
On accelerating concurrent

short-running general-purpose tasks

using FPGAs

Alexander Kroh

A thesis in fulfillment of the requirements for the degree of

Doctor of Philosophy

School of Computer Science and Engineering

Faculty of Engineering

The University of New South Wales

February 2020





















Abstract

FPGA technology is becoming a vital alternative to CPU-based processing as the perfor-
mance of CPU technology plateaus. This is particularly prevalent in data centers and
is impacting supercomputer design. In this thesis, I investigate the ability of FPGA
technology to accelerate general-purpose systems, such as desktop computers and mobile
devices. With high-performance, energy-efficient FPGA compute hardware, such systems
could benefit from both a reduced execution time and an extended battery life.

Rather than executing a few long-running tasks, general-purpose systems typically host a
large volume and variety of short-running tasks. For this reason, low-latency communication
between the CPU and the FPGA is essential. My investigation begins by evaluating
communication mechanisms between the tightly-coupled CPU and FPGA on the Xilinx
Zynq platform as an example of a modern, commercial, heterogeneous system. This
platform is an example of the growing trend of improving communication latency and
throughput by co-locating the FPGA and the CPU in the same package.

My investigation assesses the potential of accelerating an operating system task scheduler.
I demonstrate that scheduler priority queue acceleration can improve the performance of
inter-process communication, but only if the communication method between CPU and
FPGA is carefully chosen.

I then derive a formula for minimising a single task’s completion time by partitioning
the workload between the CPU and FPGA. That formula considers the latency and
computational overhead required for signalling between the CPU and FPGA. The formula
decides if, and by how much, the task should be executed in hardware.

I extend that formula to a dynamic execution environment and propose a framework that
supports the acceleration of concurrent short-lived general-purpose workloads. I evaluate
that framework in an emulated multitasking environment. Multiple applications that share
a diverse set of accelerators are used to emulate general-purpose workloads.

I conclude that modern tightly-coupled devices can support short-lived general-purpose
workloads and advance the state-of-the-art in how to effectively use such technology for
this application. In a dynamic environment, response to changing demand must be quick
or a diverse set of resident accelerators must be maintained to avoid reconfiguration delays
overwhelming the throughput gains of FPGA acceleration.

i



Acknowledgements

I would first and foremost like to acknowledge my supervisor, Oliver Diessel. Oliver and
I have shared numerous good times throughout my PhD. I am thankful that he kept
me motivated and squelched dark thoughts of returning to industry before completion.
Without his guidance and support, I would not have grown to become the researcher and
author that I am today.

I would like to thank the numerous anonymous reviewers for their constructive feedback
that has helped guide my research. Those comments and suggestions not only improved
submitted work, but also shaped the direction of future work.

My numerous colleagues. In particular, Hamed Nosrati, Dimitris Agiakatsikas, Lingkan
Gong and Amirreza Zarrabi, who I have shared many coffees, chats and memories with
during the course of my candidature.

I would like to acknowledge the Australian government, who supported my research
through an Australian Government Research Training Program Scholarship. Data61 and
the University of New South for the top-up scholarships and travel funds that allowed me
to make the most of my candidature.

Finally, I would like to thank my family. My patient wife, Melanie Kroh for her support
and understanding as I embarked on my research adventure. My mother, Irmgard Kroh, for
providing a cave and nutrition while writing my dissertation. And, of course, my daughter,
Emily Kroh for her love and support.

ii



Abbreviations

ABI application binary interface.

ACP accelerator coherency port.

API application programming interface.

ASIC application-specific integrated circuit.

ASID address space identifier.

ASIP application specific integrated processor.

AXI advanced extensible interface.

BRAM block random access memory (RAM).

CAPI Coherent Accelerator Processor Interface.

CPU central processing unit.

CSR configuration space registers.

DE device.

DMA direct memory access.

DPR dynamic partial reconfiguration.

DRAM dynamic RAM.

DSB data synchronisation barrier.

DSP digital signal processing.

FIFO first in, first out.

FIR finite impulse response.

FIU FPGA interface unit.

iii



FPGA field programmable gate array.

FPT the International Conference on Field-Programmable Technology.

GP general-purpose.

GPU graphics processing unit.

H2RC the International Workshop for Heterogeneous High-performance Reconfigurable
Computing.

HARP hardware accelerator research program.

HLS high-level synthesis.

HP high-performance.

HW hardware.

ID identifier.

ILA integrated logic analyser.

IO input/output.

IOMMU input/output (IO) memory management unit (MMU).

IPC inter-process communication.

IRQ interrupt request.

ISA Industry Standard Architecture.

JPEG Joint Photographic Experts Group.

LLC last level cache.

LUT lookup table.

MMIO memory-mapped IO.

MMU memory management unit.

MRE mean relative error.

OS operating system.

PaaS platform as a service.

PCI peripheral component interconnect.

iv



PCIe peripheral component interconnect (PCI) express.

PMU performance monitoring unit.

PSL POWER Service Layer.

QPI QuickPath Interconnect.

RAM random access memory.

SaaS software as a service.

SCU snoop control unit.

SEV send event.

SM shared memory.

SMMU system MMU.

SO strongly-ordered.

SoC system on chip.

SRAM static RAM.

SW software.

TCB thread control block.

TLB translation lookaside buffer.

TRETS ACM Transactions on Reconfigurable Technology and Systems.

WCET worst case execution time.

WFE wait for event.

v





Contents

Abstract i

Abbreviations iii

List of Figures xi

List of Tables xiv

1 Introduction 1

1.1 Thesis objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Thesis contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 7

2.1 Reconfigurable computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Automating design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Dynamic partial reconfiguration . . . . . . . . . . . . . . . . . . . . 10

2.2 General-purpose processors . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Sharing compute resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 CPU time-sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.2 Accelerator time-sharing . . . . . . . . . . . . . . . . . . . . . . . . . 13

vii



2.4 Virtual memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Hardware virtual memory . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 The memory hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5.1 Memory consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 Accelerator coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6.1 Loose coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6.2 Integrated CPU and FPGA . . . . . . . . . . . . . . . . . . . . . . . 23

2.6.3 Tight coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.7 Commercial tightly-coupled systems . . . . . . . . . . . . . . . . . . . . . . 24

2.7.1 IBM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.7.2 Intel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.7.3 Xilinx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.7.4 Commercial systems feature matrix . . . . . . . . . . . . . . . . . . . 29

2.8 Hardware model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Fine-grained transfers on tightly-coupled Zynq 33

3.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Prior work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 System architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4.1 Software scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.2 Accelerator design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.3 Target system hardware . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.4 GP connected accelerator . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.5 ACP connected accelerator . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.6 Comparison of accelerator structures . . . . . . . . . . . . . . . . . . 48

viii



3.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.6 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Cooperative processing of short-running tasks 61

4.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Prior work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 Partitioning model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5 Evaluation of communication overheads . . . . . . . . . . . . . . . . . . . . 69

4.5.1 CPU overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5.2 Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.6 Hardware accumulator evaluation . . . . . . . . . . . . . . . . . . . . . . . . 77

4.7 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Accelerator sharing in multi-user environments 83

5.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3 Prior work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.4 Framework architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4.1 Reconfigurable slots . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4.2 IOMMU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.4.3 Job queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4.4 Job router . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4.5 CSR manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4.6 System monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4.7 Software system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

ix



5.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.5.1 ABI overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.5.2 Framework evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.5.3 Static homogeneous accelerator cluster . . . . . . . . . . . . . . . . . 117

5.5.4 Dynamic accelerator cluster . . . . . . . . . . . . . . . . . . . . . . . 120

5.5.5 The impact of fine-grained job partitioning . . . . . . . . . . . . . . 125

5.6 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6 Conclusion 131

6.1 Applications for tightly-coupled systems . . . . . . . . . . . . . . . . . . . . 131

6.2 Communication models for engineers . . . . . . . . . . . . . . . . . . . . . . 132

6.3 Accelerator sharing for concurrent short-running tasks . . . . . . . . . . . . 132

6.4 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

References 135

Appendix A 147

x



List of Figures

2.1 Virtual memory translation using a page table. . . . . . . . . . . . . . . . . 15

2.2 The cache hierarchy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 CPU-FPGA coupling architectures. . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Hardware model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 Accelerated OS kernel scheduler architecture. . . . . . . . . . . . . . . . . . 34

3.2 Software architecture of the legacy task scheduler. . . . . . . . . . . . . . . 40

3.3 Hardware architecture of the priority queue. . . . . . . . . . . . . . . . . . . 42

3.4 Address mapping of GP accelerator peripheral. . . . . . . . . . . . . . . . . 45

3.5 Architecture of GP HW scheduler communication. . . . . . . . . . . . . . . 45

3.6 Architecture of ACP HW scheduler communication. . . . . . . . . . . . . . 47

3.7 Hot cache IPC execution cycles for given receiver thread priorities. . . . . . 50

3.8 Legacy scheduler anomaly investigation. . . . . . . . . . . . . . . . . . . . . 52

3.9 Hot cache execution cycles with probability density for IPC from thread
priority 255 to 254 for the scheduler architectures studied. . . . . . . . . . . 56

3.10 Branch mispredictions correlated with CPU execution cycles. Samples sorted
by execution time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1 Cooperative system execution and overheads. . . . . . . . . . . . . . . . . . 66

4.2 Cache-coherent data flow on Zynq-7000 series SoC. . . . . . . . . . . . . . . 70

xi



4.3 MMIO write transactions with SO and DE memory attributes. . . . . . . . 70

4.4 Cache-coherent SM writes with signalling on Zynq-7000 series SoC. . . . . . 71

4.5 CPU overhead and out-of-order execution. . . . . . . . . . . . . . . . . . . . 72

4.6 MMIO latencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.7 Cache-coherent SM latencies. . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.8 Accumulator connection and communication. . . . . . . . . . . . . . . . . . 78

4.9 Accumulator throughput for software and hardware. . . . . . . . . . . . . . 79

4.10 Accumulator execution time for α partitioning. . . . . . . . . . . . . . . . . 81

5.1 Overview of accelerated shared-library framework. . . . . . . . . . . . . . . 87

5.2 Hardware system of accelerated shared-library framework. . . . . . . . . . . 89

5.3 Accelerator service queue-slot selection logic. . . . . . . . . . . . . . . . . . 97

5.4 Software system of accelerated shared-library framework. . . . . . . . . . . 100

5.5 Context switch hazards for HW/SW workload partitioning. . . . . . . . . . 106

5.6 Execution time of the ABI accelerator with varying number of arguments. . 113

5.7 Normalised makespan when applications call one type of function. . . . . . 118

5.8 System utilisation when applications call one type of function. . . . . . . . 119

5.9 System utilisation without dynamic rebalancing when applications call one
type of function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.10 Framework response to function request and execution assuming no acceler-
ators have been configured. . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.11 Normalised makespan with 8 accelerator slots, 100 ms monitoring period
and applications calling 16 types of functions. . . . . . . . . . . . . . . . . 122

5.12 System utilisation with 8 accelerator slots, 100 ms monitoring period and
applications calling 16 types of functions. . . . . . . . . . . . . . . . . . . . 122

5.13 Execution and reconfiguration trace of 2 applications with 100 ms monitoring
period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

xii



5.14 Execution and reconfiguration trace of 2 applications with 1 ms monitoring
period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.15 Normalised makespan with 8 accelerator slots, 1 ms monitoring period and
applications calling 16 types of functions. . . . . . . . . . . . . . . . . . . . 125

5.16 System utilisation with 8 accelerator slots, 1 ms monitoring period and
applications calling 16 types of functions. . . . . . . . . . . . . . . . . . . . 126

5.17 Execution time of a typical 50 ms workload using 10× accelerators with
monitoring period 1 ms. Refer to Figure 5.10 for an explanation of timeline
events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.18 Normalised makespan with 8 accelerator slots and 8 applications that call
16 types of functions as the monitoring period is varied. . . . . . . . . . . . 127

5.19 System utilisation with 8 accelerator slots and 8 applications that call 16
types of functions as the monitoring period is varied. . . . . . . . . . . . . 127

5.20 Normalised makespan with 8 accelerator slots, 1 ms monitoring period and
applications calling 16 types of functions. Only one job is submitted per
resident accelerator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.21 System utilisation with 8 accelerator slots, 1 ms monitoring period and
applications calling 16 types of functions. Only one job is submitted per
resident accelerator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

xiii



List of Tables

2.1 Summary of CPU-FPGA communication bandwidth and latency for PCIe-
based and QPI-based platforms [CCF+16]. . . . . . . . . . . . . . . . . . . . 27

2.2 Commercial tightly-coupled systems feature matrix. . . . . . . . . . . . . . 29

2.3 Vendor support for assumed hardware model. . . . . . . . . . . . . . . . . . 31

3.1 Command and data encoding for ACP-based scheduler accelerator operations. 46

3.2 Median scheduler operation cost (CPU cycles). . . . . . . . . . . . . . . . . 54

3.3 Median IPC execution time for priority 254 receiver. . . . . . . . . . . . . . 55

3.4 IPC execution time variance for priority 254 receiver. . . . . . . . . . . . . . 57

4.1 Zynq-7020 CPU overheads, measured in CPU cycles, for short transfers
between CPU and various targets. . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 Zynq-7020 communication latency between CPU and programmable logic. . 77

4.3 Accumulator model parameters given a 667 MHz CPU clock frequency and
214 MHz FPGA clock frequency. . . . . . . . . . . . . . . . . . . . . . . . . 80

5.1 Job queue MMIO address encoding. . . . . . . . . . . . . . . . . . . . . . . 94

5.2 Assumed accelerator CSR and addressing. . . . . . . . . . . . . . . . . . . . 96

5.3 Parameters of system under test. . . . . . . . . . . . . . . . . . . . . . . . . 115

A.1 Zynq-7020 CPU overheads, measured in CPU cycles, for short SM writes
followed by a DSB to ensure completion and SEV signalling. . . . . . . . . 147

xiv



A.2 Zynq-7020 CPU overheads, measured in CPU cycles, for short reads from
various targets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

A.3 Zynq-7020 CPU overheads, measured in CPU cycles, for short writes to
various targets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

xv





Chapter 1

Introduction

Traditional central processing unit (CPU) performance has become limited by its expo-

nential growth in power requirements with performance. Although we have turned to

graphics processing units (GPUs) to improve performance-per-watt, such architectures

are tuned for applications that perform parallel floating point operations rather than

general-purpose computations. On the other hand, reconfigurable custom compute hard-

ware (HW) has shown promise in a wide range of computing applications and we have seen

a rapid adoption of reconfigurable field programmable gate array (FPGA) devices in the

cloud [WUZY19,SFJ+19,CSZ+14], data centers [PCC+14,WPAH16], and high-performance

supercomputing [VB13,CA07,BBB+07].

The application domain of FPGA-based accelerators has traditionally been limited to

long-running, compute-intensive workloads. Examples include large-scale database

queries [CP16,BS13,WPC+16,YOY17], machine learning [WXH+16,WGY+17,KAA+17],

data mining [ŠRS12, ZZJB13, BP06], genome sequencing [CCC+16, PWP+03], pattern

matching [SIOA17,DMBS12, ISA16,CH07], and filtering [FAL+16]. These tasks involve

transferring large amounts of data between main memory and FPGA-local memory or

building an application-specific data streaming machine. Therefore, such tasks rely on high

memory throughput rather than low memory latency.

1



1. Introduction

In contrast, my research is focused on accelerating many concurrent, short-running tasks

that are commonly found in servers and consumer mobile/desktop computers. For

such tasks, the overhead of transferring data between the CPU and the accelerator often

outweighs the savings in execution time. Additionally, the long reconfiguration delay of

FPGA HW may lead to a task executing to completion on the CPU before an accelerator

is available to assist with processing.

Tightly-coupled, high-performance CPU-FPGA systems have emerged in which a general-

purpose processor and programmable logic are located on the same device [IBM14,Xil14,

Int19a]. Not only does this close proximity reduce the communication latency between

them, it also allows HW and software (SW) to access shared memory (SM) via the on-chip

last level cache (LLC). While such low-latency data access has shown promise in traditional

applications [Bea16,WC17,WMW+16], it may also extend the range of applications that

are suitable for HW acceleration from long-running tasks to short-running tasks.

By targeting concurrent general-purpose tasks for acceleration, we increase the likelihood

that accelerators can be shared between tasks. This amortises the cost of reconfiguration

across the tasks that the accelerator benefits. When an accelerator is required and not

yet configured, the requesting short-running task may complete before it is ready for use.

However, once it is available, that accelerator can be used by the requesting task and any

similar task that executes on the system. While this benefits multitasked systems that are

operated by a single user, we also expect such a model to benefit servers, software as a

service (SaaS) and platform as a service (PaaS) systems. In this case, many users share

the compute platform. SaaS and PaaS users can be migrated between servers to further

increase the potential for accelerator sharing.

With this research we expect that a larger number of end-users could benefit from faster

and cheaper computational machines that exploit HW acceleration. My vision is that

all general purpose computers will be provisioned with reconfigurable HW and that this

reconfigurable HW will improve the performance of both server workloads as well as

everyday activities such as email filtering, document processing, or even photo classification

and tagging.

2



1. Introduction

1.1 Thesis objectives

Major CPU vendors, such as IBM, Intel and ARM, have developed platforms that can

integrate programmable logic, as embodied in FPGAs, more closely with their CPUs.

IBM has released an accelerator card interconnect that provides a view of the memory

hierarchy that is consistent with that of the CPU [SBJS15]. Intel provides reconfigurable

devices that are compatible with a typical CPU socket [Int19b]. Finally, Intel and Xilinx

have both released devices that co-locate an ARM CPU and an FPGA on the same

package [Xil14] [Int19a].

I hypothesise that the emergence of these new tightly-coupled CPU-FPGA architectures

allow short-running tasks to benefit from HW acceleration.

The aims of my thesis are as follows:

A1 To demonstrate that tightly-coupled CPU-FPGA systems extend the spectrum of

applications that can benefit from HW acceleration.

A2 To provide models that SW engineers can use to select the most appropriate commu-

nication mechanisms for short-running tasks.

A3 To show that overall performance of general-purpose systems can be improved when

many concurrent, short-running tasks share FPGA-based accelerators.

1.2 Thesis contributions

My thesis makes the following key contributions:

C1 I show that tightly-coupled CPU-FPGA systems can improve the performance of

inter-process communication by offloading the management of SW task scheduling

queues from the operating system (OS) to HW.

This contribution is motivated by A1.

3



1. Introduction

C2 Via C1, I evaluate very short transfers (32 bits) between CPU and FPGA using the

communication methods that are provided by the tightly-coupled Zynq-7020 system

on chip (SoC).

This contribution is motivated by A2.

C3 I extend C2 to provide a more comprehensive evaluation of the CPU overhead

and latency of communication across the available communication methods on

the Zynq-7020 SoC. This contribution allows SW engineers to select the optimum

communication method for their application.

This contribution is motivated by A2.

C4 I propose and evaluate a methodology for partitioning a single accumulator workload

between SW and a single FPGA-based accelerator to minimise overall execution

time.

This contribution is motivated by A2.

C5 I extend C4 to consider many concurrent accelerators that are shared by many

concurrent tasks.

This contribution is motivated by A2.

C6 I propose and evaluate a framework that supports a dynamic range of FPGA-based

accelerators and incorporates the low-latency communication methods identified in C3.

A set of concurrent, short-running workloads for a set of functions are partitioned

using C5 to minimise execution time.

This contribution is motivated by A3.

C7 Using C6, I identify CPU time-sharing as a hazard for cooperative processing C4 in

multitasking environments. I propose and evaluate a method for compensating for

that hazard.

This contribution is motivated by A3.

4



1. Introduction

1.3 Thesis structure

While the primary contribution of my thesis is an exploration of the benefits of tightly-

coupled accelerators for short-running tasks, my thesis spans a number of disjoint domains.

An independent literature survey is therefore provided in each of the main contribution

chapters (Chapters 3, 4 and 5).

Chapter 2 provides background information to the reader. It surveys commercially

available tightly-coupled systems and identifies their differentiating features. The focus

of that survey is the Zedboard that was used throughput this thesis as an apparatus

for experimentation. Chapter 2 also presents a HW model that identifies the expected

HW features of my work and how selected commercially available platforms implement it.

Chapter 2 concludes by defining and modelling general-purpose tasks.

Chapter 3 covers my research in accelerating an OS SW task scheduler (C1) and, in the

process, evaluates very short transfers on the tightly-coupled Zynq-7020 SoC (C2). A

priority queue was implemented in HW and connected to the CPU using a range of the

available communication ports. The chosen method of connection determined whether HW

provided a performance improvement or degradation. As a domain outside the scope of

this thesis, Chapter 3 includes a brief literature survey of OS task scheduler acceleration.

Chapter 4 covers my research in partitioning a workload between HW and SW to maximise

system utilisation and minimise completion time. This work extends the exploration

of communication methods in Chapter 3 to consider a range of transfer sizes (C3) and

provides a methodology for partitioning a workload in a single task environment (C4).

In Chapter 5 I present a framework for accelerating many concurrent short-lived tasks

(C6). Hazards associated with CPU time-sharing and cooperative processing are described

along with proposed countermeasures (C7). Finally, I extend the partitioning algorithm

from Chapter 4 to consider a dynamic set of resident accelerators in a multitasking

environment (C5).

5





Chapter 2

Background

General-purpose systems are systems that are capable of performing a wide variety of tasks.

In this chapter, I provide an overview of the concepts and HW of such systems. I begin by

outlining reconfigurable computing and its application to general-purpose systems. I then

describe general-purpose processors and their key features. I continue by comparing the

techniques used by these different technologies to support a wide range of concurrent tasks.

After a brief summary of the memory hierarchy of general-purpose systems, I identify

methods of coupling reconfigurable HW to different locations in that hierarchy. The

chapter next identifies and discusses commercially available tightly-coupled general-purpose

systems. I conclude this chapter with a model of the assumed HW that is used throughout

this thesis.

2.1 Reconfigurable computing

Reconfigurable HW provides a flexible, programmable HW system. Operations are

programmed as custom logic circuits that can be connected in series or in parallel using

a configurable routing network. The flexibility of such customised HW provides an

improved execution time and energy efficiency when compared to traditional general-

7



2. Background

purpose CPUs [FBCS12].

The most common reconfigurable device is the FPGA. The primary logic unit of an FPGA

is a lookup table (LUT). Through the use of design tools, engineers configure each LUT to

provide an output that is determined by the set of inputs applied to the LUT.

LUTs can be configured for a wide range of arithmetic and logic operations. Two concrete

examples are a multiplexer and an adder. Given a LUT with 3 inputs1, the design tools

can implement a multiplexer by using one input to select which of the remaining 2 inputs

should be observed at the output. Alternatively, the tools may configure such a LUT to

provide single-bit addition. In that case, the 2 inputs provide 1-bit values that should be

added while the remaining input provides a carry in. The LUT is then configured to report

the sum of those signals while a second LUT can be configured to report the carry out. By

cascading these addition LUTs, the bit-width of the input numbers can be extended and

optimised to meet the application’s needs. Additionally, the remaining LUTs on the FPGA

can be configured such that many of these addition operations are performed in parallel

or sequentially. This flexibility allows a target application to be optimised for energy and

execution time.

When compared to fixed HW, the flexibility provided by an FPGA comes at the cost of

performance. The additional circuits that allow a LUT and their interconnection to be

configured adds delay to the designed circuit. Considering this, FPGAs provide a set of

fixed optimised HW resources, such as block memories for local storage, multipliers, digital

signal processing (DSP) blocks, general-purpose processors [Xil14], and machine learning

functions [Xil20a].

Despite the performance penalty, FPGAs have become a popular alternative to fixed

application-specific integrated circuit (ASIC) HW. The exponential development cost

of ASICs with respect to design complexity make FPGA HW more favourable for low

volume production and products still under development. When an FPGA is used, the

1Modern devices comprise 6-input LUTs, which aim to reduce user circuit area and
improve speed.

8



2. Background

functionality of HW can be changed quickly and remotely without changing the physical

HW platform. Putnam et. al. showed that the large-scale use of FPGAs in data centers

can improve the throughput of web search engine ranking [PCC+14]. Such a large-scale

deployment using ASICs would require that each ASIC be physically replaced in each

machine when a better ranking algorithm is discovered.

Many cloud providers now provide FPGA HW in their PaaS product range [WUZY19]

[SFJ+19]. The end user provides a HW design and leases time for its deployment on a

remote FPGA for data processing.

2.1.1 Automating design

A challenge for FPGA application design lies in the nature of programming parallel

circuits [BRS13]. One must consider parallel processing and how a design will be mapped

to the available resources on the FPGA. This presents a steep learning curve for new

programmers and has led to a shortage in skilled FPGA programmers.

A technique known as high-level synthesis (HLS) is being used to decrease the gap be-

tween the performance of reconfigurable HW and its programmability [RJ16]. These

advancements in tools allow FPGA designs to be constructed from more familiar higher-

level languages, such as C. Using HLS, a wider set of engineers are able to exploit the

performance improvement and energy efficiency of FPGA-based designs.

Others extrapolate opportunities for reconfigurable HW from compiled applications. Vahid

et. al. developed a run-time tool for profiling an application to identify frequently executed

code segments [VSL08]. They synthesise these segments to HW while the application is

executing. Once the HW design has been generated and configured into the FPGA, the

application will begin to use the accelerator rather than executing in SW. This technique

allows existing applications to use FPGA-based accelerators when the original applications

sources are unavailable.

9



2. Background

2.1.2 Dynamic partial reconfiguration

The set of useful accelerators varies across tasks. One task may benefit from an accelerator

that performs decryption while another benefits from decompression acceleration. Given a

wide range of tasks for general-purpose systems [GRE+01,CPM97], it is not feasible to

maintain all accelerator configurations in programmable logic at the same time.

A technique known as dynamic partial reconfiguration (DPR) extends the effective area of

the FPGA by sharing it in both space and time [VF18] [GSB+00] [WH95]. When using

DPR, the programmable logic is partitioned into regions that can each host an accelerator.

The target region is first disconnected from the routing network. The logic configuration

of the target area is then replaced by a new configuration. Finally, the new configuration

is connected back to the routing network and is ready to be used by an application.

Ideally, reconfigurable regions are homogeneous. When regions are of uniform size and

contain identical logic and routing resources, each accelerator can be configured into any

available reconfigurable region [SWP04] [Bre96]. An alternative approach is to synthesise

all accelerators for all reconfigurable regions [CKPP15]. The accelerator implementation

that corresponds to the target region is selected when the accelerator is configured.

As the area requirements of accelerators vary, some logic in fixed-sized regions will inherently

be unused. Burns et. al. propose a method to support reconfigurable regions of flexible

size by rerouting resources to fit the available area at configuration time [BDH+97]. While

this leads to a more flexible placement, it also leads to fragmentation of the FPGA area.

Although there may be sufficient area to configure an accelerator, that area may be

sparsely distributed throughout the FPGA. Diessel et. al. propose a method of compacting

the configured accelerators to increase the usable area for new configurations [DE97].

While those methods improve the area utilisation of the FPGA, they incur overheads in

reconfiguration latency and processing time.

When the sequence of tasks is known in advance, the scheduling of accelerators in pro-

grammable logic can be computed offline [GSB+00]. The FPGA area is then shared in

10



2. Background

time by swapping an accelerator that is no longer needed for the accelerator that will be

needed next. However, the arrival times of tasks in general-purpose systems are sporadic.

It is difficult to predict which task the user will perform next. Therefore it is difficult

to predict which accelerators should be configured in programmable logic at any given

time [WP02].

2.2 General-purpose processors

General-purpose CPUs consists of one or more processor cores that generally execute one

instruction, from a fixed set, for each system clock cycle. An instruction stream is loaded

from memory and executed sequentially by each core. Collectively these instructions can

perform a wide range of tasks.

CPU instructions can be placed into four categories: 1. data access instructions move data

between system memory and the CPU core’s register file; 2. arithmetic instructions perform

arithmetic and logic operations on data that is contained in the register file; 3. control

flow instructions change, sometimes conditionally, the stream of instructions that the core

executes; 4. system instructions control CPU state, such as operating mode and coprocessor

behaviour. Each core is capable of executing an independent stream of instructions.

Modern superscalar processors are capable of executing more than one instruction per

cycle. The CPU identifies data dependencies between instructions to determine if a strict

order of execution is required. When instructions can be executed independently, and if

processing resources are available, the instructions can be executed in parallel or out of

program order [PH90].

The CPU uses IO peripherals to collect instructions and data, and to present processing

results to the user. Peripherals are controlled via a set of registers known as configuration

space registers (CSR). CPU cores access the CSR using dedicated system instructions

(programmed IO) or by memory-mapped IO (MMIO). MMIO is the most common method

of communication and is used throughout this thesis. MMIO enables the CPU to access

11



2. Background

the CSR of connected peripherals executing read and write instructions to an address

range that is reserved for the target peripheral. For example, SW may enable a peripheral

by writing the value 0x00000001 to a control register of the peripheral that is mapped to

address 0x40000000. SW may then transfer data to the peripheral by writing a sequence

of values to the address 0x40000004.

A general-purpose system can be constructed with a variety of CPUs and memories of

various size. The address at which memory is accessed by the CPU also depends on

where that memory is connected to the system. With a wide range of computer HW

configurations available, an OS is used to provide an abstract model of HW to hosted

applications. Most important in that model is processor time-sharing and virtual memory.

These abstractions will be discussed in the sections that follow.

2.3 Sharing compute resources

General-purpose systems typically host many concurrent tasks that compete for resources.

When fewer processing resources are available than tasks demand, processing resources

must be shared. In this section, I identify method for sharing processing time in the context

of both CPU and FPGA systems.

2.3.1 CPU time-sharing

When more SW tasks execute than there are CPU cores, each task is given a fixed time in

which to execute before they are swapped for another task. The OS configures a timer to

interrupt the CPU when the time slice of a task expires. Since a task can be interrupted

at any time, the CPU must ensure that enough task context is saved so that the task can

resume execution unaware of the interruption when the context is later restored. In this

case, the context is CPU register file content and the position of the task in its instruction

stream.

12



2. Background

Such a time-sharing environment is referred to as being multiprogrammed when the system

provides one CPU core and multitasked when tasks are scheduled across many cores. In

this thesis, we refer to multitasking as an environment in which tasks are scheduled on one

or more CPU cores.

2.3.2 Accelerator time-sharing

Time-sharing of the FPGA area was discussed in Section 2.1.2. In this section I discuss

time-sharing of a configured accelerator. Accelerator time-sharing follows the same

principles of CPU time-sharing: the context of the accelerator is periodically swapped for

the context of another. While the context of a SW task is limited to a small number of CPU

registers, the context of a HW task includes all memories that are local to the accelerator.

Therefore, a large amount of data may need to be saved and restored, particularly when

the entire dataset of the task is stored locally for low-latency access.

One approach to context extraction is to use the configuration port of the FPGA to

read back the state of FPGA resources [SLM00] [KP05] [HTK15] [JHE+13]. While the

configuration includes the content of local memories used by the accelerator, it also includes

the content of unused memories. The extraction of such a large quantity of data requires

additional time for which the accelerator must be idle. Additionally, it does not consider

shared state between the accelerator and external resources. Such state may reflect the

status of outstanding transactions to or from off-chip memory.

While mechanisms for saving and restoring CPU context are inherently built into the

instruction set of the CPU, such features should be designed to efficiently swap accelerator

context [KHT07]. In this case, a port must be implemented by the accelerator that allows

application-specific context to be exchanged. The logic and routing required for extraction

presents an area overhead in programmable logic, but reduces context switching time.

The context size can be further reduced by notifying an accelerator of an impending context

switch [MNM+04] [XPN16]. The accelerator can then continue execution until it arrives

13



2. Background

at a suitable preemption point. While this assumes that accelerators will respond to the

context switch request, it allows the accelerator to complete outstanding transactions to

external resources before its context is swapped.

The need to store context can be eliminated completely when tasks are partitioned into

short-running subtasks [VPKG18] [LP09a]. The tasks can then execute to completion

before their hypothetical time slice expires. This avoids both the overhead and design

complexity of context swapping.

2.4 Virtual memory

The virtual memory system provides a uniform view of memory layout across systems

and applications. It achieves that by translating each memory access made by a hosted

application to a unique location in RAM. This allows many concurrent applications to

access private physical memory using common virtual addresses.

A trivial implementation of a virtual memory system is to divide the application address

space into segments that can be relocated to disjoint segments of physical memory [Den65].

Base and limit segment descriptor registers are used to configure a virtual-physical transla-

tion for each segment. When a virtual address is accessed, HW performs a lookup of these

segments to perform the correct translation. The transaction is then directed to physical

memory using the translated address.

When multiple tasks share time on a CPU core, the set of segment descriptors must be

exchanged as part of the task’s context. This ensures that the correct translations are

performed for the running application and prevents one application from accessing the

address space of another.

The segment descriptor approach is limited by the number of segment descriptor registers

that the system provides. An alternate approach that overcomes that limitation is to

store the content of such registers in system memory [BCD69]. When switching between

14



2. Background

Root page
table address

Virtual address: 0x00508400

5

8

0x43266400

2nd level page
table address

Physical
address

Figure 2.1: Virtual memory translation using a page table.

address spaces, only the memory address of those registers needs to be saved and restored.

The number of segment descriptors is now limited only by the size of system memory. Such

data structures are referred to as page tables as they represent a table of virtual to physical

memory translations. Memory is partitioned into fixed sized pages that are typically 4 KB

in size. Such page tables are found in modern virtual memory systems [ARM05] [Int16].

To conserve memory, page tables provide a hierarchical lookup (Figure 2.1). The root

page table is indexed by the most significant bits of the address and, if a translation in

that virtual address range exists, the table entry provides the memory address of the next

table in the hierarchy. The next significant bits of the virtual address are then examined to

find an index within that table. At the last level of the hierarchical lookup, the translation

provides the physical address of the translation as well as the memory access permissions

and attributes.

The overhead of repeated page table traversals are avoided by using a translation lookaside

buffer (TLB). The TLB is a cache that stores recent translations for the running application.

Subsequent translations can then be served from the TLB rather than requiring a page

table lookup. When performing a context switch to another application, we must ensure

that the TLB serves only the cached translations of the new application. This is done by

tagging each TLB entry with an address space identifier (ASID). We then configure the

15



2. Background

TLB to only serve translations for the configured identifier. That allows translations for

one application to remain resident while another application executes.

On modern systems, the TLB is filled by a dedicated coprocessor that traverses the page

table structures. The page table walker may also anticipate future translations and

speculatively walk the page table structures. This reduces data access latency and the

likelihood of a CPU stall when the translation is needed.

The TLB and page table walker are collectively referred to as the MMU. Each core is

provided with a private MMU for translations.

As well as a translation service, the MMU allows memory to be paged to disk when system

memory becomes exhausted. In that case the OS may free memory by temporarily moving

it to disk. It then removes corresponding translations from page tables and TLBs. The

next time that data is accessed, the MMU will interrupt the OS because a translation is

unavailable. The OS responds by restoring data from disk, perhaps to a different location

in system memory, and updates the corresponding page table entries. The application can

then continue unaware that its memory was ever moved to disk.

Memory paging also allows applications to begin sooner and consumer less memory. By

prioritising the loading of application instructions and data with the order in which they

are accessed, the application can begin execution as soon as the first instruction has been

loaded from disk. Instructions and data that are never executed or accessed may never

occupy system memory.

2.4.1 Hardware virtual memory

MMUs have also been deployed for HW peripherals. On Intel architectures, such an MMU

is referred to as an IOMMU. On ARM, it is referred to as a system MMU (SMMU). We

adopt Intel’s naming convention in this thesis.

The IOMMU provides memory translation and memory protection for peripherals that

16



2. Background

access system memory. While that allows applications and peripherals to share a common

address space for data, IOMMUs are more commonly used when hosting other OSs as an

application on the system [PH90]. In that case, the IOMMU ensures that the hosted OS

and selected peripherals have a consistent view of memory addressing.

Winterstein et. al. propose that each accelerator should be provisioned with its own

IOMMU [WC17]. This allows the application to “pass a pointer” directly to accelerators

rather than manually translating addresses on the accelerator’s behalf. The system improves

performance by allowing accelerators to share memory through a common addressing scheme

and by avoiding the translation of addresses that accelerators never access. For example,

an algorithm that operates on a tree may only access 5% to 28% of tree nodes [WC17].

With the common goal of simplifying the programming model, Mirian et. al. explored

integration methods for MMUs and FPGA-based accelerators [MC15]. The authors

investigate systems where accelerators are provided with dedicated IOMMUs and where

accelerators share the MMU of CPU core. The CPU in this study was implemented in the

FPGA. Although the authors conclude that an independent IOMMU is best, it is difficult

to determine if the observed benefit is not simply due to a collective increase in TLB size.

Vogel et. al. provide a detailed study of the design trade-offs for an IOMMU implemented

in programmable logic [VMB19]. The flexibility provided by the programmable logic

enables their design to outperform a hard macro IOMMU.

As well as a unified address space, the IOMMU maintains the memory abstraction models

provided by the OS. This allows data accessed by HW to be loaded lazily and paged to

disk when memory is low. Without an IOMMU, the OS must pin memory that is used by

peripherals to ensure that it is always available. For short running tasks, the overhead of

calling the OS to pin such memory can be significant.

17



2. Background

Core 1

Register file

Write buffers

L1 cache

L2 cache

Core N

Register file

Write buffers

L1 cache

L2 cache

Last level cache (LLC)

RAM

Figure 2.2: The cache hierarchy.

2.5 The memory hierarchy

Two design trade-offs in memory design are storage capacity and access speeds. For

example, static RAM (SRAM) technology is 8 to 16 times faster than dynamic RAM

(DRAM) technology, but DRAM provides a 4 to 8 times larger capacity [PH90].

Due to an increasing gap in processor performance and memory speed, modern CPU

architectures include low-latency on-chip buffers for frequently accessed data [Goo83].

While off-chip memory exploits the high capacity of DRAM, these on-chip caches use

SRAM for low-latency access. A hierarchy of caches are typically deployed with latency

and capacity increasing with their distance from the CPU core (Figure 2.2). While there

is generally a private cache for each core and a shared LLC, the number of caches in the

hierarchy differs from system to system [ARM13].

Caches store data in lines of size 32 B to 128 B. When a CPU core accesses data that is

not resident in the cache, a full cache line of data will be transferred to the cache from

another source in the memory hierarchy. We refer to this as a cache miss. The data is

typically found in lower levels of the memory hierarchy, but may also be served from the

caches of other CPU cores.

18



2. Background

A resident cache line must be evicted in order to make space for the arriving data. If the

evicted line has been modified, the data must also be updated in lower levels of the cache

hierarchy. Once the cache line has been filled, the data access request of the CPU can be

served, and all future access to data within that cache line will be made with a reduced

latency until that cache line is evicted.

Data coherency between caches is configured by SW. The cacheability and coherency of

data access can be configured using the memory access attributes that are stored in the

page tables of the virtual memory system. SW can configure whether or not data can be

cached, and whether coherency should be maintained across per-core caches.

Alternatively, dedicated system instructions may be used to control coherency. SW can

invalidate a cache line such that future accesses are served from lower levels of the cache

hierarchy. This operation is particularly important when SW reads data that has been

written by a peripheral that is not connected to the cache hierarchy. Similarly, SW can

clean a cache line such that its content is written to lower levels in the hierarchy where

they can be observed by such peripherals.

Cache maintenance instructions can only be executed by the OS [ARM05]. By cleaning

or invalidating a cache line, an application can corrupt the data of another application.

Therefore, an application must use the OS as a proxy for such operations via a system

call.

2.5.1 Memory consistency

Transaction buffering is used throughout the memory hierarchy to allow the CPU to

continue execution before a write transaction completes. To maintain consistency, future

reads may be served from those buffers. Similarly, two writes to the same address can be

merged such that only the final write transaction arrives at the target.

Write-merging can interfere with the correct operation of a peripheral. In most cases,

write-merging is safe for applications. The intermediate value will not be observed by SW

19



2. Background

after an updated value has been written [ARM05]. However, when those transactions are

destined for a MMIO connected peripheral, the order and presence of those transactions

may impact the behaviour of the peripheral. Such peripherals typically provide a control

register for resetting the peripheral to a known state. If the sequence of writes to that

register are merged, the reset signal will not be observed by the peripheral.

Write-merging can be controlled in a similar way to cache coherency. Memory access

properties are provided by the page tables of the virtual memory system. On the ARM

architecture, the attributes are strongly-ordered (SO) and device (DE). The SO attribute

prevents transactions from using the cache and enforces a strict ordering of those trans-

actions. In that case, the CPU stalls until the target acknowledges that the transaction

is complete. The DE attribute prevents transactions from using the cache, but allows

transactions to be merged. In that case, barrier instructions must be executed by the

CPU to enforce the desired ordering. On the other hand, the DE attribute reduces CPU

execution time because stalls are avoided for transactions that do not require a strict

ordering [PS15].

2.6 Accelerator coupling

In this section I discuss historical and modern methods of integrating a CPU and FPGA

into a system. I begin by describing the features of the traditional loose-coupling approach,

where the FPGA is connected as a coprocessor. I then discuss the features of a system

that integrates both FPGA and CPU such that accelerators have direct access to the

CPUs register file. I conclude by describing the tightly-coupled architectures that is the

foundation of this thesis.

2.6.1 Loose coupling

FPGA HW has historically been connected to a high-performance, general-purpose CPU

via an accelerator card or module [Bit09,PS14,VKVF16,SMT+12]. The CPU offloads

20



2. Background

work to a coprocessor that is implemented in programmable logic. A direct connection

between FPGA and CPU provides a control interface to the CPU, typically via PCIe or

AXI buses. The CPU in this case is the master and initiates all communication on the

bus.

The control interface provides MMIO access to the CSR of the FPGA and instantiated

accelerators. MMIO communication can be divided into three components: 1. the address

of the register to be accessed; 2. the data to be transferred to or from the register; and 3. a

signal to indicate that a transaction has been requested..

Transfers to the MMIO bus are synchronous in that the connected peripheral is made

aware that the transaction is taking place. In some cases, the signal of a transaction has

side effects, such as pushing register content to a first in, first out (FIFO) buffer rather

than a register. Similarly, a read transaction may return data from that FIFO while also

removing that data from the FIFO.

MMIO transfers for large quantities of data are CPU intensive because the CPU must

manage the transfer of each word of data. Due to a limited amount of buffering, the CPU

may stall waiting for previous transactions to complete before it can submit the next.

A direct memory access (DMA) engine was introduced to early systems to reduce the CPU

overhead of data transfer to peripherals. In this case, dedicated HW is programmed to

manage the transfer on behalf of the CPU. Early Industry Standard Architecture (ISA)

implementations provided a fixed set of DMA controllers to the system. Each DMA engine

had direct master access to both RAM and the FPGA. As a slave peripheral to the DMA

controller, the accelerator was still unable to initiate its own transactions to RAM. For

this reason, short transfers needed to be managed independently by the CPU.

Modern PCIe interfaces allow connected peripherals to initiate transfers to RAM themselves.

Peripherals can now manage efficient short transfers, but for loosely-coupled architectures,

such transfers are not coherent with the CPU cache (Figure 2.3a). Further to this, the

latency of RAM access is large relative to RAM that is co-located with the FPGA on

21



2. Background

the accelerator card. Therefore, a bulk transfer of all data is typically made to the local

memory of the FPGA before processing begins.

An interrupt request (IRQ) provides a method for peripherals to signal completion. This

allows the CPU to process background tasks while waiting for tasks on the accelerator card

to complete. When a peripheral asserts an IRQ signal, CPU execution is interrupted. The

CPU then determines the cause of the IRQ and schedules the registered event handler.

2.6.2 Integrated CPU and FPGA

An integrated architecture for CPU and FPGA has also been explored (Figure 2.3b). Such

architectures provide the FPGA with direct access to the CPU instruction pipeline and

register file. This architecture allows custom CPU instructions to be constructed and

provides low-latency access to data stored in the CPU core [KBT10] [YRS05] [OK17]

[YMHB00] [HW97] [WH95].

Yiannacouras et al. propose a framework for reducing the development effort of soft-core

processor design [YRS05]. The engineer can select specific instructions that should be

included in the processor.

Such augmentation of the processor’s instruction set leads to an application specific

integrated processor (ASIP) rather than a general-purpose processor. One counter-example

is the dynamic instruction set computer (DISC) proposed by Wirthlin et. al. [WH95].

DISC uses DPR to change the active set of custom instructions to match the application’s

needs. While instructions are being reconfigured, the instruction pipeline of the CPU is

stalled.

To my knowledge, such architecture are not commercially available for high-performance

CPUs. This architecture is currently limited to processors that are implemented in the

FPGA fabric itself, such as the MIPS, NIOSII and Microblaze soft-core processors. Such

processors are limited by the performance of reconfigurable HW when compared to a fixed

processor design.

22



2. Background

Core NCore 1

Register file Register file

FPGA

MMIO

DMA

RAM

Last level cache (LLC)

Local caches Local caches

IRQ

(a) Traditional loose coupling.

Core 1 Core N

Register file

FPGA

RAM

Last level cache (LLC)

Register file

FPGA

Local cachesLocal caches

(b) CPU integration.

CC DMA

Core NCore 1

Register file Register file

FPGA

MMIO

DMA

RAM

Last level cache (LLC)

Local caches Local caches

IRQ

CPU→FPGA signalling

(c) Tight coupling.

Figure 2.3: CPU-FPGA coupling architectures.

23



2. Background

2.6.3 Tight coupling

As the focus architecture for my research, this section provides only an overview of

tightly-coupled architectures. More detailed information is provided at relevant junctures

throughout the thesis. The unique features provided by commercially available platforms

will be discussed in the sections that follow.

Tightly-coupled architectures allow the FPGA to access data directly from CPU caches

(Figure 2.3c). The FPGA is typically connected to the shared LLC of the system. The

cache hierarchy maintains coherency between the LLC and the private CPU caches to avoid

the need for SW-managed coherency. Not only does this method of integration reduce the

latency of data access, it also avoids the CPU overhead of maintaining coherency. As a

privileged operation, such overhead may include the cost of a system call to the OS to

perform the operation on the application’s behalf.

The range of low-latency signalling between CPU and FPGA is extended when using

tightly-coupled systems. While IRQs are still supported, the CPU can signal to the

FPGA in the same way that it signals to other CPU cores, allowing it to be a peer to other

processors rather than merely a coprocessor.

On some systems, it is possible to extend the cache hierarchy into the FPGA by enabling

CPU caches to retrieve data from the FPGA [Int19b]. A signal from the CPU cache

to the soft FPGA cache can be available to notify the soft cache when a cache line has

been written to by a CPU. In that case, the cache line can be invalidated in the FPGA to

maintain cache coherency.

2.7 Commercial tightly-coupled systems

In this section, I identify commercially available systems that support a tight coupling

between FPGA and CPU. I describe the unique features of each architecture and how

those features may be exploited. I conclude this section with a matrix of features that each

24



2. Background

systems provides.

2.7.1 IBM

IBM provides a Coherent Accelerator Processor Interface (CAPI) to PCIe connected

accelerators [IBM14]. The FPGA card is expected to implement a POWER Service Layer

(PSL) shell in the programmable logic. The shell provides a layer of abstraction for the

PCIe interface and includes an IOMMU and local coherent cache.

The cache and the IOMMU provide a uniform programming model with SW. The

application can pass pointers due to the unified addressing between HW and SW and need

not consider cache coherency. The local cache also serves to further reduce the latency of

main memory by storing recently accessed data.

The PSL includes task management functions, such as job control and preemptive context-

switching. Although a method is provided to send a signal to an accelerator, that method

is via PCIe and hence delivered with high latency.

2.7.2 Intel

Intel provides a tightly-coupled CPU and FPGA using their QuickAssist QPI plat-

form [Int19b]. Rather than a PCIe-connected accelerator card, the QuickAssist platform

enables an FPGA to be inserted into a second CPU socket of the motherboard. Com-

munication between sockets is via a low-latency QuickPath Interconnect (QPI) bus. For

improved data throughput, data buses are 512 bit wide.

Like IBM, Intel provides a shell, named the FPGA interface unit (FIU), to be instantiated

in the FPGA. That shell provides virtual channels that accelerators use to access RAM

and a coherent soft cache. The FIU also provides a channel for MMIO transactions

from the CPU to the accelerator. In contrast to CAPI, the shell does not provide task

management services. Instead, these protocols and logic must be implemented entirely by

25



2. Background

the application.

Although Intel provides a fixed IOMMU, Intel’s shell also provides a soft IOMMU to

improve flexibility. The fixed IOMMU supports translations for only one device. The soft

IOMMU provides independent translations for many concurrent accelerators.

QuickAssist provides a low-latency signalling mechanism between CPU and FPGA via

cache line invalidation notifications. The accelerator must first write to cache-coherent

memory to ensure that data is present in the soft cache. When SW writes to a corresponding

cache line, the line is evicted from the soft cache of the FPGA to maintain coherency.

The eviction additionally transfers a “uMSG” packet to the accelerator to inform it of the

eviction. From this uMSG, the accelerator receives a low-latency signal to inform it that

SM content has been updated.

While direct IRQ signalling is not supported, the shell allows accelerators to tunnel IRQ

signals through the provided virtual channels.

As part of Intel’s hardware accelerator research program (HARP), numerous studies have

evaluated the performance of the Intel’s QuickAssist platform. Chang et al. improved

the performance of genome sequencing by 4× [CCC+16]. István et al. demonstrated a

4× throughput for pattern matching in databases when compared to similar SW-only

implementation [ISA16].

Choi et al. evaluate memory bandwidth and latency of a QuickAssist platform and a loosely-

coupled PCIe-based accelerator card [CCF+16]. They find that QuickAssist provides 3.4×

more throughput than the PCIe connection of the accelerator card (Table 2.1). However,

local memory on the accelerator card provides 0.4× more throughput than the QuickAssist

platform. From this we infer that, for long running tasks, the overhead of a bulk transfer

of data to the FPGA-local memory of a loosely-coupled system could improve overall

throughput. However, for short-running tasks, the high latency of that transfer may

outweigh the improvement in bandwidth.

26



2. Background

Table 2.1: Summary of CPU-FPGA communication bandwidth and latency for PCIe-based
and QPI-based platforms [CCF+16].

Coupling Method Latency (µs) Throughput (GB/s)

Loose
PCIe 160 1.6

FPGA-local DRAM 0.54 9.5

Tight QPI 0.36 7.0

Weisz et al. use the QuickAssist platform to explore the opportunities for cache-coherent

architectures in pointer chasing applications [WMW+16]. Pointer chasing is fundamental

to image and speech recognition, as well as machine learning. The proposed solution

involves the CPU performing the traversal of the tree while feeding the FPGA pointers for

tree payload data. Tree meta-data can be shared via cache-coherent QPI while payload

data can be sourced from RAM to reduce cache pollution.

2.7.3 Xilinx

Xilinx has released the Zynq family of devices that tightly couples high-performance,

embedded processors with programmable logic. The Zynq is the embedded SoC that we

used to explore all of the ideas presented in this thesis. We therefore provide more detail

on the Zynq than other commercially available systems. The Zynq has many similarities

with Intel’s equivalent range of tightly-coupled embedded systems. Both vendors use ARM

processors, which define the interface between CPU and FPGA.

More precisely, we used Avnet’s Zedboard to evaluate our design [Avn19]. The Zedboard

is a low-cost development platform that features the Zynq-7020 SoC. Zynq-7000 series

SoCs provide dual ARM Cortex-A9 application processors and on-chip programmable logic.

Communication between the ARM cores and the programmable logic is achieved via a

range of ARM AXI communication buses [ARM11]:

• General-purpose (GP) AXI3: The GP AXI ports offers 32-bit data transfers

with bulk transfer sizes of up to 64 bytes. The Zynq-7000 series provides two GP

ports in both master and slave interface configurations. The masters provide MMIO

27



2. Background

interfaces from the CPU to the FPGA while the slave interfaces provide the FPGA

with access to RAM.

• High-performance (HP) AXI3: Four HP AXI port offers 64-bit data transfers

with bulk transfer sizes of up to 128 bytes. Zynq-7000 series provides the HP port

only as a slave interface from FPGA to RAM. The HP port provides improved

throughput over the GP slave equivalent due to the increased bus width and buffer

depth.

• Accelerator coherency port (ACP) AXI3: Like the HP port, the ACP provides

a slave interface port that offers 64-bit data transfers with bulk transfer sizes of up to

128 bytes. Unlike the HP port, transfers can optionally be cache-coherent with the

CPU. In the case of the ACP, the slave device is the snoop control unit (SCU), which

connects each ARM core to the memory hierarchy and maintains cache-coherence

between the connected masters and ACP-connected peripherals [ARM12]. When

the accelerator performs a read transaction, the SCU can retrieve the appropriate

data from the shared L2 cache or the L1 cache of any connected CPU. When the

accelerator performs a write transaction, the SCU writes the appropriate data into

the L2 cache and invalidates any corresponding L1 cache lines in all CPUs.

It is not possible to implement a coherent soft cache on Zynq-7000 series devices. The

ACP does not provide the necessary mechanisms for serving data to the CPU or for the

SCU to broadcast cache line invalidations to the FPGA. However, the more recent Zynq

Ultrascale+ does provide such mechanisms [Xil19a]. The Ultrascale+ also provides a fixed

IOMMU while a soft IOMMU must be implemented on the Zynq-7000 devices.

Both the Zynq-7000 series and the Zynq Ultrascale+ provide low-latency signalling mecha-

nisms between CPU and FPGA in both directions. In addition to traditional IRQ support,

the Zynq extends inter-core signalling to the FPGA fabric. This allows the integration of a

soft-core within the FPGA that is considered a peer to the fixed-core processors. When a

CPU core executes the wait for event (WFE) instruction, it is placed in a low-power mode

until another CPU executes a send event (SEV) instruction. From programmable logic,

28



2. Background

the accelerator can issue an event by toggling the EVENT EVENTI signal. Similarly,

the accelerator can observe the execution of the SEV instruction as a toggling of the

EVENT EVENTO signal.

The Zynq-7020 SoC provides maximum CPU and FPGA operating frequencies of 666 MHz

and 464 MHz respectively [Xil]. However, the interface between processor and programmable

logic is limited to 240 MHz. Significantly higher frequencies can be expected with more

modern devices, such as the Zynq Ultrascale+, which provides maximum CPU and FPGA

operating frequencies of 1500 MHz and 600 MHz respectively [Xil20b].

Many have studied the capabilities of the tightly-coupled Zynq [SWWB13] [PS15] [SSS15].

Sadri et al. evaluated the energy and performance of a finite impulse response (FIR) filter

using each port available on the Zynq [SWWB13]. They found that the ACP offered similar

performance to an HP port while transactions could be served from the cache. When

the dataset grew beyond the size of the cache, ACP bandwidth fell from 1650 MB/s to

650 MB/s. The authors also observed a reduction in ACP performance when a SW task

was scheduled that competed with the accelerator for cache bandwidth. Other studies

have found similar results when comparing Intel’s competing Cyclone device with the

Zynq [MRAF18] [CFMRAF17] [MSFRA15].

Powell et. al. explored the effect of coherency and buffering attributes on transac-

tions [PS15]. The authors found that these memory attributes have a significant impact

on performance. DE transactions completed faster than SO because completion is reported

once the transaction is accepted by write buffers in the interconnect. To enforce the desired

strict ordering, SO transaction only report completion when they have arrived at their

destination.

2.7.4 Commercial systems feature matrix

A summary of the features supported by the described commercially-available tightly-

coupled systems is presented in Table 2.2.

29



2. Background

Table 2.2: Commercial tightly-coupled systems feature matrix.

System MMIO Cache-coherent FPGA cache IOMMU Signalling

IBM CAPI PCIe 3 3 soft (shell) IRQ
Intel QuickAssist PCIe 3 3 soft (shell) uMSG/IRQ
Xilinx Zynq-7000 AXI 3 7 soft SEV/IRQ
Xilinx Zynq US+ AXI 3 3 fixed/soft SEV/IRQ

MMU Local cache

MMU Local cache

CPU

Core 1

CPU-mastered
Direct

communication
via MMIO

Low-latency
signalling via IRQ

FPGA

Accelerator 1

LLC

RAM

Core N

IOMMU Local cache

Accelerator M

SM access via coherent LLC

Figure 2.4: Hardware model.

2.8 Hardware model

The HW platform considered in this thesis is assumed to be composed of one or more

general-purpose processors that support protected execution modes and MMUs (Figure 2.4).

These features are required for an operating system that provides a concurrent execution

environment for multiple general-purpose applications.

The HW system is also assumed to provide an FPGA for configurable HW accelerators.

The FPGA and the CPU are assumed to communicate directly via MMIO, and via SM. SM

communication is assumed to be cache-coherent in order to support low-latency transfers

and to avoid the CPU overhead of cache-maintenance operations [KL08].

30



2. Background

Table 2.3: Vendor support for assumed hardware model.

MMIO IRQ Cache-coherent SM
Xilinx Zynq-7000 AXI X AXI to L2
Intel QuickAssist PCIe X PCIe to L3

IBM CAPI PCIe X PCIe/CAPI to L3

We assume that the system includes an IOMMU to provide a unified address space between

SW and accelerator. That IOMMU may be provided in fixed HW or in the programmable

logic. The IOMMU simplifies the programming model, memory management and avoids

the overhead of manual memory translations by short-running tasks.

The IOMMU requires IRQ support to interrupt the CPU when a virtual memory translation

is not available. This is important when the OS loads applications lazily or moves memory

pages to and from disk.

This thesis will demonstrate the usefulness of low-latency signalling from CPU to FPGA is

limited due to its low bandwidth. We find that the latency of MMIO is relatively low

and allows some context to be transferred with the signal. Therefore we do not include

low-latency signalling from CPU to FPGA in our model.

The assumed HW model is provided by the major FPGA vendors (Table 2.3).

31





Chapter 3

Fine-grained transfers on

tightly-coupled Zynq

In this chapter, I evaluate the ability of the tightly-coupled Xilinx Zynq-7000 series All

Programmable System on Chip to support fine-grained interactions between CPU and

FPGA. The target for my case study is the SW task scheduler of a microkernel OS.

Fine-grained interaction in this case involves the insertion and removal of a SW thread

handle from a priority queue that is implemented in HW (Figure 3.1). Communication

between the kernel SW and the HW-resident task queue involves the transfer of a single

32-bit word in both cases.

The task scheduler is the primary function of all OS. Not only is the scheduler invoked

periodically to ensure CPU time-sharing between threads, it is also invoked on demand to

facilitate communication or synchronisation between two threads, and when scheduling

high-priority tasks in response to critical external events.

A large amount of effort is invested into the optimisation of the scheduler. The scheduler’s

role is to facilitate the concurrent execution of many tasks, rather than contributing to the

processing required by those tasks. For that reason, the execution time of the scheduler is

considered a system overhead that all users seek to minimise.

33



3. Fine-grained transfers on tightly-coupled Zynq

Task
scheduler

Priority
queue

HardwareSoftware

Application 1

Application 2

Application N

Enqueue

Dequeue

OS
kernel

Figure 3.1: Accelerated OS kernel scheduler architecture.

Given that the OS scheduler is highly optimised and involves operations that are very

short in nature, we expect it to be challenging to gain any improvement in execution

time through HW acceleration. The choice of this case study motivates us to optimise

the communication methods used to the best of our ability. By carefully selecting the

fine-grained communication methods used between HW and SW, we were able to achieve a

5.5% reduction in execution time for synchronous communication between two threads.

Anticipating the difficultly of accelerating short-running tasks, the study presented in this

chapter was primarily motivated by a desire to determine whether or not migrating SW

functions to programmable logic reduces the execution time jitter of a SW task. Reduced

jitter is particularly important for real-time systems that require a known bound on

execution time. Large jitter leads to pessimism in the worst case execution time (WCET) –

a metric that determines whether or not an external event achieves a timely response.

Jitter is caused by the non-deterministic nature of execution on modern superscalar

processors. Instruction throughput enhancing features, such as the cache hierarchy and

branch predictor, reduce the amount of time that the CPU spends idle. This is typically

done by predicting program and data flow with stochastic heuristics. For example, the

instruction and data caches are typically configured for random cache-line replacement

when new data requires space in the cache (Section 2.5). That random replacement causes

jitter in execution time as the choice of cache line determines future data access completion

34



3. Fine-grained transfers on tightly-coupled Zynq

times. When SW functions are implemented in HW, the associated code and data no longer

need to occupy the cache. This improves the likelihood that critical OS or application code

stays resident in the cache.

In this study we also found that HW acceleration provides a significant improvement in

execution time variance. The migration of the SW task scheduler into HW removed most

sources of non-deterministic execution time and reduced execution time variance by 58%.

Unfortunately, further improvement was limited by the dominating influence of the branch

predictor of the CPU.

3.1 Contributions

The contributions of this work are:

• To show that tightly-coupled CPU-FPGA systems can improve execution time

variance for high-performance real-time systems.

• Tightly-coupled CPU-FPGA systems can improve the performance of inter-process

communication by offloading the management of the SW task scheduling queues from

the OS SW to HW;

• Tightly-coupled CPU-FPGA systems extend the range of applications that can

benefit from reconfigurable custom computing. Without the use of cache-coherent

interconnects, a performance benefit was not observed.

3.2 Publications

Parts of this work were peer-reviewed and accepted into the International Workshop

for Heterogeneous High-performance Reconfigurable Computing (H2RC) in 2015 and in

ACM Transactions on Reconfigurable Technology and Systems (TRETS) in 2019. While

35



3. Fine-grained transfers on tightly-coupled Zynq

this research is my own work, it was only made possible with the editorial support and

shepherding provided by my coauthor and supervisor, Oliver Diessel.

[KD15] A. Kroh. and O. Diessel. Towards OS kernel acceleration in heterogeneous

systems. First International Workshop on Heterogeneous High-performance

Reconfigurable Computing (H2RC), 2015.

[KD19] A. Kroh and O. Diessel. Efficient fine-grained processor-logic interactions on

the cache-coherent Zynq platform. ACM Trans. Reconfigurable Technol. Syst.,

11(4):25:1–25:22, January 2019.

3.3 Prior work

The migration of an OS kernel scheduler from SW to HW has been studied prior to this

work, primarily as a means of improving execution time and jitter in real-time systems.

However, prior work has generally been limited to either soft-core systems [OLAH13,DG12],

simulated HW [NRL07,LSV05,KSM03] or loosely-coupled systems [MB02,DT13]. To the

best of our knowledge, the performance benefits of this migration has not been evaluated

using low-latency, cache-coherent communication with fixed-core processors.

Ong et. al. augmented a soft-core NIOS-II processor with a HW-accelerated task sched-

uler [OLAH13]. The accelerator was connected to the system interconnect bus and

additionally provided a periodic timer and processor interrupt. The authors observed a

72% improvement in inter-task communication execution time and a reduction in IRQ

handler jitter from 25.4% to 1.59%. Although these improvements are significant, the use

of a soft- rather than fixed-core processor penalises the CPU in the evaluation. It is well

known that fixed-circuits have higher maximum operating frequencies when compared to

programmable logic.

HW-assisted scheduling has shown promise in symmetric multi-core architectures. Using

cycle-accurate simulation, Nácul et al. showed that HW-assisted scheduling reduces the

36



3. Fine-grained transfers on tightly-coupled Zynq

context switch time between two threads from 10,000 CPU cycles to 947 CPU cycles [NRL07].

While the scheduler chooses the next thread for execution, it has no access to the CPU

register file: saving and restoring CPU state must be done in SW. The proposed system uses

dedicated ports on an ARM926EJ-S processor for communication between the CPU and the

scheduler, implemented in HW. The authors measured throughput improvements in graphic

filtering and network packet processing applications to be 46× and 10×, respectively.

Mooney et al. proposed a modular OS framework [MB02]. In their work, the system

engineer can choose between HW or SW equivalent implementations for OS subsystems.

Key subsystems include dynamic memory management, locking, and deadlock detection.

HW-assisted locking aims to improve both execution time and the predictability of lock

access times. By moving locking to HW, deadlock detection improves system safety without

significant run-time overheads. Simulated HW experiments showed that HW-assisted OS

functions can provide speed-ups of 27% or more for database applications.

HW schedulers can be provided as programmable logic [KSM03], or as dedicated circuits

within an ASIC [NRL07]. While ASIC implementations provide fixed scheduling policies,

programmable logic allows for flexible, application-specific scheduling policies that can be

swapped on-demand.

The deployment of HW schedulers has been explored as both independent coprocessors and

integrated CPU features. In the latter case, the scheduler has direct access to the execution

pipeline and register file of the CPU. This allows the scheduler to swap the entire thread

context in a single cycle without degrading CPU pipeline performance [DG12]. Such an

architecture requires modification of the CPU itself. Modern SoCs, such as the Xilinx Zynq

and Intel Cyclone V, offer programmable logic and a high-performance general purpose

fixed-core processor on a single die, but these systems do not provide direct access to the

CPU register file.

Dahlstrom et. al. implemented a HW-accelerated SW task scheduler on the Zynq

SoC [DT13]. The focus of that work was on obscuring the view of thread context from

other threads by storing it in programmable logic. The study showed up to 50% speedup

37



3. Fine-grained transfers on tightly-coupled Zynq

(1500 CPU cycles), even though the entire thread context (68 bytes) had to be transferred

between CPU and accelerator on every context switch. Although that work used a tightly-

coupled CPU-FPGA system, it did not explore the use of the low-latency, cache-coherent

communication that such coupling provides.

3.4 System architecture

In our work, we decided to investigate accelerating the seL4 microkernel [KAE+14]. seL4

kernel operations are very short in nature and difficult to accelerate using the traditional

CPU-offload model. Additionally, the kernel is the central gateway for all application

resource management and communication: the performance of the kernel impacts all hosted

applications.

seL4 has a complete WCET analysis [BSC+11,SKH16] and has recently been extended for

real-time applications [LMAH18]. seL4 is considered to be a microkernel because operating

system services and device drivers are implemented as user applications rather than being

provided directly by the kernel. A key advantage of this approach is that only a small

amount of SW must be trusted to ensure the correct operation of the system. Drivers,

servers and applications all execute in a low-privilege operating mode of the CPU and are

isolated by the MMU HW of the CPU (Section 2.4). Because of this isolation, inter-process

communication (IPC) is used frequently to communicate between tasks.

We decided to attempt to accelerate the seL4’s task scheduler because it is a very frequently

used function of the kernel. Although the scheduler is not a long-running operation, the

performance of the scheduler is critical to IRQ handler latency and efficient IPC between

client-server application SW. Once the system has been initialised, the kernel provides 3

key functions, all of which can result in an invocation of the kernel scheduler:

1. IRQ delivery. When the kernel receives an IRQ exception, the kernel unblocks any

thread that is waiting for the IRQ. If the unblocked thread is of a higher priority

38



3. Fine-grained transfers on tightly-coupled Zynq

than the currently active thread, the kernel must reinsert the active thread into the

scheduling queue and replace it with the new highest priority runnable thread.

2. Preemption IRQ. The preemption IRQ ensures the fair sharing of CPU time between

threads of the same scheduling priority. When the preemption IRQ arrives, the kernel

reinserts the current thread into the scheduling queue and replaces it with the next

runnable thread in round-robin order.

3. Inter-Process Communication. (IPC) is a primitive for data transfer and synchroni-

sation between threads. When a thread sends an IPC request to another thread, the

kernel blocks the sender and inserts the receiving thread into the scheduling queue.

The scheduler is then invoked to choose a new thread for execution.

seL4 provides a fixed-priority preemptive scheduler such that a thread never executes while

a runnable thread of higher priority exists in the system. It has been carefully tuned for

low-latency IPC through SW optimisations that consider both the number of instructions

executed, data locality and cache footprint. We therefore expect it to be challenging to

gain a benefit from HW acceleration.

3.4.1 Software scheduler

The set of runnable threads in the seL4 microkernel is implemented as a doubly-linked

list with one list for each thread priority (Figure 3.2). The kernel maintains the next and

previous pointers of this list along with the thread context as part of the thread control

block (TCB) of each thread. The kernel appends a thread to the tail of its associated list

when it has exhausted its allocated execution time interval or when it transitions from

the blocked to the runnable state. If the thread has been preempted, perhaps because a

higher priority thread has become unblocked and is now runnable, the kernel records the

remaining execution time of the thread and adds the thread to the head of its associated

list, rather than the tail. The kernel maintains a set of head and tail pointers for each

priority in a global structure known as the ksReadyQueues. When the kernel invokes the

39



3. Fine-grained transfers on tightly-coupled Zynq

Head

Tail

Head

Tail

Head

Tail

ksReadyQueues

255

254

0

Prev

Next

TCB

Prev

Next

TCB

Prev

Next

TCB

Prev

Next

TCB

Figure 3.2: Software architecture of the legacy task scheduler.

scheduler, it walks the ksReadyQueues from the highest priority (255) to the lowest priority

(0) until it finds a non-empty list of runnable threads. If a non-empty list of runnable

threads is found, the scheduler removes the thread at the head of this list and marks it

as the active thread. If no runnable thread is found in the system, the kernel schedules

an implicit idle thread until an external IRQ causes a waiting thread to become runnable

again.

The seL4 kernel implements a fastpath, a hand-optimised path for common operating

system calls. The fastpath allows IPC from a low-priority sender thread to a higher- or

equal-priority receiver thread to complete without costly scheduler invocations. Under

these conditions, because the kernel implements a fixed-priority preemptive scheduler, the

kernel knows that there is no runnable thread with a higher priority than the IPC sending

thread. If the receiver is blocked waiting for this IPC and is of a higher- or equal-priority

to the sender, the kernel knows that the receiver will be the new highest priority runnable

thread in the system. For this reason, the sender can be blocked and the receiver can

40



3. Fine-grained transfers on tightly-coupled Zynq

immediately become the new active thread without invoking the task scheduler of the

kernel.

Since the commencement of this work, the SW architecture of the kernel scheduler was

further optimised by supplementing the design with a two-level bitmap lookup. Each

bit in the second level bitmap corresponds to one of 32 priorities. If the bit is set, the

associated priority contains at least one runnable thread. If the bit is clear, there are

no runnable threads for the associated priority. In the same way, the first-level bitmap

reflects the presence of a runnable thread in each group of 32 priorities. The scheduler

uses the single-cycle Count Leading Zeroes CLZ instruction on the first level bitmap and

maps the result to the appropriate second level bitmap. The scheduler repeats this process

on the second level bitmap to find the highest priority at which a runnable thread can

be found. Finding the highest-priority runnable thread thus becomes a constant time

operation, irrespective of its location within the ksReadyQueues.

We consider both SW implementations in our evaluation. Although the bitmap lookup

improves the average execution time of the scheduler, the scheduler performs better without

bitmap augmentation when thread priorities are high.

3.4.2 Accelerator design

The HW design must provide the same features as the SW design to ensure compatibility. It

must allow a thread to be inserted at both the head and tail of a selected ksReadyQueue and

allow a thread to be removed from the head of the highest priority non-empty ksReadyQueue.

A simple structure that satisfies these design goals is a priority queue. While much research

has been undertaken on priority queue implementations [MLC14, IK07], the behaviour

of insertions with equal priority are generally ill-defined. In our case, it is important

that threads of equal priority are removed from the priority queue in the order in which

they were inserted. Since our research is not focused on priority queue HW design and

implementation, we used a trivial implementation to explore our ideas.

41



3. Fine-grained transfers on tightly-coupled Zynq

x256

FIFO

Din(32)

Din(32)

Dout(32)

WE

RE

H

E

Dout(32)

WE

RE

H

E

Din(32)

Dout(32)

WE

RE

H

P

SEL(8)

x256

(8)

Priority
Encoder

FIFO

FIFO

Figure 3.3: Hardware architecture of the priority queue.

We used a HW architecture that closely follows that of the SW architecture for this study

(Figure 3.3). We replaced the ksReadyQueues by FIFOs, where FIFO data represents

a reference to the TCB of a thread in main memory. By transferring only the location

of the TCB in main memory, we reduced the throughput requirement for priority queue

transactions. This also preserved the ability of the CPU to optimise reads and writes to

cacheable global memory when accessing thread context.

The H signal of the priority queue allows the scheduler to add a thread to either the head

or the tail of a FIFO. Write enable (WE ) and read enable (RE ) signals control the addition

(push) or removal (pop) of a FIFO entry. If the scheduler asserts neither WE nor RE, a

read operation returns the appropriate entry from a FIFO without removal. The scheduler

42



3. Fine-grained transfers on tightly-coupled Zynq

uses the SEL signal to select a specific priority (FIFO) for the priority queue operation.

Each FIFO also provides an E signal, which indicates if the corresponding FIFO is empty.

Each E signal is routed to a 256-bit asynchronous priority encoder. When the state of

any E signal changes, the priority encoder output updates to reflect this change before

the next rising edge of the subsystem clock. The priority encoder allows the scheduler to

both identify and remove the highest priority runnable thread from the set of runnable

threads in a single clock cycle. With the P signal asserted, the priority queue ignores the

SEL signal and uses the priority encoder output in its place to select the highest priority

non-empty FIFO as the target of the transaction.

The HW implementation provides acceleration by offloading the task of manipulating the

priority queue from SW. The SW implementation of the ksReadyQueues requires that SW

maintains a doubly-linked list of threads for each priority. Our HW implementation relieves

the burden of list maintenance from SW by allowing SW to manipulate the head or tail

of a ksReadyQueue with a single transaction to the accelerator. Additionally, the highest

priority thread in the ksReadyQueues can be requested and removed from the schedule in

a single transaction. This eliminates the need to search the scheduling queue or maintain a

hierarchy of bitmaps.

We acknowledge that the use of fixed-size FIFO components presents scalability concerns in

the design, however, more scalable priority queue implementations can also be supported.

One must only ensure that the number of clock cycles required to update the highest priority

runnable thread is less than the number of clock cycles between scheduler transactions.

Alternatively, FIFO content can be stored in off-chip RAM with high-priority runnable

threads cached in block RAM for low-latency access.

3.4.3 Target system hardware

In our study, we considered the GP AXI3 master and ACP AXI3 slave interfaces of the

tightly-coupled Zynq-7020 SoC (Section 2.7.3). The GP master port is the only port

that provides direct communication between the CPU and the accelerator. Access to

43



3. Fine-grained transfers on tightly-coupled Zynq

GP-connected peripherals were made with the DE memory attribute to allow transactions

to be buffered. The ACP provides the best performing SM interface due to its coherency

with the CPU cache. All transactions to SM were configured to make use of the L2 cache

of the CPU.

Communication between CPU and accelerator has three components:

1. A command must be transferred to the accelerator to communicate the desired

action. An example of such a command is to push a thread to the head of a particular

scheduling queue.

2. Data must be transferred to or from the accelerator. In our case, this data represents

a reference to a thread in main memory.

3. A signalling mechanism is needed to inform the accelerator that a new command is

available and that a response is expected.

If we connect the accelerator as a slave peripheral on the GP AXI bus, signalling is a

bi-product of the AXI handshaking protocol during a transfer. If we connect the accelerator

as a master peripheral, communication is via SM and we must provide some other method

for signalling. We can use a second GP master port for this purpose, or we can use the

EVENT EVENTO signalling method. SW can assert a single wire in the CPU for exactly

one CPU clock cycle by executing the SEV instruction. This signal is generally used to

signal an event to other embedded processor cores. However, the programmable logic can

observe a toggled variant of this signal. The processor toggles the EVENT EVENTO

signal for each execution of the SEV instruction.

The following subsections describe the connection of the accelerator to the GP AXI master

port and the ACP AXI slave port.

44



3. Fine-grained transfers on tightly-coupled Zynq

11 10 9 8 7 6 5 4 3 2 1 0

P SEL H 0 0

Figure 3.4: Address mapping of GP accelerator peripheral.

Din(32)

Dout(32)

WE

RE

H

P

SEL(8)

P
ri

or
it

y
q
u

eu
e

Address(32)A
X

I3
ad

a
p

te
r

AXI3
GP

Figure 3.5: Architecture of GP HW scheduler communication.

3.4.4 GP connected accelerator

We designed the accelerator as a slave peripheral with the CPU communicating directly

with the accelerator through MMIO. The accelerator decodes the address that is provided

by the CPU to produce a command for the scheduler transaction as shown in Figure 3.4.

Bits 0 and 1 of the address are reserved for word alignment, bit 2 is mapped to the H

signal, which selects between the head or tail of the queue, and bits 3 through 10 are

mapped to the SEL signal, which selects the priority for the transaction. Additionally, bit

11 is mapped to the P signal, which instructs the accelerator to ignore bits 3 through 10

and instead select the highest priority non-empty queue for the transaction. We developed

an AXI adapter component to translate the complex AXI handshake protocol into a simple

write enable (WE ) and read enable (RE ) signalling mechanism (Figure 3.5).

SW inserts a thread into the schedule at a specific priority by initiating a single write to

memory. A handle to the thread is transferred as the data portion of the transfer, while the

desired priority is encoded in the address portion of the transfer. Similarly, SW removes a

thread from the schedule by initiating a single read request from a specific memory address.

A single read transaction can also be used to both identify and remove the highest priority

45



3. Fine-grained transfers on tightly-coupled Zynq

Table 3.1: Command and data encoding for ACP-based scheduler accelerator operations.

Operation 31 30 29 28-10 9 - 8 7 - 0

Enqueue 0 0 H &Thread 0 SEL
Dequeue 1 0 H 0 0 SEL
Dequeue (highest priority) 1 0 0 0 0 0

runnable thread by executing a read instruction with bit 11 of the source address set.

We clocked the HW implementation of the ksReadyQueues directly from the GP AXI bus

clock at 100MHz.

3.4.5 ACP connected accelerator

Communication must be achieved indirectly through SM when using the ACP port (Sec-

tion 2.7.3). The ACP bus is 64 bits wide: two words can be transferred per clock cycle.

We assigned one word to represent the handle to the thread. The constraints of a seL4

thread object enforce an alignment of 10 bits and the object must be accessible within the

range (0xE0000000 to 0xFFFFFFFF). These constraints provided 12 bits for encoding the

command (Table 3.1).

The SM approach prevented us from using the AXI handshaking protocol to signal the

accelerator when a new command was provided. Instead, we used the SEV processor

instruction, which the accelerator detects as a state toggle of the EVENT EVENTO wire

in programmable logic (Section 2.7.3). The transfer of the signal and data in this case was

decoupled; we had to ensure that the data was observable by the accelerator before the

signal of its presence arrived. We used the data synchronisation barrier (DSB) processor

instruction to ensure that any store operation had completed before the SEV instruction

was executed.

In HW, we extended the priority queue implementation to include a trivial finite state

machine (Figure 3.6). After the processor signals the accelerator, the accelerator reads the

provided command and data from SM by issuing a 64-bit read transaction on the ACP

46



3. Fine-grained transfers on tightly-coupled Zynq

P

SEL(8)

P
ri

or
it

y
q
u

eu
e

Read

Write

Idle Process

Din(32)

Dout(32)

WE

RE
AXI3

HACP

EVENT EVENT0

Figure 3.6: Architecture of ACP HW scheduler communication.

AXI bus. The data portion of the transfer is mapped directly to the data input of the

priority queue while the command is decoded and routed to the relevant control wires. The

priority queue operation is completed by the next clock cycle. The accelerator then sets

the priority queue control signals such that the highest priority thread is reported. Finally,

the accelerator issues a write transaction to the ACP. This write clears the command that

was provided by SW and reports the highest priority runnable thread through SM.

Once a scheduler transaction has completed any command, the first word in the 64-bit

SM region is cleared to signal completion and the second word is speculatively filled with

the highest priority thread in the schedule. In this way, the CPU can retrieve the highest

priority thread from the low-latency cache at any time and then issue the appropriate

command to remove this thread from the schedule. By always storing the highest priority

runnable thread at a pre-determined location, we make it possible for the CPU to retrieve

this thread from the low-latency cache as soon as it is required. The CPU thus continues

program execution while the accelerator processes the request and replaces the highest

priority runnable thread in preparation for the next scheduling event.

We connected the ACP AXI accelerator described above directly to the ACP AXI3 slave

port within the Zynq SoC. Each transaction requires both a read phase (to retrieve the

47



3. Fine-grained transfers on tightly-coupled Zynq

provided command) and a write phase (to signal completion and update the highest

priority runnable thread). Although this extends the time for the accelerator to complete a

transaction, communication latency is reduced since data can be transferred asynchronously

through the low-latency cache.

3.4.6 Comparison of accelerator structures

The GP-connected accelerator is connected to the CPU via a single GP AXI3 port. In this

arrangement, the accelerator is unable to initiate transfer to either CPU or SM because it is

a slave peripheral on the connected bus. Each transaction from the CPU to the accelerator

is a self-contained query, insertion or removal operation to the priority queue.

The cache-coherent ACP-connected accelerator contains the same functional logic as the

GP-connected accelerator, but uses an alternative interfacing approach. This accelerator

includes a state machine to manage accelerator-mastered transactions to cache-coherent SM

via the ACP. Each transaction has two phases: The accelerator first uses a read transaction

to pull the request from SM. Once the priority queue operation has been processed, the

accelerator pushes the result back to SM.

The ACP-connected accelerator can be connected to the HP port of the Zynq processor

without modification. However, SW must then manage data coherency with the accelerator.

This is done by either configuring SM access to bypass the CPU cache, or by executing

fine-grained cache maintenance instructions on the CPU for each transaction. While both

methods increase the SM access latency of both CPU and accelerator, the latter approach

also requires additional CPU cycles to maintain data coherency. Due to these additional

overheads, neither method is further considered in this work.

48



3. Fine-grained transfers on tightly-coupled Zynq

3.5 Evaluation

We consider only IPC performance in this thesis because it is a sufficient example to

demonstrate fine-grained communication. The reader can find an evaluation of IRQ latency

and its variance in [KD19].

We can invoke the kernel scheduler in a controlled way by performing an IPC from one

thread to a thread of lower priority. IPCs of other priorities are handled by the fastpath

and do not invoke the scheduler. When the fastpath is avoided and the scheduler is invoked,

the priority of the sending thread has no impact on scheduler execution time.

We used the ARM performance counters to count the number of CPU execution cycles

required to perform an IPC from a thread of the highest priority to threads of lower

priorities. In our benchmark, the IPC receiver thread was initially blocked, waiting for IPC.

The sending thread first read the state of the CPU cycle counter from the performance

monitoring unit (PMU) of the CPU and issued the IPC system call. Upon receiving the

system call exception, the kernel unblocked the receiver thread and issued a scheduler

transaction to insert it back into the schedule. The kernel then blocked the current thread

as it waited on the IPC reply and issued a second scheduler transaction to find the new

highest runnable thread in the system. By benchmark design, the highest priority runnable

thread was always the IPC receiver and hence it was removed and scheduled for execution.

Finally, the receiver thread read the CPU cycle counter. We took the resulting execution

time of the IPC as the difference between the two readings of the CPU cycle counter.

In our study, the IPC merely served as a synchronisation signal between two threads. The

IPC contained no data payload. Since transfer of data occurs in linear time across all

scheduler architectures under investigation, varying the payload size was not expected to

yield interesting information. Threads also shared the same virtual memory translations

(Section 2.4); a virtual address space switch was not performed as part of the study.

We ran the benchmark with a hot cache by using 16 cache warming iterations before

collecting 250 samples. We set the HW scheduler AXI bus clock and logic clock to 100MHz

49



3. Fine-grained transfers on tightly-coupled Zynq

 1000

 1050

 1100

 1150

 1200

 1250

 200 210 220 230 240 250

C
P

U
 e

x
e
c
u
ti
o
n
 c

y
c
le

s
 @

 6
6
7
 M

H
z

IPC receiver thread priority

Legacy SW scheduler
Bitmap SW scheduler

ACP HW scheduler
GP HW scheduler

Figure 3.7: Hot cache IPC execution cycles for given receiver thread priorities.

while the CPU operated at its maximum frequency of 667MHz. The SW was compiled

with arm-linux gcc 4.7.4.

We initially ran the benchmark with each of the four scheduler architectures described in

Section 3.4. The legacy scheduler architecture was implemented entirely in SW. The bitmap

scheduler architecture addresses the scalability issues of the legacy scheduler, but at the

cost of maintaining additional data structures. The GP scheduler architecture featured a

HW-accelerated priority queue that the CPU communicated with directly via the GP AXI

port. The ACP scheduler architecture used cache-coherent SM to communicate between

CPU and accelerator and used the SEV signalling mechanism for synchronisation.

We tested receiver priorities in the range of 250 to 0, however, we observed no change

in trend below priority 220; we have therefore excluded some of these measurements for

clarity. The median results of this benchmark are presented in Figure 3.7. Error bars

indicate 1st and 3rd quartiles.

We found that the execution time of the legacy SW scheduler implementation generally

increased linearly as the receiver thread priority decreased. This is because the scheduler

50



3. Fine-grained transfers on tightly-coupled Zynq

traverses the ksReadyQueues from the highest priority to the lowest priority until it finds

a runnable thread. The lower the priority of the receiver, the more entries the legacy

scheduler must examine before it finds the waiting receiver. This behaviour also increases

the cache footprint of the scheduler: when the receiver thread is priority 0, the scheduler

reads from 256 queue heads. Because head and tail pointers are interleaved, this results

in 512 words (2 KB) being loaded into the cache. Another way of looking at this is

that the scheduling behaviour results in the eviction of 2 KB of data from the cache in

the worst case. This evicted data can be data that is frequently used by an application;

system performance will then be further degraded because that data must be reloaded

from high-latency main memory when the application is next scheduled.

We investigated the discontinuities in the legacy scheduler curve and found that they

correlate with an unusually high number of branch mispredictions (Figure 3.8). During

execution, conditional branch instructions prevent the instruction prefetcher from always

maintaining a full instruction pipeline. The prefetcher does not know which branch of

execution to load until the branch condition is evaluated. In these cases, the branch

predictor attempts to predict the path that execution will take. If the branch predictor is

correct, the CPU continues uninterrupted. If the prediction is incorrect, the CPU must

flush the instruction pipeline and wait for the prefetcher to fill the pipeline with the correct

instruction stream. Although this micro-architectural feature improves CPU utilisation

and application performance, it can add a significant amount of variance to execution time.

Our results show that branch mispredictions on the ARM Cortex-A9 processor can, with

high probability in some cases, result in more CPU cycles to perform fewer iterations of a

SW loop.

seL4 developers introduced a bitmap scheduler to address the scalability issue of the legacy

scheduler implementation. This was done by extending the implementation to include a

hierarchical bitmap representation of the non-empty ksReadyQueues. This optimisation

leads to some overheads, but an O(1) lookup complexity was observed (Figure 3.7). The

increased execution time of the bitmap scheduler for high-priority receiver threads reflects

the additional operations required for the traversal and maintenance of the bitmap. The

51



3. Fine-grained transfers on tightly-coupled Zynq

 1000

 1020

 1040

 1060

 1080

 1100

 1120

 1140

 1160

 1180

 1200

 210 215 220 225 230 235 240 245 250 255
 0

 1

 2

 3

 4

 5

 6

 7

C
P

U
 e

x
e

c
u

ti
o

n
 c

y
c
le

s
 @

 6
6

7
 M

H
z

B
ra

n
c
h

 m
is

p
re

d
ic

ti
o

n
s

IPC receiver thread priority

Mispredictions
CPU cycles

Figure 3.8: Legacy scheduler anomaly investigation.

bitmap scheduler requires 2 additional reads to locate the highest priority thread: one

for each level of the bitmap hierarchy. Once the scheduler identifies the thread to be

scheduled, the scheduler marks the thread as active and removes it from the scheduling

queue. Because this thread is the only runnable thread in the system, the bitmap scheduler

additionally marks the ksReadyQueue as empty in the second level and marks the priority

group as empty in the first level. For the sake of abstraction, the scheduler cannot simply

write 0 to these words: it must perform the correct bit operation to clear only the relevant

bit at each level. The result is that the bitmap scheduler performs another 2 reads and 2

writes to update the bitmap, however, it is likely that these 4 memory accesses operate on

memory in the cache rather than suffering a penalty from loading data from main memory

a second time.

We also see that the directly-connected GP accelerator offered only marginal improvements

over the optimised bitmap scheduler (Figure 3.7). While the entire task of priority queue

management is offloaded to the accelerator, the performance gain is reduced due to the

communication latency between the CPU and accelerator. We can see that the legacy

SW implementation still outperforms the GP-connected accelerator when the IPC receiver

priority is very high. This condition provides the best case performance for the legacy

scheduler because the iterative search only needs to examine two priority levels before the

52



3. Fine-grained transfers on tightly-coupled Zynq

highest priority runnable thread is located.

Surprisingly, when communication is achieved using low-latency, cache-coherent SM rather

than direct communication, we observed an increase in execution time relative to the GP

accelerator. This is because the signalling mechanism is decoupled from the data transfer.

The CPU must execute a DSB in order to stall the CPU until data has reached the L1 cache

(Section 2.5.1). Only then can the CPU signal the accelerator with the SEV processor

instruction. If the CPU executes the SEV instruction before this time, the accelerator may

read a stale command from SM.

The decision to accelerate a short running OS kernel task scheduler on a high performance

CPU was in part motivated by the challenges involved. We anticipated that accelerating

the scheduler would be difficult and that it would drive us to find a truly optimal method

for fine-grained interactions on an ARM-based CPU-FPGA heterogeneous platform. Our

results show that the legacy SW scheduler architecture still performs better than both

the GP- and ACP-connected HW scheduler for high-priority IPC receiver threads. We

therefore took the best-case performance of the legacy SW implementation as a target for

the execution time of our HW-accelerated task scheduler.

We constructed microbenchmarks to investigate why the direct communication of the GP

approach outperforms the low-latency SM approach of the ACP-connected accelerator. We

measured the median number of CPU cycles required to perform each scheduler operation

(Table 3.2). The execution time was measured at the application programming interface

(API) level of the scheduler, which includes the cost of validating arguments and packing

commands into the appropriate format for each accelerator architecture. The overhead of

reading the ARM performance counters was measured and subtracted from the results.

Note that such fine-grained benchmarking avoids some performance penalty events, such

as cache misses.

From the microbenchmark results we found that the GP-connected accelerator requires

the least number of CPU cycles to insert a thread into the schedule. These numbers do

not reflect the latency of the transaction; they represent the CPU execution time to issue

53



3. Fine-grained transfers on tightly-coupled Zynq

Table 3.2: Median scheduler operation cost (CPU cycles).

System Enqueue Dequeue
highest
priority

Total

Legacy (priority 255) 22 49 71
Legacy (priority 0) 22 954 976
Bitmap 30 59 89
GP 12 94 106
ACP 47 74 121
ACP (polling) 30 40 70
Hybrid 10 31 41

the command. The CPU can continue execution as soon as the transaction has reached

the write buffers (Section 2.5.1), well before it is received by the accelerator.

We also found that the GP-connected accelerator requires the greatest number of CPU

cycles to retrieve the highest priority thread from the schedule. This is because of an

immediate dependency on the result of the transfer; we must test the validity of the

returned data in case the schedule is empty. When the returned value is NULL, the kernel

must activate the idle thread instead of the highest priority runnable thread. The CPU

must stall until this branch in execution is determined.

The ACP results reported a lower execution time for retrieving the highest priority thread

than the GP-connected accelerator. This is because the CPU can retrieve the result

directly from the low-latency cache instead of waiting for a response from HW. However,

the synchronisation time adds significant overhead for insertions. The total time to perform

both an insertion and removal of the highest priority runnable thread is thus higher for

the ACP scheduler than for the GP scheduler.

To quantify the costs of data synchronisation and signalling, we modified the ACP-connected

scheduler to operate in polling mode. In this mode, the accelerator continuously polls SM

for a new command. We found that data synchronisation was still required when inserting

a thread into the schedule. This is because there was not enough time between thread

insertion and thread removal to allow the insertion transaction to complete. The barrier

forces CPU buffers to write through to the cache sooner, which reduces the observation time

54



3. Fine-grained transfers on tightly-coupled Zynq

Table 3.3: Median IPC execution time for priority 254 receiver.

System Median IPC execution CPU cycles Speedup

Legacy 1029 2.6%
Bitmap 1057 0.0%

GP 1038 1.8%
ACP 1044 1.2%

ACP (polling) 994 6.0%
Hybrid 999 5.5%

(and therefore completion time) of the accelerator. On the other hand, thread selection is

performed as the last scheduler transaction before returning control to the chosen thread.

The time required to restore the thread context and leave the kernel is large enough to

avoid this memory barrier. The microbenchmark results of the ACP scheduler in polling

mode are included in Table 3.2. The polled ACP scheduler requires the least number of

CPU cycles to retrieve a thread across all systems that have been discussed so far.

We investigated a hybrid implementation to take advantage of the best performing com-

munication channel for each operation. In this implementation, the scheduler uses the

GP port for all priority queue commands. After processing any command, the accelerator

provides the highest priority runnable thread via ACP in low-latency, cache-coherent SM.

We repeated the IPC benchmarks that were detailed at the beginning of this section for

both the polling-mode ACP-connected accelerator and the hybrid accelerator. Our results

focus on comparing the execution time of each architecture with the best case performance

of the legacy SW implementation (receiver thread priority 254). The distribution of

collected samples is presented as box and violin plots in Figure 3.9 while numerical results

are presented in Table 3.3. The violin plot shows the probability density of the collected

samples: larger plot widths correspond to values at which we observed more samples.

The results show that the polling-mode ACP-connected accelerator and the hybrid acceler-

ator perform better than both SW approaches in all cases. The hybrid approach offers a

2.9% reduction in median execution time when compared with the best-case performance

of the legacy SW scheduler. We observed a 5.5% reduction compared with the bitmap

scheduler.

55



3. Fine-grained transfers on tightly-coupled Zynq

 960

 980

 1000

 1020

 1040

 1060

 1080

 1100

Legacy
Bitmap

GP ACP
ACP(polling)

Hybrid

C
P

U
 e

x
e

c
u
ti
o
n

 c
y
c
le

s
 @

 6
6

7
 M

H
z

Scheduler architecture

Figure 3.9: Hot cache execution cycles with probability density for IPC from thread priority
255 to 254 for the scheduler architectures studied.

A reduction in scheduler execution time allows more tasks to be scheduled in a given period

of time. The time that would otherwise be consumed by kernel execution can now be used

by an application to complete sooner, thereby allowing other tasks to begin sooner.

The results in Figure 3.9 also provide information about the execution time variance. The

schedulers that use HW acceleration showed well-defined modes. The ARM event coun-

ters [ARM05] showed that these modes correlate with branch mispredictions (Figure 3.10).

This pattern of mispredictions was also observed in the pure SW implementations. However,

noise from other sources of non-deterministic execution masked the effect.

HW acceleration improved the execution time variance in all cases. The hybrid approach, in

particular, showed improvements of 58% when compared to the legacy SW implementation

and 56% when compared with the bitmap optimisation (Table 3.4).

All other things being equal, the reduction in variance allows more tasks to be scheduled

safely in a given period of time. Since the execution time is more deterministic, we can

reduce the compute power that is reserved for ensuring that a critical real-time task will

56



3. Fine-grained transfers on tightly-coupled Zynq

 1000

 1010

 1020

 1030

 1040

 1050

 0  50  100  150  200  250
 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

C
P

U
 e

x
e

c
u

ti
o

n
 c

y
c
le

s
 @

 6
6

7
 M

H
z

B
ra

n
c
h

 m
is

p
re

d
ic

ti
o

n
s

Sample number

Mispredictions
CPU cycles

(a) Legacy SW scheduler.

 980

 985

 990

 995

 1000

 1005

 1010

 1015

 1020

 1025

 0  50  100  150  200  250
 1

 1.5

 2

 2.5

 3

 3.5

 4

C
P

U
 e

x
e

c
u

ti
o

n
 c

y
c
le

s
 @

 6
6

7
 M

H
z

B
ra

n
c
h

 m
is

p
re

d
ic

ti
o

n
s

Sample number

Mispredictions
CPU cycles

(b) Hybrid scheduler.

Figure 3.10: Branch mispredictions correlated with CPU execution cycles. Samples sorted
by execution time.

Table 3.4: IPC execution time variance for priority 254 receiver.

System Variance Improvement

Legacy 120 0%
Bitmap 120 0%

GP 65 46%
ACP 110 8%

ACP (polling) 80 33%
Hybrid 51 58%

57



3. Fine-grained transfers on tightly-coupled Zynq

complete on time. One can then either schedule more tasks on the processor, or reduce the

size of the compute resource to conserve energy and manufacturing costs.

Although we have reduced the variance of the system, the branch predictor remains a

dominant source thereof. The branch predictor is an important micro-architectural feature

for enhanced performance. Although it can be disabled to further reduce variance, this

causes a significant reduction in CPU utilisation and an increase in program execution

time.

3.6 Chapter summary

We have evaluated the potential for tightly-coupled CPU-FPGA systems to improve

the CPU execution time and jitter of frequent, short-running operations. The target

application, the seL4 kernel SW task scheduler, proved difficult to accelerate and required

careful selection of HW-SW communication strategies.

We evaluated communication via MMIO and also cache-coherent SM. No single strategy

on its own was able to provide a performance improvement over the best case execution

time of the legacy SW. However, a carefully selected combination of these strategies was

able to achieve a 5.5% improvement in CPU execution time.

Although the improvement in execution time is small, our results show that the use of

FPGA-based accelerators in tightly-coupled systems need not be limited to coarse-grained

acceleration. They can also improve the execution time of very short-running tasks, such

as appending to and removing from a linked list.

In our study, execution time was reduced when all communication from the CPU to the

FPGA was made through MMIO. With that method, write buffering allowed the CPU to

quickly continue executing meaningful work. Similarly, execution time was reduced when

all communication from the FPGA to the CPU was made through SM. This allowed the

CPU to perform more meaningful work by preventing high-latency reads from stalling the

58



3. Fine-grained transfers on tightly-coupled Zynq

CPU.

In the next chapter, I consider the partitioning of short-running tasks across a CPU and an

FPGA for cooperative processing. The collection of communication methods identified in

this chapter are used to minimise both communication latency and CPU idle time. These

methods improve both overall task completion time and allow smaller workloads to benefit

from HW acceleration.

59





Chapter 4

Cooperative processing of

short-running tasks

Due to the cost of repeated data movement between CPU and FPGA, the use of FPGA-

based accelerators has traditionally been limited to offloading long-running tasks from

the CPU to programmable logic. These tasks are typically processed entirely by the

accelerator. While the workload is being processed, SW will either wait until the task is

complete or schedule other tasks for processing.

Although modern heterogeneous platforms (Section 2.6), reduce the costs of CPU-FPGA

data transfers, the traditional offload model is cemented as the popular choice. For

these systems to become truly heterogeneous, the utilisation of all computational resources

should be optimised. In particular, the CPU and FPGA should cooperate by dividing the

workload between them so as to maximise system throughput.

For long-running tasks, the cost of communication is small relative to processing time.

Therefore, communication overhead can be ignored and workloads can be partitioned

proportionally to the throughput that each compute resource provides.

In contrast, the cost of communication for short-running tasks is relatively large: commu-

61



4. Cooperative processing of short-running tasks

nication costs must be considered when partitioning such tasks across compute resources.

Over a fixed period of time, the CPU cycles required for communication reduces the amount

of work that can be processed by the CPU. Similarly, communication latencies reduce

the amount of work that can be processed by an accelerator. In the extreme case, the

communication overhead may outweigh the acceleration provided by HW.

In this chapter, I present a model that predicts if, and by how much, short workloads

should be partitioned between HW and SW for cooperative processing. As well as the

throughput of each resource, the model considers both the CPU overhead and the latency

of communication when partitioning the workload. The model allows engineers to choose a

workload partitioning that minimises task completion time.

I then extend the contributions of Chapter 3 by providing a detailed evaluation of the CPU

overhead and latency of short transfers between CPU and FPGA on the tightly-coupled

Zynq-7020 SoC. Such transfers are essential to efficiently synchronise between cooperating

HW and SW tasks and provide key parameters for the model. While these metrics are

specific to the Zynq-7020 SoC, similar techniques can be applied to other platforms to find

communication metrics.

Finally, I demonstrate how the derived model and the communication metrics can be used

to choose the optimum workload partitioning for a stream-based integer accumulator task.

The model determines when cooperative processing becomes beneficial within 8% of the

optimum, chooses a partitioning that leads to a task completion time within 2% of the

optimum, and predicts task completion time with 12% mean relative error (MRE).

4.1 Contributions

The contributions of this work are:

• We derive a model that determines the optimal partitioning of work between a CPU

and a connected FPGA for any cooperative workload.

62



4. Cooperative processing of short-running tasks

• We predict for which cooperative workloads the execution time of a task will be

reduced if some portion of the work is processed in HW.

• We measure the communication overheads of short transfers between the CPU and

FPGA on the tightly-coupled Zynq-7020 SoC.

• Using a stream-based integer accumulator task, we demonstrate that the model can

be used to predict optimum workload partitioning between CPU and FPGA.

4.2 Publications

Parts of this work were accepted via peer review into the International Conference on

Field-Programmable Technology (FPT) for presentation in 2018. While most of that work

is my own, I credit my coauthor and supervisor, Oliver Diessel, for his overall guidance

and editorial support.

[KD18] A. Kroh and O. Diessel. A short-transfer model for tightly-coupled CPU-

FPGA platforms. In 2018 International Conference on Field-Programmable

Technology (FPT), pages 366–369, Dec 2018.

4.3 Prior work

Offline HW/SW functional partitioning of a task has been studied extensively in prior

work [Tei12,THM15,LVL03]. The goal of that work is fast and automated design space

exploration for minimising execution time, energy consumption and HW costs. Sequential

segments of code are identified and grouped into nodes termed basic blocks. Those blocks

are connected to form a graph that reflects the flow of program execution. The challenge

is in formulating an algorithm that chooses which of those blocks should be executed on

which of the available resources [KPPK11,WWLS13,WSC10,CLL+96].

63



4. Cooperative processing of short-running tasks

Those algorithms optimise partitioning by considering the benefit in execution time, the

FPGA area required and the cost of migrating control and data. However, few studies

have involved physical HW that impose realistic migration costs [VRKP14,LBK+16].

Offline HW/SW partitioning is difficult to optimise when program execution through the

graph is determined at run-time. For example, the number of iterations of a program loop

may be determined by the provided dataset. If the iteration count is unknown, the benefit

of migration is difficult to balance with its cost. For a range of tasks, Vaz et. al. showed

that the iteration count could only be determined offline in 11% of cases, while 46% could

be determined online [VRKP14]. The authors propose that partitioning decisions should

be made online once the number of iterations is known.

While the prior work mentioned above could extend our research, our focus is on partitioning

the dataset itself across compute resources rather than the functional partitioning of a

task.

In this work, both CPU and FPGA perform a common function to process the workload.

We partition the workload online with loop iteration bounds providing an indicator as to the

execution time on each resource. Like the prior work mentioned above, we must consider

the migration costs when determining how much work to offload. These migration costs

account for synchronisation overheads between CPU and FPGA using short transfers.

While many have evaluated communication performance on various platforms, the evalua-

tions are throughput-oriented and focus on traditional large data transfers between CPU

and FPGA. To our knowledge, no research has been conducted into how these throughput

models can by applied to an application that uses frequent small transfers.

The achievable PCIe bandwidth for large transfers between system memory and the FPGA

was measured to be 3 GB/s, but falls to ∼65 MB/s for 1 KB transfers [JK13]. In a

cooperative system with frequent short transfers, we expect transfers as small as one byte.

The throughput of MMIO communication between CPU and FPGA for payload size in

the 2 B to 2 MB range has been evaluated on both the Intel Cyclone and Xilinx Zynq

64



4. Cooperative processing of short-running tasks

CPU-FPGA devices. That work found that a peak bandwidth of 30 MB/s is achieved

for the Cyclone device for packet sizes larger than 8 B [MSFRA15]. On the Zynq device,

90 MB/s can be achieved for reads and 55 MB/s for writes when the packet size is larger

than 128 B [CFMRAF17]. Although small transfer sizes were considered, only throughput

is evaluated and the range of small transfer sizes evaluated is limit.

Other work has explored the performance of both MMIO and SM communication in order

to assist an engineer in the selection of the optimal channel. On Zynq, it is shown that

MMIO is best for transfers in the range 16 B to 64 K [SSS15], cache-coherent SM is best

for sizes up to 64 KB [SSS15,SWWB13], and uncached SM communication is best for sizes

up to 2 MB [SWWB13]. A similar study on Cyclone found that the choice depends on the

direction of data transfer [MRAF18], with writes being served better via MMIO and reads

from SM.

4.4 Partitioning model

The focus of this work is cooperative computation, in which two compute resources perform

a common function on a subset of the provided data. Once all compute resources have

processed their individual workloads, a nominated compute resource aggregates the partial

results and returns the final result to the application (Figure. 4.1).

Workloads best suited for this model can be flexibly divided into independent datasets that

require infrequent synchronisation between them. Examples include image processing

and matrix multiplication, where the dataset is typically partitioned into blocks for

processing [JSNV13]. Our accumulator study presents a workload that allows fine-grained

partitioning. Each integer to be accumulated can be considered independently.

The CPU overheads of migrating a task from SW to HW are the CPU execution cycles

required to both initiate processing by the accelerator and to collect the result. The

initiation overhead may include preparing memory for FPGA access, the transfer of

operating parameters, and a command to the accelerator to indicate that it can begin

65



4. Cooperative processing of short-running tasks

Communication
execution
overheads

Initiation
latency

Return
latency

g(a) g(b)

f(g(a), g(b))

CPU
execution

FPGA
execution

Transfer
latencies

Figure 4.1: Cooperative system execution and overheads.

processing. On the return path, the overhead may include preparing memory for CPU

access, retrieving the partial result from the accelerator or memory, and aggregating the

partial results of HW and SW processing.

Latency overheads are the combined latency of accelerator initiation and of returning the

partial result to the CPU. The initiation latency is the time between when the CPU

executes the initiation procedure and when the accelerator can begin processing. Although

this includes the latency of the first dataset reaching the accelerator, the latency of further

data access is considered in the throughput that the accelerator and its connected data

bus provide. The return latency includes the transfer of any outstanding data when the

accelerator completes processing and a signal to the CPU to indicate that the result is

available.

The execution time T of a cooperative task is determined by the longest completion time,

including transfer latencies and overhead, across the accelerator (Ta) and CPU (Tc). If

too much work is given to the accelerator, the CPU will become idle as it waits for the

accelerator to complete. If too little work is sent to the accelerator, an opportunity for

66



4. Cooperative processing of short-running tasks

parallel execution is lost. Therefore, the workload must be carefully partitioned to minimise

the completion time, which occurs when Ta = Tc.

When the workload, N , is large, the overheads of accelerator initiation and returning the

result can be ignored as they are small relative to the computation time. The completion

time of the accelerator and CPU partitions can then be calculated using (4.1a) and

(4.1b) respectively, where α∗ is the fraction of the workload that should be processed by

the accelerator. By equating (4.1a) and (4.1b), we see that α∗ partitions the workload

proportionally to the throughput provided by the accelerator (Xa) and the CPU (Xc) (4.2).

Ta =
α∗N

Xa
(4.1a) Tc =

(1− α∗)N
Xc

(4.1b)

α∗N

Xa
=

(1− α∗)N
Xc

sub. (4.1a) and (4.1b) into Ta = Tc

α∗Xc = (1− α∗)Xa

α∗ (Xc +Xa) = Xa

α∗ =
Xa

Xa +Xc
(4.2)

For small workloads, cooperative computation requires careful attention to data transfer

costs in terms of both transfer latencies (Da) and CPU overheads (Oc) (Figure. 4.1,

Eq. (4.3a) and Eq. (4.3b)). Transfer latencies on both the initiation and return paths

reduce the amount of work that the FPGA can complete. Programmable logic must wait

for the processing command to arrive and ensure that the result is available to the CPU as

soon as it is needed.

T ′a =
αN

Xa
+Da (4.3a) T ′c =

(1− α)N

Xc
+Oc (4.3b)

67



4. Cooperative processing of short-running tasks

The transfer of the processing command is performed by the CPU. The CPU execution

cycles required to perform this transfer represent an opportunity cost to the CPU as these

cycles could be used to process the workload. By considering both CPU overheads and

transfer latencies, the workload can be partitioned by α (4.4) such that the CPU and

FPGA complete the processing of their respective parts at the same time.

αN

Xa
+Da =

(1− α)N

Xc
+Oc sub. (4.3a) and (4.3b) into Ta = Tc

αN

Xa
− (1− α)N

Xc
= Oc −Da

αXc − (1− α)Xa =
XaXc (Oc −Da)

N

α (Xc +Xa) = Xa

[
Xc (Oc −Da)

N
+ 1

]

α =
Xa

Xc +Xa

[
1− Xc (Da −Oc)

N

]

α = α∗
[
1− Xc (Da −Oc)

N

]
sub. (4.2) (4.4)

Workload partitioning improves task completion time only if the time required for commu-

nication is masked by a reduction in completion time. To determine the workload, NL,

for which we benefit from using the programmable logic, we must ensure two conditions

are met: First, the time to initiate the accelerator to perform some subset αNL of the

workload, to compute (1− α)NL work on the CPU and to receive the results is less than

or equal to the time required to process NL work on the CPU alone (4.5), where O0 is the

proportion of Oc associated with calling and processing the function in SW with N = 0

work. Second, the time to process αNL on the accelerator should also be less than or equal

to the time to process NL work on the CPU alone (4.6). We find NL using Eq 4.8 by

solving the two inequalities (4.5 and 4.6) simultaneously.

68



4. Cooperative processing of short-running tasks

NL

Xc
+O0 ≥

(1− α)NL

Xc
+Oc (4.5)

NL

Xc
+O0 ≥

αNL

Xa
+Da (4.6)

NL

Xc
− (1− α)NL

Xc
≥ Oc −O0 rearranging (4.5)

NL −NL + αNL ≥ Xc (Oc −O0)

αNL ≥ Xc (Oc −O0) (4.7)

NL

Xc
+O0 ≥

Xc (Oc −O0)

Xa
+Da sub. (4.7) into (4.6)

NL ≥ Xc

[
Xc (Oc −O0)

Xa
+Da −O0

]
(4.8)

4.5 Evaluation of communication overheads

To evaluate our model, we must first find values for the CPU overhead (Oc) and latency

(Da) of the available methods for initiating an accelerator and retrieving the result on

our target platform. Knowledge of these overheads also assists in choosing the most

appropriate communication primitives for our accelerator.

We used the Avnet Zedboard for our study, which features a Zynq-7020 SoC (Section 2.7.3).

The Zynq comprises two ARM Cortex-A9 CPU cores with tightly-coupled programmable

logic. Data transfer can be achieved by sharing memory in either RAM or with the low-

latency L2 cache of the CPU. In the latter case, memory access by the FPGA is coherent

with that of CPU (Figure 4.2). Therefore, the CPU overhead of preparing memory for

shared access is avoided.

The Zynq also supports CPU mastered direct communication between CPU and FPGA via

69



4. Cooperative processing of short-running tasks

ACK

Invalidate

Read

WriteCPU

L1 cache

L2 cache

FPGA Write

Read

Invalidate

ACK

Figure 4.2: Cache-coherent data flow on Zynq-7000 series SoC.

CPU

FPGA

STALL

ACK

ACK

Write

Interconnect
buffers

(a) MMIO write transaction with SO memory at-
tribute.

CPU

FPGA

STALL

ACK

ACK

Write

Interconnect
buffers

(b) MMIO write transaction with DE mem-
ory attribute.

Figure 4.3: MMIO write transactions with SO and DE memory attributes.

MMIO. Write transfers propagate from the CPU to the FPGA through interconnects that

each provide internal buffering. When access is configured with the strongly-ordered (SO)

memory attribute, the CPU must wait for each write to be acknowledged by the target

before another transaction can be issued (Figure 4.3a). On the other hand, the device (DE)

attribute allows the CPU to continue as soon as the write is buffered (Figure 4.3b). While

the DE attribute reduces the CPU overhead of writes, buffers throughout the interconnect

may merge writes to the same address such that some writes never reach their target

(Section 2.5.1). SO and DE reads follow the same principles as writes, except that data

is returned with the acknowledgement of completion. Because reads modify CPU state

(the register file), the number of outstanding transactions before the CPU must stall is

reduced.

While both SM and MMIO can be used to transfer data, MMIO additionally provides a

signal to the accelerator that data has been transferred. An approach to signalling when

using cache-coherent SM is provided by the send event (SEV) instruction. ARM suggests

70



4. Cooperative processing of short-running tasks

CPU

FPGA

Write

L2 Cache

Read

SEVDSB

ACK

(a) SEV signalling with data synchronisation.

Write SEV

ACK

ReadFPGA

CPU

L2 Cache

(b) SEV signalling only.

Figure 4.4: Cache-coherent SM writes with signalling on Zynq-7000 series SoC.

that this mechanism would be useful for synchronising access to memory that is shared

between CPU and accelerator [ARM05]. When data has been written to cache-coherent

SM, the data synchronisation barrier (DSB) instruction is used to stall the CPU until the

data can be observed in the cache by the accelerator. The CPU then executes the SEV

instruction to toggle the logical state of the EVENT EVENTO signal in programmable

logic. This notifies the accelerator that data has been updated (Figure 4.4a). Although

data synchronisation extends the execution time of the transfer, it prevents the accelerator

from reading stale data from the cache (Figure 4.4b).

In the subsections that follow, the CPU overhead and latency of short transfers using

MMIO and SM are evaluated to acquire the metrics that are used by our model. In the

case of MMIO, both SO and DE memory attributes are evaluated. In the case of SM,

we also evaluate the overhead of signalling using the SEV instruction. The latency of

bulk data transfers is application specific and will be discussed in our HW accumulator

evaluation in Section 4.6.

For all of our experiments, the CPU, programmable logic and DDR RAM were configured

to operate at 667 MHz, 214 MHz and 533 MHz respectively. The theoretical maximum

bandwidths of the ACP, L2 cache, DDR RAM and GP port are 1632 MB/s, 5086 MB/s,

2132 MB/s and 816 MB/s respectively at their configured operating frequencies [Xil14].

All experiments were run as bare metal applications.

71



4. Cooperative processing of short-running tasks

STALL

ACK/DATA

ACK/DATA

Out of order
execution

CPU

Target

OP

buffers

CPU
overhead

Figure 4.5: CPU overhead and out-of-order execution.

4.5.1 CPU overhead

The CPU overhead of a short transfer is the CPU execution time required to perform that

transfer to or from a target memory or accelerator. The execution time depends on the

operation, the target, the access attributes and whether or not subsequent instructions

can be executed out-of-order. Out-of-order execution reduces the CPU overhead that it

attributed to CPU pipeline stalls (Figure 4.5).

We evaluated the CPU overhead of reads and writes to various targets. In our experiments,

MMIO communication to programmable logic was issued to an AXI memory controller

that we connected directly to the GP port at the CPU-FPGA boundary of the Zynq. This

controller was designed to respond immediately to all requests and thereby eliminated

latency due to soft interconnects and peripherals.

Communication via cache-coherent SM is via the ACP on the Zynq. An ACP read

transaction from programmable logic to SM can be served from any level of the memory

hierarchy, including the private L1 cache of either CPU core. On the other hand, an

ACP write transaction from programmable logic is always issued to the L2 cache. In this

case any corresponding cache lines present in the private L1 cache of each CPU core are

invalidated. When the CPU reads data back from SM, read requests are served by the L2

cache of the CPU. Therefore, the CPU overheads of cache-coherent SM communication

72



4. Cooperative processing of short-running tasks

Table 4.1: Zynq-7020 CPU overheads, measured in CPU cycles, for short transfers between
CPU and various targets.

Target Words = 1 2 3 4 5 6 7 8

In-order execution

L2 Cache read 28 41 54 67 80 93 106 119
FPGA MMIO read (DE) 76 86 103 119 145 164 178 188
FPGA MMIO read (SO) 76 146 205 278 343 413 478 542
L1 Cache write 7 7 8 9 10 11 12 13
L1 Cache write; DSB; SEV 24 24 25 26 27 28 29 30
FPGA MMIO write (DE) 14 17 20 23 26 29 79 86
FPGA MMIO write (SO) 85 164 241 317 385 476 565 626

Out-of-order execution

L2 Cache read 12 25 38 51 64 77 90 103
FPGA MMIO read (DE) 60 70 87 103 129 148 158 172
FPGA MMIO read (SO) 60 130 189 262 327 397 461 526
L1 Cache write 1 1 2 2 3 3 4 5
L1 Cache write; DSB; SEV 24 24 25 26 27 28 29 30
FPGA MMIO write (DE) 1 1 4 7 10 13 63 70
FPGA MMIO write (SO) 69 145 225 298 369 468 549 610

were measured as the CPU execution time required to write to the L1 cache for writes and

read from the L2 cache for reads.

We used the CPU cycle counter of the ARM performance monitoring unit (PMU) to

measure the CPU overheads for reads and writes of various sizes to and from various

targets. Both SO and DE memory access attributes were explored when accessing the

FPGA using MMIO. We measured a pessimistic execution time by flushing the CPU

write buffers and execution pipeline before and after the transfer instruction(s) were

issued. To consider the impact of out-of-order execution, we also measured a best-case

execution time by adding 12 instructions that could be executed out-of-order after the

transfer instruction(s). In both cases, the overhead of reading the CPU cycle counter and

executing the pad instructions (when present) were subtracted from the measured result.

The median CPU execution cycles of 100 measurements for both reads and writes were

recorded. While key results are summarised in Table 4.1, a complete set of results can be

found in Appendix A.

Our results show that CPU overheads for FPGA writes of up to 6 words in size were similar

73



4. Cooperative processing of short-running tasks

to those obtained for L1 cache writes when out-of-order execution is possible and the DE

attribute is used. This is because the DE attribute allows the CPU to continue to execute

after issuing the transaction to the interconnect. While the L1 cache operates at the same

frequency of the CPU, the interconnect to the FPGA operates at 1/3 of that frequency.

Therefore, once CPU write buffers are full, each additional write requires 3 CPU cycles to

execute. Once interconnect buffers are full, additional writes must stall the CPU until a

previous write transaction has been processed.

When using the SEV signalling mechanism to notify the accelerator of L1 cache writes, an

additional 23 CPU cycles are required when compared to the L1 cache write itself. Such

signalling can alternatively be achieved by writing the last word of the transfer directly to

the FPGA. In that case, at most 14 CPU cycles are required when the DE attribute is

used. Therefore, this method of signalling is only beneficial if it significantly reduces the

latency of transfers from CPU to FPGA.

For all memory attributes and execution orderings, the CPU overhead of an FPGA read is

much higher than the overhead of an L2 cache read. This is due to CPU pipeline stalls as

it waits for the read transaction to complete. The duration of that stall is determined by

the latency of the transaction, which is higher for the FPGA than the L2 cache.

4.5.2 Latency

Latency is the time between when a transfer begins and when data arrives at its target.

The latency represents time when the accelerator is not able to process data and must be

considered when balancing the work between HW and SW. The latency of communication

between CPU and accelerator is part of the Da parameter in our model. The remaining

part is the latency of the initial and final bulk data transfers from and to SM (if required).

Prior work has measured only the round-trip latency of a transfer [MSFRA15] [MRAF18]

[CFMRAF17] [SSS15] [SWWB13]. Round-trip latency is convenient because a common

reference of time can be used to record both the start and end time of the experiment.

74



4. Cooperative processing of short-running tasks

FPGA→CPU
MMIO latency

Read

FPGA

buffers

CPU

(a) FPGA to CPU MMIO latency.

Write

FPGA

buffers

CPU

ACK

ACK

CPU→FPGA
MMIO latency

(b) CPU to FPGA MMIO latency.

Figure 4.6: MMIO latencies.

Read

WriteCPU

Cache

FPGA

CPU→FPGA
SM latency

(a) CPU to FPGA SM latency.

FPGA→CPU
SM latency

WriteFPGA

Cache

CPU Read

(b) FPGA to CPU SM latency.

Figure 4.7: Cache-coherent SM latencies.

However, our model requires that we exclude the latency of read requests (Figure 4.6a)

and write acknowledgements (Figure 4.6b) to measure the latency of the transfer of the

data itself.

For cache-coherent SM communication, data transfer propagates through the cache. There-

fore, we measure the latency as the time between when the writer transfers data to the

cache and when that data is observed in the cache by the reader (Figure 4.7).

To provide a common reference of time, we used the low-latency SEV signalling mechanism

provided by the Zynq. We executed the SEV instruction at key points in the instruction

stream to observe when neighbouring instructions were executed by the CPU. We assumed

that this signal has no latency since it does not propagate through interconnects within

75



4. Cooperative processing of short-running tasks

the CPU or programmable logic. We used Vivado’s integrated logic analyser (ILA) soft IP

core to measure the elapsed FPGA clock cycles between events in programmable logic and

the CPU. For consistency, we present our results in CPU cycles.

For MMIO communication from CPU to FPGA, we executed the SEV instruction im-

mediately before a write instruction. We then measured the time from when the SEV

instruction was observed until the data arrived at the CPU-FPGA boundary.

For MMIO communication from FPGA to CPU, we executed the SEV instruction imme-

diately after the read instruction. The SEV instruction enforces a serialising barrier in

so far as any previous instruction that modifies CPU state completes before the SEV is

executed. In our case, the CPU state is the target CPU register of the read. Therefore,

these instructions will execute in program order. We measured the latency as the time

from when the data arrived at the CPU-FPGA boundary until the SEV instruction was

observed.

The latency of SM communication was measured by first initialising a pre-determined word

in memory to a known value. The sender was then configured to change the value of

that word and the receiver was configured to continuously read that word until it observed

that the value had changed. When the FPGA is the sender, we programmed the CPU to

execute the SEV instruction when it observed a change in memory content. The latency

was then measured as the time from when the write transaction arrived at the CPU-FPGA

boundary until the CPU executed the SEV instruction. When the FPGA was the receiver,

the CPU executed the SEV instruction immediately before writing to SM. The latency was

then measured as the time from when the SEV instruction was observed until the updated

value appeared at the CPU-FPGA boundary.

The results of our experiments (Table 4.2) show that the latency of short transfers from the

CPU to the FPGA are lowest when communication is direct via MMIO. In Section 4.5.1,

we found that writes from the CPU to the FPGA have a similar overhead to L1 cache

writes when up to 6 words are transferred. Depending on the throughputs provided by

each resource, the CPU overhead of MMIO communication may outweigh the increased

76



4. Cooperative processing of short-running tasks

Table 4.2: Zynq-7020 communication latency between CPU and programmable logic.

Direction Method Latency (CPU cycles)

CPU→FPGA
MMIO 32

SM 42

FPGA→CPU
MMIO 36

SM 36

latency when more than 6 words must be transferred. Therefore, we conclude that MMIO

should be used for all transfers less than 7 words in size, with larger transfers dependent

on the opportunity cost of CPU overhead and transfer latency to each resource.

Regarding transfers from FPGA to CPU, we found that transfer latency was the same for

both MMIO and SM communication. Since the overhead of L2 cache reads is significantly

higher than FPGA reads (Section 4.5.1), we conclude that SM should be used for all

communication from FPGA to CPU.

4.6 Hardware accumulator evaluation

The objectives for this chapter were to create a model for low-latency communication on

tightly-coupled CPU-FPGA platforms and to demonstrate that it supports cooperative

processing of short-running tasks that are partitioned across CPU and FPGA. As previously

foreshadowed, we chose an accumulator task for this demonstration because it is easily

partitioned and cooperatively executed on both CPU and FPGA. Although this application

is trivial, it allows us to focus on workload partitioning and communication overhead,

rather than on the underlying data processing algorithm. The methods used in this study

can be applied to a range of other applications.

The accumulator has a known workload (the number of values to accumulate). As previously

explained, the challenge for this application is to partition the workload such that the CPU

and FPGA complete their share of the work at the same time. With this application we

show that our model determines the optimum partitioning ratio to minimise completion

time. We also show that NL (the minimum workload at which we benefit from HW

77



4. Cooperative processing of short-running tasks

Integer stream

CPU-FPGA boundary

αN∑
0

A

Communication
execution

overheads (Oc)

Initiation
latency

Return
latency

Transfer
latencies (Da)

CPU Memory DMA Accumulator

N∑
αN+1

A

Da.1

Da.2

Da.3

Da.4

Oc.1

Oc.2

O0

Figure 4.8: Accumulator connection and communication.

acceleration) is accurately predicted by our model.

We connected our accumulator to a DMA controller implemented in programmable logic.

The DMA controller provided a stream of integers from SM for processing (Figure 4.8).

The DMA engine was configured using two MMIO writes from the CPU to the DMA

engine via the GP port. These writes provided the address of the first integer, the number

of bytes to transfer and instructed the DMA engine to begin the transfer.

The DMA engine provided independent channels for up- and down-stream transfers. We

used the second channel to transfer the result of the computation back to SM once the last

integer had been accumulated. We assumed that this needed only to be programmed once

to choose a fixed location in SM for the result of all accumulator operations. For this reason,

the overhead of programming the second channel was excluded from our experiments.

The DMA engine was connected to the ACP to avoid the overheads of cache-maintenance.

Our IP was capable of processing two 32-bit words concurrently in a single cycle to match

the 64-bit data bus of the ACP. The system throughput was thus limited by the bandwidth

provided by the ACP.

78



4. Cooperative processing of short-running tasks

 10

 100

 1000

 10  100  1000  10000

594 MB/s

231 MB/s
T

h
ro

u
g
h

p
u

t 
(M

B
/s

)

Workload size (Bytes)

Software only
Hardware only

Figure 4.9: Accumulator throughput for software and hardware.

We measured the final component of CPU overhead, O0 by using the CPU cycle counter

to measure the cost of calling the accumulator function with 0 integers to accumulate.

The final component of latency was found by using the ILA to measure the time between the

DMA controller transaction arriving at the CPU boundary and the first integer pair arriving

at the accelerator. Alternatively, this could be found from the DMA and interconnect IP

core specifications.

Finally, the throughput of the compute resources (Xa and Xc) was measured using the CPU

cycle counter when calling the accumulator function with very large workloads (Figure 4.9)

– the communication overheads can be ignored in this case. The complete set of parameters,

including α and NL, are shown in Table 4.3. For our accumulator application, NL must be

a multiple of 8 bytes to match the 64-bit wide ACP bus.

We measured the completion time of the accumulator when using SW- and HW-only, as well

as a cooperative system in which the partitioning was chosen by our model (Figure. 4.10).

Included in our results is the expected execution time as predicted by our model. We also

include the empirical optimum result for each workload, which was found experimentally

79



4. Cooperative processing of short-running tasks

Table 4.3: Accumulator model parameters given a 667 MHz CPU clock frequency and
214 MHz FPGA clock frequency.

Symbol Value Source

Xa 594 MB/s Application dependent (Figure 4.9)
Xc 231 MB/s Application dependent (Figure 4.9)

O0 36 ns Application dependent
Oc.1 1.5 ns Table 4.1: FPGA (DE) write of 2 words (1 cycle)
Oc.2 42 ns Table 4.1: L2 cache read of 1 word (28 cycles)
Oc 80 ns Oc.1 +Oc.2 +O0

Da.1 48 ns Table 4.2: CPU→FPGA MMIO (32 cycles)
Da.2 224 ns Application dependent
Da.3 75 ns Application dependent
Da.4 54 ns Table 4.2: CPU→FPGA SM (36 cycles)
Da 401 ns Da.1 +Da.2 +Da.3 +Da.4

α 0.72− 56N−1 Eq. (4.4)
NL 96 B Eq. (4.8)

by varying the partitioning ratio from 0.0 to 1.0 in increments of 0.001 and executing the

task to completion.

Our results show that our model predicted the workload NL, for which the cooperative

approach begins to outperform the SW-only approach. This prediction was within 8% of

the empirical optimal for the accumulator application. Our model was able to predict the

completion time of the partitioned cooperative system with a MRE of 12% for workloads

in the range 8 B to 1 KB. Over the same range, the MRE between the execution time

obtained using the model and the best-case observations was 2%.

4.7 Chapter summary

In this chapter I presented a model for partitioning a task between a CPU and tightly-

coupled programmable logic for all cooperatively processed workloads. This model can

be applied to short-running tasks as it considers both the CPU overhead and latency of

communication between compute resources.

We have also reported the CPU overhead and latency of short MMIO and SM transfers

80



4. Cooperative processing of short-running tasks

 0

 200

 400

 600

 800

 1000

 0  50  100  150  200  250  300  350  400

NLT
a
s
k
 e

x
e
c
u
ti
o

n
 t
im

e
 (

C
P

U
 e

x
e

c
u
ti
o

n
 c

y
c
le

s
)

Workload size (Bytes)

Software only
Hardware only

Model (measured)
Empirical optimum
Model (predicted)

Figure 4.10: Accumulator execution time for α partitioning.

between the CPU and the FPGA on the Zynq-7020 device. These parameters, as well as

interconnect delays, were used in our model to estimate the partitioning and completion

time of a suitable application.

Our model was able to predict, within 8%, the workload at which we benefit from task

partitioning for a generic stream-based application. The task completion time was predicted

by our model with an MRE of 12%. We used our model to calculate a partitioning ratio

that reduced task completion time to be within 2% of the empirical optimum.

Our model considers a single task that benefits from a single accelerator and assumes that

the accelerator has been configured before the task begins execution. In the next chapter,

I extend this model to a dynamic multitasking environment in which the programmable

logic hosts a number of concurrent, reconfigurable accelerators that are shared between

many diverse tasks.

81





Chapter 5

Accelerator sharing in multi-user

environments

This chapter is focused on whether FPGA technology can be used to improve the

performance of general-purpose systems, such as personal computers and mobile devices.

Unlike special-purpose systems, general-purpose systems execute a variety of short-running

tasks in a multitasking environment. When accelerating a short-running task, the overhead

of migrating a task from CPU to FPGA and back can quickly outweigh any improvement in

execution time. In order to accelerate such tasks, we must minimise the initiation overheads

of using the HW. These include configuring an appropriate accelerator and transferring

work to it.

A significant task migration overhead is the time required to configure the FPGA to

perform a desired function. Ideally, one avoids the recurring configuration overhead by

sharing accelerators between applications. In this way, accelerators can stay resident and

be reused by other applications. However, accelerators are typically designed to be specific

to the application to be accelerated and are difficult to reuse [ISA16].

Shared libraries, on the other hand, are designed to contain functions that are common

to many general-purpose applications. Examples of such functions from the C standard

83



5. Accelerator sharing in multi-user environments

library are strcmp for comparing two strings and qsort for sorting an array. One might use

qsort to sort database query results and strcmp to compare text fields between records,

thereby defining the desired ordering.

Shared libraries are provided by the system and are linked into applications at run time.

This reduces application size since common sections of application code and data need only

be stored once on disk. Once loaded, read-only sections of these libraries can be shared

across applications to conserve memory and cache footprint.

Our motivation for choosing to accelerate shared libraries extends to the inherently high

engineering effort of FPGA accelerators. Because shared libraries are shared across many

applications, the development costs can be divided across those applications. With lower

development costs, there is greater incentive to optimise the design.

Shared libraries also make applications more portable across platforms by providing abstract

interfaces to the application. This problem is notoriously difficult to manage for FPGA

HW, for which a new bitstream is needed for each combination of application and FPGA

device. Shared libraries, on the other hand, can be ported to new HW without modifying

the application. This is particularly important when the end user does not have access to

the source code of the application, but can control the libraries to which it will be linked

at run-time.

A secondary overhead for task migration is transferring data for access by the FPGA.

This overhead has been addressed by HW advancements in heterogeneous CPU-FPGA

systems. Vendors are providing cache-coherent interconnects that eliminate the need for

designers to manage a consistent view of memory content between the FPGA and CPU

(Section 2.6). Additionally, the CPU’s virtual memory model can be replicated by the

FPGA. This provides consistent memory addressing between HW and SW. The overhead

of calling the OS to prepare memory for access by the FPGA is eliminated.

84



5. Accelerator sharing in multi-user environments

5.1 Contributions

The objective for this work is to demonstrate the benefits of accelerating functions that

are common across concurrent applications in general-purpose systems.

The core contributions of this work are:

1. A framework for sharing accelerators concurrently across multiple, diverse applications

on a multi-core platform (Section 5.4).

2. An efficient method for transferring function arguments between HW and SW (Sec-

tion 5.4.3).

3. Algorithms for cooperatively partitioning work across CPU and FPGA-based acceler-

ators in a multitasking environment (Section 5.4.7).

4. A performance evaluation of our argument transfer method with respect to traditional

methods (Section 5.5.1).

5. An evaluation of the potential for FPGA-based shared library accelerators to improve

the overall performance of general-purpose, multitasking systems (Section 5.5.2).

5.2 Publications

The work in this chapter is in the process of being drafted into a paper submission. This

work is my own, with shepherding provided by my supervisor, Oliver Diessel.

5.3 Prior work

A number of frameworks for FPGA-based accelerators have been proposed for heterogeneous

CPU-FPGA systems [JK13,Egu10,GWC+14,LP09b,LP07,So07,Int19c]. These frameworks

85



5. Accelerator sharing in multi-user environments

aim to provide a uniform interface to FPGA resources for instantiating, initialising and

submitting processing requests to application-specific accelerators [PAA+06,VPI05].

FPGA accelerator frameworks often have competing design goals. RIFFA is designed to

provide minimal engineering effort by focusing on cross-platform and cross-OS portabil-

ity [JK13]. RIFFA achieves this by sacrificing platform-specific performance enhancing

features. EPEE, on the other hand, is optimised for performance at the cost of portabil-

ity [GWC+14]. OS-specific features, such as zero-copy, are used to minimise latency on

Linux-based systems.

From the perspective of the application developer, our framework is optimised for both

performance and portability. Accelerated shared libraries need only be ported to each

platform, rather than for each application-platform combination.

Accelerator frameworks typically provide a blocking interface to their applications. Multi-

threading has been proposed as a method to ensure an application can progress when a

blocking call to an accelerator is made [Egu10]. This model follows a family of work that

proposes the use of light-weight SW threads as wrappers for HW threads [LP09b,So07]. A

HW thread is a task that is being performed by an accelerator. The SW thread is used as

a proxy between the accelerator and the host application or the OS.

Our framework is similar to a HW thread scheme except that the proxy thread is not

expected to block until the HW thread has completed. Our proxy thread assists the HW

thread by partitioning the workload, initiating the HW threads, and processing part of the

workload itself.

Our framework partitions work between HW and SW for parallel execution on the available

resources. A comparable approach to workload partitioning and processing is the

foundation of the OpenCL standard [Khr19]. OpenCL considers loops within code as

candidates for partitioning and parallel execution. Each iteration of the loop is called a

work-item and can be scheduled on any number and combination of computational units,

such as CPUs and FPGAs. Using OpenCL, an FPGA has been viewed as a resource that

86



5. Accelerator sharing in multi-user environments

A
cc

el
er

at
or

s

OS

App
Accelerator

control
framework

Submit Schedule

Performance
metrics

Job data

Job status

Set of active
accelerators

Failed requests

Reconfiguration

Figure 5.1: Overview of accelerated shared-library framework.

can change its function depending on the nature of the work to be scheduled [VPK19].

FPGA HW has traditionally been used to accelerate long-running tasks. This allows

partitioning algorithms to be complex without adding significant overhead to completion

time. It also allows for scheduling algorithms with application-domain knowledge and a

complete set of sub-tasks to be scheduled over a long period of time [VPK19].

In contrast, our target domain is general-purpose systems that may host a large number

and variety of short-lived applications. Task arrival times are sporadic and difficult to

predict. It is not possible to formulate a globally optimal schedule for tasks and resources.

5.4 Framework architecture

Our framework provides middleware to connect applications to FPGA-based accelerators

(Figure 5.1). The framework and the OS work together to detect and predict application

demand for common functions. The OS responds to the anticipated demand by ensuring

that a useful set of accelerators are active using DPR. The framework is implemented in

HW to avoid OS system call overhead by allowing applications to submit jobs directly to

the framework.

87



5. Accelerator sharing in multi-user environments

In this work, we identify tasks as abstract operations that must be performed. We assume

that tasks can be partitioned into smaller subtasks. When such a subtask is submitted to a

compute resource, it is referred to as a job. Jobs cannot be partitioned further and must

run to completion.

The framework provides performance metrics to the application so that the application

may choose the set of compute resources for jobs in order to minimise task execution

time. The metrics include the estimated wait time of a submitted job and the current

total throughput provided by the configured accelerators. If the application calculates

acceleration to be beneficial, part of the workload will be processed by the CPU and the

rest will be submitted to our framework for processing by one or more accelerators. When

our framework schedules the job on an appropriate accelerator, the designated accelerator

gains access to the memory address space of the application. The accelerator updates

the job data and status in application memory during processing. If an accelerator is

not present for the submitted job, the framework reports an error to the application and

notifies the OS of the demand for the new accelerator. We expect most GP tasks to be

small enough that they can be processed in SW before an accelerator for that function is

configured. Our goal is therefore to ensure that an accelerator is ready for that function’s

next use when that function is found to be requested frequently.

The HW for our proposed framework (Figure 5.2) can be divided into four parts: 1 the

reconfigurable accelerator slots for cooperative processing; 2 the IOMMU to provide

a unified address space between the CPU and accelerators; 3 the CSR manager for

mapping job parameters to the CSR of the target accelerator and; 4 the system monitor

to collect and report performance statistics and to initiate reconfiguration events. Each

of these are detailed along with the operating principles of the system in the following

subsections.

5.4.1 Reconfigurable slots

The reconfigurable slots provide areas in the FPGA fabric to instantiate the accelerator

88



5. Accelerator sharing in multi-user environments

PT walks and SM
physical address

Invalid requests

LLC

MMIO

Job router

0x400000XX
0x400001XX
0x400002XX
0x400003XX

3 CSR manager

1
Reconfigurable

slots

Queue source
configuration

Queue sink
configuration

2 IOMMU

ASID+Virtual
address

4 System monitor

Argument list,
status and
return value
access

Job queues

Function-queue routes Slot-queue routes

SM
Queue size and
length monitoring

Job completion
notification

Bandwidth
monitoring

0
2
–
3

Slot QueueAddress Queue

0
1
2
3

-
2
1
1

Metrics
update

IRQ
Translation fault

Reconfiguration
required

Figure 5.2: Hardware system of accelerated shared-library framework.

89



5. Accelerator sharing in multi-user environments

logic. Given a large number of functions to be accelerated and a limited amount of FPGA

area, we expect accelerators to be instantiated, retired or replicated at run-time in response

to changing demands using DPR [VPKG18].

Our framework provides a standard interface to each slot such that accelerators are

interchangeable. The interface that our framework provides includes an MMIO port for

accelerator control, a cache-coherent SM port for data access and a signal to indicate to

the framework when a job can be retired and the next can be scheduled.

The framework does not provide mechanisms for preemptive scheduling of HW jobs

due to the associated FPGA area, design complexity and time overhead. Preemptive

scheduling involves periodically interrupting a HW job and saving its state so that it can

be resumed at a later time [SLM00,MG13,KP05,LHLT10,HTK15]. Another job can then

be selected, restored and resumed. To support preemptive scheduling, both framework

and accelerator must provide logic for saving and restoring accelerator registers. Unlike

preemptive scheduling of SW jobs on a CPU, there is no bound to the number of registers

that must be saved and restored. Therefore, there is no bound on the time and memory

required to change accelerator state. Instead, we rely on scheduling small amounts of work

to completion [VPK19].

Without preemptive scheduling of HW jobs, a single application can monopolise an

accelerator by submitting a long-running, uninterruptible job. To mitigate this, a bound

is placed on the size of a submitted workload. Long-running tasks are expected to be

divided into smaller sub-tasks that can be run to completion in a short period of time. For

example, a large image processing task can be partitioned into blocks. Each block can

be scheduled for processing by one or more accelerators. This partitioning provides the

scheduling flexibility required to frequently switch between tasks without the overhead of

saving and restoring a large number of registers.

Partitioning also allows SW to spread a task across multiple accelerator replicas. This

is particularly important when the number of accelerators changes after jobs have been

submitted. With inadequate partitioning and no mechanism for repartitioning within the

90



5. Accelerator sharing in multi-user environments

framework, the additional accelerators cannot be used.

For tasks that cannot be broken down into short running subtasks, the programmable logic

can be partitioned such that some accelerators operate within our framework and others

operate as traditional bare-metal accelerators.

5.4.2 IOMMU

A traditional accelerator will access memory via its physical address rather than the virtual

address of the application. A traditional application must therefore perform a manual

translation of each contiguous virtual range of memory to provide a set of physical addresses

that the accelerator can use. This translation requires a call to the OS and is an overhead

that we endeavoured to avoid for our short-running library functions. To that end, our

framework provides an IOMMU for the hosted accelerators that performs the same function

as the MMU of the CPU.

Our IOMMU accesses OS-provided page table structures to: 1. translate any virtual address

provided by the application to a physical address that can be used by the accelerator; or

2. interrupt the CPU such that the OS can respond to failed translations. With the set of

valid translations controlled by the OS, memory need not be pinned to ensure residency

and memory access can be restricted such that one application cannot use an accelerator

to access the memory of another application.

Examining page table structures is a time-consuming process. Therefore MMUs typically

include a TLB to cache frequently translated addresses. Unlike prior work [WC17], our

IOMMU features a unified TLB: a single translation cache is maintained and serves all

accelerators. Translations performed for one accelerator can therefore be reused by another

accelerator.

The unified TLB is beneficial to tasks that are partitioned in space or time. Cached

translations are reused when a task is partitioned across replicated accelerators. Similarly,

translations are reused when a task is partitioned into dissimilar functions that are

91



5. Accelerator sharing in multi-user environments

executed sequentially. For example, an application may wish to render an encrypted Joint

Photographic Experts Group (JPEG) image file. The application must first decrypt, then

decompress, and finally transform the file content such that it can be displayed at the

correct scale on screen. Each of these operations can be assisted by HW acceleration.

A unified TLB that serves multiple parallel accelerators implies that all transactions and

translations are tagged with an address space identifier (ASID). This ASID differentiates a

virtual address of one application from that of another application. Since an application may

be malicious or contain bugs, we cannot assume that an ASID provided by an application

is valid. Instead, it is the framework that must identify which application has submitted

each job and associate it with the correct ASID.

We use the address of MMIO transactions to the framework to identify the applications

from which they originate and the MMU of the CPU to restrict the addresses that the

application can access. This ensures that an application’s identity cannot be forged and

prevents one application from submitting a job that may access the private data of another.

Our framework extracts the ASID from the most significant address bits of the MMIO

transaction that is used to access the CSR of the framework. We use the MMU of the

CPU to prevent an application from accessing the physical address range that is associated

with other ASIDs. Once decoded, the ASID is bound to the submitted job and will be

used to tag any SM transfer that is submitted to the IOMMU for the application.

Our approach to binding jobs with ASIDs requires little FPGA area. One must only

consider the additional signals and registers required to carry a wider address bus from the

CPU to the framework.

5.4.3 Job queues

The job queues hold SW-submitted jobs until they can be scheduled on an accelerator.

This frees the CPU to continue execution as soon as the job has been submitted. In its

simplest form, a job references a function and contains a set of function arguments. The

92



5. Accelerator sharing in multi-user environments

arguments provide input data directly and/or provide the location of IO buffers in memory.

In order to minimise OS overhead for short-running tasks, the job queues are accessed

directly by the application via MMIO. The job queues thereby define the application binary

interface (ABI) between SW and HW.

The shared library SW submits a job by transferring a function identifier (ID), function

arguments and a job size to our framework. The function ID must be decoded immediately

to select the destination queue for the incoming job. We therefore provide the function ID

in the same way that the ASID is provided: by encoding it into the address bits of MMIO

transactions to the framework.

It is important that thread safe library functions remain thread safe after they are ac-

celerated using our framework. A thread safe library function is a library function that

allows multiple threads within an application to safely execute that function concurrently

without additional synchronisation. A thread safe library function typically does not

modify resources that are shared across threads, such as global variables. For example,

two calls to a library function may safely operate on two independent data sets. However,

the accelerated shared library introduces a shared resource: the accelerator framework.

Without synchronisation, the configuration of the CSR of the framework by one thread

can be interrupted and overwritten by another. One solution to such inter-application

concurrency is to replicate the CSR of each accelerator for each application. Unfortunately

this does not address intra-application concurrency concerns – each application may contain

many concurrent threads.

The ABI hence presents two design problems for shared library accelerators: 1. How should

multiple threads in one or more applications submit jobs at the same time? 2. How many

function arguments should be transferred via the job queue registers and how many via

SM (e.g. the stack)?

As it turns out, our solution to problem 2) is a bi-product of our solution to problem 1).

By restricting the amount of data that is transferred to the word size of the MMIO data

93



5. Accelerator sharing in multi-user environments

Table 5.1: Job queue MMIO address encoding.

.
Bit range Number of bits purpose

31 - 30 2 Constant: FPGA base address.
29 - 21 8 ASID of origin.
20 - 12 8 Function ID.
13 - 2 12 Workload size.
1 - 0 2 0 (Word alignment).

Total 32

bus, jobs can be submitted in a single atomic MMIO transaction. There is then no need to

replicate the CSR of the accelerators for each application, nor to synchronise access from

each thread to the CSR using locks. Because the MMIO data width is typically the size of

a pointer, the data that is transferred is a pointer to the function’s arguments. Although it

takes longer for the accelerator to fetch a small number of arguments from memory than it

would to transfer them via MMIO (Chapter 4), we avoid CPU thread synchronisation time

and using FPGA block RAM (BRAM) resources. A quantitative study of the overheads of

this method is presented in Section 5.5.1.

Storing the workload size with the argument list pointer in the job queues allows the

framework to estimate the wait time for arriving jobs. When these metrics are exported

to the application in real-time, they assist the application in deciding how much work

to offload to the accelerator(s). However, to ensure an atomic transfer that incorporates

the additional data, an MMIO bus that is two words wide is required. Because the bus

provided by our target platform is only one word wide, we encode the workload size in the

remaining address bits of the MMIO transaction. Our encoding for the address that an

argument list pointer should be transferred to is shown in Table 5.1.

Apart from the arguments to be transferred, we must also consider how accelerator status

and function return values are shared between the accelerator and the application. When

solving this problem, we must consider that multiple threads within the application may

be concurrently submitting multiple parallel jobs to the accelerators. The location of the

status of each of these jobs must be known and accessible at any time such that each

thread can determine when its submitted jobs are complete. Our solution is to store status

94



5. Accelerator sharing in multi-user environments

values with the list of arguments. When the job is complete (or an error occurs), the

framework updates both the status and the return fields using the argument pointer that

was submitted when the job was enqueued.

5.4.4 Job router

The job router defines the path from the application HW/SW boundary to the accelerator

for incoming jobs. This path specifies where jobs will be queued and to which slots the

job can be scheduled for processing.

The router first decodes incoming jobs by function ID and inserts them into the queue

that was assigned for that function. With many more accelerated functions than queues,

it is not possible to concurrently route all functions to accelerators. Jobs that arrive for

functions that are not being accelerated are submitted in error and will not be queued.

Instead, their job status will be updated to report an error. Because the CPU cannot

continue until the submitted transaction to the framework have been accepted, such failed

jobs are handled with highest priority. Jobs for functions that are routed to full queues are

treated in the same way, except that a different error code is returned.

Recording the IDs of functions that were requested but unavailable indicates to the

framework a demand for the missing accelerators. When the current set of instantiated

accelerators is re-evaluated, the framework may replace an unused accelerator with an

accelerator for the requested function. With knowledge of the configured accelerator set,

the shared library should not submit work for a function that it finds is not currently being

accelerated; it should only submit such a job if it wishes to inform the framework that

there will be demand for that function in the near future.

The framework supports the replication of accelerators to improve the combined throughput

for functions that are in high demand. This is achieved by allowing each queue to be

served by multiple accelerator slots. For scalability, we design this as a one-to-one slot

to queue routing rather than a one-to-many queue to slot routing. When scheduling a

95



5. Accelerator sharing in multi-user environments

queued job to an accelerator, our design replaces an O(n) idle accelerator search for each

nonempty queue with an O(1) nonempty queue lookup for each idle accelerator. Since each

queue need not store a list of associated accelerators, our scalable design reduces BRAM

requirements and simplifies the logic.

Since our framework does not support saving and restoring accelerator state, and to avoid

jobs being stalled in a queue indefinitely, we constrain the system such that a slot cannot

be reconfigured while it is processing a job, or while it is the only slot that is servicing a

nonempty queue.

5.4.5 CSR manager

The CSR manager provides the abstraction needed to connect a traditional MMIO CSR-

based accelerator to our framework. Once a job is ready to be scheduled on an accelerator,

the CSR manager retrieves the job function arguments from SM using the argument

list pointer that was provided by the application. It then copies the arguments to the

accelerator CSR. The CSR manager then updates the control registers of the accelerator

so that the accelerator begins processing. Once complete, the CSR manager retrieves the

return value from the accelerator and copies it back to the application using SM.

The CSR manager assumes that accelerator control registers conform to a specific design

pattern (Table 5.2). The pattern matches that of an AXI peripheral that was generated

using Vivado HLS. This provides a uniform way in which the manager controls all acceler-

ators, except in the number of data words (function arguments) that the manager must

transfer from the argument list pointer to the accelerator CSR.

The CSR manager uses little logic for identifying the next queue-accelerator pair for

scheduling (Figure 5.3). Per-slot multiplexers are instantiated to provide a vector to

indicate if the associated queue for each slot is empty. The input of those multiplexers is a

vector that identifies which queues are empty and the slot-queue routing table is used to

select which empty signal is observed at the output of each multiplexer. A bit-wise NOR of

96



5. Accelerator sharing in multi-user environments

Table 5.2: Assumed accelerator CSR and addressing.

Offset Symbol Description

0x00 CTRL Accelerator control (start/done)
0x04 GIE Global interrupt enable
0x08 IER Interrupt enable
0x0C ISR Interrupt status

0x10 Ret Function return value
0x18 Arg0 First function argument

...
...

...
0x18 + N × 4 ArgN Last function argument

QueueEmpty0

P
ri

or
it

y
en

co
d

er

QueueEmptyN

SlotBusy0

Slot0

SlotM

Slot-queue routes

SlotBusyM

Service slot

Queue0

QueueN

Slot-queue route
reverse lookup

Service queue
Q[Slot0]

Q[SlotM ]

log2(N)
log2(N)

log2(M)

log2(N)

Figure 5.3: Accelerator service queue-slot selection logic.

the multiplexer outputs and the busy signals provided by each accelerator indicates which

queue-accelerator pairs can be serviced by the CSR manager. A priority encoder is then

used to choose which slot will be served next, and a reverse lookup table identifies the

queue to which it was bound. Assuming a small number of accelerators and a relatively

large processing time for each, we expect our priority encoder to schedule HW jobs in

round-robin order in practice.

Once a queue-accelerator pair has been selected, the CSR manager uses the argument list

pointer and ASID provided by the queued job to copy function arguments from SM to the

CSR of the accelerator. The CSR manager then configures the SM interface of the slot to

97



5. Accelerator sharing in multi-user environments

tag all transactions with the provided ASID. Thereafter the CSR manager writes to the

appropriate control register of the accelerator to start the job. Finally, the CSR manager

is free to serve other queue-accelerator pairs.

When an accelerator has finished a job, it must update the job status and, where appropriate,

the return value of the accelerated function call in SM. Each accelerator provides a signal

to indicate when a job has finished. Those signals are aggregated and processed by a

priority encoder to choose which accelerator will be served next. As before, a round-robin

scheduling is expected in practice due to the execution delay of a job.

Although the job completion handler runs concurrently with the job initiator, it must be

stalled when an invalid job arrives (e.g. a job for which the function is not routed to a

queue). In that event, we apply back pressure to the MMIO interface to prevent further

jobs from arriving from the CPU. We then wait for any in-flight status and return value

updates to complete and report an error status for the submitted job as soon as possible.

Once reported, back pressure is released and the CPU can submit more jobs.

5.4.6 System monitor

The monitor provides run-time system performance statistics that assist shared libraries

in optimally partitioning workloads. The monitor provides the total size and number of

jobs in the queue such that applications can estimate the wait time of any job that the

application submits. The monitor also provides the available SM bandwidth such that

the expected throughput of memory-bound accelerators can be penalised when memory

bandwidth is limited. Lastly, the monitor reports the utilisation of accelerators to the

reconfiguration manager (Section 5.4.7) such that the configured set of accelerators can be

optimised for the demonstrated demand.

We use worst-case values for HW performance estimation because it is difficult to recover

from over-utilisation of HW resources. Once a job has been submitted to our framework,

it cannot be modified, repartitioned or removed. If a HW job finishes later than expected,

98



5. Accelerator sharing in multi-user environments

the application must idle until the job has finished. However, if HW jobs finish earlier than

expected, SW can repartition the remaining work across the accelerators using updated

performance metrics.

We measure the available SM bandwidth (BW ) by counting the number of clock cycles that

the SM bus is inactive for over a fixed time period. The application can use the reported

available bandwidth to determine if jobs scheduled to na accelerators, that each require

BWa bandwidth, will be compute bound or memory bound. An application can then

scale the theoretical throughput of each accelerator (Xa) to find the estimated effective

throughput (X ′a) per accelerator (Eq. 5.1).

X ′a = Xa ×max
(

BW

naBWa
, 1

)
(5.1)

We estimate the amount of time that a new job will wait in the queue (Dq) to be the

sum of two components (Eq. 5.2): 1. The sequential initiation delay Da of scheduling the

existing q queued jobs on the accelerators; and 2. The parallel processing delay of those q

queued jobs and na running jobs, each of which requires Wi work to be completed. Since

accelerators do not provide real-time updates of progress, Dq represents the worst-case

queue wait time.

Dq = Daq +
1

naX ′a

q+na∑
i=1

Wi (5.2)

The monitor stores metrics in cache-coherent SM to minimise access latency from ap-

plications. The framework need only share metrics for functions that are currently

accelerated. Hence metrics could be bound to the queues to which both functions and

slots are routed. However, applications are not made aware of reconfiguration events; the

framework may reroute queues between the application identifying a function’s assigned

queue and analysing its metrics. For this reason, metrics are bound to each function and

only updated if the function is being accelerated.

99



5. Accelerator sharing in multi-user environments

Software function
and workload

partitioner

Metrics
(Read-only)

Job queue
driver

Accelerated shared library

Application ...

Application 2

Operating system

IOMMU
driver

Reconfiguration
Manager

Framework driver module

Application 1

Metrics
(Read-Write)

Figure 5.4: Software system of accelerated shared-library framework.

Since it is not feasible to update all metrics for the number of active functions in a single

memory transaction, the framework maintains a bitfield of metrics that are scheduled to

be updated and updates them sequentially with independent SM transactions.

5.4.7 Software system

The SW system is composed of the OS and one or more applications (Figure 5.4). The

OS is modified to include a framework driver module that monitors and controls the

configuration of accelerators in HW. The runtime environment that is provided by the OS

links applications to the accelerated shared library functions.

In this section, we describe the behaviour of the SW system chronologically from the

time the system is booted to the time an accelerated shared library function has run to

completion and returns control to the application.

100



5. Accelerator sharing in multi-user environments

Boot

At boot time, the OS determines whether compatible HW for our framework is connected

to the system and, if so, installs the framework driver module into the OS. The module

includes the IOMMU drivers, IRQ handlers, reconfiguration manager and a SM page for

monitor metrics.

Periodic monitoring and reconfiguration

Once the system has booted, the reconfiguration manager periodically reconfigures the set

of accelerators and associated routes to match user demand. The reconfiguration manager

determines the demand for each accelerated function by periodically examining two metrics

that are reported by the system monitor.

One metric for demand is the aggregate work that remains to be processed. However, the

remaining work that is reported by the monitor can be misleading: unless the monitoring

period is less than the processing time of a job, the queued work can be empty at one

monitoring sample, then filled and drained before the next. In this case, the manager

would observe no work in either sample and conclude that the function was unused.

To overcome this limitation, the reconfiguration manager also examines the amount of

work that was submitted between two samples. When examining the submitted work,

we do not consider whether or not that work has been processed during the monitoring

period. However, this metric may exclude a potentially large amount of work that remains

to be processed when work was submitted before both samples were recorded.

Therefore, the manager considers both submitted work and remaining work when estimating

demand. Specifically, we define the demand for a function over a monitoring period to be

the maximum of the remaining work and the submitted work. We then define the demand

for an accelerator to be the demand for the associated function divided by the number of

accelerators that have been configured for that function.

101



5. Accelerator sharing in multi-user environments

The reconfiguration manager (Algorithm 1) begins by iterating over all accelerators that

are idle. Although these accelerators are idle, they may have been used heavily during

the last monitoring period. Therefore, the slot is a candidate for reconfiguration only if

the demand for the accelerator is below the constant C RECONFIG.

Algorithm 1: Periodic reconfiguration algorithm.

Input: Accelerator status and demand; function request bitmap.
Result: Improved set of configured accelerators and job routes; Clears function request

bitmap.
1 foreach s ∈ idle slots do
2 if demand for s is less than C RECONFIG then
3 // Search for an overutilised slot to assist

4 sh := accelerator with highest demand;
5 if demand for sh is greater than C REPLICATE then
6 reconfigure s to replicate sh;
7 route s→ queue of sh;

8 else if function requests 6= {} and available queues 6= {} then
9 // Search for a new function to accelerate

10 f := next function request;
11 q := find available queue;
12 reconfigure s for f ;
13 route s→ q;
14 route f → q;
15 clear request for f ;

16 end

17 end

18 end
19 clear all function requests;

Functions that are not routed to queues provide little information about function demand.

They only provide a single bit that indicates if the accelerator was requested at least once

during the sample period. On the other hand, configured accelerators provide a rich set of

metrics that better quantify demand. Therefore, we prioritise accelerator replication over

new function requests. The reconfiguration manager searches the set of accelerators to find

the accelerator that has the highest demand. If the demand for that accelerator is above

C REPLICATE, the idle accelerator will be retired and the slot will be reconfigured to

assist the overloaded accelerator.

If the slot has not been reconfigured to replicate another and a new function has been

102



5. Accelerator sharing in multi-user environments

requested, we reconfigure the accelerator to serve one of the new function requests. Due

to the reconfiguration delay of the accelerator, the configured accelerator might be used

for the function call that requested it. However, the request implies that the accelerator

may be needed again in the future. Because the accelerator provides no information on

whether it will be used again in the future, we always reconfigure accelerators that are idle

and have a demand below C RECONFIG for new function requests when a replication

candidate is not found.

The reconfiguration manager continues this process until it has considered all slots in the

framework. It then clears all function requests to ensure requests are recent. Finally, the

reconfiguration manager waits for an interrupt to indicate that the next monitoring period

has expired before repeating the process.

Login

When a user logs into the system, the login scripts configure the runtime system to use

the accelerated libraries if available. The scripts configure the runtime by replacing the

search paths for SW-only libraries with paths to their accelerated alternatives [BNP10].

By providing both SW-only and accelerated versions of the library we avoid overheads,

such as checking accelerator availability, for each function call. This method also allows

users to opt-out of using the accelerated libraries by overriding the configuration made by

the login scripts.

Load

The process of loading an application for execution is unchanged when our framework is

used. The dynamic linker identifies unresolved symbols in the application that it binds

to shared library symbols. The dynamic linker finds these libraries via the search paths

that were adjusted to include or exclude the accelerated libraries at login time. Once all

symbols have been resolved, the application is initialised.

103



5. Accelerator sharing in multi-user environments

Initialisation

Once the application is loaded, the dynamic linker calls the initialisation function of each

linked library. If that library is an accelerated shared library, the initialisation function

of that library executes a system call to the OS to prepare the application to use the

framework. The system call directs the OS to 1. allocate a new ASID for the application;

2. register the ASID and page table of the application with the IOMMU; 3. map the

appropriate job queue CSR alias into the virtual address space of the application for direct

access; and 4. map the read-only monitor metrics page into the virtual address space of

the application.

Call

When an application calls an accelerated shared library function, the function partitions

the workload into small jobs and schedules them for execution on the available compute

resources. Our partitioning algorithm reduces the overall completion time of the function

by exploiting the parallelism provided by the FPGA-based accelerators. Rather than

waiting for the accelerators to complete, the function also processes some of the workload

on the CPU itself.

Optimum workload partitioning requires an accurate prediction of the completion time

of each job. To minimise overall completion time, partitioning aims to ensure that both

HW and SW partitions finish execution at as close a time as possible. If the SW partition

finishes before HW, CPU execution cycles are wasted while waiting for HW to complete.

If HW partitions complete before SW, an opportunity for parallel execution is lost.

SW should dynamically rebalance partitions in multitasking environments because the

completion time of SW jobs are difficult to predict. Such tasks can be interrupted at any

time to allow other tasks to consume their fair share of CPU time. In the extreme cases,

the decision to send all or none of the workload to the accelerator(s) depends on where

a process is up to in its scheduling time slice. If the task is at the beginning of its time

104



5. Accelerator sharing in multi-user environments

Context switch hazard avoided

Context switch hazard with static workload partitioning

Context switch hazard with dynamic rebalancing

FPGA execution

Time

Software execution

Task 2
Task 1

FPGA execution

Software execution

Task 2
Task 1

FPGA execution

Software execution

Task 2
Task 1

Figure 5.5: Context switch hazards for HW/SW workload partitioning.

slice, a SW-only approach could be optimal due to the initiation delay of HW jobs. On

the other hand, if its time slice has almost expired, a HW-only approach could be optimal.

In that case, HW jobs continue uninterrupted and could complete before the application

is rescheduled for SW execution (Figure 5.5). We refer to this issue as a context switch

hazard. Because there is no way of knowing where a task is up to in its time slice, in our

framework, SW periodically evaluates the progress of HW jobs and rebalances the work to

minimise the completion time of each task.

The completion time of a HW job is also difficult to predict. Although in our framework

individual HW jobs are uninterruptible, it is difficult to accurately predict how long a

job will spend queued before it is scheduled. The framework may increase the number

of accelerators for a function at any time, thereby allowing more jobs to be scheduled in

105



5. Accelerator sharing in multi-user environments

parallel. With more parallelism, the remaining jobs will wait for less time in the queue. Like

the context switch hazard identified above, such mispredictions result in HW completing

earlier than expected and can be resolved with periodic monitoring and rebalancing in

SW.

To improve scheduling flexibility and parallel execution, in our framework SW submits

more jobs to accelerator control than there are resident accelerators. Submitting a single

large HW job for each replica allows those jobs to continue processing in the event of a

context switch hazard. However, it reduces response time to accelerator replication because

jobs cannot be repartitioned to use the additional accelerators once submitted. On the

other hand, submitting a single small job to each accelerator allows us to respond quickly

to accelerator replication, but it limits the amount of work that can be processed if the

application’s time slice expires. Further, the monitor will observe that the accelerator is

underutilised because we have withheld a lot of work from the framework in the hope that

the workload can be better partitioned across replicas when they become available. Our

partitioning algorithm hence divides the HW workload further into a number of smaller

HW jobs. In this way, dynamic replication can be exploited while maximising the work

performed during a context switch hazard.

The partitioning algorithm uses both offline and real-time performance metrics to decide

how the workload will be partitioned. Offline metrics, such as throughput and initiation

overhead, provide an estimate of completion time in an environment where there is no

competition for resources. Online metrics, such as queuing delay and available bandwidth,

are provided by the system monitor (Section 5.4.6) and are used to adjust the offline

performance metrics for current demand.

For small workloads, the delay and CPU overhead of accelerator initiation, and synchroni-

sation can outweigh the reduction in execution time. Eq. (5.3) (Derived in Section 4.4)

can be used to calculate the workload size for which we begin to benefit from using the

accelerator (NL). This equation considers the compute throughput of the CPU (Xc) and

the accelerator (Xa) as well as the latency (Da) and CPU overheads (Oc and O0) of

communication. We adjust Eq. (5.3) to Eq. (5.4) by considering the bandwidth-adjusted

106



5. Accelerator sharing in multi-user environments

accelerator throughput (X ′a). If the workload size of the submitted task is greater than

NL, but there is no accelerator configured, the application submits an empty job for the

function. This job will be rejected by the framework because the function is not being

accelerated, but it informs the framework that there might be some future benefit to

accelerating that function.

NL ≥ Xc

[
Xc (Oc −O0)

Xa
+Da −O0

]
(5.3)

NL ≥ Xc

[
Xc (Oc −O0)

X ′a
+Da −O0

]
(5.4)

When a task has exclusive access to one accelerator, the function can determine the fraction

of the workload that should be processed by the accelerator (α) using Eq. (5.5) (Derived

in Section 4.4). That equation considers the throughput ratio of compute resources and

compensates for the CPU overhead and the latency of short transfers, particularly when

the workload size (N) is small. For large workloads, these overheads are small relative to

workload completion time and thus have less impact on the partitioning ratio.

α =
Xa

Xa +Xc

[
1− Xc(Da −Oc)

N

]
(5.5)

We modify Eq. (5.5) to consider the available bandwidth, accelerator replication and

queuing delay (Eq. 5.6). The effective throughput (X ′a) is scaled by the number of

available accelerators (na) and the latency considers both the queuing delay (Section 5.4.6)

and the sequential scheduling latency and CPU overhead of submitting nj jobs to the

framework.

α =
naX

′
a

naX ′a +Xc

[
1− Xc (Dq + nj [Da −Oc])

N

]
(5.6)

107



5. Accelerator sharing in multi-user environments

Our dynamic workload partitioning algorithm (Algorithm 2) first checks if acceleration

is beneficial and, if not, processes the entire workload on the CPU alone (Line 2). If

the work could be accelerated but no accelerator is available, the algorithm periodically

submits an empty job to request an accelerator and processes work in C COWORK MAX

batches in SW until an accelerator is available (Line 7). C COWORK MAX should be

chosen to balance a quick response to accelerator configuration with the overhead of polling

accelerator state. In practice, C COWORK MAX can be kept low because the number of

accelerators is communicated via low-latency SM rather than an OS system call.

Once an accelerator is available, the algorithm begins to partition work across compute

resources until all work has been processed (Line 13). The algorithm submits at least nj

jobs to the framework (Line 20). nj should be chosen to balance the initiation overhead

of each job with scheduling flexibility in case an accelerator is replicated. Our choice of

nj = 6 will be explained in Section 5.5.4. While waiting for HW jobs to complete, SW

processes work in C COWORK MAX blocks (Line 21). Once HW jobs have completed,

we may find that a context switch or accelerator replication reduced the amount of work

that was processed in parallel by SW. In that case, the algorithm rebalances the remaining

workload by repeating the procedure at Line 13.

Our framework also supports multi-core CPU architectures. In this section, we have

described our system with a single threaded view only because we detail the process

of an isolated call to the accelerated library function. Because the thread safety of

libraries is preserved by our framework (Section 5.4.3), the application can use traditional

multithreading techniques to take advantage of multi-core CPU architectures.

5.5 Evaluation

The overarching contribution of this chapter is the proposal and evaluation of a framework

for accelerating common, short-running tasks. Central to that framework is a low-latency

method for transferring tasks between SW and HW. Therefore, we begin our evaluation

108



5. Accelerator sharing in multi-user environments

Algorithm 2: Workload partitioning algorithm.

Input : N work to be processed;
volatile monitor metrics;
volatile na accelerators configured for this function;
nj jobs to submit;
C COWORK MAX work to process in SW before rebalancing;

Result: N work processed
1 NL := calculate minimum workload size using Eq. 5.4;
2 if N ≤ NL then
3 Process N in SW;
4 return

5 end
6 // Process some work in SW while waiting for an accelerator

7 while N > 0 and na = 0 do
8 Submit empty job to request accelerator;
9 Nc := min (N,C COWORK MAX);

10 N := N −Nc;
11 Process Nc work in SW;

12 end
13 while N > 0 do

// Partition work across HW and SW

14 α := calculate partitioning ratio using Eq. 5.6;
15 // Included only in a system without dynamic rebalancing.

16 Process N work in SW;
17 if α > 0 then
18 Nf := N × α;
19 N := N −Nf ;

20 Submit nj jobs of
Nf

nj
work each; // nj = 6 in our exploration

21 while HW jobs are incomplete do
22 // Included only in a system with dynamic rebalancing. While

processing, SW monitors HW progress to compensate for context

switch hazards and replication.

23 Nc := min (N,C COWORK MAX);
24 N := N −Nc;
25 Process Nc work in SW;

26 end

27 else
28 Process remaining N work in SW;
29 end

30 end

109



5. Accelerator sharing in multi-user environments

by measuring the overhead of our transfer method. We then evaluate the performance

of our framework in a multi-user environment using synthetic workloads that emulate a

concurrent and dynamic set of applications.

We evaluate using real HW to ensure that subtle SW and HW limitations are not overlooked.

The Zedboard [Avn19] satisfies the requirements of our HW model (Section 2.8). In our

experiments, we configured both CPUs to operate at their maximum frequency of 667 MHz.

Programmable logic was configured to operate at 111 MHz (1/6 of the CPU speed).

We chose Xillinux-1.3 [Xil19b] as the OS and root file system for our evaluation because it

was easy to setup and provides a complete user environment based on the popular Ubuntu

Linux distribution. We implemented our framework as a loadable kernel module rather

than modifying the kernel source directly.

5.5.1 ABI overhead

Our framework allows applications to directly and concurrently submit jobs to the accelera-

tors. Our method avoids synchronisation overhead by transferring the memory address of

all function arguments in a single atomic transfer (Section 5.4.3). However, the framework

must now read the function arguments from memory and copy them to the accelerator’s

CSR before the accelerator can begin accessing IO buffers (when required) and processing.

It is important that we measure these costs.

Besides the number of arguments to transfer, the argument access latency from the FPGA

is expected to influence performance. The latency in this case is influenced primarily by

the residency of memory translations in the TLB of the IOMMU. With a two-level page

table, the page table walker of the IOMMU must make two random access memory reads

to translate the application virtual address to a physical address. These reads have a direct

data dependency: the first transaction must complete before the second transaction can

begin. Once the translation is complete, reading the arguments can be done in a single

AXI burst transaction. Memory translation is therefore assumed to be the most significant

110



5. Accelerator sharing in multi-user environments

influence on latency and is used as a second variable in our experiment.

We designed a custom accelerator to be used for our ABI benchmark. The accelerator

performs no operation: it simply returns success once it has started. The execution time

of the accelerator, as viewed from the CPU, is therefore only the time required for SW

to prepare and submit function arguments and for the completion status to be read by

the CPU. The execution time was measured by first reading the CPU cycle count at

the beginning of the experiment using the ARM performance counters. The arguments

were then transferred to the accelerator using either direct CSR access via MMIO, or by

submitting a job via our framework. SW then waited in a loop until the status flag of the

accelerator indicated that the job was complete. Finally, a second cycle count was taken.

After subtracting the overhead of reading the cycle counter, the difference between the

two cycle count readings was accepted as the makespan of the benchmark for each sample

collected.

In our experiment, we varied the number of arguments to transfer and whether or not

address translation was required. The size of each argument was fixed to 32-bits for

simplicity while the number of arguments was varied from 0 to 32. TLB translation

residency was controlled by flushing the TLB before starting the experiment. When a

cached translation was desired, we ran the experiment twice, discarding the first result.

We were thereby sure that the framework used the cached translation during the next

iteration. Each experiment was run 1000 times.

The results show that the direct MMIO access to accelerator CSR provides the best

performance when the number of arguments is less than five 32-bit values (Figure 5.6).

For five or more arguments, transferring all arguments via a single pointer provides the

best performance, but only when a translation table walk is not required. In the case

where a walk is necessary, we found that 21 or more arguments are required before our

method outperforms direct CSR access.

Error bars in Figure 5.6 indicate the 1st and 3rd quartiles of the sample distribution. The

high variance in direct CSR access time is due to buffering throughout the interconnect

111



5. Accelerator sharing in multi-user environments

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 0  5  10  15  20  25  30  35

C
P

U
 e

x
e
c
u

ti
o
n

 c
y
c
le

s
 @

 6
6
7

 M
H

z

Number of arguments transferred

Direct CSR access
Stack pointer - translation required
Stack pointer - translation cached

5 arguments

21 arguments

Figure 5.6: Execution time of the ABI accelerator with varying number of arguments.

that leads to multimodal delays.

Our results are promising for our method of low-latency argument transfer. Although we

must transfer a number of arguments to the accelerator before outperforming direct CSR

access, fewer CPU cycles are required to manage the transfer (Chapter 3). This enables

the CPU to process more work in SW while waiting for HW jobs to complete.

We measured the duration of the gettimeofday Linux system call to estimate the additional

CPU cycles required to synchronise access to the accelerator CSR. This synchronisation

could take the form of acquiring a lock or using the OS as a proxy for submitting jobs. The

gettimeofday system call requires very little work in the OS; it populates a user-provided

location in memory with the current time. By providing a NULL pointer as argument,

we avoided that data copy and further reduced the execution time of gettimeofday. We

measured the CPU cycles required in the same way that we measured the cost of submitting

a job to an accelerator and found that the gettimeofday system call requires 280 CPU

cycles on our target platform. Considering that overhead, our method of argument transfer

outperforms direct accelerator CSR access for any number of arguments, when address

112



5. Accelerator sharing in multi-user environments

translations are resident in the IOMMU’s TLB.

5.5.2 Framework evaluation

Our aim is to reduce the execution time of general-purpose systems by providing a framework

by which common short-running functions can be accelerated across multiple concurrent

applications. Although these applications share accelerators, the set of accelerators and

the order in which they are used differs across applications. For example, a web browser and

photo editor may both decompress and render images, but a photo editor may also apply

image filtering to adjust sharpness or colour. Our evaluation of dynamic performance must

therefore consider the concurrent execution of a wide range of application personalities.

We are also concerned with the volatility of the set of applications that execute on a

general-purpose system. The set of applications is expected to change as users move from

one task to another. The optimum set of resident accelerators will change with the active

set of applications. Our monitor must quickly retire and replace accelerators with changing

demand.

The focus of our work is not on the accelerators themselves; it is the framework. We

therefore designed synthetic applications, shared library functions and accompanying FPGA-

based accelerators to emulate a wide range of application and accelerator personalities.

This method also allows us to change the behaviour of the accelerator at run-time to

emulate DPR.

We designed an application that emulates a range of general-purpose applications by

sequentially executing randomly selected shared library functions, each with a random

amount of work to process. Each library function can be accelerated and contains only a

small amount of sequential code for determining which computational units will be used for

processing. Therefore, our applications can be considered to be perfectly parallelisable.

To simplify the experiment, random numbers for function and workload selection follow a

uniform distribution. We do not favour any particular function when making a selection

113



5. Accelerator sharing in multi-user environments

and each call is selected independently. We defined a work unit to be 1 CPU cycle for

convenience and tuned a loop of SW to execute exactly N CPU cycles of work, where N

is provided at run-time. That routine is called by library functions when work is to be

processed on the CPU.

Similarly, we designed an FPGA-based accelerator that accepts a run-time configurable

execution time. The execution time of our accelerator is set when the framework copies

function arguments from SM to the accelerator CSR. Once the prescribed time has expired,

the accelerator reports completion and the framework reports the job status and function

return values to the application via SM. The number of arguments expected by our

accelerator was fixed at 8× 32-bit arguments. The required number of FPGA clock cycles

to emulate accelerator execution time is determined by the CPU/FPGA clock ratio and

the desired speedup of the accelerator.

We designed both a SW-only and accelerated library. While the accelerated library

partitions the requested work across compute resources, the SW-only counterpart uses only

the tuned SW loop to emulate workload processing. The desired library is chosen manually

before each experiment by adjusting the LD LIBRARY PATH user environment variable.

Our constructed system has the key parameters presented in Table 5.3. We used the

default Linux SW task scheduler time slice of 10 ms. The workload size of each call to a

shared library function is chosen randomly to produce CPU execution times in a range

that spans the boundary of that time slice. This ensures a mixed range of context switch

hazards (Section 5.4.7 and Figure 5.5). Each experiment processes a total workload that

requires 8 seconds to complete when processed only in SW on a single CPU core. That

workload is divided between applications to bound execution time when the number of

applications is large.

We varied the monitoring period, P , throughout our evaluation. Both the monitoring

period and the reconfiguration time combined determine the response time of the system

to changing demand. For simplicity, we assume that accelerators require P ms of time to

be configured before they can be used to accelerate a function if not already resident.

114



5. Accelerator sharing in multi-user environments

Table 5.3: Parameters of system under test.

Name Value

Number of reconfigurable slots 8
Number of library functions 16
Number of applications 1-8 per CPU
CPU time slice 10 ms
Workload per call 1-100 ms†

Total experiment workload 8 s†

Accelerator speedup 0×-10×
Monitoring period P ms
Idle threshold (C RECONFIG) 0.5 ms†

Overloaded threshold (C REPLICATE) P / 2 ms†

Reconfiguration delay P ms

† equivalent uniprocessor time.

C RECONFIG and C REPLICATE, the workload sizes at which we define accelerators

to be under- or overutilised, are set to preserve recently used accelerators, but provide a

high replication rate. We leave the exploration of these parameters as future work and

select constants for our evaluation. We chose C RECONFIG such that accelerators may

be swapped when demand is reported to be equivalent to 0.5 ms of work or less when

processed in SW. C REPLICATE is chosen to be proportional to the monitoring period

because the reported demand depends on the period over which it was measured. We set

C REPLICATE such that accelerators were replicated when the processing time of the

reported demand exceeds half of the configured monitoring period.

We modify the speedup that accelerators provide in the range 0× to 10× throughout

our experiments. An accelerator with speedup 0× provides no benefit; all work will

be processed in SW only. Although HLS has shown speedups between 4× and 126×

when compared to an Intel i5 2.67 GHz CPU [LRL+12], a heterogeneous solution has

demonstrated speedups in the range 1× to 2× [KPPK11]. That range is inline with the

2.6× throughput of our accumulator case study in Section 4.6.

Our evaluation compares the makespan of a set of random application personalities when

using our framework to a system that uses only SW to process the same workload. We

evaluate how performance correlates with the number of accelerator slots provided by

115



5. Accelerator sharing in multi-user environments

our framework and the speedup that the accelerators provide. We also evaluate how well

our system scales to a number of concurrent applications that must share access to the

provided framework and accelerators.

Our experiment considers a varying number of parallel applications, each with a different

seed for the generation of function call lists and workload sizes. To eliminate variations

caused by disk IO, we synchronise applications using semaphores. Once all applications

are loaded and ready to begin, a master application determines the start time of the

experiment using the gettimeofday system call and records it in SM. The master then

signals all applications to begin sequential execution of their function call list and associated

workload sizes. Once complete, applications record their completion time and block on a

semaphore until all other applications have completed. Each application then reports the

difference between the time reported by the master and its individual completion timestamp.

The makespan for the sample is taken as the maximum of the reported execution times.

Each experiment was repeated 25 times and the median result was collected. This was

repeated 50 times, with different seeds for each application. The results were aggregated by

taking the arithmetic mean over the 50 medians for each set of experimental parameters.

Our final result was then normalised to the execution time of a SW-only approach that

was measured using the same procedure. The maximum standard deviation across all of

our experiments was 5.0%.

5.5.3 Static homogeneous accelerator cluster

We begin by evaluating a system that does not require accelerators to be reconfigured.

This eliminates the effect of the monitoring period and reconfiguration delay It allows

us to focus on the overhead of our framework, the workload partitioning algorithm and

context-switch hazards.

We modified the function list generation of applications to utilise only a single common

function across all applications. We explored the impact of varying the number of

116



5. Accelerator sharing in multi-user environments

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10

E
x
e

c
u
ti
o

n
 t

im
e
 n

o
rm

a
lis

e
d
 t

o
 S

W

Accelerator speedup (x)

2 slots
4 slots
8 slots

2 applications
4 applications
8 applications

16 applications

+1x per core

Figure 5.7: Normalised makespan when applications call one type of function.

applications, reconfigurable slots, and accelerator speedup on system performance.

For a system that implements dynamic rebalancing, our results show that the reduction in

execution time when our framework is used scales with the number of accelerators and

their provided speedup (Figure 5.7). Because applications execute on a dual-core CPU,

the CPUs must share the provided accelerators. In the case of two reconfigurable slots,

each providing 1× speedup, there is twice the compute power available to each CPU. Hence

the execution time is halved.

We calculated the combined utilisation of all CPU cores and accelerators to quantify how

well the available resources are used. We define the system utilisation as the ratio of the

expected makespan Te and the observed makespan To (Eq. 5.7). The expected makespan

is the SW-only makespan scaled by the acceleration potential of the available ns slots that

are shared across Nc CPU cores. Each slot provides a speedup S and cooperates with one

CPU core to process the workload (Eq. 5.8).

117



5. Accelerator sharing in multi-user environments

 82

 84

 86

 88

 90

 92

 94

 96

 98

 100

 1  2  3  4  5  6  7  8  9  10

U
ti
lis

a
ti
o
n

 (
%

)

Accelerator speedup (x)

2 slots
4 slots
8 slots

 
2 applications
4 applications
8 applications

16 applications
 

Figure 5.8: System utilisation when applications call one type of function.

U =
Te
To

(5.7)

Te =
TSW

1 + ns
Nc
S

(5.8)

The utilisation of our system when accelerating a single function is above 93% in all cases

(Figure 5.8). The case where only 2 applications share the accelerators provides the best

utilisation overall. This is because context-switch hazards are not present: each application

is scheduled on an independent CPU core.

When dynamic rebalancing is not provided, we find a clear separation in utilisation between

a system that hosts 2 applications and a system that hosts more (Figure 5.9). This is

because context switch hazards are avoided when each application has exclusive use of one

of the two CPU cores. In the best case, dynamic rebalancing provides a 9.0% improvement

in utilisation. This occurs when accelerator speedup is low. When accelerator speedup is

118



5. Accelerator sharing in multi-user environments

 82

 84

 86

 88

 90

 92

 94

 96

 98

 100

 1  2  3  4  5  6  7  8  9  10

U
ti
lis

a
ti
o
n

 (
%

)

Accelerator speedup (x)

2 slots
4 slots
8 slots

 
2 applications
4 applications
8 applications

16 applications
 

Figure 5.9: System utilisation without dynamic rebalancing when applications call one
type of function.

high, functions are more likely to complete within the 10 ms scheduler time slice, thereby

avoiding a context switch hazard.

Our static accelerator evaluation shows that our framework performs efficiently when

demand is anticipated. Methods for anticipating demand are beyond the scope of this

work. We instead turn our focus to our framework’s response to the current demand. In a

dynamic system, we expect a reduced utilisation since accelerators cannot be used while

they are being reconfigured for another function.

5.5.4 Dynamic accelerator cluster

We evaluated the response of our framework to changing application demands by increasing

the range of functions that applications execute. A wide range of uniformly distributed,

randomly selected functions is unlikely to produce a system that shares accelerators. We

therefore limit our system to using just 16 functions – twice the number of reconfigurable

slots. The response time depends on the frequency at which our reconfiguration manager

119



5. Accelerator sharing in multi-user environments

Function
request
detected

Execution
begins

Accelerator
configured

High demand
detected

N Replicas
configured

Execution
complete

Missed
monitor

Idle
accelerators

detected
Monitoring

period
P ms

Figure 5.10: Framework response to function request and execution assuming no accelerators
have been configured.

monitors demand and the reconfiguration time of accelerators (Figure 5.10). With demand

generated at random, we expect it to be difficult to obtain high utilisation. In addition, we

expect our system to provide acceleration for functions that already have an accelerator

resident, or by reconfiguring accelerators to match the reported demand.

We set nj to six jobs for our dynamic system experiment. Since the number of resident

accelerators are expected to be low for each function the fine-grained partitioning feature of

our algorithm is expected to have an impact on performance. Assuming the available 8 slots

are shared evenly across the two CPU cores, two jobs can be scheduled sequentially when

the first accelerator is configured. The remaining four can then be scheduled in parallel if

the monitor reconfigures slots to replicate the accelerator. If slots are not reconfigured, the

remaining four will eventually be scheduled and processed sequentially.

Our initial investigation considered a monitoring period of 100 ms. Considering the

average area under the curve over the range 0× to 10×, our system was able to reduce the

normalised makespan of the application set to 67% (Figure 5.11). However, the acceleration

potential of the system is between 5× and 41× per CPU core, depending on the configured

speedup of the accelerators. We found an average utilisation of just 15% (Figure 5.12).

The performance of the system improves with the number of applications because the

workload is more diverse. With a monitoring period of 100 ms and a scheduling time

120



5. Accelerator sharing in multi-user environments

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10

E
x
e

c
u
ti
o

n
 t

im
e
 n

o
rm

a
lis

e
d
 t

o
 S

W

Accelerator speedup (x)

2 applications
4 applications
8 applications

16 applications

Figure 5.11: Normalised makespan with 8 accelerator slots, 100 ms monitoring period and
applications calling 16 types of functions.

slice of 10 ms, all 16 applications will execute across the two cores before accelerators are

(re)configured. With each application executing a random function, the likelihood of one

of those functions finding a resident accelerator is increased.

The utilisation of the system decreases as accelerator speedup increases because high-

throughput accelerators have a greater impact on performance. An idle accelerator is

associated with a cost that is proportional to the throughput that it would otherwise

provide. Further to this, accelerators finish faster and thereby spend relatively more time

idle or being reconfigured.

We further explored the behaviour of our framework by tracing its execution and reconfig-

uration events. Figure 5.13 shows the execution of two applications across the available

16 functions when 8 accelerators provide a speedup of 10×. For these results, in contrast

to all others, we used the same seed to generate the workload of each application. The

trace includes the anticipated execution time of each function call if it were executed only

in SW. Underlying that trace is a heat map that shows the number of accelerators that

are available to each function as the execution progresses.

121



5. Accelerator sharing in multi-user environments

 0

 20

 40

 60

 80

 100

 0  2  4  6  8  10

U
ti
lis

a
ti
o
n

 (
%

)

Accelerator speedup (x)

2 applications
4 applications
8 applications

16 applications

Figure 5.12: System utilisation with 8 accelerator slots, 100 ms monitoring period and
applications calling 16 types of functions.

P

O

N

M

L

K

J

I

H

G

F

E

D

C

B

A

 0  100 200 300 400 500 600 700 800 900

F
u
n
c
ti
o
n
 I
d
e
n
ti
fi
e
r

Time (ms)

SW only projected time
Application traces

 0

 1

 2

 3

 4

 5

 6

 7

 8

A
c
ti
v
e
 a

c
c
e
le

ra
to

rs

Figure 5.13: Execution and reconfiguration trace of 2 applications with 100 ms monitoring
period.

122



5. Accelerator sharing in multi-user environments

The execution trace shows that accelerators are frequently configured too late to be used

by the function calls that they were configured to accelerate. However, function calls still

benefit from acceleration at 120 ms, 130 ms and 720 ms, when the accelerator for that func-

tion was available at the time the function was called. Further, the delayed reconfiguration

results in a diversity of resident accelerators, which increases the probability that at least

one accelerator will be available to accelerate a future function call. Nevertheless, many

accelerators remain idle, and accelerated functions seldom use the full compute potential

of the available slots.

We examined the response of our framework to different monitoring periods by repeating

the above experiment. With a monitoring period of 1 ms (Figure 5.14), our framework

responds faster to the measured demand and frequently allocates all 8 slots to the function

being executed. We see that, although function calls make better use of the available

resources, due to workload demand and consequent accelerator replication, the range of

resident accelerators becomes limited. If a short-running task for a non-resident accelerator

arrives when our monitoring period is 1 ms, it waits an average of 1.5 ms before an

accelerator is configured and a further 2 ms before it is replicated.

We reran our makespan and utilisation experiments of Figures 5.11 and 5.12 with a monitor-

ing period of 1 ms to investigate the response in a more dynamic environment. The average

normalised makespan of our application set improved by 43% to be 23% (Figure 5.15). The

average utilisation increased by 21% to be 35% (Figure 5.16). Although our framework

now responds more quickly to changing demands, high-throughput accelerators are difficult

to utilise. A typical job in our experiment (∼50 ms) will complete quickly once multiple

accelerators are resident (Figure 5.17). Therefore, high-throughput accelerators spend

a relatively short time processing the workload when compared to their reconfiguration

time.

Figures 5.18 and 5.19 show the performance of systems with different monitoring periods

when 8 applications execute concurrently. For our remaining experiment, we use the

performance of a system that hosts 8 applications and a 1 ms monitoring period as a

baseline for comparison.

123



5. Accelerator sharing in multi-user environments

P

O

N

M

L

K

J

I

H

G

F

E

D

C

B

A

 0  20  40  60  80  100  120  140  160

F
u

n
c
ti
o
n

 I
d
e
n

ti
fi
e

r

Time (ms)

SW only projected time
Application traces

 0

 1

 2

 3

 4

 5

 6

 7

 8

A
c
ti
v
e

 a
c
c
e
le

ra
to

rs

Figure 5.14: Execution and reconfiguration trace of 2 applications with 1 ms monitoring
period.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10

E
x
e
c
u
ti
o
n
 t
im

e
 n

o
rm

a
lis

e
d
 t
o
 S

W

Accelerator speedup (x)

2 applications
4 applications
8 applications

16 applications

Figure 5.15: Normalised makespan with 8 accelerator slots, 1 ms monitoring period and
applications calling 16 types of functions.

124



5. Accelerator sharing in multi-user environments

 0

 20

 40

 60

 80

 100

 0  2  4  6  8  10

U
ti
lis

a
ti
o
n

 (
%

)

Accelerator speedup (x)

2 applications
4 applications
8 applications

16 applications

Figure 5.16: System utilisation with 8 accelerator slots, 1 ms monitoring period and
applications calling 16 types of functions.

1×
1.5 ms

11×
2 ms

41×
0.65 ms

4.15 ms

Figure 5.17: Execution time of a typical 50 ms workload using 10× accelerators with
monitoring period 1 ms. Refer to Figure 5.10 for an explanation of timeline events.

125



5. Accelerator sharing in multi-user environments

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10

E
x
e

c
u
ti
o

n
 t

im
e
 n

o
rm

a
lis

e
d

 t
o
 S

W

Accelerator speedup (x)

1 ms
2 ms
5 ms
7 ms

10 ms
50 ms

100 ms

Figure 5.18: Normalised makespan with 8 accelerator slots and 8 applications that call 16
types of functions as the monitoring period is varied.

 0

 20

 40

 60

 80

 100

 0  2  4  6  8  10

U
ti
lis

a
ti
o
n

 (
%

)

Accelerator speedup (x)

1 ms
2 ms
5 ms
7 ms

10 ms
50 ms

100 ms

Figure 5.19: System utilisation with 8 accelerator slots and 8 applications that call 16
types of functions as the monitoring period is varied.

126



5. Accelerator sharing in multi-user environments

Our results show that short-running tasks can be accelerated in a dynamic environment.

For the range of workloads that we studied, applications benefit particularly well when the

framework responds more quickly to changing demand.

5.5.5 The impact of fine-grained job partitioning

Our final experiment evaluates the benefit of dividing a single HW job into smaller jobs

when the application observes a single resident accelerator. We modified the shared

library functions to submit only one job for each resident accelerator and repeated our

makespan and utilisation experiments. We observed that fine-grained job partitioning

improved the average normalised makespan by 7.7% over accelerator speedups in the range

0× to 10× (Figure 5.20). The average utilisation was reduced by 9.0% over the same

range (Figure 5.21). On closer inspection, we found that, although our framework responds

quickly to demand, applications respond slowly to replication. Jobs were rarely scheduled

on accelerator replicas, particularly when the number of applications was 2. This is because

the application must first wait for the initial large job to complete and, in the absence of

context switch hazards, both SW and HW finish processing the entire workload at almost

the same time.

5.6 Chapter summary

In this chapter we have described and evaluated our framework for accelerating general-

purpose tasks in a multi-user environment. The framework allows applications to share

a set of accelerators to avoid reconfiguration overheads for short-lived tasks. Function

demand is monitored and responded to by optimising the available set of accelerators using

DPR. When an accelerator is overloaded, a replica may be reconfigured and routed to the

job queue that serves that function.

Our results show that the optimum method for transferring a small number of function

arguments on the Zynq-7020 is direct CSR access. However, such a design pattern does not

127



5. Accelerator sharing in multi-user environments

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10

E
x
e

c
u
ti
o

n
 t

im
e
 n

o
rm

a
lis

e
d

 t
o
 S

W

Accelerator speedup (x)

Baseline
2 applications
4 applications
8 applications

16 applications

Figure 5.20: Normalised makespan with 8 accelerator slots, 1 ms monitoring period and
applications calling 16 types of functions. Only one job is submitted per resident accelerator.

 0

 20

 40

 60

 80

 100

 0  2  4  6  8  10

U
ti
lis

a
ti
o
n

 (
%

)

Accelerator speedup (x)

Baseline
2 applications
4 applications
8 applications

16 applications

Figure 5.21: System utilisation with 8 accelerator slots, 1 ms monitoring period and
applications calling 16 types of functions. Only one job is submitted per resident accelerator.

128



5. Accelerator sharing in multi-user environments

address the concurrency concerns of sharing accelerators across threads and applications.

We have shown that the alternate approach provided by our framework both solves the

concurrency concerns and provides the best performance when five or more 32-bit values

are passed between SW and HW and previous translations remains in the TLB.

Our framework reduces the makespan of a random set of application personalities when

the demand monitoring period is 1 ms. In that case, applications complete 77% faster

than an equivalent SW-only solution. While our results show less improvement for a longer

monitoring period (33% faster), the set of resident accelerators is then more diverse. That

improves the likelihood that a short-running function will have an accelerator available as

soon as it is called.

In Section 5.4.7, we identified context switch hazards as a challenge for HW/SW workload

partitioning. Our results show a 9.0% improvement in utilisation when the workload is

rebalanced dynamically to compensate for such hazards.

Our results show that dividing a HW partition into many small jobs and simultaneously sub-

mitting them to the framework improves performance by 9.0% when accelerator replication

is expected.

Our research shows that short-running tasks can be accelerated in multitasking environments

if the response time to changing demand is minimised, and also if a diverse set of resident

accelerators is maintained.

129





Chapter 6

Conclusion

This chapter highlights how my research outcomes meet the research aims set out in

Chapter 1. It then concludes by proposing directions for future work.

6.1 Applications for tightly-coupled systems

In Chapter 3, I detailed a case study of accelerating the OS SW task scheduler. The

seL4 scheduler is heavily optimised for a short execution time, hence we were sceptical

of the benefit that HW acceleration would provide. Nevertheless, we were able to reduce

execution time by 5.5% and the variance in the execution time by 58%.

While that chapter presents just one concrete application, the study demonstrates that a

task that could otherwise not be accelerated, can benefit when a tight-coupling of CPU

and FPGA is provided.

131



6. Conclusion

6.2 Communication models for engineers

In Chapter 3, I presented an in-depth evaluation of the available communication methods

provided by the tightly-coupled Zynq-7020 SoC. That was followed in Chapter 4 with

metrics that quantify the latency and required CPU execution cycles for short transfers

between CPU and FPGA. With that work, SW engineers can choose the most appropriate

method of communication for their application.

In Chapter 4, I presented a model for partitioning a workload between HW and SW in a

single-user environment. Given the metrics provided in that chapter and the expected

throughput of both CPU and accelerator, I demonstrated that SW engineers can calculate

the HW/SW partitioning ratio that leads to a completion time that is within 2% of the

empirical optimum. SW engineers can also use the developed model to predict, with 12%

MRE, the execution time of workloads of varying size.

In Chapter 5, I extended the model presented in Chapter 4 to include many accelerators

and queue wait time. Although that model worked well in the absence of CPU core time

sharing, we identified SW context-switch hazards as a limitation of our model. Since we

cannot predict when and for how long SW execution will be stopped, we must periodically

monitor progress and repartition the work if a context switch is detected.

Along with that work, I provided and evaluated a model for transferring function arguments

between SW and HW. That model may be used by SW engineers to select an optimal

argument transfer method based on their required transfer size and synchronisation

requirements.

6.3 Accelerator sharing for concurrent short-running tasks

Chapter 5 proposed a framework that uses our task partitioning methodology to accelerate

many concurrent short-running tasks. With 8 accelerator slots that provide speedups in

the range 0× to 10× for perfectly parallel workloads with SW-only execution times in the

132



6. Conclusion

range 1 ms to 100 ms, we found that our framework improves overall system performance

with an average speedup of:

• 88% when one type of task is accelerated;

• 33% when a dynamic set of tasks are accelerated; and

• 77% when the response time to demand is reduced.

Although the best performance was observed when the response time was quick, a slower

response time led to a more diverse set of resident accelerators. The more diverse set of

resident accelerators increased the likelihood that an accelerator would immediately be

available to the task, thereby avoiding reconfiguration delay.

6.4 Future work

In dynamic, multitasking environments, smaller workloads may benefit from an increased

monitoring period. Our experiments have evaluated the response of our framework to

changing demands, but smaller workloads will require an unreasonably quick response time

to instantiate an accelerator before execution completes in SW. It may be beneficial to

maintain the residency of a diverse range of accelerators to improve the likelihood that an

accelerator is available for such functions before they are called. Our results show that

an increased monitoring period reduces utilisation but increases the diversity of resident

accelerators. One avenue for further investigation is to find the optimum monitoring period

for different workload sizes, or to find the ideal balance between replication and diversity.

Augmenting the current demand with an anticipated demand may further improve the

probability that an accelerator will be available at the time it is needed. We have

considered application personalities that are generated using uniformly distributed random

numbers. In practice, we expect some shared library functions to be more popular than

others. A trivial metric for anticipating demand is the most frequently used function.

Others may include function call dependencies, heuristics or machine learning.

133



6. Conclusion

Although we have shown an average makespan reduction of 77%, we have also found that

system resources are underutilised.

We chose a trivial reconfiguration algorithm (Section 5.4.7) to evaluate our framework.

This algorithm could be improved by applying heuristics for deciding whether or not an

accelerator should be replaced to serve a new function. A trivial improvement to this

algorithm is to consider the historic demand for each accelerator.

Knowledge of function dependencies can be used to reduce idle time by speculatively

reconfiguring slots. For example, image decompression may commonly be followed by

image resizing for rendering. The accelerator for resizing the image can be instantiated

early such that it is ready for use as soon as the resize function it called. Dependencies

can be determined on- or offline and controlled by either the kernel module or the shared

library. The kernel module can monitor the utilisation of the decompression accelerator

and ensure that a resize accelerator will also be configured. The library itself could request

the appropriate accelerator for the next processing stage shortly before the current stage

completes.

Our partitioning algorithm imposes a maximum CPU execution time before rebalancing

the work between SW and HW (Section 5.4.7). Future work might investigate changing

the maximum workload to explore the trade-off in computational overhead and resource

utilisation. Although the accelerators may spend less time idle, the CPU overhead of using

the framework would be reduced, freeing the CPU to process more meaningful work.

If the execution time overhead of our argument transfer approach is significant on other

platforms, a future direction of research could be alternate approaches for concurrent,

multi-user CSR access. Such work would investigate the optimum level of CSR replication

and the synchronisation primitives that should be used to protect them. Of course, the

overhead of synchronisation may be higher than the overhead of an OS system call – we

may find it best to move CSR access back into the OS.

134



References

[ARM05] ARM limited. ARMv7-A Architecture Reference Manual DDI 0406C.b,
2005.

[ARM11] ARM limited. AMBA AXI and ACE Protocol Specification IHI 0022D
(ID102711), 2011.

[ARM12] ARM limited. ARM Cortex-A9 MPCore Technical Reference Manual DDI
0407H, 2012.

[ARM13] ARM limited. ARM Cortex-A53 MPCore Processor Technical Reference
Manual DDI 0500D, 2013.

[Avn19] Avnet. Zedboard. http://zedboard.org/product/zedboard, 2019. [Online;
accessed 18-September-2019].

[BBB+07] R. Baxter, S. Booth, M. Bull, G. Cawood, J. Perry, M. Parsons, A. Simpson,
A. Trew, A. McCormick, G. Smart, R. Smart, A. Cantle, R. Chamberlain,
and G. Genest. Maxwell - a 64 FPGA supercomputer. In Proceedings of the
Second NASA/ESA Conference on Adaptive Hardware and Systems, AHS
’07, pages 287–294. IEEE Computer Society, 2007.

[BCD69] A. Bensoussan, C. Clingen, and R. Daley. The Multics virtual memory. In
Proceedings of the second symposium on Operating systems principles, pages
30–42, 1969.

[BDH+97] J. Burns, A. Donlin, J. Hogg, S. Singh, and M. De Wit. A dynamic
reconfiguration run-time system. In Proceedings. The 5th Annual IEEE
Symposium on Field-Programmable Custom Computing Machines Cat. No.
97TB100186), pages 66–75. IEEE, 1997.

[Bea16] A. Bean. Improving memory access performance for irregular algorithms in
heterogeneous CPU/FPGA systems. PhD thesis, Imperial College, London,
2016.

[Bit09] R. Bittner. Bus mastering PCI express in an FPGA. In Proceedings of
the ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, FPGA ’09, pages 273–276. Association for Computing Machinery,
2009.

135



[BNP10] T. Beisel, M. Niekamp, and C. Plessl. Using shared library interposing
for transparent application acceleration in systems with heterogeneous
hardware accelerators. In ASAP 2010 - 21st IEEE International Conference
on Application-specific Systems, Architectures and Processors, pages 65–72,
July 2010.

[BP06] Z. Baker and V. Prasanna. An architecture for efficient hardware data
mining using reconfigurable computing systems. In 2006 14th Annual IEEE
Symposium on Field-Programmable Custom Computing Machines, pages
67–75. IEEE, 2006.

[Bre96] G. Brebner. A virtual hardware operating system for the Xilinx XC6200.
In Proceedings of the 6th International Workshop on Field-Programmable
Logic, Smart Applications, New Paradigms and Compilers, FPL ’96, pages
327–336. Springer-Verlag, 1996.

[BRS13] D. Bacon, R. Rabbah, and S. Shukla. FPGA programming for the masses.
Communications of the ACM, 56(4):56–63, 2013.

[BS13] S. Breßand G. Saake. Why it is time for a HyPE: A hybrid query processing
engine for efficient GPU coprocessing in DBMS. Proceedings of the VLDB
Endowment, 6(12):1398–1403, 2013.

[BSC+11] B. Blackham, Y. Shi, S. Chattopadhyay, A. Roychoudhury, and G. Heiser.
Timing analysis of a protected operating system kernel. In Real-Time
Systems Symposium (RTSS), 2011 IEEE 32nd, pages 339–348, Nov 2011.

[CA07] S. Craven and P. Athanas. Examining the viability of FPGA supercomputing.
EURASIP Journal on Embedded systems, 2007(1), 2007.

[CCC+16] M. Chang, Y. Chen, J. Cong, P. Huang, C. Kuo, and C. Yu. The SMEM
seeding acceleration for DNA sequence alignment. In 2016 IEEE 24th
Annual International Symposium on Field-Programmable Custom Computing
Machines (FCCM), pages 32–39, May 2016.

[CCF+16] Y. Choi, J. Cong, Z. Fang, Y. Hao, G. Reinman, and P. Wei. A quantita-
tive analysis on microarchitectures of modern CPU-FPGA platforms. In
Proceedings of the 53rd Annual Design Automation Conference, DAC ’16,
pages 109:1–109:6. ACM, 2016.

[CFMRAF17] L. Costas, R. Fernández-Molanes, J. Rodŕıguez-Andina, and J. Fariña.
Characterization of FPGA-master ARM communication delays in Zynq
devices. In 2017 IEEE International Conference on Industrial Technology
(ICIT), pages 942–947, March 2017.

[CH07] Tom Van Court and Martin C. Herbordt. Families of FPGA-based accelera-
tors for approximate string matching. Microprocessors and microsystems,
31 2:135–145, 2007.

136



[CKPP15] G. Charitopoulos, I. Koidis, K. Papadimitriou, and D. Pnevmatikatos. Hard-
ware task scheduling for partially reconfigurable FPGAs. In International
Symposium on Applied Reconfigurable Computing, pages 487–498. Springer,
2015.

[CLL+96] C. Carreras, J. Lopez, M. Lopez, L. Sanchez, C. Delgado-Kloos, and N. Mar-
tinez. A co-design methodology based on formal specification and high-
level estimation. In Proceedings of the 4th International Workshop on
Hardware/Software Co-Design, CODES ’96, pages 28–35. IEEE Computer
Society, 1996.

[CP16] R. Chen and V. Prasanna. Accelerating equi-join on a CPU-FPGA hetero-
geneous platform. In 2016 IEEE 24th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), pages 212–219,
May 2016.

[CPM97] L. Chunho, M. Potkonjak, and W. Mangione-Smith. MediaBench: A tool
for evaluating and synthesizing multimedia and communications systems. In
Proceedings of 30th Annual International Symposium on Microarchitecture,
pages 330–335, Dec 1997.

[CSZ+14] F. Chen, Y. Shan, Y. Zhang, Y. Wang, H. Franke, X. Chang, and K. Wang.
Enabling FPGAs in the cloud. In Proceedings of the 11th ACM Conference
on Computing Frontiers, CF ’14. Association for Computing Machinery,
2014.

[DE97] O. Diessel and H. ElGindy. Run-time compaction of FPGA designs. In
International Workshop on Field Programmable Logic and Applications,
pages 131–140. Springer, 1997.

[Den65] Jack B Dennis. Segmentation and the design of multiprogrammed computer
systems. Journal of the ACM (JACM), 12(4):589–602, 1965.

[DG12] E. Dodiu and V. Gaitan. Custom designed CPU architecture based on
a hardware scheduler and independent pipeline registers – Concept and
theory of operation. In Electro/Information Technology (EIT), 2012 IEEE
International Conference on, pages 1–5, May 2012.

[DMBS12] T. Davidson, M. Merlier, K. Bruneel, and D. Stroobandt. A dynamically
reconfigurable pattern matcher for regular expressions on FPGA. In Parallel
Computing with FPGAs 2011 (ParaFPGA 2011), volume 22, pages 611–618.
IOS Press, 2012.

[DT13] J. Dahlstrom and S. Taylor. Migrating an OS scheduler into tightly coupled
FPGA logic to increase attacker workload. In Military Communications
Conference, MILCOM 2013 - 2013 IEEE, pages 986–991, Nov 2013.

[Egu10] K. Eguro. SIRC: An extensible reconfigurable computing communica-
tion API. In 2010 18th IEEE Annual International Symposium on Field-
Programmable Custom Computing Machines, pages 135–138, May 2010.

137



[FAL+16] H. Fernandes, M. Aslam, J. Lobo, J. Ferreira, and J. Dias. Bayesian inference
implemented on FPGA with stochastic bitstreams for an autonomous robot.
In 2016 26th International Conference on Field Programmable Logic and
Applications (FPL), pages 1–4, Aug 2016.

[FBCS12] J. Fowers, G. Brown, P. Cooke, and G. Stitt. A performance and energy
comparison of FPGAs, GPUs, and multicores for sliding-window applica-
tions. In Proceedings of the ACM/SIGDA International Symposium on
Field Programmable Gate Arrays, FPGA ’12, pages 47–56. Association for
Computing Machinery, 2012.

[Goo83] J. Goodman. Using cache memory to reduce processor-memory traffic. In
Proceedings of the 10th Annual International Symposium on Computer Ar-
chitecture, ISCA ’83, pages 124–131. Association for Computing Machinery,
1983.

[GRE+01] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and R. Brown.
MiBench: A free, commercially representative embedded benchmark suite.
In Proceedings of the Fourth Annual IEEE International Workshop on
Workload Characterization. WWC-4 (Cat. No.01EX538), pages 3–14, Dec
2001.

[GSB+00] S. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, and R. Taylor.
PipeRench: A reconfigurable architecture and compiler. Computer, 33(4):70–
77, Apr 2000.

[GWC+14] J. Gong, T. Wang, J. Chen, H. Wu, F. Ye, S. Lu, and J. Cong. An
efficient and flexible host-FPGA PCIe communication library. In 2014 24th
International Conference on Field Programmable Logic and Applications
(FPL), pages 1–6, Sept 2014.

[HTK15] M. Happe, A. Traber, and A. Keller. Preemptive hardware multitasking in
ReconOS. In International Symposium on Applied Reconfigurable Computing,
pages 79–90. Springer, 2015.

[HW97] J. Hauser and J. Wawrzynek. Garp: A MIPS processor with a reconfigurable
coprocessor. In Proceedings. The 5th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines Cat. No.97TB100186), pages
12–21, April 1997.

[IBM14] IBM. Coherent Accelerator Processor Interface User’s Manual Version 1.1,
2014.

[IK07] A. Ioannou and M. Katevenis. Pipelined heap (priority queue) management
for advanced scheduling in high-speed networks. IEEE/ACM Transactions
on Networking, 15(2):450–461, 2007.

[Int16] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual Volume
3 (3A, 3B, 3C & 3D): System Programming Guide 325384-060US, 2016.

138



[Int19a] Intel. Arria V Device Handbook Volume 1: Device Interfaces and Integration,
2019.

[Int19b] Intel. Intel Acceleration Stack for Intel Xeon CPU with FPGAs Core Cache
Interface (CCI-P) Reference Manual MNL-1092, 2019.

[Int19c] Intel Corporation. OPAE. https://01.org/opae, 2019. [Online; accessed
18-September-2019].

[ISA16] Z. István, D. Sidler, and G. Alonso. Runtime parameterizable regular
expression operators for databases. In 2016 IEEE 24th Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM),
pages 204–211, May 2016.

[JHE+13] K. Jozwik, S. Honda, M. Edahiro, H. Tomiyama, and H. Takada. Rainbow:
An operating system for software-hardware multitasking on dynamically
partially reconfigurable FPGAs. International Journal of Reconfigurable
Computing, 2013, 2013.

[JK13] M. Jacobsen and R. Kastner. RIFFA 2.0: A reusable integration framework
for FPGA accelerators. In 2013 23rd International Conference on Field
programmable Logic and Applications, pages 1–8, Sept 2013.

[JSNV13] W. José, A. Silva, H. Neto, and M. Véstias. Analysis of matrix multiplication
on high density Virtex-7 FPGA. In 2013 23rd International Conference on
Field programmable Logic and Applications, pages 1–4. IEEE, 2013.

[KAA+17] K. Kara, D. Alistarh, G. Alonso, O. Mutlu, and C. Zhang. FPGA-accelerated
dense linear machine learning: A precision-convergence trade-off. In 2017
IEEE 25th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), pages 160–167, April 2017.

[KAE+14] G. Klein, J. Andronick, K. Elphinstone, T. Murray, T. Sewell, R. Kolanski,
and G. Heiser. Comprehensive formal verification of an OS microkernel.
ACM Transactions on Computer Systems, 32(1):2:1–2:70, feb 2014.

[KBT10] D. Koch, C. Beckhoff, and J. Torresen. Zero logic overhead integration
of partially reconfigurable modules. In Proceedings of the 23rd Sympo-
sium on Integrated Circuits and System Design, SBCCI ’10, pages 103–108.
Association for Computing Machinery, 2010.

[KD15] A. Kroh. and O. Diessel. Towards OS kernel acceleration in heterogeneous
systems. First International Workshop on Heterogeneous High-performance
Reconfigurable Computing (H2RC), 2015.

[KD18] A. Kroh and O. Diessel. A short-transfer model for tightly-coupled CPU-
FPGA platforms. In 2018 International Conference on Field-Programmable
Technology (FPT), pages 366–369, Dec 2018.

139



[KD19] A. Kroh and O. Diessel. Efficient fine-grained processor-logic interactions
on the cache-coherent Zynq platform. ACM Trans. Reconfigurable Technol.
Syst., 11(4):25:1–25:22, January 2019.

[Khr19] Khronos Group. OpenCL. https://www.khronos.org/opencl, 2019. [Online;
accessed 18-September-2019].

[KHT07] D. Koch, C. Haubelt, and J. Teich. Efficient hardware checkpointing:
Concepts, overhead analysis, and implementation. In Proceedings of the 2007
ACM/SIGDA 15th International Symposium on Field Programmable Gate
Arrays, FPGA ’07, pages 188–196. Association for Computing Machinery,
2007.

[KL08] J. Kelm and S. Lumetta. HybridOS: Runtime support for reconfigurable
accelerators. In Proceedings of the 16th International ACM/SIGDA Sympo-
sium on Field Programmable Gate Arrays, FPGA ’08, pages 212–221. ACM,
2008.

[KP05] H. Kalte and M. Porrmann. Context saving and restoring for multitasking in
reconfigurable systems. In International Conference on Field Programmable
Logic and Applications, 2005., pages 223–228, Aug 2005.

[KPPK11] T. Kenter, C. Plessl, M. Platzner, and M. Kauschke. Performance estimation
framework for automated exploration of CPU-accelerator architectures. In
Proceedings of the 19th ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, FPGA ’11, pages 177–180. Association for
Computing Machinery, 2011.

[KSM03] P. Kuacharoen, M. Shalan, and V. Mooney. A configurable hardware sched-
uler for real-time systems. In Proceedings of the International Conference
on Engineering of Reconfigurable Systems and Algorithms, pages 96–101.
CSREA Press, 2003.

[LBK+16] A. Lösch, T. Beisel, T. Kenter, C. Plessl, and M. Platzner. Performance-
centric scheduling with task migration for a heterogeneous compute node in
the data center. In 2016 Design, Automation Test in Europe Conference
Exhibition (DATE), pages 912–917, March 2016.

[LHLT10] T. Lee, C. Hu, L. Lai, and C. Tsai. Hardware context-switch methodology
for dynamically partially reconfigurable systems. Journal of Information
Science and Engineering, 26(4):1289–1305, 2010.

[LMAH18] A. Lyons, K. McLeod, H. Almatary, and G. Heiser. Scheduling-context
capabilities: A principled, light-weight operating-system mechanism for
managing time. In Proceedings of the Thirteenth EuroSys Conference, pages
1–16, 2018.

[LP07] E. Lubbers and M. Platzner. ReconOS: An RTOS supporting hard- and
software threads. In Field Programmable Logic and Applications, 2007. FPL
2007. International Conference on, pages 441–446, Aug 2007.

140



[LP09a] E. Lubbers and M. Platzner. Cooperative multithreading in dynamically
reconfigurable systems. In 2009 International Conference on Field Pro-
grammable Logic and Applications, pages 551–554, Aug 2009.

[LP09b] E. Lübbers and M. Platzner. ReconOS: Multithreaded programming for
reconfigurable computers. ACM Transactions on Embedded Computing
Systems (TECS), 9(1):1–33, 2009.

[LRL+12] Y. Liang, K. Rupnow, Y. Li, D. Min, M. Do., and D. Chen. High-level
synthesis: Productivity, performance, and software constraints. Journal of
Electrical and Computer Engineering, 2012:1–14, 2012.

[LSV05] B. Lai, P. Schaumont, and I. Verbauwhede. A light-weight cooperative multi-
threading with hardware supported thread-management on an embedded
multi-processor system. In Conference Record of the Thirty-Ninth Asilomar
Conference onSignals, Systems and Computers, 2005., pages 1647–1651,
October 2005.

[LVL03] M. López-Vallejo and J. López. On the hardware-software partitioning
problem: System modeling and partitioning techniques. ACM Trans. Des.
Autom. Electron. Syst., 8(3):269–297, July 2003.

[MB02] V. Mooney. and D. Blough. A hardware-software real-time operating system
framework for SoCs. Design Test of Computers, IEEE, 19(6):44–51, Nov
2002.

[MC15] V. Mirian and P. Chow. Evaluating shared virtual memory in an OpenCL
framework for embedded systems on FPGAs. In 2015 International Confer-
ence on ReConFigurable Computing and FPGAs (ReConFig), pages 1–8,
Dec 2015.

[MG13] A. Morales-Villanueva and A. Gordon-Ross. On-chip context save and
restore of hardware tasks on partially reconfigurable FPGAs. In 2013
IEEE 21st Annual International Symposium on Field-Programmable Custom
Computing Machines, pages 61–64, April 2013.

[MLC14] H. Muhuan, K. Lim, and J. Cong. A scalable, high-performance customized
priority queue. In 2014 24th International Conference on Field Programm-
able Logic and Applications (FPL), pages 1–4. IEEE, 2014.

[MNM+04] T. Marescaux, V. Nollet, J. Mignolet, A. Bartic, W. Moffat, P. Avasare,
P. Coene, D. Verkest, S. Vernalde, and R. Lauwereins. Run-time support for
heterogeneous multitasking on reconfigurable SoCs. Integration, 38(1):107–
130, 2004.

[MRAF18] R. Molanes, J. Rodŕıguez-Andina, and J. Fariña. Performance characteriza-
tion and design guidelines for efficient processor-FPGA communication in
Cyclone V FPSoCs. IEEE Transactions on Industrial Electronics, 65(5):4368–
4377, May 2018.

141



[MSFRA15] R. Molanes, F. Salgado, J. Fariña, and J. Rodŕıguez-Andina. Characteriza-
tion of FPGA-master ARM communication delays in Cyclone V devices. In
IECON 2015-41st Annual Conference of the IEEE Industrial Electronics
Society, pages 004229–004234. IEEE, 2015.

[NRL07] A. Nácul, F. Regazzoni, and M. Lajolo. Hardware scheduling support in
SMP architectures. In Proceedings of the Conference on Design, Automation
and Test in Europe, DATE ’07, pages 642–647. EDA Consortium, 2007.

[OK17] J. Ordaz and D. Koch. Making a case for an ARM Cortex-A9 CPU interlay
replacing the NEON SIMD unit. In 2017 27th International Conference on
Field Programmable Logic and Applications (FPL), pages 1–4, Sep. 2017.

[OLAH13] S. Ong, S. Lee, N. Ali, and F. Hussin. SEOS: Hardware implementation of
real-time operating system for adaptability. In Computing and Networking
(CANDAR), 2013 First International Symposium on, pages 612–616, Dec
2013.

[PAA+06] W. Peck, E. Anderson, J. Agron, J. Stevens, F. Baijot, and D. Andrews.
Hthreads: A computational model for reconfigurable devices. In 2006
International Conference on Field Programmable Logic and Applications,
pages 1–4, Aug 2006.

[PCC+14] A. Putnam, A. Caulfield, E. Chung, D. Chiou, K. Constantinides, J. Demme,
H. Esmaeilzadeh, J. Fowers, G. Gopal, J. Gray, M. Haselman, S. Hauck,
S. Heil, A. Hormati, J. Kim, S. Lanka, J. Larus, E. Peterson, S. Pope,
A. Smith, J. Thong, P. Xiao, and D. Burger. A reconfigurable fabric
for accelerating large-scale datacenter services. In Computer Architecture
(ISCA), 2014 ACM/IEEE 41st International Symposium on, pages 13–24,
June 2014.

[PH90] D. Patterson and J. Hennessy. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann Publishers Inc., 1990.

[PS14] T. Preußer and R. Spallek. Ready PCIe data streaming solutions for FPGAs.
In 2014 24th International Conference on Field Programmable Logic and
Applications (FPL), pages 1–4, Sep. 2014.

[PS15] A. Powell and D. Silage. Statistical performance of the ARM Cortex A9
accelerator coherency port in the Xilinx Zynq SoC for real-time applications.
In 2015 International Conference on ReConFigurable Computing and FPGAs
(ReConFig), pages 1–6, Dec 2015.

[PWP+03] K. Puttegowda, W. Worek, N. Pappas, A. Dandapani, P. Athanas, and
A. Dickerman. A run-time reconfigurable system for gene-sequence searching.
In 16th International Conference on VLSI Design, 2003. Proceedings., pages
561–566, Jan 2003.

142



[RJ16] S. Ravi and M. Joseph. Open source HLS tools: A stepping stone for modern
electronic CAD. In 2016 IEEE International Conference on Computational
Intelligence and Computing Research (ICCIC), pages 1–8, Dec 2016.

[SBJS15] J. Stuecheli, B. Blaner, C. Johns, and M. Siegel. CAPI: A coherent ac-
celerator processor interface. IBM Journal of Research and Development,
59(1):7:1–7:7, Jan 2015.

[SFJ+19] R. Skhiri, V. Fresse, J. Jamont, B. Suffran, and J. Malek. From FPGA to
support cloud to cloud of FPGA: State of the art. International Journal of
Reconfigurable Computing, 2019:1–17, 12 2019.

[SIOA17] D. Sidler, Z. István, M. Owaida, and G. Alonso. Accelerating pattern
matching queries in hybrid CPU-FPGA architectures. In Proceedings of the
2017 ACM International Conference on Management of Data, SIGMOD
’17, pages 403–415. ACM, 2017.

[SKH16] T. Sewell, F. Kam, and G. Heiser. Complete, high-assurance determination
of loop bounds and infeasible paths for WCET analysis. In 2016 IEEE
Real-Time and Embedded Technology and Applications Symposium (RTAS),
pages 1–11, April 2016.

[SLM00] H. Simmler, L. Levinson, and R. Männer. Multitasking on FPGA co-
processors. In International Workshop on Field Programmable Logic and
Applications, pages 121–130. Springer, 2000.

[SMT+12] B. Sukhwani, H. Min, M. Thoennes, P. Dube, B. Iyer, B. Brezzo, D. Dillen-
berger, and S. Asaad. Database analytics acceleration using FPGAs. In 2012
21st International Conference on Parallel Architectures and Compilation
Techniques (PACT), pages 411–420, Sep. 2012.

[So07] H. So. BORPH: An Operating System for FPGA-Based Reconfigurable Com-
puters. PhD thesis, EECS Department, University of California, Berkeley,
Jul 2007.

[ŠRS12] P. Škoda, B. Rogina, and V. Sruk. Fpga implementations of data mining
algorithms. In 2012 Proceedings of the 35th International Convention
MIPRO, pages 362–367. IEEE, 2012.

[SSS15] J. Silva, V. Sklyarov, and I. Skliarova. Comparison of on-chip communi-
cations in Zynq-7000 all programmable systems-on-chip. IEEE Embedded
Systems Letters, 7(1):31–34, March 2015.

[SWP04] C. Steiger, H. Walder, and M. Platzner. Operating systems for reconfig-
urable embedded platforms: Online scheduling of real-time tasks. IEEE
Transactions on Computers, 53(11):1393–1407, Nov 2004.

[SWWB13] M. Sadri, C. Weis, N. Wehn, and L. Benini. Energy and performance
exploration of accelerator coherency port using Xilinx ZYNQ. In Proceedings

143



of the 10th FPGAworld Conference, FPGAworld ’13, pages 5:1–5:8. ACM,
2013.

[Tei12] J. Teich. Hardware/software codesign: The past, the present, and predicting
the future. Proceedings of the IEEE, 100(Special Centennial Issue):1411–
1430, May 2012.

[THM15] J. Tang, Y. Hau, and M. Marsono. Hardware/software partitioning of
embedded system-on-chip applications. In 2015 IFIP/IEEE International
Conference on Very Large Scale Integration (VLSI-SoC), pages 331–336,
Oct 2015.

[VB13] W. Vanderbauwhede and K. Benkrid. High-performance computing using
FPGAs, volume 3. Springer, 2013.

[VF18] K. Vipin and S. Fahmy. FPGA dynamic and partial reconfiguration: A
survey of architectures, methods, and applications. ACM Comput. Surv.,
51(4), July 2018.

[VKVF16] M. Vesper, D. Koch, K. Vipin, and S. A. Fahmy. JetStream: An open-source
high-performance PCI Express 3 streaming library for FPGA-to-host and
FPGA-to-FPGA communication. In 2016 26th International Conference on
Field Programmable Logic and Applications (FPL), pages 1–9, Aug 2016.

[VMB19] P. Vogel, A. Marongiu, and L. Benini. Exploring shared virtual memory
for FPGA accelerators with a configurable IOMMU. IEEE Transactions on
Computers, 68(4):510–525, April 2019.

[VPI05] M. Vuletid, L. Pozzi, and P. Ienne. Seamless hardware-software integration
in reconfigurable computing systems. Design Test of Computers, IEEE,
22(2):102–113, March 2005.

[VPK19] A. Vaishnav, K. Pham, and D. Koch. Heterogeneous resource-elastic schedul-
ing for CPU+FPGA architectures. In Proceedings of the 10th International
Symposium on Highly-Efficient Accelerators and Reconfigurable Technologies,
HEART 2019, pages 1:1–1:6. ACM, 2019.

[VPKG18] A. Vaishnav, K. D. Pham, D. Koch, and J. Garside. Resource elastic virtu-
alization for FPGAs using OpenCL. In 2018 28th International Conference
on Field Programmable Logic and Applications (FPL), pages 111–1117, Aug
2018.

[VRKP14] G. Vaz, H. Riebler, T. Kenter, and C. Plessl. Deferring accelerator offloading
decisions to application runtime. In 2014 International Conference on
ReConFigurable Computing and FPGAs (ReConFig14), pages 1–8, Dec
2014.

[VSL08] F. Vahid, G. Stitt, and R. Lysecky. Warp processing: Dynamic translation
of binaries to FPGA circuits. Computer, 41(7):40–46, July 2008.

144



[WC17] F. Winterstein and G. Constantinides. Pass a pointer: Exploring shared
virtual memory abstractions in OpenCL tools for FPGAs. In 2017 Inter-
national Conference on Field Programmable Technology (ICFPT), pages
104–111, Dec 2017.

[WGY+17] C. Wang, L. Gong, Q. Yu, X. Li, Y. Xie, and X. Zhou. DLAU: A scalable
deep learning accelerator unit on FPGA. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 36(3):513–517, March
2017.

[WH95] M. Wirthlin and B. Hutchings. A dynamic instruction set computer. In
Proceedings IEEE Symposium on FPGAs for Custom Computing Machines,
pages 99–107. IEEE, 1995.

[WMW+16] G. Weisz, J. Melber, Y. Wang, K. Fleming, E. Nurvitadhi, and J. Hoe. A
study of pointer-chasing performance on shared-memory processor-FPGA
systems. In Proceedings of the 2016 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, FPGA ’16, pages 264–273. ACM, 2016.

[WP02] H. Walder and M. Platzner. Non-preemptive multitasking on FPGAs: Task
placement and footprint transform. In Proceedings of the 2nd International
Conference on Engineering of Reconfigurable Systems and Architectures
(ERSA), pages 24–30. CSREA Press, 2002.

[WPAH16] J. Weerasinghe, R. Polig, F. Abel, and C. Hagleitner. Network-attached
FPGAs for data center applications. In 2016 International Conference on
Field-Programmable Technology (FPT), pages 36–43, Dec 2016.

[WPC+16] Z. Wang, J. Paul, H. Y. Cheah, B. He, and W. Zhang. Relational query
processing on OpenCL-based FPGAs. In 2016 26th International Conference
on Field Programmable Logic and Applications (FPL), pages 1–10, Aug
2016.

[WSC10] J. Wu, T. Srikanthan, and G. Chen. Algorithmic aspects of hard-
ware/software partitioning: 1D search algorithms. IEEE Transactions
on Computers, 59(4):532–544, April 2010.

[WUZY19] R. Watanabe, S. Ura, Q. Zhao, and T. Yoshida. Implementation of FPGA
building platform as a cloud service. In Proceedings of the 10th International
Symposium on Highly-Efficient Accelerators and Reconfigurable Technologies,
pages 1–6, 2019.

[WWLS13] J. Wu, P. Wang, S. Lam, and T. Srikanthan. Efficient heuristic and tabu
search for hardware/software partitioning. The Journal of Supercomputing,
66(1):118–134, 2013.

[WXH+16] Y. Wang, J. Xu, Y. Han, H. Li, and X. Li. DeepBurning: Automatic
generation of FPGA-based learning accelerators for the neural network
family. In 2016 53nd ACM/EDAC/IEEE Design Automation Conference
(DAC), pages 1–6, June 2016.

145



[Xil] Xilinx. Zynq-7000 SoC (Z-7007S, Z-7012S, Z-7014S, Z-7010, Z-7015, and
Z-7020): DC and AC Switching Characteristics DS187 (v1.20.1).

[Xil14] Xilinx. Zynq-7000 All Programmable SoC Technical Reference Manual
UG585 (v1.9.1), 2014.

[Xil19a] Xilinx. Zynq Ultrascale+ Device Technical Reference Manual UG1085 (v2.1),
2019.

[Xil19b] Xillybus. Xillinux. http://xillybus.com/xillinux, 2019. [Online; accessed
18-September-2019].

[Xil20a] Xilinx. Versal Architecture and Product Data Sheet: Overview DS950, 2020.

[Xil20b] Xilinx. Zynq UltraScale+ MPSoC Data Sheet: DC and AC Switching
Characteristics DS925 (v1.17), 2020.

[XPN16] T. Xia, J. Prévotet, and F. Nouvel. Hypervisor mechanisms to manage
FPGA reconfigurable accelerators. In 2016 International Conference on
Field-Programmable Technology (FPT), pages 44–52, Dec 2016.

[YMHB00] Z. Ye, A. Moshovos, S. Hauck, and P. Banerjee. CHIMAERA: A high-
performance architecture with a tightly-coupled reconfigurable functional
unit. SIGARCH Comput. Archit. News, 28(2):225–235, May 2000.

[YOY17] M. Yoshimi, Y. Oge, and T. Yoshinaga. Pipelined parallel join and its
FPGA-based acceleration. ACM Transactions on Reconfigurable Technology
and Systems (TRETS), 10(4):1–28, 2017.

[YRS05] P. Yiannacouras, J. Rose, and J. Steffan. The microarchitecture of FPGA-
based soft processors. In Proceedings of the 2005 International Conference
on Compilers, Architectures and Synthesis for Embedded Systems, CASES
’05, pages 202–212. ACM, 2005.

[ZZJB13] Y. Zhang, F. Zhang, Z. Jin, and J. Bakos. An FPGA-based accelerator for
frequent itemset mining. ACM Transactions on Reconfigurable Technology
and Systems (TRETS), 6(1):1–17, 2013.

146



Appendix A

Table A.1: Zynq-7020 CPU overheads, measured in CPU cycles, for short SM writes
followed by a DSB to ensure completion and SEV signalling.

Target Words = 1 2 3 4 5 6 7 8

In-order execution

L1 Cache 24 24 25 26 27 28 29 30
L2 Cache 36 33 35 35 37 37 39 39
OCM (DE) 34 38 40 44 46 50 52 56
OCM (SO) 43 62 85 104 127 146 169 188
RAM (DE) 31 34 37 40 43 47 58 61
RAM (SO) 63 102 145 184 225 264 305 344
FPGA (DE) 31 34 37 40 43 46 91 98
FPGA (SO) 97 179 256 326 409 485 565 641

Out-of-order execution

L1 Cache 24 24 25 26 27 28 29 30
L2 Cache 36 33 35 35 37 37 39 39
OCM (DE) 33 37 39 43 45 49 51 55
OCM (SO) 42 64 84 106 126 148 168 190
RAM (DE) 31 34 37 40 43 47 58 62
RAM (SO) 63 104 144 185 224 265 304 345
FPGA (DE) 31 34 37 40 43 46 96 99
FPGA (SO) 96 175 249 331 408 490 570 643

147



Appendix A

Table A.2: Zynq-7020 CPU overheads, measured in CPU cycles, for short reads from
various targets.

Target Words = 1 2 3 4 5 6 7 8

In-order execution

L1 Cache 7 8 9 10 11 12 13 14
L2 Cache 28 41 54 67 80 93 106 119
OCM (DE) 25 29 31 35 46 50 52 56
OCM (SO) 25 47 67 89 109 131 151 173
RAM (DE) 73 78 85 91 142 149 156 159
RAM (SO) 73 139 210 281 343 416 485 556
FPGA MMIO (DE) 76 86 103 119 145 164 178 188
FPGA MMIO (SO) 76 146 205 278 343 413 478 542

Out-of-order execution

L1 Cache 1 1 2 2 3 3 4 5
L2 Cache 12 25 38 51 64 77 90 103
OCM (DE) 9 13 15 19 30 34 36 40
OCM (SO) 9 31 51 73 93 115 135 157
RAM (DE) 57 63 69 73 126 130 139 145
RAM (SO) 57 125 194 260 327 400 462 540
FPGA MMIO (DE) 60 70 87 103 129 148 158 172
FPGA MMIO (SO) 60 130 189 262 327 397 461 526

Table A.3: Zynq-7020 CPU overheads, measured in CPU cycles, for short writes to various
targets.

Target Words = 1 2 3 4 5 6 7 8

In-order execution

L1 Cache 7 7 8 9 10 11 12 13
L2 Cache 19 16 18 18 20 20 22 22
OCM (DE) 16 20 22 26 28 32 34 38
OCM (SO) 25 47 67 89 109 131 151 173
RAM (DE) 14 17 20 23 26 30 40 45
RAM (SO) 45 86 125 166 205 246 285 326
FPGA (DE) 14 17 20 23 26 29 79 86
FPGA (SO) 85 164 241 317 385 476 565 626

Out-of-order execution

L1 Cache 1 1 2 2 3 3 4 5
L2 Cache 14 1 2 2 4 4 6 6
OCM (DE) 2 4 6 10 12 16 18 22
OCM (SO) 9 31 51 73 93 115 135 157
RAM (DE) 1 1 4 7 10 14 24 29
RAM (SO) 29 70 109 150 189 230 269 310
FPGA (DE) 1 1 4 7 10 13 63 70
FPGA (SO) 69 145 225 298 369 468 549 610

148


	Abstract
	Abbreviations
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Thesis objectives
	1.2 Thesis contributions
	1.3 Thesis structure

	2 Background
	2.1 Reconfigurable computing
	2.1.1 Automating design
	2.1.2 Dynamic partial reconfiguration

	2.2 General-purpose processors
	2.3 Sharing compute resources
	2.3.1 CPU time-sharing
	2.3.2 Accelerator time-sharing

	2.4 Virtual memory
	2.4.1 Hardware virtual memory

	2.5 The memory hierarchy
	2.5.1 Memory consistency

	2.6 Accelerator coupling
	2.6.1 Loose coupling
	2.6.2 Integrated CPU and FPGA
	2.6.3 Tight coupling

	2.7 Commercial tightly-coupled systems
	2.7.1 IBM
	2.7.2 Intel
	2.7.3 Xilinx
	2.7.4 Commercial systems feature matrix

	2.8 Hardware model

	3 Fine-grained transfers on tightly-coupled Zynq
	3.1 Contributions
	3.2 Publications
	3.3 Prior work
	3.4 System architecture
	3.4.1 Software scheduler
	3.4.2 Accelerator design
	3.4.3 Target system hardware
	3.4.4 GP connected accelerator
	3.4.5 ACP connected accelerator
	3.4.6 Comparison of accelerator structures

	3.5 Evaluation
	3.6 Chapter summary

	4 Cooperative processing of short-running tasks
	4.1 Contributions
	4.2 Publications
	4.3 Prior work
	4.4 Partitioning model
	4.5 Evaluation of communication overheads
	4.5.1 CPU overhead
	4.5.2 Latency

	4.6 Hardware accumulator evaluation
	4.7 Chapter summary

	5 Accelerator sharing in multi-user environments
	5.1 Contributions
	5.2 Publications
	5.3 Prior work
	5.4 Framework architecture
	5.4.1 Reconfigurable slots
	5.4.2 IOMMU
	5.4.3 Job queues
	5.4.4 Job router
	5.4.5 CSR manager
	5.4.6 System monitor
	5.4.7 Software system

	5.5 Evaluation
	5.5.1 ABI overhead
	5.5.2 Framework evaluation
	5.5.3 Static homogeneous accelerator cluster
	5.5.4 Dynamic accelerator cluster
	5.5.5 The impact of fine-grained job partitioning

	5.6 Chapter summary

	6 Conclusion
	6.1 Applications for tightly-coupled systems
	6.2 Communication models for engineers
	6.3 Accelerator sharing for concurrent short-running tasks
	6.4 Future work

	References
	Appendix A

