
Generating the Communications
Infrastructure for Module-based Dynamic

Reconfiguration of FPGAs

Shannon Koh

Bachelor of Computer Science (Honours), UNSW Sydney, 2003

A thesis submitted in fulfilment

of the requirements for the degree of

Doctor of Philosophy

School of Computer Science and Engineering

February 2008

Copyright c© 2008, Shannon Koh

Acknowledgements

I would like to thank my supervisor, Dr. Oliver Diessel, for his unwavering

support in this project. His supervision was exemplary, he made the entire

experience of getting a PhD rich and full, and he encouraged me to think

critically in ways I would not have previously imagined. I would also like to

thank my co-supervisor Prof. Sri Parameswaran for his excellent insights. I

would like to thank my wife, Molly Hu, for all her support and understanding

throughout the pursuit of my degree, especially at the most critical moments.

I would also like to thank my mother who encouraged me to pursue my PhD

and supported me throughout. I would like to thank all of my fellow PhD

students on the 5th floor in the Architecture Group, especially Jorgen Ped-

dersen, who, not only being the best friend one might have, also encouraged

me to think. The rest of my fellow students Jeremy Chan, Krutartha Patel,

Anjelo Ambrose, Carol He, Michael Chong all made my research experience

in UNSW Sydney the best anyone could have. Last but not least I would

like to thank the Australian Government for the Australian Postgraduate

Award, the School of Computer Science and Engineering for being an ex-

cellent academic institution, and National ICT Australia for supporting me

through the NICTA research scholarships throughout and especially for the

last six months.

3

Abstract

Current approaches to supporting module-based FPGA reconfiguration fo-

cus on various aspects and sub-problems in the area but do not combine

to form a coherent, top-down methodology that factors low-level device pa-

rameters into every step of the design flow. This thesis proposes such a

top-down methodology from application specification to low-level implemen-

tation, centered around examining the problem of generating a point-to-point

communications infrastructure to support the changing interfaces of dynam-

ically placed modules. Low-level implementation parameters are considered

at every stage to ensure that area, timing and budget constraints of the ap-

plication are met. The approach advocates the regular layout of modules

surrounded by a wiring harness supporting the communications for those

modules, and thus provides an advanced understanding of how to implement

the “fixed wiring harness” model of reconfigurable computing proposed by

Brebner. Results have shown that compared to flattened netlists the regular-

ity of the layout does not impose significant overheads on critical path delays.

At high communication densities it can even result in lower delays. The core

of the methodology is an infrastructure generation process that allocates

modules to slots and merges configuration graphs to form wiring harnesses

that support the communications for these merged configurations. This the-

sis suggests methods and evaluates algorithms for configuration graph merg-

ing so as to reduce run-time reconfiguration overheads. Initial experiments

with a greedy merging algorithm performed on an optical flow application

resulted in a substantial reduction of 64% in reconfiguration time. The ef-

fects of graph merging with the initial greedy algorithm and an improved

dynamic programming algorithm were explored for a range of device sizes

and architectural parameters. Results show that configuration merging us-

ing the greedy method results in significant reductions to the reconfiguration

delay. The dynamic programming algorithm provides consistent improve-

ments above and beyond the savings provided by the greedy method. In

addition, a strong correlation was identified between the quality of front-end

design activities such as partitioning and the effectiveness of back-end imple-

mentations. The methodology is integrated into the Xilinx commercial tool

flow for partial reconfiguration, and is effective for implementing applications

for module-based FPGA reconfiguration where the modules and their com-

munications requirements are known at design time. It also allows a system

designer to consider alternate device sizes and parameters until a set is found

that satisfies the application constraints.

2

List of Publications

1. Koh, S. and Diessel, O. COMMA: a communications methodology for

dynamic module-based reconfiguration of FPGAs. In International

Conference on Architecture of Computing Systems, Dynamically Re-

configurable Systems Workshop Proceedings, pages 173–182, Frankfurt,

Germany, 2006. Gesellschaft für Informatik, Bonn, Germany.

2. Koh, S. and Diessel, O. COMMA: a communications methodology

for dynamic module reconfiguration in FPGAs. In IEEE Symposium

on Field-Programmable Custom Computing Machines, pages 273–274,

Napa Valley, California, 2006. IEEE.

3. Koh, S. and Diessel, O. Communications infrastructure generation for

modular FPGA reconfiguration. In IEEE International Conference on

Field Programmable Technology, pages 321–324, Bangkok, Thailand,

2006. IEEE.

4. Koh, S. and Diessel, O. Module graph merging and placement to reduce

reconfiguration overheads in paged FPGA devices. In International

Conference on Field Programmable Logic and Applications, pages 293–

298, Amsterdam, The Netherlands, 2007. IEEE.

5. Koh, S. and Diessel, O. The effectiveness of configuration merging in

point-to-point networks for module-based FPGA reconfiguration. Ac-

cepted for presentation at the IEEE Symposium on Field-Programmable

Custom Computing Machines, Palo Alto, California, 2008. IEEE.

Contents

List of Figures xii

List of Tables xviii

List of Abbreviations xix

1 Introduction 1

1.1 Background and Research Context 1

1.2 Thesis Contributions . 6

1.3 Thesis Organization . 7

2 Background and Related Work 10

2.1 Modular Design Flow . 11

2.2 General Design Flow for Implementing Dynamically Reconfig-

urable Applications . 16

2.2.1 Application Specification and Functional Decomposition 18

2.2.2 Partitioning and Scheduling 21

2.2.3 Logic Synthesis . 25

2.2.4 Implementation . 26

2.3 Support for Module-based Dynamic Reconfiguration — A His-

tory . 26

2.3.1 Dawn of an Era — The XC6200 27

vi

2.3.2 A One-Dimensional View — The Virtex Family 28

2.3.3 JBits — Java Bitstream Manipulation 29

2.3.4 The Second Generation — Now with PowerPCs 30

2.3.5 XAPP290 — Long-Awaited Tool Support 32

2.3.6 Limitations of XAPP290 34

2.3.7 Overcoming Limitations at a High Level 35

2.3.8 Early Extensions to XAPP290 37

2.3.9 Moving to Two Dimensions 41

2.3.10 Limitations of Current Extensions to XAPP290 43

2.3.11 The Virtex-4 FPGA Family 44

2.3.12 The Virtex-5 FPGA Family 46

2.3.13 The Early-Access Partial Reconfiguration Tool Flow . . 47

2.4 Conclusion . 50

3 COMMA: A Communications Methodology for Module-

Based Dynamic Reconfiguration of FPGAs 53

3.1 Introduction . 53

3.2 A Hierarchy of Dynamically Reconfigurable Systems 57

3.3 The COMMA Approach . 61

3.4 Reference Target Device . 62

3.5 Module Placement Strategy 64

3.5.1 Paged Module Placement 64

3.5.2 Page Aggregation . 65

3.5.3 Horizontal Page Division 66

3.6 Pin Virtualization . 67

3.6.1 Physical Communications Infrastructure 67

3.6.2 Reconfigurable Data Ports 74

3.6.3 Implementation and Optimization 75

vii

3.6.4 Management Issues . 76

3.7 The COMMA Design Flow . 77

3.7.1 Configurator . 77

3.7.2 Infrastructure Generation 77

3.7.3 Module Wrapping . 79

3.7.4 Partial Reconfiguration Tool Flow 80

3.8 Summary . 80

4 Models and Problem Formulation 81

4.1 Introduction . 81

4.2 High-Level Problem Definition 82

4.3 System Model . 84

4.4 Device Model . 86

4.5 Input Specification . 88

4.6 Communications Infrastructure 89

4.6.1 Epochs and Periods . 90

4.6.2 Motivations for using Point-to-Point Connections . . . 92

4.6.3 Drawbacks of Point-to-Point Communications 95

4.7 Classes of Problems . 96

4.7.1 Alternatives . 99

4.7.2 Branching . 100

4.7.3 Final Note . 101

4.8 Detailed Problem Specification 102

5 Assessing the Fixed Wiring Harness 108

5.1 Introduction . 108

5.2 Experimental Method . 109

5.2.1 Problem Definition . 109

5.2.2 Implementation Flow 111

viii

5.2.3 Module Placement . 113

5.2.4 Routing . 115

5.3 Results . 119

5.3.1 Critical Path Delay . 121

5.3.2 Design Time . 128

5.4 Conclusions . 129

6 Wiring Harness Generation for Module-based Dynamic Re-

configuration 131

6.1 Introduction . 131

6.2 Communications Infrastructure Generation Flow 133

6.3 Deriving the Communications Graph 134

6.4 Module Clustering . 137

6.5 Scheduling . 138

6.5.1 Loops . 141

6.6 Graph Merging . 142

6.6.1 Overview of Graph Merging 143

6.6.2 Subsequence Merging 145

6.6.3 Merging Two Subgraphs 148

6.6.4 Mapping a Subgraph onto a Device 157

6.6.5 Wire Delay Cost Model 169

6.6.6 Reconfiguration Delay Cost Model 170

6.7 Optical Flow Case Study and Evaluations 178

6.7.1 Graph Preparation . 179

6.7.2 Graph Merging Results 180

6.7.3 Analysis . 182

6.8 Conclusion . 183

7 Improved Algorithm for Subsequence Grouping 185

ix

7.1 Introduction . 185

7.2 Dynamic Programming Algorithm 187

7.2.1 Complexity . 189

7.2.2 Optimality . 191

7.3 Summary . 192

8 Results 194

8.1 Introduction . 194

8.2 Experimental Method . 195

8.2.1 Experimental Procedure 196

8.2.2 Graph Synthesizer . 198

8.2.3 Module Clustering . 201

8.2.4 Graph Partitioning . 202

8.2.5 On the Quality of the Clustering and Partitioning Al-

gorithms . 203

8.2.6 Graph Merging . 205

8.2.7 Quality Assessment . 206

8.2.8 Parameters Chosen for the Experiments 206

8.3 Metrics . 208

8.4 Reconfiguration Delay Results 208

8.4.1 Device Sizes . 210

8.4.2 Channel Widths . 213

8.4.3 Comparison between the Greedy and Dynamic Methods215

8.4.4 Disabling Clustering 216

8.5 Critical Path Delay . 221

8.5.1 Device Sizes and Channel Widths 222

8.5.2 Comparison between the Greedy and Dynamic Methods223

8.5.3 Disabling Clustering 223

x

8.6 Conclusions . 225

9 Tool Support 229

9.1 Introduction . 229

9.2 The EAPR Tool Flow . 230

9.3 The COMMA Implementation Flow 235

9.3.1 EAPR Step 1: Design Description 235

9.3.2 EAPR Step 2: Constrain Area Groups, I/Os and Timing241

9.3.3 EAPR Step 3: Implement Non-PR Design 242

9.3.4 EAPR Step 4: Analyze Timing and Placement 244

9.3.5 EAPR Step 5: Implement Base Design 245

9.3.6 EAPR Step 6: Implement Partially-Reconfigurable

Modules . 246

9.3.7 EAPR Step 7: Merge Base and Partially-

Reconfigurable Modules 247

9.4 Reconfiguration Control . 248

9.5 Conclusion . 249

10 Conclusions and Future Work 251

10.1 Summary and Conclusions . 251

10.2 Directions for Further Study 255

A Result Plots for 40, 80, 120 and 160 modules 257

Bibliography 266

xi

List of Figures

2.1 Higher level stages of the modular design flow 12

2.2 Low-level implementation stages of the modular design flow

for the static and dynamic cases 13

2.3 General design flow for dynamically reconfigurable applications 17

2.4 Optical flow tensor preparation modules 18

2.5 Optical flow tensor preparation task graph 20

2.6 Task graph example considered by Purna et al. with level

assignments . 22

2.7 Task graph example with level-based partitioning 23

2.8 Task graph example with clustering-based partitioning 23

2.9 XCV50 device floorplan with a portion of CLBs marked for

reconfiguration . 29

2.10 Xilinx application note 290 design layout with two partially

reconfigurable regions (PRRs) 33

2.11 Bus macro used in XAPP290 34

2.12 Wormhole routing (Marescaux et al.) 36

2.13 Bus system with relocatable modules (Kalte et al.) 37

2.14 On-demand run-time system (Ullmann et al.) 39

2.15 The Erlangen Slot Machine (Majer et al.) 40

2.16 DyNoC (left: conceptual, right: implemented) by Bobda et al. 42

2.17 Homogeneous communications infrastructure (Hagemeyer et al.) 45

xii

2.18 Pages in an XC4VLX15 device 46

2.19 Right-to-left slice macro . 49

2.20 Nested wide slice macros . 50

2.21 Steps in the EAPR tool flow, reproduced from [95] 51

3.1 Classification of module-based reconfigurable systems 59

3.2 XC4VFX12 device with pages 63

3.3 Page aggregation and division 67

3.4 “Parallel harness with extra H-tree wiring supplied” from

Brebner [14] . 68

3.5 Trident layout . 69

3.6 Slice macro connector . 69

3.7 Double-ring layout . 71

3.8 Ribbed layout . 72

3.9 Reconfigurable data ports . 74

3.10 COMMA design flow . 78

3.11 Configurator screenshot . 79

4.1 Device model layout . 87

4.2 Sequence and timing of graphs 89

4.3 Epochs and periods . 91

4.4 Standard sequence . 97

4.5 Sequences with loops . 97

4.6 Sequences with larger loops 98

4.7 Sequences with alternatives 99

4.8 Branching sequences . 100

4.9 Preloading . 101

4.10 Unconstrained period selection 102

xiii

5.1 Device model layout . 110

5.2 Experimental method flow . 112

5.3 Steps to routing the wiring harness 116

5.4 Macro placement . 117

5.5 COMMA vs ISE critical path slowdown 122

5.6 Critical path delay contours for ISE & COMMA. 123

5.7 Circuits and highlighted critical paths where COMMA exhib-

ited high overhead . 125

5.8 Circuits and highlighted critical paths where COMMA sur-

passed ISE . 127

5.9 ISE PAR timing with and without COMMA constraints . . . 129

6.1 COMMA design flow (simplified) 134

6.2 Communications infrastructure generation flow 135

6.3 A sample communications graph 136

6.4 An example of a scheduled graph 140

6.5 Another view of a scheduled graph 142

6.6 Overview of graph merging . 144

6.7 Example for graph merging 155

6.8 Device mapping layout . 161

6.9 Virtex-4 switch box connection example (simplified) 172

6.10 Reconfiguration areas . 174

6.11 Wire reconfiguration . 176

6.12 Reconfiguration times for iterations 182

7.1 Memoization example in the dynamic programming algorithm 190

8.1 Experimental procedure . 196

8.2 Reconfiguration delays for 200 modules, 20% type variation,

60 CLB exact module size, clustered, 120 runs 209

xiv

8.3 Comparison between mean module sizes of 35, 60 and 85

CLBs, channel width 4, clustered, 120 runs 212

8.4 Comparison between different type variations (0%, 20%, 40%

and 60%), channel width 4, clustered, 120 runs, 60 CLB fixed

module size . 214

8.5 Percentages of reconfiguration delay reduction for graphs with

200 modules, 20% type variation, 60 CLB exact module size,

clustered, 2880 runs . 216

8.6 Comparison between clustered and non-clustered reconfigura-

tion delays, channel width 2, 200 modules, 20% type variation,

60 CLB exact module size, dynamic algorithm, 120 runs . . . 217

8.7 Comparison between clustered and non-clustered reconfigura-

tion delays, channel width 4, 200 modules, 20% type variation,

60 CLB exact module size, dynamic algorithm, 120 runs . . . 218

8.8 Comparison between clustered and non-clustered reconfigura-

tion delays, channel width 8, 200 modules, 20% type variation,

60 CLB exact module size, dynamic algorithm, 120 runs . . . 219

8.9 Contribution to the maximum critical path delays of the wiring

infrastructure for 200 modules, 20% type variation, 60 CLB

exact module size, 120 runs, clustered 221

8.10 Comparison between clustered and non-clustered contribu-

tions to the maximum critical path delay of the wiring harness

(channel width 2, 200 modules, 20% type variation, dynamic

programming algorithm) . 224

8.11 Comparison between clustered and non-clustered contribu-

tions to the maximum critical path delay of the wiring harness

(channel width 4, 200 modules, 20% type variation, dynamic

programming algorithm) . 225

8.12 Comparison between clustered and non-clustered contribu-

tions to the maximum critical path delay of the wiring harness

(channel width 8, 200 modules, 20% type variation, dynamic

programming algorithm) . 226

xv

9.1 Steps in the EAPR tool flow, reproduced from [95] 230

9.2 Partially reconfigurable regions (PRRs), partially reconfig-

urable modules (PRMs) and the base region 232

9.3 Implementation flow . 236

9.4 COMMA implementation of step 1 in the EAPR tool flow . . 237

9.5 COMMA implementation of Step 2 in the EAPR tool flow . . 242

9.6 Base design and PRR layout 243

9.7 COMMA implementation of step 3 in the EAPR tool flow . . 244

9.8 COMMA implementation of Step 4 in the EAPR tool flow . . 245

9.9 COMMA implementation of Step 5 in the EAPR tool flow . . 246

9.10 COMMA implementation of Step 6 in the EAPR tool flow . . 247

9.11 COMMA implementation of Step 7 in the EAPR tool flow

with the inter-period difference bitstream generator 248

A.1 Reconfiguration delays: 40 modules, 20% type variation, 60

CLB exact module size, 120 runs, clustered 257

A.2 Reconfiguration delays: 80 modules, 20% type variation, 60

CLB exact module size, 120 runs, clustered 258

A.3 Reconfiguration delays: 120 modules, 20% type variation, 60

CLB exact module size, 120 runs, clustered 258

A.4 Reconfiguration delays: 160 modules, 20% type variation, 60

CLB exact module size, 120 runs, clustered 259

A.5 Reconfiguration delays: 40 modules, 20% type variation, 60

CLB exact module size, 120 runs, non-clustered 259

A.6 Reconfiguration delays: 80 modules, 20% type variation, 60

CLB exact module size, 120 runs, non-clustered 260

A.7 Reconfiguration delays: 120 modules, 20% type variation, 60

CLB exact module size, 120 runs, non-clustered 260

A.8 Reconfiguration delays: 160 modules, 20% type variation, 60

CLB exact module size, 120 runs, non-clustered 261

xvi

A.9 Critical path delays: 40 modules, 20% type variation, 60 CLB

exact module size, 120 runs, clustered 261

A.10 Critical path delays: 80 modules, 20% type variation, 60 CLB

exact module size, 120 runs, clustered 262

A.11 Critical path delays: 120 modules, 20% type variation, 60 CLB

exact module size, 120 runs, clustered 262

A.12 Critical path delays: 160 modules, 20% type variation, 60 CLB

exact module size, 120 runs, clustered 263

A.13 Critical path delays: 40 modules, 20% type variation, 60 CLB

exact module size, 120 runs, non-clustered 263

A.14 Critical path delays: 80 modules, 20% type variation, 60 CLB

exact module size, 120 runs, non-clustered 264

A.15 Critical path delays: 120 modules, 20% type variation, 60 CLB

exact module size, 120 runs, non-clustered 264

A.16 Critical path delays: 160 modules, 20% type variation, 60 CLB

exact module size, 120 runs, non-clustered 265

xvii

List of Tables

1.1 Virtex-4 LX FPGA costs in US Dollars (source: Avnet Febru-

ary 2008) . 4

3.1 Number of slots and slot sizes for a ribbed layout with a border

of 2 CLBs per slot . 73

6.1 Virtex-4 routing resources (outbound) 171

6.2 Optical flow comparison results 180

8.1 Device parameters — CW:channel width and slot size in CLBs 207

8.2 Number of modules clustered per slot at channel width 4 . . . 212

8.3 Number of periods and epochs (in parentheses) for application

graph 211002 (channel width 2) 220

8.4 Subsequence groupings for application graph 221003 (channel

width 2) . 222

8.5 Success rates for different channel widths for the full range

of LX device sizes, 200 modules, 20% type variation, 60 CLB

exact module size, 120 runs 227

xviii

List of Abbreviations

AMBA Advanced Microcontroller Bus Architecture
ASIC Application-Specific Integrated Circuit
ASIP Application-Specific Instruction-set Processor
BRAM Block Random Access Memory
CCC Chip and Communications Configuration
CDFG Control Data Flow Graph
CLB Configurable Logic Block
CPU Central Processing Unit
CTG Conditional Task Graph
DAG Directed Acyclic Graph
DCM Digital Clock Manager
DCT Discrete Cosine Transform
DES Data Encryption Standard
DSP Digital Signal Processing
DyNoC Dynamic Network-on-Chip
EAPR Early-Access Partial Reconfiguration
EDIF Electronic Design Interchange Format
ESM Erlangen Slot Machine
FIFO First-In First-Out
FPGA Field-Programmable Gate Array
GRM General Routing Matrix
HDL Hardware Description Language
ICAP Internal Configuration Access Port
IEEE Institute of Electrical and Electronics Engineers
ILP Integer Linear Program
I/O Input/Output
IOB Input-Output Block

xix

ISE Integrated Synthesis Environment
JPEG Joint Photographic Experts Group
JTAG Joint Test Action Group
JTRS Joint Tactical Radio System
LUT Look-Up Table
MIC Module-Infrastructure Connector
MPEG Moving Picture Experts Group
NCD Native Circuit Description
NoC Network-on-Chip
NP Non-deterministic Polynomial time
PAR Place-and-Route
PCB Printed Circuit Board
PIP Programmable Interconnect Point
PRM Partially Reconfigurable Module
PRR Partially Reconfigurable Region
RAM Random Access Memory
RCM Reconfiguration Control Module
RDP Reconfigurable Data Port
RMB Reconfigurable Multiple Bus
RPM Relatively Placed Macro
SDR Software Defined Radio
SLU Swappable Logic Unit
SRAM Static Random Access Memory
TRACE Timing Report And Circuit Evaluator
VHDL Very-high-speed integrated circuit

Hardware Description Language
XAPP290 Xilinx Application Note 290
XDL Xilinx Design Language
XOR Exclusive-OR

xx

Chapter 1

Introduction

1.1 Background and Research Context

A Field-Programmable Gate Array (FPGA) is a silicon device that can be

programmed and reprogrammed any number of times to behave like different

application-specific circuits. An FPGA is primarily composed of an array of

logic cells, and wiring interconnecting these cells. Each logic cell implements

a very small logic function, and the wiring between the cells is routed by

means of switch settings which direct the flow of data through specific wiring

tracks.Programming the FPGA involves changing the contents of memory

cells (the configuration memory) that configure the logic and the wiring on

the device.

Configuring an FPGA refers to loading a configuration bitstream, i.e.,

the actual data to be loaded into configuration memory, onto the device.

FPGA design tools start by synthesizing an application circuit specified in a

design language such as VHDL [36] or Verilog [37] into a netlist, then map-

1

ping the netlist to a particular FPGA, thereby creating a circuit description,

and finally generating the configuration bitstream for this circuit description.

Once the bitstream is loaded into the configuration memory of the FPGA, it

behaves like the application circuit description that was synthesized at the

start of the design flow. Thereafter, loading a different bitstream to change

the circuit on the device is known as a reconfiguration.

Newer FPGAs such as the Xilinx Virtex-4 family [87] can not only be re-

programmed multiple times, but can also be reprogrammed while the device

is running. To differentiate this from reconfiguring the device while the user

logic clocks are disabled, this is commonly known as dynamic reconfiguration

or runtime reconfiguration. Furthermore, such FPGAs are also partially re-

programmable, i.e., only a portion of the device is reprogrammed while the

rest of the configuration memory remains unchanged. Partially reprogram-

ming an FPGA requires less configuration data, and in effect takes up less

time to do so. This is termed partial reconfiguration. Finally, these FPGAs

can accordingly be partially reprogrammed at run time, where part of the

FPGA is reprogrammed while other parts continue running. All three terms:

dynamic reconfiguration, runtime reconfiguration and partial reconfiguration

are used in the literature to express this concept, with runtime partial re-

configuration or partial dynamic reconfiguration being commonly-accepted

variants.

FPGAs are most commonly included as components of embedded sys-

tems, in which performance requirements demand hardware support, yet

cost, time-to-market pressures, the need to provide alternative hardware com-

ponents, or the need to revise hardware-based components over time preclude

2

the use of Application-Specific Integrated Circuits (ASICs), Application-

Specific Instruction-Set Processors (ASIPs), or general-purpose processors

alone. More often than not, that part of the system design that is targeted

at the FPGA is static, or doesn’t change while the system is operating.

The ability to partially reconfigure FPGAs at run time opens up many

opportunities to enhance systems using these FPGAs. To date the most

prevalent use of dynamic reconfiguration is to support so-called hardware

virtualization, of which several flavors can be identified. In order to make

do with insufficient FPGA area, a large FPGA circuit might be temporally

partitioned into components that are swapped over time in order to map

a large circuit into a smaller device [81]. When the computation can be

temporally partitioned, the decision to virtualize may be made without the

need to do so. Instead of mapping the design to a large device, a smaller one

can be used in order to reduce part cost and power consumption. This is

especially advantageous since a larger device is almost twice the cost of the

next smaller alternative, shown as the multiplicative factor in parentheses

in Table 1.1, which lists the average prices of Virtex-4 devices from Avnet

as of February 2008. Note that the price per logic cell also increases as the

device size grows. Furthermore, virtualization allows application circuits to

be specialized for one application instead of another, e.g., to implement a

specific protocol in a 3G multi-standard wireless basestation [48].

As device sizes continue to scale, an alternative use of dynamic reconfig-

uration may eventually dominate. Conceivably, complex systems involving

multiple subsystems will be able to share expensive (in terms of chip area

and power) and underutilized (in terms of functional density) resources such

3

Device Logic Cells Average Price Price/Logic Cell
XC4VLX15 13,824 $206.22 $0.0149
XC4VLX25 23,192 $420.63 (×2.04) $0.0181
XC4VLX40 41,472 $608.13 (×1.45) $0.0147
XC4VLX60 59,904 $928.75 (×1.53) $0.0155
XC4VLX80 80,640 $1493.75 (×1.61) $0.0185
XC4VLX100 110,592 $2816.25 (×1.89) $0.0255
XC4VLX160 152,064 $4560.63 (×1.62) $0.0300
XC4VLX200 200,448 $8320.00 (×1.82) $0.0415

Table 1.1: Virtex-4 LX FPGA costs in US Dollars (source: Avnet February
2008)

as FPGAs. This will give rise to the desire to multitask FPGA devices. An-

other factor likely to influence the emergence of multitasked FPGAs is that

devices are scaling much faster than IP size, allowing more applications to

fit onto a single device. Multitasking offers a means of utilizing the available

resources and further reducing system part counts.

Design complexity, verification, and time-to-market pressures encourage

reuse of components and designs that are tried and proven. Module-based

design methodologies form a class of higher-level design methods that focus

on implementing a design that is specified or described in terms of its con-

stituent modules [17][38]. As such, dynamic reconfiguration at the module

level is ideal for implementing hardware virtualization or multitasking.

However, modular dynamic reconfiguration is not yet widely accepted nor

utilized in industry and this is primarily due to a lack of practical methods for

designing such applications. Current vendor tools are limited, insofar as they

only perform the low-level implementation processes for area-based partial

reconfiguration. The tools assume that the target application is appropriately

partitioned and scheduled for dynamic reconfiguration. This entails that the

4

system designer must have intimate knowledge of the FPGA device architec-

ture and partial reconfiguration, and how to best design an application for

dynamic reconfiguration.

There is lack of a coherent toolset to support the design and imple-

mentation of dynamically reconfigurable applications in a top-down manner,

i.e., from application specification to bitstream generation. Current research

deals with various aspects and sub-problems in the area but does not combine

to form a coherent methodology.

If a top-down methodology is employed, the low-level device parameters

should be factored in at every step of the design flow in order to ensure that

the application can be feasibly implemented on the target device. In order

to do this, current approaches to solving a particular step must be modified

to handle these low-level constraints, or new methods must be proposed if

current solutions are not applicable. The parameters for actual devices should

be applied and architectural exploration should be performed to demonstrate

that the methods are practicable.

This thesis proposes a top-down methodology for implementing modular

dynamic reconfiguration in FPGAs. In doing so, it examines the applica-

tion of current research in various aspects of dynamic reconfiguration to

the proposed methodology. In order to maximize implementation feasibility,

the methodology is applied to a current FPGA family that supports par-

tial dynamic reconfiguration, i.e., the Virtex-4 FPGA family [87]. Methods

proposed in current research are applied to suitable aspects of the methodol-

ogy. However, some aspects require specific treatment where current research

5

cannot be directly applied, thus novel approaches and algorithms to solving

specific sub-problems in the methodology are also proposed and evaluated.

1.2 Thesis Contributions

The specific contributions of this thesis are described in this section.

This thesis proposes a top-down methodology for implementing dynamic

modular reconfiguration. At its core, such a design methodology must imple-

ment a communications infrastructure that supports the dynamically chang-

ing communications requirements of the modules placed on the device at run

time. As such, one of the main foci of this thesis is the generation of such an

infrastructure given an application specification.

A complete design and tool flow in line with the proposed methodology

was developed to implement dynamically reconfigurable applications with

the generation of appropriate communications infrastructures.

This thesis advocates the use of point-to-point wiring harnesses as the

backbone of the communications infrastructures. A novel approach to de-

veloping these wiring harnesses known as graph merging and mapping is

proposed, and appropriate algorithms and tools are developed for it. It

is imperative for a design methodology to ensure that the application can

be feasibly implemented on the target device. Thus, the aim of the graph

merging and mapping approach is to implement wiring harnesses that do

not exceed the timing and area constraints of the target application when

physically implemented on the FPGA.

6

A framework is also proposed within which to assess dynamically recon-

figurable systems. This framework allows the iterative execution of steps in

the design flow to determine the best partitioning. The input to the frame-

work is an application, which is analyzed and prepared to be implemented as

a dynamically reconfigurable application on a particular device. Two metrics

are used to analyze the efficacy of the methodology — the reconfiguration

delays and critical path delays.

Finally, this thesis demonstrates the use of the methodology and its asso-

ciated tools by using the experimental framework to assess a variety of syn-

thetic applications mapped to the Virtex-4 FPGA family. The experiments

show the effectiveness of implementing point-to-point wiring harnesses using

the methodology by performing architectural exploration.

1.3 Thesis Organization

Chapter 2 presents a detailed background and review of related work in

modular dynamic reconfiguration. This provides the necessary background

for the rest of the thesis, and summarizes current research in the area.

Chapter 3 presents the overall methodology proposed in this thesis. The

methodology is top-down and consists of several steps from application spec-

ification through to implementation, and results in the final FPGA configu-

ration bitstreams are generated.

Chapter 4 describes the specific problem addressed in this thesis. The

methodology proposed in Chapter 3 aims to be complete but tackling every

aspect of dynamic reconfiguration is beyond the scope of this thesis. This

7

thesis addresses the DR1 problem, defined in Chapter 3, in which the ap-

plication specification, its modules and placements are known or determined

at design time. Chapter 4 describes the problem and presents its detailed

specification as well as the approaches taken to solving it.

The methodology proposed in Chapter 3 advocates the use of a paged

layout on the FPGA, with fixed-sized slots within which modules are placed

and with the wiring between the modules and external I/O pins surrounding

these slots. In contrast, traditional FPGA design methods place logic freely

about the device in optimal locations. Chapter 5 examines the overheads to

the critical path delay that are incurred by placing the modules and wiring

in the regular structure proposed in this thesis. The impact on design time

is also assessed.

As introduced in Section 1.2, the generation of a communications infras-

tructure is at the core of the methodology. Chapter 6 describes the approach

taken to generate a set of wiring harnesses to support the dynamic commu-

nications of the modules in the target application. The graph merging and

mapping process is described in this chapter, and the initial algorithms for

the three subprocesses subgraph merging, the merging of two subgraphs and

subgraph mapping are presented.

The algorithm presented for the main subprocess subgraph merging in

the graph merging and mapping process in Chapter 6 is based on a greedy

method and is sub-optimal. An algorithm based on a dynamic programming

approach that considers many more possibilities for subgraph merging is

presented in Chapter 7.

8

Chapter 8 presents an evaluation of the effectiveness of point-to-point

communications for module-based dynamic reconfiguration. An experimen-

tal framework for assessing dynamically reconfigurable systems is introduced.

The experiments performed to judge the efficacy of the communications in-

frastructure generation method are described. The results of the experiments

are presented and explained.

The final, low level implementation stages of the methodology are de-

scribed in Chapter 9. These stages seamlessly integrate with the commer-

cially available partial reconfiguration tool flow from Xilinx, the Early Access

Partial Reconfiguration tool flow [95]. The output of these low-level stages

is a set of bitstreams for partial reconfiguration.

This thesis concludes in Chapter 10 with a summary of the research and

its evaluations. Proposals for further research and implementation work con-

clude the chapter.

9

Chapter 2

Background and Related Work

This chapter presents the background for the rest of the thesis, while high-

lighting relevant research in dynamic reconfiguration. The general design

flow for implementing dynamically reconfigurable applications is described,

while relating each step to that for implementing static designs.

This thesis is focused on implementing communications infrastructures

for modular dynamic reconfiguration, but most of the low-level aspects of

the design flow such as synthesis, place and route and bitstream genera-

tion are left to commercial tools. The last section of this chapter provides a

detailed overview of the low-level implementation aspects and a history of dy-

namic reconfiguration while focusing on methodologies and communications

infrastructures.

Detailed comparisons of related work with specific contributions in this

thesis are addressed where appropriate in later chapters.

10

2.1 Modular Design Flow

Modular FPGA design refers to the partitioning of an application into its nat-

ural functional units, whereby each unit, a “module”, can be independently

developed, implemented or modified. The modules are then assembled to

form the completed application design. Modular design facilitates the reuse

of well-tested and proven components and encourages a hierarchical design

style. Dynamic reconfiguration, at the modular level, shares the same bene-

fits. In addition, since modules are natural functional units of an application,

they are also ideal as units of reconfiguration as each module performs a spe-

cific task, e.g., a particular stage in a pipeline. Modules can be swapped in

and out of the system to perform different tasks as required.

Figure 2.1 depicts an example of an application going through the higher

level stages of the modular design flow. The full application design, be it

a documented application specification, HDL circuit descriptions or in some

other representation, is first decomposed into its constituent modules. This

decomposition is normally based on each module performing a specific func-

tion of the application, e.g., a JPEG encoder application can have the discrete

cosine transform and quantization functions as individual modules.

The constituent modules can be in-house HDL circuit descriptions (e.g., in

VHDL or Verilog), as in modules A and B in Figure 2.1; as third party HDL

circuit descriptions (module C); or as third-party pre-synthesized netlists

(module D). Third-party netlists are common in the case of commercially

sourced components, when intellectual property rights are of importance.

Ultimately, all the HDL has to be synthesized into netlists. Thus, the five

11

Application

Functional
Decomposition

Synthesis

Module B
[HDL]

Module A
[HDL]

3rd Party
Module C

[HDL]

Synthesis Synthesis

Module A
[Netlist]

Module B
[Netlist]

3rd Party
Module C
[Netlist]

3rd Party
Module D
[Netlist]

Top Level
[HDL]

Synthesis

Top Level
[Netlist]

Figure 2.1: Higher level stages of the modular design flow

netlists shown at the bottom of Figure 2.1 are the technology independent

outputs of the input stages of the design flow.

The higher level stages of the modular design flow are similar for both

static and dynamically reconfigurable applications in that the top level

netlist, and a set of module netlists are ultimately generated. However, as

depicted in Figure 2.2, the low-level implementation stages of the modular

design flow are different with respect to the static and dynamic cases.

12

Module D

Module C

Module B

Module A

Top Level
[Netlist]

FPGA

Free Placement of
Logic

FPGA

A
B

C
D

FPGA

A,C B,D

[STATIC]

Unconstrained
Place-and-Route

[STATIC]

Block-based Planning,
Place-and-Route

[DYNAMIC]

Block-based Planning
for Dynamic

Reconfiguration,
Place-and-Route

Figure 2.2: Low-level implementation stages of the modular design flow for
the static and dynamic cases

13

In the static case, the system designer may opt to perform an uncon-

strained place-and-route of the top level and module netlists, resulting in

logic being freely-placed about the FPGA, as shown in the topmost example

in Figure 2.2.

Alternatively, also in the static case, the system designer can also plan

the placement of logic in each module in a block-based fashion, as shown

in the middle example in Figure 2.2. Placing each module in a predefined

area reduces place-and-route time greatly and also helps in identifying and

improving critical nets. The Xilinx PlanAhead design optimization tool [96]

helps the system designer to determine the best size and positions for these

blocks to optimize area and timing. Note that in the static case each module

must have its own physical block area in which to place logic. If two modules

were to be placed in the same block, that block must be large enough for the

combined logic of both modules. Thus, the FPGA must be large enough to

contain all the logic for every module.

The dynamic case differs from the static case in that multiple modules can

be allocated the same block, and at any one time only one of those modules

is physically placed in the block. In the bottommost example in Figure 2.2,

either module A or C can be placed in the left block of the FPGA. Consider

an example where the left block currently contains module A and the right

block current contains module B. At some point in time in the application,

when the need arises, module A is swapped with module C. Module A is

thus removed and completely replaced by module C. Depending on how the

application is scheduled, the module B that is currently in the right block

may continue to execute while module A is being replaced by module C. In

14

this example, the FPGA only needs to be large enough to accommodate the

combined logic of any combination of modules that can be resident at any

one time, i.e., max((A + B), (C + B), (A + D), (C + D)).

This thesis focuses on harnessing the potential of dynamically reconfig-

urable FPGAs for hardware virtualization. Hardware virtualization can be

used to time-multiplex an application onto an FPGA that cannot accommo-

date its entire logic. Alternatively, several applications could be multi-tasked

onto a large FPGA. In both cases, the total amount of logic to be placed onto

the FPGA is generally too large to fit onto a single device. This is the case

no matter if it is a single application or a composition of several applications

that is to be executed in parallel.

The strategies for block-based planning are different for hardware virtu-

alization or multitasking. This is because the objective in hardware virtu-

alization is to swap stages of an application in and out, whilst multitasking

aims to execute multiple applications on the same device. However, there

are no specific differences at the device level, e.g., the same layout of the

dynamic reconfiguration example in Figure 2.2 can be used for both hard-

ware virtualization and multitasking. A hardware virtualization scenario of

a pipelined application might be where all modules A through D belong to

the same application. The first stage of the application is where modules A

and B are resident and module A outputs data to module B. Once module A

finishes execution, module C replaces module A and module B then outputs

data to module C. Thereafter, module B gets replaced by module D, then

module C outputs to module D and completes execution.

15

In a multitasking scenario, consider two applications, one consisting of

modules A and C and the other consisting of modules B and D. A and C

are loaded first and the first two stages of the two applications execute in

parallel. When modules A and C complete execution modules B and D are

swapped in place of them and the second stage of both applications start

executing.

2.2 General Design Flow for Implement-

ing Dynamically Reconfigurable Applica-

tions

The design flow shown in Figure 2.3 is a more abstract view of the example

flows in Figures 2.1 and 2.2. The “partitioning and scheduling” step generally

only applies to dynamically reconfigurable applications and is not explicitly

indicated in Figures 2.1 and 2.2. This step partitions and schedules the

full application design for hardware virtualization and multitasking. Each

resulting partition is then time-multiplexed onto the FPGA in the order as

specified in the schedule.

The output of the final stage is a set of bitstreams for programming

the device. Apart from performing place-and-route and bitstream genera-

tion, other implementation processes are included in this step such as imple-

menting communications infrastructures (e.g., creating on-chip buses such as

AMBA or CoreConnect), configuring hard cores such as the PowerPC core

in Virtex-4 FX devices, and implementing reconfiguration control. These

16

Functional Decomposition
Application Specification and

Partitioning and Scheduling

Logic Synthesis

Low-Level Implementation
PAR and Bitstream Generation

Figure 2.3: General design flow for dynamically reconfigurable applications

actions are not part of logic synthesis and mapping as they usually require

intimate knowledge of the target device and may involve detailed placement

and configuration of soft or hard logic blocks and communications infrastruc-

tures.

Each of these steps are described in detail in the following sections of this

chapter. In addition, current and related research in the area is highlighted.

However, related work in this area can be sourced from many domains, e.g.,

multi-processing and software/hardware co-design. Thus, instead of provid-

ing a broad review of related work, the research activity highlighted in this

chapter is focused on modular dynamic reconfiguration of FPGAs and im-

plementing communications infrastructures to support it.

17

2.2.1 Application Specification and Functional Decom-

position

In this stage an application is divided into modules, each of which performs

a specific function. This may be hierarchical, as each module may in turn

be composed of several sub-modules. This section discusses application rep-

resentations for dynamic reconfiguration after functional decomposition.

At the highest level of abstraction, an application may be expressed at a

structural level as a result of extracting the key functions that are performed,

and making each key function a module. This is shown in Figure 2.4 for the

pre-processing stages of an optical flow algorithm [15]. At a lower level,

modules can be specified in a hardware description language such as VHDL

or Verilog.

StreamIn

Enable

StreamOut

DataReady

Gaussian
Smoother

StreamIn

Enable

StreamOut

DataReady

1-D
Convolution

StreamIn

Enable

StreamOut

DataReady

Spatial
Convolution

StreamIn

Enable

StreamOut

DataReady

Temporal
Convolution

StreamIn

Enable

StreamOut

DataReady

Gaussian
Smoother

StreamIn

Enable

StreamOut

DataReady

Gaussian
Smoother

Figure 2.4: Optical flow tensor preparation modules

This form of representation is commonly used for static designs, but may

not be suitable for dynamic reconfiguration. This is because neither the

period of activity for each module, the intervals during which communications

occur, nor the bandwidth needs are specified.

18

Dynamically reconfigurable applications are rarely specified only in this

manner, unless they have some form of implied temporal representation. For

example, the modules in Figure 2.4, are a part of a pipeline in which each

module depends on the previous one for data. Based on this data dependency,

the modules should execute from the left to the right of the diagram, and

one module may not begin executing before its dependent module produces

data for it to consume. Examples of dynamically reconfigurable applications

specified in this manner are typically image processing pipelines [70] [22].

Since dynamically reconfigurable applications specified in this manner rely

on their implied temporal representation, this is insufficient in general to

obtain enough temporal information to allow an automated tool to partition

and schedule applications for dynamic reconfiguration.

Another class of dynamically-reconfigurable applications are simple

enough to specify with a structural module diagram such as Figure 2.4. These

are those that swap one version of a module with another, e.g., a Bluetooth

baseband unit swapping between the header and payload processing or be-

tween receiving and transmitting [25], and swapping waveform processing

modules in software defined radio [79]. Timing is usually not specified or is

user-dependent. Where a module may have multiple versions it may suffice

to specify it in the application specification document such that the system

designer creates these multiple versions when writing the HDL.

Another, more detailed form of application representation is a task graph.

A task is taken to mean some computation that a module performs in some

specified time. Task graphs are usually specified by directed acyclic graphs

(DAGs) in which each node represents a task. Each edge indicates data

19

dependency, i.e., the destination node requires the source node to produce

some data for it to consume An edge can also encapsulate some other com-

munications information, e.g., the number of bits of data transferred, the

input/output port names, etc. Task graphs for dynamically reconfigurable

applications are typically specified with nodes representing a hardware mod-

ule. For example, the module diagram in Figure 2.4 is represented temporally

as tasks in Figure 2.5. This task graph also consists of sub-modules not shown

at the level of abstraction in Figure 2.4.

Figure 2.5: Optical flow tensor preparation task graph

Information about temporal dependency is specified as a node should only

start to execute once all of its predecessors have started execution and have

produced some data for it to consume. Some task graphs have nodes anno-

tated with earliest and latest start and end times to more precisely specify

the application’s timing constraints.

As stated earlier, edges can also represent a communication flow, e.g.,

with an attribute that specifies the quantity of data that flows from one

20

node to the other. This allows partitioning tools to try to optimize for com-

munications density, e.g., by minimizing the total amount of communications

between partitions.

Task graphs are used extensively by researchers in dynamic

reconfiguration especially for research in partitioning and schedul-

ing [2] [18] [28] [64] [66] [69] [77].

Some variants of task graphs that are not acyclic allow the specification

of loops [9] and conditionals [82] in the input specification. These graphs

can specify data dependent application execution where the system designer

does not know a priori the exact sequence of tasks that will be executed.

2.2.2 Partitioning and Scheduling

In the execution of a module-based dynamically reconfigurable application

on an FPGA, modules are being swapped in and out of the device at different

points in time. Without loss of generality, the full module or task graph, i.e.,

the output of functional decomposition, is too large to fit onto the FPGA.

This is the case for both hardware virtualization and multitasking. As such,

this full graph must be partitioned into smaller subgraphs, each of which

represent the modules resident on the FPGA at some point in time. These

subgraphs should be in turn scheduled to specify the order and/or times each

subgraph or node should be resident on the device.

Application partitioning has been studied extensively especially in the

domain of multi-processor task assignment. As this thesis does not focus on

partitioning this section presents a targeted review of approaches that are

21

relevant to modular dynamic reconfiguration, as well as traditional techniques

that have evolved to target dynamic reconfiguration on FPGAs.

Purna et al. [69] proposed two algorithms to partition and schedule a task

graph for dynamic reconfiguration in FPGAs. As one of these algorithms is

used for experiments in this thesis, an outline of their approaches are given

here.

An example of the task graphs considered by Purna et al. is depicted

in Figure 2.6. The numbered annotation alongside each node indicates its

dependency level in the graph. For example, nodes of level 3 may not execute

until all its dependent nodes of level 2 and above have started execution and

have produced data for them to consume.

2 2

3

2 2

3

4

1 1 1 1 1 1 1 1

Figure 2.6: Task graph example considered by Purna et al. with level
assignments

The first algorithm, the “level-based partitioning” approach, tends to

maximize the amount of parallelism between partitions by maximizing the

number of nodes that are of the same level of dependency in each partition.

An example of this partitioning is shown in Figure 2.7, where the maximum

size of each partition is 2 nodes. Partition P1 has two nodes at the same

level of dependency, i.e., level 2, thus both tasks can run at the same time.

22

2 2

3

2 2

3

4

1 1 1 1 1 1 1 1

P1P2

P3

P 4

Figure 2.7: Task graph example with level-based partitioning

The second algorithm, the “clustering-based” approach, adds nodes into

a partition as soon as its dependencies are resolved. An example of this

is shown in Figure 2.8, again where the maximum size of each partition

is 2 nodes. Note that partition P1 using the level-based algorithm has 4

incoming edges and 2 outgoing edges, while partition P1 using the cluster-

based algorithm has 3 incoming edges and 1 outgoing edge. Adding all the

external edges of every partition together, the level-based partitions have 14

external edges whilst the clustering-based partitions have 12 external edges.

2 2

3

2 2

3

4

1 1 1 1 1 1 1 1

P1

P2

P3

P4

Figure 2.8: Task graph example with clustering-based partitioning

23

A concise and thorough review of other partitioning approaches is pro-

vided in Bobda’s thesis [9], which also proposes improvements over classical

list-scheduling approaches and an improved spectral method. List scheduling

is a class of scheduling algorithms that order tasks by priorities and subse-

quently selects one of the highest priority tasks for scheduling.

Partitioning and scheduling algorithms have typically used input task

graphs specified as DAGs. However, DAGs are not amenable to specifying

applications with conditionals or loops. Ganesan et al. [27] proposes extract-

ing Control Data Flow Graphs (CDFGs) from the behavioral specification of

the application. CDFGs specify loop and conditional constructs and is the

input into the partitioning and scheduling algorithm proposed by Ganesan

et al. [27]. Xie et al. [82] introduced partitioning and scheduling algorithms

for Conditional Task Graphs (CTGs) [23]. CTGs are task graphs with con-

ditional edges specifying mutually exclusive operations. Bobda [9] handles

cycles by modifying Kernighan and Lin’s [47] iterative improvement proce-

dure to handle directed graphs. As stated at the beginning of this section,

each partition represents a configuration in the FPGA. If two partitions con-

tain nodes in the same loop, then each of the partitions must be swapped

in and out for each loop iteration, resulting in thrashing. Thus, these ap-

proaches share a common technique – to try to fit any cycles and branches

into a a minimum number of partitions, thereby minimizing the amount of

thrashing that may occur.

Finally, Banerjee et al. [5] highlights an important issue: approaches that

ignore physical constraints can lead to implementation infeasibility even if

the partitioning and scheduling is optimal. Being physically-aware at the

24

high level is especially relevant to dynamically reconfigurable FPGAs as the

reconfiguration delays are significant, possibly even exceeding the application

run time. An example of an approach that considers physical constraints is

by Tanougast et al. [77], in which data flow graphs are annotated with tim-

ing constraints to ensure that the partitioning algorithms take them into

consideration. It is also not always consistent in the literature as to how a

partitioning approach is integrated with module placement, as the partitioner

must be mindful of the physical constraints as well. A methodology to im-

plement applications on a dynamically reconfigurable FPGA must consider

the area and timing constraints in order to guarantee that the application

can be mapped.

2.2.3 Logic Synthesis

This stage consists of taking the partitions obtained from the previous stage,

together with the HDL in the application specification and synthesizing them

into netlists. Modern synthesis tools are also optimized for the target FPGA.

This is typically performed by synthesis tools such as the Xilinx Synthesis

Tool [94] in the ISE Tool Suite [92] or Synplicity’s Synplify and Synplify

Pro [76].

Xilinx currently offers two approaches to dynamic reconfiguration — a

new module-based flow [95] in which modules are dynamically loaded at run

time, and a difference-based flow in which a partial bitstream consisting of

the difference to the previous bitstream is loaded at run time [86]. Either

flow can be used for this step but one may be preferred over the other if

the partitioning and scheduling is targeted for a particular one. Using the

25

module-based flow simply enforces the adherence to module and interface

naming guidelines in the HDL (see Chapter 9 for more details).

There are no other significant differences at this stage compared with

traditional FPGA logic synthesis.

2.2.4 Implementation

In this stage the following is performed:

First, some low-level device-specific system architecture components are

placed and/or configured. For example, it may be necessary to implement

communications infrastructures such as on-chip buses (e.g., AMBA or Core-

Connect), configure hard cores such as the PowerPC core in Virtex-4 FX

devices, set up clock domains and clock managers, assign package pins, and

in the case of dynamic reconfiguration, implement reconfiguration control

through an on- or off-chip mechanism.

Next, the netlists obtained from the synthesis stage and pre-synthesized

netlists are mapped to a specific FPGA and placed-and-routed. Then, the

full and partial bitstreams to be loaded onto the FPGA are generated.

2.3 Support for Module-based Dynamic Re-

configuration — A History

The partial reconfiguration tool flows provided by Xilinx only place-and-

route and generate the bitstreams for the application, and do not provide

other facilities such as communications infrastructures and reconfiguration

26

control. It is thus insufficient for effective implementation of dynamically-

reconfigurable applications. This section provides a technical history of

dynamically-reconfigurable Xilinx FPGAs and highlights representative re-

search performed at the implementation level.

Note: At the time of writing of this thesis, Xilinx was the only vendor

to support dynamic partial reconfiguration. Thus, all the approaches to

implementing module-based dynamic reconfiguration on FPGAs to date are

based on Xilinx devices.

2.3.1 Dawn of an Era — The XC6200

In May 1995, the first dynamically-reconfigurable FPGA family (the Xilinx

XC6200 family [83]) was introduced. XC6200 FPGAs could be configured

using a full parallel CPU interface known as FastMAP. With FastMAP, the

entire configuration SRAM of the FPGA can be addressed by a host com-

puter as conventional memory mapped SRAM. This therefore allows direct

run time modification of the configuration SRAM at the granularity of a

single byte. The format of the configuration bits is also fully specified in

the datasheet [83], allowing for any degree of fine-grained logic or routing

manipulation at run time.

Actual dynamically-reconfigurable applications were implemented using

XC6200 FPGAs such as speeding up loop computations [13], DCT algo-

rithms [63] and virtual control circuits [65]. Even at this early stage, attempts

were made to produce synthesis tools and a design environment for dynamic

reconfiguration [75] and reduce run time reconfiguration overheads [33][19].

27

A run time support system [22] to manage reconfiguration was built and

successfully run with a wavelet image compression application. The authors,

however, stated that performance results were poor and this could be due

to the large amount of hardware overheads involved in implementing such

fine-grained reconfiguration.

2.3.2 A One-Dimensional View — The Virtex Family

In 1998 Xilinx released the next generation of FPGAs — the Virtex fam-

ily [84]. Although these FPGAs could still be partially reconfigured, the

reconfiguration granularity was increased to that of a frame [88]. A Virtex

frame is a one-bit-wide vertical slice of configuration data spanning an en-

tire column of configuration resources. The amount of data in each frame

thus depends on the number of CLB rows in the device, and ranges from

384 bits for the smallest XCV50 device to 1248 bits for the largest XCV1000

device. In the Virtex family of devices, the number of frames per column

of CLB resources ranges from 50 to 55 [88]. The XCV50 device floorplan is

depicted in Figure 2.9, with an example of a portion of the device marked

for reconfiguration.

Using the fastest mode of configuration (SelectMAP at 50 MB/sec) load-

ing a single frame takes up 0.96µs for the XCV50 (in which a column is 16

CLBs high) and 3.12µs for the XCV1000 (in which a column is 64 CLBs

high). As each frame is a single bit wide, it is possible to reconfigure only

a portion of a column of CLBs while keeping the rest of the configuration

unchanged. Due to this Virtex devices also introduced a feature known as

glitchless reconfiguration that guarantees that no glitches will occur in the

28

Figure 2.9: XCV50 device floorplan with a portion of CLBs marked for
reconfiguration

operation of any portion of the FPGA that is loaded with the same config-

uration data. This allows part of a column of CLBs to be modified while

keeping the rest of the column intact and operating without interruption. It

is unclear from the literature to what extent this is implemented in Virtex

FPGAs, but it is clearly stated in [8] that the next generation of FPGAs,

Virtex-II (see Section 2.3.4) and beyond fully support glitchless reconfigura-

tion.

2.3.3 JBits — Java Bitstream Manipulation

In 1999 Xilinx released a tool called JBits [30] that allowed the modification

of bitstreams at a very fine-grained level. Individual routes, LUT contents

etc. could be modified via a Java interface with a full library of the device

29

resources in the Virtex family. Run time reconfiguration is possible by read-

ing back the bitstream in the FPGA (or using one that is currently in the

host PC memory), making modifications to it, and downloading it back into

the FPGA.

The approach is limited because modifications are done at the lowest level

of the design flow — direct logic and routing manipulation. Reading back

bitstreams, modifying them and downloading them through a Java inter-

face running on a host computer incurs a very large overhead as compared

to pre-generated bitstreams and direct host programming methods such as

SelectMAP. Another limitation is that communications between cores was

not addressed apart from a suggestion of using “Stitcher” cores that connect

modules together [29].

Nevertheless JBits allowed a lot of research to be performed at the imple-

mentation level, and had a device simulator that could be used by researchers

to monitor and record the execution of the device for every clock cycle. How-

ever, run time reconfiguration could not be performed efficiently at that level

of bitstream manipulation and it was clear that a different method was nec-

essary.

2.3.4 The Second Generation — Now with PowerPCs

In 2000 the Virtex-II family was introduced, followed by the Virtex-II Pro

in 2002, which also included embedded PowerPC cores. The reconfiguration

mechanism for the Virtex-II/Pro families was identical to the frame-based

method employed on the first generation Virtex family, and thus the recon-

figuration granularity still depended on the size of the device.

30

A useful feature that was introduced in the Virtex-II device family was

the Internal Configuration Access Port [90] (ICAP). Up until then the only

way to configure an FPGA was through external configuration pins using

either the serial JTAG [85] or byte-wide SelectMAP [88] interfaces. The

ICAP is an internal access port to write and read back bitstreams using a

similar interface to SelectMAP. This opened up the possibility of designing

self-reconfiguring systems without the overhead of accessing an off-chip con-

figuration controller. The XC6200 also supported internal configuration, but

the device family was obsolete by then.

At this time there had already been a strong interest, especially in

academia, in partial and dynamic reconfiguration of these devices. However,

there was no tool support to implement partial reconfiguration other than

to generate the difference in bitstreams between two different configurations.

A “difference bitstream” only contains the frames that are different between

two configurations, thus it is a partial bitstream, and the time to download

it into the device is less than a full one. However, it was not officially doc-

umented as to whether loading a bitstream difference onto the FPGA was

safe, because proper partial configuration requires specialized headers and

control frames that may not be generated properly in a difference bitstream.

Three years after the Virtex-II family was introduced, Xilinx released an ap-

plication note [86] and software overlay that modified core ISE synthesis and

place-and-route tools to support partial reconfiguration1.

1This was actually based on a 2002 draft when partial reconfiguration capabilities were
first integrated into ISE 4.2i.

31

2.3.5 XAPP290 — Long-Awaited Tool Support

Xilinx Application Note 290 (XAPP290) [86] specifies two types of par-

tial reconfiguration — module-based and difference-based. With module-

based reconfiguration the designer specifies “Partially Reconfigurable Re-

gions” (PRRs) in which modules (i.e., a VHDL entity or Verilog module)

can be placed. Different modules can then be loaded onto these PRRs at run

time.

There are two major shortcomings to this method of module-based re-

configuration. The first is that each PRR must span the entire height of the

device. This can force module logic to be placed and routed into a narrow

slice of the device, which may result in long routing paths within the module.

If a larger region than is required is allocated to place the amount of logic

in the module, then the available area is underutilized. A study by Kalte

et al. [40] showed that the critical path delay may be increased to as much

as twice that of an optimal implementation if a module is packed into its

narrowest possible region.

The second criticism is that modules can only communicate between adja-

cent modules, as shown in the design layout example provided in the applica-

tion note, reproduced here as Figure 2.10. All intermodule communications

go through so-called “Bus Macros” placed between PRRs and adjacent PRRs

or static module regions. An example is depicted in Figure 2.11, which was

reproduced from the application note. Bus macros are implemented using

three-state2 wires spanning the horizontal width of the device. It allows mod-

2This is equivalent to the term “Tri-state”, which is a registered trademark of National
Semiconductor.

32

ules on either side of the boundary to drive the three-state buffers, which can

be read by any CLB attached to it. They are essentially connectors placed

in fixed locations connecting reconfigurable modules to other modules. Bus

macros are essential as they ensure that the I/O ports of every module that

is to be placed in a particular region connect to the same location.

Figure 2.10: Xilinx application note 290 design layout with two partially
reconfigurable regions (PRRs)

Difference-based reconfiguration involves generating difference bitstreams

to partially reconfigure a device. A difference bitstream between bitstream x

and bitstream y comprises the frames that contain bits of bitstream y that

differ from bistream x. diff(x,y) 6= diff(y,x), thus a difference bitstream has

to be generated for each source and destination bistream. Difference-based

reconfiguration reduces reconfiguration bandwidth. This thesis employs both

33

Figure 2.11: Bus macro used in XAPP290

module-based and difference-based reconfiguration depending on the situa-

tion.

2.3.6 Limitations of XAPP290

There are several limitations to XAPP290. These are mainly due to the use

of three-state wires and the placement of bus macros between neighboring

modules:

• Delay: Three-state wires are slower than wires in the general routing

matrix as 3-state buffers are inherently slower than pass-transistors

that are used in the switchboxes [7].

• Density: The same three-state wire spanning the width of the device

cannot be used by more than two modules, thus the total number of

bits available for bus macros is the number of three-state wires available

in the device. Even though a three-state wire can be tapped at any

horizontal location on the device, the use of bus macros does not allow

this as the specification states that each bus macro must have a driver,

34

and there cannot be more than one driver per three-state wire. This

is a severe limitation as there are only four three-state wires per CLB

row. The smallest device has only 8 CLB rows, with a maximum of

32 bits of communication available for reconfigurable modules in the

entire device. The largest device therefore provides 448 such wires.

• Module Placement: Even though the three-state wires span the en-

tire width of the device, a reconfigurable module can only communicate

with an adjacent module (be it static or reconfigurable). If two non-

adjacent modules need to communicate with each other, the modules

between them have to provide ports to allow routing to pass through.

• Currency: Devices in the current Virtex-4 and Virtex-5 families do

not have three-state wires, thus these bus macros cannot be used.

As researchers began to use XAPP290 it became clear that a better com-

munications infrastructure was needed in order to support dynamic modular

reconfiguration. However, there was no other official method to implement

partial reconfiguration at that time, and there was nothing that could be

done to reduce three-state wire delay or to implement partial reconfiguration

on the new Virtex-4 devices when they were first released. The problems re-

garding limited communications density and adjacency were thus addressed

by some researchers.

2.3.7 Overcoming Limitations at a High Level

Marescaux et al. [60] proposed one of the earliest communications infrastruc-

tures using module-based reconfiguration in XAPP290. The approach is to

35

implement a network-on-chip using Wormhole Routing [21], i.e., a routing

infrastructure with a torus topology. The network is “folded” into a single

dimension as depicted in Figure 2.12 in order to be placed onto the chip.

Figure 2.12: Wormhole routing (Marescaux et al.)

This approach inherits all the limitations of XAPP290, but attempts to

overcome them at a higher-level. However, it also introduces its own limi-

tations. For example, all modules must implement the network interface, or

some form of wrapper must be synthesized for them. A routing protocol has

to be used, thus incurring communications and area overheads. In addition,

the maximum number of routers it can support ranges from 2 for the smallest

device to 6 for the largest device. This is because the routers need to use

BRAM resources.

Since using XAPP290 alone is not sufficient for implementing real appli-

cations, researchers considered other approaches. Methods that utilized the

partial reconfiguration capabilities of XAPP290 but which provided sophis-

36

ticated custom communications infrastructures and management modules

began to emerge.

2.3.8 Early Extensions to XAPP290

Kalte et al. [43] proposed using the three-state wires as buses instead of

connectors between adjacent modules, as illustrated in Figure 2.13.

Figure 2.13: Bus system with relocatable modules (Kalte et al.)

The approach overcame the limitations of XAPP290 in several ways.

Firstly, it allowed modules of any width to be placed at any location in

the reconfigurable area. It did this by allowing the bus lines to be tapped

at any location on the device. This was achieved by laying out bus macros

throughout the device. As the three-state lines were used as bus lines, bus

macros composed of three-state buffers could not be used. Instead, as un-

derstood through conversations with the authors, the bus macros used were

37

composed of slices connecting the modules to the three-state lines. This was

one of the first uses of slice-based bus macros, which were adopted by Xilinx

about two years later.

Secondly, it allowed the same three-state wire to be used by more than two

modules simultaneously by segmenting the bus bridge modules, as depicted

in the middle of the reconfigurable area in Figure 2.13. Bridge modules also

allowed signals to pass through them to allow inter-segment communication.

Finally, it provided communication and run-time reconfiguration manage-

ment. A standard bus protocol was used for communications management.

AMBA is depicted in Figure 2.13 but was later superseded by a custom bus

protocol [42]. Other modules provided run-time control of the application by

allocating resources, managing external I/O and loading partial bitstreams

onto the device.

The approach is currently implemented on a custom board [42] with a

custom bus protocol. Most recently, modules were developed to filter partial

bitstreams at run time such that they could be relocated to a different area

of the device [41] [39]. The authors have also proposed module placement

defragmentation [54].

There is a large number of overheads involved in managing this system.

These include the bus protocol communication overheads, bitstream reloca-

tion filtering, loading bridge modules, etc. In addition, three-state wires are

inherently slow, especially if they have to travel across the entire device. Fi-

nally, due to the fact that modules can be placed at any location, a large

number of bus macros must be laid out on the device regardless of whether

they are used or not.

38

Allowing modules to be freely sized and relocated is expensive, and re-

quires a lot of manipulation as Xilinx tools require that each PRR has a

fixed size. Slot-based approaches that have fixed reconfiguration times per

slot have also been proposed. Relocation can also be emulated by generating

versions of the module bitstreams placed at each slot.

Ullmann et al. [80][34][35] proposed the “On-Demand Run-Time System”

as shown in Figure 2.14. This system resembles the approach by Kalte et al.

in many ways including the implementation of a custom bus system, albeit it

is not co-located in the same FPGA area as the modules. It also implements

bitstream decompression and self-reconfiguration via the ICAP.

Figure 2.14: On-demand run-time system (Ullmann et al.)

Although this approach does not suffer from the design complexity and

overheads of managing freely-sized and placed modules, bus protocol over-

heads still exist. In addition, there can be long routing paths from the top

of the modules to the bus interfaces at the bottom and then through the bus

network (labeled as “Bus-Macro” in Figure 2.14). It is also unclear as to how

one designs applications targeted to this system.

39

A more recent one-dimensional slot-based approach is the Erlangen Slot

Machine (ESM) by Majer et al. [57]. The ESM is composed of two PCBs

— a BabyBoard and a MotherBoard, as depicted in 2.15. The BabyBoard

has a reconfigurable Virtex-II FPGA, SRAM and a reconfiguration manager

responsible for bitstream relocation and loading. Modules are loaded into

fixed-sized slots on the Virtex-II FPGA. The MotherBoard is composed of a

crossbar switch that links external I/O to the BabyBoard, and a PowerPC

that runs software to control the application, e.g., operating system like

functions.

Figure 2.15: The Erlangen Slot Machine (Majer et al.)

There are four levels of inter-module communications provided on the

ESM. The first is direct communication between adjacent modules akin to

using the bus macros in XAPP290. The second level is shared SRAM access,

again between neighboring modules. At the third level non-neighboring mod-

40

ules can communicate via a modified version [1] of a Reconfigurable Multiple

Bus (RMB) [24]. Finally, the crossbar can be used for off-chip intermodule

communication as all the modules are connected to it.

This approach also suffers from area and timing overheads required to

manage the system and its communications. The RMB requires crosspoint

modules consisting of a controller, FIFOs and data network. External I/O

is very expensive as it has to go off-chip into another FPGA which in turn

has to be routed through the crossbar and then off-chip again to the actual

peripherals or off-chip logic. The delay of the crossbar itself is 15 ns with an

18 clock-cycle setup time.

Programming such a system is an extremely complex task. The multiple

levels of communication and application management add a high degree of

complexity at the application design level. This makes it even more difficult

to ensure that area constraints are met and that timing closure is achieved.

2.3.9 Moving to Two Dimensions

Perhaps the main reason that most approaches seen to date are one-

dimensional in nature is due to the configuration architecture of the Virtex

and Virtex-II/Pro FPGAs. Two-dimensional approaches offer more flexibil-

ity in placement and thus the possibility of shorter intermodule wiring paths.

The Dynamic Network-on-Chip architecture (DyNoC) proposed by

Bobda et al. [10] [11] is a two-dimensional network-on-chip with routers laid

out in a grid on an FPGA (see Figure 2.16). Rectangular modules of any size

can be placed onto the network. Routers are disabled if they are temporarily

41

obscured by a module placed over them, and are re-enabled when the module

is removed.

Figure 2.16: DyNoC (left: conceptual, right: implemented) by Bobda et
al.

The flexibility of such a two-dimensional layout has to be weighed against

the complexity of implementing applications on it, as well as against the

overheads involved in routing communications.

It is a complex task to determine the appropriate set of shapes and place-

ments of the modules in the application such that area and timing constraints

are met. This is accentuated by the fact that it is very difficult to provide

network bandwidth guarantees. The complete temporal communication pat-

terns of the application must be known. Even then, doing so requires that

multiple NP-hard problems be solved, as determined by Chan et al. [16] in

addressing a similar problem in NoC topology generation and module shap-

ing.

42

In addition, the uncertain bandwidth is further impacted by the over-

heads involved in routing packets. Not only does this include the router and

interface delays, but as the NoC is packet-switched, the modules have to be

designed in such a way that they can accept packets that arrive out-of-order.

Finally, some area of the chip is underutilized because a ring of unob-

scured routers must surround every module in order to ensure routability.

Technically speaking, a two-dimensional layout such as this is counter-

intuitive to the reconfiguration mechanism of the Virtex and Virtex-II de-

vices. Since a configuration frame spans the entire height of the device re-

configuring a module that is wider than it is high will take longer than one of

the same size that is rotated 90 degrees. This tends to indicate that the best

way to lay out modules would be to pack them into the narrowest possible

rectangles, thereby reverting to a one-dimensional layout.

2.3.10 Limitations of Current Extensions to XAPP290

All the approaches to extend XAPP290 that were described in this section

share a common motivation — to implement a dynamic communications in-

frastructure capable of supporting dynamic modular reconfiguration in gen-

eral.

None of the approaches, however, indicate what the methodology should

be in order to design applications targeted to the proposed systems. All the

approaches introduce additional overheads in the communications protocol

and system control. System designers already perceive a great amount of

complexity in using partial reconfiguration [62]. The additional limitations

43

imposed by an unclear design methodology and communications and con-

trol overheads are compounded onto those complexities. This may counter-

intuitively cause system designers to perceive that using partial reconfigura-

tion is too complex to be worth its benefits.

Researchers are now becoming more aware of this fact that the appli-

cation must first be considered. A very recent proposal by Hagemeyer et

al. [31] includes a design methodology for communications infrastructures.

However, it does not address the core problem of how an application can be

designed for the system. The resulting communications infrastructure is a

bus network laid out in a homogeneous fashion across the area allocated for

partial reconfiguration, as shown in Figure 2.17. At present the infrastruc-

ture is targeted for general use and as yet does not show any indication of

application-level optimization. Not only do the communications and control

overheads still exist, there is a severe side-effect of implementing this fine-

grained homogeneous infrastructure: signals have to travel through multiple

short wires over many switchbox hops, or have to use the chip-length three-

state wires (which, again, are not present in Virtex-4 and Virtex-5 FPGAs).

Apart from being much finer grained, the infrastructure is extremely similar

to that proposed by Kalte et al. [43] and thus shares the same limitations.

2.3.11 The Virtex-4 FPGA Family

In 2004 Xilinx introduced a new FPGA family — the Virtex-4 Platform FP-

GAs. Among many improvements over its predecessors the family introduced

the notion of platforms (i.e., “sub-families” with resources selectively tuned

44

Figure 2.17: Homogeneous communications infrastructure (Hagemeyer et
al.)

for logic, signal processing or embedded applications) and embedded DSP

cores.

An important architectural improvement specific to partial reconfigura-

tion is that Virtex-4 FPGAs are no longer configured by frames spanning

the entire height of the FPGA. Instead, each frame spans 16 CLBs in height,

thus every device has a height that is a multiple of 16 CLB rows. Figure 2.18

shows a layout of the 8 clock domains in the smallest device in the LX (logic)

platform. Each clock domain can be reconfigured independently of the oth-

ers, as can a single column of 16 CLBs anywhere in the device.

This “paged” structure can be used to lay out modules in two-dimensions.

As long as no module is higher than 16 CLBs rows and the modules are

aligned with the clock domain pages, each module can be reconfigured in-

dependently of any other regardless of its width. Compared to a one-

45

Figure 2.18: Pages in an XC4VLX15 device

dimensional layout of modules, shorter routing paths can be formed. To

the best knowledge to the author, the work in this thesis is the first ap-

proach that targets the Virtex-4 device family and takes advantage of its

two-dimensional reconfiguration architecture.

2.3.12 The Virtex-5 FPGA Family

The Virtex-5 FPGA family was introduced in 2006 [97]. Its many improve-

ments to the Virtex-4 architecture included 6-input LUTs, diagonal routing

and an increased maximum clock frequency of 550 MHz compared to the

Virtex-4 at 500 MHz.

46

The reconfiguration mechanism of Virtex-5 devices is identical to that of

the Virtex-4 except that each frame spans a column of 20 CLBs instead of 16.

As such, with the appropriate specification of parameters, the methodology

proposed in this thesis is also suited to Virtex-5 devices.

2.3.13 The Early-Access Partial Reconfiguration Tool

Flow

Research in supporting dynamic modular reconfiguration carried out up until

2006 targeted the Virtex and Virtex-II/Pro FPGAs as XAPP290 did not al-

low partial reconfiguration on Virtex-4 devices. However, hints at a new tool

flow with use of slice-based bus macros (rather that three-state based ones)

appeared in a papers written by Xilinx — Sedcole et al. [73] and Lysaght et

al. [56].

In February 2006 Xilinx, in collaboration with the U.S. Department of

Defense Joint Tactical Radio System (JTRS) program, announced the avail-

ability of a prototyping-to-production kit that accelerates the implementa-

tion of software defined radio (SDR) modems [93]. The JTRS SDR kit uses

partial reconfiguration with a Virtex-4 device to dynamically swap waveform

processing units while other waveforms continue to be processed on the de-

vice. To date this is the first true industrial application to utilize partial

reconfiguration.

In March 2006 Xilinx released a new tool flow — the Early-Access Par-

tial Reconfiguration (EAPR) Tool Flow [95], available to a select group of

customers and academic institutions.

47

The EAPR tool flow is an extension to the module-based XAPP290 flow,

with several improvements. Firstly, bus macros are now composed of slices

and can be placed anywhere on the boundary of a PRR. Three-state bus

macros are no longer needed nor supported. Secondly, PRRs can be placed

anywhere in the device and can be of any rectangular size and shape, with

some device-specific constraints. Finally, communications via the bus macros

are no longer restricted to adjacent modules. Intermodule wiring routes are

now permitted to pass through PRR and non-PRR areas. This was motivated

by the incentive that routing through module areas results in shorter wiring

paths rather than routing around them.

Slice macros are bus macros that are composed of slices rather than three-

state buffers. An example of a slice macro is depicted in Figure 2.19, which

was reproduced from [95]. Each slice macro handles 8 bits of communication,

and is directional. Figure 2.19 depicts a right-to-left slice macro where the

module to the right of the macro, i.e., in the white area, outputs 8 bits of

data to the module to the left of the macro, i.e., in the gray area.

Another form of slice macro, the wide slice macro, is depicted in Fig-

ure 2.20, also reproduced from [95]. A wide slice macro spans 3 CLBs, thus

3 wide slice macros can be nested within each other to provide a total of 24

bits of communication at any CLB on the module boundary.

The steps in the EAPR tool flow are outlined in Figure 2.21. The flow is

described in detail in Section 9.2, but a short outline will be given here. The

flow starts from a modular design description in HDL. At this stage the sys-

tem designer must have already planned how many PRRs there will be in the

system, and which modules are to be placed in which PRR. The actual area

48

Figure 2.19: Right-to-left slice macro

and timing constraints are input into a constraints file in Step 2. Steps 3 and

4 implement non-partially-reconfigurable versions of the application, where

each version consists of one of the possible configurations of modules in the

PRRs. This is to ensure that the design meets timing and area constraints.

In Step 5, the “base design”, i.e., the static portions of the application, is

implemented (placed-and-routed). Each PR module is implemented in Step

6, and finally the base design and the PR modules are merged into complete

bitstreams representing initial configurations in Step 7. Partial bitstreams

for each of the PR modules are also generated during this merge step.

Although the EAPR tool flow is documented only as a module-based tool

flow, the difference-based flow is still operational, as confirmed by Xilinx

representatives during a partial reconfiguration workshop [98].

These improvements were very welcome to research and development

communities. However, the developer is still responsible for ensure that an

49

Figure 2.20: Nested wide slice macros

application is properly mapped to the FPGA and that the appropriate in-

termodule communications are provided. As such, researchers still need to

resort to custom, low-level methods in combination with the EAPR tool flow

in order to implement applications.

2.4 Conclusion

This chapter provided a background on implementing dynamically reconfig-

urable applications in the hardware virtualization paradigm. The review of

current approaches given in this chapter raises several important points.

At the higher levels of the general methodology, current approaches to

partitioning and scheduling do not generally take into consideration how the

application will be mapped at the lower levels. This may cause critical path

delays and reconfiguration overheads to render the application infeasible for

50

HDL
Design Description

1

Constrain
Area Groups ,
Timing, I/Os

2

Implement
Non-PR Design

3

Timing /Placement
Analysis

4

Implement
Base Design

5

Implement
PR Modules

6

Merge
Base & PR Modules

7

Figure 2.21: Steps in the EAPR tool flow, reproduced from [95]

implementation. However, these approaches can be modified to cater for a

particular target device and implementation.

At the low-level implementation stages, the methods provided by Xilinx

have many limitations and are insufficient to effectively support intermodule

communications as is. This is expected as the aim of XAPP290 and the

EAPR tool flow is to provide tool support for partial reconfiguration at the

lowest FPGA implementation level, i.e., slice macros, ability to specify partial

reconfiguration regions and bitstream generation. System designers will have

to manually design communications infrastructures on top of that for their

applications.

Current approaches to improve on XAPP290 and the EAPR tool flow

have been tackled from the bottom-up. This compounds the existing over-

51

heads of partial reconfiguration on FPGAs together with communication pro-

tocol overheads, reconfiguration delay due to relocation, free-sizing and frag-

mentation, as well as reconfiguration control. As such, these approaches pro-

vide an entire system or platform for partial reconfiguration without demon-

strating applications that can be implemented on them.

In conclusion there is a pressing need for an integrated methodology that

takes the low-level implementation aspects into account throughout the de-

sign flow in order to ensure that the application can be feasibly implemented

on the FPGA. As current methods have not targeted the new Virtex-4 and

Virtex-5 FPGAs, it is advantageous to consider exploiting the potential ad-

vantages provided by the new reconfiguration mechanism, logic density and

speed.

52

Chapter 3

COMMA: A Communications

Methodology for Module-Based

Dynamic Reconfiguration of

FPGAs

3.1 Introduction

Allowing system designers to exploit dynamic reconfiguration raises many

challenges. Of foremost concern is that system designers need an integrated

toolset based on a top-down methodology to design and implement dynami-

cally reconfigurable applications on an FPGA. At this time there is not yet

any such integrated methodology nor toolset available that is widely accepted

and in use.

53

Module-based design encourages reuse of proven components and encour-

ages good hierarchical design. The module is also a natural atomic unit of

reconfiguration as an application is usually decomposed into modules based

on its key functions. At the highest level of abstraction, a toolset for a top-

down methodology should allow a designer to decompose an application into

modules that are potentially reconfigured or swapped while the system in

which the FPGA is embedded is active. The toolset must also allow for the

definition of module interfaces and their timing characteristics. The par-

titioning of the system into modules cannot be done without reference to

the resources available to implement the modules, including, necessarily, the

communications infrastructure available to connect the modules together.

The modules themselves may be sourced externally from IP vendors or

developed in-house. This raises issues about the consistency of definitions

and descriptions of interfaces and behaviors. It is difficult to adapt each

module interface to a standard or proprietary protocol.

Some means of simulation must also be provided. A simulation framework

suitable for dynamic reconfiguration needs to include communication and

reconfiguration timing and the ability to simulate logic replacement.

Place and route tools need to operate at the module level, and assum-

ing the required communications can be provided or codesigned, must not

perform global design or optimization steps. These capabilities are imple-

mented to some degree with module-based flows [92] and manual optimiza-

tion tools [96].

The designer is also likely to want some form of run time or operating

system to be generated or provided that can hide the burden of managing

54

the device. The OS defines policies and strategies for utilizing and sharing

resources, which must be fed back to the design system for it to be able to

partition and adapt the implementation accordingly.

Design iteration may be needed to accommodate the constraints of the

device and its run time management. Overheads should be minimized so as

not to lose the benefit of hardware implementation. Moreover, the penalty

for designing at a higher level of abstraction and supporting virtualization

should not be large.

With respect to dynamic module placement, it is desirable that modules

be relocatable in order to support schedules that are not known at design

time. This places a significant burden on the communications infrastruc-

ture to connect, when required, specific IO pins with module ports whose

locations are not known until run time. Inter-module connections involving

dynamically placed modules may also need to be provided at run time. A

conflict thus arises between the need to provide fast routes of adequate width

for the sake of performance and the constraint of finding and setting these

at run time, conceivably with little laxity in the task.

Another challenge researchers and designers currently face is a lack of ven-

dor support for dynamic reconfiguration. Lack of support takes two forms:

sub-optimal device architectures and inadequate tool support. While the con-

cepts underlying support for dynamic modules in a general manner have been

investigated since Brebner’s Swappable Logic Units [14], little real progress

has been made in developing widely applicable solutions with sufficient de-

sign tool support. With the release of new architectures [87], which give more

recognition to the scalability of reconfiguration mechanisms, the time seems

55

right to move forwards on practical and effective methods for harnessing

reconfiguration at the module level.

A main concept advocated in this thesis is that effective module-based

reconfiguration of FPGAs requires at its core a communications infrastruc-

ture that can support the varying communications needs of the run time

configured modules. Invariably, these dynamically placed modules will need

to connect with other modules on the FPGA and to the I/O pins of the

device. Since the interfaces of the modules and their run time placement

will in general vary, the communications infrastructure needs to support run

time reconfiguration of the routing, or provide an indirect mechanism for

connecting ports with pins.

This chapter presents a methodology for the deployment of a communi-

cations infrastructure that efficiently supports the communications needs of

a collection of dynamic modules when these are known at design time. The

methodology also provides a degree of flexibility to allow a range of unknown

requirements to be met at run time.

An important feature of the methodology is that it does not constrain the

module interfaces or communication protocols. The methodology provides

the wiring for the raw module interfaces, i.e., the connections between the

input and output ports of the modules and external I/O. A major advantage

of doing so is that system designers do not have to design modules to adapt

to a particular interface or communications protocol, or, viewed differently,

they are free to choose whatever interface or protocol they wish. In addition,

off-the-shelf components can be easily used without engineering the appro-

priate wrapper modules to adapt them to a particular interface or protocol.

56

Overheads that are incurred using a specific communications protocol such

as data serialization, bus arbitration, etc., can also be avoided.

It is a much tougher problem to provide effective intermodule wiring when

interfaces are unconstrained instead of conforming to a standard, fixed inter-

face. When the module interfaces are fixed, it is simply a matter of creating

a wiring infrastructure with enough wiring to connect each of these inter-

faces between the modules that communicate. Instead, with the COMMA

methodology, the interfaces are unconstrained and the wiring infrastructure

supports modules with different interfaces arriving and leaving.

The methodology described in this chapter was presented at the Dy-

namically Reconfigurable Systems workshop of the 2006 International Con-

ference on Architecture of Computing Systems [49], and at the 2006 IEEE

International Symposium on Field-Programmable Custom Computing Ma-

chines [50].

3.2 A Hierarchy of Dynamically Reconfig-

urable Systems

System designs that target FPGAs may consist of a static collection of sub-

components or modules. That is, the design process results in a static circuit

that is configured onto the FPGA until the system needs to be reconfigured to

perform an entirely different function. Such an FPGA design can be defined

as static since it is not altered while the system is active, each configuration

is completely defined at design time, and there is sufficient time between

reconfigurations to carry out the design to completion. Design methodologies

57

for this type of FPGA use are relatively well understood and supported by

FPGA tools, although a commonly accepted module-based orientation to the

design of large-scale static designs may still be lacking.

By virtue of their reconfigurability, systems including FPGAs may exhibit

a degree of flexibility and dynamism. As this dynamism may take a num-

ber of forms, a hierarchy of dynamically reconfigurable systems is proposed

based on the constraints imposed on said systems. This hierarchy provides

a framework for subsequent discussion.

It is important to first distinguish between complete and partial reconfig-

uration. This thesis is concerned with supporting partial reconfiguration, in

which part of an FPGA device is reconfigured to support new functionality.

Moreover, dynamic reconfiguration should be supported as much as it may

be permitted with commercial devices. This means allowing part of a device

to be reconfigured while the system in which it is embedded, or indeed, the

parts of the FPGA device that are not being reconfigured, remain active.

A complete reconfiguration of the device is considered to be an incarnation

of the static design case described above. Static designs are supported as a

special case within the methodology.

Second, the thrust of this work is to support module-based or core-based

reconfiguration, such as the replacement of one video codec with another,

rather than fine-grained reconfiguration, such as the specialization of a con-

stant coefficient multiplier. The approach is not intended to preclude use

of fine-grained reconfiguration, rather the focus is on how to support modu-

lar design techniques and in particular the communications issues raised by

dynamically reconfiguring design modules.

58

Apart from static designs, three types of dynamically reconfigurable sys-

tems, herein denoted DR1, DR2 and DR3 respectively, can be distinguished.

DR1 is the most constrained of these and applies to systems in which it is

known at design time which sub-component of a design may be swapped

with a given (set of) alternative(s) and, crucially, which region of the placed

and routed circuit is to be reconfigured with a given dynamic module (see

Figure 3.1 for a diagrammatic comparison of this situation with the static

case). Part of the FPGA circuit design is static and another part of the cir-

cuit is to be swapped at run time. Many examples of such systems have been

reported. For example a Bluetooth baseband bitstream processor is recon-

figured after processing the header packet to process the payload in [25]. In

this class, the communication needs (bit- and band-widths, communication

patterns, protocol (if any), etc.), and thus the interface of the module alter-

natives are known in advance. Connecting a dynamically placed module to

the surrounding circuitry and device pins therefore involves selecting from a

number of preconfigured channels. It is worth mentioning that for DR1, the

triggers for reconfiguration and all possible schedules are known at design

time.

1 2

3 4

A B

C

1 2

3 4

A B,C

C

1 2

3 4

A B,C

C,D

a) A static assignment
of modules A, B and C
to pages 1, 2 and 3

b) DR1: page 2 may
have modules B or C
assigned to it

c) DR2: module C may
be placed at pages 2
or 3 at runtime

Figure 3.1: Classification of module-based reconfigurable systems

59

The class DR2 includes those systems for which the static components

and the set of possible dynamic modules is known at design time, but their

placement onto the FPGA fabric at run time is not known. A representative

example is depicted in Figure 3.1(c). It is possible for this situation to occur

when the order in which dynamic modules are called for at run time is not

known. A possible scenario exemplifying this case is a robotic explorer that

dynamically partitions real-time tasks, perhaps including vision, navigation,

scientific sampling, and communications onto hardware and software sub-

systems according to time, area and power constraints. This situation gives

rise to the need to support flexibility in the communications infrastructure

in order to support the necessary interconnection between dynamic modules

and other on- and off-chip components. However, given the interfaces of the

dynamic components are known at design time, it is possible to engineer an

inter-module communications infrastructure that supports expected require-

ments. Since a degree of flexibility in placing each module is required in

such a communications infrastructure, this can be viewed as a step towards

creating an infrastructure that supports modules with interfaces that are not

known at design time. Since the methodology proposed here works with

raw module interfaces, creating such an infrastructure is considerably harder

than if a standard, fixed module interface is enforced.

For the sake of a complete classification, scenarios are possible in which

the set of modules for which the communications needs to be supported is

not known at design time. Such systems are classified as DR3 in this hier-

archy. An example of such a system may be one in which modules arrive

dynamically at run time, perhaps in response to a user choosing to run an

60

application downloaded from the Internet or some other repository. It is

anticipated that such a system can be supported by providing a communi-

cations infrastructure that is parameterized on the maximum expected bit-

and band-widths.

3.3 The COMMA Approach

The COMMA approach is founded on some core principles. First, there is a

need to provide practical and efficient methodologies that assist designers in

effectively exploiting dynamic reconfiguration. Such methodologies should

be top-down, allowing applications to be specified, partitioned and imple-

mented. The entire flow should target a current FPGA device family and

physical constraints must be taken into account at every step.

Second, such a methodology must be supported with tools that provide

as much transparency as possible for designers to harness dynamic recon-

figuration without having to focus on low-level details. The current EAPR

tool flow [95] requires expertise with implementing dynamic reconfiguration

at the device architecture level. In order for such tools to be developed the

low-level device constraints must be factored into the methodology starting

with the application specification.

Third, an effective communications infrastructure is paramount to effi-

ciently exploiting dynamic reconfiguration. The COMMA approach aims to

provide an infrastructure capable of efficiently supporting the communica-

tions needs of dynamic modules, and at the same time is optimized for the

61

application requirements, the hardware, and available design-time knowl-

edge.

The rest of this chapter presents the target device and layout, an approach

for pin virtualization to allow access from any module pin to any other module

pin or external I/O pin, and a description of the COMMA design flow.

3.4 Reference Target Device

The reference device family that is used in order to describe and demonstrate

the COMMA approach is the Xilinx Virtex-4 family [87] of FPGAs. The ap-

proach takes advantage of the “paged” configuration layout of this family but

is also applicable to any device that is configured in a similar way, including

the newer Virtex-5 family [97].

The minimum unit of configuration is a bitstream frame. The frames in

Virtex-4 devices are unique in that they are of a fixed-length of 41 quad-byte

words, each spanning 16 CLB rows. In predecessor devices the frames span

the entire height of the device. The frames are tiled about the device into

“pages” that span half the width of the device and 16 CLB rows, as shown

in Figure 3.2, which depicts a Virtex-4 FX12 device with 64 rows and 24

columns of CLBs (and includes one hard PowerPC core, depicted as a white

rectangle in the figure). This is the smallest device available in the FX family.

The fastest configuration interface for the Virtex-4 FPGA family is the

SelectMAP interface running at 100MHz in 32-bit mode [89]. Each frame

thus takes about 0.41µs to be loaded onto the device. Each column of 16

CLBs consists of between 22 and 23 frames and takes about 9µs to load.

62

Figure 3.2: XC4VFX12 device with pages

This is a considerable improvement over the previous Virtex-II Pro device

family, which can take from 20µs for the smallest device to 135µs for the

largest device to configure a column of CLBs. Normalized, each CLB1 takes

0.56µs to be reconfigured in a Virtex-4 device as compared to 2.5µs for a

Virtex-II Pro device.

The external I/O banks are located on the left, in the middle and on the

right of the device (shown in Figure 3.2 as black bars). This contrasts with

predecessor families, in which I/O pins are distributed around the periphery

1In terms of logic capacity, CLBs in Virtex-4 and Virtex-II Pro devices both consist of
four slices each, and each slice consists of two 4-input LUTs and two flip-flops.

63

of the device. The locations of external I/O blocks are important when

considering how the communications infrastructure should connect to them.

The next section introduces the module and wiring infrastructure layout

for the COMMA approach. The layout is targeted to the characteristics of

the Virtex-4 architecture described above.

3.5 Module Placement Strategy

3.5.1 Paged Module Placement

Since each frame spans 16 CLBs vertically and the minimum unit of reconfig-

uration is one frame, it can be seen that any of the 8 pages shown in Figure 3.2

can be reconfigured independently of every other. Were modules mapped to

these pages, they could be dynamically swapped while other modules are left

running.

The COMMA approach proposes that each page should accommodate one

reconfigurable hardware module. While it is possible to reconfigure less than

a page, the overheads (such as placement and defragmentation) of micro-

managing modules (e.g. arbitrary placement akin to [43]) are likely to be

unacceptable and unnecessary. However, there may be reconfiguration delay

savings if the module size can be reduced.

Another advantage to this approach is that each clock region on the de-

vice corresponds to the pages shown in Figure 3.2, thus each module can be

clocked independently, and with the new support for dynamic reconfigura-

tion of functional blocks [89], Digital Clock Managers (DCMs) [87] may be

64

dynamically reconfigured to adjust the clock frequency in each page indepen-

dently.

An important characteristic to note about Virtex-4 devices is that the

resources in each page may be different. For example, the XC4VFX12 device

shown in Figure 3.2 has a large PowerPC processor block in three of the

pages on the left side of the device. In addition, the XtremeDSP signal

processor elements [91] are located only on the right half of an XC4VFX12

device. The implications of this heterogeneous layout is that it may not be

possible to relocate a module bitstream, placed-and-routed for a particular

page, to another using address modification techniques such as REPLICA by

Kalte et al. [41][39]. It may theoretically be possible to relocate modules by

modifying the bitstream if non-similar resources are not used. However, the

modification does still incur a run time overhead. This effect also extends

to hard placed-and-route cores, i.e., hard macros. Hard macros can only be

placed in pages where all its constituent resources present and are located in

the appropriate relative positions.

3.5.2 Page Aggregation

In order to allow for better flexibility in terms of module sizing, this place-

ment strategy also opens up possibilities of placing a module in two or more

adjacent pages such that larger modules can be accommodated.

Since the center column effectively divides the FPGA resources into two

halves it is preferable to aggregate pages vertically instead of horizontally.

The ratio of the number of rows to the columns in Virtex-4 devices is always

65

at least 2 and thus it is natural to do so. This arrangement also allows the

vertical carry chains implemented between CLBs to be expanded.

3.5.3 Horizontal Page Division

Larger Virtex-4 devices can be very wide, with a horizontal width of up to 116

CLBs in the largest LX device. As the device size scales it is conceivable that

each page may be overly large for a single module. Since the minimum unit of

reconfiguration is one frame it is possible to divide each page into sub-pages

at the granularity of 1 CLB. This subdivides wide pages in large devices and

may be desired if it is known that there will be very small modules available

and that some space savings are necessary.

The sample module placement in Figure 3.3 shows modules M1 and M2

being placed in a divided page, M3 in three aggregated pages and M4 in a

page of its own.

It should be noted that division and aggregation does not need to be

permanent. It is possible to place a module utilizing the entire page that M1

and M2 takes up when they are removed. Similarly it is possible to place

a smaller module into any of the three pages that M3 occupies when it is

removed.

66

Figure 3.3: Page aggregation and division

3.6 Pin Virtualization

3.6.1 Physical Communications Infrastructure

As discussed in Section 2.2.4, bus-based and NoC-based approaches for im-

plementing intermodule communications limit access to module and and ex-

ternal I/O pins. This limits bandwidth, placement flexibility, and restricts

implementation to particular devices and/or platforms. In contrast, the

COMMA approach allows the point-to-point virtualization of any module

and external I/O pin in the fabric. This allows any module pin to access any

other module’s pins and any external I/O pin.

67

The physical communications infrastructure consists of module slots, a

wiring harness connecting the modules to other modules and IOBs, and slice

macros [95] [73] connecting the slots to the wiring harness. Modules are

dynamically placed in these slots, and are surrounded by the wiring harness

which provides the connections to any other slot and to external I/O. The

area for the wiring harness envelops the external I/O pins used by the system

for communication.

This is an implementation of Brebner’s “parallel harness with wiring”

SLU-based virtual hardware model [14]. Brebner’s original depiction is re-

produced in Figure 3.4.

Figure 3.4: “Parallel harness with extra H-tree wiring supplied” from Breb-
ner [14]

The stylized layout of a possible maximal configuration of a COMMA

communications infrastructure is shown in Figure 3.5. The grey area, where

the wiring harness resides, envelops every external IOB. Each of the six white

module “slots” shown in the figure occupies a little less than one page and

68

is connected to the infrastructure via LUT-based slice macros [73] such as

those used in the EAPR tool flow (see Figure 3.6 below). A module can be

placed in one or more contiguous slots. Note that the number of and the size

of the slice macros in the figures in this subsection are not representative of

actual implementation scenarios, and are for illustrative purposes only.

Figure 3.5: Trident layout

Figure 3.6: Slice macro connector

The “trident” layout, so-called because of the appearance of the area

reserved for the wiring harness, has homogeneous slots, thus allowing for

69

simple means of relocation utilizing major-address modification techniques

such as REPLICA [41]. However, the critical path length from a pin at the

top left of the layout to the top right corner of the arrangement is long, i.e.,

from the top left corner, down to the bottom where the large wiring area

exists, then moving to the right of the device, and up again to the top right

corner.

Virtex-4 slice macros similar to those provided in the EAPR toolkit (see

Figure 3.6) are used in order to provide connection to the communications

channels that are routed via the wiring harness. However, the COMMA

methodology generates slice macros that have any combination of inputs and

outputs (up to 8 bits) for two vertically or horizontally adjoining CLBs, and

are of arbitrary width. The EAPR toolkit provides 8-bit (single) macros and

24-bit (triple-wide) macros. The COMMA methodology generates macros

of any width, which implies that any bitwidth is possible subject to space

constraints.

The “double-ring” layout depicted in Figure 3.7 overcomes the critical

delay of the “trident” layout at the cost of slightly greater relocation com-

plexity.

This layout provides better routing opportunities but three different types

of module placement slots now exist (the two at the top, the four in the

middle and the two at the bottom). As reconfiguration in Virtex-II (Pro)

and Virtex-4 devices is glitchless [73], reconfiguring modules in the top and

bottom module areas where part of the page is the wiring infrastructure

should not cause device or circuit malfunction. If reconfiguration is said to

be glitchless, this indicates that if a particular portion of the configuration

70

Figure 3.7: Double-ring layout

data is overwritten with the same configuration data as it currently holds,

and if that portion is currently running, no signal glitches will occur and the

behavior of that portion of the device will be as if the reconfiguration never

occurred. The EAPR tool flow [95] ensures that if the module boundaries are

properly defined, the configuration data for the portion of the frames outside

the module boundaries will be the same.

However, modules can only be relocated to slots of the same type for which

they are synthesized for, e.g., modules synthesized for any of the middle two

slots can be relocated to any other of the middle two slots, but not to the top

or bottom slots. If it is necessary to “relocate” modules to slots of different

types, one module bitstream needs to be synthesized for each different type

of slot.

Another alternative, the “ribbed” layout, is depicted in Figure 3.8. Ad-

ditional horizontal routing channels are available in this layout, thereby hav-

ing better routability and possibly lower critical path delays. However, each

page now has a single, separated slot, which inhibits vertical page aggrega-

71

16
CLBs

Figure 3.8: Ribbed layout

tion. This disadvantage can be ameliorated by judicious module sizing at

the higher levels of the design flow, e.g., at the behavioral specification and

partitioning levels. Larger modules can be split into smaller ones that fit into

each slot. On the other hand, smaller modules can be aggregated to fully

utilize the resources in each slot.

The layouts presented here illustrate some possibilities and their relative

merits. However, it is important to note that these observations simply

imply that the COMMA methodology does not specify a fixed layout for

the communications infrastructure. The systems designer can optimize the

layout for the needs of the application. If not all the external I/O pins are

required, the communications infrastructure need not envelop the pins that

are not required. If it is known that the modules in the application are

generally of a particular size, the page layout can be catered to that size to

reduce the necessity to aggregate or divide pages. The amount of resources

allocated for the wiring infrastructure can be judiciously determined based

on the sizes of the modules and their communication needs. The principles

guiding these layouts are to take advantage of the paged reconfiguration

72

mechanism and thus should be exploited by the system designer as much as

possible. Also note that the layout alternatives presented here are targeted

at the LX15/FX12 devices in the Virtex-4 family. These are the smallest

devices in the Virtex-4 range and only support 8 modules. The number of

slots supported by the range of devices in the Virtex-4 LX range and their

slots sizes, assuming a ribbed layout with a wiring infrastructure border of

2 CLBs surrounding each slot, are shown in Table 3.1. If a different amount

of resources are allocated for the wiring infrastructure, the slot sizes will be

different but the number of slots should remain the same.

Device CLB Number Slot Size Reserved for
Code Array of Slots (CLBs) Wiring (%)
XC4VLX15 64 × 24 8 96 50.0%
XC4VLX25 96 × 28 12 120 46.4%
XC4VLX40 128 × 36 16 168 41.7%
XC4VLX60 128 × 52 16 264 36.5%
XC4VLX80 160 × 56 20 288 35.7%
XC4VLX100 192 × 64 24 336 34.4%
XC4VLX160 192 × 88 24 480 31.8%
XC4VLX200 192 × 116 24 648 30.2%

Table 3.1: Number of slots and slot sizes for a ribbed layout with a border
of 2 CLBs per slot

The percentages of CLB resources reserved for wiring are shown in the

rightmost column of Table 3.1. The relative amount of reserved wiring re-

sources may seem high in smaller devices but this is because the ribbed layout

is optimized for short routing paths. The system designer has the freedom

to tailor the wiring area to their required optimization goals.

73

3.6.2 Reconfigurable Data Ports

Each module placement slot is capable of connecting a large number of bits

to the wiring harness. Each slice macro occupying one CLB on the bound-

ary of the module area can connect 8 module I/O pins to the wiring area.

As one of the aims of dynamic reconfiguration is to allow different modules

to be placed in the same slot, a method must be set in place to map the

dynamically-changing number and type of module I/O pins to the commu-

nications infrastructure.

The COMMA approach introduces Reconfigurable Data Ports (RDPs)

as a means of mapping module ports to slice macros. In Figure 3.9 the

two output ports destined for module M2 are mapped to the one 8-bit RDP

(because they can be routed together) whilst the 3-bit port has its own 3-bit

RDP.

Figure 3.9: Reconfigurable data ports

The definition of RDPs allows communication channels to be set up in the

infrastructure. Channels of varying bitwidths can be defined to ease routing

74

complexity (it is less complex to route a group of bits because there are fewer

possible destinations than if each bit were individually routed).

RDPs should be defined after the placement of each module is known.

At the implementation level, wrappers can be generated for the modules to

direct the module ports to the appropriate slice macros. As these wrappers

simply map the original bits of module communication to slice macro inputs

or outputs, they should not consume any logic area.

3.6.3 Implementation and Optimization

The communications infrastructure can be optimized depending on how much

knowledge is known a priori about the modules, and any user-imposed con-

straints.

For applications in the DR3 classification, the systems designer should

specify the expected amount of communications that the application requires.

An appropriate number of slice macros and external I/O pins can then be

allocated so that the infrastructure can support these requirements. The

toolchain can then determine the optimal locations of these macros and I/O

pins in order to minimize the critical path delay and/or to maximize module

slot size by minimizing the wiring channel width.

Since more information is available, applications in the DR2 class allow

further optimization. Since the module interfaces are available a priori, the

communications infrastructure can be tailored for optimal use of the module

set rather than allocating more than is necessary as may occur in the DR3

75

case. The size and location of the module areas and slice macros can be

optimized to the needs of the modules.

In the DR1 case, further optimizations are possible since the module

placement and communications requirements are fixed. The toolset can aim

to minimize the total reconfiguration time and/or critical path delay. The

entire wiring infrastructure can be customized to the application.

3.6.4 Management Issues

In DR2 and DR3 applications, the management of modules arriving and

leaving and the setup of channels and routes may be performed by on- or off-

chip agents. DR1 applications do not require explicit module management

as all the communications requirements are known a priori. However, some

communications buffering may be necessary.

Essential requirements to be fulfilled by management agents, with respect

to communication, are module registration and on-line placement. Modules

should be registered with a central control unit as they arrive and leave.

This is to allow modules to locate peer modules and external I/O. An on-

line module placement and relocation unit is necessary to place modules in

optimal locations as they arrive.

These agent functions may be performed by a host controller or by an

embedded CPU core such as the PowerPC block in Virtex-4 FX devices.

76

3.7 The COMMA Design Flow

In order for this infrastructure to be readily implemented a design flow has

to be set in place. In addition to standard tools for module logic synthesis,

place-and-route and bitstream generation, tools are needed to perform two

tasks — the automated generation of the communications infrastructure, and

the preparation of modules (e.g. RDP definition) for placement. Figure 3.10

depicts the overall COMMA design and tool flow for communications synthe-

sis. There are three main tools in the COMMA flow — the Configurator, the

Infrastructure Generation tool and the Partial Reconfiguration Tool Flow.

3.7.1 Configurator

The “Configurator” uses Xilinx-supplied device information with user-

supplied parameters to create a Chip and Communications Configuration

(CCC) file. The user may specify a layout of the communications infrastruc-

ture and channel, slice macro and slot preferences to assist the infrastructure

generation tool in optimization. The IO pad parameters are mandatory and

are used to place and optimize the infrastructure. This essentially provides

a high-level interface to the system designer. A screenshot of such a tool

created for prototyping and demonstration purposes is shown in Figure 3.11.

3.7.2 Infrastructure Generation

The “Infrastructure Generation” tool analyzes the CCC file created by the

Configurator and generates an optimized communications infrastructure im-

plemented with HDL, constraints, slice macros and accessory macros. The

77

D
ev

ic
e

In
fo

rm
at

io
n

Pa
ck

ag
e

/
D

ev
ic

e
Pi

no
ut

Fi

le
 (

A
SC

II
)

PA
R

T
G

en
R

ep
or

t

U
se

r
-S

up
pl

ie
d

Pa
ra

m
et

er
s

C
on

fi
gu

ra
to

r
In

fr
as

tr
uc

tu
re

G
en

er
at

io
n

(C
ha

pt
er

s
6,

 7
)

C
om

m
un

ic
at

io
ns

In

fr
as

tr
uc

tu
re A

cc
.

M
ac

ro
s

U
C

F

Sl
ic

e
M

ac
ro

s

H
D

L

M
od

ul
e

W
ra

pp
in

g

Pa
ck

ag
ed

M
od

ul
e

In
te

rf
ac

e

U
C

F

H
D

L

C
hi

p
&

 C
om

m
un

ic
at

io
ns

C

on
fi

gu
ra

tio
n

co
ns

is
ts

 o
f

:
-

D
ev

ic
e

In
fo

rm
at

io
n

-
L

ay
ou

t I
nf

or
m

at
io

n
-

L
og

ic
al

 P
ad

 M
ap

-
Sl

ot
/M

ac
ro

 M
ap

D
ev

ic
e

L
ay

ou
t

I/
O

 P
ad

 S
el

ec
tio

n

Sl
ot

 P
re

-
A

llo
ca

tio
ns

Sl
ic

e
M

ac
ro

 P
re

-
A

llo
ca

tio
ns

M
od

ul
e

Pa
ra

m
et

er
s

co
ns

is
ts

 o
f

:
-

M
od

ul
e

ID
s

-
R

D
P

M
ap

pi
ng

s
-

R
D

P
Pe

er
s

M
od

ul
e

H
D

L

C
om

m
un

ic
at

io
ns

In

fr
as

tr
uc

tu
re

 B
its

tr
ea

m
(B

as
e

D
es

ig
n

w
ith

/
w

ith
ou

t M
od

ul
es

)

Pa
rt

ia
lly

 R
ec

on
fi

gu
ra

bl
e

M
od

ul
e

B
its

tr
ea

m
s

Pa
rt

ia
l

R
ec

on
fi

gu
ra

tio
n

T
oo

l F
lo

w
(C

ha
pt

er
 9

)

Figure 3.10: COMMA design flow

78

Figure 3.11: Configurator screenshot

algorithmic aspects of how the communications infrastructure is generated is

discussed in Chapters 6, 7 and 8. Low-level technical implementation details

are discussed in Chapter 9.

3.7.3 Module Wrapping

Once the infrastructure has been generated, modules can be wrapped to

enable placement into the infrastructure at any time thereafter (even after

deployment) by using the wrapper tool to generate RDP interfaces for the

modules. Details about this tool are presented in Chapter 9.

79

3.7.4 Partial Reconfiguration Tool Flow

When the infrastructure and an initial set of modules (which may be blank

fillers) are available, they should be synthesized using an available partial

reconfiguration flow. A custom partial reconfiguration tool flow based on

XAPP290 was developed when this methodology was first proposed in De-

cember 2005 [49]. This can now be directly replaced by the EAPR tool flow

that was made available in 2006 [95].

The partial module bitstreams and full infrastructure bitstreams are then

generated and the system can then be deployed. The communications infras-

tructure bitstreams may contain an initial configuration of modules.

3.8 Summary

This chapter presented a module-oriented methodology to cope with design

pressures and expected device scaling. Requirements for supporting dynamic

reconfiguration at the module level were discussed. This includes the provi-

sion of a communications infrastructure that affords a degree of pin virtual-

ization. The COMMA approach was presented to support communications

for new tiled FPGA architectures and an overall design flow was outlined.

The rest of this thesis presents the problem that is focused on, an assess-

ment of the overheads that are incurred in implementing the layout proposed

by the COMMA methodology and details of how the communications infras-

tructure should be generated.

80

Chapter 4

Models and Problem

Formulation

4.1 Introduction

This chapter details the models used and the core problem, “DR1/0”, that

is dealt with in this thesis, thus providing the background to the rest of the

document. The DR1/0 problem is an attempt to implement applications in

the DR1 class with specific assumptions.

Applications in the DR1 class have the following characteristics: the mod-

ules, their placements, and communication requirements are all known at de-

sign time. See Section 3.2 for a detailed description of the application classes.

Such applications are good candidates for exploiting dynamic reconfiguration

for hardware virtualization. As it is still unknown how applications in the

DR2 and DR3 classes might benefit from dynamic reconfiguration, the DR1

class has been chosen. This is because even for this most constrained class of

81

applications there is a lack of tools that help a designer input an application

specification, prepare it for dynamic reconfiguration, and temporally map it

to an FPGA. This thesis contributes to the overall goal of creating such tools

by analyzing the effects of mapping applications to a concrete device model.

A high-level problem definition is first presented, followed by a description

of the system and device model that was considered. Finally, a detailed

formulation of the specific problem that is focused on is presented.

4.2 High-Level Problem Definition

The problem considered in this thesis is where a partially- or dynamically-

reconfigurable application targeted to an FPGA is realized as a sequence of

configurations. Each configuration can be represented as a graph comprising

the active modules and their interconnections. Given a particular sequence,

the goal is to map the graphs to the device so as to meet area and timing

constraints. When area and timing constraints have been met, it is desirable

to find mappings that will minimize the total time needed to reconfigure the

device during an application run.

Traditional placement methods [78] encourage the compaction of module

logic to maximize the utilization of available area and to minimize routing

path lengths. However, due to the nature of reconfiguration mechanisms in

FPGAs, doing so for reconfigurable applications may inadvertently require

loading more data than is necessary during reconfiguration. Current devices

have a “paged” configuration architecture, which this thesis proposes exploit-

ing by allocating a single reconfigurable module slot to each page. Modules

82

can thus be reconfigured independently. As for communication, complex

infrastructures such as on-chip networks and bus systems impose area over-

heads so as to accommodate arbitration logic and reserved wiring that may

not be fully utilized. This can be very inefficient in terms of bandwidth, area

and frequency, and restrictive in that they require specific protocols to be

implemented in every module’s logic. Thus this thesis proposes to customize

the inter-slot communications by building a wiring harness surrounding these

slots that will support the communications needs for a sequence of configu-

rations.

It would be most desirable to implement a single wiring harness support-

ing the communications needs of all application graphs, but the target device

may not be large enough to accommodate the module logic with the required

amount of wiring. It may also be the case that even if the wiring could be

accommodated in the available device area, congestion might cause timing

constraints to be exceeded. The aim is then to build harnesses that support

the communications for subsequences of the communications graphs that are

as large as possible without exceeding these constraints, perhaps using tech-

niques such as maximizing wire reuse between graphs. The reconfiguration

delay of a (whole) sequence of graphs will thus be split into two parts —

the time to reconfigure individual modules, and the time to reconfigure the

wiring harness when it is necessary to.

The DR1 problem is to decide the best module-slot placements for each

graph, and to generate wiring harnesses with these module placements so

as to reduce the overall reconfiguration delay (which is the sum of the re-

configuration delays for module swaps and wiring harnesses) subject to area

83

and timing constraints. It is anticipated that judicious module placement

will minimize the number of module swaps, and good placement will support

wiring harnesses that will cater for longer sequences of configurations before

needing reconfiguration.

Instances of DR1 in the real world include large application circuits that

are mapped to small devices through the use of hardware virtualization, such

as the optical flow application analyzed in Section 6.7. An application that

swaps versions of modules at run time is also in this problem class since the

modules are known and their placements are determined at design time, e.g.,

software-defined radio [79]. This problem class also includes multitasking

applications on a device where the full application schedule is known, e.g.,

running two different codec pipelines at the same time for a handheld mobile

device to decode an MPEG stream and send an encrypted message at the

same time.

4.3 System Model

No assumptions are made about the type of reconfigurable system platform

used, other than that it includes a tile-reconfigurable FPGA such as the

Xilinx Virtex-4 or Virtex-5. The approach is to provide on-chip communica-

tions to and from modules and external I/O pins. As such no assumption is

made on what external components are available, except some off-chip mem-

ory to contain the partial and full bitstreams to reconfigure the FPGA. The

on-chip memory, i.e., Block RAM (BRAM), in current FPGAs is not suffi-

cient to contain bitstreams of any reasonable length, thus off-chip memory

84

or a separate host controller is required for any FPGA system that utilizes

partial reconfiguration.

This thesis proposes creating a wiring harness for modules placed onto a

single FPGA, but the ideas can be extended to cater to multi-FPGA systems.

It is assumed that data buffering between configurations is handled by the

partitioning and scheduling process. Some examples of this are as follows:

• Modules present in a configuration at time t can contain intermedi-

ate data to be used in a subsequent configuration at time t + δ. As

such, these modules remain in configuration t + δ as well. For exam-

ple, an application with H.264 decoding performs entropy decoding and

inverse quantization in a configuration at time x. Some intermediate

data is stored in the inverse quantization module and the system recon-

figures itself to a configuration at time x + 1 still containing the same

inverse quantization module, but now with the inverse transform mod-

ule instead of the entropy decoding module. The inverse quantization

module feeds the intermediate data to the inverse transform module in

this configuration. This approach can only be applied when there is

sufficient memory available for buffering within the module logic.

• Modules communicate directly via external I/O blocks to off-chip com-

ponents that buffer the data.

• I/O interface modules are added to either:

1. Buffer any necessary data on-chip; or

85

2. To interface with off-chip memory to store intermediate data.

Evaluative experiments described in Chapter 8 assume this ap-

proach is taken.

It is also assumed that no communication occurs to or from any slots that

are in the process of being reconfigured. In addition, if the wiring harness is

being reconfigured, no communication occurs at all while the reconfiguration

is in progress. System control must buffer external data streams accordingly.

No particular communications protocol is assumed. However, it is as-

sumed that the communications requirements for the application can be spec-

ified in terms of the number of directed bits required between each module.

4.4 Device Model

Figure 4.1 depicts an example of the FPGA layout that is advocated in this

thesis. This is an instance of the “ribbed” layout introduced in Section 3.6.1.

The example in Figure 4.1 is for an XC4VLX15 device, i.e., the smallest of

the LX family of devices.

Two slots are allocated per 16 CLB rows, one per side (left or right half)

of the device. This means that the number of slots for a device of r rows

is 2r
16

. Every slot is of the same size. The wiring harness (the white area in

Figure 4.1) surrounds the slots and envelops the external I/O blocks.

The following parameters govern the size and shape of the slots and the

wiring area:

86

Slot X0Y3 (3) Slot X1Y3 (7)

Slot X0Y2 (2) Slot X1Y2 (6)

Slot X0Y1 (1) Slot X1Y1 (5)

Slot X0Y0 (0) Slot X1Y0 (4)

c/2 c/2
cw a

1
6

cw
1

6
1

6
1

6
cw

cw

r

c

cw

a

a

1
6

1
6

2

cw

2

cw

2

cw

2

cw

cw

2cw

2cw

Figure 4.1: Device model layout

87

• r: The number of CLB rows in the device — obtained from FPGA

device specifications.

• c: The number of CLB columns in the device — obtained from FPGA

device specifications.

• cw: The channel width in CLBs that is reserved for wiring in the

center column of the device. Viewed from another perspective a wiring

channel ring of cw
2

CLB width surrounds every slot.

As shown in Figure 4.1, each slot has a fixed size. If modules are initially

too large to fit into the slots, they should be divided into smaller ones. In

order to maximize area utilization, smaller modules should also be clustered

together up to the size of the slots. The experiments described in Chapter 8

use the clustering algorithm by Purna et al. (see Section 2.2.2) to perform

this clustering process.

4.5 Input Specification

This section defines how the input graphs should be specified for the DR1/0

problem.

An application is represented as a sequence of graphs Γ, as depicted in

Figure 4.2. Each graph is linked to another by arrows indicating their pro-

gression. Each graph Gi represents an intermodule communications graph

corresponding to an execution phase, or equivalently, a configuration of the

application. The following timing constraints can be applied, but are op-

tional:

88

G1

d(G1)
G2

d(G2)
G3

d(G3)
Gn-1

d(Gn-1)
Gn

d(Gn)

r(G1,2) r(G2,3) r(Gn-1,n)

�

Figure 4.2: Sequence and timing of graphs

• d(Gi): The desired maximum critical path delay, or the inverse of the

minimum operating frequency of this graph. This may also be specified

at the module level thus d(Gi) = min{d(mj : mj ∈ Gi))}.

• r(Gi,i+1): The maximum time to reconfigure Gi to Gi+1. This

can be included in the maximum total reconfiguration time r(Γ) =
∑n−1

i=1 r(Gi,i+1).

It should be noted that a sequence comprising a single graph is equivalent

to a statically configured application.

4.6 Communications Infrastructure

The output of the DR1 problem is a communications infrastructure. This

actually consists of a set of wiring harnesses and module-infrastructure con-

nectors to support the communications for all the modules in the application.

The low-level communications infrastructure consists of point-to-point

wiring connecting module slots to other slots and to external I/O blocks.

This is implemented using two types of basic routing components, namely

slice macros and wires in the general routing infrastructure of the FPGA.

89

This section describes the communications infrastructure from a high-

level timing perspective, then provides reasons for choosing point-to-point

wiring. Finally, the process of implementing the low-level communications

infrastructure is presented.

4.6.1 Epochs and Periods

As introduced in the high-level problem specification in Section 4.2, it is

best that a single wiring harness supports the communications for the entire

application. However, as doing so may cause area and timing constraints to

be exceeded, a sequence of wiring harnesses may have to be implemented to

provide the connections needed for a single application. It is important to

define the time scales over which wiring harnesses are valid on the device.

An epoch is defined as a span of time within the total run time of

the application for which a particular set of modules is active and

communicating. The active modules and their communication re-

quirements do not vary within an epoch. An epoch thus corresponds

to a configuration of the device.

If an application description is specified as a full communications graph

that is too large to fit onto the target device, the graph is partitioned into

a sequence of smaller subgraphs, each of which do fit onto the device. The

derivation of such a sequence is described in Chapter 6. Another possibility

is that the application might already be modeled as a sequence of n tem-

poral configurations, in which each configuration is a subgraph. An epoch is

analogous to a single communications subgraph in such a sequence.

90

A period is defined as a non-overlapping span of time encompassing

one or more epochs for which a communications infrastructure in

the form of a wiring harness can be built such that it satisfies the

communication requirements of all the epochs it spans.

According to the definitions above the wiring harness has to reconfigured

every time a period ends. As an example, the sequence depicted in Figure 4.3

is divided into two periods containing three epochs each.

ProcessPrepare

G1 G2 G3 G4 G5 G6

Figure 4.3: Epochs and periods

When the modules in G1 are loaded onto the device, the wiring harness

for the first period is also placed in an initial, full configuration of the device.

When the modules in G2 are to be loaded, there is no necessity for the

wiring harness to be reconfigured because it shares the same wiring harness

as G1. This applies to G3 as well.

However, when the modules in G4 are to be loaded, the wiring harness

has to be reconfigured to the one needed for the second period.

91

4.6.2 Motivations for using Point-to-Point Connec-

tions

There are three “obvious” methods to implement a communications infras-

tructure that supports dynamic modular reconfiguration on an FPGA —

point-to-point connections, bus systems, and networks-on-chip (NoC).

This thesis focuses on generating a customized point-to-point wiring har-

ness for a given application specification. There are several important reasons

as to why the decision was made to use point-to-point wiring rather than the

other two methods. These reasons are discussed below.

Delay Overheads

Point-to-point connections have the minimum amount of delay overhead as

compared to the other two methods. The critical path delay of the wiring

only consists of the actual wiring delay and slice macros. Not only do buses

and NoCs also have this delay, but introduce additional overheads as they

require a specific protocol for communication. This introduces protocol, la-

tency, and arbitration overheads. The bus width or network packet size also

limit the data throughput. Finally, packet-switched NoCs cannot guaran-

tee throughput as it is difficult to estimate exactly which routes data will

take through the network as the patterns of intermodule communication are

dynamic.

92

Area Overheads

Due to their fine-grained reprogrammability, FPGA resources implement less

logic than ASICs for the same amount of silicon area. Thus, these resources

are limited and should be maximally utilized for application logic. Point-

to-point connections only consume the wiring resources that are necessary.

Buses require additional logic to perform arbitration and control while NoCs

require logic-heavy routers spread about the device. Modules also have the

overhead of additional logic required to implement the bus or NoC interfaces.

Buses and NoCs also impose a limitation on the amount of communication

resources that are provided. The wiring resources are pre-allocated whether

the application requires them or not. If the application requires less resources

the unnecessary wires consume resources that could be used for application

logic or intramodule wiring. If one module requires more resources or higher

bandwidth, the entire bus system or NoC needs to be expanded to cater for

it. This requires additional resources, and may require different interfaces.

Area and Timing Constraints

Point-to-point connections have the greatest probability of meeting area and

timing constraints of the application due to the lowest possible area usage

and delay overheads. This is because point-to-point connections can be fully

customized to the application rather than enforcing adherence to a particular

protocol and communications infrastructure. If buses or NoCs are used, the

application might not be implementable if the bus system or NoC do not

meet the area and timing constraints. In addition, NoCs cannot guarantee

93

timing constraints unless all the communication patterns are known a priori.

If this is the case, a fully-customized point-to-point infrastructure will still

result in lower overheads.

Protocol

Point-to-point wiring does not enforce the adherence to any particular com-

munications protocol. This allows more applications to be mapped as any

protocol can be implemented, even bus-like or NoC-like ones. This rein-

forces the COMMA principle of allowing off-the-shelf cores to be used rather

than restricting the set of usable cores to those that implement the interface

needed for an alternate approach. Buses and NoCs have differing interface

standards. Wrappers can be implemented to adhere to a protocol, but these

may be difficult or impossible to implement. Modifying pre-existing cores to

adapt to a particular interface is not trivial, and may perhaps be impossible

if internal modifications need to be performed and the HDL is not available.

Even if modification or adaptation were possible, this introduces additional

undesirable area and timing overheads.

Application Knowledge

When the application is known a priori, point-to-point communications are

very well-suited as they can be fully customized, resulting in minimal over-

heads while having the highest probability of meeting area and timing con-

straints. With buses and NoCs the opportunities for customization are less.

With buses this is limited to choosing which bus system to use and the bus-

94

widths. With NoCs a customization is difficult because it may not be possible

to provide timing guarantees.

When applications are not known a priori it may seem difficult to provide

a point-to-point communications infrastructure that supports any type of

dynamic module. Buses and NoCs have the advantage of standard interfaces

where the onus is put on the module designer to adhere to the protocol rather

than the communications infrastructure supporting the needs of the modules.

However, buses and NoCs allow different types of modules by simply pre-

allocating the predicted amount of resources in advance. The system designer

can also equivalently use the COMMA methodology with predicted commu-

nications requirements to generate an optimal point-to-point communications

infrastructure. In this respect, point-to-point wiring can even be fine-tuned

to the expected requirements, rather than simply using what the bus or NoC

designers expect. Ultimately, if a bus system or NoC is required for some

specific reason, the COMMA methodology can still be used to allocate the

wiring required to implement an optimal bus-like or NoC-like infrastructure.

4.6.3 Drawbacks of Point-to-Point Communications

This subsection outlines the drawbacks of using point-to-point communica-

tions, and identifies siuations in which point-to-point communications may

not be applicable.

95

Known Standard Interface

If the target application is known to only use modules that adhere to a specific

standard interface, e.g., the AMBA bus system or a particular network-on-

chip, better results may be obtained by utilizing pre-existing implementations

of that particular infrastructure.

Less Generality

Point-to-point communications are custom-built for the target application.

Thus, the resulting infrastructure may not be general enough to support

modules and interfaces that are not known at design time. However, since

the problem considered in this thesis is DR1, where all the modules and

communications are known a priori, in this case this is not a significant

drawback.

Wire Utilization

Buses and NoCs are shared resources. Assuming the temporal behavior of

modules doesn’t place undue demands on such shared resources, they make

more efficient use of available wire resources.

4.7 Classes of Problems

The main identifying characteristic of DR1 are that the application, its mod-

ules and their communication requirements are known a priori. As this

thesis deals with the problem of generating a communications infrastructure

96

after the partitioning and scheduling stages, the application schedule is also

assumed to be known. That is, we know the exact sequence of module com-

munications graphs that we wish to implement. This section presents the

classes of problems that are applicable to DR1.

The ideal graph sequence for DR1 should be a simple chain in which one

graph follows another until the final graph is reached as shown in Figure 4.4.

G1 G2 G3 G4 G5 G6

Figure 4.4: Standard sequence

Loops such as that in Figure 4.5 may be present in sequences where some

form of iteration is required.

G1 G2 G3

G4

G5 G6

Figure 4.5: Sequences with loops

Significant reconfiguration overheads can occur if a period transition oc-

curs within a loop, e.g., if G3 and G4 of Figure 4.5 were in different periods.

This results in thrashing between wiring harnesses and thus very slow loop

iterations.

Loops can be handled in two obvious ways. The first method is to unroll

all the loops so the sequence will be a single chain such that it resembles the

97

arrangement of Figure 4.4. Bondalapati has examined the mapping of loops

for dynamic reconfiguration [12][13]. Although the approaches were targeted

to hybrid architectures, the mapping techniques involve loop unrolling and

can be applied to applications considered in this thesis. This is effective

provided the exact number of iterations is known at design time.

If the application schedule is input-dependent, the number of iterations

may not be known. An alternate approach can be tried in this case: place

all the graphs in the loop into the same period such that no reconfiguration

is necessary within an iteration. This approach is adopted by partitioning

and scheduling algorithms that handle loops and branches, e.g., [82][9][47].

For example, the graphs G3 and G4 in Figure 4.5 can be targeted to be

in the same period in order to try to ensure that the wiring harness does not

reconfigure during the loop. Several possibilities can emerge from this. To

illustrate this further, a sequence with a larger loop of 3 graphs is shown in

Figure 4.6.

G1 G2 G3 G4 G5 G6

Figure 4.6: Sequences with larger loops

The aim here is to try to place G2, G3 and G4 in the same period. If this

were possible, then the next target should be to try to merge G1 into the

same period as well in order to reduce the initial overhead of reconfiguring the

wiring harness when entering the loop from G1. If this is not possible, G1 will

exist in a period of its own. The same applies for G5 and G6. There is also

98

the possibility that placing G2, G3 and G4 in the same period exceeds timing

and/or area constraints. In this case, the optimization goal should be to try

to ensure that the reconfiguration time between the periods encompassing

G2, G3 and G4 is minimized.

4.7.1 Alternatives

A sequence can include graphs where two or more sequence alternatives can

exist that cannot be resolved at design time, e.g., in Figure 4.7. These can

also be handled by targeting the alternatives to a single period.

G1 G2

G3a

G4 G5 G6

G3b

Figure 4.7: Sequences with alternatives

The system designer should specify a constraint to try to place G2, G3a,

G3b and G4 all in the same period in order to reduce the reconfiguration time

if a “misprediction” occurs. A “misprediction” in this sense may be if G2,

G3a and G4 are placed in the same period and G3b is in a different period.

If the branch to G3b is more commonly taken, then the total reconfiguration

time is higher compared to if G3b were in the same period as G2 and G4.

The system designer has this option to apply the constraints and observe

the effects as compared to allowing the infrastructure generation process to

99

determine the best groupings. See Section 4.7.3 for a further description of

these constraints.

4.7.2 Branching

It is possible that a user input or run time condition results in a branch to

one of two entirely different sequences to be run, as depicted in Figure 4.8.

H264 _Decode

MPEG2_Decode
G1 G2

G3a

G3b

G4a G5a G6a

G4b G5b G6b

Figure 4.8: Branching sequences

In this case, it is best to keep graphs of each branch separate from each

other. A constraint can be applied such that none of the graphs in the

“MPEG2 Decode” sequence is to be placed into the same period as any

graph in the “H264 Decode” sequence. It may be advantageous as well to

consider preventing G2 from being placed into the same period as G3a or G3b

such that each of the branched sequences can be independently optimized.

An alternative is depicted in Figure 4.9, in which the wiring harness for

the first few graphs in each branch is “pre-loaded” to offset the overheads

of continuing execution on the correct branch and to reduce the size of the

periods on either branch path.

100

H264 _Decode

MPEG2_Decode
G1 G2

G3a

G3b

G4a G5a G6a

G4b G5b G6b

Figure 4.9: Preloading

4.7.3 Final Note

The problem classes described above suggest the use two optimization con-

straints to control the formation of application periods and the communica-

tions infrastructure generation process.

Firstly, the specification of a “SamePeriod” constraint can direct the in-

frastructure generator to try to place a specified set of graphs in the same

period. This can help to prevent thrashing in loops.

Secondly, a hard “No-Merge” constraint can be applied to ensure that

certain graphs should not be placed into the same period. This may help to

optimize branching sequences.

As a final note regarding these problem classes, the period specifications

provided in the examples above are suggestions and it is ultimately the task

of the partitioning and scheduling stage to specify the constraints that best

suit an application. This is similar to specifying area and timing constraints

for the synthesis and place-and-route tools in a standard FPGA design flow.

101

If constraints are not specified, the module placement and wire harness

routing stages may produce a less desirable result that satisfies the timing

and area constraints. An example of this is depicted in Figure 4.10. The

latter two periods consist of subgraphs where only half of the subgraphs will

actually be used at any one time, i.e., only the “a” or the “b” branch will

be executed. This is less optimal and involves more reconfigurations than

Figure 4.8 in which the periods are optimized for each branch.

G1 G2

G3a

G3b

G4a G5a G6a

G4b G5b G6b

Figure 4.10: Unconstrained period selection

At the same time, specifying period constraints may also help in directing

the module placement and wire harness routing stages to better produce

solutions that satisfy timing and area constraints. An advantageous side-

effect to this can also be to reduce processing time as less alternatives need

to be considered.

4.8 Detailed Problem Specification

This section formally specifies the input and output parameters of the DR1

problem and is included here for completeness. The rest of the thesis is

102

presented at a higher level, thus the reader may wish to skip this section and

return to it if more detail is desired.

Note: The abbreviations N, E, S, W, NE, NW, SE and SW are used in

the following problem specification as a set of enumerated values referring to

the corresponding compass directions: north, east, south, west, north-east,

north-west, south-east and south-west.

The inputs to the problem are:

• A sequence of communications subgraphs Γ = {G1, G2, · · · , Gn}.

– Each subgraph Gi ∈ Γ = (V,A, P, D). Each subgraph represents

a configuration on the device.

– Each vertex v ∈ V represents a clustered module that is optimized

for the size of a COMMA slot, i.e., one that may be composed of

smaller modules. See Sections 4.4, 6.4 and 8.2.3 for more details

about clustering.

∗ Canonical Form: ({graphnum ∈ (g ∈ N)}, {modnum ∈ (V ∈
N)}). E.g., (2,3) represents Module 3 in Graph G2.

– Each connection c ∈ A the following attributes are assigned:

∗ The source port number s that specifies the port number of

the output module. This port corresponds to the same port

definitions in a VHDL entity or Verilog module although it

should be enumerated.

∗ The destination port number d that specifies the port number

of the input module.

103

∗ The bitwidth b that specifies the number of bits of this con-

nection.

∗ Canonical Form: ({graphnum ∈ (g ∈ N)}, {vsrc ∈ (V ∈
N)}, {psrc ∈ (ports(vsrc) ∈ N)}, {vdst ∈ (V ∈ N)}, {pdst ∈
(ports(vdst) ∈ N)}, {b ∈ N}) E.g., (2,3,1,4,6,8) refers to a

connection in Graph G2 from module 3 (port 1) to module 4

(port 6) that is 8-bits wide.

– The period name P indicates that all graphs with the same period

name should be in the same period. P may be ∅, indicating that

the graph can be in any period.

– The set of distinct graphs D indicates all the graphs that should

not be put into the same period as this graph. If D = ∅ this

indicates that this graph can be in the same period as any other.

If D = {i : 1 ≤ i ≤ n} −P this specifies that this graph can only

be placed in periods with the graphs in P .

• The device layout specified by the following:

– The device and package information, that will provide r the num-

ber of rows of CLBs, c the number of columns of CLBs and all

IOB (external I/O) information (names and locations).

– The channel width cw as the number of CLBs of width for the

center wiring channel, or rings of cw
2

CLBs wide surrounding each

slot.

The outputs of the problem are:

104

• A module placement Pi for each graph Gi where each v ∈ V is given

a placement p(v) = (pr, pc). pr is the row index and pc is the column

index of the module slot where the module v is placed.

• Wiring harness(es), each consisting of:

– Module-Infrastructure Connectors (MICs): The positions, macro

width (a minimum of 2 for the version of the tools used in this

thesis) and number of bits per direction of the slice macros on the

boundaries of each slot.

∗ Canonical Form: ({dir ∈ {NS, EW}}, {NEbits ∈ N},
{SWbits ∈ N}, {span ∈ N}, {(slotc, slotr) ∈ (N0,N0)},
{(border, offset) ∈ ({N,E, S,W},N0)}) e.g. (NS, 3, 2, 2, (0,

1), (N, 2)) is a 3 bit north, 2 bit south macro with a height of

2 implanted on the northern border of the slot (0, 1), at the

third column from the left.

– Wires: These are specified simply by stating the source and desti-

nation module-infrastructure connectors (MICs). If detailed rout-

ing is to be performed for the wiring harness, then each wire will

also include its detailed route. Each connection c in the input

specification will be allocated a set of wires implementing that

connection.

∗ Canonical Form: Given T = {MICs ∪ EIO} (the set of the

union of all MICs and external IOs used in this wiring harness,

each wire is specified as: (src ∈ T, dst ∈ T) where src is the

source MIC/EIO and dst is the destination MIC/EIO. EIOs

105

(external I/Os) are specified as e ∈ N where e is a pad number

listed in the device package and pinout specification table for

a particular device and package.

∗ Canonical form for detailed routes: A detailed route is spec-

ified as a sequence of switchbox hops. Each routing point

on a switch box is known as a Programmable Interconnect

Point (PIP). COMMA uses the Xilinx Design Language PIP

naming terminology database. The Xilinx Design Language

(XDL) is an undocumented text-based format for describing

a circuit mapped onto an FPGA. A detailed route with r hops

is specified in COMMA as:

[(src pip1, dst pip1) ∈ (XDLPips), · · · , (src pipr, dst pipr)].

– PortAlloc: These specify which module ports are connected to

which MICs.

∗ Canonical Form: For each graph Gi and ∀c ∈ A and for each

bit in c, the following must be specified:

({src mic ∈ MICs,

src dir ∈ {N,S, E, W},
src micbit ∈ N0}),
({dst mic ∈ MICs,

dst dir ∈ {N,S, E,W},
dst micbit ∈ N0}).

• The module placement and wiring harness(es) will be used to derive

the following:

106

– RDPs: Reconfigurable Data Ports implemented as wrappers

around each module v ∈ V for each graph Gi. These consist

of:

∗ Straight connections from module I/O bit to MIC bits if

one module I/O bit is mapped to exactly one MIC bit.

∗ When a module exists in the same location in different config-

urations (different epochs) but with the same wiring harness

(same period), the following may be added:

· Multiplexers from several module output bits to a single

MIC bit. When two or more output bits of a module share

the same physical MIC bit in different configurations, a

multiplexer is placed to direct the correct module output

bit to the MIC bit. The multiplexer selection inputs are

changed as part of the reconfiguration process between

epochs.

· Multiplexers from several MIC bits to a single module

input bit. When two or more MIC bits feed data into

the same module input bit in different configurations, a

multiplexer is placed to direct the MIC bit to the correct

module input bit. Again, the multiplexer selection inputs

are changed as part of the reconfiguration process.

107

Chapter 5

Assessing the Fixed Wiring

Harness

5.1 Introduction

The concept of using a fixed wiring harness to implement a communications

infrastructure for modular FPGA reconfiguration was introduced in the pre-

vious chapter. It was proposed that this wiring harness is to be laid out within

a regular module placement structure. Since traditional FPGA design flows

encourage the compaction of logic to minimize routing delays, imposing this

regular wiring structure may incur some critical path delay overheads. This

chapter describes an analysis performed to assess the penalties that are in-

curred by such a harness. The contents of this chapter were presented at the

2006 IEEE International Conference of Field-Programmable Technology [51].

108

5.2 Experimental Method

The aim of this analysis is to assess the critical path delay overheads of

using a regular module and wiring layout relative to those incurred when

the placer is not constrained. The experiments performed involved mapping

synthetic communications graphs generated with varying parameters (such

as communications density and number of modules) to a Virtex-4 FPGA.

The placement of the modules and wiring were constrained according to

COMMA principles (see Chapter 3) and the device model used in this thesis

(see Chapter 4). Each graph mapped to the device could be viewed as a

single epoch or one of the representative graphs in a period, since all graphs

in a period use the one wiring harness. This section defines the problem of

mapping a single graph to the device and details the experimental method

used.

5.2.1 Problem Definition

The inputs to the problem are a communications graph and the device layout

as shown in Figure 5.1. Each node in the communications graph represents a

module or external I/O and each arc an intermodule or external connection.

Arcs can be weighted according to the bitwidth of the connection. The

device layout is specified using c and r as the number of CLB columns and

rows in the device, and the channel width cw, representing the number of

CLB columns/rows occupied by the routing channel surrounding the module

slots. This is the same layout as specified in Section 4.4, reproduced here for

convenience.

109

Slot X0Y3 (3) Slot X1Y3 (7)

Slot X0Y2 (2) Slot X1Y2 (6)

Slot X0Y1 (1) Slot X1Y1 (5)

Slot X0Y0 (0) Slot X1Y0 (4)

c/2 c/2
cw a

1
6

cw
1

6
1

6
1

6
cw

cw

r

c

cw

a

a

1
6

1
6

2

cw

2

cw

2

cw

2

cw

cw

2cw

2cw

Figure 5.1: Device model layout

110

The output is a placement of the modules into slots such that:

• The wire availability given by the device layout and wire resource model

is not exceeded.

• The distances between communicating modules are minimized in order

to minimize critical path delay.

• The maximum width of any cut in wiring is minimized so as to reduce

wiring channel congestion and to assist in reducing the critical path

delay. Reducing congestion reduces the critical path delay as shorter

wire segments can be avoided, thus reducing the number of switchbox

hops necessary to implement connections.

The output is represented as a mapping from modules to slots, and a

mapping from each arc in the aggregated communications graph to a set of

wire resources.

5.2.2 Implementation Flow

The implementation flow for the experiments performed is depicted in Fig-

ure 5.2.

The first step uses an integer linear program (ILP) formulation of a prob-

lem instance to assign modules to slots while trying to minimize the total

channel cutwidth and wire lengths using approximations of channel capacity.

The output of this process is a heuristically-determined allocation of modules

to slots, and indications of where slice macros are best placed.

111

Module
Placement

(ILP)

Low-Level
Placement

and Routing
(PAR)

Device Layout
Communications

Graph

Initial
Module

Placement

Placed and
Routed

Infrastructure

Evaluate
Timing (PAR)

Figure 5.2: Experimental method flow

112

The next step, routing, involves selecting a suitable set of wires to imple-

ment the connections between the placed modules. At this point, the slice

macros that are on the module boundaries will be placed. The output of this

process is a placed and routed wiring harness in circuit description format.

Xilinx uses the Native Circuit Description (NCD) and Xilinx Design Lan-

guage (XDL) formats. Both of these formats are not publicly documented.

Finally, the critical path delay of the wiring harness is determined. This is

obtained from the detailed timing results gathered from the place-and-route

tool.

Each of the steps in this flow are detailed in the following subsections

below.

5.2.3 Module Placement

The placement of the modules is performed by an ILP applied twice as sug-

gested by Fekete et al. in [26]. The goal of the first ILP is to minimize

the maximum number B of wires interconnecting nonadjacent slots crossing

each horizontal dashed line in Figure 5.1. In the second step, a placement is

sought that minimizes the maximum wire distance subject to the constraint

that no more than B wires in total occupy the vertical channels between

adjacent rows of module slots.

A heuristic module placement is thus obtained without regard to the

exact wiring resources present within the channels. The subsequent routing

phase of the implementation is therefore relied upon to optimize the choice

of wiring resources to implement each connection.

113

The channel width bound B determined during the first step is used

to verify that the aggregated communications graph can be mapped to the

device given the wiring layout constraint cw. Alternatively, the magnitude

of cw can be fixed following this step, but that may involve repartitioning

and re-clustering the modules higher up in the flow.

There are several differences between the formulation adopted here and

that of [26], which is targetted at a one-dimensional array of slots intercon-

nected by a bus. With reference to Figure 5.1, wires in this model leave from

or arrive at the midpoints along the edges of module boundaries. In con-

trast to [26], external I/O is also modeled using IOB pin locations obtained

from Xilinx package files. Connections to vertically or horizontally adjacent

modules are not included in the cost of a solution as these are assumed to

make use of resources directly spanning the gap between the modules. If

these are vertically adjacent, they do not therefore contribute to the wires

running along the vertical channels on either side of, or in the center of the

device. On the other hand, if they are horizontally adjacent, then these wires

use resources that run orthogonally to the vertical wires, which are in short

supply. The distance between nonadjacent slots (Xi, Yj) and (Xk, Yl) is taken

to be cw+16 |l − j| irrespective of the values for i and k. These distances are

then weighted by the arc weights. Each connection to an IOB is measured

by the Manhattan distance between the center of each slot and the actual

IOB grid location.

This placement produces two outputs that are essential for the routing

stage to be performed. The first output is the set of slot-module allocations.

In performing the placement the heuristic also determines which border (i.e.,

114

north, east, south or west of the slot) each wire should exit from and enter

into. This second output, an exit and entry border per wire, is used to

determine the slice macro positions during routing.

5.2.4 Routing

The flowchart of Figure 5.3 depicts the flow of processes in the routing phase,

commencing with the analysis of the communications graph and module

placement and finishing with circuit implementation. In relation to Fig-

ure 3.10, all these steps are carried out within the “Partial Reconfiguration

Tool Flow” process. See Chapter 9 for a detailed description of the low-level

processes in the methodology. The steps are discussed in more detail below.

Slice Macro Generation and Placement

In this step, custom slice macros are generated and placed on the slot bound-

aries based on the connections existing between the module slots and the

wiring harness. These macros are akin to those used in the Early Access

Partial Reconfiguration flow [95] but with several additional features. First,

they may be of unlimited width (macros in [95] can only span 1 or 3 CLBs).

They may also be vertical (to take advantage of vertically-adjacent slots),

or horizontal, and may be of any combination of 1-8 northbound/eastbound

and 1-8 southbound/westbound bits.

Macro placement is performed in three steps. First, a suitable edge for

placing the slice macro is chosen based on the approximation obtained from

the placement stage. When the placement stage estimates the wire length

115

1: Slice
Macro

Generation &
Placement

2a : Custom
Router

Communications
Graph

Module Placement
(ILP Output)

Slice Macros and
User Constraint

Files

2b : FPGA
Editor

Scripted
Routing

2c : ISE
Translate ,

Map & PAR

XDL Netlist

Hard Macro
(NMC)

3: Hard
Macro

Conversion

Xilinx Circuit
(NCD)

4: ISE
Integration

Reconfigurable
Modules

Figure 5.3: Steps to routing the wiring harness

the initial direction of the wire is the assumed exit boundary, i.e., north, east,

south or west. If there is still room on the assumed boundary for the slice

macro to be placed, the slice macro will be placed there. Otherwise, the next

best boundary based on the distance from the sink of the wire is chosen.

Second, an approximate location on the edge is chosen. If the communi-

cating slots are adjacent, then it is located towards the middle of the edge,

otherwise it is located towards the corner closest to its target.

Finally, the macro widths are determined by their approximate locations.

To minimize interference with other macros, macros located towards the

middle of an edge will have larger widths, whereas the widths of macros

116

placed closer towards the slot corners taper off. This concept is depicted in

Figure 5.4.

A limit must be imposed on the number of slice macros that can be placed

around a slot. The available slot area for module logic is thus decreased by

the number of slices taken up by slice macros within the slot.

Figure 5.4: Macro placement

Wire Placement

The flowchart in Figure 5.3 refers to three alternative methods for selecting

and placing the wires to create a wiring harness. Method 2a involves using

a custom router to determine the best selection of wires, then using a wiring

database and tool package such as COMMAPath (a tool that is currently

being developed) to place the wires and to configure the harness as a hard

macro. The efficacy of this method is solely dependent upon the quality of

the custom routing algorithm.

117

Method 2b involves automatically generating an FPGA editor script to

route each individual pair of slice macro pins. This is performed by the

“route” command in the FPGA editor of the Xilinx ISE toolset. This com-

mand selects the best route based on the minimum Manhattan distance, and

is a good balance between full custom routing and routing that is completely

automated. However, this may not scale well as the resulting overall delay

may not be as good as when an iterative routing algorithm is used.

Method 2c uses the ISE place-and-route tool with an automatically-

generated HDL wiring harness using slice macro locations as specified in

the user constraints file. Using the EAPR tool flow, this method does not

prevent wires from passing through slots, but this only sacrifices some routing

resources in the slots and limits module relocation. Module relocation is not

supported by Xilinx nor has the research community developed tools for the

Virtex-4 family to relocate modules by modifying bitstreams. This method

guarantees that the delay of the wiring harness is as good as any Xilinx

PAR output without having to design and use a custom router. However,

up until and including the EAPR implementation for ISE 8.2i it was also

possible to enforce a constraint that restricted wires from passing through

the slots. Given the option to enforce this constraint, a system designer can

evaluate the results obtained with and without wires passing through slots

and choose the one that produces the best results, e.g., for area, timing, or

reconfiguration delay.

118

Hard Macro Conversion and ISE Integration

The generated wiring harness from the wire placement step is integrated

into ISE as a hard macro. If Method 2a is used for wire placement, the

XDL description is converted to a hard macro (using “xdl -xdl2ncd”). If

Method 2b is used, the FPGA editor circuit is saved as a hard macro. This

is integrated into ISE as a Relatively Placed Macro (RPM) placed in the

“base” module together with the modules. If Method 2c is used, the circuit

does not need to be converted to a hard macro as it forms part of the base

design in the EAPR tool flow [95]. See Chapter 9 for a description of the

integration of this process into the EAPR tool flow.

5.3 Results

Placing modules according to COMMA principles may result in long and

unavoidable paths to IOBs and other modules, whereas running a standard

ISE flow to generate a flattened netlist allows for logic replication and freedom

of placement that leads to shorter paths.

In order to assess the potential overhead of the COMMA methodology

an automated testbench was created. This was targeted to the Virtex-4 LX-

15 with 8 slots organized as in Figure 5.1 to place-and-route synthetic task

graphs with the following parameters:

• Number of Modules: 2, 4, 6 and 8.

• Number of Arcs: 10%, 20%, 40% and 80% of the full module inter-

connection pattern (n× (n− 1) directed edges (arcs)).

119

• External I/O: 25%, 50%, 75% and 100% of modules having an exter-

nal input from IOBs, and likewise for external outputs.

• Arc Weights: Arc weights were randomly chosen from a uniform

distribution of the set { 2, 4, 8, 16 }

The channel width was not varied in these experiments because the ILP

method attempts to minimize the cut width of the wires. If a design does not

fit into the channel width, it is too complex to be mapped onto the device

and it is rejected. On the other hand, reducing the channel width may lead

to higher congestion, and thus longer critical path delays.

A co-located set of IOBs was chosen for each external connection, but

the sets were randomly distributed about the IOB space. 10 graphs were

generated per parameter combination and the results were averaged. With-

out considering the parameter combinations that did not generate feasible

graphs (e.g., 10% arcs for 2 modules, which implies that there should be

“0.2” edges), over 2,500 graph implementations were assessed.

Note: Comparisons are made in this section between the results of using

the standard ISE tool flow (henceforth referred to as “ISE”) and using the

COMMA flow (henceforth referred to as “COMMA”). In the standard ISE

tool flow the communications graphs are implemented as flattened netlists,

i.e., without area constraints. In the COMMA tool flow the modules and

slice macros are placed according to the COMMA approach as described in

Section 5.2.

As per Section 5.2.3, each task graph was processed by the ILP with an

exhaustive solver built in-house. The graph and placement was then input to

120

a VHDL generator to generate and place the slice macros as per Section 5.2.4,

and to produce VHDL code corresponding to the module structure with thin

modules composed of a bank of XOR gates. The VHDL code was then

synthesized and placed-and-routed using method 2c. Method 2c was chosen

as a fair comparison since the ISE PAR tool is used for both the flattened

and the COMMA implementations. The maximum pin-to-pin delay, which

corresponds to the maximum delay of the wiring harness and the reciprocal

of the maximum circuit operating frequency was then obtained for both ISE

and COMMA.

5.3.1 Critical Path Delay

A noticeable feature of the raw data is that ISE usually obtained a lower

critical path delay, but that sometimes COMMA did better. This is to be

expected with heuristic placement and routing tools, but makes it difficult to

find reliable predictive indicators of relative performance. It was found that

the best predictive indicator was the total number of wires (interconnection

density) and thus the results are generally presented relative to this metric.

For the range of module numbers explored, Figure 5.5 illustrates the av-

erage increase in the critical path delay of COMMA relative to ISE with

respect to percentage internal connectivity between the modules. The plots

suggest that the overheads when mapping graphs to the COMMA device

layout, as compared to being unconstrained, are relatively high for low in-

terconnectivity and decrease as interconnectivity increases.

Figure 5.6 plots contour maps of the average critical path delay for both

ISE and COMMA as the number of wires in the graph and the COMMA

121

Figure 5.5: COMMA vs ISE critical path slowdown

average wire length varied. The contour plots were obtained by averaging the

critical path delays for all graphs lying within half a grid interval of each grid

intersection and setting the intersection point to that value. For example, the

intersection point at 210 wires and an average wire length of 30 contains the

averaged critical path delay for graphs with 175 to 245 wires and an average

wire length of 25 to 35. The white region in the top-right half of each plot

corresponds to a region for which data was not obtained. The contour maps

indicate that the peak delay in both cases occurs for an average wire length

of 30 ± 5 CLBs and 490 ± 35 wires (5.134 ns average critical path delay for

ISE vs 5.174 ns for COMMA – < 1% overhead). The largest difference in

delays was found at 40± 5 CLBs and 350± 35 wires, where the average ISE

delay of 3.344 ns compared with 4.651 ns for COMMA, i.e., an overhead of

39%. COMMA performed best at 20 ± 5 CLBs and 490 ± 35 wires, where

ISE incurs a 4.132 ns average delay and COMMA a 3.856 ns average delay,

122

i.e., 7% improvement over ISE. Averaging the overhead over the regions of

the contour map the data was obtained for, an average slowdown of 12.5%

for COMMA was determined. This is a remarkably good result considering

the benefit of the COMMA approach is that modules are easily replaced,

whereas in ISE module logic is distributed by virtue of the flattening of the

netlist.

(a) ISE critical path delays (ns) (b) COMMA critical path delays (ns)

Figure 5.6: Critical path delay contours for ISE & COMMA.

The maps also indicate that the COMMA wire delays increase more grad-

ually than those obtained with ISE as the interconnection density was in-

creased. This explains the relative improvement with higher interconnectiv-

ity observed in Figure 5.5. The reason for ISE’s generally better performance

is due to ISE distributing the module logic over the entire device and placing

slice macros close to IOBs. On the other hand, COMMA is constrained to

place slice macros at module boundaries and may need to connect these to

distant IOBs. While COMMA has relatively fixed overheads due to its struc-

123

tural constraints, ISE finds it increasingly difficult to replicate logic, find good

placements and route around their locations as the interconnection density

rises. As circuits get dense, the COMMA overheads are absorbed.

The overheads from laying out the modules using the COMMA methodol-

ogy are due to two reasons. First, the randomly distributed IOB sets for each

external connection occasionally forced COMMA to implement long wiring

paths irrespective of its slot location while ISE was free to place module pins

at any location within the device, and in particular, close to the connecting

IOBs. Figure 5.7 illustrates such an example. Figure 5.7(a) shows the ISE

circuit and Figure 5.7(b) highlights the critical path for ISE. Likewise, Fig-

ure 5.7(c) shows the COMMA circuit and Figure 5.7(d) the critical path for

COMMA. The overhead here was significant (2.235 ns critical path delay for

ISE vs 4.992 ns for COMMA).

As shown in Figure 5.7(d), the longest path for COMMA connects a

module at slot X1Y0 to an IOB at the top left of the device. This is a

graph with 8 modules, low internal connectivity (10%) and high total external

connectivity1 (150%). All the slots were used and the module had no choice

but to be placed at slot X1, Y0.

The second reason for the overheads is that COMMA was unduly pe-

nalized by the choice of module logic, which was comprised of XOR gates

connecting inputs to outputs. For such simple modules, ISE was relatively

free to use the entire device to replicate logic, to place it where profitable, and

to route the required connections. More complex module logic would have

1The total external connectivity refers to the sum of the percentages of modules that
receive external inputs and produce external outputs. External input or output connec-
tivity ranges from 25% to 100%, thus total external connectivity ranges between 50% and
200%.

124

(a) ISE Circuit (b) ISE Critical Path Highlighted

(c) COMMA Circuit (d) COMMA Critical Path Highlighted

Figure 5.7: Circuits and highlighted critical paths where COMMA exhib-
ited high overhead

125

reduced ISE’s opportunities to optimize placement and replicate logic by

limiting the availability of resources. ISE’s performance relative to COMMA

would thus diminish in practice.

Figure 5.8 depicts an example where the COMMA layout (Figure 5.8(c))

was significantly better (5.243 ns delay for ISE vs 3.339 ns for COMMA). The

longest path in the COMMA circuit was again an external I/O connection

(this time to a middle I/O bank) and that for the ISE circuit was again a

module-to-module connection. In this case, which illustrates a design com-

prised of 8 modules with 80% internal connectivity and total external con-

nectivity of 125%, the imposition of the COMMA structure allowed longer

wires to be used to good effect, whereas ISE needed to employ several shorter

wires to connect heuristically placed modules.

In conclusion, the longest path for COMMA, given sufficient channel

width, is the sum of the full height and width of the FPGA. This delay

may be lower than a local minimum found in ISE, and is usually due to

the fixed locations of IOBs or relative module placements. This overhead

should become insignificant as routing algorithms struggle to find shorter

paths when the number of nets increase and opportunities for logic replication

are diminished.

Of primary concern are the implications of the above as the device size

scales. With the organization of Figure 5.1, the slot sizes grow in width as

larger devices are considered. This means more logic can be packed into a

single module, thereby reducing intermodule communication. Larger devices

also offer a greater number of configuration “pages” and thus more slots.

Larger applications with more modules and a greater number of intermodule

126

(a) ISE Circuit (b) ISE Critical Path Highlighted

(c) COMMA Circuit (d) COMMA Critical Path Highlighted

Figure 5.8: Circuits and highlighted critical paths where COMMA sur-
passed ISE

127

wires can thus be accommodated. The results suggest COMMA will perform

well under such conditions. There may be longer paths to external IOBs

leading to higher overheads, but these may be mitigated by co-locating a

module’s external connections when the designer is free to do so, and by try-

ing to pack modules with closely located IOBs into the same slot. Alternative

slot/channel organizations may also help. The additional resource availabil-

ity provides more opportunities for ISE to replicate and place logic in good

locations, while longer wiring paths in COMMA will lead to greater wire

delays, but this effect could be mitigated with suitable buffering of COMMA

interconnections.

5.3.2 Design Time

The time taken to implement the circuit for each graph was also examined.

The execution time to solve the ILP was negligible (below a second) for

the relatively small 8-module examples. Instead, the time recorded was to

place the slice macros and module logic and to route the interconnections

when these were unconstrained, compared to routing the interconnections in

the COMMA design, for which the slice macro and module locations were

determined by the ILP. Figure 5.9 plots the design time of the PAR tool

against the number of wires in each design. It can be seen that ISE takes

far longer to complete the design since it has many choices for placing the

slice macros which have already been placed by COMMA. As observed from

the PAR reports, the bimodal nature of the plot was due to the algorithm

entering additional routing phases when it fails some stage. This is a common

feature of iterative routing algorithms [61].

128

Figure 5.9: ISE PAR timing with and without COMMA constraints

5.4 Conclusions

This chapter described experiments to analyze the impact on critical path de-

lay of using a regular routing structure as imposed by the COMMA method-

ology. The experimental method was described, and methods for routing a

wiring harness were introduced.

An additional critical path delay was observed that is significant at low

utilization and decreases as module and interconnection densities rise. These

overheads are expected to diminish when realistic module logic is used. There

is also significant PAR speedup due to the constrained placement of mod-

ule logic and slice macros. Similar benefits should be obtained by using

the COMMA principles of focusing on the independent implementation of

individual modules rather than on monolithic flattened netlists. Further ar-

chitectural exploration is required to assess how performance scales to larger

129

devices. This is described in Chapter 8 with the assessment of the method

to implement dynamism.

130

Chapter 6

Wiring Harness Generation for

Module-based Dynamic

Reconfiguration

6.1 Introduction

So as to minimize reconfiguration overheads, it is desirable to have a single

wiring harness supporting all the communications for a particular applica-

tion as the wiring never needs to be reconfigured.1 However, this may be

infeasible as implementing such a harness may exceed area and/or timing

1The only case where having multiple harnesses might result in lower reconfiguration
overheads is when the placement of the modules with multiple harnesses results in less
modules being reconfigured, and the savings in reconfiguration overhead exceed that of
reconfiguring the wiring harness. However, this is unlikely for two reasons. First, the wire
harness takes up a significant amount of area on the device. Second, having a single wiring
harness implies that modules of the same type tend to be placed in the same slots in order
to maximize reuse of wires. Thus, it is generally more desirable to have a single wiring
harness.

131

constraints. Instead, an application may require several wiring harnesses

that are reconfigured at certain stages in the execution.

This chapter presents a method to derive a set of wiring harnesses for a

given DR1 application that attempts to minimize the total reconfiguration

delay. A technique known as graph merging is described, which merges subse-

quences of communications subgraphs in an application schedule into periods.

A single wiring harness is implemented for each period. This harness sup-

ports all the communications for the subgraphs within it. The optimization

goal of subsequence merging is to reduce the total amount of reconfiguration

delay. The goal is pursued through judicious module placement and by incre-

mentally building wiring harnesses that satisfy area and timing constraints.

Two subprocesses of graph merging are described. The first is the merg-

ing of two subgraphs, which merges nodes in two subgraphs to reduce the

reconfiguration delay and total communications bandwidth required. The

second is subgraph mapping, which allocates slots to modules and estimates

the critical path and reconfiguration delay of a subgraph.

A case study of an optical flow computation is presented to assess the

method. The experimental results show that reconfiguration times are sig-

nificantly reduced.

The method and results in this chapter were presented at the 2007 IEEE

International Conference of Field Programmable Logic and Applications [52].

132

6.2 Communications Infrastructure Genera-

tion Flow

A simplified depiction of the complete tool flow introduced in Section 3.7 is

shown in Figure 6.1. The first process in the flow involves obtaining device

information (i.e. CLB and IOB grid structure etc.) and user-supplied pa-

rameters (e.g. IOB assignments, timing requirements etc.) to create a con-

figuration set containing device- and application-specific parameters. This

is followed by the generation of the communications infrastructure for the

application, which includes one or more wiring harnesses. Each module is

then wrapped in a lightweight or weightless interface to map its ports to

specific wires in its wiring harness. The modules and harnesses are then

implemented using a toolset such as the Xilinx Early-Access Partial Recon-

figuration Toolkit [95].

The “Infrastructure Generation” process consists of several algorithmic

steps as depicted in Figure 6.2. Figure 6.2 is a detailed depiction of the dashed

area in Figure 6.1. The inputs to the infrastructure generation process are

an application specified as a communications graph and the configuration set

from the “Configurator” process. The outputs are the low-level details for

implementing the wiring harnesses and module wrappers, which are then to

be fed into the “Module Wrapping” process. Each of the steps in infrastruc-

ture generation will be described in detail in the following sections of this

chapter.

The flow goes through a series of stages, each of which is represented

as a rectangle (process symbol) in Figure 6.2. The stages are intended to

133

Configurator

Infrastructure
Generation

Module
Wrapping

Chip and
Communications

Configuration

Partial
Reconfig .
Tool Flow

(EAPR)

Communications
Infrastructure

Module and
Wiring Harness

Bitstreams
(Partial & Full)

Device Information
and User -Supplied

Parameters

Figure 6.1: COMMA design flow (simplified)

be executed iteratively. If one stage does not produce favorable results, the

stage before that should be re-run with different parameters. For example, if

the graph merging stage does not produce graphs that meet area and timing

constraints, the scheduling stage must be re-run with different optimization

targets, e.g., smaller partitions.

6.3 Deriving the Communications Graph

The COMMA methodology advocates specifying an application as a com-

munications graph. The communications graph should be derived through

134

Full
Comms.
Graph

Module
Clustering

Aggregated
Communica-
tions Graph

Scheduling

Sequence of
Aggregated

Comms. GraphsGraph Merging

Merged
Graphs

(to module
wrapping)

Chip and
Comms.

Configuration

Implementation &
Bitstream

Generation Details

(from
configurator)

Figure 6.2: Communications infrastructure generation flow

the natural partitioning of an application into functional modules. For ex-

ample, a JPEG application may have DCT and Huffman encoder modules.

A communications graph is similar to a task graph where each task node is

a module and each edge represents communications between the modules.

However, a communications graph also contains physical details about the

tasks and inter-task communications. An example is shown in Figure 6.3.

Each module has attributes associated with it indicating its approximate

size in terms of the target device resources. In Figure 6.3 these are specified

by three values “x/y/z” where x is the logic cell count, y is the arithmetic

135

unit or DSP block count and z is the on-chip ram block count that refer to

Virtex-4 resources. It is not necessary that these specific types of resource

quantifiers are used. Rather, it is important to note that there can be more

than one type of resource quantifier. Each edge represents a communications

link between two modules and has three attributes: its bitwidth, the output

port number of the source module, and the input port number of the desti-

nation module. External I/Os can also be represented, depicted as rounded

rectangles, with the specific pad numbers or without. The “X” port number

is used in Figure 6.3 to indicate a connection to external I/O blocks.

A
17/0/1

B
39/1/0

C
82/0/0

16 /1/1

8/2/1

32 /2/3

8/2/4

D
28/0/1

E
73/0/0

12 /1/2

PAD 121 :PAD 123
/PAD 22 :PAD 268/X/3

External I /O

16 /3/X

Figure 6.3: A sample communications graph

In this work it is assumed that the full bandwidth of each link may be

required each clock cycle. This implies that the communications patterns are

not specified and thus communication can occur on any link at any time.

136

6.4 Module Clustering

The first step in the infrastructure generation process is to aggregate or split

the modules in the full communications graph such that the logic size of each

node in the graph fits into the size of the slots chosen by the designer.

The optimization goals in module clustering are as follows:

1. Each slot accommodates as much logic as possible to reduce the number

of configurations necessary to implement the entire application.

2. The intermodule communication bandwidth is minimized by clustering

modules with wide connecting edges into the same slot and minimizing

cut width.

3. The modules aggregated into each slot contain/absorb as much com-

munication as possible.

Clauses 2 and 3 imply that this is a mincut/maxflow problem of partition-

ing graphs. The additional requirement of clause 1 indicates the partitioning

must be constrained by the partition sizes.

If an application is specified in terms of HDL descriptions, it is gener-

ally regarded that synthesizing the modules to a flattened netlist rather than

maintaining the modular hierarchy and synthesizing each module indepen-

dently will result in a more efficient implementation in terms of area and

delay. Since each aggregated module is flattened, it is assumed that aggre-

gating any two or more modules will result in a resource requirement of less

than or equal the sum of their individual resource requirements. That is, if

r(m) is the resource requirement of module m, then:

137

r(m1,m2, · · · ,mN) ≤
N∑

i=1

r(mi)

There are many approaches in related domains that can be applied to

this problem, including the clustering substep in multiprocessor task assign-

ment [72], and multilevel partitioning algorithms such as METIS [45], which

balances the partition sizes according to the combined logic size in each par-

tition. METIS also performs multi-constraint partitioning, i.e., each vertex

can have multiple weights. This is especially useful as the specification of

application graphs in COMMA (see Section 6.3) allows multiple resource

quantifiers in each module. It is proposed that such approaches be used to

perform this step.

6.5 Scheduling

The output of the module fitting and clustering steps is a communications

graph with a similar format to the original communications graph. The

main difference with the graph’s original graph specification (as described

in Section 6.3) is that the resources required for each node are less than or

equal to the available resources in each slot because the module clustering

step aggregates or splits the modules into the given slot sizes. Each node can

thus contain a collection of aggregated and/or split modules. Without loss

of generality, it is assumed that this graph may be too large to fit onto the

target device. The graph is therefore partitioned into a schedule of subgraphs,

each of which must contain no more nodes than the total number of slots

available on the device.

138

Henceforth the term subgraph will be used to indicate a partition of a

full communications graph containing no more nodes than there are slots

available in the target device.

Figure 6.4 depicts a schedule of the communications graph from Fig-

ure 6.3. In this example, each box represents one of the temporal partitions

of the full communications graph the application has been divided into. The

sequence of partitions corresponds to the sequence of configurations that are

to be loaded onto the device. Each partition comprises a smaller graph that

captures the communications between the modules needed while the corre-

sponding configuration is active.

Note that module B appears in the first two subgraphs. The appearance of

the same module name in different subgraphs indicates that the logic required

to implement that module is the same in each subgraph. However, in this

case, module B seems to present a different interface in the two subgraphs.

This is because a module only needs to present the subset of its interface

required in each subgraph. In Figure 6.3, module B is connected to both

modules A and C. After scheduling, only module A is present in Subgraph

1, thus only the connections between modules A and B are shown, and in

Subgraph 2 only module C is present thus only the connections between

modules C and B are shown. The RDP wrapper for module B will direct the

ports to their appropriate slice macros. This is the result of the partitioning

performed in this scheduling stage and can represent the following behavior:

1. Module B goes through two distinct stages of execution in Subgraph

1 and Subgraph 2. For example, Module B may be accepting some

data from Module A in Subgraph 1 and processing it. In Subgraph

139

A

B

16 /1/1
8/2/4

Ext I /O

8/X/3

Ext I/O

D
E

12 /1/2

C 16 /3/X

C

B

8/2/132 /2/3

Figure 6.4: An example of a scheduled graph

2, Module C consumes the processed data from Module B and also

provides some feedback, e.g., a checksum value.

2. Since graph scheduling is performed on a clustered graph, Module B

may be an aggregation of two different modules, say B1 and B2 that

were presented in the original full communications graph. In Figure 6.4,

B1 is being executed in Subgraph 1 and completes its run. Thereafter

the device is reconfigured to Subgraph 2 when B2 is executed.

140

Other application behavior is also possible. It is important to note that

in any case the logic to implement Module B remains the same whichever

subgraph Module B is found in.

In this thesis the communications graph shows data dependency assumed

by Purna et al., as their algorithm is used in this thesis for scheduling. This

enables the scheduler to partition the graph into temporally-correct parti-

tions. In the example in Figure 6.3, it is assumed that Module A completes

its task, producing data for Module B to consume. Module A is no longer

required after Module B consumes its data. In a different scenario, if Mod-

ule A is active at some point after Module B has completed execution, then

another instance of Module A will be present in the full communications

graph.

6.5.1 Loops

It was noted in Sections 2.2.1 and 4.7 that loops may cause undesirable effects

such as configuration thrashing. Thrashing refers to the successive loading of

two or more configurations repeatedly and may arise when each configuration

contains part of a single loop. Thus, this approach is best suited to DAGs,

or cyclic graphs in which the cycles do not span partitions.

This step is implemented using traditional partitioning and scheduling

algorithms such as those identified in Section 2.2.2 and 4.7. To prevent

thrashing, the chosen algorithm should contain any cycles in the application’s

communication graph within individual partitions or minimize the number

of partitions that contain a single loop.

141

6.6 Graph Merging

As explained in the previous section, the output of the scheduling step is

a sequence of subgraphs. Viewed at the top level, without the individual

modules in each subgraph, the resulting schedule can be depicted as a linear

dependency graph as shown in Figure 6.5. Each node in the schedule is

a subgraph, which has a constraint d(Gi) specifying the target maximum

critical path delay associated with it (see Section 4.5). The edges between the

subgraph indicate temporal dependency, i.e., subgraph Gi is reconfigured to

Gi+1. The weight r(Gi,i+1) indicates the maximum target delay to reconfigure

the modules and, if necessary, the wiring harness, between Gi and Gi+1. Both

the critical path and reconfiguration delay constraints are optional.

G1

d(G1)
G2

d(G2)
G3

d(G3)
Gn-1

d(Gn-1)
Gn

d(Gn)

r(G1,2) r(G2,3) r(Gn-1,n)

�

Figure 6.5: Another view of a scheduled graph

Graph merging aims to merge contiguous subsequences from the sched-

uled graph such that for each merged subsequence a fixed harness can be built

that supports the communications for all subgraphs in the subsequence. This

attempts to reuse previously formed connections and to make use of spare

wiring capacity to reduce the overall cost of reconfiguring the wiring at ap-

plication run time. The reconfiguration delay of a sequence of merged graphs

142

can then be split into two parts: the time to reconfigure individual modules,

and the time to reconfigure the wiring harness when it is necessary to do so.

The goals of graph merging are twofold. First, the total reconfiguration

delay of the application sequence should be minimized by selecting appropri-

ate contiguous subsequences to merge. Second, the module-slot allocations

should be judiciously determined such that the need to reconfigure modules

between configurations is minimized. Alternatively, this second objective can

be expressed as the goal to maximize the number of modules of the same type

placed in the same slot in adjacent configurations.

The critical path delay of each resulting wiring harness must not exceed

the minimum d(Gi) for the graphs of the corresponding subsequence.

6.6.1 Overview of Graph Merging

An overview of graph merging is depicted in Figure 6.6. The main process

is known as “subsequence merging”, which is comprised of two subprocesses:

“merge two subgraphs” and “map subgraph”.

The “subsequence merging” process takes the entire sequence of sub-

graphs as its input. This sequence is produced from the scheduling stage of

the design flow. It then groups subgraphs in the application sequence into

periods, each of which has a single wiring harness that satisfies the commu-

nications requirements of all the subgraphs in the period.

This is done by iteratively choosing two (merged) subgraphs to merge

together into a single (merged) subgraph, and then determining if the wiring

143

Subsequence
Merging

Schedule of
Subgraphs

Merged Schedule
of Subgraphs

Merge
Two

Subgraphs

Two Subgraphs

Pick Two
Subgraphs

Merged Subgraph

Map
Subgraph

Critical Path and
Reconfiguration

Delay

Keep Merged
Subgraph

Break Grouping or
Consider Different

Graphs

Meets
Constraints ?

Yes No

Section 6.6.2

Section 6.6.3

Section 6.6.4

Section 6.6.5
Section 6.6.6

Figure 6.6: Overview of graph merging

144

harness for this subgraph meets timing and area constraints were it mapped

to the device.

The “merge two subgraphs” subprocess merges two subgraphs into a sin-

gle subgraph. In doing so, it attempts to reduce the reconfiguration overhead

by allocating modules that are common to both subgraphs to the same slot,

thereby removing the necessity to reconfigure the slot between configurations.

Ultimately, each merged subgraph that remains in the application sequence

after the entire merging process is finished defines a period.

The “map subgraph” subprocess maps the wiring harness of the subgraph

to the device and determines if it meets the application’s area and timing

constraints. Global routing paths are determined for each communication

arc in the subgraph, and this subprocess reports if there is sufficient area

for all the communications in the subgraph to be mapped to the device. In

addition, it also reports the estimated critical path delay that can be used

to compare against timing constraints, if necessary.

Each of these processes is described in detail in the following subsections.

The cost model used to determine the reconfiguration delay between config-

urations is also presented after the description of the processes.

6.6.2 Subsequence Merging

Merging subgraphs into subsequences forms periods that can be implemented

using a single wiring harness on the device. The following greedy algorithm

was examined for determining which subsequences should be created:

145

1. Try to merge the first two graphs in the application sequence using the

algorithm to merge two graphs (see Section 6.6.3).

2. Map the merged graph using the proposed mapping algorithm (see

Section 6.6.4) and examine the area use and critical path delay:

(a) If the area and timing constraints of the wiring harness for the

merged graph are satisfied, then remove the first two graphs from

the application sequence and replace them with the merged graph.

Return to step 1 and try to merge the next graph in the schedule

with the merged graph at the start of the sequence.

(b) Otherwise, the constraints are not satisfied and the merge is un-

successful. The first graph in the application sequence forms a

subsequence on its own. Remove it from the application sequence

and add it to the list of merged subsequences (periods).

3. Return to step 1 and repeat until the application sequence has been

processed in its entirety i.e. all subsequences have been formed.

This algorithm tries to greedily merge the first subgraph with the second.

If area and timing constraints are met, this merged subsequence replaces

both the first and second graphs. Once the constraints are exceeded, the

first subgraph (merged subsequence) is removed and added to the list of

periods. A more detailed listing of the algorithm appears in Algorithm 1.

146

Algorithm 1 MergeSubsequences

Input: All subgraphs G1 · · ·Gn

1: periods ← ∅ {the sequence of generated periods}
2: current ← ∅ {the current period being processed}
3: for i = 1 to n do
4: if current = ∅ then
5: current ← Gi

6: else
7: testmerge ← MergeTwo(current, Gi)
8: if Map(testmerge) exceeds area or timing constraints then
9: Add current to the end of periods

10: current ← Gi

11: else
12: current ← testmerge
13: end if
14: end if
15: end for
16: Add current to the end of periods

Output: The sequence of merged subgraphs: periods

Time Complexity

The time complexity of this algorithm and its two constituent algorithms

(MergeTwo and Map) can be measured in relation to two different inputs —

the size of the target application, and the size of the device.

Let n denote the number of subgraphs the application was partitioned

into. This is the total number of distinct configurations required to imple-

ment the application on a device. Keeping the device size constant, n is

representative of the application size. This main algorithm, MergeSubse-

quences, consists of a single loop that runs for n iterations, thus the time

complexity to merge subsequences with respect to n is O(n).

147

MergeTwo (line 7) has a time complexity of O(z3) where z is the num-

ber of slots on the device (see Section 6.6.3), and Map (line 8) has a time

complexity of O(z3 log z) (see Section 6.6.4).

Therefore, the overall time complexity is O(n · z3 log z) where n is the

number of subgraphs and z is the number of slots on the device.

6.6.3 Merging Two Subgraphs

Problem Definition

Graph merging determines which communications subgraphs to merge into

subsequences which use a single wiring harness. However, before this can

be done it is necessary to describe the approach taken to merge adjacent

subgraphs in the schedule. The problem of merging a subgraph G1 with the

subgraph G2 following it in the schedule is defined as follows:

Define graph S to be equivalent to G1 with additional, unconnected

“blank” nodes representing empty slots that G1 does not make use

of. Overlay the nodes of G2 onto S such that the total number of

shared arc-bits is maximized and the total number of required module

swaps is minimized. An arc can be shared if there exists an arc au,v

between two nodes (u, v) in S, and there exists an arc aw,x between

two nodes (w, x) in G2, and if w replaces u, and v replaces x.

Maximizing the number of shared arc-bits, or minimizing the number of

arc-bits that need to be added to S, is equivalent to the problem of finding

the smallest supergraph of the two graphs G1 and G2. No obvious polynomial

148

time algorithm to solve this problem has been found. Similarly, no reduction

to a known NP-complete problem has been found. Thus the complexity of

the problem remains open.

Approach

As this problem is very complex, the following heuristic algorithm is proposed

to merge two graphs:

1. Sort nodes in G2 in order of the total number of bits of communication

required.

2. If there are nodes in G2 that have the same type as nodes in S, place

them into the same slot. Modules that have the same module type do

not require reconfiguration. Module “type” is analogous to the VHDL

entity or Verilog module type.

3. For the rest of the nodes in G2, place each node into a slot (in S)

according to a cost function that accounts for the total number of com-

munication bits that will be shared due to placing the node, the total

number of bits that may be shared due to communications between

unplaced nodes, and the reconfiguration time.

This algorithm first tries to merge nodes with the same module type to-

gether. Ultimately, each node is assigned a slot in the subgraph mapping

process. Having the same module type in subsequent configurations in the

same slot eliminates the need to reconfigure the slot. This first step tries to

minimize reconfiguration delay, and the motivation for doing this is twofold.

149

First, slots take up a large proportion of the logic area on the FPGA, thus

reconfiguring slots generally has a higher cost than reconfiguring wiring. Sec-

ond, if a module were to remain in the same slot between two configurations

it is likely to expose the same interface to the wiring harness. It is in turn

likely that the communications requirements for a configuration at time t+1

is more similar to that at time t than if the module were to be placed in a

different slot. Having similar communications requirements across configu-

rations allows more configurations to share a single wiring harness, thus also

reducing the number of wiring harnesses.

Next, the algorithm tries to merge nodes that maximize the amount of

communication bits that can be shared. This attempts to minimize the total

communications density by reducing the number of wires to be added, thus

allowing longer subsequences to be created.

A more detailed description of the proposed heuristic algorithm, with an

illustrative diagram in Figure 6.7, is as follows:

1. Create a graph S and initially let S = G1. With each arc label:

(a) Remove the port information, e.g., “8/1/2” is replaced by “8”.

(b) Add a “sharing factor” of 0 to the label, e.g., “8” becomes “8/0”.

(c) Consolidate arcs with the same source and destination.

(d) For example, in Figure 6.7, in the graph S after step 1 (after the

arrow labeled “1”), the two arcs from A to B have their port infor-

mation removed, and are consolidated to one arc labeled “24/0”.

150

2. Add unconnected vertices to S until the total number of vertices cor-

responds to the number of slots on the device, not including external

I/O vertices. E.g., in Figure 6.7 the number of slots is 4.

3. Sort all the vertices in G2 in descending order of the number of bits of

communication, giving the sequence M2.

4. Place each vertex in M2 with the same module type in the same location

in S. E.g., in Figure 6.7 this is Step 2 (after the arrows labeled “2”),

where the module C is placed in the same location.

5. As for the rest of the modules, they can be placed in any of the available

vertices. Reuse any arcs that are present, e.g, in Figure 6.7 there are

three possibilities for placing the module E:

(a) 3a would require 1 module configuration and 92 wires (20 addi-

tional wires).

(b) 3b would require 1 module reconfiguration and 84 wires (12 addi-

tional wires).

(c) 3c would require 1 module reconfiguration and 80 wires (8 addi-

tional wires).

6. 3a uses the most wires but the module can be pre-placed while G1 is

still running. On the other hand, 3c uses the least number of wires.

7. Evaluating every possibility will be of exponential (factorial) complex-

ity. Thus the following heuristic is used to evaluate the possibility of

each module:

151

(a) For each remaining module in M2, go through each vertex in

S, calculating three cost components: the number of confirmed

shared bits β, the number of unconfirmed shared bits µ and the

reconfiguration cost ρ.

i. The number of confirmed shared bits β is the sum of the

arc weights that can be shared to and from the module with

respect to modules that have already been placed. E.g., in

Figure 6.7, placing E as in 3a would share 0 bits, 3b would

share 8 bits and 3c would share 12 bits.

ii. The number of unconfirmed shared bits µ is the sum of the arc

weights to and from the module with respect to modules that

have not yet been placed. E.g., in Figure 6.7 there are 18 bits

from module E to H in graph G2. In 3a and 3c, no matter

where H would be placed in the future, there is no possibility

of sharing. In 3b, H can be placed optimally at B in the

future, thus µ = 18 if 3b were chosen. The location where

each module might be placed in the future is heuristically

determined by placing them in order of the largest number of

reused bits of communication.

iii. If placing the module at that location requires a module to be

swapped, as in 3b and 3c, versus placing it in a spare slot (as

in 3a), let the module reconfiguration cost ρ be 1, otherwise,

0.

(b) Calculate the cost of placing the module n at vertex m with the fol-

lowing formula: cost(n at m) = totalbits(m)−β−ν ·µ−φ·(1−ρ).

152

ν is the factor by which an unconfirmed shared wire contributes to

alleviating the total cost. If ν is 1, an unconfirmed shared wire is

as a good as a confirmed shared wire. φ is the equivalent number

of wires that have to be reconfigured if a module were to be re-

configured, and sets the trade-off point between placing a module

in a free slot or into one where more wires can be shared. ν and φ

are heuristic optimization variables that are used to fine-tune the

algorithm. This thesis uses the following values in the experiments

described in Chapter 8:

i. The value of ν should be set according to how well the algo-

rithm for calculating the unconfirmed shared bits predicts the

future sharing. If the value of ν used is 1, the algorithm used

should predict the unconfirmed shared bits perfectly. On the

other hand, a value of 0 indicates that unconfirmed shared bits

should be left out of the equation entirely. The experiments

in Chapter 8 used a value of 0.5.

ii. The value of φ can be determined as follows: The number of

wires per CLB column in the device multiplied by the num-

ber of CLB columns in a slot indicates the number of vertical

wires that have to be reconfigured if a slot were to be reconfig-

ured. This is further multiplied by what would be considered

as a reasonable percentage of utilization of all the wires in a

CLB column (see the description of σ in Section 6.6.4 under

the “Wire Delay Cost Model”). As Virtex-4 devices are re-

configured in vertical frames it may cost more to reconfigure

153

horizontal wires, thus the experiments in this thesis multiplies

this value by 0.5 to indicate that it is likely that horizontal

wires may be used as well, arriving at the final value of φ.

There are approximately 22 wires per CLB column, and the

value of σ used in this thesis is 0.8, thus the experiments con-

ducted for this thesis uses a value of 8.8× slotwidth (rounded

up to the nearest whole number) for φ.

(c) Choose the placement with the lowest cost and proceed to the

next module.

A listing of the algorithm to merge two subgraphs appears as Algorithm 2.

Time Complexity

The main variable in this algorithm that determines the time complexity is

the number of slots allocated on the device. Let z denote the number of slots

in the device. The run time of this algorithm is the sum of the following

three cost components:

1. At line 8, the nodes in G2 are sorted. This can be performed in

O(z log z) time with an algorithm such as in-place merge sort [46].

2. The two main loops, commencing at lines 9 and 17 respectively, contain

two nested loops at lines 10 and 21 respectively. Both loops iterate

O(z2) times.

3. The algorithm used to calculate the number of unconfirmed shared bits

at line 24 is a straightforward greedy algorithm that consists of single

loop running for O(z) iterations.

154

G2G1

A

B C

16 /1/1

8/2/1

32 /2/3

8/2/4

C

E

12 /1/2

[MEM1]
External I /O

8/X/3

8/X/3

[MEM1]
External I /O

1

S

A

B C

24 /0
8/0

32 /0

[MEM1]
External I /O

8/0

2

2

S

A

B C/C

24 /0
8/0

32 /0

[MEM1]
External I /O

8/0

Ø

S

A

B C/C

24 /0
8/0

32 /0

[MEM1]
External I /O

8/0

Ø /E

S

A/E

B C/C

24 /0
8/0

32 /0

[MEM1]
External I /O

8/8

Ø

S

A

B/E C/C

24 /0
8/0

32 /12

[MEM1]
External I /O

8/0

Ø

3a
3b

3c

0/12

0/8

0/12

0/8

H

18/1/2

Figure 6.7: Example for graph merging

155

Algorithm 2 MergeTwoSubgraphs

Input: Subgraphs G1 = (V1, A1) and G2 = (V2, A2)

1: [S = (VS, AS)] ← G1

2: RemoveAllPortInformation(AS)
3: SetAllSharingFactors(AS, 0)
4: ConsolidateArcs(AS)
5: while |S| < NumSlots do
6: AddEmptyNode(S)
7: end while
8: M2 ← SortDescendingBits(V2) {sort the vertices in G2 in descending

order of the number of communication bits}
9: for all m in M2 do

10: for all v in VS do
11: if m.type is equal to v.type and v is not merged yet then
12: Merge(v,m)
13: M2 ← M2 −m {remove m but retain ordering}
14: end if
15: end for
16: end for
17: for all m in M2 do
18: lowestcost ←∞
19: bestnode ← ∅
20: ρ ← 1
21: for all v in VS do
22: if v is not merged yet then
23: β ← CalculateConfirmedSharedBits(v,m)
24: µ ← CalculateUnconfirmedSharedBits(v, m)
25: if v is empty then
26: ρ ← 0
27: end if
28: cost ← totalbits(v)− β − ν × µ− φ× ρ
29: if cost < lowestcost then
30: lowestcost ← cost
31: bestnode ← v
32: end if
33: end if
34: end for
35: Merge(bestnode,m)
36: end for

Output: The subgraph S

156

As the second main loop contains CalculateUnconfirmedSharedBits, the

time complexity to merge two subgraphs is O(z3). z is constant with respect

to n (the number of subgraphs in the application) and only grows as larger

devices are used.

6.6.4 Mapping a Subgraph onto a Device

The two metrics used in this thesis to determine the effectiveness of subgraph

merging are the contribution to the critical path delay by the wiring harness,

and the reconfiguration delay between subgraphs. The critical path delay

refers to the maximum pin-to-pin delay of a wiring harness of a merged

graph.

This subsection describes a process known as subgraph mapping, which

is defined as the assignment of slots to each module in a subgraph, followed

by the determination of estimated, global routing paths for each arc in the

subgraph. The outputs of subgraph mapping are:

1. A set of slot-module allocations;

2. A set of global routing paths that is used for critical path delay and

reconfiguration delay estimation (and that can serve as input into a

detailed router if required); and

3. An estimated critical path delay of the wiring harness.

Each module in a subgraph is first allocated a slot on the device, with

the optimization goals being to first minimize the number of wires across

any cut, and then to minimize the total wire length. Minimizing the cut

157

width has two advantages. Firstly, the channel width is minimized, thus

maximizing the amount of module logic area. Secondly, if the channel width

is fixed, minimizing the cut width decreases the likelihood of the channels

being congested. In an FPGA with heterogeneous routing resources such as

the Virtex-4, the amount of channel congestion directly impacts the critical

path delay. This is because shorter wires may have to be used as the channels

become increasingly congested, thus resulting in more switchbox hops.

The second step in graph mapping is to “map” each wire to the device

model by estimating the routing path that is expected to be taken by the

low-level routing algorithm. This subsection details the device model and

interconnect prediction algorithm used to estimate the critical path delay.

Interconnect prediction for ASIC design flows has been studied exten-

sively, and Kannan et al. [44] have compared some routability estimation

methods as they are applied to FPGAs [3][4][68][55][59][74]. Although these

methods estimate the detailed routing between logic blocks in an island-style

FPGA, they are generic enough to be adapted to the slot-to-slot routing

estimation in COMMA.

This step is extremely important as it provides two crucial pieces of feed-

back to the subsequence grouping process. Firstly, it reports the estimated

critical path delay to ensure that it does not exceed any predefined timing

constraint. Secondly, it determines whether the subgraph can be mapped

onto the device or not, i.e., if it meets area constraints. If either of these

two constraints are not met, the subgraph cannot be implemented and an

alternative merging must be attempted.

158

The feasibility of implementing a subgraph on an FPGA can of course

instead be determined by actually performing the low-level place-and-route

processes. However, doing so for a single subgraph can take up a significant

amount of time. As shown in Section 5.3, a single place-and-route process

using Xilinx ISE’s PAR tool can take up to 45 minutes for the smallest

XC4VLX15 device. Doing this with each potential merged subgraph as part

of an iterative algorithm such as subsequence grouping can take up an inor-

dinate amount of time, thus an estimation method should be investigated.

The interconnect estimation method described here is based on Lou’s

method [55] of dividing the device model into a grid and the delay-lookup

approach of Manohararajah et al. [59].

Device Model

This device model is based on the routing congestion estimation method by

Lou et al. [55]. Lou’s method involves dividing the chip area into rectangular

grids, where each grid has four properties:

• The routing capacity of the grid, i.e., the number of routing tracks

available in the grid.

• The usage of each grid, i.e., the number of used tracks in the grid.

• The horizontal congestion cost and vertical congestion cost in each grid.

This is the ratio of the usage to the capacity of the grid.

Lou’s method also makes the following assumptions:

1. A net is optimally routed with the shortest length.

159

2. Each net makes at most one direction change in a grid.

3. If a change of direction occurs, it occurs where a straight line can be

drawn to the target pin. If a net bends within a grid, half a horizontal

track and vertical track is used.

In the COMMA approach the device is divided into cells (each of which

is analogous to a grid in Lou’s method), also containing a fixed amount of

wiring resources. In contrast to Lou’s method, each cell records the number

of wires exiting the cell rather than within the cell. This approach was chosen

to simplify the calculations when nets bend within a cell.

The timing model is based on an approach by Manohararajah et al. [59],

which uses a single delay value for each connection type in a table. This ap-

proach predicts “some aspects of interconnect timing”, and they have noted

that its accuracy is very high when the results are compared with running

the placement tool itself. In the COMMA approach, each cell has a fixed

optimal delay value that is obtained through experimentation with expected

wire delay values for a Virtex-4 FPGA.

An example of a very simple graph consisting of two nodes is mapped

onto the device in Figure 6.8. There are two modules placed onto the device

with a single wire connecting M1 to M2.

A device is split into two types of cells: slot cells (depicted in white or

black, where white slots are empty and black slots are filled with a module),

and channel cells (depicted in light grey).

Each slot cell has the following attributes:

160

M1

M2

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

1,0

1,2

1,4

1,6

1,8

2,0

2,1

2,2

2,3

2,4

2,5

2,6

2,7

2,8

3,0

3,2

3,4

3,6

3,8

4,0

4,1

4,2

4,3

4,4

4,5

4,6

4,7

4,8

Figure 6.8: Device mapping layout

161

• x and y, which are the horizontal and vertical coordinates of the slot,

starting from (0, 0) on the bottom left to (columns− 1, rows− 1) on

the top right of the device.

• r, which is the time taken to reconfigure the slot to a different module;

this attribute may be set to a constant for all slots.

• ncap, ecap, scap, and wcap which are the maximum number of wires

that can enter or exit the slot at each slot boundary. This is bounded

by the number of slice macros that can be placed around the slot.

• nutil, eutil, sutil and wutil which are the northbound, eastbound, south-

bound and westbound utilizations of each slot boundary. They are in-

cremented as wires are used and are bounded by ncap, ecap, scap and

wcap.

Each channel cell has the following attributes:

• x and y which are the x and y locations of the channel, starting from

(0, 0) on the bottom left to (2 · columns, 2 · rows). Note that slot

cells coordinates are skipped, and slot coordinates can be translated to

channel coordinates by multiplying by 2 and adding 1.

• hcost which is the cost to cross this channel horizontally; this is a

heuristic estimate of the delay to get from one side of the channel cell

to the other side. This estimate is used because it is impossible to

accurately predict the detailed routing at this stage.

162

• vcost which is the cost to to cross this channel vertically; again this is a

heuristic estimate of the delay from the top/bottom to the bottom/top

of the channel cell.

• ncap, ecap, scap and wcap which are the northbound, eastbound, south-

bound and westbound capacities of the channel boundary. E.g., having

a capacity of 10 for the northbound boundary of channel (2,7) indicates

that at most 10 wires can cross the north boundary of the channel.

• nutil, eutil, sutil and wutil which are the northbound, eastbound, south-

bound and westbound utilizations of each channel boundary. They are

incremented as wires are used and are bounded by ncap, ecap, scap and

wcap.

The reconfiguration cost for channel cells involves an estimation algorithm

and is detailed in Section 6.6.6.

The example shown in Figure 6.8 has the following slot mappings for the

modules:

• Placement: M1:(0,3), M2:(1,1).

• Utilizations of the following slot boundary variables:

slot0,3.eutil = 1, slot1,1.wutil = 1.

The following channel mappings are used for the arc between M1 and M2:

• Cost of arc between M1 and M2: 1
2
(channel2,7.hcost) +

1
2
(channel2,7.vcost) + channel2,6.vcost + channel2,5.vcost +

channel2,4.vcost + 1
2
(channel2,3.vcost) + 1

2
(channel2,3.hcost)

163

• Utilizations of the following channel boundary utilization vari-

ables: channel2,7.sutil = 1, channel2,6.sutil = 1, channel2,5.sutil = 1,

channel2,4.sutil = 1

Instead of keeping track of every single wire in each channel cell, the

utilization of wires exiting slot and channel boundaries are recorded. Not

having to keep track of every wire simplifies the model as the detailed routing

is not recorded. This is adequate for routing estimation purposes as knowing

which boundaries a wire enters from and exits to is sufficient to know if it

bends in the channel cell.

Problem Statement

The problem of device mapping can be stated in two stages. The first stage

is to place the modules in the slots:

Given a subgraph G = (V, A), place each module v ∈ V in a slot

such that the estimated channel width utilization and longest wire

length are minimized.

After a placement has been obtained for each module, each arc must then

be mapped into the available channels:

Given a subgraph G = (V, A) and for each v ∈ V a placement p(v) =

(x, y), determine a route through the channels for each arc a ∈ A

such that the cost of implementing these routes is minimal, and that

the slot and channel boundaries do not exceed their capacities.

164

Approach

The first sub-problem, slot allocation, can be solved with methods such as

the integer linear program described in Chapter 5, or with floorplacement

algorithms such as Capo [71]. Both these methods aim to minimize the

cut-width and wire lengths. The ILP method produces a set of optimal

allocations for any graph, but does not scale well as device sizes grow. This

is because the number of possible solutions grows factorially with the number

of slots in the device. On the other hand, a floorplacer may not be optimal

but is fast, and has been shown to produce very good results in standard cell

placement experiments performed by the scientific community. If a standard

cell floorplacer such as Capo [71] is used, one approach to use is to model the

device with a standard cell layout as depicted in Figure 6.8. Channel cells

can be marked with a “do-not-place” constraint or flagged as obstructions.

As for the second problem, even at this global routing level, routing every

wire arc into optimal path assignments is very time consuming. It is thus

proposed that heuristics be used to solve this problem. The heuristic used

here is to route the connections in descending order of the distance between

the modules they connect.

Manohararajah et al. [59] have noted that place-and-route tools always

use faster, longer wires for more critical connections and slower, shorter wires

for less critical connections. The criticality of a connection refers to how close

the connection is to being critical. While the critical path is the longest delay

path in the circuit, there is a strong correlation with the longest physical

path. Longer connections have a greater probability of becoming critical if

faster wires have already been used for shorter connections. Thus, sorting

165

the connections in descending order mimics what a detailed router does at

a higher level by allowing longer connections to use faster routing paths

through the channel cells. The steps to perform routing are as follows:

1. Sort all arcs in descending order of length.

2. For each arc, perform an A* search [32] from the source to the destina-

tion nodes with a modified priority strategy that attempts to minimize

congestion.

(a) If the full width of the arc cannot be implemented due to in-

sufficient wire capacity, determine the maximum width imple-

mentable.

(b) “Use” this route by decrementing the slot and channel boundary

capacities by the maximum available width.

(c) Record this route as being used by this arc with the number of

bits used.

(d) If the full arc width cannot be implemented, return to step 2 and

find a route for the remaining width.

The detailed algorithm for mapping arcs is described in Algorithm 3.

This algorithm tends to favor the placement of “preferred” routing ar-

rangements for arcs with source and destination modules placed further

apart. The “preferred” routing paths are chosen by choosing the exit bound-

ary of the slot (line 5–13).

It is preferred for communicating modules in the same column to use the

side channels, or if they are vertically adjacent, to use the channels between

166

Algorithm 3 MapSubgraphToDevice

Input: A subgraph G = (V, A)

1: Sort all arcs in A in descending order of length
2: for each arc a ∈ A do
3: repeat
4: Route from the source to the destination slot using a modified A*

search where g(x) and h(x) is the Manhattan distance to the goal
calculated using the vcost and hcost attributes with the following
preferred exit heuristic:

5: if the source and destination are in the same column then
6: if they are vertically adjacent then
7: Exit Preference = { N/S(DIRECT), SIDE, CENTER }
8: else
9: Exit Preference = { SIDE, N/S(DIRECT), CENTER }

10: end if
11: else
12: Exit Preference = { CENTRE, N/S(DIRECT), SIDE }
13: end if
14: if the route cannot be found then
15: Return UNSUCCESSFUL
16: end if
17: u ← a.width
18: for all cells c crossed along the route do
19: p ← c.{nesw}cap − c.{nsew}util {the remaining capacity of the

boundary that has to be crossed}
20: if p < u then
21: u ← p
22: end if
23: end for
24: for all cells c crossed along the route do
25: c.{nsew}util ← c.{nsew}util + u
26: end for
27: a.width ← a.width− u
28: Record the route taken by these u bits of arc a
29: until a.width ≤ 0
30: end for

167

the slots in order to minimize pressure on the center channel. Communicating

modules in different columns use the center channels as a first preference as

these have the shortest routing lengths. As long as the correct exit boundary

is chosen, the A* search coupled with the Manhattan distance heuristic will

result in the correct choice of channels.

Time Complexity

The mapping step consists of two parts — allocating the merged modules to

the device slots and routing the wires.

Allocating the merged modules using an ILP solver is of exponential time

complexity, but using a standard cell placer such as Capo [71] requires p log p

time for p pins. For a given channel width, the number of pins is bounded

by the device size and is a function of the number of rows in the device r

and the number of columns c.

An A* search is performed to determine a global route for each connec-

tion. The time complexity of the search is O(q log q) per route, where q is

the number of channel cells in the device (see Section 4.4). Since q is pro-

portional to the number of slots z, the complexity of the search is therefore

O(z log z) per route.

The number of connections in the merged subgraph is O(z2). Thus the

time complexity of subgraph mapping is O(z3 log z).

168

6.6.5 Wire Delay Cost Model

The delay over a given distance is less when longer wires rather than shorter

wires are used because less switch boxes are traversed. Since there is a limited

number of long wires, the cost model described in this section is applied to

impose an increasing penalty the more a channel is saturated.

twd(G) = max

 ∑

c∈channels used(a)

tpd(c)

 ∀a ∈ AG (6.1)

Equation 6.1 states that the critical path delay twd of a subgraph G is the

maximum delay of any arc. The delay of a single arc is the sum of all the

estimated costs of each channel c used by the wire tpd(c).

tpd(c) = channel cost(c)×
[
1.0 +

θ · num wires exiting channel(c)

channel boundary capacity(c) · σ
]

(6.2)

Equation 6.2 is based on Lou’s definition of the congestion cost, i.e.,

the ratio between the number of wires used and the capacity in a routing

channel [55]. In addition, it introduces a “reasonable saturation rate” 0 <

σ ≤ 1 and an “optimality factor” θ ≥ 0.0 to increasingly penalize the wire

delay the more the channels become saturated. The “reasonable saturation

rate” σ specifies what percentage of the total number of available wires is

reasonably used. The “optimality factor” θ specifies what percentage penalty

of the channel cost should be applied as the number of wires approaches the

saturation rate. The cost is calculated after the mapping is performed.

169

The delay of a Virtex-4 wire is approximately 80ps per CLB distance.

Each switchbox hop also takes up about 80ps. These figures are estimates

and were obtained experimentally by running the delay mediator in the Xilinx

FPGA Editor for typical routes. If the propagation delay between adjacent

CLBs is about the same as a switchbox hop, then using only single wires

may cause the delay to be close to double that as compared to using longer

wires. In this case, if σ is 1.0 then θ should be close to 1.0. In other words,

if all the wires are used, then it is possible that delay is doubled.

6.6.6 Reconfiguration Delay Cost Model

In order to estimate the reconfiguration time across the application, a cost

model must be defined to provide a metric for reconfiguring modules and

wires. The basis of this model is the Virtex-4 routing architecture and re-

configuration mechanism.

Virtex-4 Routing Architecture

Each CLB in a Virtex-4 device contains a switch box. The logic resources

(i.e., LUTs, flip-flops) in each CLB are attached to the switch box via a

connection box. Each switch box is in turn connected to other switch boxes

through the global routing resources available on the device. The global

routing resources as a whole are referred to by Xilinx as the General Routing

Matrix (GRM). The numbers and types of outbound wires per CLB are listed

in Table 6.1. The layout of the routing resources is generally homogeneous,

thus there are about 24–25 outbound wires in each direction (north, south,

east and west) per CLB.

170

Wire Type Count (Per CLB) Span
OMUX (Single) 16 1
DOUBLE 40 2 (can be tapped at 1)
HUNIHEX (Horizontal Hex) 20 6 (can also be tapped at 3)
VUNIHEX (Vertical Hex) 20 6 (can also be tapped at 3)
HLONG (Horizontal Long) 2 18 (can also be tapped at 6, 12)
VLONG (Vertical Long) 1 24 (can also be tapped at 6, 12, 18)

Table 6.1: Virtex-4 routing resources (outbound)

A switch box is composed of Programmable Interconnect Points (PIPs),

and the wires connecting these PIPs. Each PIP is connected to one or more

wires in the GRM. A switch box is not a full crossbar, i.e., not every PIP

is connected to every other PIP. An example of a switch box and how a

connection is to be made is depicted in Figure 6.9. The circles on the edges

of the switch box represent PIPs, and the arrows represent examples of wires

connected to those PIPs. This is a simplified version of a switch box. An

actual Virtex-4 switch box contains 307 PIPs.

In Figure 6.9 only the wires connected to PIPs C and H are shown. PIP

H is an inbound PIP which can receive an input from either the single wire

“OMUX18” or the hex wire “VUNIHEX21” in the GRM. The PIP acts as

a multiplexer to select its input, thus the configuration bits for a PIP are

the respective selection and enable bits. PIP C is an outbound PIP that

can receive an input from PIPs 7, H or J, and provide outputs to three

wires in the GRM, a long (HLONG1), a double (DOUBLE19) and a single

(OMUX12). Each inbound PIP receives input from one or more wires in the

GRM or the logic resources in the CLB, and provides output to one or more

PIPs in the switchbox. Accordingly, each outbound PIP receives input from

one or more PIPs in the switchbox and provides output to one or more wires

in the GRM or the logic resources in the CLB. As an example, consider that

171

Switch Box
(Simplified)

L

0 1 2 3 4

5

K 6

J 7

I 8

H 9

G A

F E D C B

OMUX18

VUNIHEX21

HLONG 1 OMUX12
DOUBLE 19

(SOURCE)

(SINK)

Figure 6.9: Virtex-4 switch box connection example (simplified)

the switchbox connects the single eastbound wire “OMUX18” to the double

southbound wire “DOUBLE19”. To make this connection, PIP H must be

enabled and configured to select input from OMUX18, and PIP C must be

configured to receive input from PIP H. PIP C provides output to all three

of its connected wires in the GRM, and all of them can tap its input, thus

if the double wire “DOUBLE19” should receive its input, then the inbound

PIP that is connected to “DOUBLE19” in the switchbox two CLBs south

must select it.

172

Virtex-4 Reconfiguration Architecture

A Virtex-4 device is reconfigured in frames, each spanning 16 CLBs vertically

and approximately 1
22

of a CLB horizontally. In the 22 frames it takes to

reconfigure a vertical column of 16 CLBs, routing information is contained

in the first 20 frames and logic in the last 2 frames [6]. Since there are

307 PIPs per switch block, each frame theoretically configures an average of

15–16 PIPs.

Having 64 CLB rows and 24 CLB columns, an XC4VLX15 device, as

shown in Figure 6.10, has 4 different “reconfiguration rows”. The second

“reconfiguration row” from the top is shown subdivided into CLB-width re-

configurable frames for illustrative purposes. The channel width shown here

is 4.

The base variable for reconfiguration delay is the length of time to load

and reconfigure a frame, rf . Reconfiguring via the SelectMAP-32 interface

at 100MHz, rf = 41
100×106 = 0.41µs, as there are 41 words (32 bits per word)

in a frame.

In the EAPR tool flow, reconfiguring a slot entails a reconfiguration of the

entire slot. With reference to Figure 6.10, the cost to reconfigure a module

is thus rslot = 22 · rf ·
(

devcols
2

− channelwidth
)
. For the XC4VLX15 with a

channel width of 4, rslot = 72.16µs.

173

1,7 3,7

1,5 3,5

1,3

1,1 3,1

3,3

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

1,0

1,2

1,4

1,6

1,8

2,0

2,1

2,2

2,3

2,4

2,5

2,6

2,7

2,8

3,0

3,2

3,4

3,6

3,8

4,0

4,1

4,2

4,3

4,4

4,5

4,6

4,7

4,8

16 CLB rows
spanned by

configuration
frames

cw = 4

One CLB
Column

Figure 6.10: Reconfiguration areas

174

Cost Model

The model for reconfiguring wires is derived from the way the routing esti-

mates are performed in Section 6.6.4. Consider the connection from M1 to

M2 in Figure 6.11 as an example.

The shaded area in Figure 6.11 depicts the area that contains the config-

uration frames required to reconfigure the connection in the top reconfigu-

ration row of the device. Because there is a bend in the connection to move

south, this area encompasses about half of the frames in channels (2,8) and

(2,7) and a quarter of (2,6). In Figure 6.11 the bend is nearer the left of

the channel, thus this area is less than half of the channel cell. When the

connection bends again to reach the sink module M2 in channel (2,3), the

reconfiguration area is slightly more than half of the channel as it was less

than half in channel (2,8).

Note that the shaded areas represent the areas that contain the frames

required to reconfigure the wire, and does not imply that all the frames in the

areas need to be reconfigured. The worst-case scenario is that the connection

is implemented only using single wires, which implies that two PIPs need to

be reconfigured per CLB. It is likely that the configuration data for these

two PIPs are located in different frames, thus this thesis uses the heuristic

estimate of two frames per CLB to reconfigure a connection. However, no

more than 20 frames per column of 16 CLBs needs to be reconfigured no

matter how many connections are present in that column.

This is an overestimate as it is unlikely, if not impossible, that all the

connections are implemented using single wires because a detailed router

175

M1

M2

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

1,0

1,2

1,4

1,6

1,8

2,0

2,1

2,2

2,3

2,4

2,5

2,6

2,7

2,8

3,0

3,2

3,4

3,6

3,8

4,0

4,1

4,2

4,3

4,4

4,5

4,6

4,7

4,8

Figure 6.11: Wire reconfiguration

176

will undoubtedly use longer wires if they are available. In addition, PIPs

in the same CLB column may also be configured with the same frames.

However, overestimating the reconfiguration delay at this stage is a much

better alternative to underestimating it as it increases the probability of a

feasible implementation at the lower-level implementation stages.

The software implementation used for the experiments described in this

thesis divides the reconfiguration delay by a relaxation factor (that defaults

to 1) so that a system designer can reduce the estimated reconfiguration delay

to more accurately represent the actual reconfiguration delay. This is useful

if the estimated reconfiguration delay exceeds timing constraints, preventing

the design flow from moving on to the next stage. The system designer can

increase the relaxation factor to allow the application to be implemented in

the lower-level stages described in Chapter 9, which provide actual reconfig-

uration delay results. The design flow can then revert back to this stage if

the actual delays exceed timing constraints to try other possibilities.

The reconfiguration delay model is defined as such:

• Slot reconfiguration: A flat reconfiguration delay of rslot = 22 · rf ·
(

devcols
2

− channelwidth
)
. This accurately estimates the slot reconfig-

uration delay as the EAPR tool flow generates partial bitstreams that

reconfigure the entire slot.

• Wire reconfiguration: For each channel that a connection occupies:

– For horizontal segments of the connection, 2 frames for every CLB

the connection crosses up to a maximum of 20 frames per column

of 16 CLBs.

177

– If there is a bend in the connection, 2 frames are required for

the bend. In the device model used, a bend in a channel always

requires a subsequent bend in another channel.

– For vertical segments of the connection, a fixed estimate of 4

frames (i.e. 1
5

of the CLB routing resources), obtained through

experimentation with difference bitstreams.

The wire reconfiguration delay is estimated assuming that a difference re-

configuration is carried out between periods rather than a full reconfiguration

of the device. Difference-based reconfiguration is supported by the EAPR

tool flow and results in significantly lower reconfiguration overheads. With

difference-based reconfiguration the reconfiguration overhead is minimized

not only in the wiring but also in the modules. This is especially true as

it has been noted by Malik [58] that bitstream differences between modules

can be very small, in many cases less than 5%. Again, this implies that the

reconfiguration delay model overestimates the delay and can be fine-tuned

to the application’s needs as previously indicated.

6.7 Optical Flow Case Study and Evaluations

Optical flow computations calculate the velocity between pixels in successive

frames of a video stream obtained from a camera source, mounted, for exam-

ple, on an unmanned vehicle. Each frame goes through a two-step process

— first it is smoothed and prepared into tensors (products of pixel values),

which are then fed into an iterative process until the optical flow converges.

178

In previous studies it was noted that placing the entire application onto a

single device has requirements that greatly exceed the device area (by about

8 times) and on-chip RAM (by about 15 times) of a medium-sized Virtex-4

device [67]. Dynamic reconfiguration through hardware virtualization and

off-chip buffering is suggested as a means of overcoming these constraints.

The feasibility of this approach was tested through a case study.

6.7.1 Graph Preparation

A block-level design was constructed of an implementation of the Gauß-

Seidel method [15] with successive overrelaxation. This was then transformed

into a communications graph. Each block was implemented in VHDL and

synthesized to the smallest Virtex-4 device (XC4VLX15) in order to obtain

FPGA-resource estimates.

The module clustering stage was performed using METIS [45] and some

manual adjustments for customization purposes and to ensure that the ap-

plication behaves correctly and as efficiently as possible, e.g., the decision

was made not to cluster some nodes to reduce reconfiguration delay. The

resulting clustered graph has 51 nodes, each of which fits into a 10× 14 CLB

slot. In contrast, the device provides 8 COMMA slots corresponding to the

8 natural pages on the device.

The scheduling stage was carried out using a modified version of the time-

based algorithm of Purna et al., again modified to improve the efficiency of

this application. The resulting schedule had 8 partitions, each containing 6

to 8 nodes. Partitions 1–4 form the pre-processing stages and partitions 5–8

form the iterative stages.

179

6.7.2 Graph Merging Results

The scheduled graphs were processed using Algorithm 1 of Section 6.6. The

characteristics of each graph are reported in Table 6.2. The eight subgraphs

were merged into three periods (1-3, 4-6 and 7-8) with one wiring harness

each. It must be noted that the parameters used were conservative with

respect to the area and timing constraints so as to have a higher chance

that the merged subgraphs could be physically implemented by the low-level

place-and-route tools.

Table 6.2: Optical flow comparison results
Subgraph 1 2 3 4 5 6 7 8

[Orig.] Module - 504µs 360µs 504µs 432µs 432µs 432µs 144µs

Reconfig. Delay (432µs) - - - (360µs) - - -
[Orig.] Harness - 234µs 201µs 322µs 221µs 261µs 361µs 116µs

Reconfig. Delay (392µs) - - - (232µs) - - -
[Orig.] Crit. Path 4.0 ns 5.1 ns 6.2 ns 4.0 ns 4.6 ns 5.7 ns 5.6 ns 5.6 ns

[Merged] Module - 216µs 0µs 360µs 360µs 0µs 72µs 0µs

Reconfig. Delay (288µs) - - - (72µs) - - -
[Merged] Harness - - - 321µs - - 398µs -
Reconfig. Delay (302µs) - - - (298µs) - - -
[Merged] Crit Path 6.8ns 6.2ns 6.0ns

The rows prefixed with “Orig.” report the results when no merging was

performed, i.e., each graph has its own wiring harness. These are compared

to when the subgraphs were merged into periods, as reported in the rows

prefixed with “Merged”.

Note that there are two subrows of values for each row reporting the re-

configuration delays for the modules and wiring harnesses. A reconfiguration

delay value in each top subrow (with non-parenthesized values) represents the

reconfiguration time into a subgraph from the one before it. The reconfigu-

180

ration delay for Subgraph 1 is not reported as it is the initial configuration

and is performed before the application is executed. In each bottom subrow

(with parenthesized values), the value for Subgraph 1 represents the delay

to reconfigure the system to the initial state when an entire video frame has

been processed, i.e., the reconfiguration delay form Subgraph 8 to Subgraph

1. Also in each bottom subrow, the value for Subgraph 5 represents the delay

from the end of each loop in the iterative stages to the beginning of the loop,

i.e., from Subgraph 8 to Subgraph 5. Note that in the merged case, wiring

harness reconfiguration is only necessary when transitioning between merged

graphs.

There are several 0µs entries after merging e.g. reconfiguring from par-

tition 2 to partition 3 because all the required modules for partition 3 were

already configured during partition 2.

The “Crit. Path” rows report on the estimated critical path delay ob-

tained through the mapping process (described in Section 6.6.4) of the wiring

harness for each configuration. Note that merged configurations share the

same critical path delay as they use the same wiring harness.

Fig. 6.12 shows the reconfiguration times as the application iterates be-

tween graphs. The pre-processing stage starts at G1 and runs through to

G5 where the iterative stage begins. The iteration loops from graphs G5

through to G8 until convergence, before a new frame commences processing

at G1. Assuming that convergence is reached in 100 iterations, the total

reconfiguration time is shown with an overall improvement of 64%.

181

G1

2.8 ms

G5 G8

1.75 ms (175 ms)

0.6 ms (60 ms)

ORIGINAL UNMERGED

� �

0.8 ms

G1

1.3ms
(less 54 %)

0.47 ms (47 ms)
(less 73 %)

0.37 ms (37 ms)
(less 38 %)

MERGED

� �
0.6 ms

(less 25 %)

Total : 238 .6 ms

Total : 85 .9 ms (less 64 %)

G5 G8

Figure 6.12: Reconfiguration times for iterations

6.7.3 Analysis

Looking at the individual graph timings, the wiring harness reconfiguration

times are small compared to those of the modules because the channel width

chosen was small. The harness reconfiguration time is approximately equiv-

alent to that without merging because most of the channels are already used

by the unmerged graphs. The critical path delays are only slightly higher in

the merged case. We believe that an actual router is also likely to display

this difference as the extra delay is due to congestion rather than wire length.

The total timing results show a large improvement in terms of reconfig-

uration time (64%), especially since a lot of savings are achieved during the

iterative stages. In the unmerged case, an optimization step can be per-

formed to reduce the number of module swaps, but this may be detrimental

182

to the critical path delay as the placement of the modules is not optimized

for each configuration. This performance hit may grow significantly as the

device size scales.

The smallest possible device was used in this case study to examine the

results when a large application is mapped to it. One of the goals in COMMA

is to use its framework to reprocess the communications graph with a variety

of device sizes to determine the best balance of device size and performance.

This will allow designers to choose the most economical device for their needs.

A study in this direction is presented in Chapter 8.

6.8 Conclusion

The infrastructure generation flow was described in detail in this chapter. A

central process in the flow, known as subgraph merging, groups subsequences

of subgraphs together and creates a wiring harness for each subsequence.

Algorithms were described for subgraph merging and its two constituent

subprocesses — merging two subgraphs and subgraph mapping.

The advantage of subgraph merging was demonstrated in terms of sig-

nificantly reduced overheads when applied to the mapping of a large optical

flow communications graph to a very small device. These experimental re-

sults were produced using high-level tools. Positive trends are expected to be

reproduced when the produced designs are mapped to devices using vendor

tools, e.g., the EAPR tool flow.

The greedy heuristics described in this chapter for merging communi-

cations graphs and mapping these merged graphs to the device could be

183

improved upon. An improved algorithm, based on dynamic programming, is

described in Chapter 7. A thorough investigation of the reconfiguration over-

heads and critical path delays achieved by COMMA over a range of device

sizes for both algorithms is presented in Chapter 8.

184

Chapter 7

Improved Algorithm for

Subsequence Grouping

7.1 Introduction

The subgraph merging process was introduced in Chapter 6 as a means of

deriving wiring harnesses from an application specified as a schedule of sub-

graphs. The main process in subgraph merging groups subsequences of con-

tiguous subgraphs together to form periods. A single wiring harness is imple-

mented for each period that supports all the communications requirements

for every subgraph in it. Application execution proceeds by configuring a

wiring harness and the modules for the first subgraph in a period. For the

remaining subgraphs in the period, only module reconfiguration is required.

At the end of the period the wiring harness for the next period is config-

ured along with the module reconfigurations needed to implement the first

subgraph of the following period.

185

The algorithm used for subsequence merging introduced in Chapter 6 is

based on a greedy method. Starting from the first non-merged subgraph, the

method tries to merge as many subgraphs into a period as possible without

exceeding wiring harness area or delay constraints. This is sub-optimal as

there is no guarantee that always trying to merge the first and second sub-

graph together at each iteration results in the lowest reconfiguration delay.

Better period arrangements that do not always begin with the first unmerged

subgraph may be possible. For example, periods could be chosen to exploit

similarities in structure between consecutive communications subgraphs.

The problem looks suited to a dynamic programming approach [20] in

which the solutions to longer sequences are formed by combining the solu-

tions to shorter sequences. Unfortunately, the solutions to shorter sequences

cannot be readily concatenated since the reconfiguration cost at the start of

a period depends, in part, upon the wiring harness of the previous period

and the arrangement of configured modules at the end of the previous period.

It is therefore difficult to assign a fixed cost to a given merged subsequence.

However, this problem can be overcome by imposing a heuristic assumption

that at the start of each period a complete reconfiguration of the FPGA is

performed to implement the wiring harness and the module arrangement for

the first subgraph of the period. With this assumption in place, the cost of

merging a subsequence of subgraphs can be assumed to be independent of

the previous period and the problem assumes optimal substructure.

It then becomes the goal of the algorithm to minimize the sum of the

module reconfiguration times within the periods, and the total number of

periods required to implement the schedule. When the algorithm estimates

186

the reconfiguration cost, starting a new period will always have a higher re-

configuration delay than reconfiguring between subgraphs in a period. How-

ever, it is not always the case that the minimum number of periods results in

a total minimum reconfiguration delay as the module-slot allocations within

each period are different. Thus, different groupings with a larger number of

periods should be considered as well.

A paper describing this algorithm and assessing its performance has been

accepted for presentation at the 2008 IEEE International Symposium on

Field-Programmable Custom Computing Machines [53].

7.2 Dynamic Programming Algorithm

Let a split be defined to be a position between two subgraphs in the schedule

where there is a possibility of ending a period and starting another. Let a

split at position k be defined as a split between subgraph k and subgraph

k + 1 in the scheduled subgraph sequence.

Consider a scheduled subgraph sequence of length n.

Establish the n × n memoization table. The ith row in this table corre-

sponds to all subsequences of length i considered for splitting into optimal

periods. Entries in column j at row i record the optimal split arrangement

and the corresponding total reconfiguration delay for splitting a subsequence

of length i commencing with subgraph j in the schedule. Note that the total

reconfiguration cost does not include the delay of the initial complete recon-

figuration required to configure the wiring harness for the first period in the

subsequence and the modules for the first subgraph in the subsequence.

187

Record a reconfiguration delay ropt = 0 for each element of the first row

of the table. For each subgraph in the schedule, this records the zero cost

of configuring its modules after the complete configuration undertaken to

implement the wiring harness and the modules for the period consisting of

the subgraph j on its own.

For all subsequences of the schedule of length i : 1 < i ≤ n, the al-

gorithm does the following (without loss of generality, let the subsequence

under consideration span subgraphs G1 through Gi):

1. Consider forming a period over the entire subsequence using the algo-

rithms described in Sections 6.6.3 and 6.6.4. Let r0 be the reconfigura-

tion delay incurred by reconfiguring the modules for all the subgraphs

in the subsequence. If merging all subgraphs in the subsequence ex-

ceeds area/time constraints on the wiring harness, then let r0 = ∞.

2. Consider every possible position k : 1 ≤ k ≤ i − 1, for a single split

in the subsequence. Determine the reconfiguration cost rk for that

position by adding the following three cost components:

(a) the reconfiguration cost of the optimal arrangement of splits for

the subsequence of subgraphs 1 . . . k, i.e. for the part of the subse-

quence to the left of the split k, as determined when subsequences

of length k were considered,

(b) the reconfiguration cost of the optimal arrangement of splits for

the subsequence of subgraphs k + 1 . . . i (to the right of k, found

for subsequences of length i− k), and

188

(c) the cost of the full reconfiguration that is incurred when commenc-

ing a new period after position k.

3. Let ropt be the minimum of r0 . . . ri−1, which is memoized along with

the corresponding split arrangement in the dynamic programming table

at cell (i, j).

Thus, as longer subsequences are considered, the estimation of the recon-

figuration delay relies on the memoization of shorter subsequences. The best

splits at length n finally indicate the optimal set of periods for the scheduled

subgraph.

An example of this memoization is depicted in Fig. 7.1. The iteration

currently considered is at a subsequence length of i = 7 commencing at sub-

graph G1. If a split were to be placed at k = 3, the optimal split arrangement

for subgraphs G1 to G3 obtained from the iteration i = 3 is used to the left

of the split. Correspondingly, the optimal splits for subgraphs G4 to G7 ob-

tained from the iteration i = 4 are used to the right of the split at k = 3. The

total reconfiguration delay is calculated by adding the previously calculated

values from the split arrangements from G1 to G3 and G4 to G7 together

with the full reconfiguration delay incurred between G3 and G4.

The dynamic programming algorithm is specified in detail in Algorithm 4.

7.2.1 Complexity

Half the memoization table needs to be filled in. To fill in an entry, a trial

merge of all subgraphs in the sequence is attempted during Phase 1 and on

the order of n trial splits and cost comparisons need to be performed in Phase

189

G1 G2 G3

G4 G5 G6 G7
G3

G2
G1

G6 G7
G5

G4
G1 G2 G3

G4 G5 G6 G7

i=3

i=4

i=7

k=3

Figure 7.1: Memoization example in the dynamic programming algorithm

2. Phase 2 thus contributes O(n3) to the time complexity of the dynamic

programming algorithm.

The merging step involves sorting and then linearly processing the mod-

ules for each subgraph being merged (see Section 6.6.3). As the number of

modules in a subgraph is a constant dependent upon the device size, it can be

argued that the merging therefore takes O(n) time for n subgraphs. Mapping

the merged subgraph involves allocating the merged modules to the device

slots and routing the wires, and as described in Section 6.6.4, is dependent

on the device size, which again is constant with respect to the number of

subgraphs. Thus, for a given device size, the merging and mapping step

combined takes time proportional to the number of subgraphs being merged,

which is O(n).

190

As Phase 1 can be abandoned beyond a certain subsequence length, it

contributes o(n3) to the dynamic programming algorithm, which therefore

has O(n3) overall time complexity.

7.2.2 Optimality

The algorithm is optimal when the simplification of a full reconfiguration

between periods is assumed. When the periods are actually implemented on

an FPGA, rather than performing a full reconfiguration of the device at pe-

riod start, a difference reconfiguration is performed, and thus the algorithm

overestimates the reconfiguration delay. This is beneficial when the applica-

tion is actually implemented on the device, but the impact of applying the

heuristic simplification should be analyzed.

If this simplification were not applied, then the reconfiguration delay

between periods could be reduced in two foreseeable ways: by maintaining

the same module allocation between periods, and by trying to implement

wiring harnesses that exhibit minimal difference. Investigating algorithms

that deal with this additional complexity is a challenging area for further

work.

If module allocations were to be maintained between periods, this would

almost certainly result in different merging arrangements. This particular

algorithm will no longer exhibit optimal substructure because each period

depends on the one before it. A different algorithm would therefore need to

be employed.

191

However, trying to implement wiring harnesses that exhibit minimal dif-

ference is a natural extension to this algorithm as it will simply result in the

actual reconfiguration delays being reduced.

7.3 Summary

This chapter introduced a dynamic programming algorithm for merging sub-

sequences of subgraphs as an improvement over the greedy method. The

algorithm tries to minimize the total number of wiring harnesses by assum-

ing that a full reconfiguration of the device occurs between periods. An

additional advantage of this new algorithm is that it considers many more

possible subsequence groupings than the greedy method. Keeping the de-

vice size constant, the time complexity increases to O(n3) from O(n) for the

greedy method. Note that this disregards the z3 logz factor due to merging

and mapping. The quality of the resulting merge is assessed in Chapter 8.

192

Algorithm 4 Dynamic programming algorithm

1: Create an array Splits[n, n]
2: {Dimensions — [subsequence length, start position]}
3: for i = 1 to n do {i: subsequence length}
4: for j = 1 to n− i + 1 do {j: start position}
5: if i = 1 then
6: Splits[i, j] ← 0
7: else
8: {Phase 1: Whole subsequence merged}
9: Create period Pj,j+i−1

10: if map success(Pj,j+i−1) then
11: MinRecfg ← EstimateRfgDelay(Pj,j+i−1)
12: else
13: MinRecfg ←∞
14: end if
15: BestSplits ← 0
16: {Phase 2: Determine best split}
17: for k = 1 to i− 1 do {k: splitposition}
18: TestSplits ← Splits[k, j] | Splits[i− k, j + k]
19: S ← CreateSolutionInstance(TestSplits)
20: CurrentRecfg ← EstimateRecfgDelay(S)
21: if CurrentRecfg < MinRecfg then
22: BestSplits ← TestSplits
23: MinRecfg ← CurrentRecfg
24: end if
25: end for
26: Splits[i, j] ← BestSplits
27: end if
28: end for
29: end for

193

Chapter 8

Results

8.1 Introduction

This chapter presents results of experiments that were performed to evalu-

ate the graph merging method for generating wiring harnesses discussed in

Chapter 6. This method consists of three subprocesses: subsequence merg-

ing, graph mapping, and the merging of two graphs. Both the algorithms

presented for subsequence merging are assessed in these experiments — the

greedy method introduced in Chapter 6, and the dynamic programming ap-

proach described in Chapter 7.

The goals of these experiments are:

• To assess the efficacy of graph merging as compared to not merging,

i.e., where each configuration has its own customized wiring harness;

• To evaluate the performance of the dynamic programming approach as

compared to the greedy method; and

194

• To assess the effectiveness of the point-to-point communications infras-

tructure as application and device parameters vary.

This chapter is organized as follows: the experimental method is intro-

duced, and then the results are discussed based on the total reconfiguration

delays of the tested applications, and the contributions to the critical path

delay by the wiring harnesses generated for those applications. These metrics

are most appropriate to a systems designer for evaluating the efficacy of the

algorithms.

A subset of the results in this chapter were accepted for presentation at

the 2008 IEEE International Symposium on Field-Programmable Custom

Computing Machines [53].

8.2 Experimental Method

Benchmarks for dynamically-reconfigurable computing are not yet available,

and manually developing applications such as the Optical Flow algorithm

from Chapter 6 is too time-consuming. Thus, the methodology used to

conduct these experiments involved generating synthetic applications with

a variety of parameters representative of actual applications, and then sub-

jecting these applications to the infrastructure generation process using the

full range of device sizes and architectural parameters. This section describes

the experimental setup, then details the methods used to generate communi-

cations graphs, cluster and schedule them, before describing and explaining

the parameters chosen to perform the experiments.

195

8.2.1 Experimental Procedure

The overall goal of the experiments was to analyze the results obtained when

a variety of target applications were mapped onto a range of different de-

vice sizes with a range of architectural parameters. In order to do this, the

experimental procedure shown in Figure 8.1 was developed.

Graph
Synthesizer

Application
Parameters

1: Graph Synthesis

Clustered

Non -
Clustered

Graph
Merging

Module
Clustering

Graph
Partitioning

2: Graph Preparation

Device
Parameters

3: Infrastructure Generation

Try Another DeviceTry Another Application

Prepare
Graph

Generate
Harness

Quality
Assessment

Full Comms
Graph

Clustered
Comms
Graph

Scheduled
Comms
Graph

Periodic
Comms
Graph

Figure 8.1: Experimental procedure

The experimental procedure consists of three main phases:

1. Graph synthesis: This phase generates a full applications graph

based on parameters such as the number of modules and communi-

cations density. The graph synthesis process is described in detail in

Section 8.2.2.

196

2. Graph preparation: The input to this phase is a full communications

graph from the graph synthesis phase representing an application. An

actual applications graph can also be used provided it is annotated with

logic size specifications in each module node. This phase clusters and

partitions the graph into a schedule of subgraphs. The two processes in

this phase are described in Sections 8.2.3 and 8.2.4.

3. Infrastructure generation: The schedule of subgraphs produced by

the graph preparation stage is then input into this phase where the

wiring harnesses are generated. The “graph merging” process in this

phase consists of the “subsequence merging”, “merging two graphs”

and “graph mapping” processes described in Sections 6.6 and 7.2. The

outputs of the graph merging process are the period groupings, module-

slot allocations and slice macro positions. The total reconfiguration

delay of the application and critical path delays of the wiring harnesses

are then assessed and recorded.

These three phases are executed iteratively. During Phase 1, a graph

representing a single application is generated. During Phase 2, this graph

is clustered if desired, and partitioned into a schedule of subgraphs based

on a target device. If the partitioning is successful, the schedule is input

into the next phase. If not, a different target device or channel width is

chosen and Phase 2 is executed again. If all the available devices have been

assessed, then execution returns to Phase 1, where a new applications graph

is generated.

If Phase 2 is successful, the schedule of subgraphs is subject to graph

merging and reconfiguration and critical path delay analysis in Phase 3 for

197

a particular device. If this succeeds, the results are recorded, and execution

returns to Phase 2 to assess another device.

A test run consists of obtaining the reconfiguration and critical path delay

results for a particular application, a particular device and a chosen channel

width.

The experimental procedure also allows for two different modes of oper-

ation in the graph preparation phase — with and without module clustering

(see Section 6.4). If module clustering is not required, that step is skipped

and the graph is partitioned and scheduled as is. Both modes are used for

every test run, thus each test run yields two sets of results.

In summary, the experimental procedure iterates through application pa-

rameters at the first level of nesting at Phase 1, then through the list of

devices and channel widths at the second level of nesting at Phase 2. Phase

3 is executed once per execution of Phase 2, and if and only if Phase 2

succeeds.

8.2.2 Graph Synthesizer

The graph synthesizer generates unpartitioned communications graphs for

dataflow-like applications such as image processing (e.g., JPEG, Optical

Flow) or cryptographic applications (e.g., DES).

These applications graphs are directed acyclic graphs that show the data

dependencies between modules in time. They do not have discrete tem-

poral representations of communications patterns, rather they capture the

data that each module requires for its processing at any point in time. For

198

example, if an application consists of two modules where module A sends

some data to module B, followed by module B sending some data back to

module A, the generated applications graph has the following representation:

A → B → A. This graph has three processing stages, the first one containing

the first A, the second the module B and the third stage the second A. There

is no limit as to how many modules a stage can have, although it would not

make sense to have a stage with no modules. It is important to note that

even as this full communications graph has three modules there are only two

module types. One of the modules simply appears twice in the execution of

the application.

The input parameters to the graph synthesizer that were of particular

interest to the experiments performed are:

• Number of modules: The total number of modules in the graph.

• Module type variation: The amount of variation in the types of

modules in the graph, specified as a percentage. A variation of p%

indicates that there are p × n module types (with a minimum of one)

where n is the total number of modules. E.g., a variation of 0% in-

dicates that all modules are of the same type, and a variation of 20%

with 200 modules indicates that there are 40 different module types.

• Module size: The average size of each module, specified in CLBs.

• Module size variation: An option to vary the size of the modules

based on a standard distribution and a variance. The “module size”

parameter was used as the mean. When the module size variation

parameter was zero, all modules were of the same size.

199

The following other parameters to the synthesizer were available:

• Number of stages or stage size: The number of processing stages

in the graph. A layered graph in which the modules in the same stage

do not communicate with each other is assumed. Data is input only

from modules in the previous stage, and output only to modules in

the next stage. As the number of stages decrease, the average stage

size increases. As a result, the total amount of communications in

the graph increases if all other parameters remain constant. This is

because the amount of inter-stage communication is higher if there

are more modules in each stage. Consider an application where the

communications density is 30% and the number of modules is 100. If

there are 10 stages, the average stage size is 10 and there is an average

of 10 × 10 × 30% = 30 arcs between each stage, and a total of about

30×10 = 300 arcs. In contrast, if there are 20 stages, the average stage

size is 5 and there is an average of 5 × 5 × 30% = 7.5 arcs per stage

and a total of 7.5× 20 = 150 arcs.

• Communications density: The minimum desired percentage of the

maximum number of edges between stages in the graph. 30% has been

used for these experiments, meaning that each module connects to at

least a third of the modules in the next stage.

• Bitwidths: The number of bits of each edge in the graph, specified

as a minimum and maximum, in powers of two, with an exponentially

decreasing distribution.

200

As the average stage size, communications density and bitwidths of the

graphs increase, the total amount of intermodule communications in the

graph also increases. Initial experiments that were performed over a wide

variety of parameters indicate that there is a direct relationship between the

parameters and the reconfiguration and critical path delays. The aim of

the experiments described in this chapter is to determine what a systems

designer might expect when an application is mapped onto different device

sizes with alternate architectural parameters. Thus, the following fixed, real-

istic values were provided for the number of stages, communications density

and bitwidths: 12% of the number of modules in the graph as the number

of stages, 30% minimum communications density and bitwidths in exponen-

tially decreasing distribution of 1, 2, 4, 8, 16 and 32 bits per edge.

8.2.3 Module Clustering

The input to the module clustering stage is the full communications graph,

where each node represents a module in the application design. These nodes

are then clustered together to form larger nodes, each of which do not exceed

the size of the slots on the device. The main objectives of this are to reduce

the total number of modules in the graph, to maximize the use of available

logic area, and to reduce the total number of configurations.

The clustering algorithm of Purna et al. was used, which tends to reduce

the total communication overhead by trying to cluster modules with common

parents. Since the algorithm already limits the size of each partition based

on the total logic area consumed, the size of each slot was used as the area

constraint in the algorithm.

201

Thereafter, each ‘partition’ represented a new module type, and all the

nodes within it were clustered together into a single node. It is assumed

that all the intermodule connections between the nodes within a partition

are absorbed into this clustered module. A new communications graph was

then generated consisting of these clustered modules.

If a clustered module did not fill an entire slot, it was assumed that

its logic was packed into the thinnest vertical slice of the slot that could

accommodate it. This can be achieved by enforcing area constraints in the

place-and-route tools. This was assumed in order to reduce reconfiguration

delay as much as possible as the devices are reconfigured using vertical frames.

However, at the implementation level, the current Early-Access Partial

Reconfiguration Tool Flow [95] requires that Partially-Reconfigurable Re-

gions (PRRs) have fixed sizes. When a PRR is reconfigured, the partial

bitstream for the entire region is loaded. Each slot must have a PRR, and it

should be of the minimum size that can accommodate any clustered module

that is to be placed into the slot. Thus, the reconfiguration delay of a slot is

the reconfiguration delay of the largest clustered module that is to be placed

in it.

8.2.4 Graph Partitioning

In this step, the input communications graph was partitioned into a schedule

of subgraphs irrespective of whether the communications graph was clustered

or not.

202

The experiments described in this chapter also used the clustering algo-

rithm of Purna et al. for this step. However, the area constraint check was

modified such that it generated partitions containing no more nodes than the

number of available slots in the device. Each partition then represented a

configuration to be loaded onto the device. The order in which the subgraphs

were to be loaded was the same as the order in which the partitions were

generated. This is valid because the algorithm is time-based and ensures that

intermodule communication dependencies are resolved.

In order to model realistic application scenarios, two modules were added

to each partition to buffer data between configurations. An output buffer

module sends data into an on- or off-chip buffer for a future configuration,

and an input buffer module reads this data from a previous configuration,

also from on- or off-chip memory. As the results in this chapter present the

reconfiguration and critical path delays, the actual time taken to buffer data

on- or off-chip was considered to be part of the application run time and was

therefore taken into account.

8.2.5 On the Quality of the Clustering and Partition-

ing Algorithms

The clustering and partitioning algorithms can affect the resulting schedule

in several ways.

When modules are clustered together, two important effects are apparent.

Firstly, the intermodule communications between the modules to be clustered

together are absorbed. The amount of communications that is absorbed

203

depends on how the clustering algorithm targets this objective. Secondly,

new module “types” are created, which can affect how much reconfiguration

delays can be reduced by trying to place the same module types in the same

slots in adjacent configurations.

The reconfiguration delay between subgraphs depends on how much sim-

ilarity exists between two adjacent configurations. When the graph is par-

titioned into a schedule of subgraphs, the similarity between each subgraph

is affected by how the partitioning algorithm works. Both the similarity in

the module types as well as the intermodule communications affect the re-

configuration delay. In addition, the critical path delay of each subgraph is

affected by how dense the intermodule communications within it are. The

partitioning algorithm may have to be mindful of this with applications that

have very strict critical path delay constraints.

However, the main aim of architectural exploration in these experiments

was to analyze the effects of graph merging on different applications and

different devices and to evaluate the greedy and dynamic approaches toward

the subsequence merging problem. Thus, the application-neutral clustering

algorithm of Purna et al. was chosen. Furthermore, it is also suitable for the

dataflow-like directed acyclic graphs, as were synthesized, and it is readily-

integrated into the the iterative experimental procedure.

In real applications, different algorithms may be more suitable given the

types and characteristics of those applications. For example, a combination

of a modified version of the clustering algorithm by Purna et al., METIS [45]

and manual adjustments made with knowledge of the application was used

204

in clustering and partitioning the Optical Flow algorithm presented in Sec-

tion 6.7.

Some effects of the neutrality of the clustering algorithm of Purna et al.

are apparent in the results. This motivates further work in clustering and

partitioning to target the COMMA approach.

8.2.6 Graph Merging

As detailed previously, the graph merging step consists of three processes:

subsequence merging, merging two graphs and graph mapping.

Both subsequence merging algorithms, i.e., the greedy method introduced

in Section 6.6.2, and the dynamic programming approach presented in Sec-

tion 7.2, were used in order to compare their effectiveness. The experimental

procedure also considered a third option, i.e., not applying the subsequence

merging algorithm at all. In this case, each subgraph formed a single pe-

riod with its own wiring harness. Judicious module-slot allocation was still

performed to reduce module reconfiguration delay, but the wiring harness

had to be reconfigured at every subgraph transition. Comparing the results

of graph merging with the two subsequence merging algorithms with these

results provides an unbiased assessment of the benefits of the subsequence

merging algorithms.

Regardless of the subsequence merging algorithm, graph mapping was

performed for each period and the reconfiguration and critical path delays

were assessed for each period, as described in Section 6.6.4.

205

8.2.7 Quality Assessment

This process obtained the critical path and reconfiguration delay results from

the graph mapping process in the graph merging stage, recorded them, and

processed them into tables and graphs that are presented in the later sections

of this chapter where the results are analyzed.

8.2.8 Parameters Chosen for the Experiments

Application Parameters

The parameters used to generate the applications graphs were as follows:

• Number of Modules: 200. Considering large graphs allowed full

architectural exploration to be performed.

• Module Type Variation: Primarily 20% (i.e., 40 module types) to

observe the effects of reducing reconfiguration delay by allocating mod-

ules belonging to the same type in neighbouring epochs in the same

slots. 0%, 40% and 60% were also used to observe the effects of differ-

ent amounts of variation.

• Module Size: Primarily 60 CLBs. This is approximately the size of

a DES core when mapped onto a Virtex-4 device. As a comparison, a

MicroBlaze processor takes up 226 CLBs, which is slightly larger than

a slot on a medium sized XC4VLX40 with a channel width of 2 (224

CLBs). Module sizes of 35 and 85 CLBs were also used to observe the

effects of different amounts of clustering.

206

• Module Size Variation: Primarily fixed but one experiment inves-

tigated the effect of varying the module size according to a normal

distribution with a 10 CLB standard deviation.

Device and Architecture Parameters

Each application subgraph was mapped onto all of the available devices in

the Virtex-4 LX series. The LX series was chosen to be most suitable for

this experiment because it contains mainly logic. Channel widths of 2, 4

and 8 were chosen as these are the smallest possible channel widths. A

channel width greater than 8 would shrink the slot size to less than 8 rows,

which results in wide and short slots that would take a very long time to

reconfigure with the frame-based reconfiguration approach of the Virtex-4

devices. Table 8.1 lists the devices tested and the number of slots and slot

sizes for each device and channel width.

Device CLB Number CW:2 CW:4 CW:8
Code Array of Slots Slot Size Slot Size Slot Size

XC4VLX15 64× 24 8 140 96 32
XC4VLX25 96× 28 12 168 120 48
XC4VLX40 128× 36 16 224 168 80
XC4VLX60 128× 52 16 336 264 144
XC4VLX80 160× 56 20 364 288 160
XC4VLX100 192× 64 24 420 336 192
XC4VLX160 192× 88 24 588 480 288
XC4VLX200 192× 116 24 784 648 400

Table 8.1: Device parameters — CW:channel width and slot size in CLBs

207

8.3 Metrics

To a systems designer, the main aim of architectural exploration is to deter-

mine the optimal device size and channel width for a given application. The

experimental method used produces two metrics to determine the optimality

of a mapping to a particular device — the reconfiguration overhead and the

critical path delay.

8.4 Reconfiguration Delay Results

The plot in Figure 8.2 shows the total reconfiguration delays for an appli-

cation consisting of 200 modules with 20% module type variation, with a

module size of 60 CLBs (about the size of a DES core). The plot shows the

results of mapping the synthesized applications graphs to the family of de-

vices studied using the greedy and dynamic algorithms for merging subgraph

sequences representing device configurations with channel widths of 2, 4, and

8 averaged over 120 runs. In this plot the modules have undergone clustering

to fit them into the slot sizes.

Note that for channel widths of 2 and 4 a reconfiguration delay of 0

was recorded for the LX200 device. This is because the entire graph was

implemented within a single epoch and thus no reconfiguration was necessary.

There is a delay involved in loading the initial configuration for the FPGA but

this was not added into the reconfiguration delay for three reasons. First, the

delay is unavoidable and is not due to reconfiguration. Second, it is assumed

that sufficient time is available before the application begins in order to load

the initial configuration. If more than one application is to be executed in

208

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 20 40 60 80 100 120 140 160 180 200

R
ec

on
fig

ur
at

io
n

D
el

ay
 (

us
)

XC4VLX Device

CW2: Greedy RD
CW2: Dynamic RD

CW4: Greedy RD
CW4: Dynamic RD

CW8: Greedy RD
CW8: Dynamic RD

Figure 8.2: Reconfiguration delays for 200 modules, 20% type variation, 60
CLB exact module size, clustered, 120 runs

sequence, the subsequent applications should be included in the sequence of

graphs. Third, adding this initial configuration delay penalizes larger devices

heavily, e.g., the initial configuration delay for the LX15 is 865.92µs, and for

the LX200 it is 12555.84µs. Adding these delays into the results in Figure 8.2,

the LX15 would have an average reconfiguration delay of 8336.88µs. The

LX200 will always have a higher delay than the LX15 and it is the intention

of the investigation to show that larger devices can accommodate more logic

and thus require less reconfiguration. However, this is an important result

to note, and demonstrates the effectiveness of hardware virtualization. Even

as the LX15 device needs to be reconfigured at run time, the total run time

including the initial configuration delay can be less than that of devices that

are large enough to implement the application circuit in its entirety.

209

8.4.1 Device Sizes

Overall, it is apparent from the downward-sloping curves that using larger

device sizes results in lower reconfiguration delays. As the device sizes scale

in width, and as the channel width remains constant, the slot sizes grow

larger. More modules can then be clustered into a single slot, thus reducing

the total number of epochs required to map the application. As the device

sizes scale in height, the number of slots increase and thus more modules can

fit into a single epoch. The number of epochs should also decrease. As the

number of epochs decreases the number of periods should also decrease, at

least to a maximum of the number of epochs, until it may be possible that

the entire application can fit onto the device, e.g., in the case of the LX200

for channel widths of 2 and 4.

Figure 8.2 depicts “anomalies”, where using a larger device results in a

larger reconfiguration delay, e.g., between the LX15 and LX25 in the case

when the channel width is 4 and between the LX40 and LX60 when the

channel width is 8.

To explain this, observe that the LX15 device has a slot size of 96 CLBs

when the channel width is 4, and the LX25 has a slot size of 120 CLBs,

as shown in Table 8.1. The module size used in these graphs is 60 CLBs,

thus the LX15 device only manages to fit one module into each slot, whereas

the LX25 manages to fit two. As the type variation used here is 20%, the

total number of possible module types for the LX15 is 40, as each slot can

only support one module. In the case of the LX25, however, two modules

are clustered into a single slot, thus the number of apparent module “types”

grows to 402 = 1600. This severely reduces the probability of neighbouring

210

epochs having modules that are of the same type. The LX15 therefore has a

greater chance of reducing the slot reconfiguration time by allocating modules

of the same type in neighbouring epochs in the same slots, whereas the LX25

has fewer opportunities to do so. Note that this anomaly is not present when

the channel width is 2, because the LX15 device has a slot size of 120 then,

allowing it to fit two modules as well.

In addition, it takes twice as long to reconfigure each slot in the LX25

compared to the LX15 because two modules are clustered into one slot, and

the amount of time needed to reconfigure the wiring is about 50% greater

because the device is 50% taller.

As the device sizes grow even larger, slots can accommodate many more

modules and the number of epochs and periods is substantially decreased.

The improvement in reconfiguration delay is less dependent on the variation

in module types since the number of possible types grows to a degree where

the probability of having the same module type is extremely low. This may

be an argument for a better clustering approach that aims to minimize the

total number of module types, and/or to maximize the number of modules

with the same type in neighboring epochs.

This analysis highlights the benefits of performing architectural explo-

ration with the target application: it is not always the case that using a

larger device results in a shorter reconfiguration delay.

To investigate this effect further, an experiment was performed with a

normal distribution of module sizes having mean module sizes of 35, 60 and

85 CLBs respectively and a fixed standard distribution of 10 CLBs. The

results are shown in the plot of Figure 8.3.

211

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 20 40 60 80 100 120 140 160 180 200

R
ec

on
fig

ur
at

io
n

D
el

ay
 (

us
)

XC4VLX Device

Z35: Greedy RD
Z35: Dynamic RD

Z60: Greedy RD
Z60: Dynamic RD

Z85: Greedy RD
Z85: Dynamic RD

Figure 8.3: Comparison between mean module sizes of 35, 60 and 85 CLBs,
channel width 4, clustered, 120 runs

When the mean module size is 35, the anomaly between the LX15 and

LX25 is not as pronounced as when the module size is 60. This is because

there is a much larger difference in apparent module type variation between

the LX15 and LX25 when the mean module size is 60 (1 vs. 2 modules

clustered into a slot) as compared to when the mean module size is 35 (2 vs.

3 modules clustered into a slot), as shown in Table 8.2.

Device Average Modules Clustered Per Slot
Mean Size Mean Size Mean Size
35 CLBs 60 CLBs 85 CLBs

LX15 2 1 1
LX25 3 2 1
LX40 4 2 1
LX60 7 4 3

Table 8.2: Number of modules clustered per slot at channel width 4

212

When the module size is 85, the effect is seen between the LX40 and

the LX60, where in the Table 8.2 note that the average number of modules

clustered into a slot increases from 1 to 3.

It is useful also to investigate how different amounts of variation in the

types of modules contribute to this effect. The plots in Figure 8.4 show the

results of testing different amounts of type variation. With no type varia-

tion, i.e., all the modules are of the same type, there is not much variation

in reconfiguration delay across the device sizes and this is expected as the

devices are only reconfigured when the wiring harness changes.

As noted before, the number of possible module types due to clustering

grows significantly when the type variation increases to 20% from approxi-

mately 40 module types to 1600, thus the “anomaly” between the LX15 and

LX25 is seen again. As the type variation increases beyond 20% the possi-

bility of having the same module type in neighbouring epochs is even lower

and the same pattern is therefore observed.

An important observation in Figure 8.4 is that the same patterns are

observed as long as there is any amount of module type variation. This is

because the number of apparent module types grows exponentially as more

modules can be clustered into a slot. This implies that module type variation

should not cause significant differences in these experiments.

8.4.2 Channel Widths

It is apparent from the plots in Figure 8.2 that the reconfiguration delay

increases as the channel width increases. This is to be expected since the

213

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 20 40 60 80 100 120 140 160 180 200

R
ec

on
fig

ur
at

io
n

D
el

ay
 (

us
)

XV4VLX Device

T0%: Greedy RD
T0%: Dynamic RD
T20%: Greedy RD

T20%: Dynamic RD
T40%: Greedy RD

T40%: Dynamic RD
T60%: Greedy RD

T60%: Dynamic RD

Figure 8.4: Comparison between different type variations (0%, 20%, 40%
and 60%), channel width 4, clustered, 120 runs, 60 CLB fixed module size

number of epochs for a particular application increase as the channel width

increases. This is because the slot sizes decrease as more logic area is allocated

for the wiring channel. This also implies that the time to reconfigure the

wiring between periods also increases.

The system designer can thus try different channel widths in decreasing

order to find the smallest channel width that can accommodate the applica-

tion.

214

8.4.3 Comparison between the Greedy and Dynamic

Methods

The results indicate an improvement by as much as 29% (in the LX60 device

with a channel width of 2) using the dynamic programming approach over

the greedy method.

As can be seen in Figure 8.2, this advantage decreases as the device size in-

creases because there are far fewer possibilities to better group subsequences

as the number of epochs needed to implement the application decreases.

As noted in Chapter 7, the greedy method can allocate modules of the

same type in the same location, not only in the next epoch but also between

periods, while the dynamic programming approach can only do so between

epochs. However, this advantage only appears to make a difference when

there is little variation in module type, as can be seen in Figure 8.4 for the

LX60 and LX80 when there is 0% type variation. There is no slot recon-

figuration delay when the type variation is 0%, which causes the dynamic

algorithm to make poorer choices because it assumes that the entire device

is reconfigured at the start of a period.

The amount of improvement between the greedy and dynamic program-

ming algorithms largely depends on the application, thus an average differ-

ence over all the test runs may not be as significant as comparing the results

for individual applications. The plot in Figure 8.5 therefore shows the per-

centage reduction in reconfiguration delay against the percentage of all the

test runs that achieved that reduction. This graph has been derived from

the results plotted in Figure 8.2. From this summary plot it can be seen that

215

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60

P
er

ce
nt

ag
e

of
 S

ol
ut

io
ns

Percentage Improvement in Reconfiguration Delay

[NoMerge -> Greedy] Improvement (%)
[Greedy -> Dynamic] Improvement (%)

Figure 8.5: Percentages of reconfiguration delay reduction for graphs with
200 modules, 20% type variation, 60 CLB exact module size, clustered, 2880
runs

performing graph merging with the greedy method results in improvements

in reconfiguration delay of up to 60% for half of the total number of solutions.

Using the dynamic programming algorithm provides further improve-

ments over the greedy method. Only 11% of the test runs did not have

a reduction in reconfiguration delay, and this is over and above the reduction

achieved by the greedy method.

8.4.4 Disabling Clustering

The aim of clustering modules to fit slot sizes (see Section 3.7 and Sec-

tion 8.2.3) is to reduce the number of total configurations to implement the

entire application by maximizing the utilization of the available slot area.

216

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 20 40 60 80 100 120 140 160 180 200

R
ec

on
fig

ur
at

io
n

D
el

ay
 (

us
)

XC4VLX Device

CW2: Clustered DRD
CW2: Non-Clustered DRD

Figure 8.6: Comparison between clustered and non-clustered reconfigura-
tion delays, channel width 2, 200 modules, 20% type variation, 60 CLB exact
module size, dynamic algorithm, 120 runs

The desired effect of this is to reduce the total reconfiguration delay as less

reconfigurations are necessary.

However, a side effect of clustering is that the total number of apparent

module types increases. This is because a clustered module is of a different

type to that of any of its constituents. Thus, the total number of possible

module types is exponentially increased from n to nm where m is the number

of modules that can be clustered into a single slot. This therefore reduces

the opportunities for judicious allocation of modules to slots so as to reduce

overheads due to module reconfiguration.

The plots in Figures 8.6, 8.7 and 8.8 show comparisons between clustered

and non-clustered reconfiguration delay estimates for channel widths of 2, 4

217

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 20 40 60 80 100 120 140 160 180 200

R
ec

on
fig

ur
at

io
n

D
el

ay
 (

us
)

XC4VLX Device

CW4: Clustered DRD
CW4: Non-Clustered DRD

Figure 8.7: Comparison between clustered and non-clustered reconfigura-
tion delays, channel width 4, 200 modules, 20% type variation, 60 CLB exact
module size, dynamic algorithm, 120 runs

and 8 CLB rows or columns respectively. The reconfiguration delays for the

non-clustered runs show little variation in reconfiguration overhead because

the number of epochs decreases at the same rate as the device size grows,

i.e., at the same rate as the number of available slots increases. On the

other hand, clustering leads to a reduction in reconfiguration delays for larger

devices since the total number of epochs is dramatically reduced.

It is interesting to note, howwever, that there are regions in each graph

where not clustering the modules is more advantageous than clustering them.

With a channel width of 2 (Figure 8.6), this region is for device sizes equiv-

alent to the LX25 in size and below. The LX15 and LX25 both cluster two

218

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 40 60 80 100 120 140 160 180 200

R
ec

on
fig

ur
at

io
n

D
el

ay
 (

us
)

XC4VLX Device

CW8: Clustered DRD
CW8: Non-Clustered DRD

Figure 8.8: Comparison between clustered and non-clustered reconfigura-
tion delays, channel width 8, 200 modules, 20% type variation, 60 CLB exact
module size, dynamic algorithm, 120 runs

modules into a slot, incurring the penalty of higher apparent type variation

as previously explained.

Table 8.3 shows the number of periods generated for a particular synthetic

application graph mapped onto the LX25, the LX40 and the LX60 devices

with a channel width of 2. The LX25 (for which, from the plot it can be seen,

that the non-clustered case is better) requires 5 periods for the clustered case

and 4 in the non-clustered case. The LX40 has the same number of periods

for both cases, but it must be noted that there are more epochs (15 vs. 5,

as shown in parentheses in the table). This observation follows on with the

LX60, where the number of periods for the non-clustered case is greater than

that for the clustered case. The LX60 has the same height as the LX40,

219

thus it has the same number of slots and the same number of epochs in the

non-clustered case.

LX25 LX40 LX60
Clustered 5 (10) 4 (5) 3 (3)

Non-Clustered 4 (20) 4 (15) 4 (15)

Table 8.3: Number of periods and epochs (in parentheses) for application
graph 211002 (channel width 2)

This cut-off point where not clustering is more advantageous shifts to

the right, i.e., towards larger devices, as the channel width increases. When

the channel width is 4 (see Figure 8.7), this point shifts to the LX60. It is

also noteworthy that the LX15 has the same results for both the clustered

and non-clustered cases because no clustering is possible for the LX15 at a

channel width of 4. When the channel width is 8 (see Figure 8.8), the cut-off

point shifts further up the device size scale to the LX100. Again, the LX40

has the same results for both the clustered and non-clustered cases because

the LX40 has a slot size of 80 (see Table 8.1) with a channel width of 8,

thus no clustering is possible. This is to be expected because the sizes of the

slots diminishes as the channel width increases, allowing less modules to be

clustered into each slot.

In real applications, a better clustering technique might minimize the

penalty incurred at small device sizes. However, the number of periods is still

larger in the clustered case, and it is still to be expected that not clustering

will produce a better result. It should also be noted that the amount of

difference will depend upon the degree of module variation present in the

application.

220

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 20 40 60 80 100 120 140 160 180 200

C
rit

ic
al

 P
at

h
D

el
ay

 (
ns

)

XC4VLX Device

CW2: Greedy CP
CW2: Dynamic CP

CW4: Greedy CP
CW4: Dynamic CP

CW8: Greedy CP
CW8: Dynamic CP

Figure 8.9: Contribution to the maximum critical path delays of the wiring
infrastructure for 200 modules, 20% type variation, 60 CLB exact module
size, 120 runs, clustered

8.5 Critical Path Delay

The next set of results that a system designer needs to consider are the

estimated critical path delays. Figure 8.9 shows the estimated contribution

of the generated wiring harnesses to critical path delays, i.e., the chart plots

the maximum critical path delay among all the periods in an application,

averaged among all the applications. These results were obtained by mapping

the previously synthesized graphs to the LX device family with architectural

parameters varied as before.

221

8.5.1 Device Sizes and Channel Widths

When the COMMA methodology is employed it is to be expected that as

the device size increases the critical path delay also increases because the

number of module slots increases and the distance between those that are

furthest apart grows. It is also to be expected that for smaller devices the

delays are higher with larger channel widths because opportunities for clus-

tering are diminished, and thus the wiring harness suffers more congestion

as more subgraphs are merged per period. Diminishing critical path delays

for larger channel widths on large devices (LX100 and above) illustrate the

benefit of having sufficient channel capacity to satisfy the wiring needs of

large subgraphs.

A “dip” in the plots can be seen in the LX60, which is particularly pro-

nounced in the case of the smaller channel widths 2 and 4. Examining the

results for a particular run for the three devices centered on the LX60 at a

channel width of 2 yields the subsequence groupings shown in Table 8.4.

Device Grouping Epochs/Periods
LX40 1 2 | 3 | 4 5 (5 epochs, 3 periods)
LX60 1 | 2 | 3 (3 epochs, 3 periods)
LX80 1 2 (2 epochs, 1 period)

Table 8.4: Subsequence groupings for application graph 221003 (channel
width 2)

As the device size grows, it is expected that the number of epochs will

decrease, and so will the number of periods. The critical path delay, however,

increases as the wiring channels become increasingly congested. Detailed

routers initially use long wires (e.g., hexes and longs) to minimize the number

of switch box hops. As the channel utilization increases, the router is forced

222

to use shorter wires (e.g., singles and doubles), thus requiring more hops,

which results in a higher critical path delay. This means that sparse wiring

harnesses should generally have a lower critical path delay, as can be seen in

the subsequence groupings in Table 8.4, where the LX60 packs just a single

epoch per period.

8.5.2 Comparison between the Greedy and Dynamic

Methods

It can be seen in Figure 8.9 that the dynamic programming approach pro-

duces favorable critical path delay results despite targeting reconfiguration

delay. This may be due to the greedy algorithm always making the most

complex wiring harness possible, whilst the dynamic programming algorithm

tries to minimizes the reconfiguration delays, which may not result in wiring

harnesses that are as congested.

8.5.3 Disabling Clustering

The critical path delays for the clustered and non-clustered cases have also

been compared in Figures 8.10, 8.11 and 8.12.

The plots clearly show that clustering results in shorter critical path de-

lays. The reason for this is because the wiring harnesses in each period are

likely to be more dense in the non-clustered case than in the clustered case.

The wiring harnesses in each period in the non-clustered case are complex

because the intermodule connections in each epoch are less dense than in the

223

 4

 6

 8

 10

 12

 14

 16

 18

 0 20 40 60 80 100 120 140 160 180 200

C
rit

ic
al

 P
at

h
D

el
ay

 (
ns

)

XC4VLX Device

CW2: Clustered DCP
CW2: Non-Clustered DCP

Figure 8.10: Comparison between clustered and non-clustered contribu-
tions to the maximum critical path delay of the wiring harness (channel width
2, 200 modules, 20% type variation, dynamic programming algorithm)

clustered case. Thus more epochs can be merged into a single period if the

individual epochs have sparse intermodule connections.

For example, if providing the intermodule wiring for each epoch takes up

about 30% of the wiring channel area in the non-clustered case, three epochs

with dissimilar intermodule connections can be merged into a single period,

thus the wiring harness for such a period takes up a total of 90% of the wiring

area. However, if the intermodule wiring for a single epoch takes up about

60% of the wiring channel area in the clustered case, then a period can only

consist of a single epoch, thus the wiring harness takes up 60% of the area.

This can also be seen in Table 8.3 where the average number of epochs in

a period when clustered is much less than when it is not clustered. E.g., for

224

 6

 8

 10

 12

 14

 16

 18

 20

 0 20 40 60 80 100 120 140 160 180 200

C
rit

ic
al

 P
at

h
D

el
ay

 (
ns

)

XC4VLX Device

CW4: Clustered DCP
CW4: Non-Clustered DCP

Figure 8.11: Comparison between clustered and non-clustered contribu-
tions to the maximum critical path delay of the wiring harness (channel width
4, 200 modules, 20% type variation, dynamic programming algorithm)

the LX25 device there was an average of 2 epochs per period when clustered,

but 5 epochs per period when not clustered.

8.6 Conclusions

It can be seen from the results that it is generally the case that using larger

devices reduces the reconfiguration time. However, in certain cases it was

shown that a smaller device yields a better result because the mean module

size and type variation of the modules limited the possibility of allocating

modules in neighboring epochs with the same type to the same slot.

225

 13

 14

 15

 16

 17

 18

 19

 20

 21

 40 60 80 100 120 140 160 180 200

C
rit

ic
al

 P
at

h
D

el
ay

 (
ns

)

XC4VLX Device

CW8: Clustered DCP
CW8: Non-Clustered DCP

Figure 8.12: Comparison between clustered and non-clustered contribu-
tions to the maximum critical path delay of the wiring harness (channel width
8, 200 modules, 20% type variation, dynamic programming algorithm)

The system designer should use the smallest channel width that can ac-

commodate the application, since both the reconfiguration and critical path

delays increase as the channel width increases. The success rates for map-

ping the applications with a module size of 60 to different channel widths in

these experiments is shown in Table 8.5. It should be noted that there is a

large proportion of applications that cannot be mapped at the channel width

of 2, which should generally be because there is insufficient wiring area to

accommodate the communications. At the other end of the spectrum, as the

smallest device that can accommodate a channel width of 8 is the LX40, this

option may not be feasible if the budget for purchasing devices is limited to

the LX15 or LX25. At the same time, because the slot sizes shrink as the

226

channel width increases, the slots may no longer accommodate the module

sizes in the application.

CW:2 CW:4 CW:8
Clustered 593/960 (61.8%) 956/960 (99.6%) 718/720 (99.7%)
Non-Clustered 679/960 (70.7%) 958/960 (99.8%) 718/720 (99.7%)

Table 8.5: Success rates for different channel widths for the full range of LX
device sizes, 200 modules, 20% type variation, 60 CLB exact module size,
120 runs

Performing module clustering results in significantly lower reconfiguration

and critical path delays than when it is not performed, and the advantage

increases as the device size increases. However, it was shown that for small

device sizes there is a possibility that disabling module clustering results in

smaller reconfiguration delays.

In comparing the greedy method and the dynamic programming ap-

proach, the dynamic programming approach produces more favorable results

as it considers many more possibilities for subsequence grouping.

Overall, it has been shown that the COMMA methodology is able to allow

a system designer to perform architectural exploration and obtain the results

for mapping a target application onto different devices. The system designer

can then make a more informed choice based on the budget and constraints

that have been imposed, and choose the device and channel width that is

shown to have the best results.

Note: The plots for tests performed using 40, 80, 120 and 160 modules are

included in Appendix A. It can be seen from the plots that similar patterns

emerge, with the main difference being that with less modules, smaller device

227

sizes are needed to obtain the results reported in this chapter, i.e., the plots

shift to the left.

228

Chapter 9

Tool Support

9.1 Introduction

This chapter describes the design implementation stages of the COMMA de-

sign flow. Implementation commences with a sequence of merged subgraphs

and produces a set of configuration bitstreams to be loaded onto the FPGA.

The COMMA design flow integrates seamlessly with the Early Access

Partial Reconfiguration Tool Flow [95] and augments the EAPR toolset at

every step. The need for low-level circuit implementation and bitstream

modification tools is eliminated, and the risk of implementation errors is

reduced.

This chapter first presents a brief introduction to the EAPR tool flow and

its steps to implement partially-reconfigurable applications. The COMMA

implementation flow is then described in the sequence of steps followed by

the EAPR tool flow.

229

9.2 The EAPR Tool Flow

The steps in the EAPR tool flow are depicted in Figure 9.1.

HDL
Design Description

1

Constrain
Area Groups ,
Timing, I/Os

2

Implement
Non-PR Design

3

Timing /Placement
Analysis

4

Implement
Base Design

5

Implement
PR Modules

6

Merge
Base & PR Modules

7

Figure 9.1: Steps in the EAPR tool flow, reproduced from [95]

Step 1 is similar to that of a traditional, static design flow where the design

is described in HDL (“soft” cores) or Relatively-Placed-Macros (RPMs), i.e.,

placed-and-routed (“firm”) cores. In addition to describing the logic, it is

also necessary at this stage to be mindful of how partially-reconfigurable

modules are to communicate with the base design and each other. Thus all

230

the modules that are to be placed in the same area, or are to be swapped

with one another, need to present the same interface. This interface is to

connect to slice macros that have been placed in fixed positions on the FPGA.

These slice macros connect the modules to the base design or to each other.

Although the actual locations and sizes of the areas are not yet defined in

this step, the designer must already be mindful of the number of required

partially-reconfigurable areas and the set of modules that is to be placed

in them. The final task in this step is to synthesize the HDL into device-

independent netlists.

Step 2 involves defining regions on the FPGA where partially-

reconfigurable modules can be placed using area group and location con-

straints. These regions are known as Partially Reconfigurable Regions

(PRRs), and modules that can be placed into them are known as Partially

Reconfigurable Modules (PRMs). The FPGA area that is not part of a PRR

is collectively known as the base region, where static modules, if any, are

placed, as shown in Figure 9.2. Intermodule wiring also crosses the base

region to other PRRs or static modules. In this step, each slice macro is also

assigned a fixed location on the edges of the PRRs.

PRMs can be placed into PRRs as shown in Figure 9.2. It is important to

note the relationship between a PRR and PRM. A partial module bitstream

must be generated for each module type that is to be placed into a PRR.

Thus a PRM differs from a normal VHDL entity or Verilog module in that

it is specifically implemented for a particular PRR. This essentially implies

that every PRM that is to be placed into a PRR must have the same entity

or module name and present the same interface.

231

Base Region

PRR
A

PRR
B

PRM A1
(Partial Bitstream)

PRM A2
(Partial Bitstream)

PRM A3
(Partial Bitstream)

PRM B1
(Partial Bitstream)

PRM B2
(Partial Bitstream)

Figure 9.2: Partially reconfigurable regions (PRRs), partially reconfigurable
modules (PRMs) and the base region

Steps 3 and 4 are used to verify that area and timing constraints are

met, and may be skipped according to the designer’s wishes. These steps are

analogous to the timing verification stages in a standard static FPGA design

flow.

In Step 3 a non-partially-reconfigurable design is implemented, i.e., it

is fully placed and routed. This circuit design involves placing any one of

the possible modules into the PRRs and is meant to represent a possible

configuration during the lifetime of the application.

In Step 4, the timing and placement reports from the place-and-route

tools are analyzed to ensure that they meet constraints. Note that, as in the

standard static FPGA implementation flow, an iteration occurs from Step 4

to Step 2 in case any constraints are not met. In the EAPR tool flow this

iteration can also serve another purpose — to test different configurations

of the application. Implementing only one possible configuration in Step 3

may be insufficient if there is a good deal of variation in the PR modules, so

multiple verification steps may be necessary to fully ensure that constraints

are met.

232

In Step 5 the base design that consists of static modules (if any) and

the connections between the slice macros, the static modules, and I/Os are

placed-and-routed. This differs from Step 3 in that in this step the PRRs

are empty, whereas in Step 3 each PRR must have one PRM placed into it.

The output of this stage is a placed-and-routed netlist without any partially-

reconfigurable modules in the PRRs. An important issue to note here is

that the EAPR tool flow, in contrast to XAPP290, allows routes to cross

through PRRs in order to maximize the probability that timing constraints

are met. An exclusion list of routes is produced at this stage that is used

in the next step to prevent PRMs from using any wires that pass through

their PRRs. The ISE 8.2i version of the EAPR toolset supports a constraint

to prevent routes from passing through module areas. It is not an intention

of the COMMA methodology to allow routes to pass through module areas,

but this does not pose any problems as long as timing and area constraints

are met. In the ISE 9.1i version of the EAPR toolset the option to disable

routes passing through PRRs is removed, and it is unclear as to whether

it will be reinstated in the future. Although it is the original intention of

the COMMA methodology to route around module areas, it is not necessary

and the methodology will still hold in case the system designer decides to

use the ISE 9.1i EAPR toolset, although care must be taken to prevent area

constraints from being exceeded if these routes take up too much area within

the PRRs. The EAPR toolset does not support relocation of modules thus

a separate circuit and bitstream must still be generated for each PRM in

each PRR. One advantage of using the new toolset is that slice macros can

take up only a single slice rather than two, cutting area overhead by half and

233

eliminating the need to define pin directions at design time. At the time of

writing of this thesis single slice macros have been announced but are not

yet available.

In Step 6, each Partially-Reconfigurable Module (PRM) is individually

placed-and-routed. The exclusion list of routes produced in Step 5 is used

at this stage to prevent the modules from using any of the wires that are

already allocated for the base design and/or intermodule communication.

The output of this stage is a collection of partial placed-and-routed netlists,

each one implementing one PRM in the design.

In Step 7, the base netlist from Step 5 and the module netlists from Step

6 are merged together to produce two sets of bitstreams. The first is a set of

full configuration bitstreams, one for each necessary possible starting configu-

ration of modules. A full bitstream consists of the base design and one PRM

in each PRR. This is used as a startup configuration, and one is produced for

as many possible incarnations of module allocations at application startup.

The second set consists of partial module bitstreams. One logic bitstream

and one blanking bitstream is produced for each PRM that is to be placed

in a PRR. Thus the total number of partial module bitstreams for each PRR

is the number of modules that can be placed into that PRR. A blanking

bitstream is also produced for each PRM at each PRR to completely wipe

the PRR of module logic. However, a full reconfiguration of the PRR oc-

curs whenever a module is swapped, not a difference configuration, so the

blanking bitstream is only provided for when it is truly necessary to remove

the module. An example of this may be if outputs need to be disconnected

234

to prevent data from being corrupted. Swapping modules does not require

loading the blanking bitstream first.

9.3 The COMMA Implementation Flow

The COMMA implementation flow is depicted in Figure 9.3. The inputs to

this phase are the set of periods derived from the graph merging process, the

module HDL and the Chip and Communications Configuration (CCC) file.

The final outputs consist of one initial configuration bitstream per period,

and a set of module bitstreams for each epoch. The brackets on the left indi-

cate the specific steps of the EAPR tool flow that the stages of the COMMA

implementation flow apply to.

The rest of this chapter describes the COMMA implementation in each

EAPR step, while detailing the individual processes in each step.

Note regarding the graphics in the following subsections: Por-

tions of Figure 9.3 are reproduced in the following sections detailing

the COMMA implementation for each of the steps of the EAPR tool

flow. As a partial diagram for a particular step may include portions

of other steps, a box with a dashed outline is used to highlight the

parts that are relevant to the discussion.

9.3.1 EAPR Step 1: Design Description

In this step in the standard EAPR tool flow a systems designer decides

how many Partially-Reconfigurable Regions (PRRs) are necessary, plans the

235

Module-Slot
Allocs.

Graph
Merging

Slice Macro
Positions

Wrapping
& Synth.

Module HDL Period Epoch

Period
with Modules

CCC

E
A

P
R

 S
te

p
 1

:
D

e
si

gn
D

es
cr

ip
tio

n

Generate
Top Level

TMR Top
Level Test

E
A

P
R

 S
te

p
 2

:
C

on
st

ra
in

 A
G

s,
I/O

s,
 T

im
in

g

Test Wiring
Harness (.ncd)

Quality
Analysis

Pass

Exhausted

Back to
Graph

Merging

Reposition

E
A

P
R

 S
te

p
 3

:
Im

pl
em

en
t

N
on

-P
R

Slice Macros
(.nmc)

Constraints
(.ucf)

Top-Level
HDL

E
A

P
R

S
te

p
 4

:
A

na
ly

si
s

TMR
Top Level

E
A

P
R

 S
te

p
 5

:
Im

pl
em

en
t

B
as

e

Wiring
Harness (.ncd)

TMR PR
Modules

E
A

P
R

 S
te

p
 6

:
Im

pl
e

m
en

t
P

R
 M

o
du

le
s

EAPR :
Merge

PR Module
(.ncd)

Initial
Epoch (.bit)

Final
Epoch (.bit)E

A
P

R
 S

te
p

 7
:

M
er

ge
 B

as
e

&
 P

R
 M

od
ul

es

Inter-Period Bitstream
Generator

PR Module
(.bit)

Period
Difference (.bit)

Note : TMR
stands for

Translate, Map
and Place &

Route, i.e., the
low-level

implementation
stages in the
Xilinx FPGA
design flow

Figure 9.3: Implementation flow

236

Module -Slot
Allocs.

Graph
Merging

Slice Macro
Positions

Wrapping
& Synth .

Module HDL Period Epoch

CCC

Period
with Modules

Figure 9.4: COMMA implementation of step 1 in the EAPR tool flow

allocation of Partially-Reconfigurable Modules (PRMs) to PRRs, and maps

the module interfaces to slice macro interfaces.

The inputs to the COMMA implementation of this step include the pe-

riods from the graph merging phase, the module HDL, and the Chip and

Communications Configuration file. In turn, these are input into the “Wrap-

ping and Synthesis” process, which generates HDL wrappers for each module

to connect its interface to the slice macros and synthesizes each module to

a device-independent netlist. These synthesized modules are stored together

with the periods to which they belong, forming the output of this step.

Periods and Epochs

Each period from the graph merging phase consists of a set of epochs, as

shown in Figure 9.4. Each epoch in turn consists of the module-slot alloca-

tion for that epoch, i.e., a list of the modules in that epoch and their slot

237

allocations, and the slice macro positions for each bit of I/O communication

for each module. The modules are identified by the VHDL entity or Verilog

module name.

The module HDL should be provided as standard VHDL entity-

architecture descriptions or Verilog modules. The COMMA implementation

maps the ports to slice macros automatically in the “Module Wrapping”

process.

Chip and Communications Configuration

The Chip and Communications Configuration file is an output from the

“Configurator” process described in Section 3.7.1. The “Configurator” is

a program that sources device and package information from the package

and device pinout files provided by Xilinx and the package reports gener-

ated by the PartGen tool in ISE specifying IOB details. The “Configurator”

also serves as a means for the system designer to specify the COMMA de-

vice layout, select IOBs, and set other implementation-level options. The

“Configurator” obtains all this information and packages it into a “Chip and

Communications Configuration” (CCC) file that is used by various tools in

the COMMA design flow.

The CCC file includes the following information:

• Device information: The device code, size, package and timing in-

formation.

• Layout information: The exact dimensions and locations of every

slot. Note that the higher-level “channel width” parameter is not used

238

here as the lower-level implementation caters for any slot layout, not

just the one used in the algorithms and experiments in this thesis.

• Logical pad map: Each IOB used is assigned a logical name so as

to abstract away the actual low-level IOB name and location from the

module implementation. This also allows the same application to be

mapped to different devices and packages by modifying the logical pad

map.

• Slot/macro map: If necessary the system designer can allocate pre-

defined locations for slice macros on the slot boundaries. This mapping

is optional but can be used to fine-tune the timing results.

Wrapping and Synthesis

Each period is input into the wrapping and synthesis process, which performs

the following functions, in sequence:

1. Generate slice macros: Each period has its own set of slice macros

connecting the PRRs to the wiring harness. This subprocess analyzes

all the slice macro positions from every epoch and generates the Xil-

inx Description Language (XDL) code for them, with the appropriate

number of bits and their respective directions, e.g., left-to-right, top-to-

bottom, etc. XDL is a language that describes detailed circuits (logic

and wiring) mapped onto an FPGA and is specified in a text-based for-

mat. The XDL files are then converted to hard macros (NMC files) and

stored together with the period. This subprocess is not run if the ISE

9.1i version of the EAPR toolset is used with single-slice macros, since

239

there is no requirement to predefine the I/O directions with single-slice

macros. However, note that single-slice macros are still not available

at the time of writing of this thesis, thus this subprocess can be turned

off in the future.

2. Allocate slice macros: This subprocess analyzes the slice macro

positions from the epochs again and produces a list of slice macro in-

stantiation locations for each of the PRRs.

3. Generate slot interfaces: Now that all the slice macros have been

generated and allocated, each PRR has its own set of slice macros

allocated along its boundaries. An interface HDL file consisting of a

VHDL entity or Verilog module and its instantiation template is created

for each slot in each period. Each slot will have its own slot interface

that remains unchanged for all epochs within a period.

4. Generate module wrappers: Each module is then wrapped with an

RDP wrapper (see Section 3.6.2) that maps each bit of data at each port

to a slice macro input or output. This is done by obtaining the HDL

slot interface declaration and creating an HDL file that encapsulates

the original module. Each of the ports on the original module are

mapped to the slot interface. Since every module that is to be placed

in a PRR must have the same name, this subprocess also abstracts the

module renaming away from the system designer. As only point-to-

point connections are supported at present, an RDP wrapper simply

maps the original module to the slot interface. A wrapper is usually

weightless, i.e., it contains no logic, unless more than one module output

240

bit is mapped to the same slice macro, or one module input bit is

mapped to more than one slice macro. The subgraph mapping stage

described in Section 6.6.4 tries to assign unique slice macro bits to each

port if possible. Point-to-multipoint/multipoint-to-point/multipoint-

to-multipoint connections may be supported in the future, which would

entail including multiplexers in these RDP wrappers.

5. Synthesis: The wrapped module HDL is finally synthesized with a

chosen synthesis tool into device-independent netlists (XST NGC or

EDIF files) and are stored together with the periods to which they

belong.

The output of this subprocess, and effectively that of Step 1 of the

COMMA implementation of the EAPR tool flow, is the set of periods that

were input into this step combined with the module netlists, slice macros and

physical slice macro allocations.

9.3.2 EAPR Step 2: Constrain Area Groups, I/Os and

Timing

In this step, the periods with module netlists and the CCC file are analyzed

and a set of top-level implementation files are generated. As shown in Fig-

ure 9.6, each slot is implemented as a PRR with the wiring harness being

the “base design”. This “base design” contains one static module, known as

the Reconfiguration Control Module (RCM) that links the off-chip bitstream

storage memory to the on-chip Internal Configuration Access Port (ICAP)

controller. See Section 9.4 for more information on this module.

241

Generate
Top Level

Slice Macros
(.nmc)

Constraints
(.ucf)

Top-Level
HDL

Period
with Modules

Figure 9.5: COMMA implementation of Step 2 in the EAPR tool flow

A top-level HDL file is created with all the slots and slice macros in-

stantiated. Accordingly, a User Constraints File (UCF) is also generated

specifying the dimensions and locations of each slot, and the locations of the

slice macros. The timing constraints (TIMESPEC) for each period are also

added at this point to provide a goal for the wiring harness to meet. As

shown in Figure 9.5, this step simply produces HDL and constraints from

the specifications in the CCC file and the set of periods and netlists obtained

from Step 1. The NMC files are then copied from the set of periods and

packaged into the base design.

9.3.3 EAPR Step 3: Implement Non-PR Design

This step completely implements one of the epochs in each period to generate

a “test wiring harness”. This is a static implementation of an epoch and is

not partially-reconfigurable. In Figure 9.7 the gray process marked “TMR

Top Level Test” indicates that the “T ranslate”, “M ap” and “Place and

242

PRR
3

PRR
7

PRR
2

PRR
6

PRR
1

PRR
5

PRR
0

PRR
4

The base design comprises
the wiring harness and
Reconfiguration Control

Module (RCM)

Figure 9.6: Base design and PRR layout

Route” tools in the EAPR toolset are used. These three tools perform the

final implementation of an FPGA design before a bitstream is generated.

When the top level HDL is implemented, the connections between the

slice macros and other slice macros and IOBs is routed. The resulting wiring

is representative of how the wiring harness will be implemented for partial

reconfiguration in Step 6 since the connections between the slice macros and

IOBs are the same for every epoch in a period. This “test wiring harness”

is checked to see if it meets the area and timing constraints in Step 4, pro-

viding a final verification of implementation feasibility over and above the

estimations performed during subgraph mapping (described in Section 6.6.4).

Although the area and timing estimations in subgraph mapping are overes-

243

TMR Top
Level Test

Test Wiring
Harness (.ncd)

Slice Macros
(.nmc)

Constraints
(.ucf)

Top-Level
HDL

Figure 9.7: COMMA implementation of step 3 in the EAPR tool flow

timates, it is still safest to perform these final verification steps and possibly

return to the graph merging phase if the constraints are not met due to un-

expected complications. The quality analysis is detailed in the next section.

Only one of the epochs per period needs to be implemented as the wiring

harness is the same for all epochs in a period. However, the system designer

may opt to implement each epoch to check that all module arrangements

meet area and timing constraints.

9.3.4 EAPR Step 4: Analyze Timing and Placement

In this step each test wiring harness from Step 3 is analyzed to ensure that it

meets area and timing constraints. If all constraints are met execution then

proceeds on to Step 5 to implement the actual wiring harnesses and modules.

If area constraints are not met the place-and-route process will not suc-

ceed. The Timing Report and Circuit Evaluator (TRACE) tool reports any

paths that fail timing constraints, and control can return to Step 2 to make an

attempt to reposition slice macros such that the timing constraints are met.

244

Test Wiring
Harness (.ncd)

Quality
Analysis

Pass

Exhausted

Back to
Graph

Merging

TMR
Top Level

Reposition

Generate Top
Level. . .

(at EAPR
Step 2)

(at EAPR
Step 5)

Figure 9.8: COMMA implementation of Step 4 in the EAPR tool flow

This is shown in Figure 9.8 with the arrow marked “Reposition”. The slice

macros attached to the paths that fail timing constraints are repositioned

such that they are closer to each other. When all possibilities for reposi-

tioning slice macros are exhausted, then control can return to the graph

merging phase to determine a different set of period arrangements. This

is supported via the “SamePeriod” and “NoMerge” constraints for graph

merging described in Sections 4.7.3 and 4.8.

9.3.5 EAPR Step 5: Implement Base Design

In Step 5 the actual wiring harness for each period is implemented using the

top level HDL, constraints and slice macros generated in Step 2. This step

is identical to that in the standard EAPR tool flow, as shown in Figure 9.9.

245

TMR
Top Level

Wiring
Harness (.ncd)

Slice Macros
(.nmc)

Constraints
(.ucf)

Top-Level
HDL

Figure 9.9: COMMA implementation of Step 5 in the EAPR tool flow

Perhaps the most important issue to note here is that the wiring harness

is actually the base design. The base design also contains a very small Re-

configuration Control Module (RCM) (see Section 9.4), which facilitates the

loading of bitstreams. The resulting circuit (NCD file) for each period thus

consists of the RCM and the slice macros, and the wiring between them and

the IOBs.

9.3.6 EAPR Step 6: Implement Partially-

Reconfigurable Modules

In this step each module is implemented and a circuit description (NCD

file) is generated for it, as shown in Figure 9.10. Note that one NCD file is

generated for each module type in each slot in each period. The COMMA

methodology does not currently support bitstream relocation, so different

NCD files are generated for a module placed in different slots. This is in line

with the standard EAPR tool flow and thus no explicit bitstream manipula-

246

TMR PR
Modules

PR Module
(.ncd)

(at EAPR
Step 1)

Period
with Modules

Figure 9.10: COMMA implementation of Step 6 in the EAPR tool flow

tion is performed, minimizing the risk of implementation errors and possible

damage to the FPGA.

9.3.7 EAPR Step 7: Merge Base and Partially-

Reconfigurable Modules

In this step the wiring harness and partially reconfigurable modules are

merged together to form two separate full circuits — one each for the first

epoch and the final epoch in the period. Full bitstreams are generated for

these epochs, and partial bitstreams are generated for each module in each

slot.

The initial and final epoch bitstreams are stored into the inter-period

bitstream generator process to generate difference bitstreams between period

transitions as shown in Figure 9.11. Instead of performing a full configura-

tion between periods, the bitstream difference between the final epoch of an

outgoing period and the first epoch of an incoming period is generated and

used to reduce the reconfiguration overhead between periods.

247

(at EAPR
Step 7)

EAPR :
Merge

PR Module
(.ncd)

Initial
Epoch (.bit)

Final
Epoch (.bit)

Inter-Period Bitstream
Generator

PR Module
(.bit)

Period
Difference (.bit)

Wiring
Harness (.ncd)

(at EAPR
Step 6)

Figure 9.11: COMMA implementation of Step 7 in the EAPR tool flow
with the inter-period difference bitstream generator

The final output of the implementation phase is a configuration bitstream

for the initial epoch of each period, which is a full bitstream if it is the first

period, or a difference bitstream if not, and a partial module bitstream for

each module in each slot in each epoch.

9.4 Reconfiguration Control

The COMMA methodology currently employs internal reconfiguration, i.e., it

assumes that the impetus for reconfiguration comes from within the FPGA,

rather than being managed by off-chip controllers. Current Virtex-4 devices

do not have sufficient on-chip memory to contain the bitstreams, so the

bitstreams are stored off-chip in flash memory or RAM.

248

A Reconfiguration Control Module (RCM) is built into every wiring

harness to facilitate the loading of bitstreams. The RCM is extremely

lightweight, consisting only of a register that provides the control signals

to the ICAP.

At present the graph merging process adds two modules into each epoch,

which are input and output buffer control modules supporting data transfer

between epochs. During the run of an epoch the output data is buffered by

the output buffer module into on- or off-chip memory. This data is then used

by the next epoch through the input buffer module, sourcing the data from

the same on- or off-chip memory.

The input module also provides bitstream reconfiguration control. At

the end of each epoch, it triggers the RCM to reconfigure each module that

needs to be replaced in the next epoch. The start and end addresses of

each partial bitstream for each slot are pre-registered with the RCM, thus

allowing it to choose the appropriate bitstream and to perform the module

reconfiguration. It registers the reconfiguration of its own slot last. When

the input module for the next epoch is configured it triggers the start of the

epoch by providing the buffered data from the previous epoch to the modules

in the current epoch.

9.5 Conclusion

This chapter described the tool flow and tools necessary to perform the

low-level implementation stages, and thus completes the description of the

COMMA methodology.

249

The aim of this is to provide an automated, straightforward and tightly

integrated implementation process. The system designer works at a higher

level of abstraction, as the implementation flow described in this chapter

does not require any intervention from the system designer at any point.

However, the system designer can still specify options in the configuration

files to tweak the process, such as constraining the placement of slice macros

a priori.

250

Chapter 10

Conclusions and Future Work

10.1 Summary and Conclusions

Module-based dynamic reconfiguration of FPGAs enables the use of smaller

devices through hardware virtualization and enhances throughput by multi-

tasking. It also provides greater flexibility by allowing user-dependent ap-

plication execution while maximizing the use of logic resources by loading

modules when they are needed. This thesis identified that there is a neces-

sity to provide top-down methodologies to assist systems designers in imple-

menting applications that use module-based dynamic reconfiguration. Such

methodologies should start from an application specification, properly par-

tition and schedule it for dynamic reconfiguration, and finally implement it

onto an actual FPGA device. It is desirable to apply low-level device imple-

mentation constraints, e.g., area and timing constraints, across all the stages

of the methodology so as to it maximize the probability of implementation

feasibility.

251

This thesis proposed a top-down methodology for implementing dynami-

cally reconfigurable applications to target the new page-reconfigurable Xilinx

Virtex-4 FPGA family. The methodology structures the designer’s use of the

EAPR partial reconfiguration toolflow provided by Xilinx [95].

The focus of the thesis has been to provide a communications infras-

tructure within the methodology that supports the dynamically changing

communications interfaces of the modules. To implement such an infrastruc-

ture, the methodology uses a fixed module slot layout on the FPGA with a

point-to-point wiring harness surrounding the slots providing the intermodule

communications needs. The layout takes advantage of the two-dimensional

paged reconfiguration architecture of the Virtex-4 FPGA family by allowing

independent reconfiguration of each slot in each page. The point-to-point

wiring also minimizes communications overheads and does not enforce ad-

herence to any particular communications protocol.

Using such a regular layout may incur penalties to the critical path de-

lay as compared to traditional place-and-route methods that encourage the

compaction of module logic freely placed about the FPGA. A study was

performed to analyze the critical path overheads and it was found that the

penalty incurred was acceptable at high communication densities. In some

cases the regular layout was more beneficial than traditional free-form com-

paction and placement methods. Given that the methodology encourages

maximal utilization of the device area, the communications densities will

foreseeably be high and thus the overheads are acceptable. This is a re-

markably good result since the layout provides substantial benefits in iso-

lating regions that are reconfigured independently (in the form of modules).

252

In addition, the time to place-and-route circuits in this regular layout was

markedly reduced (see Figure 5.9).

A method was proposed to generate wiring harnesses that implement the

communications infrastructure for dynamically placed modules. The method

involves merging subgraphs, each of which is a temporal partition of the full

communications graph representing a configuration that is loaded onto the

FPGA. Each merged subgraph is then transformed into a wiring harness

that support the communications for all the modules in the subgraph. The

aim of subgraph merging is to reduce reconfiguration delay by implementing

wiring harnesses that support the longest possible configuration sequence on

the device. An application may require more than one wiring harness for its

entire execution, thus wiring harnesses may need to be reconfigured as well.

Two algorithms were proposed for the merging of subgraphs, an initial

one based on greedy methods and an improved algorithm based on dynamic

programming. The dynamic programming algorithm considers many more

possibilities for subgraph merging and aims to minimize the total recon-

figuration delay. An algorithm based on FPGA routability estimation was

proposed to map merged subgraphs to the device. The algorithm estimates

area consumption, reconfiguration delay and the contribution to the critical

path delay from a wiring harness.

An experimental framework was developed and the greedy and dynamic

methods for graph merging were assessed. Experiments with large commu-

nications graphs were performed on all devices in the Virtex-4 LX family.

The results show that graph merging is clearly beneficial and reduces the re-

configuration delays significantly. The dynamic programming algorithm con-

253

sistently provides better reconfiguration delay and critical path delay results

than the greedy method. The experimental framework also demonstrates the

effectiveness of the methodology in aiding systems designers to perform ar-

chitectural exploration in order to select the best device size given the budget

and other constraints of the application.

The results of the experiments illustrate an interesting phenomenon

whereby the use of a smaller device may result in a lower reconfiguration

delay than a larger one. This was found to be due to a sub-process that is

performed during graph merging known as module clustering. Module clus-

tering packs as much module logic into each slot as possible to maximize

area utilization, but the number of apparent module types also increases as

a side effect of this. As a result, fewer opportunities are present to reduce

reconfiguration delay by placing modules of the same type in the same slot

in consecutive configurations. Disabling clustering, or using a smaller de-

vice mitigates this effect, but improvements to the clustering and scheduling

algorithms to support the methodology are desirable.

In general, clustering was found to be beneficial to reducing reconfigura-

tion delay and critical path delay as device sizes increased.

Finally, the low-level implementation stages were described, involving in-

tegration into the existing Xilinx Early Access Partial Reconfiguration tool

flow. The final output of the methodology is a set of bitstreams to be con-

figured onto the FPGA.

254

10.2 Directions for Further Study

Several immediate directions for further investigation can be identified from

the methodology proposed in this thesis and from the results that were ob-

tained.

The focus of the thesis was on generating communications infrastruc-

tures to support the changing communications interfaces of dynamic mod-

ules. Application- and methodology-neutral clustering and scheduling (par-

titioning) algorithms were used, and it was identified from the results that

improvements can be made to these algorithms in order to customize them

to specifically target this methodology. Feasible enhancements include mini-

mizing the number of apparent module types during module clustering, and

maximizing the number of equivalent module types in adjacent partitions

during scheduling.

The methods described in this thesis apply to application problems that

can be modeled as a linear sequence of configurations. In general, more so-

phisticated applications that require looping, forking or joining sequences are

not currently supported. Some manual constraint methods are described in

Chapter 4 and a thorough assessment of them or other methods is desirable.

The task graphs studied to date have an implied data dependency, i.e., a

module produces some data for another module to consume, and completes

its execution. The modeling of the task graphs could be improved to be more

realistic, i.e., to capture the timing of events and communication patterns of

the modules in more detail.

255

The graph merging algorithms can also be very well improved upon to

minimize reconfiguration overheads, as the dynamic programming algorithm

assumes a heuristic of a full reconfiguration delay between periods. The

wiring harnesses are currently generated automatically through ISE’s place-

and-route. The amount of bitstream difference between wiring harnesses can

be minimizes by building custom harnesses or trying to guide ISE’s place-

and-route.

The lack of benchmarks for reconfigurable computing makes it difficult to

test the method and compare the results. Further investigation into creating

benchmarks and representative applications for reconfigurable computing is

desirable.

Finally, the specific problem that was tackled in this thesis is one in which

the application’s modules, their communication requirements and temporal

relationships are all known at design time. This information enables the opti-

mized synthesis of communications infrastructures when a standard module

interface is not imposed. When information about the modules and their

communications is not available a priori, the methods described in this the-

sis encourage the pre-allocation of the estimated communications require-

ments ahead of time. In effect, these methods are not currently practical

for such applications. Adapting the methodology to a more general com-

munications infrastructure such as a network-on-chip may allow an FPGA

to support paged modular reconfiguration without prior knowledge of the

communications needs of applications or explicit prior knowledge of the set

of applications that are active at run time. This is an essential step towards

using reconfigurable hardware in general-purpose multitasking environments.

256

Appendix A

Result Plots for 40, 80, 120 and

160 modules

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 20 40 60 80 100 120 140 160 180 200

R
ec

on
fig

ur
at

io
n

D
el

ay
 (

us
)

XC4VLX Device

CW2: Greedy RD
CW2: Dynamic RD

CW4: Greedy RD
CW4: Dynamic RD

CW8: Greedy RD
CW8: Dynamic RD

Figure A.1: Reconfiguration delays: 40 modules, 20% type variation, 60
CLB exact module size, 120 runs, clustered

257

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 20 40 60 80 100 120 140 160 180 200

R
ec

on
fig

ur
at

io
n

D
el

ay
 (

us
)

XC4VLX Device

CW2: Greedy RD
CW2: Dynamic RD

CW4: Greedy RD
CW4: Dynamic RD

CW8: Greedy RD
CW8: Dynamic RD

Figure A.2: Reconfiguration delays: 80 modules, 20% type variation, 60
CLB exact module size, 120 runs, clustered

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 20 40 60 80 100 120 140 160 180 200

R
ec

on
fig

ur
at

io
n

D
el

ay
 (

us
)

XC4VLX Device

CW2: Greedy RD
CW2: Dynamic RD

CW4: Greedy RD
CW4: Dynamic RD

CW8: Greedy RD
CW8: Dynamic RD

Figure A.3: Reconfiguration delays: 120 modules, 20% type variation, 60
CLB exact module size, 120 runs, clustered

258

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 20 40 60 80 100 120 140 160 180 200

R
ec

on
fig

ur
at

io
n

D
el

ay
 (

us
)

XC4VLX Device

CW2: Greedy RD
CW2: Dynamic RD

CW4: Greedy RD
CW4: Dynamic RD

CW8: Greedy RD
CW8: Dynamic RD

Figure A.4: Reconfiguration delays: 160 modules, 20% type variation, 60
CLB exact module size, 120 runs, clustered

 200

 300

 400

 500

 600

 700

 800

 900

 0 20 40 60 80 100 120 140 160 180 200

R
ec

on
fig

ur
at

io
n

D
el

ay
 (

us
)

XC4VLX Device

CW2: Greedy RD
CW2: Dynamic RD

CW4: Greedy RD
CW4: Dynamic RD

CW8: Greedy RD
CW8: Dynamic RD

Figure A.5: Reconfiguration delays: 40 modules, 20% type variation, 60
CLB exact module size, 120 runs, non-clustered

259

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 0 20 40 60 80 100 120 140 160 180 200

R
ec

on
fig

ur
at

io
n

D
el

ay
 (

us
)

XC4VLX Device

CW2: Greedy RD
CW2: Dynamic RD

CW4: Greedy RD
CW4: Dynamic RD

CW8: Greedy RD
CW8: Dynamic RD

Figure A.6: Reconfiguration delays: 80 modules, 20% type variation, 60
CLB exact module size, 120 runs, non-clustered

 3000

 3200

 3400

 3600

 3800

 4000

 4200

 4400

 4600

 4800

 0 20 40 60 80 100 120 140 160 180 200

R
ec

on
fig

ur
at

io
n

D
el

ay
 (

us
)

XC4VLX Device

CW2: Greedy RD
CW2: Dynamic RD

CW4: Greedy RD
CW4: Dynamic RD

CW8: Greedy RD
CW8: Dynamic RD

Figure A.7: Reconfiguration delays: 120 modules, 20% type variation, 60
CLB exact module size, 120 runs, non-clustered

260

 4500

 5000

 5500

 6000

 6500

 7000

 7500

 0 20 40 60 80 100 120 140 160 180 200

R
ec

on
fig

ur
at

io
n

D
el

ay
 (

us
)

XC4VLX Device

CW2: Greedy RD
CW2: Dynamic RD

CW4: Greedy RD
CW4: Dynamic RD

CW8: Greedy RD
CW8: Dynamic RD

Figure A.8: Reconfiguration delays: 160 modules, 20% type variation, 60
CLB exact module size, 120 runs, non-clustered

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100 120 140 160 180 200

C
rit

ic
al

 P
at

h
D

el
ay

 (
ns

)

XC4VLX Device

CW2: Greedy CP
CW2: Dynamic CP

CW4: Greedy CP
CW4: Dynamic CP

CW8: Greedy CP
CW8: Dynamic CP

Figure A.9: Critical path delays: 40 modules, 20% type variation, 60 CLB
exact module size, 120 runs, clustered

261

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 0 20 40 60 80 100 120 140 160 180 200

C
rit

ic
al

 P
at

h
D

el
ay

 (
ns

)

XC4VLX Device

CW2: Greedy CP
CW2: Dynamic CP

CW4: Greedy CP
CW4: Dynamic CP

CW8: Greedy CP
CW8: Dynamic CP

Figure A.10: Critical path delays: 80 modules, 20% type variation, 60 CLB
exact module size, 120 runs, clustered

 4

 6

 8

 10

 12

 14

 16

 18

 0 20 40 60 80 100 120 140 160 180 200

C
rit

ic
al

 P
at

h
D

el
ay

 (
ns

)

XC4VLX Device

CW2: Greedy CP
CW2: Dynamic CP

CW4: Greedy CP
CW4: Dynamic CP

CW8: Greedy CP
CW8: Dynamic CP

Figure A.11: Critical path delays: 120 modules, 20% type variation, 60
CLB exact module size, 120 runs, clustered

262

 4

 6

 8

 10

 12

 14

 16

 18

 0 20 40 60 80 100 120 140 160 180 200

C
rit

ic
al

 P
at

h
D

el
ay

 (
ns

)

XC4VLX Device

CW2: Greedy CP
CW2: Dynamic CP

CW4: Greedy CP
CW4: Dynamic CP

CW8: Greedy CP
CW8: Dynamic CP

Figure A.12: Critical path delays: 160 modules, 20% type variation, 60
CLB exact module size, 120 runs, clustered

 4

 6

 8

 10

 12

 14

 16

 0 20 40 60 80 100 120 140 160 180 200

C
rit

ic
al

 P
at

h
D

el
ay

 (
ns

)

XC4VLX Device

CW2: Greedy CP
CW2: Dynamic CP

CW4: Greedy CP
CW4: Dynamic CP

CW8: Greedy CP
CW8: Dynamic CP

Figure A.13: Critical path delays: 40 modules, 20% type variation, 60 CLB
exact module size, 120 runs, non-clustered

263

 4

 6

 8

 10

 12

 14

 16

 18

 0 20 40 60 80 100 120 140 160 180 200

C
rit

ic
al

 P
at

h
D

el
ay

 (
ns

)

XC4VLX Device

CW2: Greedy CP
CW2: Dynamic CP

CW4: Greedy CP
CW4: Dynamic CP

CW8: Greedy CP
CW8: Dynamic CP

Figure A.14: Critical path delays: 80 modules, 20% type variation, 60 CLB
exact module size, 120 runs, non-clustered

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 20 40 60 80 100 120 140 160 180 200

C
rit

ic
al

 P
at

h
D

el
ay

 (
ns

)

XC4VLX Device

CW2: Greedy CP
CW2: Dynamic CP

CW4: Greedy CP
CW4: Dynamic CP

CW8: Greedy CP
CW8: Dynamic CP

Figure A.15: Critical path delays: 120 modules, 20% type variation, 60
CLB exact module size, 120 runs, non-clustered

264

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 20 40 60 80 100 120 140 160 180 200

C
rit

ic
al

 P
at

h
D

el
ay

 (
ns

)

XC4VLX Device

CW2: Greedy CP
CW2: Dynamic CP

CW4: Greedy CP
CW4: Dynamic CP

CW8: Greedy CP
CW8: Dynamic CP

Figure A.16: Critical path delays: 160 modules, 20% type variation, 60
CLB exact module size, 120 runs, non-clustered

265

Bibliography

[1] Ahmadinia, A., Bobda, C., Ding, J., Majer, M. and Teich, J. A prac-

tical approach for circuit routing on dynamic reconfigurable devices.

In International Workshop on Rapid System Prototyping, pages 84–90,

Montréal, Canada, 2005.

[2] Ali, F.M. and Das, A.S. Hardware-software co-synthesis of hard real-

time systems with reconfigurable FPGAs. Computers and Electrical

Engineering, 30(7):471–489, 2004.

[3] Balachandran, S. and Bhatia, D. A priori wirelength and intercon-

nect estimation based on circuit characteristics. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 24(7):1054–

1065, 2005.

[4] Balachandran, S., Kannan, P. and Bhatia, D. On routing demand and

congestion estimation for FPGAs. In Asia and South Pacific Design Au-

tomation Conference and the International Conference on VLSI Design,

pages 639–646, Bangalore, India, 2002.

[5] Banerjee, S., Bozorgzadeh, E. and Dutt, N. Physically-aware HW-SW

partitioning for reconfigurable architectures with partial dynamic recon-

266

figuration. In Design Automation Conference, pages 335–340, Anaheim,

California, USA, 2005. ACM.

[6] Becker, T., Luk, W. and Cheung, P.Y.K. Enhancing Relocatability

of Partial Bitstreams for Run-Time Reconfiguration. In International

Symposium on Field-Programmable Custom Computing Machines, Napa

Valley, California, USA, 2007.

[7] Betz, V. and Rose, J. FPGA routing architecture: segmentation and

buffering to optimize speed and density. In International Symposium on

Field Programmable Gate Arrays , pages 59–68, Monterey, California,

USA, 1999. ACM.

[8] Blodget, B., Bobda, C., Hübner, M. and Niyonkuru, A. Partial and

dynamically reconfiguration of Xilinx Virtex-II FPGAs. In International

Conference on Field-Programmable Logic and Applications, pages 801–

810, Antwerp, Belgium, 2004.

[9] Bobda, C. Synthesis of dataflow graphs for reconfigurable systems us-

ing temporal partitioning and temporal placement (Dr rer. nat. thesis).

University of Paderborn, 2003.

[10] Bobda, C., Ahmadinia, A., Majer, M., Teich, J., Fekete, S. and Veen,

J.v.d. DyNoC: A dynamic infrastructure for communication in dynam-

ically reconfigurable devices. In International Conference on Field Pro-

grammable Logic and Applications, pages 153–158, Tampere, Finland,

2005.

267

[11] Bobda, C., Majer, M., Koch, D., Ahmadinia, A. and Teich, J. A dynamic

NoC approach for communication in reconfigurable devices. In Interna-

tional Conference on Field-Programmable Logic and Applications, pages

1032–1036, Antwerp, Belgium, 2004.

[12] Bondalapati, K. Modeling and mapping for dynamically reconfigurable

hybrid architectures. PhD Thesis, 2001.

[13] Bondalapati, K. and Prasanna, V.K. Dynamic precision management for

loop computations on reconfigurable architectures. In IEEE Symposium

on Field-Programmable Custom Computing Machines, Napa Valley, Cal-

ifornia, 1999. IEEE.

[14] Brebner, G. The Swappable Logic Unit: A paradigm for virtual hard-

ware. In IEEE Symposium on FPGAs for Custom Computing Machines,

pages 77–86, Napa Valley, California, USA, 1997.

[15] Bruhn, A.e.s., Weickert, J., Feddern, C., Kohlberger, T. and Schnörr, C.

Real-time optic flow computation with variational methods. In Com-

puter Analysis of Images and Patterns, volume 2756, pages 222–229.

Springer Berlin / Heidelberg, 2003.

[16] Chan, J. and Parameswaran, S. NoCOUT : NoC topology genera-

tion with mixed packet-switched and point-to-point networks. In Asia

and South Pacific Design Automation Conference, COEX, Seoul, Korea,

2008.

[17] Chaouat, L., Garin, S., Vachoux, A. and Mlynek, D. Rapid prototyping

of hardware systems via model reuse. In IEEE International Work-

268

shop on Rapid System Prototyping, pages 150–156, Chapel Hill, North

Carolina, USA, 1997.

[18] Chatha, K.S. and Vemuri, R. Hardware-software codesign for dynami-

cally reconfigurable architectures. In International Conference on Field-

Programmable Logic, pages 175–185, Glasgow, UK, 1999.

[19] Compton, K. and Hauck, S. Reconfigurable computing: a survey of

systems and software. ACM Computing Surveys (CSUR), 34(2):171–

210, 2002.

[20] Cormen, T.H., Leiserson, C.E. and Rivest, R.L. Introduction to Algo-

rithms. The MIT Press, 1990.

[21] Dally, W.J. and Seitz, C.L. The torus routing chip. Distributed Com-

puting, 1:187–196, 1986.

[22] Edwards, M. and Green, P. Run-time support for dynamically recon-

figurable computing systems. Journal of Systems Architecture, 49(4–

6):267–281, 2003.

[23] Eles, P., Kuchcinski, K., Peng, Z., Doboli, A. and Pop, P. Scheduling

of conditional process graphs for the synthesis of embedded systems. In

Design, Automation and Test in Europe, pages 132–139, Paris, France,

1998.

[24] Elgindy, H., Schröder, H., Spray, A., Somani, A.K. and Schmeck, H.

RMB — a reconfigurable multiple bus network. In International Sympo-

sium on High-Performance Computer Architecture, pages 108–117, San

Jose, CA, USA, 1996. IEEE.

269

[25] Esquiagola, J., Ozari, G., Teruya, M., Strum, M. and Chau, W. A

dynamically reconfigurable Bluetooth base band unit. In International

Conference on Field Programmable Logic and Applications, pages 148–

152, Tampere, Finland, 2005.

[26] Fekete, S.P., Köhler, E. and Teich, J. Optimal FPGA module placement

with temporal precedence constraints. In Design, Automation and Test

in Europe, pages 658–665, Munich, Germany, 2001. IEEE.

[27] Ganesan, S. and Vemuri, R. An integrated temporal partitioning and

partial reconfiguration technique for design latency improvement. In

Design Automation and Test in Europe, pages 320–325, Paris, France,

2000. ACM.

[28] Ghiasi, S., Nahapetian, A. and Sarrafzadeh, M. An optimal algorithm

for minimizing run-time reconfiguration delay. ACM Transactions on

Embedded Computing Systems, 3(2):237–256, 2004.

[29] Guccione, S. and Levi, D. Run-time parameterizable cores. In Interna-

tional Conference on Field-Programmable Logic and Applications, pages

215–222, Glasgow, UK, 1999. Springer-Verlag.

[30] Guccione, S., Levi, D. and Sundararajan, P. JBits — Java based inter-

face for reconfigurable computing. In Annual Military and Aerospace Ap-

plications of Programmable Devices and Technologies Conference, John

Hopkins University, Maryland, USA, 1999.

[31] Hagemeyer, J., Kettelhoit, B., Köster, M. and Porrmann, M. A de-

sign methodology for communication infrastructures on partially recon-

270

figurable FPGAs. In International Conference on Field-Programmable

Logic and Applications, pages 331–338, Amsterdam, The Netherlands,

2007. IEEE.

[32] Hart, P.E., Nillson, N.J. and Raphael, B. A formal basis for the heuristic

determination of minimum cost paths. IEEE Transactions on Systems

Science and Cybernetics, 2:100–107, 1968.

[33] Heron, J.-P. and Woods, R.F. Accelerating run-time reconfiguration on

FCCMs. In IEEE Symposium on Field-Programmable Custom Comput-

ing Machines, pages 260–261, Napa Valley, CA, 1999.

[34] Hübner, M., Becker, T. and Becker, J. Real-Time LUT-Based Net-

work Topologies for Dynamic and Partial FPGA Self-Reconfiguration.

In Symposium on Integrated Circuits and Systems Design, pages 28–32,

Lafayette, Los Angeles, USA, 2004.

[35] Hübner, M., Schuck, C., Kühnle, M. and Becker, J. New 2-dimensional

partial dynamic reconfiguration techniques for real-time adaptive mi-

croelectronic circuits . In IEEE Computer Society Annual Symposium

on VLSI: Emerging VLSI Technologies and Architectures, pages 97–102,

Karlsruhe, Germany, 2006.

[36] IEEE. IEEE Standard VHDL Language Reference Manual. IEEE Stan-

dard P1076 2004-10, 2004.

[37] IEEE. IEEE Standard for Verilog Hardware Description Language.

IEEE Standard 1364 -2005, 2006.

271

[38] Janac, G., Poltronetti, T., Herbert, A. and RuDusky, D. IP supply

chain-the design reuse paradigm comes of age. Integrated System Design,

13(141):66–70, 2001.

[39] Kalte, H. and Porrmann, M. REPLICA2Pro: Task relocation by bit-

stream manipulation in Virtex-II/Pro FPGAs. In Conference on Com-

puting Frontiers, pages 403–412, Ischia, Italy, 2006.

[40] Kalte, H., Lee, G., Porrmann, M. and Rückert, U. Study on column

wise design compaction for reconfigurable systems. In IEEE Interna-

tional Conference on Field-Programmable Technology, pages 413–416,

Brisbane, Australia, 2004.

[41] Kalte, H., Lee, G., Porrmann, M. and Rueckert, U. REPLICA: A Bit-

stream Manipulation Filter for Module Relocation in Partial Reconfig-

urable Systems. In IEEE International Parallel and Distributed Process-

ing Symposium, page 151b, Denver, Colorado, USA, 2005.

[42] Kalte, H., Porrmann, M. and Rückert, U. A prototyping platform for

dynamically reconfigurable system on chip design. In IEEE Workshop

on Heterogeneous Reconfigurable Systems on Chip, Hamburg, Germany,

2002.

[43] Kalte, H., Porrmann, M. and Rückert, U. System-on-Programmable-

Chip approach enabling online fine-grained 1D-placement. In Interna-

tional Parallel and Distributed Processing Symposium, pages 141–148,

Santa Fe, New Mexico, USA, 2004.

272

[44] Kannan, P., Balachandran, S. and Bhatia, D. On metrics for compar-

ing routability estimation methods for FPGAs. In Design Automation

Conference, pages 70–75, New Orleans, Louisiana, USA, 2002.

[45] Karypis, G. and Kumar, V. A fast and high quality multilevel scheme for

partitioning irregular graphs. SIAM Journal on Scientific Computing,

20(1):359–392, 1998.

[46] Katajainen, J., Pasanen, T. and Teuhola, J. Practical in-place merge-

sort. Nordic Journal of Computing, 3(1):27–40, 1996.

[47] Kernighan, B.W. and Lin, S. An efficient heuristic procedure for par-

titioning graphs. The Bell System Technical Journal, 49(2):291–307,

1970.

[48] Kim, J., Ha, D.S. and Reed, J.H. A new reconfigurable modem architec-

ture for 3G multi-standard wireless communication systems. In IEEE In-

ternational Symposium on Circuits and Systems, volume 2, pages 1051–

1054, Kobe, Japan, 2005.

[49] Koh, S. and Diessel, O. COMMA: a communications methodology for

dynamic module-based reconfiguration of FPGAs. In International Con-

ference on Architecture of Computing Systems, Dynamically Reconfig-

urable Systems Workshop Proceedings, pages 173–182, Frankfurt, Ger-

many, 2006.

[50] Koh, S. and Diessel, O. COMMA: a communications methodology for

dynamic module reconfiguration in FPGAs. In IEEE Symposium on

273

Field-Programmable Custom Computing Machines, pages 273–274, Napa

Valley, California, 2006.

[51] Koh, S. and Diessel, O. Communications infrastructure generation for

modular FPGA reconfiguration. In IEEE International Conference on

Field Programmable Technology, pages 321–324, Bangkok, Thailand,

2006. IEEE.

[52] Koh, S. and Diessel, O. Module graph merging and placement to reduce

reconfiguration overheads in paged FPGA devices. In International Con-

ference on Field Programmable Logic and Applications, pages 293–298,

Amsterdam, The Netherlands, 2007. IEEE.

[53] Koh, S. and Diessel, O. The effectiveness of configuration merging in

point-to-point networks for module-based FPGA reconfiguration. In

IEEE Symposium on Field-Programmable Custom Computing Machines

(in submission), Palo Alto, California, 2008. IEEE.

[54] Köster, M., Porrmann, M. and Kalte, H. Relocation and defragmenta-

tion for heterogeneous reconfigurable systems. In International Confer-

ence on Engineering of Reconfigurable Systems and Algorithms, pages

70–76, Volos, Greece, 2006.

[55] Lou, J., Thakur, S., Krishnamoorthy, S. and Sheng, H.S. Estimating

routing congestion using probabilistic analysis. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 21(1):32–41,

2002.

274

[56] Lysaght, P., Blodget, B., Mason, J., Young, J. and Bridgford, B. In-

vited paper: Enhanced architectures, design methodologies and CAD

tools for dynamic reconfiguration of Xilinx FPGAs. In International

Conference on Field Programmable Logic and Applications, pages 1–6,

Madrid, Spain, 2006.

[57] Majer, M., Teich, J., Ahmadinia, A. and Bobda, C. The Erlangen Slot

Machine: A dynamically reconfigurable FPGA-based computer. The

Journal of VLSI Signal Processing, 47(1), 2007.

[58] Malik, U. Configuration encoding techniques for fast FPGA reconfigu-

ration. PhD Thesis, 2006.

[59] Manohararajah, V., Chiu, G.R., Singh, D.P. and Brown, S.D. Difficulty

of predicting interconnect delay in a timing driven FPGA CAD flow. In

International Workshop on System-Level Interconnect Prediction, pages

3–8, San Diego, California, USA, 2006.

[60] Marescaux, T., Bartic, A., Verkest, D., Vernalde, S. and Lauwereins,

R. Interconnection networks enable fine-grain dynamic multi-tasking on

FPGAs. In International Conference on Field-Programmable Logic and

Applications, pages 741–763, Montpellier, France, 2002.

[61] McMurchie, L. and Ebeling, C. PathFinder: A negotiation-based

performance-driven router for FPGAs. In International ACM Sympo-

sium on Field-Programmable Gate Arrays, pages 111–117, Monterey,

California, USA, 1995.

275

[62] Morris, K. FPGA BASE jump — Partial reconfiguration for SDR.

FPGA and Structured ASIC Journal, 17(9), 2007.

[63] Murphy, C.W. and Harvey, D.M. Reconfigurable hardware implemen-

tation of BinDCT. Electronics Letters, 38:1012–1013, 2002.

[64] Noguera, J. and Basia, R.M. Multitasking on reconfigurable architec-

tures: microarchitecture support and dynamic scheduling. ACM Trans-

actions on Embedded Computing Systems, 3(2):385–406, 2004.

[65] Oliveira, A. and Sklyarov, V. Implementation of virtual control cir-

cuits in dynamically reconfigurable FPGAs. In IEEE International

Conference on Electronics, Circuits and Systems, pages 217–220, Pafos,

Cyprus, 1999.

[66] Ouaiss, I., Govindarajan, S., Srinivasan, V., Kaul, M. and Vemuri, R. An

integrated partitioning and synthesis system for dynamically reconfig-

urable multi-FPGA architectures. In Reconfigurable Architectures Work-

shop, pages 31–36, Orlando, Florida, USA, 1998.

[67] Pang, V. Real-time optical-flow computation using FPGAs. Computer

Engineering Undergraduate Thesis, School of Computer Science and En-

gineering, The University of New South Wales, 2005.

[68] Parthasarathy, G., Marek-Sadowska, M., Mukherjee, A. and Singh, A.

Interconnect complexity-aware FPGA placement using Rent’s rule. In

International Workshop on System-Level Interconnect Prediction, pages

115–121, Sonoma, California, United States, 2001.

276

[69] Purna, K.M.G. and Bhatia, D. Temporal partitioning and scheduling

data flow graphs for reconfigurable computers. IEEE Transactions on

Computers, 48(6):579–590, 1999.

[70] Quinn, H., King, L.A.S., Leeser, M. and Meleis, W. Runtime assignment

of reconfigurable hardware components for image processing pipelines.

In IEEE Symposium on Field-Programmable Custom Computing Ma-

chines, pages 173–182, Napa, California, 2003.

[71] Roy, J.A., Papa, D.A., Adya, S.N., Chan, H.H., Ng, A.N., Lu, J.F. and

Markov, I.L. Capo: Robust and scalable open-source min-cut floor-

placer. In International Symposium on Physical Design, pages 224–226,

San Francisco, California, USA, 2005. IEEE.

[72] Sarkar, V. Partitioning and scheduling parallel programs for multi-

processors. MIT Press, 1989.

[73] Sedcole, P., Blodget, B., Anderson, J., Lysaght, P. and Becker, T. Mod-

ular partial reconfiguration in Virtex FPGAs. In International Con-

ference on Field Programmable Logic and Applications, pages 211–216,

Tampere, Finland, 2005.

[74] Singh, A. and Marek-Sadowska, M. FPGA interconnect planning. In

International Workshop on System-Level Interconnect Prediction, pages

23–30, San Diego, California, USA, 2002.

[75] Sklyarov, V., Lau, N., Oliveira, A., Melo, A., Kondratjuk, K., Ferrari,

A., Monteiro, R. and Skliarova, I. Synthesis tools and design environ-

277

ment for dynamically reconfigurable FPGAs. In Brazilian Symposium

on Integrated Circuit Design, pages 46–49, Rio de Janeiro, 1998.

[76] Synplicity. Synplify and Synplify Pro.

http://www.synplicity.com/products/synplifypro/, 2008.

[77] Tanougast, C., Berviller, Y., Brunet, P., Weber, S. and Rabah, H. Tem-

poral partitioning methodology optimizing FPGA resources for dynam-

ically reconfigurable embedded real-time system. Microprocessors and

Microsystems, 27(3):115–130, 2003.

[78] Tessier, R.G. Fast place and route approaches for FPGAs. PhD Thesis,

Massachusetts Institute of Technology, 1999.

[79] Uhm, M. Software-defined radio: the new architectural paradigm. DSP

magazine, 1(1):40–42, 2005.

[80] Ullmann, M., Hübner, M., Grimm, B. and Becker, J. On-demand FPGA

run-time system for dynamical reconfiguration with adaptive priorities.

In International Conference on Field Programmable Logic and Applica-

tions, pages 454–463, Leuven, Belgium, 2004.

[81] Villasenor, J., Jones, C. and Schoner, B. Video communications using

rapidly reconfigurable hardware. IEEE Transactions on Circuits and

Systems for Video Technology, 5(6):565–567, 1995.

[82] Xie, Y. and Wolf, W. Allocation and scheduling of conditional task

graph in hardware/software co-synthesis. In Design, Automation and

Test in Europe, pages 620–625, Munich, Germany, 2001.

278

[83] Xilinx. XC6200 Field Programmable Gate Arrays datasheet. XC6200

Reconfigurable Programmable Logic Family v1.10, 1997.

[84] Xilinx. VirtexTM 2.5 V Field-Programmable Gate Arrays. Datasheet

DS003-1, 2001.

[85] Xilinx. Configuration and readback of Virtex FPGAs using (JTAG)

boundary scan. Xilinx Application Note 139, 2003.

[86] Xilinx. Two flows for partial reconfiguration: Module based or difference

based. Xilinx Application Note 290, 2003.

[87] Xilinx. Virtex-4 family overview. Datasheet DS112, 2004.

[88] Xilinx. Virtex series configuration architecture user guide. Application

note 151, 2004.

[89] Xilinx. Virtex-4 configuration guide. User Guide UG071, 2005.

[90] Xilinx. Virtex-II platform FPGA user guide. User Guide UG002, 2005.

[91] Xilinx. XtremeDSP design considerations user guide. User Guide

UG073, 2005.

[92] Xilinx. Development System Reference Guide. Xilinx ISE 8.2i Docu-

mentation, 2006.

[93] Xilinx. Xilinx and ISR Technologies announce sotware-defined radio kit

supporting partial reconfiguration and SCA-enabled SoC. Xilinx Press

Release 0626, 2006.

[94] Xilinx. XST user guide. Xilinx ISE 8.2i Documentation, 2006.

279

[95] Xilinx. Early access partial reconfiguration user guide. User Guide

UG208, 2007.

[96] Xilinx. PlanAhead user guide. Xilinx PlanAhead Version 9.2, 2007.

[97] Xilinx. Virtex-5 family overview: LX, LXT and SXT platforms. Xilinx

Datasheet DS100, 2007.

[98] Xilinx, I. Partial reconfiguration workshop. In International Conference

on Field Programmable Logic and Applications, Technische Universiteit

Delft, The Netherlands, 2007.

280

