task and switch contexts

out and in again�

R�R�R�R�R	

t�t� t� t� t	 t� t
 t�t� t��

Figure ��
� The compaction of arbitrary length tasks t�� � � � � t�� using procedure

CULT suspends t� for Smin " � steps�

This section describes a heuristic algorithm for the left ordered compaction

of arbitrary length tasks� The algorithm produces a schedule of length less than

�Smin steps� which frees the allocation site in Smin steps� and delays tasks for less

than Smin steps� The advantage of this algorithm over procedure CULT is that it

attempts to minimize the maximum delay to the moving tasks by its choice of task

to move �rst�

The left ordered compaction schedule is obtained by identifying sequences

of task elements that can be moved in parallel� The sequences are de�ned so that

the task elements within each sequence can be moved without a�ecting the moves of

task elements in neighbouring sequences� Task elements within a sequence commence

moving with the rightmost element in the �rst step of the schedule and proceed to

move in decreasing address order until the leftmost element of the sequence has
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been moved� The boundaries of the sequences are selected so as to minimize the

maximum delay to tasks� The rightmost sequence may therefore not cover all of the

task elements covered by the incoming task� If it does not� then the task elements

contained in it do not commence moving until its rightmost element is free to do

so without interfering with task element movements in the adjacent sequence to the

left� The schedule is complete when the leftmost task elements of all sequences have

been moved�

Figure ��� illustrates a schedule for a left ordered compaction instance�

Sequence � covers tasks t�� t
� and t�� These can be moved in parallel with those of

sequence � �tasks t�� t�� and t	� and sequence � �task t��� The rightmost sequence�

comprising tasks t�� t�� and t��� does not include all the allocated cells assumed to be

covered by the allocation site� The rightmost task element of the rightmost sequence

is thus restrained from moving until the third step of the schedule�

t�t� t� t� t	 t� t
 t�t� t��

Sequence � Sequence � Rightmost sequence

Allocation site

Figure ���� The left ordered compaction schedule found by procedure CALT delays

t� for � steps�

Scheduling begins by computing a set of candidate schedules � each of which

commences with the rightmost task element of one of the tasks that is covered or

partially covered by the allocation site� From among these candidates� the schedule

that minimizes the delay to moving tasks is chosen� If there are two or more such

schedules� then one that minimizes the schedule length is selected� The procedure

CALT of Figure ���	 �nds a left ordered compaction schedule that minimizes the

delay to the incoming task and that attempts to minimize the delay to executing

tasks while moving them in a regular fashion�

For each task tk whose rightmost task element is covered by the allocation

site� the sequences of a candidate schedule are identi�ed by �nding the set of task
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Procedure CompactArbitraryLengthTasks �CALT�

Input The list of tasks to be compacted left� and for each task� its base� its size�

and the distance it is to be moved�

Output A left ordered compaction schedule specifying for each time step those task

elements that are to be moved�

begin

�� Initialize the minimum delay �min and the minimum schedule length Slmin to

large values�

�� For each task tk whose rightmost cell is covered by the incoming task�

�a� Call procedure GetCandidateScheduleSequences to get the list of task ele�

ments to be moved in the �rst step of a schedule commencing with tk �lk��

the maximum delay to tasks �max� and the candidate schedule length Sl�

�b� If ��max � �min or ��max ! �min and Sl � Slmin��� then save the list of task

elements� �min� and Slmin�

�� Derive the schedule for the sequences de�ned by the saved list of task elements�

end

Figure ���	� Procedure CompactArbitraryLengthTasks �CALT��
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elements E that can be safely moved in parallel with tk�lk�� Each task element e � E
marks the right boundary of a sequence of task elements to its left which extends

to but does not include the next element to the left in E � As described below� the

candidate schedule length and the maximum delay to a task can be computed while

the sequences are being found� The schedule that minimizes the maximum delay to

executing tasks and the total schedule length can thus be chosen once all candidate

sequences have been computed�

The task elements contained in E are selected in the following way� Suppose

that some task element tj �v� with � � j � n and � � v � lj has been chosen to be

moved in the �rst step� Consider where tj �v� is to be moved to so as to �nd the next

task element to the left that can safely be moved in parallel with it on the bus� The

possibilities are illustrated in Figure ����� There are three cases�

�� If tj �v� is moved to a free cell of some free block fi� then ti���li���� if it exists�

can be moved to the left together with tj �v��

�� Should tj �v� be moved to a cell occupied by ti�u� with di � li� then no task

element from tasks to the right of ti are moved to the left of ti� This fact

makes it safe for the next task element to the left of ti�u� to be moved at the

same time as tj �v� is moved� If u � �� then Cbi��u��� writes to the left at the

same time as Cbi�u reads from the right� If u ! �� then ti���li���� if it exists�

can be moved to the left together with tj �v��

�� When tj �v� is moved to a cell occupied by ti�u� with di � li� then some task

element from tasks to the right of ti is moved to the left of ti� Since the task

elements of ti to the right of and including ti�u� cannot move while the tasks

ti��� � � � � tj move to the left of ti�u�� ti must wait until after they have moved

for it to be able to move in the least possible number of consecutive steps�

In this case� ti���li���� if it exists and needs to be moved� can be moved in

parallel with tj �v�� To compute the delay to task ti� note that there are v � �

task elements of tj remaining to be moved before ti must switch out of context�

There are also u � � task elements of ti plus a gap of di � li cells to the left

of ti to be moved to by the tasks ti��� � � � � tj before ti can begin to move� The

delay to task ti therefore is �u� �� " �di� li�� �v� �� ! u� v " di� li� which

is the sum of the lengths li�� " li�� " � � �" lj���

The above sequence selection rule is repeated for the task element just

found until it is not possible to choose another task element to the left that can be
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ti

with tj �v�ti�u� ��
Sequence commencing

tj

Sequence com�

tj

mencing with

Sequence commencing with tj�v�

fi

ti��

Sequence commencing with tj�v�

fi

ti��

tjti

ti

ti���li��� tj �v�

ti���li��� tj �v�

ti�u� �� tj �v�

Case �� If tj �v� is moved to fi� then ti���li��� can move�

Case 	� If tj �v� is moved to ti�u� with di � li� then ti�u� �� can move�

Case �� If tj �v� is moved to ti with di � li� then ti���li��� can move�

Figure ����� Identifying the task element to move in parallel with tj �v��



On�Chip Compaction 
�

moved in parallel with tj �v�� The task elements thus found form the rightmost task

elements of the sequences for a candidate schedule commencing with tk �lk� for some

task tk with � � k � n whose rightmost task element is covered by the incoming

task�

The task elements to the right of tk �lk�� i�e�� tk������ � � � � tn�ln� form a right�

most sequence that commences moving with tn�ln� after Smin�Pn
i
k�� li steps so as

not to con�ict with the sequence commencing with tk �lk��

The sequence selection rule is at the heart of step ��b� in the candidate

scheduling procedure of Figure �����

Finally� expressions for the maximum schedule length and maximum delay

to tasks can be derived� The results are a consequence of the sequence selection

rule�

Lemma 	 A task ti whose leftmost task element is not covered by the incoming task

is moved a distance of at most N� cells�

Proof� Let tj with � � j � n be the rightmost task whose leftmost task element is

not covered by the incoming task� Then tj moves dj � N� cells to the left to make

way for the N� task elements covered by the incoming task� Clearly tj�� will need

to move dj�� ! dj � fj cells to the left to make room for tj � and in general ti with

� � i � j moves 	 � dj �Pj
k
i�� fk � N� cells to the left�

Lemma 
 At most N� " � allocated cells are spanned by a bus used to move a task

element�

Proof� Task elements not covered by the incoming task move at most N� cells to the

left by Lemma 
� At most N� " � allocated cells are therefore spanned by the buses

used to move them� Buses used to move task elements covered by the incoming task

span at most N�"� allocated cells since� in the worst case� the N� cells immediately

to the left of and abutting the allocation site are allocated before any task is moved�

The number of steps Sl needed to complete a candidate schedule is given

by the maximum number of task elements spanned by any sequence in the schedule�

Lemma �� The length Sl of a candidate schedule is �N� � � � �Smin at most�
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Procedure GetCandidateScheduleSequences

Input The list of tasks to be compacted left� For each task� its base� its size� and

the distance it is to be moved� A pointer to the task tk whose rightmost task

element tk �lk�� which is covered by the allocation site� is to be moved in the

�rst step�

Output A list of task elements to be moved in parallel with tk �lk�� the maximum

delay �max to any task� and the candidate schedule length Sl�

begin

�� Initialize �max and Sl to zero� and set tk �lk� to be the task element tj �v� that

is to be moved in the �rst step�

�� While a task element tj �v� remains to be moved�

�a� Append the task element to the list of task elements to be moved in the

�rst step�

�b� Find the next task element ti�u� to the left of tj �v� that can be safely

moved in parallel with it�

i� If tj �v� is moved to ti with li � di� then compute and save the maxi�

mum delay u� v " di � li if it exceeds �max�

�c� Compute and save the length of the sequence commencing with tj �v� if it

exceeds Sl�

�d� Set tj �v� to ti�u� if it exists�

end

Figure ����� Procedure GetCandidateScheduleSequences �
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Proof� The rightmost sequence completes after Smin steps�

By Lemma �� at most N� " � task elements are spanned by the sequences

commencing with a task element tj �v� not covered by the incoming task in cases �

and �� Therefore these sequences are moved in at most N� " � steps� In case ��

at most N� " � task elements are spanned by the bus used to move tj �v�� and by

Lemma 
� since li � di� the length of ti is at most N� � �� Thus the length of the

sequence commencing with tj �v� is at most �N� � � in this case�

Lemma �� The maximum delay to an executing task is at most N� � � � Smin

steps�

Proof� In case �� tasks tj � tj��� � � � � ti are moved one after another from rightmost

task element to leftmost in the least possible number of steps since each moves further

than its length� They can be switched out in the step before moving� therefore none

of these are delayed�

The same is true for tasks tj � tj��� � � � � ti�� in case �� and ti commences

moving as soon as it is moved to� All task elements spaced di " � apart in ti move

in the same step� In the �rst step ti�u � �� moves� Indeed� all task elements in ti

whose index mod �di " �� is congruent with �u� �� mod �di " �� move in the �rst

step� followed by all those with index one less and so on� until ti�� �nishes moving

by writing to the cell allocated to ti�li � di " ��� when all task elements of ti with

an index mod �di " �� congruent with �li � di� mod �di " �� move� Immediately

thereafter� ti�li� and all elements congruent with li mod �di " �� move� followed by

the next task elements to the left� until ti�u� and all elements congruent with u mod

�di " �� are moved� Thus all task elements of ti move in di " � consecutive steps and

ti is also not delayed�

It is possible that in case � the task ti is delayed from moving since it must

switch out of context to allow tj to execute after tj ��� has been moved� In this case�

ti cannot begin to move until ti�� �nishes moving� By Lemma �� at most N�"� task

elements are spanned by the bus used to move tj �v�� Since ti may need to switch

out of context in the step following the arrival of tj �v� to allow tj to execute� ti may

need to wait N� � � steps before it can begin to move�

It should be noted that the maximum delay could be halved by resuming

the task tj in case � some time after it arrives� that is� by resuming tj at the midpoint
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in the time interval between the last task element of tj arriving and the �rst task

element of ti leaving�

The following theorem summarizes the above results�

Theorem �� There is a left ordered compaction schedule with less than �Smin steps

that delays tasks by less than Smin steps� Moreover� such a schedule can be found in

quadratic sequential time�

Proof� The length of the schedule is less than �Smin steps as shown in Lemma �	�

and it delays tasks less than Smin steps by Lemma ��� Generating the sequences

for each candidate schedule necessitates scanning the list of tasks to be moved� and

since the allocation site may cover all of the tasks� the time to �nd the shortest

schedule that minimizes the delay to executing tasks is quadratic in the number of

tasks to move�

����
 Final Remarks

This section considered moving tasks over a segmentable bus with a single

port to each logic cell� This model is equivalent to a recon�gurable mesh ���� of

height � with the constraint that a cell may either send or receive a task element

in each step but not both� This constraint simpli�es the hardware implementation

at the cost of some scheduling complexity� Lifting the constraint simpli�es the

compaction of unit length tasks because a task that is initially allocated to a cell

that is the destination for a task t can be moved in the step t arrives� However�

the complexity of compacting arbitrarily long tasks appears to be una�ected by this

hardware enhancement�

Allowing tasks to be orderly compacted towards both ends of the array can

at best halve the time needed for the compaction without simplifying the scheduling

complexity� Identifying optimal allocation sites is slightly more complicated than

for left ordered compaction� but can still be done in polynomial time�

Arbitrary compactions� i�e�� ones that allow the order of the tasks to be

permuted� o�er the possibility of reducing the number of tasks that need to be

moved and may thus reduce the mean execution delay to tasks� However� they can�

not allocate the waiting tasks more quickly than ordered compactions� and �nding

e�ective heuristics is challenging� Identifying an optimal allocation site is likely to

be NP
hard� and scheduling the movements is more complicated when tasks are

allowed to be moved past one another in opposite directions�
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A fundamental di�erence between one
 and two
dimensional compaction

is that in two dimensions tasks to the right of the allocation site can be moved

further than the maximum number of allocation site cells� in any single row� that are

initially occupied� The scheduling results for one dimension do not therefore apply�

In Section ����� the time to perform an ordered compaction of two
dimensional tasks

over nearest neighbour links was found to be equal to the distance the leftmost task

occupying the allocation site had to be moved to free the site� Figure ���� illustrates

the point that this is also an upper bound for the length of a schedule to move the

tasks were segmentable buses used instead� In Figure ����� tasks t� through t�k

must move to the right of the allocation site� whose boundary coincides with task

t�k� The ordered compaction protocol forces task t�k�� to be moved �k � � cells to

the right� According to Lemma �� minfw�or�t�k����� �kg steps are therefore needed

to move task t�k�� although only � steps are needed to free the allocation site with

segmentable buses�

t�

t�
t�

t�

Allocation site

bus to move

cell of t�

t�k��

t�k

Figure ����� Example illustrating upper bound for schedule to compact two


dimensional tasks using segmentable buses�

The use of segmentable buses to compact two
dimensional tasks o�ers

the possibility of moving individual tasks more quickly than they can be moved

over nearest neighbour links� Nevertheless� �nding schedules to do so appears to be

di�cult � certainly at least as di�cult as minimizing the delays to one
dimensional

tasks of arbitrary length� which is conjectured to be NP
hard�

The hardware and control required to support the use of segmentable buses

on an FPGA is an as yet unresearched problem�
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��� Conclusions

Moving tasks on
chip avoids the I�O bottleneck at the border of the chip�

thereby lifting the constraint that forces tasks to be reloaded sequentially� The

large available bisection width allows several tasks to be moved in parallel when

task elements are moved over inter
cell connections� In addition� moving tasks on


chip allows I�O to tasks not being moved to continue without interruption� There

are many bene�ts of moving tasks on
chip� The time needed to move a task is

reduced� and the overall schedule length is shortened� The execution delays to the

moving tasks are thus reduced� and shorter schedules result in higher allocation

rates�

To gain insights for scheduling two
dimensional ordered compactions over

segmentable buses� the one
dimensional problem was considered� One
dimensional

ordered compaction scheduling over a segmentable bus appears to be NP
hard�

However� an optimal algorithm for compacting unit length tasks� and a heuristic

which bounds the delay to tasks of arbitrary length were described� Nevertheless�

there is scope for simplifying and improving upon the results�

While the use of segmentable buses o�ers the potential for reducing the

interruption to individual tasks and for increasing the rate at which arbitrary re�

arrangements can be performed� little progress has been made towards describing

these methods in two dimensions� There is� therefore� considerable scope for further

research� although the e�ort may not be rewarded with signi�cant improvements

beyond those that can be gained from the use of nearest neighbour links�
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Chapter �

Experimental Results

This chapter presents and analyzes the results of simulation experiments

to assess the performance of the techniques discussed in Chapters � and �� First�

the performance of the approximate FPGA rearrangement scheduling method is

examined to determine the appropriate amount of lookahead needed for path cost

estimation� Partial rearrangements are then evaluated for a range of input param�

eters� Moving tasks by reloading them is assessed �rst � the e�ects of task load�

con�guration delay� and task size are examined� In the third section� the bene�ts of

moving tasks on
chip are evaluated� The fourth section compares the results with

those obtained by Youn et al� for the mesh architecture� The chapter �nishes with a

brief summary of the main conclusions and suggestions for algorithmic re�nements

that could lead to better performance�

	�� Performance of FPGA Rearrangement Scheduling

In this section� the scheduling performance of the approximate FPGA re�

arrangement scheduling algorithm AFRS is compared with that of the exact EFRS

algorithm� The algorithms are assessed by comparing the maximum schedule delay

and the number of states expanded on identical problem instances� The quality of a

schedule produced by AFRS is gauged by calculating a relative performance �gure

which is given by the ratio of the maximum schedule delay �amount of time a task

was suspended and not moving� of the solution found by AFRS to the maximum

schedule delay of the optimal solution found by EFRS �

A set of randomly generated problem instances were presented to each of

the algorithms under investigation to compare the scheduling outcomes� The pa�
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rameters used to specify a randomly generated problem instance were the number of

tasks in the test� the maximum side length of a task� and the likelihood of intersec�

tion between the tasks� Task side lengths were uniformly distributed independent

random variables� and the likelihood of task t having more than l intersections was

given by an exponentially decreasing probability density function� P �jI�t�j 
 l� ! xl

with 	 � x � ��

The algorithms were implemented with two optimizations to reduce the

number of expanded states� all executing tasks with empty intersection sets were

relocated when the suspended task list was empty� and the suspended tasks were

relocated according to Lemma � of Chapter � when no executing tasks remained to

be moved� EFRS was aborted when the size of the open state list exceeded �MB to

prevent it from using exponential space and time to �nd a solution� Note that the

number of states examined by the cost estimator were not counted in the assessment�

Tests were carried out with solution path cost estimators using one and

two states of lookahead� The results for one
 and two
state lookahead are presented

next� followed by a brief discussion of the �ndings�

	���� One�State Lookahead

The performance of the exact and approximate FPGA rearrangement sched�

uling algorithms was compared using one
state lookahead on ���	�	 randomly gen�

erated problem instances� The number of tasks in a problem instance and the

maximum task side lengths ranged from � up to �	� and the base x for extending

the intersection set ranged from 	�� to 	��� For each parameter combination� �	

tests were performed�

The signi�cant �ndings were�

� The relative performance of the approximate algorithm is summarized in Ta�

ble ���� The table lists the number of instances achieving a speci�ed relative

performance �gure or better� In ��% of instances a relative performance of ���

or better was achieved� However� a relative performance as high as �	�� was

observed�

� The exact method expanded less states than the approximate method in ���	%

of instances�

� The exact algorithm failed to �nd a solution within �MB of working storage

in ���% of instances�
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Relative
Performance Number of Percentage of

Achieved Instances Total

��	 ����		 
��	
��� �
���� 
���
��� ���	�� 
���
��� ������ ����
��� ������ ����
��� �	��
� ����
��	 ���			 �
��
��	 ����
� ���

��	 ����	� ����
��	 ������ ����

�	�	 �����	 �		�	
�	�� ������ �		�	

Table ���� Relative performance of algorithm AFRS with a lookahead of one state�

	���� Two�State Lookahead

The performance of the exact and approximate algorithms using one
state

lookahead �EFRS�� and AFRS�� respectively� was compared with algorithms using

a lookahead of two states �EFRS�
 and AFRS�
 respectively��

Each algorithm was tested on the same set of ����	 randomly generated

FPGA compaction instances� The parameters used to generate the problem set were

selected to provide a mix of trivial and non
trivial intersection patterns� Between

�� and �� tasks were generated� the maximum task side length ranged from � up to

�	� and the base for extending the intersection set ranged from 	�� to 	�
�

The �ndings were�

� Table ��� summarizes the relative performance of AFRS�� and AFRS�
 � For

each relative performance �gure� the table lists the number of instances which

achieved the �gure or better� In ��% of instances� AFRS�� achieved a relative

performance of ��	 or better and AFRS�
 achieved a relative performance of

��� or better�

� Of ����
 tests solved by both EFRS�� and EFRS�
 � in �
��% of cases the

relative performance of AFRS�
 was less �better� than that of AFRS�� � The

mean reduction in relative performance from AFRS�� to AFRS�
 was ����%

with a standard deviation of 	��%� In ���% of cases the relative performance

of AFRS�
 was greater �worse� than that of AFRS�� � The mean increase in
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relative performance from AFRS�� to AFRS�
 was ����% with a standard

deviation of ��
%�

� Of ����	 tests� EFRS�
 expanded less states than AFRS�
 in ���
% of cases�

whereas EFRS�� expanded less states than AFRS�� in ���	% of cases�

� Of ����	 tests� ���% were unsolved by EFRS�
 within �MB of open state

information� EFRS�� was unable to solve an additional ���%� or ��	% of the

total�

Relative Number Percentage Number Percentage
Performance of AFRS�� of AFRS�� of AFRS�
 of AFRS�


Achieved Instances Instances Instances Instances

��	 ���	� ���� ����� ����
��� ����� ���	 ��

� ����
��� ����� ���� ��	�� 
���
��� ��	�� 
��� ����� �	��
��� ����	 
��� ����� ����
��� ����� ���� ����	 ���	
��	 ���	
 ���
 ���
� ����
��� ����� ���� ����� �		�	
��	 ����� ����
��	 ����� �		�	
��	 ����
 �		�	

Table ���� Relative performance of algorithm AFRS with lookahead of one and two

states�

	���� Discussion

The approximate algorithm appeared to perform well on these small in�

stances since it achieved less than twice the maximum schedule delay of an optimal

solution in more than ��% of trials� Considering the exact method failed to ob�

tain a solution within �MB of working storage in approximately �% of instances�

this result appears good indeed� Two
state lookahead appears to o�er only a slight

performance improvement over one
state lookahead at the cost of adding a linear

factor to the scheduling complexity� The speed of the exact method suggests a prac�

tical approach to frequently obtaining a good solution quickly� if a solution is not

found after expanding up to n�n� �� states with the exact algorithm� then use the

approximate method�
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	�� Performance of O
�Chip Rearrangements

This section reports on simulation experiments conducted to gauge the

performance of partial rearrangement strategies that reload tasks from o�
chip to

perform task movements� First� the operation of the simulator and its components

are outlined� The experiments conducted and the main �ndings are then brie�y

summarized before the results are reported on and discussed in detail�

	���� Overview of Simulator

Simulation is an e�ective means by which various approaches to allocating

and rearranging tasks may be compared� In outline� the simulator s operation was

as follows�

The simulator generated a random set of tasks within speci�ed parameters

and placed them in arrival order into a �rst in� �rst out queue� The task at the

head of the queue was loaded onto the FPGA when a site for it was found using

the allocation method under test� The task remained allocated until its service

period had �nished whereupon it was removed from the FPGA� Time
stamping the

signi�cant events in a task s life cycle allowed various performance metrics for the

task set as a whole to be calculated� A more detailed description of the simulator

follows�

Each simulation run commenced with the generation of �	�			 independent

tasks that were characterized by � uniformly distributed independent random vari�

ables� A task was represented by a rotatable rectangular request for a subarray of

cells with independently chosen side lengths x� y ! U���� L��U���� L�� with maxi�

mum side length L� The period of time between task arrivals� the inter
task arrival

period� was U���� P � time units with P a speci�ed maximum� The service period of

a task was chosen from U	��� �			� time units� The size of the task set was chosen

to provide a reasonably accurate measure of steady state behaviour� Task sets were

generated using uniformly distributed random variables because expected workload

characteristics were not known� it is also more straightforward to draw conclusions

from the results based on uniformly distributed data than from data based on more

complex distributions� Since task sets were synthetic� all measurements of time were

scaled to a common time unit �tu�� The results are independent of the magnitude

of a time unit�

The simulated FPGA had its size �xed at ��� �� cells� The con�guration
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delay per cell CD was varied� For the results in this section� it was assumed that

tasks were loaded or recon�gured via a single I�O port� The time to load or reload

a task was therefore x� y � CD time units� and the mean con�guration delay was

given by the product of the mean task size and the con�guration delay per cell�

Three allocation methods were compared� They were�

First 
t ���� allocated the waiting task to the bottom
leftmost block of free cells

large enough to satisfy the request� Both orientations of a waiting task were

tried as soon as the previous task �nished loading and then following each

deallocation until allocation was successful� All subsequent pending tasks were

prevented from advancing in the pending task queue until allocation succeeded�

First �t is a good standard for comparison because it has complete recognition

capability � it always �nds an allocation site when one exists�

Local repacking attempted allocating the waiting task by locally repacking a sub�

set of the executing tasks whenever �rst �t failed� Local repacking was tried

with both orientations of the waiting task and both orientations of the subar�

ray being repacked� Sleator s algorithm ���� was used to attempt a repacking of

all the tasks partially or completely intersected by the subarray� A two
state

lookahead cost estimator was used to perform the scheduling�

Ordered compaction attempted allocating the waiting task by orderly compact�

ing a subset of the executing tasks whenever �rst �t failed� Ordered com�

paction was attempted in each compass direction with both orientations of

the waiting task� Scheduling tasks as they were discovered in a depth
�rst

traversal of the visibility graph of executing tasks delayed them for the mini�

mum amount of time needed to move them and loaded the waiting task last

of all�

Note that instead of searching for minimum cost allocation sites� simula�

tions of local repacking and ordered compaction allocated at the �rst feasible site

found� Since service periods are assumed not to be known� partial rearrangements

were not aborted if the waiting task could have been allocated earlier� following

task completions that would have occurred during the rearrangement process� The

simulations did not account for the time required to �nd a bottom
left allocation

site or to identify or schedule a feasible task rearrangement�

The simulator recorded the time a task arrived� the time the allocation

for a task commenced� the time the task commenced loading� and the time the
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task �nished processing �accounting for delays due to task movements�� From these

fundamental quantities the following performance measures were computed�

Mean allocation delay� the mean over all tasks of the time between the allocation

for a task commencing and the loading of the task commencing�

Mean queue delay� the mean over all tasks of the time between a task arriving

and the allocation of the task commencing�

Mean response time� the mean over all tasks of the time between a task arriving

and the task �nishing processing�

Utilization� the mean amount of time an FPGA cell spent executing tasks as a

percentage of the time needed to �nish processing all tasks�

A further performance indicator was derived from these aggregate measures�

Mean execution delay� the mean over all tasks of the time a task was delayed

from executing as a consequence of being moved�

	���� Overview of Experiments

Three experiments were conducted to compare the performance of the dif�

ferent allocation methods� An experiment consisted of a speci�ed number of runs

for a �xed set of parameters� maximum task side length L� maximum inter
task ar�

rival period P � and con�guration delay CD � The results of �	 runs were averaged to

reduce the uncertainty in the result� The experiments were designed to investigate

the following e�ects�

�� The e�ect on performance of varying load with nominal con�guration delay�

Performance was measured for a con�guration delay of ���			 time unit per

cell as the maximum inter
task arrival period P was varied from �	 to ��			

time units� The maximum side length L was �xed at �� cells�

When task loads were heavy� rearranging executing tasks signi�cantly reduced

allocation delays without causing signi�cant execution delays�

When task loads were light� partial rearrangements were not required because

arriving tasks were easily accommodated�

�� The e�ect on performance of varying the con�guration delay at di�erent system

loads�
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Performance was measured at maximum inter
task arrival periods of �	 and

��	 time units� which corresponded respectively to a heavy load� for which

the FPGA was saturated with work� and a medium load� for which it was

just coming out of saturation� The con�guration delay was varied from the

nominal level of ����	 time unit per cell to the extreme level of ��� time units

per cell� The maximum side length L was �xed at �� cells�

Local repacking began performing worse than �rst �t at very low con�gura�

tion delays because of long delays to executing tasks� By contrast� ordered

compaction was able to sustain longer con�guration delays because of shorter

execution delays�

�� The dependency of performance upon task size at saturation with nominal

con�guration delay�

The maximum task side length L was varied from 
 to �� cells� while the max�

imum inter
task arrival period was �xed at � time unit� and the con�guration

delay was set to ���			 time unit per cell�

Performance bene�ts due to rearrangements increased as maximally sized tasks

grew to cover ��� of the array� Performance bene�ts decreased with further

increases in size� Superior performance of local repacking when tasks are small

re�ect the bene�t of collecting free space in two dimensions� The superiority

of ordered compaction when tasks are large highlights the need for better two


dimensional packing heuristics�

Detailed results of the experiments and their discussion follow�

	���� E�ect of System Load on Allocation Performance

Figures ����a� through ����d� plot the allocation performance as the system

load was varied by altering the inter
task arrival period� Three distinct regions are

evident in all curves� From the left� these correspond to operating regions where the

FPGA is saturated with work� where the FPGA is coming out of saturation� and

�nally the unsaturated region�

At small inter
task arrival periods� tasks arrive more quickly than they can

be processed by the FPGA� The FPGA consequently saturates with work� meaning

tasks need to wait before they can be allocated� While the next request is frequently

blocked� it is sometimes possible to combine the free resources to satisfy the next
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task arrival period was varied�
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request by rearranging the executing tasks� Local repacking and ordered compaction

therefore lead to a reduction in the mean allocation delay at saturation�

The mean allocation delay at saturation depends upon the size of the chip�

the task size and service period distributions� the ability of the allocation method to

�nd allocation sites� and the time needed to load tasks� Since work is always queued

up� the rate at which tasks can be allocated is constant irrespective of the inter
task

arrival period� The mean allocation delays at saturation for the �rst �t� ordered

compaction� and local repacking allocation methods were ����� ���� and ���� time

units respectively� Local repacking was therefore almost ��% quicker at allocating

a task than �rst �t and over �% quicker than ordered compaction

As the mean inter
task arrival period �half the maximum inter
task ar�

rival period� increases beyond the mean allocation delay at saturation� tasks begin

to arrive less frequently than they can be accommodated on the FPGA� and the chip

quickly comes out of saturation� By lowering the mean allocation delay at saturation�

partial rearrangements therefore lower the inter
task arrival periods at which FP�

GAs saturate� Said another way� partial rearrangements increase the load
bearing

capacity of the system�

The mean allocation delay dropped below � time unit at maximum inter


task arrival periods of �		� �		 and �		 time units respectively for local repacking�

ordered compaction� and �rst �t� When the FPGA is no longer saturated with work�

it is likely that suitable free blocks can be found for tasks as they arrive without

needing to rearrange executing tasks� At low loads there is therefore no bene�t from

partially rearranging the tasks�

In the saturated region� the queue delay to the kth task is approximately k

times the di�erence between the mean allocation delay at saturation and the mean

inter
task arrival period� Thus the mean queue delay in saturation is approximately

�'a � 'p� � �n " ���� where 'a is the mean allocation delay� 'p is the mean inter
task

arrival period� and n is the number of tasks� Since the allocation delay drops to zero

as the FPGA comes out of saturation� so too does the mean queue delay�

The mean response time is given by the sum of the mean queue delay�

allocation delay� con�guration delay� service period� and the time needed for partial

rearrangements� At low con�guration delays per cell� the time to load a task and the

time to rearrange tasks is negligible� At saturation� the mean queue delay therefore

dominates� and out of saturation� the queue delay and allocation delay become

negligible� thus the mean service period dominates�
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Utilization is the ratio of cell usage to cell capacity� It is given by the

formula

utilization ! �		�
Pn

i
� ei � si
FPGA size �maxffi � � � i � ng

where n is the number of tasks processed� ei is the execution time �service period��

si is the size� and fi is the completion time of the ith task� For a given task set�

the numerator is constant� In the saturated region� an estimate for the completion

time is given by the mean allocation delay multiplied by the number of tasks� and

thus the utilization is constant� At saturation� the utilization can be approximated

by multiplying the mean task size by the mean service period� and dividing the

result by the FPGA size and the mean allocation delay� This model predicts values

approximately �% lower than the utilization of �
�	%� ����%� and ����% observed for

�rst �t� ordered compaction� and local repacking respectively� Further investigation

indicated that the gaps between the predicted and the observed values are mainly

due to deviations in mean task size from the expected value�

When tasks arrive less quickly on average than they can be accommodated�

the completion time of the last task to �nish depends upon its arrival time� As the

FPGA comes out of saturation� a drop in utilization proportional to the rise in the

inter
task arrival period is therefore observed�

From the above discussion it is apparent that the performance metrics are

interrelated� Given one� the others can be derived knowing the parameters used in

the experiment� In subsequent discussions� the focus will therefore concentrate on

the e�ect of varying a parameter on the mean allocation delay alone because it is

the factor most immediately in�uenced by the performance of the allocation method

when rearrangements are carried out�

	���� E�ect of Con�guration Delay on Allocation Performance

The e�ect of varying the con�guration delay was examined at saturation

and coming out of saturation� Figures ����a� and �b� illustrate the performance at

a maximum inter
task arrival period of �	 time units as the con�guration delay per

cell was increased from ����	 time unit to ��� time units� This range corresponds

approximately to a mean con�guration delay per task of between � and �		 time

units� Recall that the mean service period is only �		 time units�

At mean con�guration delays below �% of the mean service period� the

performance bene�ts of local repacking and ordered compaction are similar to those

observed at saturation with negligible con�guration delay� However� local repacking
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Figure ���� �a� Mean allocation delay at saturation for local repacking� ordered
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begins to perform worse than ordered compaction at relatively low con�guration

delays� Two factors probably contribute to this reversal� First� the delays to moving

tasks are larger for local repacking than for ordered compaction because they are

scheduled less optimally� Second� local repacking readily rearranges more tasks

than ordered compaction because the feasible rearrangements considered are less

constrained�

As the con�guration delay rises� the time to load a task increases and

the allocation delay for �rst �t falls because more free blocks become available

due to tasks �nishing before allocation of the next task begins� Unfortunately� by

committing to rearranging� local repacking and ordered compaction retard allocation

rates relative to �rst �t because the I�O port is tied up reloading moving tasks� This

e�ect limits the usefulness of partial rearrangement by o�
chip task movements to

applications where the con�guration delays are low relative to the service periods� At

long con�guration delays� the increased likelihood of �nding allocation sites without

the need to rearrange executing tasks reduces delays to waiting and executing tasks�

While the shape of the mean execution delay curve is explicable� the mag�

nitude of the maximum� and the reason why it should occur at a mean con�guration

delay of �	 time units are yet to be explained� At mean con�guration delays below

�		 tus� the plot suggests that local repacking relocates each task multiple times�

Allocation performance was also examined at a maximum inter
task arrival

period of ��	 time units� which corresponds to a load level not quite high enough to

saturate the FPGA� The results appear plotted in Figures ����a� and �b��

Despite the much larger performance gap between local repacking and �rst

�t� the points where the curves cross over occur at similar con�guration delays�

The similarity between the execution delay curves of Figures ����b� and

����b� is yet to be explained�

	���	 E�ect of Task Size on Allocation Performance

Figure ��� plots the mean allocation delay at saturation as the maximum

task size is increased to �ll the FPGA�

The plot shows that tasks were better allocated using local repacking when

the longest task side was less than half the array side length� However� they were

more easily allocated by ordered compaction when larger tasks occurred�

Free fragments trapped between small tasks are presumably easily gath�

ered in two dimensions by repacking� but cannot necessarily be gathered along one
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Figure ���� �a� Mean allocation delay coming out of saturation for local repacking�

ordered compaction� and �rst �t as the mean con�guration delay per task was varied�
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�t as the maximum task size was varied�

dimension by ordered compaction� When task sizes are small therefore� arbitrary

rearrangements ought to be used�

Although the results for ordered compaction indicate space was available�

Sleator s method frequently failed to repack the tasks when large tasks were present�

A possible explanation for this observation is that large regions of the array were left

unused when the tasks wider than half the array were stacked on top of one another

and those tasks that occupied these regions before could not be squeezed into the

free space remaining between the top of the stack and the top of the array� Better

packing heuristics ought therefore be used when large tasks need to be rearranged�

	�� Performance of On�Chip Rearrangements

In this section� the performance of ordered compaction using the nearest

neighbour links between FPGA cells to move tasks is compared with the perfor�

mance of orderly compacting by reloading the moving tasks� The use of segmented

buses is not reported upon because current methods do not provide signi�cant ad�

ditional performance improvements due to the infrequency with which tasks are

moved beyond their boundaries� For a report on an experimental assessment of a
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one
dimensional ordered compaction algorithm� see ����� Two
dimensional ordered

compaction using segmented buses was investigated and is reported upon in �����

The simulator described in the previous section was used with two new

allocation methods�

Cost free ordered compaction attempted allocating the waiting task by orderly

compacting a subset of the executing tasks whenever �rst �t failed� Ordered

compaction was attempted in each compass direction with both orientations

of the waiting task� Tasks were moved instantaneously without accounting for

compaction costs�

Nearest neighbour ordered compaction attempted allocating the waiting task

by orderly compacting a subset of the executing tasks whenever �rst �t failed�

When a feasible rearrangement of the executing tasks was discovered� moving

tasks were simultaneously suspended and moved over nearest neighbour links

to their destinations where they were resumed upon their arrival�

The time needed to move a task element from one cell to a neighbour over

a link is referred to as the link delay LD � The link delay used in these experiments

was assumed to be equivalent in length to the con�guration delay per cell CD � This

assumption is made although slightly more data needs to be communicated because

the link is faster than I�O from o� chip� Thus to move a task t with or�t� ! �x� y�

a distance of d cells to the right requires dLD ! dCD time units whereas to move

it by reloading requires x� y � CD time units�

At low con�guration or link delays� there would be little di�erence in per�

formance between an ordered compaction allocation method that moves tasks over

nearest neighbour links and one that moves tasks by reloading them� Thus it is of

interest to determine the e�ect on performance as the con�guration delay rises�

	���� E�ect of Con�guration Delay on Allocation Performance

The e�ect of varying the con�guration delay on ordered compaction when

tasks are moved on
chip was compared with the e�ect on �rst �t and compaction

when tasks are reloaded� The results of Section ����� for �rst �t and ordered com�

paction by reloading were used as a basis for the comparison� Performance was

examined at saturation� at a maximum inter
task arrival period of �	 time units

�Figures ����a� and �b��� and as the FPGA was coming out of saturation� at a

maximum inter
task arrival period of ��	 time units �Figures ����a� and �b���
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Figure ���� �a� Mean allocation delay at saturation for ordered compaction �OC�

and �rst �t as the mean con�guration delay per task was varied�
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Figure ���� �a� Mean allocation delay coming out of saturation for ordered com�

paction �OC� and �rst �t as the mean con�guration delay per task was varied�
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The mean con�guration delay per task refers to the time needed to load

an average sized task rather than the time needed to move it over nearest neighbour

links� In these plots� performance is compared when the con�guration delay per cell

and the link delay coincide�

By avoiding the I�O bottleneck� moving tasks over nearest neighbour links

eliminates the deterioration in performance that occurs when moving tasks are

reloaded as con�guration delays rise� The allocation performance is therefore im�

proved even when link delays are extremely high� Given the similarity between cost

free and nearest neighbour results for ordered compaction� there appears to be little

incentive to use segmented buses to move tasks except when tasks need to be moved

substantially further�

	�� Comparison with Previous Methods

Youn et al� ��	� proposed and simulated complete and partial task rear�

rangement schemes for the mesh of processors� The complete scheme repeatedly

shifts the set of executing tasks left then down as far as possible until no further

movements are possible or the waiting task can be allocated� The partial task rear�

rangement scheme places the waiting task at a location that forces a minimal number

of allocated processors to be reallocated provided new locations for the displaced

tasks can be found that do not cause additional tasks to be relocated� Both schemes

relocate processor contexts by moving them over nearest neighbour links� Results

were reported for sequential task movements� however� parallel task movements were

also examined for the complete scheme�

In contrast to the results reported in this thesis� their results suggest that

only modest performance improvements �less than �%� are possible with complete

rearrangements� and that partial rearrangements are not particularly bene�cial� es�

pecially as communication overheads rise�

Several reasons probably contribute to these �ndings� The partial rear�

rangement scheme may have missed some feasible rearrangements because it at�

tempted to reallocate tasks using the adaptive scan method� which is an incomplete

recognition scheme ����� However� it is remarkable that a complete method� which

moves all the tasks� should outperform one that only moves a subset of them� the

overheads of partial rearrangement were greater than those for complete rearrange�

ment when tasks were moved sequentially� This result suggests that complete rear�
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rangements were either not performed very often� or their cost was o�set by greater

bene�ts� On the one hand� the complete method appears to have been less e�ective

at liberating trapped free space� and on the other� the costs of a complete rearrange�

ment were amortized over a larger number of allocations as subsequently arriving

tasks were also accommodated in the recently cleared mesh area� At ��			 tasks�

the simulation sample size may also have been too small to obtain precise results�

Local repacking and ordered compaction overcome the problems of Youn s

methods by increasing recognition capabilities and reducing costs� Whereas local

repacking attempts to optimize the use of space in two dimensions� the partial

method of Youn et al� misses opportunities for rearrangement� and the complete

method appears to be ine�ective at collecting free space in both dimensions� The

ordered compaction method reduces fragmentation by creating larger free spaces

like Youn s complete method� but for less cost� The number of tasks rearranged by

the methods described in this thesis adapts to the space requirements of the waiting

task� The cost of moving tasks is therefore less than for complete methods�

	�	 Conclusions

Partial rearrangements appear to be e�ective at reducing the mean alloca�

tion delay when the task load is high� and if tasks are reloaded� when con�guration

delays are short in relation to service periods� As a result� the load
bearing capacity

of the FPGA before it saturates is increased� the queue delays and response times

in and coming out of saturation are reduced� and the utilization of the FPGA is

boosted� These bene�ts decline as the load falls below saturation levels�

Unfortunately� as con�guration delays increase� the I�O bottleneck causes

increasing delays to reloading tasks� thereby eroding the bene�ts of rearrangement�

Ordered compaction appears to be slightly more resistant to this e�ect because

scheduling delays are minimized and� since less tasks are usually moved� schedule

lengths are shorter� Nevertheless� ordered compaction also fails at relatively low

con�guration delays when tasks are reloaded� However� the I�O bottleneck can be

avoided by moving tasks on
chip� The cost of moving individual tasks are then

lower� and tasks can be moved simultaneously� Moreover� the execution delays to

individual tasks and the performance bene�ts of partial rearrangement do not appear

to be a�ected by large con�guration and link delays�

The results could be improved upon by enhancing the algorithms abilities
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to identify feasible rearrangements� For example� arbitrary rearrangements such as

local repacking are good at gathering free space when tasks are small� however� the

results indicate that better packing heuristics are needed to implement such rear�

rangements when tasks are large� It may be possible to improve the rearrangement

recognition capabilities of local repacking further by considering di�erent ways of

handling partially intersected tasks� For example� one could try sliding them out of

the way into neighbouring subarrays to reduce the number and total area of tasks

that need to be repacked� The recognition capabilities of ordered compaction could

be improved by considering two
 and four
way compactions� Two
 or four
way or�

dered compactions would also reduce schedule lengths if sets of tasks with less total

area could thereby be found�

Further performance improvements would �ow from modi�ed scheduling

strategies� If tasks are to be reloaded� then the delays to tasks being locally repacked

could be reduced by switching the order in which scheduling goals are applied�

The mean execution delay to tasks could be reduced by minimizing the delays to

executing tasks �rst and inserting the waiting task into the schedule as early as

possible without increasing the maximum schedule delay� With tasks spending less

time on the array as a result of reduced execution delays� tasks would be allocated

sooner�

Re�nements that would bene�t both ordered compaction and local repack�

ing include� searching for the best rearrangement� aborting the rearrangement and

waiting for deallocations that would allow the waiting task to be allocated sooner if

task service periods were known� and reducing the number of times a task is moved�

If service times and deadlines for tasks are given� then it is straightforward to avoid

punishing tasks by moving them too often� However� when these are not known�

some other mechanism must be found� Perhaps tasks should not be interrupted in

total for more than some speci�ed maximum deviation from the mean allocation

delay�

The accuracy of the simulation results could be improved if the delays

associated with the host �nding and scheduling rearrangements were accounted for�

It should be noted that it is possibly unrealistic to assume the time to halt and

resume a task is negligible and that it should thus be ignored when tasks are moved

on
chip� The assumption is that these times are nevertheless small relative to the

con�guration delay� and are thus accounted for when the task is loaded� More

detailed information on delays to individual tasks would be useful� The interested
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reader is referred to ���� for the results of a study on individual delays arising from

a one
dimensional ordered compaction algorithm�



���

Chapter �

Conclusion

This chapter reviews the results� conclusions� and areas for further study

discussed in this thesis�

��� Review of the Results and Conclusions

This thesis proposed partially rearranging the executing tasks as a means of

alleviating the resource fragmentation problem that occurs when tasks are allocated

on
line to a dynamically recon�gurable FPGA�

Two heuristics were developed to overcome the intractability of determin�

ing whether a waiting task can be allocated by partial rearrangement� The �rst

method� local repacking� uses a quadtree decomposition of the free space to iden�

tify subarrays that may accommodate the waiting task if the tasks executing within

them are repacked� The second method� ordered compaction� searches a visibility

graph representation of the executing tasks to determine whether the waiting task

can be inserted by sliding a subset of the executing tasks o� to one side�

Current dynamically recon�gurable FPGAs allow tasks to be relocated

by reloading them at their destinations� Scheduling arbitrary rearrangements to

minimize the maximum amount of time any task is suspended while waiting to be

moved is shown to be NP
hard� However� an approximate solution to an instance of

the arbitrary scheduling problem can be found in polynomial time by a depth
�rst

ordered search of a state
space tree� and an optimal ordered compaction schedule

can be found in linear time�

When tasks are moved by reloading� partial rearrangements were found to

be e�ective at alleviating fragmentation when tasks arrive more quickly than they



Conclusion ���

can be processed and the time to con�gure tasks is small relative to their service

needs� However� it was also found that the the bene�t of rearranging tasks was over�

whelmed by the cost of sequentially reloading the moving tasks when con�guration

delays were relatively small�

To avoid the I�O bottleneck� it was therefore proposed to move the ex�

ecuting tasks on the chip� The resulting increase in bandwidth would also allow

tasks to move in parallel� thereby reducing the interruption to moving tasks and the

rearrangement schedule length� Task movements over nearest neighbour links and

segmentable buses were investigated� Ordered compactions over nearest neighbour

links were found to provide performance bene�ts at link delays ranging up to the

mean task service period in length� The use of buses further reduces the time to

move tasks when they are moved beyond their bounding box and o�ers hope for

performing arbitrary rearrangements quickly�

The complexity of scheduling FPGA task movements over a one
dimensional

segmentable bus is unknown and is conjectured to be NP
hard� An algorithm for

optimally compacting unit length tasks was described� and a heuristic for compact�

ing arbitrarily long tasks was developed� The worst case schedule length for orderly

compacting �D tasks over segmentable row buses was shown to be no better than

that using nearest neighbour links�

The methods described in this thesis could also be used to alleviate frag�

mentation in mesh computers that statically allocate tasks to contiguous processor

partitions� On these machines the time to load a task is typically small relative to

its service period ���� ��� ���� Preemptive reallocation could therefore reduce the

long queue delays that have been reported� To overcome the fragmentation problem

in MIMD arrays� tasks are often allocated non
contiguously� However� when tasks

are allocated non
contiguously� messages between task fragments contend for use of

links and response times consequently degrade ���� �
�� It may be that the bene�ts

of allocating contiguously and partially rearranging tasks over mesh links outweigh

the bene�ts of non
contiguous allocation� Since it is unlikely that moving the lo�

cal memory and context for a node over a mesh link would take more time than

the average service period� mesh compaction could also be used to move contigu�

ously allocated tasks to unify time
slots in gang
scheduled systems� as suggested by

Feitelson ����� who considered reallocation to be too costly�
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��� Directions for Further Study

Several lines of further investigation can be identi�ed� These include im�

proving the time complexity of the algorithms described in the thesis� improving the

allocation performance of the algorithms� making the best use of segmentable buses�

and making the methods more applicable� These issues are described in more detail

below�

The time complexity of the algorithms described in this thesis could be

improved by maintaining the data structures dynamically� through the use of more

e�ective search strategies� and by parallelizing the algorithms� as suggested in Chap�

ter ��

The allocation performance of the algorithms could be improved by using

service periods e�ectively� not relocating any task too often� using more e�ective

search� packing� and scheduling strategies� and by coping with arbitrarily shaped

tasks� All but the last of these points were discussed in Chapter �� In order to expand

upon the last point� consider the fact that FPGA tasks are rarely rectangular� but

that rectangles are a convenient abstraction to perform geometric operations� A

consequence of bounding tasks with rectangles is the introduction of fragmentation

internal to each rectangle� which has been ignored in this thesis� but has also not

been available for use� Were the actual task pro�les used� better packings may

be possible� Given the NP
hardness of packing regular shapes� �nding e�ective

heuristics for arbitrary shapes is very challenging�

As discussed in Chapter �� segmentable buses might be better used if the

time complexity of one
dimensional compaction were known� if they could be fully

exploited for arbitrary rearrangements� and if the architectural requirements for

on
chip task movements were known� Techniques for scheduling rearrangements of

two
dimensional tasks are yet to be described�

Finally� partial rearrangements for FPGAs would be more applicable if

multi
chip protocols were known� if practical means of rerouting I�O to migrated

tasks were determined� and if a decentralized control mechanism were used� Since

these issues have not previously been mentioned� a description of them follows�

Field
programmable custom computing machines typically consist of sev�

eral FPGAs� While individual tasks do not usually span chips because of the slow�

down in communicating o�
chip� subtasks may be spread over several chips� To

minimize the amount of global routing resource used to communicate between task
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components� it is desirable to allocate them close to one another� There is therefore

a role for rearrangements at the multi
chip �system� level� How best to carry them

out and the performance tradeo�s are yet to be investigated�

When I�O to tasks is performed by direct addressing� as is possible with the

Xilinx XC��		 series� tasks can be relocated without needing to worry about routing

I�O� However� many FPGA task designs depend upon hard
wired I�O from pins at

the chip periphery� How to reroute the I�O to migrated tasks so as to minimize the

path length� routing area� routing time� and fragmentation of routing resources are

open questions�

This thesis has presented a centralized view of partial rearrangements� The

solution is not scalable because the overhead for determining the feasibility of re�

arranging and scheduling rearrangements increases as array sizes and task numbers

grow� E�ective� autonomous� decentralized defragmentation strategies are therefore

sought� Such mechanisms will need to be implemented on the chip to avoid the

I�O bottleneck at the chip periphery� If found� and implemented� self con�guring

FPGAs will be a step closer�
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