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Abstract

This thesis examines the problem of reducing reconfiguration time of an

island-style FPGA at its configuration memory level. The approach followed

is to examine configuration encoding techniques in order to reduce the size

of the bitstream that must be loaded onto the device to perform a recon-

figuration. A detailed analysis of a set of benchmark circuits on various

island-style FPGAs shows that a typical circuit randomly changes a small

number of bits in the null or default configuration state of the device. This

feature is exploited by developing efficient encoding schemes for configuration

data. For a wide set of benchmark circuits on various FPGAs, it is shown

that the proposed methods outperform all previous configuration compres-

sion methods and, depending upon the relative size of the circuit to the

device, compress within 5% of the fundamental information theoretic limit.

Moreover, it is shown that the corresponding decoders are simple to imple-

ment in hardware and scale well with device size and available configuration

bandwidth. It is not unreasonable to expect that with little modification

to existing FPGA configuration memory systems and acceptable increase in

configuration power a 10-fold improvement in configuration delay could be

achieved. The main contribution of this thesis is that it defines the limit of

configuration compression for the FPGAs under consideration and develops

practical methods of overcoming this reconfiguration bottleneck. The func-

tional density of reconfigurable devices could thereby be enhanced and the

range of potential applications reasonably expanded.
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Chapter 1

Introduction

An SRAM-based Field Programmable Gate Array (FPGA) is a form of pro-

grammable circuit that is increasingly seen as a target platform for high

performance computing. An FPGA consists of an array of logic blocks that

are interconnected by a hierarchical network of wires. A user can program

the logic blocks and their inter-connectivity by loading device-specific config-

uration1 data onto the device. This data is generated using vendor-specific

CAD tools. Once configured, the device behaves as the user specified digital

system and thus can be used to perform various functions. Current genera-

tion FPGAs can be reconfigured by loading the configuration data afresh, or

by altering the on-chip configuration data while the device is in operation.

The latter process is referred to as runtime reconfiguration. This work ex-

amines the problem of reducing the time needed to reconfigure an FPGA at

runtime.

This chapter serves as a road-map to the rest of the document. A general

introduction to FPGA-based computing is provided in Section 1.1. Section

1.2 presents the background of the problem that is addressed in this work.

Section 1.3 lists the main contributions of the thesis. Finally, a brief guide

to the following chapters of this document is provided in Section 1.4.

1Please see Appendix A for a note on the use of the term configuration.
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1.1 Research Context

The use of FPGAs for general purpose computing has become popular since

the mid-1980s (e.g. see [113] for a list of a large number of computers that

incorporate one or more FPGAs in their hardware). FPGAs are seen as an

intermediate implementation platform between a commodity processor and

a custom made chip. The use of FPGAs for general purpose computing has

been made possible by the increased transistor density of these devices and

the fact that they can be reconfigured while in operation. FPGAs are able to

outperform a microprocessor for a wide range of applications. While FPGAs

cannot process data as fast as custom made chips, increasing production costs

of the latest VLSI processes and time-to-market pressures lead to considering

FPGAs as an alternative to custom ICs as well. Thus, FPGAs have found a

niche that has been growing steadily over the years.

The ability to reconfigure an FPGA at runtime has opened new oppor-

tunities for novel system designs. It is seen as a method to alleviate the

constraints of a limited device size since a runtime reconfigurable FPGA of a

certain size can emulate a larger FPGA, albeit at the cost of slowing down the

overall execution (e.g. [8]). The penalty paid is the time needed to reconfig-

ure the device during which the device performs no computation. Other uses

of runtime reconfiguration are to change the function of the implemented

circuits as needed during the final operation (e.g. [13, 47]), or to support

a multi-tasking environment in which several tasks execute in parallel (e.g.

[96, 98]).

The use of runtime reconfigurable FPGAs in a general purpose environ-

ment raises several challenging issues. Designing a runtime reconfigurable

application is a difficult task and the performance of the application depends

greatly on the target architecture and the skill of the designer. The task of

designing a runtime reconfigurable application is further complicated by the

fact that there is little off-the-shelf software support for managing the device

at runtime. Several attempts have been made to introduce new high-level
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programming systems (e.g. [34, 58, 57, 66, 3, 55, 84, 65, 22, 106]) and run-

time management systems (e.g. [96, 98, 84, 39]). The acceptability of these

methods by a wider range of users is yet to be seen.

1.2 Problem Background

The motivation for the research described in this thesis emerged from an

earlier research effort aimed at using a process algebraic language CirCal

(Circuit Calculus) as a high level programming language for FPGA based

computers [69]. A Circal compiler targeting an XC6200 FPGA was devel-

oped [30]. Later, this compiler was ported to a Virtex board [88] and was

modified into an interpreter [29, 26]. The interpreter is capable of implement-

ing large Circal specifications on limited hardware and contains a primitive

runtime management system that performs reconfiguration as is required by

the environment into which the target system is embedded.

The above exercise of implementing a generic reconfigurable system onto

an FPGA led to a realisation that a top-down approach towards the design

leads to considerable difficulties in increasing the system performance [63].

In particular, reconfiguration time was found to be quite large. Two factors

contributed to this delay. Firstly, the low-level programming interface [121]

to the FPGA introduced significant delays. Secondly, the time needed to load

configuration data was found to be significant. Thus, the project motivated

a need to better understand the potential to reduce reconfiguration over-

heads. This thesis focuses on one aspect of runtime reconfiguration namely

the time needed to perform reconfiguration. This problem is studied at the

configuration memory level of an FPGA for which near optimal approaches

to exploiting configuration redundancy are presented.
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1.3 Thesis Contributions

This thesis examines the role of partial reconfiguration and configuration

compression as general methods for reducing reconfiguration time of a Vir-

tex like FPGA. It is shown that a combination of both methods can result in

an efficient solution to the problem of reducing the amount of configuration

data that must be loaded to configure a typical circuit on a typical device.

New configuration memories are presented that allow the device to be re-

configured in time proportional to the time needed to load the compressed

partial configuration data.

Partial reconfiguration is a method that allows the user to selectively

modify on-chip configuration data. This thesis examines the potential of

this technique as a general method for reducing reconfiguration time given a

sequence of typical configurations for a general island-style FPGA. It studies

the impact of a range of parameters on the amount of data that is common

between successive circuit configurations. These parameters include circuit

placement, circuit domain and size, configuration granularity, the order of

the input configurations and the size of the target device. It is shown that

out of all these, configuration granularity, which refers to the size of the unit

of configuration data, has the most significant impact on configuration re-

use. It is shown that configuration re-use is significantly increased as the size

of the configuration unit is reduced. The origin of this inter-configuration

redundancy is traced to null configuration data that the CAD tool inserts

into the bitstream to reset various resources to their default state. These

results are obtained via a detailed analysis of a set of benchmark circuits on

a commercial FPGA, the Virtex device family from Xilinx Inc. [123].

The above analysis leads to the idea that it is more useful to construct a

configuration in such a way that it allows fine-grained partial reconfiguration

and automatically inserts null data where required. For large-scale devices,

such as Virtex, reducing the configuration unit size increases the total num-

ber of units in the device. The potential amount of address data therefore
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increases proportionally, and thus outweighs the benefits achieved from con-

figuration re-use. This thesis analyses various address encoding schemes to

minimise this overhead and devises an addressing method that is suited to

fine-grained partial reconfiguration. The thesis thus presents various meth-

ods to enhance the configuration memory of current commercial FPGAs so

as to allow fine-grained access to their memory at a reasonable addressing

overhead and automatically insert null data.

The thesis explores the possibilities of further reducing the amount of

configuration data. The experiments presented in this work suggest that it

is more useful to represent a circuit’s configuration as a null configuration

together with an edit list of the changes needed to implement the circuit.

From the perspective of compressing configuration data, the null configura-

tion for a device can simply be hard-coded within the decompressor, which is

only supplied with the list of changes needed to implement the input circuit.

Thus, the problem of compressing configuration data is transformed into a

problem of finding a suitable method for encoding the changes made by a

circuit to a null bitstream.

A detailed analysis of typical Virtex configuration shows that the non-

null data in a typical circuit configuration is small compared to the overall

bitstream size. Moreover, the non-null data is almost randomly distributed

over the area spanned by a given circuit. This idea is formalised into a

model of configuration data. The main use of the model is that it allows

one to measure the information content of the configuration bitstream and

therefore provides an estimate of the size of the smallest configuration needed

to configure the input circuit. In the light of this model, various techniques

for compressing configuration data are studied and it is shown that simple

off-the-shelf methods perform reasonably well in practice. It is shown that

vector compression outperforms the popular LZSS-based techniques and is

easier to implement in hardware. A scalable decompressor is presented that

performs decompression at the same rate at which compressed data is input

to the memory.
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It is shown that the above results are not tied to a particular FPGA

architecture such as Virtex but can be applied to a wider range of island-

style FPGA. The impact of the design of an FPGA’s computational plane,

i.e. its logic and routing architecture, on the total configuration size and

its compressibility is studied. It is shown that a medium-sized logic block

not only provides a reasonable compromise between silicon area and circuit

delay but also helps to minimise reconfiguration time by facilitating good

compression. Early studies show that the routing architecture of the device

has less of an impact on the variability of reconfiguration time than the

logic architecture. The problem of devising a reconfiguration efficient routing

architecture is left for a future study.

The main contributions of this thesis are therefore summarised as follows:

• An in-depth empirical analysis of the potential and limitation of par-

tial reconfiguration as a method to reduce reconfiguration time in the

context of a general purpose island-style FPGA.

• New methods of partial reconfiguration that are shown to reduce re-

configuration time of existing FPGAs for a wide set of benchmark cir-

cuits. New configuration memory architectures that support the re-

quired method.

• A model of configuration data that can be used to estimate the infor-

mation content of an input configuration. This allows us to predict the

reduction in the configuration size that is made possible by an optimal

compression technique.

• Enhancements to partial reconfiguration to incorporate configuration

compression. It is shown that simple off-the-shelf methods, that have

not previously been applied to this domain, perform reasonable com-

pression in practice. The performance of these methods is judged

by comparing the achieved compression ratio to the smallest possible

(which is predicted by the model).
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• New configuration memory architectures that support the enhanced

methods.

1.4 Thesis Outline

Chapter 2 examines previous work aimed at reducing reconfiguration time at

the configuration memory level of an FPGA. These approaches are compared

with the methods presented in this thesis and the differences are highlighted.

Chapter 3 provides necessary background material on the FPGA model used

in this work and the types of applications that benefit from and exploit

runtime reconfiguration. Several examples from the literature are provided

to demonstrate the negative impact of long reconfiguration latency in current

FPGAs. The problem of reducing reconfiguration time is then formalised.

Chapter 4 provides an in-depth analysis of configuration data corresponding

to a set of benchmark circuits mapped onto a Virtex device. This chapter

studies the performance of partial reconfiguration in Virtex devices and de-

scribes a better method for performing partial reconfiguration. Chapter 5

presents several configuration memory architectures that incorporate these

methods in an increasing order of complexity.

Chapter 6 develops a model of configuration data and measures the informa-

tion content of typical Virtex configurations. Several compression methods

are studied and it is shown that simple off-the-shelf methods provide a rea-

sonable compression in practice. The memory architectures from Chapter 5

are then enhanced to incorporate the chosen hardware decompressor.

Chapter 7 studies the architectures of generic island-style FPGA and repeats

the previous analysis in a more general setting. It shows that the results

obtained for Virtex devices can also be obtained, with reasonable accuracy,

on various island-style FPGAs. The impact of CLB and routing architecture

on the overall reconfiguration time is briefly examined. The thesis concludes

in Chapter 8 with a summary of the research findings and an outline of
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directions for further study.
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Chapter 2

Related Work and

Contributions

2.1 Introduction

Several researchers have proposed various methods to reduce the reconfigu-

ration time of an FPGA. Broadly speaking, these methods can be classified

into five categories: partial reconfiguration based techniques, configuration

compression, specialised FPGA architectures, configuration caching, and cir-

cuit scheduling and placement. These methods are discussed in detail below.

The survey presented here is broad. Specific comparisons with the work of

others are made in the body of the thesis.

2.2 Partial Reconfiguration

In early SRAM FPGAs, the user had to reload the entire contents of config-

uration memory each time a reconfiguration was performed. (e.g. XC4000

series FPGAs [127]). In such devices, reconfiguration time is constant and de-

pends upon the device size. This complete reconfiguration approach is suited

to cases where reconfiguration is infrequent, e.g. for field upgrades. The
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main advantage of this model is that the underlying configuration memory

requires a simple architecture, e.g. a scan chain. However, the reconfigura-

tion time becomes a system bottleneck when applications demand frequent

reconfiguration. Examples of such applications will be provided in Section

3.4 of this thesis.

Partial reconfiguration allows the user to selectively modify the contents

of configuration memory. The XC6200 series devices were among the first to

support this concept [128]. This device allows byte-level access to its memory.

An XC6200 device has separate address and data pins. The host micropro-

cessor controlling the reconfiguration views the FPGA as a special kind of

random access memory. Several applications target XC6200 devices making

use of its partial reconfigurability (e.g. [41, 130, 99]). The XC6200 device

also offers a wildcarding mechanism through which the user can load the same

configuration data to multiple rows of resources. Specialised algorithms have

been developed to target this mechanism and have shown compression re-

duction of up to 70% for various benchmark circuits (e.g. [37]).

The XC6200 devices internally implemented their configuration memory

similar to a conventional SRAM, i.e. using horizontal and vertical control

wires to select the target byte-wide register. Chapter 3 shows that byte-wise

access to configuration memory is a desirable feature but implementing the

memory in a RAM-style manner to support this operation is inefficient for

large, modern devices. Firstly, the amount of address data needed to access

a register becomes significant and secondly, row and column decoders require

additional hardware. It should be noted that algorithms that exploit wild-

carding in XCV6200 assume that the device supports RAM-style access to

its memory ([77]). Similar comments apply to the enhancements of XC6200

devices as presented in [16].

Virtex devices allow partial reconfiguration but the unit of configura-

tion, called a frame, is 50-150 times larger than that of XC6200 devices and

depends on the device size [123]. Chapter 3 shows that a large unit of config-

uration is undesirable from the perspective of reducing reconfiguration time
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and develops new techniques for accessing and modifying configuration data

at smaller granularities. The implementation of these methods for Virtex is

discussed in Chapter 4.

The successors of Virtex, Virtex-II [125] and Virtex-4 [124] FPGAs are

also partially reconfigurable. The exact details of configuration memory in

Virtex-II are obscure but it seems to have a larger unit of configuration

compared to Virtex devices. The configuration unit of a Virtex-4 device has

a fixed size across the family and is almost equal in size to the configuration

unit of the largest Virtex device. More details on these devices are presented

in Chapter 3.

The additional feature of Virtex-II and Virtex-4 FPGAs is that reconfigu-

ration can be triggered and controlled from inside the device using an internal

configuration access port (ICAP). In [5], a method whereby the frame data

is internally read into a Block RAM (BRAM) and modified using software

running on an on-chip processor is described. As a measure of reducing recon-

figuration time, the read-modify-write method helps only if a frame can be

read, modified and written back to its destination in less time than it takes

the modification data to be loaded onto the device. In all Virtex devices,

frames are sequentially read and written from the configuration port (ICAP

simply provides an internal access to the configuration port). The method

proposed in [5] reads an on-chip frame into a BRAM though ICAP and then

writes back the modified data. Thus, irrespective of the time needed to mod-

ify a particular frame in a BRAM, it takes the same amount of time to send

the frame back to its destination as to load a new frame afresh. While the

method does not reduce reconfiguration time, it does allow self-reconfigurable

systems to be implemented. Chapter 4 presents a read-modify-write method

that does indeed lead to a reduction in reconfiguration time.

The concept of partial reconfiguration has been used to devise many tech-

niques that attempt to reduce reconfiguration latency. One method, called

configuration cloning, simply copies the contents of a part of a memory to

another on-chip location [72]. The method assumes that an entire memory
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row or a user-defined subset of a row can be broadcast across the selected

area of the device in a vertical direction. It also assumes a similar mecha-

nism for memory columns across the device. This technique can be regarded

as another form of wildcarding. However, this method has not been shown

to be effective for applications that target such general purpose devices as

Virtex. The analysis presented in this thesis also suggests that the regular-

ity that this method attempts to exploit is less likely to be present in real

configuration data.

A somewhat different use of partial reconfiguration is made in a device

model called a hyper-reconfigurable architecture [50]. Hyper-reconfigurability

is defined as allowing the user to restrict the reconfiguration potential of the

underlying FPGA and thus constrain the influence of the size of the con-

figuration memory space. The user first defines a static configuration con-

text (called hyper-reconfiguration) followed by one or more reconfigurations

that assume that the device is in the configuration state defined during the

hyper-reconfiguration step. It is not clear how hyper-contexts are defined,

i.e. what encoding or user control is provided in the architecture to define

hyper-contexts. Little work has been done to implement these concepts for

real world FPGAs. Chapter 4 of this thesis examines various architectural

issues that are relevant in this context.

2.3 Configuration Compression

The goal of compression techniques is to transform an input configuration

into a compressed configuration of a smaller size. In the context of FPGAs,

compression serves a dual purpose. The first purpose of compression is to

save memory that is externally needed to store the configuration data for

system boot-up. In the context of embedded systems, this means that less

memory modules need to be placed on the circuit board, i.e. the system cost

can decrease.
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The second use of configuration compression is to reduce reconfiguration

time. In contemporary FPGAs, configuration data is serially loaded onto

the device and thus the data load time is directly proportional to the size of

the bitstream. Compression can be applied to reduce the configuration size

and hence the load time. If decompression is performed on-the-fly as new

compressed data is being loaded then reconfiguration time can be reduced.

Methods that perform this decompression before data is loaded onto the

device do not reduce reconfiguration time (e.g. [122, 43]). In contrast, the

focus of this thesis is on those methods that perform decompression after the

compressed data is loaded onto the device. A reduction in transferred data

is thereby translated into a corresponding reduction in reconfiguration time.

Several researchers have shown that configuration data corresponding to

typical configurations can be compressed to various degrees. The method

presented in [20] employes a dictionary-based method on a set of configura-

tions targeting Virtex devices. The reductions in bitstream sizes range from

20% to 60%. The main problem with this approach is that it requires a sig-

nificant amount of memory to store the dictionary needed by the hardware

decompressor (in some cases almost double the size of the existing configu-

ration memory).

The method presented in [53] applies LZ-based compression combined

with a re-organisation of the input data to increase the amount of regularity

that can be exploited. For a set of benchmark configurations on a Virtex

devices, this method demonstrated 20% to 90% reductions in bitstream sizes.

A hardware decompressor for this method is described in [75]. This system

requires an internal cross-bar whose dimensions depend upon the device size

thereby making it less scalable. Section 6.3 of this thesis shows that the

quality of compression achieved with LZ is also likely to be lower than the

methods proposed in this thesis. The method presented in [71] performs

re-ordering of configuration data to enhance regularity. This method is also

studied in Section 6.3 and is argued to be sub-optimal.

A different set of compression methods focuses on inter-configuration re-
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dundancy. The work done in [46] shows that a large amount of the data

present in a variety of Virtex configurations is identical at a bit level. The

method suggested in [48] leverages this observation and applies run-length

encoding on the differential configurations. A differential configuration sim-

ply consists of those bits in the configuration at hand that are different from

the on-chip bits at the same location. These approaches are studied in de-

tail in Chapters 3, 4 and 6. It is argued that the above approaches are less

efficient than those that focus on compressing each configuration in isolation.

The work presented in this thesis takes into account such hardware issues

as the scalability of the hardware decompressor with respect to the device

size and the configuration port size. Moreover, considerable attention is

paid to measuring the information content of typical circuit configurations in

order to assess the quality of various compression techniques and to predict

their performance. The author is not aware of any previous study in these

directions.

2.4 Specialised Architectures

Multi-context FPGAs contain more than one configuration memory plane

[94, 11, 86, 16]. At any point in time, only one plane is active. Configuration

data can be written to inactive contexts in the background and the device can

later be reconfigured by switching the active memory plane with the inactive

plane. Ideally, the FPGA can be reconfigured in one cycle. This model

has been extensively researched but seems to have dropped out of favour for

fine-grained architecture (it has found some applications in coarse-grained

FPGAs though [110]). The author believes that the main reason for the

demise of this model for fine-grained FPGAs is that it significantly increases

the area needed to implement configuration memory. From the perspective

of most commercial FPGA users, this area is preferably used to increase the

density of the logic and routing blocks.

14



Architectural techniques such as pipelined reconfiguration [80] and worm-

hole reconfiguration [74] are only applicable to specialised FPGA architec-

tures and are thus not relevant to the present thesis.

2.5 Configuration Caching

Configuration caching refers to a technique that attempts to retain the config-

uration fragments that are already present on the device in order to construct

later circuits. Several cache management schemes have been presented in the

literature that attempt to increase the efficiency of the cache [52, 78]. These

methods assume such target machines as Garp [40] and Chimaera [36]. These

machines view FPGA as a tightly-coupled co-processor executing special in-

structions (that correspond to circuit configurations on the FPGA). These

instructions are assumed to be relocatable on the device and the main focus

is on the cache eviction strategies. In contrast, this work focuses on a level

below the level of configuration caching. However, Chapter 4 does study

the impact of placing various circuit cores relative to each other in such a

manner so as to increase the amount of configuration overlap. This is again

different from the work on configuration caching where no attempt is made

to find regularities between the configurations that correspond to successive

instructions.

2.6 Circuit Scheduling and Placement

Circuit scheduling refers to a set of techniques that define the order in which

the target FPGA is to be reconfigured to realise various circuits. Configura-

tion placement refers to defining the final physical placement of the circuit

modules on the device. Both techniques are inter-related and have been

extensively studied (e.g. [95, 28, 93, 25, 90, 54, 15, 2, 70, 21, 44]). The re-

ported methods operate on various device architectures and at various stages
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of design flow. Section 3.3 of this thesis presents a typical design flow and dis-

cusses the opportunities of reducing reconfiguration time at each level. In the

context of circuit scheduling and placement, the contribution of this thesis is

that it examines the issue of circuit ordering and placement at the configu-

ration data level and explores the opportunities of reducing reconfiguration

time.

2.7 Summary

It is difficult to compare the impact of the various techniques mentioned in

this chapter because the target architectures and the chosen benchmarks vary

as well. This thesis makes an attempt to assess the performance of a set of

techniques with a large set of benchmarks that cover many of those used to

derive prior results. Moreover, it examines in detail the dependence of these

techniques on the relevant characteristics of the underlying FPGA architec-

ture. In summary, the research described in this thesis draws its inspiration

from a variety of research threads and develops a theory of the structure of

configuration data. This understanding is employed to develop efficient re-

configuration mechanisms at the FPGA configuration memory system level.
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Chapter 3

Models and Problem

Formulation

3.1 Introduction

This chapter provides necessary background for the rest of the thesis and

formulates the problem of reducing reconfiguration time of an FPGA at its

configuration data level. Section 3.2 discusses various FPGA hardware plat-

forms and outlines the model assumed later in this thesis. Various pro-

gramming environments for these platforms are then discussed in Section 3.3

followed by a set of examples of runtime reconfigurable applications in Sec-

tion 3.4. These examples show that large reconfiguration latencies of current

generation FPGAs adversely affect the performance of these applications. In

the light of this discussion, Section 3.5 formulates the problem of reducing

reconfiguration time at the configuration data level of the device.

3.2 Hardware Platforms

This section introduces the model of FPGA hardware that is used for the

rest of this thesis. Section 3.2.1 outlines the internal structure of the target
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FPGA. Section 3.2.2 describes various schemes by which the model FPGA

is typically integrated with other components, such as a microprocessor, to

form a reconfigurable computing platform.

3.2.1 The device model

Fine-grained, island style FPGAs have become popular [4] and have found

their use in many application domains. The term fine-grained refers to the

size of the logic unit of the device while the term island-style implies that the

interconnect consists of a mesh of wires. FPGAs with coarse-grained logic

units [35], such as ALUs, have also been used to accelerate several applica-

tions (e.g. [19]). However, fine-grained FPGAs allow greater flexibility in

programming. The downside of this is long reconfiguration delays since far

greater control over resources is provided. The aim of this work is to study

the potential and limitations of this model so as to lead the way for a future

study on coarse-grained FPGAs.

A fine-grained, island style SRAM-based FPGA consists of an array of

basic blocks that are connected together by a hierarchical mesh of wires (Fig-

ure 3.1). The figure shows a two-level network in which neighbouring basic

blocks are connected together using length 1 wires. Length-2 wires bypass

one adjacent block and form the second level of interconnect. A ring of IO

blocks surrounds the array for external connectivity. Commercial devices con-

tain many more features such as distributed blocks of RAM, special function

units such as multipliers, analog to digital converters etc. For the sake of

generality and tractability, these are ignored in this work.

Each basic block of the model FPGA can be divided into three sub-

blocks. A logic block contains combinational and sequential logic that can be

configured to realise boolean functions of varying complexity. The logic block

is connected to a switch block via a connection block. Together they form

the routing infrastructure of the device. The switch blocks are connected to

each other via the mesh network. As switches can also be configured, larger
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Figure 3.1: A generic island-style FPGA. A basic block is enlarged to show
its internal structure.

circuits can be formed by connecting together various logic blocks. Special

wires, such as carry chains bypass the switched network and directly connect

the neighbouring logic blocks. This allows faster connections for arithmetic

circuits such as adders. Every FPGA contains programmable clocks that can

generate signals of various rates. On-chip clock distribution networks allow

connectivity between the system clock and individual logic blocks.

Figure 3.2 shows the internal details of a logic block and its connectivity

with the routing architecture. A logic block can be modelled as consisting

of a number, m, of basic logic elements (BLEs) [4]. Each BLE contains an

l-input Look-up-table (LUT), a one-bit register and a multiplexor to select

either the output of the LUT or of the register. The LUT shown in the

BLE of Figure 3.2 can implement any boolean function of four inputs (i.e.

l = 4). The inputs to each LUT can arrive either from the routing channel

or from the output of the other LUTs (i.e. feedback connections). A set of

multiplexors that are internal to the logic block allow these connections to be

made by the FPGA programmer. The LUTs are implemented as multiplexor

trees with inputs coming from the configuration SRAM cells.

The switch, connection and IO blocks allow communication between the

logic blocks and off-chip systems. Associated with each logic block is a switch
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block that allows arbitrary connection with the network of wires. While

such a switch can be modelled as a cross-bar of a certain size, in practice

it is quite sparse and allows only a small subset of connections to be made.

There exists several types of switches. This work focuses on the disjoint-, or

subset-based switch that is found in many commercial devices. This switch

will be described later in this section. The connection block associated with

a logic block consists of multiplexors that allow arbitrary inter-connection

between the wires incident on the switch and the IO of the logic block. In

practice, connection blocks are also quite sparse. The control signals to

the connection block multiplexor arrive from the configuration SRAM. The

input/output blocks connect the arrays with the external pins. These blocks

can support various signalling standards and may contain such features as

analog to digital converters and serial to parallel shifters.

The entire FPGA can be programmed, or configured, by writing CAD-

generated configuration data to its configuration SRAM. The circuit to be im-

plemented on an FPGA is usually described in a high-level parallel program-

ming language augmented with constructs to describe hardware features such

as Handle-C [106], hardware description languages such as VHDL/Verilog or

graphical languages such as schematics. The CAD tools then automatically

transform the input circuit description into a circuit netlist and then into

physically mapped configuration data for the target device. This data con-

sists of three components. The first component consists of instructions for

the memory controller such as read or write. The second component consists

of the register addresses. The last component is the data that will actually

reside in the configuration registers. The entire bitstream is serially shifted

into the array via a configuration port.

While an FPGA’s configuration memory is organised like a conventional

RAM there exist several differences. Firstly, the word size of a conventional

RAM is usually 32 or 64 bits whereas that of an FPGA’s SRAM can range

up to several Megabits in size. Secondly, the SRAM cells of configuration

memory are not just connected to the configuration port but also to the

21



elements they configure. Thus, extra wires are needed that are not required in

a conventional RAM. Thirdly, the layout and organisation of a configuration

SRAM is dictated by the layout of the logic and routing architecture.

While reducing latency is important for configuration memory design,

achieving high density is less of an issue. This is because the interconnect

consumes the majority of chip area and to a large extent dictates the number

of basic blocks, of a given size, that can be implemented on a die of a given

size. For example, it has been estimated that more than 70% of chip area

is usually devoted to implementing the wires and the associated switches

while the configuration memory consumes less than 10% of the total chip

real-estate [23].

There are several methods for addressing and loading configuration data

onto an FPGA. The techniques used depend upon the manner in which

configuration memory is internally organised. Three popular organisations

are discussed here.

The first method provides a serial access to the configuration memories

(e.g. XC4000 devices [127]). In this case, there is no need for addresses as

register data is simply shifted in its entirety for every (re)configuration. The

major constraint with this method is that it forces the user to load the entire,

or complete, configuration bitstream every time there is a change to be made

to the on-chip circuits.

The second method of programming an FPGA provides random access

to its configuration registers. Separate address and data pins are provided

in the same manner as a conventional SRAM. Examples of such devices

include XC6200 [128] and AT40K devices [104]. These devices support partial

(re)configuration whereby parts of the circuits could be updated.

The third method to access configuration memory of an FPGA mixes

serial and random access (e.g. Virtex [123] and ORCA [112]). Virtex devices

are the main focus of this thesis and are discussed in detail below.

In the case of an FPGA, the configuration data corresponding to a circuit
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specification can be seen as instructions for the device. These instructions

must be decoded and distributed on-chip. As the devices become larger,

the amount of configuration data increases along with the complexity of the

corresponding configuration distribution network. Given that the IO pins

for user data compete for the pad resources, the size of the configuration

port cannot be scaled arbitrarily. Moreover, there is an upper bound to the

number of pins that a device of a certain size can accommodate. Thus, there

exists a bottleneck of loading a large amount of configuration data via a

bandwidth-limited configuration port. This thesis focuses on the challenges

of designing a fast and efficient configuration memory system for modern,

high-density FPGAs.

An example device: Virtex

A Virtex device is implemented using a 0.22μm 5-layer metal process [123].

The basic block of a Virtex device is called a configurable logic block (CLB).

The device consists of an array of r × c CLBs (the largest in the family,

XCV1000, contains 64×96 CLBs). A simplified model of a Virtex CLB is

shown in Figure 3.3. The logic block in a CLB consists of two slices that are

almost identical. Each slice contains two 4-input LUTs, two 1-bit registers,

logic for carry chains and for feedback loops. The slices can be connected

with the mesh network via a main switch box. Virtex supports a hierarchical

mesh network. There are 24 single wires that connect neighbouring CLBs

together in each direction. All single wires are bi-directional. There are 12

hex wires, in each direction, that connect a CLB to its neighbour 6 positions

away. One third of the hex wires are bi-directional. There also exist 12

bidirectional chip-length wires for each column/row of the device.

The Virtex datasheet does not explain the internal details of the single

or hex switch boxes. By inspecting configuration data for Virtex devices

using JBits [121], it was found that both the single and hex switch boxes

are implemented as subset or disjoint switches. In such a switch, each port
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Figure 3.3: A simplified model of a Virtex CLB (adapted from [121]).

Figure 3.4: The 24×24 singles switch box in a Virtex device.

only connects to three other ports in the manner illustrated in Figure 3.4.

Shown is a singles switch box with 24 wires incident on each side. Each

dot in this figure represents a programmable interconnect point (PIP). A

PIP allows arbitrary connections between the four wires incident on it (all

possible connections supported by a PIP are shown in Figure 3.5). A possible

implementation of a PIP using six pass-transistors is shown in Figure 3.6.

The gate inputs to these transistors are connected to configuration SRAM

cells. Hexes and long switch boxes were found to have a similar structure.

Column Type # of Frames # per Device

Center 8 1
IOB 54 2
CLB 48 # of CLB columns

Table 3.1: Number of frames in a Virtex device.
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Figure 3.5: All possible connection of a subset switch.

Figure 3.6: A six pass-transistor implementation of a switch point.

The configuration memory of a Virtex device is organised into so-called

frames [129]. A frame is the smallest unit of configuration data. A frame

register spans the entire height of the device and configures a portion of a

column of Virtex resources (Figure 3.7). There are three types of frames

excluding BRAM frames (Table 3.1). The centre type frames configure the

clock resources. The IO type frames configure the left and right IO blocks.

The number of these frames is fixed for the variety of device sizes within the

family. The CLB type frames form the bulk of the configuration data. These

frames configure a column of CLBs and the corresponding top and bottom

IO blocks. There are 48 CLB frames per column of CLBs. The structure of a

frame is also shown in Figure 3.7. A frame contributes 18 bits of SRAM data

to the top IO block, 18 bits to the bottom IO block and 18 bits per CLB that

it spans. Thus the frame size is 36+18r where r is the number of rows in the

device. The frame is padded with zeros to make it an integral multiple of 32

followed by an extra 32-bit pad word (e.g. an XCV1000, which has 64 rows
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of CLBs, has a frame size of 1,248 bits). The configuration port is 8-bits wide

and can be clocked at 66MHz. Virtex supports DMA-like addressing at the

frame level. The user supplies the starting frame address and the number of

consecutive frames to load followed by the frame data. A configuration can

contain one or more contiguous blocks of frames.

The Virtex datasheet does not provide much detail about the internal

structure of a frame other than the features summarised above. However, by

examining the JBits API and through trial and error, a rough sketch of the

internal structure of a frame has been determined (Figure 3.8). Shown is an

18× 48 block of bits that corresponds to a CLB worth of configuration. The

configuration memory was found to be quite symmetrical with respect to the

two slices. As can be seen, each frame controls the setting of a portion of the

switch, connection and logic configuration SRAM within a CLB.

The Virtex-4 LX FPGAs, introduced in 2004, offer much greater func-

tional density than the Virtex devices [124]. As in the Virtex-II architecture,

each CLB in the new device contains four slices where each slice has a similar

structure as in a Virtex. The largest in the family (an XC4VLX200) is organ-

ised as an array of 192×116 CLBs. The smallest unit of configuration is still

called a frame. However, the frame size is fixed at 164 bytes for all device

sizes ( there are 40,108 frames in an XC4VLX200) and controls a portion

of the configuration memory for 16 vertically aligned CLBs. The 8-bit wide

configuration port is clocked at 100MHz.

3.2.2 The system model

In order to build a complete system, an FPGA needs to be integrated with

other subsystems that perform functions such as device (re)configuration and

data streaming. This results in a system called a reconfigurable computer.

This section classifies these computers based on the level of integration be-

tween an FPGA and the other components of the system.
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Board-level integration

Most commonly, an FPGA is fabricated on a single chip and is integrated with

supporting circuitry on a PCB. In embedded systems, the support circuits

include flash memories to store configuration data, configuration controllers

and IO interfacing logic. The configuration data is loaded onto the device at

system boot-up time. The FPGA’s configuration remains static during the

system operation. The configuration ROM is only modified when the entire

system needs to be upgraded.

Increasingly, FPGAs are seen as general purpose accelerators for a wide

variety of applications such as digital imaging, encryption and, network pro-

cessing. It is therefore important to integrate an FPGA chip with a general

purpose system that offers flexible configuration and IO control. A common

solution is to mount the device on a PCB which is then directly attached

to the system bus of a controlling processor. The configuration and IO can

be performed under the control of the host microprocessor via a command

line interface or through a programming interface. This type of integration

is often referred to as loose coupling. An example of such as system is given

below.

Example: The Celoxica RC1000 board

A simplified block diagram of the Celoxica RC1000 board is shown in

Figure 3.9. It contains a Virtex device, four SRAM banks, auxiliary IO

and the PCI compatible interfacing logic [107]. The secondary PCI bus is

32-bit wide and runs at 33MHz. The IO chip has a local bus that also

operates at 33MHz. The registers of this chip can only be accessed by the

host microprocessor which can setup DMA transfers in either direction. The

IO chip is also used for configuration control, FPGA clocking and FPGA

arbitration. The on-board memory banks are of size 512K×32 bits each and

can be accessed by the FPGA in parallel. These banks are accessed by the

host processor via the attached PCI bus. Proper device drivers must be

installed on the host operating system in order to access the board from a
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Figure 3.9: The Celoxica RC1000 FPGA board.

user application [108].

Chip-level integration

The ever increasing transistor density has resulted in novel systems-on-chip

(SoC) in which a microprocessor is fabricated along with a programmable

gate arrays on a single die. The benefit of this approach is that the chip can

now be installed as a stand-alone system and the internal processor can be

used for FPGA configuration control and IO.

Example: Virtex-II Pro & Virtex-4 FX

The Virtex-II Pro family enhances the Virtex model by increasing the

functionality of its CLBs and by introducing up to two PowerPC RISC pro-

cessors on a single chip [126]. Each CLB in a Virtex-II Pro device contains

four slices where each slice has a similar structure as in a Virtex device. The

largest device in the family (XC2VP100) is organised as an array of 120×94

CLBs and contains two IBM PowerPCs. Each PowerPC is pipelined having
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five stages, running at 300MHz and containing data and instruction caches

each of size 16KB.

The unit of configuration in a Virtex-II Pro is also called a frame. The

structure of a frame is not clear from the data sheet. However, the frame

size is significantly larger than that of a Virtex. There are 3,500 frames in a

complete configuration of an XC2VP100. Each frame contains 1,224 bytes.

The configuration port is 8-bits wide and can be clocked at 50MHz.

The Virtex-4 FX devices further enhance the functional density of Virtex-

II devices with the CLB structure being almost the same. The largest in the

family, an XC4VFX140, is organised as an array of 192×84 CLBs. It also

contains a five-stage IBM Power PC running at 450MHz. The processor has

data and instruction caches each of size 16KB. Each Virtex-4 FX device has

a fixed frame size of 164 bytes (an XC4VFX140 needs 41,152 frames for a

complete configuration). The configuration port is 8-bit wide and can be

clocked at 100MHz.

Tightly coupled systems

Researchers have been investigating so-called tightly-coupled systems where

programmable gate arrays are directly integrated within a processor’s data-

path. An example of such a system is the Chimaera processor.

Example: Chimaera processor

The programmable gate arrays in Chimaera is tightly coupled with the

host processor on a single die. The gate array can directly access the pro-

cessor’s data registers via a shadow register file [36]. These shadow registers

contain the same data as the main registers. The gate array is organised as

a two-dimensional grid of r× c basic blocks (BBs) (32×32 in the prototype).

The logic block in a BB can be configured as a 4-LUT, two 3-LUTs or one

3-LUT with a carry. The gate array provides a mesh-like interconnect struc-

ture. Each BB can be directly connected to its four neighbours. Each row

of BBs also contains a long wire to support global connections.
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The gate array in Chimaera is runtime partially reconfigurable with a row

being the smallest unit of configuration and needing 208 bytes of configura-

tion data. Reconfiguration is performed on a row by row basis during which

the processor is stalled. Several rows can be configured in sequence without

needing their individual addresses (as done frame-wise in Virtex). Special

reconfiguration instructions are added to the processor ISA. These instruc-

tions contain the necessary control information for loading the configurations

from memory. The configuration port width and the clock speed were not

reported in [36].

3.3 Programming Environments

3.3.1 Hardware description languages

FPGAs have their origin in the electronic design automation industry. The

programming tools therefore reflect this at all levels of abstraction. In this

context, hardware description languages (HDLs), such as VHDL and Verilog,

have served their purposes quite well and industry standard design environ-

ments exist to support these languages (e.g. [120, 109, 116]).

A typical design flow is shown in Figure 3.10. The input design is specified

using an HDL (or graphical design tool such as schematics). This specifica-

tion is transformed into an internal representation and is then simulated (for

example using ModelSim [115]). This step is necessary to ensure that the

specified system behaves in the manner intended. After this functional veri-

fication, the input design is synthesised. The purpose of this logic synthesis

is to construct an area/time efficient abstract representation of the input cir-

cuit. The result is a netlist which is essentially a list of functional blocks (such

as gates) and their interconnection. This netlist is then technology-mapped

onto the target logic block architecture. This step packs the functional logic

into the target logic block in an area efficient manner. The technology-

mapped netlist is then placed and routed onto the target FPGA and a con-
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figuration file that contains the actual data to be transferred onto the device

is finally generated. An optional timing may be performed to verify that

timing constraints are met and to prompt re-implementation of the design

if not. Once a configuration file has been generated by the vendor-supplied

CAD tool, it can be loaded onto the FPGA or it can be stored in a flash

memory in case the FPGA is to be deployed in an embedded environment.

The extension of the above design flow for runtime reconfigurable applica-

tions is elaborated using a hypothetical scenario. Suppose that a particular

application is to be implemented on an FPGA of a certain size. The designer

has partitioned the application into four modules A to D, as shown in Figure

3.11, and has developed an HDL description for each component separately.

During placement and routing step, it is found that the target FPGA is

not large enough to accommodate all four components simultaneously and

only one component can be implemented at any point in time. Thus, the

designer decides to use dynamic reconfiguration to emulate a larger FPGA.

Each module is placed and routed independently and configuration data for

each is generated. At runtime, each module is configured in turn and an

external program receives the output of the currently configured circuit and

feeds it to the module configured next and so on. It is fair to claim that such

an application can be developed using commercial tools such as Xilinx ISE

[120].

Next, suppose a different application with four modules, A, B, C and D.

Figure 3.12 shows the manner in which these modules are to be combined to

form a reconfigurable application. In this graph, each node corresponds to a

configuration state of the target FPGA while edges represent reconfiguration.

Assume that the device starts in its default configuration state. After its first

configuration, modules A and B are supposed to be on-chip with the user

data input to module A, which performs some computation on them and

outputs to module B. The output of the module B is taken to be the output

of this step. The FPGA is then reconfigured and the modules A, C and D

are to be loaded onto the device with data flowing from A to C to D. It is
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Figure 3.11: An example of a hypothetical dataflow system.

assumed that the target FPGA can accommodate any three circuit modules

at a time.

One method of implementing the above system using the HDL-based de-

sign flow is to combine modules A and B into one HDL specification and

to generate a configuration file. Similarly, configuration files correspond-

ing to circuits ACD, BC, BD and CBD are generated. These configuration

files are then loaded using a control program. The idea is similar to that

discussed above for the simpler application. However, there are several prob-

lems with this approach from a design for performance perspective. The

designer needs to iterate the placement and routing five times for each com-

bination of the four modules. For large applications, this approach can be

impractical. Ideally, the designer should be able to generate configuration

data for each module independently (i.e., in the form of partial configura-

tions) and should be able to stitch them together at run-time by performing

partial reconfiguration. This approach is also beneficial from the perspective

of reducing reconfiguration time as the module that is already on-chip need

not be reconfigured again.

Taking the above approach a step further, an on-chip communication

infrastructure can be developed independent of the modules such that the

modules can be dynamically plugged in at runtime. If such a mechanism

exists, then each module can be considered in isolation. Figure 3.12 highlights

this point. The designer partitions the FPGA into three areas such that
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each partition can accommodate any of the modules discussed above. A

communication infrastructure is placed that allows arbitrary communication

between the on-chip modules. What remains is to decide where to place each

module at runtime.

Consider the reconfiguration from the state ACD to BC. There are two

possible placements of the modules. Firstly, the designer can configure mod-

ule B on top of module C and module C on top of module D. However, since

the communication infrastructure allows arbitrary communication between

the modules, the designer can simply configure module B on top of module

D thereby reducing the reconfiguration time. Now consider the transition

ACD→BD. Using the same reasoning, module B can overwrite either mod-

ule C or module A. However, we note that module C will be needed if the

system makes the transition BD→CBD. Thus, it is more useful to configure

B over A. Configuration caching techniques essentially perform this type of

scheduling to reduce the overall reconfiguration delay of an application. A
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basic assumption made by these methods is that the reconfigurable modules

are re-locatable.

The problem of reducing the overall reconfiguration time of the above ap-

plication can be considered at a different level. Consider the above scenario.

When the device is reconfigured from state AB to state ACD, either module

C or module D must replace module B. The module designer can implement

modules C and B such that a significant number of sub-modules between

them are common. Thus, the cost of reconfiguring C over B is much less than

the cost of reconfiguring D over B. This approach, however, requires that the

sub-modules that are common between C and B are physically located at

the same place in both modules and the configuration data corresponding to

these sub-modules is identical. These conditions are difficult to meet with

current CAD tools. Even if one could implement this scheme, there is a

further assumption that partial reconfiguration can be applied at the level

of granularity demanded by the two sub-modules. Virtex devices, for exam-

ple, offer a frame-oriented reconfiguration and thus any implementation of

the common sub-modules is constrained by this limitation. Another method

of reducing reconfiguration time is to examine the configuration files corre-

sponding to modules B, C and D to identify opportunities for compressing

them. These issues will be discussed in more detail in Section 3.5.

There exists some support in commercial CAD tools for developing recon-

figurable applications as outlined above. The operating system view extends

the above ideas into a more generic framework (e.g. [8, 7, 67, 87, 84]). A

large number of researchers have proposed solutions to such problems as cir-

cuit placement and scheduling (e.g. [9, 28, 27, 1, 17]), reconfigurable module

design, inter-module communication, and data management. Several pro-

totypes operating systems for reconfigurable computers have been designed

and built (e.g. [96, 111, 6]).

The term module, in the above general context of an operating system,

has several other names such as a swappable logic unit [8], a hardware task

[96], a circuit core [76, 59], and a dynamic hardware plugin [91]. Each of these
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terms is applied at a different level of abstraction and essentially means a

single circuit entity that is reconfigured onto the device. This thesis uses

the term core because the benchmark circuits that have been collected from

various sources use this term to mean a single application, described in a

high-level language, that can be implemented on an FPGA. An example of

a core will be given in Section 3.4.

3.3.2 Conventional programming languages

Several researchers have advocated the use of conventional programming lan-

guages, such as C/C++/Java, for runtime reconfigurable FPGAs. Several

extensions to such languages have been proposed (e.g. [34, 3, 106]). The

main argument in favour of these language systems is that the vast majority

of system developers is more familiar with these paradigms than with HDLs.

An example programming system for Virtex devices is the JBits class

library [121]. The JBits class library is a Java API that can be regarded

as an interface to the underlying configuration data and a high-level envi-

ronment for reconfiguration control. Please note that this is different from

conventional HDL flows that hides all architectural details from the program-

mer. Given an enhanced view of the underlying hardware, reconfiguration

can be performed at a finer level to customise the circuits at runtime. This

capability has been used to achieve two different purposes:

1. Instead of implementing a general purpose circuit, a specialised cir-

cuit is implemented. For example, rather than implementing a general

purpose adder, one can implement an adder that adds an input num-

ber with a constant. When this constant changes, the adder circuit

can be reconfigured to adapt to new requirements. The benefit of this

approach is that a specialised circuit tends to be smaller and faster

then its general purpose counterpart. Reconfiguration is performed to

meet the changing needs of the computation. An example application

is presented in Section 3.4.
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2. As specialised circuits tend to be smaller, this technique can be used

to overcome resource limitations when a general purpose circuit cannot

fit onto a given sized FPGA.

In both cases, the user generates new partial configuration data at run-

time, depending on the inputs at hand, and loads them onto the chip. This

raises new challenges in the design of reconfigurable applications. Given that

placement and routing are time consuming tasks, in general, they cannot be

performed at runtime as the time saved from implementing a smaller circuit

is outweighed by the time used in actually placing and routing the circuit.

While some high-level (e.g. [10]) and some low level solutions (e.g. [45]) have

been proposed to solve this problem, the usual approach is not to perform

placement and routing at runtime and only update LUTs (as in the CirCal

interpreter, which is discussed in Section 3.4). This method demands that

the FPGA vendor has provided an API that allows the designer to directly

modify configuration data in various LUTs. The JBits 2.8 library does pro-

vide such an interface for Virtex devices but there is no update on JBits to

support the recent FPGAs. Thus, circuit specialisation is difficult to achieve

on the current devices.

3.4 Examples of Runtime Reconfigurable

Applications

This section discusses common uses of runtime reconfiguration with exam-

ples from the literature. It is shown that while runtime reconfiguration is

beneficial in many cases, reconfiguration time in contemporary devices limits

the maximum performance benefit.
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3.4.1 A triple DES core

The following example shows that a Virtex-II implementation of a DES core

can significantly outperform a Pentium-IV implementation in terms of speed.

However, if time to configure the circuit onto the device is also taken into

account then the performance improvement is marginal.

The Triple-DES algorithm was implemented on an SRC-6E board [31].

An SRC-6E board consists of two double-processor boards and one Multi-

Adaptive Processor (MAP) containing four Virtex-II XC2V6000 devices. The

time taken to configure the DES core, to transfer data to the FPGA and to

perform encryption was measured for various input data sizes (Figure 3.13.a).

It can be seen that the time needed to transfer data to the FPGA and to

process it is significantly less than the time needed to actually configure the

circuit.

The above results were compared with a Pentium-IV (1.8GHz, 512KB

cache and 1GB main memory) implementations of the same algorithm. Two

implementations were considered. The first was a C description of the al-

gorithm while the second was more optimised by having a mix of C and

assembly. The results are shown in Figure 3.13.b. It can be seen that if

the configuration overheads are removed (MAP without configuration) then

a significant performance improvement can be observed compared with a

Pentium-IV.

3.4.2 A specialised DES circuit

Rather than implementing a general purpose DES circuit capable of accepting

all keys, one can customise the circuit around the current key. Similarly, if

only encryption is to be performed then no decryption circuitry need to be

configured.

The DES core can be parametrised based on the input key and mode

(encrypt or decrypt). A performance comparison between a general purpose
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(a) Components of DES execution time on MAP

(b) Performance comparison with a Pentium-IV

Figure 3.13: Performance measurements for Triple DES [31].
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DES and specialised DES on an XCV300 was reported in [24]. The cores were

sepecified and compiled using the Pebble design environment [55]. Pebble

stands for Parametrised Block Language and the the former paper examines

the runtime parametrisation of the DES cores within this framework.

The paper [24] considered three designs (Table 3.2). The static design was

the general purpose circuit capable of changing key or mode within a cycle.

The design labelled bitstream produced configuration data for all possible key

and mode combinations (i.e there was a configuration for each key, mode set).

Thus, at runtime only one configuration needed to be selected and loaded

based on the current key and mode. It should be noted that the specialised

design consumed less than half the chip area of the general, static design.

The time needed to change the circuit in this particular case was limited by

the time needed to load the configuration onto the device. This approach

was found to be impractical as there are more than 107 different key/mode

combinations in DES.

The final approach was to generate only one configuration and load it

onto the chip initially. At runtime, based on the current key and mode, this

configuration was updated using JBits [121]. This software was run on a

Pentium-III (500MHz) with Sun JDK1.2.2. There were two delays involved:

time to generate updated configuration data and time to load it onto the

device. Figure 3.14 shows the average processing time needed to change the

key and process the data. The curve labelled RTPebble corresponds to a de-

sign compiled within the Pebble design framework whereas the design JBits

was a hand-optimised version. As can be seen, reconfiguration takes quite

a significant portion of the time observable in the figure as a reduction in

processing rate, unless the amount of data to be processed is quite large (i.e.

the execution time is many orders of magnitude large than the reconfigura-

tion time, or to put it another way, when reconfiguration frequency is low

compared to the execution delay). Thus, performance improvements can be

gained if reconfiguration overheads are reduced.
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Design Speed Reconfig. Time Area Bitstream
Gbits/s ms CLB KB

Static 10.1 - 1,600 220
Bitstream 10.7 1.5x 770 91x
JBits 10.7 92 770 91

Table 3.2: Performance comparison of a general purpose vs. specialised
DES. x denotes the number of configurations generated [24].

Figure 3.14: Performance measurements for Triple DES [24].
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3.4.3 The Circal interpreter

Another method where circuit updates are useful is when an entire circuit

does not fit within available FPGA resources, or resource requirements are

not known apriori. In this case, a base circuit is initially implemented and is

updated at runtime as required. Given that routing is one of the most time

consuming processes during circuit mapping, a common approach is to place a

wiring harness [8] during circuit initialisation and update only logic resources

at runtime. This form of hardware virtualisation is different from algorithm

partitioning discussed earlier. The difference is that in the previous case, data

output from a sub-core needs to be input to the next configured sub-core.

Moreover, the two successive sub-cores might have nothing in common. In

the present case, there is really only one circuit that is updated as required.

An example of such as system is the Circal Interpreter discussed in this

section.

As mentioned in Section 1.2, Circuit Calculus (Circal) is a process alge-

braic language that has been proposed as a suitable high-level language for

specifying runtime reconfigurable systems [69]. It extends conventional finite-

state machine models by introducing structural and behavioural operators.

Structural operators allow the decomposition of a system in a hierarchical

and modular fashion down to a desired level of specification. Behavioural

operators allow the user to model the finite-state behaviour of the system

where state changes are conditioned on occurrences of actions drawn from a

set of events.

Circal processes can be looked upon as interacting finite-state machines

where events occur and processes change their states according to their def-

initions. These processes can be composed to form larger systems with con-

straints on the synchronisation of event occurrence and process evolution.

Given a set of events, all composed processes must be in a state to accept

this set before any one of them can evolve. If all agree on accepting this set,

they all simultaneously evolve to the prescribed next state.
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A Circal compiler for generating an implementation of a specified system

of processes was developed on an XC6200 [30]. This system was limited

in the sense that as Circal specifications grew in size, they could not be

mapped onto the limited resources offered by an XC6200. An interpreter

targeting much larger Virtex devices was subsequently developed [29, 63].

The interpreter translates a Circal specification given as a state-transition

graph and implements as much of system as is possible at any point in time.

During initialisation, the interpreter partitions the chip area into strips and

allocates a pre-sized block to each process depending on its anticipated needs.

In addition to this, enough area is allocated to a process so as to satisfy its

minimum resource demands at any point during its execution. The wiring

between the sub-modules of each process remains fixed and is configured

during initialisation. Only LUT updates are performed at runtime.

At runtime, the interpreter selects a subgraph of each process, where the

size of the subgraph depends on the area allocated to that process. The

selected subgraph is then transformed into bitstreams using JBits. These

correspond to the circuit updates needed at that point in time. As processes

evolve, different portions of their state-graphs are selected and implemented.

In this manner large specifications can be interpreted, thus automatically

overcoming hardware limitations. Care was taken in the physical layout of

each process in order to take advantage of column-oriented reconfiguration

in Virtex devices.

The performance of the interpreter was measured. Only one process was

implemented while its size was varied. The resulting circuit occupied one

or more columns of an XCV1000. Results are shown in Figures 3.15, 3.16

and 3.17. The initialisation time refers to the time taken to generate the

bitstream from the initial Circal subgraph. The circuit update specification

time refers to the time take to generate an updated bitstream from a new

subgraph of the same process. The partial reconfiguration time is the time

needed to load or partially reconfigure the FPGA.

It can been seen that the initial bitstream generation is significantly longer
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Figure 3.15: Circuit initialisation time of the CirCal interpreter [63].
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Figure 3.16: Circuit update time of the CirCal interpreter [63].
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Figure 3.17: Partial reconfiguration time of the CirCal interpreter [63].

than the update bitstream generation. This is mainly due to the router run-

time at initialisation. Circuit update times are in sub-second domain for

the circuit sizes tested. The main bottleneck of programming configuration

bitstreams lies in performing bit-oriented manipulations of the large configu-

ration bitstreams in JBits that operates under a Java virtual machine model

of computation. Assuming these configurations have been generated apriori,

the time needed to load configuration also puts a limit on how quickly a

Circal system can respond to external inputs.

3.5 Problem Formulation

3.5.1 Motivation

The previous section presented various examples of runtime reconfigurable

applications and showed that they have a potential to outperform conven-
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tional system implementations. In many cases, runtime reconfiguration must

be used because the system to be implemented cannot fit on the available

FPGA resources or their resource requirements are not known during ini-

tialisation. In these cases, reconfiguration time represents an overhead that

must be reduced.

This thesis focuses on reducing the time needed to reconfigure an FPGA.

As was discussed in Section 3.3, this problem can be addressed at several

levels such as at the configuration data level, at the placement/scheduling

level or even at a design level. The problem must be addressed at all these

levels for a complete solution. However, given the complexity of the issues,

not all levels can be examined in one project. The present work focuses only

on the configuration data level as this represents the lowest level upon which

the other levels depend. A thorough understanding of the problem at this

level is needed before work at the other levels can be advanced.

As was discussed in the previous section, an FPGA can be reconfigured to

achieve several different purposes, such as to overcome resource limitations,

or to implement circuits that are customised around certain data inputs.

The OS concepts essentially extend these ideas by providing convenient APIs.

The present work focuses on core style reconfiguration in which various circuit

cores are swapped in and out of the device. It is assumed that the circuit

placement and scheduling has already been done. Lastly, to further simplify

the problem, no space sharing between the cores or caching of the cores is

allowed. In other words, only one circuit core can be active at any time and

it is assumed to be entirely replaced by the following core.

Applications, such as circuit customisation, might not fit into the above

picture. However, the author believes that such applications are limited in

number. As devices become more complex, it will become difficult to hand-

map applications to exploit the benefits of small circuit updates. While

some work has been done towards automating this operation in the context

of XC6200 devices (e.g. [56]), the author is not aware of any similar work

that targets contemporary devices. Moreover, it might not be possible for
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end users to hand-map their applications as the device manufacturers do not

provide the necessary details on the FPGA architecture and the bitstream

format, knowledge that is necessary for any circuit mapping procedure. The

abstraction of a circuit core, on the other hand, is widely applicable and

thus our problem statement in the next section implicitly assumes that each

circuit in an input sequence of configurations corresponds to a circuit core.

3.5.2 Problem statement

The input is a sequence of configurations, C1, C2....Cn, that must be loaded

onto the device in the given order. The problem can be stated as following:

Minimize
n∑

i=1

(Ri,i+1) (3.1)

Here Ri,i+1 is the reconfiguration time from configuration i to i + 1.
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Chapter 4

An Analysis of Partial

Reconfiguration in Virtex

4.1 Introduction

The focus of this chapter is on the use of partial reconfiguration as a method

for reducing reconfiguration time on a reconfigurable computer. Partial re-

configuration alters the configuration state of a subset of the available config-

urable elements in an FPGA. More concretely, instead of loading configura-

tion data for each and every element, the user loads new data only for those

elements whose configuration state is to be changed. This has the potential

to allow faster reconfiguration as less data needs to be transferred into the

configuration memory of the machine.

While it is clear that partial reconfiguration has advantages over complete

reconfiguration, it is less clear to what extent one can rely on this method as

a general technique for reducing reconfiguration time. It is also not clear how

device-specific configuration memories impact upon the performance of par-

tial reconfiguration and what parameters of user circuits and of CAD tools

are important in this context. This chapter examines these questions by em-

pirically studying the use of partial reconfiguration in a commercial device,
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Virtex. It is shown that the large configuration unit size of these devices

forces the user to load a significant amount of redundant data in a typical

circuit configuration. Methods to support fine-grained partial reconfigura-

tion are presented. The next chapter presents new configuration memory

architectures that support these new methods.

This section first presents the experimental environment that was setup

for the purpose of analysing partial reconfiguration (Section 4.1.1). The

analysis presented in this chapter is based on empirical methods. A set of

benchmark circuits was mapped onto a commercially available FPGA and

their configuration data analysed in detail. Section 4.1.2 presents the method

by which various parameters of the device, of the associated CAD tools and

of the circuits were identified as being relevant. This section presents a high-

level view of the experiments and analysis presented in detail later in this

chapter.

4.1.1 The experimental environment

The experimental environment consisted of several hardware and software

components. An RC1000 board [107] containing an XCV1000 device was

used as a plug-in for a Pentium-IV machine (2.6GHz, 256M RAM). On the

software side, Xilinx ISE CAD version 5.2 [120] tools were used for mapping

the benchmark circuits. The JBits 2.8 package [121] was used for config-

uration processing. A number of Java/C++ programs were developed for

various experiments detailed later in this chapter.

The FPGA family considered in this work was Virtex. There were sev-

eral reasons for targeting this device. Firstly, this device is commonly used

in industry and academia alike. Several important findings in the area of

configuration compression have targeted Virtex devices (as was discussed in

Chapter 2). Secondly, Virtex provides a low-level programming interface

to its bitstream (JBits 2.8). This API facilitates manipulation of Virtex

configuration data. Lastly, Virtex devices and associated CAD tools were
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Device #CLBs #CLB Bits per #CLB frame # Block-RAM
(r × c) Frames CLB frame bits (n) bits

XCV100 20×30 1,440 448 645,120 40,960
XCV200 28×42 2,016 576 1,161,216 57,344
XCV300 32×48 2,304 672 1,548,288 65,536
XCV400 40×60 2,880 800 2,304,000 81,920
XCV600 48×72 3,456 960 3,317,760 98,304
XCV800 56×84 4,032 1,088 4,386,816 114,688
XCV1000 64×96 4,608 1,248 5,750,784 131,072

Table 4.1: Important parameters of Virtex devices.

Circuit Size Source
(#cols)

(XCV1000)
adder 1 [120]
comparator 1 [120]
2compl-1 2 [120]
convolution 2 [117]
cosLUT 5 [120]
dct 17 [117]
decoder 21 [120]
rsa 31 [117]
uart 31 [120]
cordic 39 [117]
des 50 [117]
fpu 72 [117]
blue th 86 [117]

Table 4.2: The set of benchmark circuits used for the analysis.

already available in the school at the beginning of the project. Table 4.1 lists

the parameters of the Virtex devices that were considered in the subsequent

analysis.

A set of benchmark circuits was collected from various domains (see Table

4.2) and was mapped onto the variously sized Virtex devices using ISE [120].

The CAD tools were set to optimise for minimum area. Configuration data

was generated for each circuit. These data were then analysed using various

programs to be discussed in the following.

The underlying model of reconfiguration in all subsequent experiments is

a general-purpose core style reconfiguration (see Chapter 3 for a discussion
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of the concept of a core). It is assumed that the target Virtex device is

time-shared between various unrelated applications (see Figure 4.1). Each

circuit core in the benchmark corresponds to one application. These cores

are switched in and out of the device according to a fixed sequence. In

other words, we are given a sequence of configurations corresponding to the

benchmark circuit cores. These configurations must be loaded in the same

sequence as they are input. The goal is to reduce the total time needed to

reconfigure the entire sequence.

FPGA
Current state

FPGA
Next stateCore

Next

Figure 4.1: An example core-style reconfiguration when the FPGA is time
shared between circuit cores.

4.1.2 An overview of the experiments

The partial reconfiguration problem is complex as it involves not only the user

circuits but also the CAD tools and the target devices. A research framework

was therefore established to systematically approach this problem (Figure

4.2). The author followed an iterative experimental procedure initiated by

measuring the amount of data required to configure a sequence of real circuits

on a commercially available partially reconfigurable FPGA. The circuits were

mapped using the vendor-supplied CAD tools. New models of CAD tools and

of FPGAs were developed as a result of the observed poor performance. The

performance of these hypothetical systems was then measured using the same

configuration data set. The respective parameters of the problem were thus

identified and analysed using an iterative modelling procedure. This section

provides a high-level view of this research method and contains pointers to

various sections that provide the details.
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Simulations/
Analysis

Configuration 
Data

CAD/FPGA
Models

Figure 4.2: A high-level view of the research framework.

Circuit placement and configuration granularity

Partial reconfiguration allows the user to reduce reconfiguration time by load-

ing only those configuration fragments of the next circuit that are different

from their current on-chip counterparts. Such difference, or incremental, par-

tial configuration can be generated for XC6200 devices using such tools as

ConfigDiff [56, 57, 85] and for Virtex devices using PARBIT [42] and JBits

[121]. The first step towards analysing Virtex’ partial reconfiguration was to

study the effectiveness of the differential reconfiguration for the chosen set

of benchmark circuits. It was assumed that these circuits were to be con-

figured onto the device in an arbitrary sequence. Implicit was the model of

time-shared FPGA discussed previously. The CAD tool decided the place-

ments of the circuits. Common frames between the successive configurations

were removed using a JBits-based program. This method only marginally

reduced the total amount of configuration data for the sequence under test.

Permutations of the input sequence did not change the result significantly.

Details are provided in Section 4.2.

In order to improve upon the above results, the floorplans of various input

circuits were examined. It was found that most circuits did not use the entire

width or height of the FPGA. This gave rise to a hypothesis that there

are common frames between configurations but as circuits were physically

placed in an arbitrary fashion, the frames were not aligned properly (a frame

could only be removed if the on-chip frame at the same address contained

identical data). A hypothetical circuit placer was thus envisaged that would

53



place each circuit in the input sequence such that the number of common

frames between its configuration and the previous circuit’s configuration was

maximised. This line of thinking was motivated by a result reported in [46]

that more than 80% of bits between typical Virtex cores are common.

As running placement and route tools take time, and there is potentially

a large number of possible physical placements for each circuit, a method for

quickly analysing the impact of circuit placement on partial reconfiguration

had to be developed. This problem was tackled at the configuration data level

by considering a hypothetical Virtex device. If we assume the Virtex device

is homogeneous, i.e. one can simply cut and paste a mapped circuit anywhere

on the device without needing to re-place and re-route, then variable circuit

placement could be simulated by assuming various physical placements of

the input partial configurations.

As a first step, a one-dimensional partial reconfiguration problem was

considered where circuits are restricted to move horizontally. The objective

was to find the best placement of each partial configuration relative to the

others in the input sequence such that the total amount of configuration

data was minimised. A greedy heuristic was investigated which resulted

in marginal reductions in the total amount of configuration data produced

by the sequence. It was found that it was not the greedy algorithm that

performed poorly, but rather that common frames in the input configurations

were located such that no placement would result in significant improvements.

Details of this analysis are provided in Section 4.3.

The result of the above experiment suggested another hypothesis. As

the unit of configuration in Virtex is quite large, it forces the CAD tool to

include a frame even if it differs from the target frame by a single bit. A

hypothetical Virtex was considered that allows sub-frames of various sizes to

be loaded independently in a manner similar to conventional SRAMs. As the

sub-frame size was reduced, dramatic reduction in required frame data was

observed for the sequence of configurations considered previously. In general,

a smaller configuration granularity allowed more data to be removed from
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the sequence. However, at this level, the increased overhead of addressing

configuration units outweighed any reduction achieved for the frame data.

This consideration led to a model Virtex that balanced the addressing over-

head by keeping the configuration unit slightly larger. This Virtex required

one third less configuration data on average, compared with when the current

Virtex for the same sequence of input configurations. Details are provided in

Section 4.4. The results of Sections 4.2, 4.3 and 4.4 were published in [60].

Explaining inter-configuration redundancy

In order to explain the above results, two sources of inter-configuration re-

dundancy were identified. A configuration fragment controlling a particular

subset of the device resources can be removed between two successive con-

figurations if:

• The next circuit uses the same resource and requires it to be in the

same configuration state, or

• Neither of the circuits uses that resource and the CAD tool assigns it

a default configuration state.

It was experimentally determined that the second case is responsible for

the majority of inter-configuration redundancy. This was confirmed by re-

moving all default-state, or null, configuration data from the input configu-

rations and then finding inter-configuration differences as before. Details are

provided in Section 4.5.

The default-state reconfiguration

The above experiments suggested that a typical circuit makes a small number

of changes to the default configuration state of the device. This is what

can be referred to as default-state reconfiguration. Further experiments were

performed to gauge the impact of increasing or decreasing the FPGA size
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on the amount of reconfiguration data required for a typical default-state

reconfiguration. The available circuits were mapped onto variously sized

Virtex devices. The amount of null data in each configuration was then

removed at the bit level. It was found that the number of essential frame

bits for a circuit configuration increased just slightly with device size. Details

are provided in Section 4.6.

The picture that emerged out of the above analysis suggested that it might

be useful to load just non-null configuration data for a circuit. If a circuit

already exists on the device and its configuration is known a-priori then one

can possibly re-use most of its null data in the subsequent configuration. In

order to tackle a more general problem where the current configuration state

of the device is not known, a hypothetical Virtex could be considered that

automatically inserts null configuration data into the user-supplied bitstream.

Addressing fine-grained configuration data

Whether one re-uses on-chip null data, or whether one designs a new FPGA

that automatically resets a given portion of the memory, a fundamental issue

still remains. The null data can be best removed only at fine configuration

granularities. However, fine-grained access to configuration data results in

significant addressing overhead that must be reduced in order to decrease the

overall bitstream size.

Three methods of addressing fine-grained configuration data were there-

fore studied. The first method encodes the addresses in binary and is here-

after referred to as the RAM method. The second technique encodes the

addresses in unary and is referred to as Vector Addressing (VA). The perfor-

mance of the RAM method directly depends on the number of configuration

units in the device and is found to be useful only for small partial config-

urations. The VA method, on the other hand, offers a fixed overhead but

is considered to be quite effective for addressing large partial configurations.

The third method, referred to as DMA, applies run-length encoding to the
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RAM addresses and was not found to be effective for fine-grained partial

reconfiguration, mainly due to an observed uniformity in the distribution of

RAM addresses.

Using these methods, it was possible to reduce the size of sparse configu-

rations to one-fifth of the size currently possible with Virtex, it was possible

to compact dense configuration files by more than two-thirds. Details are

provided in Section 4.7. The results of this section were partially reported in

[61].

4.2 Reducing Reconfiguration Cost with

Fixed Placements

This section discusses the partial reconfiguration problem for the case when

circuit placements are fixed by the user or by the CAD tool. The performance

of a Virtex device is measured for a set of benchmark circuits. This represents

the base case against which all subsequent comparisons are made. It is shown

that for these circuits, Virtex’ frame-oriented partial reconfiguration model

performs quite poorly.

4.2.1 Method

In order to examine the performance of Virtex for the above method, a set of

thirteen circuits was collected (Table 4.2). It was envisaged that these circuits

would be used in an embedded system domain where fast context switching of

circuits is needed and application characteristics are known a priori, making

static optimisations possible. Even though these were un-related circuits,

they could be part of a system where various cores are swapped in and out

of the device (e.g. [91]).

The input circuits were mapped onto an XCV1000 device [123] using the

ISE 5.2 [120] CAD tools. The tools were allowed to assign the final physical
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placement of each circuit. Manual inspection of the circuit footprints revealed

that the tools favoured either the centre of the device where the clocks are

located or the bottom left location. The third column in Table 4.2 lists the

number of columns spanned by each circuit.

The algorithm to reduce configuration data for a sequence of configura-

tions is listed below as Algorithm 1. This method removes common frames

between successive configurations (see Figure 4.3 for an illustration). The

worst case complexity for the algorithm is O(fnb) where f is the maximum

number of frames in the device, n is the number of configurations in the

sequence and b is the size of the frame (b = 156 bytes for an XCV1000).

Algorithm 1 Configuration re-use with fixed circuit placements

Input:(C0, C1, C2, ...., Cn);
Variable: Configuration φtemp;
Initialisation: Load C0 on chip; φtemp ← C0;

for i = 1 to n do
Mark frames in Ci that are also present in φtemp;
Load unmarked frames in Ci onto the chip;
Add Ci to φtemp;

end for

Output: The total number of unmarked frames;

Desired
Configuration,

Placer &

Difference in
configuration data

Loader

Ci+1

FPGA configured
with φi

FPGA configured
with φi+1

Ci+1, C[φi,i+1]

between φi and

Differentiator

Figure 4.3: The operation of Algorithm 1.

Algorithm 1 was implemented in Java. As the configuration format for the

Virtex devices is not fully open, a byte representation of the configurations
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was first generated using JBits. Only the frames that lay within the column

boundaries of each circuit were considered. Non-null BRAM frames for each

circuit configuration were also included. It should be noted that Algorithm 1

removes common frames between successive configurations only if the frames

lie at the same addresses. If two successive circuits do not overlap then the

frames from the previous circuit will remain intact in the next configuration

state. It is assumed that these extraneous frames have no impact on the

operation of the required circuit.

Algorithm 1 was applied on a thousand random sequences of the thir-

teen cores listed in Table 4.2. A vector containing thirteen random numbers

between zero and twelve was generated using Java’s Math.random() method

and the configuration files were read in the same sequence as specified in the

vector. This procedure was then iterated a thousand times. It should be

noted that Algorithm 1 replaces on-chip null frames with non-null frames,

and vice versa, if successive configurations mutually span a region of the

device.

4.2.2 Results

There were 18,008 frames present in the input sequence (358 columns × 48

frames per column +824 non-null BRAM frames). Algorithm 1 removed 229

on average with a standard deviation of 110 frames. The resulting reduction

in reconfiguration time was calculated to be about 1%.

4.2.3 Analysis

There can be three reasons for this relatively small improvement: there were

not many common frames to remove; there were common frames but they

did not occur in consecutive configurations; and there were common frames

but they did not occupy the same column/frame position in the respective

configurations. The input configurations were further analysed to answer
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these questions.

The configurations were scanned to determine the total number of unique

frames. This number turned out to be 16,916 frames. However, 1,092 frames

could still have been removed (or a 6% maximum possible reduction assum-

ing the cores were placed at positions that maximised their overlap and the

configuration sequence suited the placement). For the purposes of this anal-

ysis, two frames were considered similar only if they had the same data and

they were located at the same frame index within the respective columns.

Let us consider the second and third of the above mentioned reasons for

poor performance. As a thousand random permutations of the sequence were

generated and it was found that the standard deviation in the result was only

0.6%, the second reason does not seem plausible. Hence we are left with the

issue of frame alignability. By alignability it is meant that the frames could

be placed at the same column/frame address (thereby eliminating the frames

in the successive configurations once the first frame had been loaded). The

next section analyses this dimension of the problem.

4.3 Reducing Reconfiguration Cost with 1D

Placement Freedom

This section analyses the issue of frame alignability by allowing one-

dimensional placement freedom of the circuit. A greedy heuristic is eval-

uated and it is shown that allowing one-dimensional placement freedom does

not increase performance significantly and that this result is less dependant

on the performance of the algorithm than on the spatial distribution of the

common data in the successive configurations.
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4.3.1 Problem formulation

The variable circuit placement problem is to place each circuit core onto the

device such that the total number of configuration frames required for the

entire input sequence is minimised. The Virtex model needs to be simplified

for the ease of analysis. First, it is assumed that Virtex is homogeneous, i.e.

all CLB columns are identical. This means that if one simply copies configu-

ration data corresponding to a column of CLBs to another column, the same

circuit should result at the copied location as in the original location. Sec-

ond, artifacts such as Block RAMs (BRAMs) are ignored as they introduce

asymmetries at the configuration data level. Third, a circuit’s connections

to the IO pins are ignored.

A circuit’s boundary is specified at its configuration data level. Each

partial configuration (subsequently referred to as a configuration in this sec-

tion) forms a contiguous set of frames meaning that each configuration has a

leftmost column/frame address and a rightmost column/frame address. The

placement freedom of a configuration, Ci, is thus given by c-|Ci| + 1 where

c is the total number of columns in the device and |Ci| is the number of

column spanned by Ci. The placement freedom corresponds to all legal col-

umn addresses, 1...c− |Ci|+ 1, for the leftmost column of the configuration.

The configurations can only be shifted by a multiple of columns. This means

that if a particular frame is at position x within a column then it will occupy

the same position in any column when the configuration is shifted across the

device.

Note: The partial reconfiguration problem with 1D placement freedom

seems similar to NP. complete multiple-sequence-alignment problem [32]. A

proof of its NP. completeness is left as an open problem.

4.3.2 A greedy solution

This section examines the performance of a greedy algorithm when applied

to the problem of configuration re-use with variable placements. Algorithm
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2 places each configuration at a position that minimises the reconfiguration

data between it and the on-chip configuration. The worst case complexity

for this algorithm is O(f 2nb) where f is the maximum number of frames in

the device, n is the number of configurations in the sequence and b is the size

of the frame.

The benchmark circuits were considered again. The number of columns

spanned by each circuit is given in Table 4.2. A hundred different per-

mutations of the input sequence of configurations was generated. For each

sequence, each circuit was greedily placed at the location where the number

of frames between it and the current on-chip configuration was maximised.

It should be noted that frames from the previous configurations were not

cleared and it was assumed that the circuit is still operational.

With an initial total reconfiguration cost of 17,184 frames, the program

removed 579 frames on average, resulting in about 3% reduction in configu-

ration data (standard deviation = 154 frames).

It was found that even though there can be common frames among con-

figurations, they might not be alignable due to physical constraints on the

configuration placements. Please consider Figure 4.4, in which two configura-

tions Ci and Ci+1 are shown on a device with only one frame per column. Let

the common frames between the two be located at opposite ends as shown

by the lighter regions (the blocks numbered 1). It is clear that because of

constraints on the placement freedom the two configurations cannot be placed

such that the common frames of Ci+1 are aligned with those of Ci. Thus,

the common frames of Ci+1 should be considered to be unique. A simple

algorithm to detect such non-alignability was developed.

The algorithm operates on frames that occur more than once in the overall

sequence. It takes one such frame at a time and creates n bit vectors each

of size equal to the maximum number of frames the device can have. If the

frame occurs in the ith configuration, 0 ≤ i ≤ n, it marks those bits of the

ith vector where this frame can possibly be placed. Finally, it traverses the
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Algorithm 2 Configuration re-use with variable circuit placements

Input:(C0, C1, C2, ...., Cn);
Variable: Configuration φtemp; int minCost,minPlacement,#frames
Initialisation: Load C0 on chip; φtemp ← C0;

for i = 1 to n do
minCost← ∞;
for j = 1 to placementFreedom(i) do

Try placing Ci at j;
#frames = number of frames in Ci but not in φtemp;
if #frames < minCost then

minPlacement = j;
minCost = #frames;

end if
end for
Place Ci at minPlacement;
Mark frames in Ci that are also present in φtemp;
Load unmarked frames in Ci onto the chip;
Add Ci to φtemp;

end for

Output: The total number of unmarked frames;

1

1

Ci+1

Ci

Max Number of Columns

Figure 4.4: Explaining the non-alignability of the common frames.
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sequence from the start and performs an AND operation between successive

vectors. The resulting vector is examined. If it contains all zeros than each

occurance of the frame in the configurations is classified as unique. The

algorithm simply ignores the configurations that do not contain the frame

under consideration. It should be noted that this is a highly optimistic

measurement of frame alignability. However, a precise measurement involves

actually solving the variable circuit placement problem.

The above analysis was performed for 100 random permutations of the

sequence listed in Table 4.2. It was found that there were 16,532 actual

unique CLB frames and after running the alignability test, this number rose

to 16,741 (or almost 97%) — partly explaining the unexpectedly poor re-

duction in cost. Note that the BRAM frames were not considered in this

analysis.

Max Number of Columns

1

1 2

2

Ci

Ci+1

Figure 4.5: An example of frame interlocking.

In the case of an FPGA there exists another kind of non-alignability that

can be defined as frame-interlocking. As an example, consider Figure 4.5.

Shown are common frames numbered 1 and 2. Notice that we can either

align 1’s (resulting in a misalignment of 2’s) or vice versa but we cannot

align both simultaneously. Since no efficient solution to detect such frame-

interlocking was found, a tight lower bound on the optimal cost was not

computed. The reported cost estimates therefore remain optimistic. The

next section shows that:

• The absolute lower bound on the number of unique frames (whether

alignable or not) can be drastically reduced if we divide a frame into

sub-frames and allow them to be loaded independently.
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2 frames
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that differ
those subframes
eliminates all but 
configuration re−use
Fine grained

Coarse grained

Configuration
Input

to reload Frame 1
eliminates the need
configuration re−use

3

Figure 4.6: Coarse vs. fine-grained partial reconfiguration.

• The greedy method of placing the configurations, if such freedom is

allowed, is a reasonable solution in practice.

4.4 The Impact of Configuration Granularity

The smallest amount of configuration data that must be written into con-

figuration memory will be referred to as configuration granularity. This is a

similar concept to word size in conventional SRAMs.

The technique presented so far performed a frame-by-frame comparison.

Thus an entire frame had to be loaded even if there was only a single bit

difference with the copy already in configuration memory. Let us now break

the frames into smaller sub-frames and re-apply the partial reconfiguration

technique assuming that the sub-frames can be loaded independently (Figure
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Frame size %Estimated %Fixed %Variable
(bytes) (upper bound) placement placement

156 5 1 3
78 36 27 33
39 46 36 39
20 55 37 45
16 59 42 49
8 62 48 51
4 72 52 58
2 89 71 75
1 99 78 85

Table 4.3: Estimated and actual % reduction in the amount of configuration
data for variously sized sub-frames.

4.6).

For the input configurations under test, each frame was divided into sub-

frames of various sizes and the fixed- and variable-placement algorithms were

reapplied.

The results are shown in Table 4.3 (figures rounded to the nearest whole

number). The leftmost column lists the frame sizes that were examined.

The %Est column provides an upper bound estimate of the possible per-

centage reduction in the configuration data of the input sequence. This is

the percentage of common frames, i.e. 100% less the percentage of unique

frames (calculated by performing the alignability test described in Section

4.3) assuming an XCV1000 target device. The %Fixed Place column lists the

reduction in configuration data obtained after applying the fixed placement

algorithm (Algorithm 1) and the rightmost column lists the reduction in con-

figuration data obtained when the variable placement algorithm (Algorithm

2) is applied at the given frame size.

It can be seen that the number of unique frames steadily decreases as

the frame size decreases. It can also be seen that for a byte-sized frame,

the variable placement algorithm yields an 85% reduction in the amount of

configuration data. It should be noted that configuration data reported here

does not include addresses. The significant reduction in the raw configura-
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Frame Total %Red.
size bitstream

(bytes) size (bytes)
156 2,816,810 1
78 2,103,334 26
39 1,890,120 34
20 1,996,727 30
16 1,880,035 34
8 2,060,115 28
4 2,359,768 17
2 2,036,704 28
1 2,472,138 13

Table 4.4: Deriving the optimal frame size assuming fixed circuit place-
ments.

tion data volume can be due to two reasons. First, the floor-plans of the

benchmark circuits revealed that not all of the resources within the columns

were used. These resources were probably set to the null configuration by

the CAD tool, thereby allowing us to reuse these data fragments in multiple

configurations. Second, there can be circuit fragments that occur in more

than one core. These issues are discussed in detail in Section 4.6.

The above analysis does not include the overhead incurred due to the

addition of extra address data that is required as frames become smaller and

more fragmented. While decreasing the frame size decreases the amount of

data to be loaded, it also increases the addressing overhead. Let us derive

an optimal frame size for the configurations under test (see Table 4.4). It

was assumed that the configuration interface consisted of an 8-bit port and

each frame was individually addressed in a RAM-style manner. Note that

this over-estimates the addressing overhead used currently by Virtex, which

provides a start address and a count of the number of consecutive frames to

be loaded.

The second column of Table 4.4 lists the total size of the bitstreams at

various frame sizes taking into account the number of sub-frames loaded as

well as the address of each sub-frame assuming fixed circuit placement. Two

bytes per address were taken for sub-frames down to 32 bytes. For frame sizes
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of less than 16 bytes 3 address bytes were added per sub-frame written. The

last column lists the overall percentage reduction compared to the current

Virtex. Table 4.4 suggests that a frame size of 39 bytes, or one quarter the

current Virtex frame size, is optimal since it offers good compression with

little address overhead.

The main conclusions from the above analysis are as follows. Firstly,

for relatively fine-grained logic fabrics such as Virtex, fine-grained, random

access to the configuration memory is needed in order to adequately exploit

the redundancy present in configuration data. Secondly, the actual reduction

achievable is also determined by the addressing overhead which increases

significantly as the unit of configuration is reduced and the number of those

units increase. Section 4.7 examines alternative addressing schemes. Thirdly,

introducing placement freedom does reduce the amount of reconfiguration

data but not significantly. Lastly, the relatively simple and quick greedy

strategies we explored provided reasonable reductions in overall configuration

bitstream sizes.

4.5 Sources of Redundancy in Inter-Circuit

Configurations

This section explains the results presented in the previous section. From

Table 4.2 it is clear that most circuits used only a small fraction of CLB

resources available in an XCV1000. It is likely that the CAD tool filled in

the unused portions of the configuration with null data. This gave rise to

a hypothesis that what was actually removed between the configurations is

nothing but null bitstream data. Simple experiments confirmed this hypoth-

esis.
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4.5.1 Method

The results presented in Section 4.4 suggested that a large amount of frame

data could be eliminated from the benchmark configurations at a byte level.

The analysis presented in this section goes further in so far as individual bits

at the same column/frame indices were examined while switching from one

configuration to another.

A representative set, S, of the complete configurations of Table 4.2 was

chosen. The circuits were chosen on the basis of their sizes (small, medium

and large). To remind the reader, these circuits were mapped onto an

XCV1000 device. In this and the subsequent analysis, only data that corre-

sponds to the CLB frames was analysed (i.e. 4,608 frames each of size 156

bytes). All pairs, (a, b), a, b ∈ S, of the chosen configurations were consid-

ered. Each bit in configuration a was compared to the same bit position in

configuration b. If these bits were equal then they were compared to the bit

at the same position in the null configuration. Statistics were gathered on the

amount of common null and non-null data when switching from configuration

a to b.

4.5.2 Results

Consider the difference configuration Circuit a → Circuit b. A bit in this

configuration can either be a null bit or a non-null bit. A null bit is included

in to clear a non-null bit at the same location in a. A non-null bit in b, on the

other hand, can either replace a null bit or a non-null bit in a. The following

results calculate the amount of common null data and common non-null data

between various circuit reconfigurations as a percentage of the total amount

of CLB data present in the circuits.

Results are shown in Tables 4.5 to 4.7. Table 4.5 reports the total number

of bits of circuit b that were found to be different from the bits in circuit a

at the same configuration memory location. Table 4.6 shows the number of
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null bits that were common between circuit a and circuit b as a percentage

of the total number of frame bits in the device. For example, 145,570 bits

were found to be different when cordic was switched to blue tooth (Table

4.5). This means that 5,605,214 bits were found to be common between the

two configurations (there are 5,750,784 bits in the CLB configuration of an

XCV1000). Out of these common bits, 5,601,264 bits were found to be null

bits (or 97.5% of 5,750,784 bits). Table 4.7 shows similar values for non-null

bits.

In Table 4.6, values corresponding to circuit a → circuit b where a = b

show the total number of null bits in the configuration as a percentage of the

total number of CLB frame bits. For example, from Table 4.5, we see that

there are 101,776 non-null bits in blue tooth. Thus, there are 5,649,008 null

bits (98.2% of 5,750,784). Similar comments apply to the diagonal elements

of Table 4.7. Notice that the null bits that overwrite non-null bits, and vice

versa, are not included in this analysis. Thus, the respective columns of

Tables 4.6 and 4.7 do not add to 100.

4.5.3 Analysis

The results shown in Tables 4.5-4.7 confirm the hypothesis that the major

source of inter-configuration redundancy is simply null data filled in by the

CAD tool (Table 4.6). From these tables it can inferred that when a circuit

was replaced by another, only a small number of the resources share the same

non-null settings.

4.6 Analysing Default-state reconfiguration

This sections broadens the analysis presented in the previous sections. The

experiments so far suggest that a circuit makes a small number of changes

to the default configuration state of the device. One metric to measure the

size of this change can be to count the number of non-null bits in a given
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configuration. This was done in the previous section for a selection of circuits

and shown to be small compared to the total number of bits present in the

complete configuration. This section investigates the impact of FPGA size

on the number of bit flips that are introduced by a circuit to the default

configuration state. This section establishes that the amount of non-null

configuration data of typical circuits is almost independent of the target

device size, or circuit domain. This can be best observed at a configuration

granularity of a single bit.

The benchmark circuit set (Table 4.2) was enlarged to accommodate a

wider set of circuits as listed in Table 4.8. The circuits convolution and

comparator were dropped due to their insignificant sizes. The circuit adder

was replaced with add-sub (adder/subtracter). This benchmark set is used

in all subsequent experiments.

Each circuit in the benchmark set was mapped onto variously sized Vir-

tex devices and the number of non-null CLB frames was counted. Results for

three devices are shown in the table. A ‘-’ in the XCV200 column means that

the corresponding circuit could not be mapped onto that device. The last

three columns in Table 4.8 show the amount of CLB frame data needed under

various device sizes if one uses the current frame-oriented partial reconfig-

uration of Virtex and removes all null frames from the given configuration.

These results show that the amount of partial configuration data needed for

a circuit increases when the circuit is mapped to a larger device despite set-

ting the ISE place and route tools to optimise for area. This is expected as

the frame size increases with the device size. Refer to Table 4.1 for relevant

parameters of the three Virtex devices.

4.6.1 The impact of configuration granularity

The experiments of Section 4.2 show that the redundant data between any

two configurations can best be removed at fine granularities. This section

shows that given an isolated configuration, the null data can best be removed
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Circuit #4-LUTs #Nets #IOB #Non-null CLB frames
XCV200 XCV400 XCV1000

encoder [120] 127 456 127 630 696 755
uart [120] 93 467 52 869 1,031 1017
asyn-fifo [120] 22 584 69 1,324 1,579 1,823
add-sub [120] 49 344 197 - 1,545 1,739
2compl-1 [120] N/A N/A N/A - 1,726 1,941
spi [117] 150 796 150 1,086 1,163 1,349
fir-srg [68] 216 726 216 585 632 1,347
dfir [120] 179 782 43 1,078 1,161 935
cic3r32 [68] 152 736 152 1,055 939 482
ccmul [68] 262 905 58 1,051 1,055 1,007
bin-decod [120] 288 1,249 200 - 2,263 2,964
2compl-2 [120] 129 388 257 - 2,180 2,435
ammod [68] 271 990 45 1,151 1,655 2,335
bfproc [68] 418 1,347 90 1,131 2,159 3,063
costLUT [120] 547 2,574 45 1,184 1,526 421
gpio [117] 507 3,022 207 1,762 2,127 2,823
irr [68] 894 2,907 894 1,695 1,492 1,588
des [117] 132 5,060 189 - 2,590 4,492
cordic [117] 1112 4,745 73 1,969 1,796 2,439
rsa [117] 1114 5,039 131 1,797 2,125 2,298
dct [120] 1064 5,327 78 1,874 2,314 1,903
blue-th [117] 2,711 11,152 84 - 2,879 4,199
vfft1024 [68] 3,101 11,405 N/A - 2,781 3,079
fpu [117] 3,914 13,522 109 - 2,880 3,655

Table 4.8: The benchmark circuits and their parameters of interest.
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at 1 bit granularity. If the granularity is increased then some null data

must be included and the amount of this extra data is proportional to the

granularity.

Method

All circuits in the benchmark set that could be mapped onto an XCV100

device were examined (see Appendix B for a list of these circuits). Complete

configurations corresponding to each circuit were generated. Only CLB frame

data was considered. Each configuration was then compared, bit-by-bit, with

the corresponding null configuration for the device. The number of bits, k1,

that were different in the input configuration from the corresponding bit in

the null configuration was determined. In other words, the size of the differ-

ence configuration was determined assuming 1-bit configuration granularity.

The experiment was repeated assuming 2-bit configuration granularity. This

time, both bits in a particular data fragment were required to be equal to

their null counter-parts in order to be removed. The number of non-null

units, k2, was determined for each circuit. Similarly, kg was determined for

granularities 4, 8 and 16. The mean of kg ∗ g/k1 was calculated over all

circuits that could be mapped onto an XCV100 for each value of g.

Results

Figure 4.7 shows the amount of configuration data needed at granularity g

relative to the amount needed at granularity a of a single bit. This figure

clearly shows that as g is increased, the total amount of CLB frame data also

increases. In other words, more and more null data is incorporated as the

data granularity is increased. Results for the circuits on larger devices is the

same.
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Figure 4.7: The amount of configuration data needed at granularity g rel-
ative to the amount of data needed at a granularity of a single bit.

Analysis

One way of interpreting Figure 4.7 is that the non-null bits in typical config-

uration are spatially distributed in an almost uniform manner. This feature

of configuration data will be discussed in more detail in Chapter 6.

4.6.2 The impact of device size

This experiment complements the above experiments by examining the com-

bined impact of the device size and configuration granularity.

Method

Each circuit in the benchmark set was mapped from the smallest possible

Virtex device to the largest available device, i.e. XCV1000. Complete config-

urations corresponding to each circuit on each device were generated. Only
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CLB frame data was considered. Each configuration was then compared,

bit-by-bit, with the corresponding null configuration of the same size. The

number of bits, k1, that were different in the input configuration from the

corresponding bit in the null configuration was determined. The mean and

standard deviation in k1 across the range of devices was calculated. A similar

exercise was performed for k4. Tables B.1 and B.2 in Appendix B show the

complete results.

Results

Table 4.9 shows the results. It is clear that the standard deviation in k1

is less than that in k4, not only in aggregate size but also with respect to

the total amount of non-null data at that granularity. This result essentially

generalises the result presented in the previous subsection.

4.6.3 The impact of circuit size

Table 4.9 shows that the amount of non-null frame data varies considerably

from circuit to circuit. In order to explain this result the sizes of the circuits

were considered. This section shows that the amount of non-null frame data

for a circuit is almost linearly proportional to its size.

Method

Measuring a circuit’s size at the configuration data level poses practical prob-

lems. This is because commercial CAD tools do not provide detailed reports

on the amount of resources used by an input circuit. For example, while Xil-

inx tools report on the number of LUTs used by a circuit they do not report

on the number of programmable interconnect points (PIPs) used. In any

case, a technology-mapped netlist can be considered to be a good reference

for measuring a circuit’s size even though it does not take account of the

number of physical wire segments needed to implement each logical wire.
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Circuit k1 Std-dev in k1 k4 Std-dev in k4

(bits) (bits) (bits) (bits)
encoder 4,307 88 12,668 415
uart 5,281 162 14,951 539
asyn fifo 5,726 239 18,276 773
adder-sub 6,076 231 20,732 798
2compl-1 8,089 627 28,058 2,504
spi 7,947 106 23,103 240
fir-srg 8,284 240 23,334 373
dfir 8,393 266 23,939 656
cic3r32 8,867 276 25,393 871
ccmul 9,937 223 29,786 975
bin-decod 10,384 974 35,138 3,433
2compl-2 11,935 689 41,391 2,770
ammod 11,714 187 34,719 1,142
bfproc 15,000 558 44,453 2,846
costLUT 16,376 209 48,486 753
gpio 31,290 701 95,179 3,215
irr 34,376 699 99,757 2,191
des 48,644 850 145,725 4,201
cordic 49,466 518 138,526 961
rsa 50,138 868 146,533 2,888
dct 53,188 794 147,532 3,257
blue-th 101,640 539 293,542 3,285
vfft1024 113,956 1,130 315,966 2,769
fpu 155,672 1,336 454,568 3,531
Mean 31,114 501 90,609 1,819

Table 4.9: Comparing the change in the amount of non-null data for the
same circuit mapped onto variously sized devices.
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A closer inspection of typical technology-mapped netlists revealed that

circuits use various FPGA resources in various proportions. One circuit

might use a large number of LUTs but only a small number of IO ports. On

the other hand, some circuits tend to be IO-limited but use logic resources

sparsely. It was thus clear that assigning a single number that specifies the

resource utilisation of a circuit was likely to hide away important details at

the lower level. Therefore three different parameters were used to specify a

circuit’s size: number of 4-LUTs (found from the technology map report),

number of IO blocks and the number of nets in the input technology-mapped

netlist. Table 4.8 shows the benchmark circuits and their sizes.

The benchmark configurations targeting an XCV400 device were then

analysed. Again, only CLB frames were examined. As was discussed earlier,

a Virtex frame contributes thirty-six bits to the top and bottom IOBs and

eighteen bits to each CLB. The IOBs were ignored and each eighteen-bit

CLB fragment was examined. Out of these eighteen bits, the top nine are

classified as routing bits (corresponding to single and hex switches) and the

remaining nine as logic bits (refer to Section 3.2.1 for a description of the

Virtex’ frame structure). These bits were then compared to the null bits at

the same location and non-null routing and non-null logic bits were counted.

Notice that this analysis is only roughly accurate as the exact structure of

the frames is not described in the Virtex data-sheet. All CLB frames in each

configuration were processed in this manner.

Results

Figure 4.8 shows the result of correlating the amount of non-null routing data

with the number of nets in the input circuit. Figure 4.9 shows the result of

correlating the amount of non-null logic data with the number of 4-LUTs in

the input circuit.
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Figure 4.8: Correlating the number of nets with the total number of non-
null routing bits used to configure an XCV400 with the benchmark circuits.

Analysis

The graphs in Figures 4.8 and 4.9 clearly show an almost linear dependency

between the circuit’s size, measured in terms of the number of nets or 4-

LUTs it contains, and the number of bits that it flips in the default-state

configuration. Figure 4.8 also plots a linear function f(x) = 9x and the best

fitting curve g(x) = 0.0002x2 + 6.8786x + 1599.6. That the data is slightly

super-linear for routing bits can be explained by the increasing likelihood

that additional routing segments are needed to implement the nets as the

device becomes increasingly congested. The best fitting curve in Figure 4.9

corresponds to g(x) = 3.5891x + 497.08.

In summary:

• The amount of non-null data in a typical Virtex configuration is small

compared to the total amount of CLB frame data. The null data from a
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Figure 4.9: Correlating the number of LUTs with the total number of non-
null logic bits used to configure an XCV400 with the benchmark circuits.

given configuration can best be removed at small granularities (Figure

4.7).

• The amount of non-null data at small granularities changes only slightly

when the circuit is mapped to a larger device (Table 4.9).

• The amount of non-null data increases almost linearly with circuit size

(Figures 4.8 and 4.9).

In light of these results, the following section examines various address

encoding methods to efficiently support fine-grained partial reconfiguration

in Virtex.
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4.7 The Configuration Addressing Problem

Reducing the configuration unit size from a frame to a few bytes substan-

tially increases the amount of address data that needs to be loaded and the

addressing overhead therefore limits the benefits of fine-grained partial recon-

figuration. The analysis in Section 4.4 assumed a RAM-style configuration

memory in which each sub-frame had its own address. Taking the addressing

overhead into account, it was found that the potential 78% reduction in con-

figuration data was diminished to a maximum possible 34% overall reduction

in bitstream size. Due to increased addressing overhead as sub-frame size is

reduced, this best possible improvement over vanilla Virtex was achieved at

a sub-frame spanning one quarter of the column-high frame rather than at

the byte-level granularity, when maximum reduction in raw frame data was

found to be possible. Thus, the analysis so far suggests that if one can find

an efficient method of compressing address data then reconfiguration time

can be decreased.

Reducing the configuration addressing overhead is referred to as the

configuration addressing problem and it can be described as follows:

The configuration addressing problem: Let there be n configura-

tion registers numbered 1 to n in a device. Suppose k arbitrary registers

are selected to be accessed such that k <= n. Thus we are given a set of k

locations, where each location is given a number between 1 and n inclusive.

The problem is to derive an efficient encoding of the set of k locations

chosen. The criteria for efficiency are that the encoding must be small, so

that it takes little time to load onto the device, and that its decoding is

simple, so that it is possible to facilitate rapid decoding in hardware.

The XC6200 family supported partial reconfiguration at the byte level in

a RAM-like manner [128]. The RAM model requires O(log2(n)) address bits

per configuration register. Thus, the address data requires O(klog2(n)) time

to load onto the device where k is the number of registers to be updated. As
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n and k increase, the amount of address data in this model grows substan-

tially. The wildcarding mechanism for the XC6200 devices can be seen as a

method for compressing RAM address data. The Virtex devices, much larger

than XC6200s, offer a two-fold solution to this problem [123]. First, the con-

figuration granularity was increased by 50 to 100 times compared to XC6200

thereby keeping the total number of addressable units small. This solution,

however, limits partial reconfiguration as discussed above. Secondly, Virtex

introduced a DMA-style run-length addressing of the blocks of consecutive

frames having to be loaded. This model improves upon the RAM model

by a factor of k if all k frames are consecutive. In terms of address data

usage, the performance of the model approaches that of the RAM model for

isolated frames. This runlength compression has been applied in the con-

text of XC6200 devices in [38] and the authors have shown a reduction in

reconfiguration time by a factor of more than three.

The following section presents an analysis of various methods of encoding

address data for fine-grained partial configurations in the context of Virtex

devices and suggests that new addressing methods are required that are a

hybrid of the existing ones.

4.8 Evaluating Various Addressing Tech-

niques

This section presents an analysis of various address encoding techniques for

fine-grained partial configurations. One technique, the RAM method, was

previously assessed. This section examines two further methods. The first

compresses the RAM addresses using run-length encoding. This technique

will be referred to as the DMA method. The second technique is referred to

as vector addressing (VA).

The concept of VA is simple. Let us assume that a device contains a total

of n configuration sub-frames numbered from 1 to n. Define a bit vector of
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size n to identify the set of sub-frames that is to be loaded onto the device.

The ith bit in this vector represents the address of the ith sub-frame register

where 1 ≤ i ≤ n. In this address vector, a bit is set to 1 if the corresponding

sub-frame is to be included in this configuration bitstream, otherwise it is

left unset at 0.

The experiments show that the RAM method is most suited to addressing

configuration data for sparse circuits on large devices and that the VA method

performs best when used to configure dense circuits on small devices. The

DMA technique was found to performs relatively poorly at compressing RAM

addresses.

Theoretical considerations

The RAM method requires log2(n) bits of data per configuration unit that

is included in the bitstream. The VA method, on the other hand, has a fixed

overhead of n bits. Let us suppose that k units need to be addressed. The

RAM method will require less data that the VA method when klog2(n) < n.

As changing configuration granularity changes n and k, both methods are

likely to perform differently under various conditions. The following section

examines this trade-off for the benchmark circuits.

Experimental Method

The CLB frames corresponding to each benchmark circuit were examined.

RAM addresses for all non-null configuration units were generated when the

configurations were partitioned into granularities ranging from 4 to 32 bits

in size. The minimum granularity was chosen to be 4 because the amount of

address data was prohibitively large for smaller granularities. The VA size

of the configuration was simply calculated by dividing the complete config-

uration size in bits by the assumed granularity. Note that the experiments

assume that the circuits are to be loaded onto a device already configured

with null configuration. The results of Section 4.6 indicate that there is little
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additional overhead to be expected when the device is already configured

with a circuit.

Results

Tables 4.10 to 4.12 report on the results. Only the results for 8-bit granularity

and for devices XCV100, XCV400 and XCV1000 are shown. Complete results

can be found in Appendix B. The first column in these tables lists the

circuit used. The second column lists the amount of data needed under

the current Virtex model needed to configure the circuit (i.e. frame oriented

reconfiguration). This also includes the address overheads. The third column

lists the amount of new sub-frame data when configuration granularity was

reduced to 8 bits. The last three columns list the overall percentage reduction

in configuration data that is achieved compared to the current Virtex model

when the RAM, the DMA, and the VA addressing overheads are included.

Analysis

Tables 4.10 to 4.12 show that the RAM method performs better than the VA

method for sparse circuits or when the devices are large. As expected, the

VA method is better for dense circuits. For sparse circuits on large device,

VA even gives negative results. The reason for this is that VA is applied

at the device level, i.e. all bytes in the complete configuration are specified.

The performance of VA is likely to improve if it is combined with the RAM

method. A design of such a configuration memory architecture for Virtex is

the topic of the next chapter.

4.9 Chapter Summary

This chapter presented a detailed analysis of partial reconfiguration in Virtex.

The following key results were presented:
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Circuit Virtex Frame RAM DMA VA
(bits) (bits) %red. %red. %red.

encoder 297,920 20,848 78 73 66
uart 304,192 26,536 73 68 65
asyn-fifo 498,624 30,568 81 76 78
add-sub - - - - -
2compl-1 - - - - -
spi 417,536 39,320 71 67 71
fir-srg 203,840 39,656 39 34 41
dfir 416,192 40,240 70 64 71
cic3r32 399,616 43,384 66 59 69
ccmul 382,144 47,648 61 56 66
bin-decod - - - - -
2compl-2 - - - - -
ammod 401,408 57,440 55 49 66
bfproc 502,208 70,952 56 48 70
costLUT 505,344 84,120 48 37 67
gpio - - - - -
irr 588,224 163,544 13 9 58
des - - - - -
cordic - - - - -
rsa - - - - -
dct - - - - -
blue-th - - - - -
vfft1024 - - - - -
fpu - - - - -

Table 4.10: Comparing various addressing schemes. Granularity = 8 bits.
Target device = XCV100.
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Circuit Virtex Frame RAM DMA VA
(bits) (bits) %red. %red. %red.

encoder 556,800 21,872 87 84 44
uart 824,800 25,112 90 88 62
asyn-fifo 1,263,200 33,056 91 89 75
add-sub 1,236,000 37,456 90 86 74
2compl-1 1,380,800 49,840 88 82 76
spi 930,400 40,776 85 82 65
fir-srg 505,600 40,200 73 69 35
dfir 928,800 41,760 85 82 64
cic3r32 751,200 43,680 80 76 56
ccmul 844,000 52,720 79 74 60
bin-decod 1,810,400 66,712 88 82 80
2compl-2 1,744,000 70,856 86 80 79
ammod 1,324,000 59,736 85 82 74
bfproc 1,727,200 76,720 85 82 79
costLUT 1,220,800 85,920 76 70 69
gpio 1,701,600 159,288 68 65 74
irr 1,193,600 163,160 54 49 62
des 2,072,000 242,832 60 57 74
cordic 1,436,800 227,848 46 46 64
rsa 1,700,000 241,544 52 52 69
dct 1,851,200 243,784 56 51 71
blue-th 2,303,200 485,680 29 26 66
vfft1024 2,224,800 519,656 21 20 64
fpu 2,304,000 743,560 -9 -9 55

Table 4.11: Comparing various addressing schemes. Granularity = 8 bits.
Target device = XCV400.
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Circuit Virtex Frame RAM DMA VA
(bits) (bits) %red. %red. %red.

encoder 942,240 22,400 92 90 21
uart 1,269,216 27,824 92 91 41
asyn-fifo 2,275,104 34,208 95 93 67
add-sub 2,170,272 38,864 94 91 65
2compl-1 2,422,368 61,424 91 87 68
spi 1,683,552 39,064 92 91 55
fir-srg 1,681,056 40,000 92 91 55
dfir 1,166,880 41,872 87 86 35
cic3r32 601,536 43,216 75 71 -27
ccmul 1,256,736 53,776 85 82 39
bin-decod 3,699,072 66,968 94 91 79
2compl-2 3,038,880 83,888 90 85 74
ammod 2,914,080 64,840 92 90 73
bfproc 3,822,624 85,920 92 90 79
costLUT 525,408 80,200 47 36 -52
gpio 3,523,104 172,360 83 80 75
irr 1,981,824 164,136 71 68 55
des 5,606,016 265,928 83 80 82
cordic 3,043,872 232,520 73 72 69
rsa 2,867,904 247,824 70 69 66
dct 2,374,944 253,488 63 59 59
blue-th 5,240,352 507,400 66 62 77
vfft1024 3,842,592 529,624 52 48 68
fpu 4,561,440 768,848 41 37 67

Table 4.12: Comparing various addressing schemes. Granularity = 8 bits.
Target device = XCV1000.
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• Major portions of typical configurations are essentially comprised of

null data.

• The null data is best removed at small configuration granularities.

• The amount of non-null configuration data depends mostly on the size

of the circuit and less on the size of the target device onto which it is

mapped.

• Fine-grained partial reconfiguration yields good reductions in configu-

ration bitstream size if the addressing overhead can be kept small.

• Various methods of addressing configuration data were analysed. The

binary address encoding is useful when the circuit is small relative to

the device size. Unary encoding of the address data is useful when

the circuit is large relative to the size of the device. Thus, a hybrid

approach should provide a reasonable overall performance.

The next chapter presents a new Virtex configuration memory design that

is derived from the analyses summarised above.
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Chapter 5

New Configuration

Architectures for Virtex

5.1 Introduction

The previous chapter presented a detailed analysis of configuration data for a

set of benchmark circuits on Virtex devices. It attributed major redundancy

in the configuration data to the presence of null data that is inserted by

the CAD tool to reset the resources that are not used by the circuit at

hand. It was shown that such redundancy can be best removed at small

configuration granularities (ideally at a bit-level). Given that the current

Virtex implements a frame-oriented partial reconfiguration, where the frame

size can be as large as 156 bytes, an efficient new memory design is needed

that supports more fine-grained configuration updates. This chapter presents

new architectures for Virtex configuration memory that support byte-level

partial reconfiguration.

The goal is to upgrade the current Virtex configuration memory into

one that can be addressed in a fine-grained manner with minimal hardware

addition. This chapter starts by first presenting the current architecture

of the Virtex configuration memory (Section 5.2). This model is used as
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the basis for the designs presented later. Section 5.3 presents the first new

architecture, ARCH-I which supports byte-level partial reconfiguration. It

does this by employing a read-modify-write method whereby on-chip frames

are read into a buffer, modified based on the supplied vector address and

then written back to their origin.

The limitation of the configuration re-use method, where on-chip config-

uration fragments are used to construct the later circuits, is that the user

must be aware of the current state of the configuration memory. It was

shown in Chapter 4 that what is re-used between various circuit reconfigu-

rations is essentially null data. This suggests a memory that automatically

inserts null data into the specified memory locations thereby eliminating the

need to know the current configuration state and thereby reducing the need

to load null data from off-chip. Section 5.4 presents ARCH-II which incor-

porates this feature. Finally, Section 5.5 discusses methods for parallelising

the configuration load process which is possible if the configuration port size

is increased. An area efficient architecture, ARCH-III, is presented, which is

shown to scale well with configuration port size.

5.2 Virtex Configuration Memory Internals

Xilinx holds two patents on configuration memories and these publicly avail-

able documents describe the internal details [73],[81] of Virtex configuration

memory. A Virtex device contains various registers for holding instructions,

frame data and frame addresses as shown in Figure 5.1. A configuration

state machine accepts various user commands such as read or write frames

and generates necessary control signals for the data path. The following dis-

cussion focuses on the configuration write operation with reference to Figure

5.1 (configuration reads are similar).

In order to write configuration data, the state machine is first issued with

a write-frames command. The user can write a block of consecutive frames by
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supplying the address of the first frame in the block followed by the number

of frames to follow. The user supplied address/count is transfered to the

frame address register (FAR). The FAR is incremented for each frame that is

loaded into the array. The FAR is directly connected to an address decoder

which generates the necessary control signals to select an entire frame register

for a write operation.

A Virtex device contains two interfaces for (re)configuration; SelectMAP

and JTAG. The SelectMap interface shares its pins with the general purpose

IO pins. This interface is 14 bits wide out of which 8 are data and the rest

are control pins. The JTAG interface has 4 dedicated pins. While JTAG can

also be used for (re)configuration, its main use is in device testing. A Vir-

tex FPGA internally contains a 32-bit wide configuration bus that connects

together various components. The user-supplied data is first assembled into

32-bit words before it is passed onto various internal registers.

The input frame data is first loaded into a shift register called the frame

data input register (FDRI)1 which buffers an entire frame. Once the FDRI is

full, the data is shifted into the data forwarding register via the input-circuit.

The input-circuit is used to align 32-bit words into multiples of 18 bits (in the

actual device two 18-bit words are produced at a time). This is achieved by

alternatively writing 32-bit words in two separate registers and then selecting

the next 36-bit word from the data available in these registers (Figure 5.2).

While data is shifted in from the FDRI to the data forwarding register, the

user shifts more frame data into the FDRI thereby pipelining the operation.

Once the data forwarding register is full, its contents are transfered in parallel

to an intermediate register and then to the selected frame register.

One of the patent documents describes a method by which one can read

a Virtex frame into the intermediate register and selectively modify its bytes

[81], but the Virtex data sheet does not provide any details of this operation.

In order to selectively modify a frame, it is first read into the intermediate

register. The mask register is then supplied with a bit mask of size f bits

1Xilinx uses the acronym FDRI instead of FDIR.
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specifying the location of the bytes to be modified in the selected frame. The

notion of mask is similar to the concept of vector address (VA) as used in

Chapter 4. Hereafter, both terms are used interchangeably. After loading

the mask onto the device, the user loads a new frame. This frame contains

user bytes at the positions specified in the mask while the rest of the frame

locations needs to be padded with dummy data. This frame is shifted into

the data forwarding register. The contents of the mask register are then used

to selectively transfer the bytes into the intermediate register. Finally, the

updated frame is written back to its destination.

The patent document does not provide any details on the precise timing

of the read-modify-write operation [81]. However, since a frame can be read

out of a Virtex device via the SelectMap interface in time proportional to

the number of bytes in that frame, one can deduce the timings of the read-

modify-write method. Suppose that the user wants to modify k consecutive

frames where 0 < k ≤ 48c and c is the number of columns in the target device.

Given that the entire block can be addressed by specifying the starting frame

address and the number of frames in the block, we can ignore the addressing

overhead. With these assumptions, the time taken to update k frames would

be (k +1)× f cycles where f is the number of bytes in each frame. An extra

frame is to be added in the last step to flush the internal pipelines.

It should be noted that while the above method allows the user to selec-

tively update bytes in an on-chip frame, it does not result in a reduction of

reconfiguration time. This is because an entire new frame has to be supplied
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in which the positions where no update is required are filled with dummy

data. Indeed, reconfiguration time increases because f bits of mask are also

supplied. However, reconfiguration time could be reduced if the memory

were to only load the byte updates and automatically insert dummy data

where required. The next section presents an architecture with this feature.

5.3 ARCH-I: Fine-Grained Partial Reconfig-

uration in Virtex

This section presents a new configuration memory architecture, ARCH-I,

that builds upon the current Virtex architecture to support fine-grained par-

tial reconfiguration. The new memory, ARCH-I, allows the user to input just

those bytes that need to be updated. This concept is illustrated in Figure

5.3 in which the frame size is assumed to be 8 bytes and the on-chip frame

is supposed to be modified. Only two bytes need to be updated: ‘q’ and ‘z’.

The current Virtex requires one byte for the mask (denoted M in the figure)

and 8 frame bytes. The bytes not being updated are filled with dummy data,

represented by a ‘-’ symbol. The new memory also requires one byte for the

mask but only two frame bytes. Thus, it takes the current Virtex nine cycles

to reconfigure the frame, whereas it only takes ARCH-I three cycles. This is

based upon the assumption that ARCH-I internally routes each frame byte in

one cycle (i.e. the configuration port does not stall during reconfiguration).

5.3.1 Approach

We can enhance the read-modify-write mechanism of the current Virtex to

implement ARCH-I. In the current Virtex (see Figure 5.1) an on-chip frame is

read into the data forwarding register, modified based upon the user supplied

data and, finally written back to its register. The user supplied mask is

loaded into the mask register and the input frame bytes are transferred to
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Figure 5.3: Comparing the operation of Virtex and ARCH-I.

the input circuit via the FDRI. We could implement ARCH-I by switching

the output of the input circuit to the correct locations in the data forwarding

register based on the user suppled mask. Figure 5.4 shows the part of the

Virtex model where the new switch would be inserted (compare with Figure

5.1). However, this approach has two drawbacks. Firstly, depending upon

the implementation, the input circuit can become complicated as it may be

the case that the bytes in an incoming 32-bit word are not contiguous in the

target frame. Secondly, the dimensions of the switch depend on the frame

size which scales with the device size.

The problem of aligning non-contiguous words in multiples of 18-bits can

be by-passed if a new frame is internally constructed before passing it onto

the FDRI. With reference to Figure 5.3, given [q, z], the device internally

constructs a frame [q,−,−,−,−,−,−, z]. This frame is then shifted into

the FDRI. The supplied mask is shifted to the mask register as before. The

target frame is read into the data forwarding register and is modified before

being transfered back. Moreover, it is not necessary to construct the new

frame in its entirety before it is shifted into the FDRI. This operation can be

performed on-the-fly as more mask and frame data is input. This principle
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is the basis for the design of ARCH-I.

5.3.2 Design description

The new memory system receives user data and automatically inserts dummy

bytes at the locations within the selected frame where no update is required

(i.e. where the existing on-chip bytes are to be inserted). The design creates a

new frame which is then shifted into the data forwarding register via the input

circuit. The user supplied mask is transferred into the mask register. The

target frame is read into the intermediate register as before. The contents of

this frame are selectively overwritten by the contents of the data forwarding

register based on the contents of the mask register.

High-level operation: Frames are addressed as in the current Vir-

tex. For each selected frame, the user first loads 8 bits of the mask that

corresponds to the top eight bytes. The bytes that are to be updated in this

region are then successively loaded. Then, the next byte of mask is loaded

and so on until the entire frame is processed.

Internally, a block called vector address decoder (VAD) constructs a new

frame on-the-fly as data is being loaded onto the device. The VAD receives
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its input from the SelectMap circuit on a byte-by-byte basis (see Figure

5.1). The output is provided in 64-bit words. The task of the VAD is to

successively provide eight bytes of frame data to the FDRI until an entire

frame is output. The output of the VAD is 64 bits because a byte of vector

address spans eight bytes. This means that the configuration bus and the

FDRI in the new system are each 64 bits wide.

The VAD consists of a vector address register (VAR), a network controller,

a switching network, a 64-bit frame buffer and, a mask assembler (Figure

5.5). The input to the network controller is a byte of the VA encoding

corresponding to a portion of the selected frame. This byte is stored in the

VAR. Let the input VA-byte be represented by V . Let the number of set

bits in V be i, 0 ≤ i ≤ 8. The controller outputs i, 8-bit vectors V1, V2...Vi in

sequence such that V = V1⊕V2⊕...Vi and each Vi in turn has just one bit set,

namely the ith most significant bit in V . It takes one cycle to output each

vector. Each output vector selects exactly one register in the frame buffer

and deselects the rest. The frame byte is then transferred to the selected

register. A done signal is sent to the main controller after all vectors have

been produced. Note that no vector is produced if V contains all zeros. The

done signal in this case is generated immediately.

The purpose of the mask assembler (MA) is to assemble successive bytes

of input VA into 64-bit words to be transfered into the f -byte mask register.

The assembler consists of an 8×8 bit shift register into which successive bytes

are shifted. Once the eighth VA byte is input, the state machine transfers

the mask bytes into the mask register via the configuration bus and the

shift register is cleared. It should be noted that there is no conflict between

the frame buffer and MA over the configuration bus. It takes one cycle to

determine whether the present VA byte has been processed or not whereas

the MA is transfered to the configuration bus as soon as it is full.

For a frame of size f bytes, f/8 bytes of vector address is needed. The

configuration state machine internally maintains a byte counter that is ini-

tialised to zero every time a new frame is to be loaded. This counter is
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Figure 5.5: The vector address decoder (VAD).

incremented by one each time a done signal is received by the state machine.

When the counter reaches f/8, the next done signal is interpreted as the

last for this frame. The state machine then performs the operation of over-

writing the contents of the intermediate register. The overall control of the

VAD is illustrated in Figure 5.6.

Detailed operation: The structure of the network controller is shown

in Figure 5.7. It consists of an 8-bit vector address register (VAR) and an

8-bit mask register (MR) (not to be confused with the 8-byte mask assembler

connected to the configuration bus or the frame mask register). Let V AR[j]

and MR[j] denote the jth bit of the VAR and the MR respectively. Note

that the VAR is loaded with successive bytes of the VA mask, individually

referred to as the VA byte. We set the MR as follows:

MR[7] = V AR[7] + V AR[6] + ...V AR[0] (5.1)

MR[j] = V AR[j + 1] · MR[j + 1], 6 ≥ j ≥ 0 (5.2)
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The above equations set the leading bits in the MR down to and includ-

ing the most significant set bit encountered in the VAR. The output vector

corresponding to the most significant set bit, Vi, is now produced by per-

forming an XOR operation on the successive bits of the MR. In other words,

Vi = v7v6...v0 is set according to the following equations:

vj+1 = MR[j] ⊕ MR[j + 1], 0 ≤ j ≤ 6 (5.3)

v0 = MR[0] · V AR[0] (5.4)

The VAR is updated by clearing the set bit that has been processed.

The network controller generates a done signal for the main controller when

the VAR contains all zeros, meaning that it is ready for the next VA. This

operation is performed as follows:

done = V AR[7] + V AR[6]... + V AR[0] (5.5)
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Figure 5.7 shows a schematic of the network controller (NB: the logic to

initiate the MR, to control muxes and, to generate the done signal is not

shown for simplicity). The critical delay of the circuit can be derived as

follows. Assume that each multiplexor in the figure takes two 2-input gate

delays. MR[7] will require three levels of 2-input gates (the large OR gate),

two levels for the multiplexor followed by seven gate delays to update MR6

to MR0. Each vi is updated in three gate delays. Thus, the critical path of

the circuit is fifteen 2-input gate delays. It is expected that the operation of

producing each Vi word can be accomplished in a single cycle with current

and foreseeable process technologies.

5.3.3 Analysis

Area

The main component that is added to the existing Virtex design is the vector

address decoder. This system was specified in Verilog and Synopsys Design

Compiler [109] was used to map it to the TSMC 90nm cell library [118]. The

total area was found to be approximately 723 μm2. The configuration state

machine required approximately 2,174 μm2. This is insignificant compared

to the Virtex die area which is in the order of 106μm2 [123].

Time

The critical delay of the VAD was found to be approximately 14ns and can

thus be easily accommodated at Virtex configuration frequency (66MHz).

This means that the design can operate at the same speed at which configu-

ration data is input. Thus, the proposed design directly translates a decrease

in the amount of configuration data, which is made possible by fine-grained

partial reconfiguration, into a decrease in the time needed to reconfigure the

device.
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Power

The dynamic power of the VAD was estimated to be around 228μW while

the leakage power was around 114μW . However, the dynamic power of the

memory array is expected to increase by more than a factor of two. This

is due to an increased switching overhead of the read-modify-write method.

A precise calculation of this figure involves a detailed VLSI level analysis

of large SRAM memories and is beyond the scope of this thesis (the school

did not have appropriate cell libraries for this task). ARCH-II attempts to

overcome this limitation by focusing on a write-only method and is discussed

in Section 5.4.

Limitations

There are two limitations of ARCH-I.

• A read-modify-write technique works only if the user knows the current

state of the configuration memory. A complete configuration must be

supplied when this is not the case.

• Dynamic power is increased due to a read-modify-write strategy.

• As was discussed in Chapter 4, the major source of inter-configuration

redundancy is null data. It was argued that if the device can automat-

ically reset the configuration memory to its default state then there

would be no need to add null data to clear the remains of the previous

circuits as is required in ARCH-I. In other words, ARCH-I delegates

the management of null data to the user.

These limitations can be overcome by ARCH-II which is presented in the

next section.
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5.4 ARCH-II: Automatic Reset in ARCH-I

The architecture of this section, ARCH-II, overcomes the limitations of

ARCH-I by automatically inserting null data into the user-supplied partial

configurations. This feature also eliminates the need to know the current

configuration state of the device.

5.4.1 Approach

ARCH-II could be designed by incorporating a broadcast system into ARCH-

I. The user specifies a region in the memory that is to be filled with null data.

Internally, the device broadcasts null data to the specified region. The user

specifies the address of the first frame and the number of successive frames

to be loaded (either fully or partially) followed by mask and frame data.

For each user frame, the device reads the target null frame into the data

forwarding register, modifies it and writes it back to its destination.

Instead of using a read-modify-write method, one can employ a write-only
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method to save the power in the chip-wide wires. The model presented in

[92] uses a wildcarding mechanism to broadcast null data across a row of the

memory cells. This is followed by any byte updates in that row if required.

This bytes that are to be modified are addressed using VA. Once a entire

row of the cells is processed, the next row is considered and so on. The main

issue with the broadcast model is that it results in a large capacitive load.

This arises because a large number of SRAM cells need to be driven by a

single wire.

An alternative method is to separately handle the internal and external

fragmentation of configuration data. Consider a complete configuration as

generated by the ISE tools (Figure 5.8). The null data can be scattered

inside the frames or it can span entire frames which can be referred to as

internal and external fragmentation respectively. Let the process that han-

dles internal fragmentation be called Puser and the one that handles external

fragmentation, Pnull. The user specifies the frames that are to be partially

loaded and the frames that are to be completely loaded with null data. Puser

converts the partial frames into full frames by inserting null data where re-

quired. When a frame is completed, it is sent to the memory array using the

existing mechanism (i.e. via the data forwarding register). While Puser is

constructing user frames, Pnull generates null frames in the background and

sends them to the memory array. In case both processes attempt to access

the array simultaneously, we give priority to Puser. If Puser finishes before

Pnull then we simply wait until Pnull is done. This model is the basis for

ARCH-II which is described below in detail.

5.4.2 Design description

Let a user frame be a frame in which there is at least a single byte to be

updated and let a user block be a contiguous set of user frames. Similarly,

let a null block be a contiguous set of null frames. A block, user or null, is

specified by the address of the first frame, followed by the number of frames

106



in the block. The frame address/count pair will be referred to as a block

address. An ARCH-II configuration C consists of an alternating sequence

of user and null blocks. Each block may range in size from 1 to 48c frames

where c is the number of columns in the FPGA. A user loads an ARCH-II

configuration by first supplying the number of blocks in the sequence and the

type of the leftmost block. The blocks are then processed in pairs such that

for each pair of blocks, the null block address and size are used to generate

null frames in parallel with loading the partial frame data and associated

vector addresses for the user block.

The new memory needs to perform two operations in parallel. It needs

to convert the incoming partial frames into full frames and at the same time

generate null frames and load them onto the array. In both cases, null data

needs to be generated. ARCH-II achieves these operations by incorporating a

null frame handling system into ARCH-I as shown at the bottom and centre

of Figure 5.9. This system consists of a null frame generator, a null frame

register and address registers for the user and null block addresses.

The null frame register is added between the data forwarding register and

the intermediate register. The size of the null frame register is f bytes and its

inputs come from the null frame generator. The null frame generator takes

in a frame address and outputs the corresponding frame to be held in the

null frame register. The resulting null frame can be either modified by the

user supplied data or it can be shifted directly into the array (to load null

blocks).

The configuration state machine manages two block addresses; one for the

user frames and the other for the null frames. The user frame address register

is initialised with the user block address and the user block size. This address

is incremented every time a user frame is loaded into the array. When the last

done signal is generated by the VAD indicating that the current frame is ready

to be loaded, the state machine selects the user frame address register as an

input to the null frame generator which outputs the required null frame in

the null frame register. The null frame register is then selectively overwritten
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Frame Bit Frame Bit
Index Contents Index Contents

0 111110000000001111 1 101110000000001011
2 001100000000001011 3 101100000000001011
4 101100000000001111 5 111100000000001111
6 101100000000001111 7 101100000000001011
8 001100000000001011 9 011110000000001011

10 001100000000001111 11 111100000000001111
12 101100000000001111 13 011100000000001011
14 011110000000001011 15 001100000000001011
16 101000000000001111 17 100000000000001111
18 100100000000001111 19 100100000000001011
20 100100000000001011 21 000100000000001011
22 100000000000001111 23 100100000000001111
24 100100000000001111 25 100000000000001011
26 000100000000001011 27 100100000000001011
28 100100000000001111 29 100100000000001111
30 100000000000001111 31 101000000000001011
32 001100000000001011 33 011100000000001011
34 011110000000001111 35 101100000000001111
36 111110000000001111 37 011100000000001011
38 011100000000001011 39 001100000000001011
40 101100000000001111 41 101100000000001111
42 111100000000001111 43 101100000000001011
44 101100000000001011 45 001100000000001011
46 101100000000001111 47 111100000000001111

Table 5.1: The contents of CLB null frames.

by the contents of the FDRI and finally shifted to the memory array. When

this process completes, the null frame address register is selected for input

to the null frame generator. Null frames are produced and transferred to

the intermediate register. The state machine asserts a ready signal when all

blocks have been loaded.

The null frame generator is designed by examining the structure of Vir-

tex’ null configuration using JBits. The following discussion focuses only on

the CLB-type frames as they form the majority of configuration data. It
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was found that CLB-type frames at the same indices in each column were

identical. Moreover, within each frame, the 18 bits corresponding to a CLB

target identical resources in each CLB. This is also the case for the top and

bottom IOB bits. An 18× 48 bit block is therefore sufficient to describe the

null bits of each CLB. It should be noted that in Virtex these null bits are

not all zero. One can design the FPGA fabric such that there is an automatic

reset akin to resets in conventional SRAMs thereby eliminating the need for

the null frame generator. As the VLSI circuit level details of Virtex are not

public, and the power required to simultaneously reset large regions of the

configuration memory is likely to be excessive, an implementation of the null

frame generator is preferred.

One method for implementing the null frame generator is simply to store

18×48 bits of null data in a memory addressed by the frame indices. However,

further examination of the null bits within a CLB reveals regularities that

can be exploited to reduce the area requirements of the null frame generator

for Virtex.

Table 5.1 shows the contents of the null bits for a Virtex CLB. By inspec-

tion, it is possible to observe that these data are highly regular and therefore

can be significantly compressed. The first observation is that the middle nine

bits in each 18-bit fragment are always zero. The first five bits are in the set:

first = {11111, 00110, 10110, 01111, 10100, 10010, 10000, 10010,

00010, 01100, 11110, 10111, 01110, 10010, 00010} while the last four in are in

the set: last = {1111, 1011}. Thus, any 18-bit fragment can be represented

as a concatenation of three bit segments. The first segment is five bits long

and belongs to first followed by nine zeroes, followed by a 4-bit segment from

last. There are 15 elements in first and two elements in last. Thus, 5 bits

are enough to represent each 18-bit fragment. A small ROM or PLA can be

used to implement the required mapping between the frame indices and one

of the eighteen possible output values. It is expected that this system will

generate an entire null frame within a single cycle. The 18 bits for nulling

the CLB contents are broadcast to all CLBs spanned by the frame while the
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top and bottom IOB are nulled using their specific 18-bit codes.

5.4.3 Analysis

ARCH-II adds a null frame handling system to ARCH-I. This circuit is simple

and adds little to the chip area. ARCH-II generates a null frame within one

clock cycle. The generated frame is transfered to the array in the next cycle

while a new null frame is being generated. Thus, the null frame generator

maintains a constant throughput of one frame per cycle. ARCH-II resets

the entire memory array in 48c cycles where c is the number of columns

in the target device. Suppose there are i null frames to be loaded, where

0 ≤ i ≤ 48c. If i exceeds the number of bytes in the input user configuration

(configuration data + frame address overheads) then we have to wait until

all null frames have been loaded. For practical purposes, this wait time will

be zero as the data presented in Chapter 4 shows that even small circuit

cores contain several thousand bytes of configuration data. Moreover, if the

user knows the current state of the configuration memory then the on-chip

null frames need not be re-generated. In principle, the bitstream structure

can take into account null block sizes and the delays of the configuration

system architecture in order to insert null block addresses into the user data

wherever convenient. Strict interleaving of user and null block loads is not

necessary; wait times can thus be minimised.

Table 5.2 compares the performance of ARCH-II with Virtex. Results are

shown for three different device sizes and each column shows the percentage

reduction in the amount of configuration data as compared with Virtex’

frame-oriented partial reconfiguration. Comparing Table 5.2 with Tables

4.10 to 4.12), it can be seen that the frame-oriented VA performs better than

the device-level VA for small circuits because only those frames are updated

that contain some non-null data and no VA is supplied for the frames that are

entirely null. As the circuit size is increased, the frame-level VA performs

slightly worse than the device-level VA because of the extra padding that
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Circuit % Reduction
XCV200 XCV400 XCV1000

encoder 82 84 85
uart 62 63 57
asyn-fifo 70 68 62
add-sub - 68 64
2compl-1 - 69 65
spi 64 60 55
fir-srg 49 50 56
dfir 64 64 55
cic3r32 63 57 30
ccmul 63 57 48
bin-decod - 72 72
2compl-2 - 72 69
ammod 60 66 67
bfproc 60 71 71
costLUT 59 65 35
gpio 63 65 68
irr 62 58 56
des - 66 73
cordic 57 57 62
rsa 54 60 63
dct 55 63 57
blue-th - 59 68
vfft1024 - 56 60
fpu - 48 61

Mean 62 63 61

Table 5.2: Percentage reduction in reconfiguration time of ARCH-II com-
pared to current Virtex.
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is needed to make the frame an integral multiple of the required block size.

Thus, the combination of RAM with VA provides a good overall compromise.

5.5 ARCH-III: Scaling Configuration Port

Width in ARCH-II

The parameters of the proposed vector address decoders in ARCH-I and

ARCH-II were determined by the size of the configuration port. For example,

8 bytes are processed by the VAD in each architecture because the port is 8

bits wide. This section discusses the issue of scaling the configuration port

width. It examines various methods for parallelising the operation of ARCH-

II so that the presence of a large port results in a proportionate reduction

in the reconfiguration time. These methods result in ARCH-III, a scalable

memory that supports fine-grained partial reconfiguration in Virtex.

5.5.1 Approach

Let us suppose that the configuration port size in ARCH-II is increased from

8 bits to 8p bits where p > 1. The VAD in ARCH-II needs to be re-designed

as it only accepts data on a byte-by-byte basis. One strategy would be

to implement an 8p-bit wide VAD and a 64p-bit wide configuration bus to

support the parallel load of 8p bytes. This scheme is not practical for large p

for the following reasons. Firstly, the delay through the VAD is proportional

to 8p making a single cycle operation difficult to achieve for large values of p.

Secondly, the amount of wiring demanded by the configuration bus can be

prohibitive. Therefore, a different approach is needed to handle large port

sizes.

An alternative scheme is to implement several 8-bit VAD-FDRI systems

that operate in parallel. A VAD-FDRI system is shown in Figure 5.10. It

consists of a VAD, a configuration bus, an FDRI, a mask register and a data-
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forwarding register. The dimensions of these components are the same as in

ARCH-II. A Virtex with a configuration port of size 8p bits will contain

p VAD-FDRI systems as shown in Figure 5.11. The configuration port is

divided such that each VAD-FDRI has its own 8-bit wide port. Each VAD-

FDRI is a stand-alone system and produces a frame in its FDRI. The last

done signal from a given VAD-FDRI instructs the state machine to transfer

its current frame to the intermediate register. Each VAD-FDRI is connected

to a single data forwarding bus of size 8f bits where f is the number of bytes

in the frame. This bus transfers the contents of a VAD-FDRI system to the

intermediate register. Bus contention may arise in case where several frames

are ready simultaneously. This conflict can be resolved using a bus arbiter. A

p-bit priority decoder can be used for this purpose. The VAD-FDRI systems

waiting for their frames to be transfered over the data forwarding bus cannot

accept more data from their input port.

The main advantage of this method is that the vector decoding delay is

indepedant of the port size. The main disadvantage is that each VAD con-

tains its own 64-bit wide configuration bus. The aggregate bus size therefore

scales with p. This limitation can be avoided by implementing a fixed sized

configuration-bus that is shared among all vector address decoders. This

forms the basis for ARCH-III.

5.5.2 Design description

The common configuration-bus architecture is shown in Figure 5.12. The

VAD-FDRI systems, as discussed above, are split about the configuration

bus as shown. Each VAD has its own 8-bit wide configuration port and its

own frame address register (FAR). A single configuration bus, of size 64-bits,

is used to transfer data between various components. A bus arbiter resolves

the conflicts if more than one component attempts to access the bus at a

time.

In the new system, the 8p wide configuration port is equally divided
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among p VADs. From the user’s perspective, each VAD is provided with a

user block address followed by the mask and frame data, in the same manner

as ARCH-II. If the the number of user blocks is not a multiple of p than

the user can split them evenly among the p decoders. Each VAD performs

its operation independently. Consider the ith VAD where 1 ≤ i ≤ p. For

each byte of VA processed, it generates a done signal. This signals the

state machine that in the next cycle the frame buffer of this VAD is to be

shifted to the ith FDRI, via the configuration bus (C-Bus). The VAD sends

a bus request to the configuration-bus arbiter. As more than one VAD can

send a request signal at a time, the bus arbiter decides which one will be the

bus master.

Each VAD needs to transfer not only its frame bytes but also the corre-

sponding mask bytes. Since the configuration bus is set to 64 bits wide, it

will take each VAD two cycles to send this data. Instead of increasing the

width of the C-bus, the method presented here transfers VA bytes and the

mask from a particular VAD in two successive cycles. In other words, the

bus arbiter allocates the bus to a VAD for two successive cycles.

Various schemes can be used to implement the operation of the arbiter.

A simple method would be to assign a number between 0 and p−1 and give a

higher priority to the higher numbered VAD. Once an entire frame is loaded

in the ith FDRI, it is transfered to the null frame system. The bottom bus

arbiter performs this arbitration. A priority decoder can be used to decide

between various FDRI systems.

The VADs that cannot access the bus in a given cycle will need to wait

until the arbiter decides to give them the bus. These VADs will not be

able to process more VA bytes. Any input data during this wait state will

be discarded by a VAD. Thus, the user needs to insert pad bytes into the

configuration data.

Once a frame in the ith FDRI is ready to be transfered, the data forward-

ing bus (DF-Bus) is required. Notice that there can never by any conflict
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over the DF-Bus. This is because only one VAD can access the C-Bus at any

time. Therefore, only one VAD can finish loading its frame during a given

cycle. In the next cycle, this loaded frame will be forwarded to the array

thereby freeing the DF-Bus for use by some other VAD. The overall control

of each V AD is shown in Figure 5.13.

ARCH-III can also internally generate null frames and load them into

a user-specified region of the memory. This step is performed in the same

manner as in ARCH-II. The configuration state machine is instructed with

the null-block addresses through a dedicated part of the configuration port.

The scheduling of the null frames is the same as in ARCH-II. Notice that a

separate null frame register is required for this operation.

5.5.3 Analysis

This section evaluates the overhead of inserting pad data into the original

configuration bitstream to account for wait states that arise when multiple

FAD systems contend for the C-bus as the port size is increased. The bench-

mark circuits from Chapter 4 were considered for an XCV400 device. The

null bytes in each configuration were removed. The operation of ARCH-III

was simulated for various values of p. Each VAD was assigned a unique

number and a higher priority was given to lower numbers. The amount of

dummy data needed for each circuit was determined by counting the number

of times each VAD was stalled. Details of this simulation are provided in

Appendix C.

Ideally, reconfiguration time should decrease by a factor of p as p is in-

creased. For example, for p = 2, the reconfiguration time should be half

that of p = 1. Figure 5.15 reports the fraction by which ARCH-III reduces

the reconfiguration time as p is scaled. This graph is obtained by simulating

the operation of ARCH-III assuming an XCV400 device. The benchmark

circuits were considered and the mean finish time was calculated. This was

then compared to the mean time for p = 1 (i.e. ARCH-II). Details of the
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simulation approach are reported in Appendix C.

Figure 5.15 shows that ARCH-III as described above (arch-iii-base) does

not decrease the reconfiguration time as expected. In fact, there is little,

or no decrease, after p = 2. In order to understand the source of this large

overhead, the configuration bitstreams were analysed once more. It was found

that quite often a VAD had no data to update in the 8-byte segment of the

frame under consideration (i.e. the given segment was null). Nevertheless, it

attempted to access the bus in order to write the dummy data to its FDRI.

To overcome this problem of port stalling due to null bytes, ARCH-III

was enhanced to provide a null by-pass wire from each VAD to its FDRI to

signal that the next eight bytes are simply null. Upon receiving this signal,

the target FDRI automatically inserts dummy frame and mask data. As each

VAD can signal its FDRI independently, contention over the configuration

bus is significantly reduced. Using this approach, the configuration bus is

only used when there is non-null frame data to be transferred. Notice that

by adding the null bypass, there can now be contention over the DF-Bus

as more than one VAD can simultaneously finish loading its frames. The

resulting control for each VAD is shown in Figure 5.14. The operation of

ARCH-III was simulated again assuming the presence of the null bypass bus

(arch-iii-null-bypass). The amount of pad data needed for each circuit was

determined.

Figure 5.15 shows the results. It can be seen that adding the null by-pass

significantly improves the performance of ARCH-III. It can be observed that

the reduction in reconfiguration time is almost linear as p is increased.

In summary:

• In ARCH-II, the user need not know the current configuration state of

the device in order to reduce reconfiguration time as in ARCH-I.

• ARCH-II is likely to dissipate less dynamic power as less data is trans-

ferred over the chip-wide wires.
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• ARCH-II automatically inserts null data in the user supplied bitstream

thereby further reducing the reconfiguration time compared to ARCH-I

(see the analysis of Section 4.5).

• ARCH-III can be scaled with respect to the configuration port size.

The architectures presented in this chapter have ignored the existence

of such artifacts in contemporary FPGAs as Block RAMs (or other embed-

ded structures such as multipliers). While BRAM configuration is not that

significant in quantity, it might become so in the future given the ever in-

creasing transistor density. BRAM configuration can be classified as consist-

ing of BRAM content configuration and BRAM interconnect configuration.

The analysis of this thesis suggests that significant sparsity is expected in

the BRAM interconnect configuration. BRAM content configuration, on the

other hand, is likely to be more application specific and hence further analysis

is needed to characterise its compression.

5.6 Conclusions

This chapter has presented new configuration memory architectures to en-

hance the current Virtex so as to increase its reconfiguration speed. This was

achieved by introducing two new features, byte-level partial reconfiguration

and automatic reset of the configuration memory, into the current device. It

was shown that the new architectural features could be scaled with configura-

tion port size and that they demand negligible additional hardware resources

for their operation. The next chapter explores the benefits of compressing

configuration data and enhances the architectures presented in this chapter

to further reduce the reconfiguration time.
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Chapter 6

Compressing Virtex

Configuration Data

6.1 Introduction

The analysis presented in Chapter 4 suggests that it is more useful to repre-

sent a circuit’s configuration as a null configuration together with an edit-list

of the changes made by the circuit. From the perspective of compressing con-

figuration data, one can simply hard-code the null configuration for a device

in the decompressor and supply it the list of changes needed to implement

the input circuit. The analysis in Chapter 4 investigated various address en-

coding techniques, such as binary encoding, runlength encoding and unary

encoding to represent the locations of the changes in the null configuration

made by the input circuit. This chapter investigates the problem of encoding

configuration data from the broader perspective of compression. The results

of this chapter are published in [62].

Techniques for configuration compression are actively studied in the area

of field programmable logic. There are two motivations behind such meth-

ods. As FPGAs become larger their configuration bitstream sizes increase

proportionately. Compression is seen as a suitable mechanism to reduce
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storage requirements especially if the device is to boot from an embedded

memory. The other motivation behind configuration compression is to re-

duce reconfiguration time for a circuit. The main difference between the two

approaches is that the time to decompress and load configuration data is

not critical in the first case whereas it is an important factor in the second

(please see Section 2.3 for a discussion).

Several researchers have investigated configuration compression showing

20%-95% reduction in configuration data for various benchmark circuits.

However, it is not clear how the various compression techniques can be com-

pared. Indeed, what are the limits of configuration compression? Moreover,

what parameters of circuits and devices impact upon the performance of

these techniques?

To address the above issues, this chapter first proposes an objective mea-

sure of how well a given configuration bitstream can be compressed. Section

6.2 defines the entropy of reconfiguration to be the entropy of the config-

uration bitstream that is required to configure a given input circuit. The

entropy is defined in terms of the probability of finding various symbols in

the configuration data. In order to estimate these probabilities, a model of

configuration data is then presented which is based on a detailed empirical

analysis of the chosen set of benchmark configurations for Virtex devices. In

the light of this model, the entropies of various circuit configurations are then

computed. It is shown that for the benchmark circuits, the entropy remains

almost constant irrespective of the circuit or the device sizes.

Section 6.3 presents an analysis of the existing approaches towards con-

figuration compression. It is argued that these methods not only require

complex operations but also exhibit relatively poor compression. In the light

of this discussion, Section 6.4 then empirically evaluates two simple alter-

native compression techniques: Golomb encoding and hierarchical vector

compression. These techniques are selected in the light of the model pre-

sented in Section 6.2. It is shown that these methods perform within 1-10%

of the best possible compression. Vector compression is chosen for hardware
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implementation due to its simplicity.

Section 6.5 studies the issues related to hardware implementation of a vec-

tor decompressor. A scalable hardware decompression system, ARCH-IV, is

presented and analysed in detail. It is shown that this system translates a

decrease in configuration size, made possible by compression, into a propor-

tionate decrease in reconfiguration time.

6.2 Entropy of Reconfiguration

In order to gain an insight into the performance of various compression tech-

niques and to cross-compare results, this section outlines an approach derived

from the basic results of information theory. Let us consider the FPGA recon-

figuration as a communication problem whereby configuration information is

transfered to the device via the configuration port (which can be thought

of as the channel). Given this viewpoint, one can attempt to measure the

information content of typical FPGA reconfiguration. This will give us a the-

oretical bound on the compression against which the performance of various

encoding schemes can be measured.

More precisely, we are interested in finding the minimum amount of con-

figuration data needed to configure a given circuit on a given device. Con-

sidering a circuit configuration as a bit string, we are interested in finding

the length of the shortest string representing that configuration, i.e. its Kol-

mogorov complexity. However, finding the Kolmogorov complexity of an

arbitrary string is NP hard. This chapter, therefore, follows the approach

commonly used in the field of text compression [79]. If one can model the

data source, i.e. can determine the probabilities of various symbols it out-

puts, then one can easily determine its entropy, which provides a bound on

compressibility. This is what the subsequent sections aim to show.
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6.2.1 Definition

Let us recall the definition of entropy (also called Shannon’s entropy ). Let

X be a discrete random variable defined over a finite set of symbols. Let the

probability distribution function of X be p(x) = Pr(X = x). The entropy,

H(X), can be defined as [83]:

H(X) = −
∑

x∈X

p(x)log2(p(x)) (6.1)

The entropy of a memoryless information source determines the minimum

channel capacity that is needed for a reliable transmission of the source.

In other words, entropy provides an estimate of the minimum number of

bits that are needed to encode a string of symbols produced by the source.

Encoding a message with less than H(X) bits per symbol will result in a loss

of information (or the communication will be unreliable).

Consider an FPGA that is in an unknown configuration state and a new

circuit that is to be configured onto the device. The entropy of reconfigura-

tion, Hr, can be defined to be the entropy of the data source that generates

the configuration bitstream required to configure the input circuit onto the

target FPGA. The interpretation of Hr is that it defines the minimum num-

ber of bits/symbol needed to configure the required circuit and therefore

provides an estimate of the maximum compression possible for the configu-

ration. Application of this method presupposes that FPGA configurations

can be modelled as strings of randomly generated symbols without significant

error. One is therefore charged with finding suitable symbol sets and evalu-

ating a representative set of configurations to determine the validity of the

randomness assumption. Assuming this can be done, it is therefore possible

to assess the performance of given compression heuristics and obtain lower

bounds on the delay involved in configuring the circuit.
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6.2.2 A model of Virtex configurations

Let us formalise the notion of a list of changes that a circuit makes to a null

configuration. A φ′ configuration of a given configuration, C, is simply a

vector that specifies the bits in C that are different from the corresponding

bit in the null configuration. As the null configuration for Virtex devices

does not entirely consist of zeros, let us define φ′ as follows. Let there be a

null configuration, φ, represented as a bit vector of size n bits. Let there be

a circuit configuration C also of size n bits. Let k be the number of bits in

C that differ from the corresponding bit in φ. A new bit vector, φ′, of size

n bits is constructed as follows. All bits in φ that remain unchanged in C

are left unset while the rest are set to one. Thus, φ′ contains exactly k ones.

In other words, φ′ represents the positions in φ where the bits need to be

flipped in order to configure the input circuit. The problem of compressing

configuration data can be transformed into a problem of compressing the

φ′ configuration of an input configuration. This is an incarnation of the

configuration addressing problem defined in Section 4.7.

The aim of the model is to define a suitable symbol set over φ′ and to

assign probability distributions to these. The most striking feature of the φ′

vectors is their sparsity, i.e. long runs of zeros. Given this observation, let

us consider the runlengths of zeros as our symbol set. Let X be a random

variable that specifies this runlength where X ∈ {0, 1, 2, ...., n− 1}. In other

words, X = i means that the output symbol contains i zeros followed by a

one. In the following discussion, a run of length i bits means i zeros followed

by a one. The problem of finding a probability distribution function for the

model data source can thus be formulated as finding a probability distribution

of X.

One could consider alternative symbol sets, such as fixed length binary

codes, to model the configuration data as long as one can satisfy the ran-

domness assumption of the entropy equation. However, if one can model a

random data source using a particular symbol set, S, then any other model
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Circuit XCV200 XCV400 XCV1000
k Hr Shan. k Hr Shan. k Hr Shan.

(bits) %red. (bits) %red. (bits) %red.
encoder 4,302 5.48 98 4,394 5.36 99 4,320 5.28 99
uart 5,321 5.39 98 5,129 5.10 99 5,536 5.15 99
asyn-fifo 5,441 6.00 97 5,885 5.69 99 5,913 5.69 99
add-sub - - - 5,997 6.59 98 6,155 5.84 99
2compl-1 - - - 7,806 6.50 98 9,212 6.18 99
spi 7,983 5.60 96 7,956 5.63 98 8,041 4.93 99
fir-srg 8,534 4.93 96 8,503 4.92 98 8,169 4.72 99
dfir 7,981 5.30 96 8,535 5.09 98 8,710 4.91 99
cic3r32 9,061 5.00 96 9,092 4.88 98 8,478 4.79 99
ccmul 9,956 5.67 95 9,956 5.66 98 10,215 5.55 99
bin-decod - - - 10,670 7.33 97 10,648 6.66 99
2compl-2 - - - 11,154 6.75 97 12,738 6.61 99
ammod 11,546 5.21 95 11,653 5.24 97 12,032 5.27 99
bfproc 14,753 5.04 94 14,859 5.16 97 15,497 5.34 99
costLUT 16,424 5.54 92 16,752 5.76 96 16,093 5.13 99
gpio 30,762 5.35 86 30,924 5.56 93 32,226 5.92 97
irr 34,830 4.81 86 33,648 4.68 93 33,506 4.67 97
des - - - 48,118 5.23 89 49,827 5.88 95
cordic 48,759 4.71 80 49,364 4.63 90 50,202 4.70 96
rsa 49,179 4.78 80 50,121 5.00 89 51,283 5.10 95
dct 52,916 4.84 78 52,999 4.93 89 53,959 5.08 95
blue-th - - - 100,996 4.90 79 101,776 5.39 90
vfft1024 - - - 113,695 4.53 78 114,648 4.75 91
fpu - - - 155,387 4.66 69 155,354 5.01 86

Table 6.1: Predicted and observed reductions in each φ′ configuration.
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that uses a different symbol set, S ′, such that each symbol from S ′ can be

formed from S by simple concatenations yields the same entropy value. The

symbol set that uses runlengths therefore covers a broad symbol space.

To find a probability distribution function for the benchmark φ′ config-

urations, the frequency with which runs of various lengths occur in the test

data is considered. Let f(i) be the number of times a run of length i bits

occurs in a given φ′. Without loss of generality let us assume that the first

and the last bits in φ′ are zeros. With this assumption, the total number of

runlengths in φ′ is k + 1. Thus, the probability that a run of length i bits

occurs in φ′ is given by f(i)
k+1

. The benchmark φ′ configurations for various

devices were examined. For each benchmark configuration, the frequencies

of the shortest few thousand runlengths were determined.

The results are illustrated by considering the φ′ for four selected circuits

on an XCV400. It was found that P (X = 0) was approximately 0.25 for each

case. The remaining run-lengths are distributed as illustrated in Figure 6.1.

The other φ′ configurations in the benchmark exhibit a similar trend.

6.2.3 Measuring Entropy of Reconfiguration

The entropy of reconfiguration for each benchmark circuit, represented as a φ′

vector, was thus calculated using Equation 6.1 with runlengths of zeros as the

symbol set. Results corresponding to circuits mapped onto various devices

are recorded in Table 6.1 under the columns headed Hr. The minimum

bitstream size for a circuit is estimated by k × Hr. Thus, the estimated

minimum number of bits needed to encode the fpu φ′ for an XCV400 is

155, 387 × 4.66 = 724, 103, which is 31.4% of the size of the complete CLB

configuration for an XCV400 (n = 2,304,000). In other words, the best

compression possible for this circuit configuration is 68.6% (Table 6.1 column

Shann. % red.). The figures are rounded due to uncertainty in the results as

indicated. The table is sorted in an increasing order of k.
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Figure 6.1: The relationship between runsize i and P (X = i), i > 0, for
four selected circuits on an XCV400.

132



6.2.4 Exploring the randomness assumption of the

model

On the surface, the problem of establishing the randomness of the runlengths

looks similar to the problem of establishing the randomness of a random num-

ber generator (RNG) for which several methods exist (e.g. the tests used in

[64]). However, a closer analysis reveals that the tests for RNGs assume

that the generated numbers are uniformly distributed, i.e. each number has

the same probability. Figure 6.1, on the other hand, suggests an exponen-

tial distribution. However, several simple experiments can be used to show

that for practical purposes, the randomness assumption of the model is valid.

This assertion is supported by the observation that circuit flattening result-

ing from synthesis, place and route tools should result in a relatively random

use of resources and that this ought to produce a corresponding randomness

in the setting of switches as given by φ′. In the remainder of this subsec-

tion, the experiments conducted to support the hypothesis of random symbol

distribution are reported.

Experiment 1

The motivation behind this experiment is the fact that the entropy of a

random process is independent of the number of symbols already produced.

By verifying that the calculated entropy of successively shorter tails of our

benchmark configurations does not change significantly, some confidence can

be gained that runlengths (set bits) are randomly distributed throughout the

data.

The entropies H t
r of all configurations having skipped the leading t sym-

bols in the φ′ bitstreams were calculated. The results for four circuits that

were mapped to an XCV400 and which are representative of the range in

complexity and size present in the benchmark set appear plotted in Figure

6.2. For these plots the H t
r is calculated at increments of t = 1000. Since

the number of symbols k + 1 per configuration varies substantially for these

133



 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 0  20  40  60  80  100  120  140  160

E
nt

ro
py

 (
H

_r
(t

))

Leading symbols skipped (t(x1000))

"fpu_xcv400_1"
"des_xcv400_3"

"bin_decod_xcv400_15"
"2compl-1_xcv400_20"

Figure 6.2: H t
r as a function of the number of symbols dropped.

circuits, the plot for 2compl-1 is further scaled by a factor of 20, for bin decod

the plot is scaled by a factor of 15, and for des by a factor of 3.

The results for all plots with t < k/2 are relatively constant, which is

encouraging. As t is increased further, the number of symbols left in the

tail becomes too small to accurately measure the probabilities of individual

symbol occurrences.

Experiment 2

In this experiment, the φ′ configuration data was mapped onto a 24-bit RGB

(red green blue) colour space and was visually inspected. Successive 24-bit

sequences of the input data were taken as representing the colour intensity in

the RGB space (one byte for each colour). The result for the circuit fpuxcv400

is shown in Figure 6.3. This figure shows a partial image where each box

represents a pixel. Black pixels represent zeros. A closer inspection of the
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image reveals that the zeros are distributed in an almost random fashion and

any significant pattern is difficult to decipher.

Experiment 3

In this experiment, a Fourier transform was applied to the runlengths present

in various configurations. The Fourier transform converts a signal from the

time domain into the frequency domain. Any significant periodic behaviour

can thus be detected by inspecting the spectrum of the frequency domain sig-

nal. Figure 6.4(a) shows the power spectrum of the φ′ configuration fpuxcv400.

This spectrum can be compared to the spectrum of a random signal which

is shown in Figure 6.4(b). These figures have been produced using MAT-

LAB 7.0 [114]. From the figure, the frequency of runlengths in the input

configuration appears to be randomly distributed.

Experiment 4

This experiment combines Experiments 2 and 3. The configuration images

produced in experiment 3 were transformed into JPEG representation. JPEG

encoding internally performs a two-dimensional discrete cosine transform of

the image followed by quantisation and encoding of the coefficients. JPEG

performs lossy compression of the input image. The extent of the loss can

be traded off with the size of the resulting compressed file. Using Adobe

Photoshop 7.0 [103], the performance of JPEG was varied from the best

compression to the worst (these scales correspond to Adobe’s undisclosed

internal scale). It was found that when JPEG was in near lossless mode,

the resulting files were compressed by less than 10% and in some cases they

were larger than the original (i.e. negative compression). If there were any

significant patterns in two dimensions, the result would have been different.

In its lossy mode, JPEG reduced various input configurations by 85% but

at the cost of considerable image distortion. As it is difficult to estimate

the extent of this information loss, we are unable to provide a quantitative
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Figure 6.3: A slice of configuration data corresponding to circuit fpuxcv400.
The image is shown in 24 bits RGB colour space.
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analysis of JPEG’s compression for the data under test.

The results of the above experiments suggest that for practical purposes,

one can consider the set bits in an FPGA configuration data to be randomly

located and can therefore apply Shannon’s formula to measure the entropy.

6.3 Evaluating Existing Configuration Com-

pression Methods

This section analyses a well-known result that is based on the LZSS compres-

sion method [53] and a recent result that outperforms the LZSS technique

[71]. These methods are analysed in the light of the entropic model outlined

above and by considering the complexity of the hardware decompressors. It

is shown that while these methods provide a fair enough performance, the

complexity of compression and decompression highlights the need for simpler

methods.

6.3.1 LZ-based methods

The LZ algorithm

LZ-based techniques examine the input data stream during compression [79]

A dictionary of already seen data patterns is maintained. When new data

arrives, this dictionary is examined to see if the pattern in the new data

already exists in the dictionary. If it does, then an index to that pattern and

the pattern length is output, else the new pattern is added to the dictionary.

Several variations of this basic idea exist (e.g. LZ77 [101], LZ78 [102], LZSS

[89], LZW [97] . See [79] for a detailed discussion). In general, LZ78 and LZW

achieve better compression ratios but they require large dictionary sizes.

In the context of configuration compression, they are therefore considered

less suitable because large dictionary sizes imply maintaining a large on-

chip memory. On the other hand, LZ77 and its variations have attracted
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considerable attention because they require a small buffer, or sliding window,

to keep the dictionary.

The LZ77 algorithm exploits regularities between successive pieces of

data. The algorithm examines the last b data units where b is the buffer

size. If an incoming string is found to match a part of the buffer, the al-

gorithm outputs the index of the pattern in the buffer, the pattern length

and the data unit following the match (an example is provided in Figure 6.5).

The LZ77 algorithm produces codewords, each consisting of three fields, even

if no matches are found. This can be inefficient. An enhanced procedure,

LZSS, requires the pattern length to be higher then a given threshold. If

the pattern length is less than the threshold then the original data units

are simply reproduced in the output. Moreover, LZSS only outputs the pat-

tern index and the pattern length. An extra bit is provided to differentiate

between compressed and uncompressed data.

After applying various compression methods, such as Huffman, LZSS and

Arithmetic encoding, on a set of Virtex configurations, the authors of [53]

chose LZSS due to its enhanced performance and simpler hardware decom-

pressor. Currently, Virtex uses a buffer called the frame data register (FDRI)

to store configuration frames before shifting them into their final destinations

(see Figure 5.1). A new Virtex was suggested that had an extended FDRI

(which could store two frames at a time). This was to be used as the LZSS

buffer during decompression. As more than one frame could be stored in the

FDR, the LZSS method exploited both intra-frame and inter-frame similar-

ity. Since a frame contributes 18 bits to each CLB in the column it spans,
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symbol sizes of 6 and 9 bits were considered . An algorithm for re-ordering

frames was also developed so that frames with common data were shifted

into the device in succession. Another algorithm reads frames that had al-

ready been loaded back into the FDR in order to improve the compression

performance of the frame under consideration. The authors reported 30%

to over 90% reduction in configuration data for a variety of circuits (e.g.

marsxcv600, rc6xcv400, serpentxcv400, rijndaelxcv600, glidergunxcv800, U1pcxcv100).

The configurations that were compressed by a significant amount exhibited

either one of two features:

• The circuit utilised a small proportion of the device resources although

it is not clear how circuit utilisation was measured (e.g. U1pcxcv100 is

claimed to use 1% of the chip), or

• The circuit was handmapped onto the target device and was highly

regular in structure (e.g. glidergunxcv800).

In order to estimate the performance of LZSS for the benchmark set

considered in this work, a simulation method was developed as discussed

below.

The LZSS simulation method

The performance of the LZSS algorithm is based on two factors:

1. The buffer size. Larger buffers are likely to lead to more pattern match-

ing, but by the same token to higher addressing (or indexing) and run-

length cost.

2. The organisation of data. Common patterns must be spatially contigu-

ous otherwise they will not be found in the buffer for the sake of com-

pression. Thus, for best performance, data re-organisation is required

to temporarily align similar data fragments. (Note that, in contrast,
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techniques like Huffman compression are oblivious to the organisation

of the input data.)

One can vary buffer sizes and study various data reordering methods

to measure the performance of the LZSS procedure. As this is a complex

problem in itself, a hypothetical LZSS algorithm was applied to a small

subset of the benchmark circuits in order to obtain a rough estimate of the

performance.

In this simulation, the buffer size was set to twice the frame size as in [53].

To avoid the complexity of frame ordering, a perfect ordering was assumed

which led to the best partner frame of each frame already being in the FDR.

This would give us an optimistic upper bound on the performance. It should

be noted that there might not be any frame ordering that allows the best

partner frame of each frame to always be in the FDR or to be able to be

read-back from the memory array (the method reported in [53] takes this

issue of frame dependency into account).

The procedure LZSS Simulation is shown in Algorithm 3. Each frame

in the configuration is compressed individually by pairing it with all frames

at the same index in all other columns. The smallest compressed size is

then recorded for that frame. The compressed size of a frame is estimated

by inserting the partner frame into the FDR and then applying the LZSS

method to the input frame. The threshold size for the pattern match is set

to address size + runlength size. The address size and run-length size are

both set to �log2(2f)
 where f is the frame size of the device used.

Algorithm 3 was applied to the benchmark circuit configurations on an

XCV400. Only CLB-frames were considered in each configuration and null

data was not removed. Four symbol sizes considered were: 1, 6, 9 and 18

bits.
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Algorithm 3 LZSS simulation

Input:frames[];

int total cost,min cost,partner frame index,temp cost;
total cost =0;
for i = 0 to total number of input frames do

min cost ← ∞;
for j = 0 to number columns device do

partner frame index = j*48+i%number columns device;
if i==partner frame index then

continue;
end if
insert frames[partner frame index] into FDR;
temp cost = perform lz compression(frames[i],FDR);
if temp cost<min cost then

min cost = temp cost;
end if

end for
total cost+=min cost;

end for

Output: total cost;
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Circuit Shan. LZSS Simulation %red.
%red. 1-bit 6-bits 9-bits 18-bits

encoder 99 98 98 98 98
uart 99 98 98 98 98
asyn-fifo 99 98 98 98 98
add-sub 98 98 98 98 98
2compl-1 97 97 98 98 98
spi 98 96 97 97 97
fir-srg 98 97 97 97 97
dfir 98 97 97 97 97
cic3r32 98 97 97 97 97
ccmul 98 96 97 97 96
bin-decod 97 94 95 95 95
2compl-2 98 96 96 96 96
ammod 97 95 96 96 96
bfproc 97 95 95 95 95
costLUT 96 92 93 93 93
gpio 93 88 89 90 89
irr 93 89 90 91 90
des 89 82 83 84 83
cordic 90 85 86 86 86
rsa 89 83 84 85 84
dct 89 82 83 84 83
blue-tooth 78 64 66 68 67
vfft1024 78 64 66 68 66
fpu 69 48 52 54 52

Table 6.2: Estimating the maximum performance of the LZSS compression
method with frame reordering. Target device = XCV400.
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Results

Results are shown in Table 6.2. The percentage reduction in configuration

data as predicted by the entropy measure for the XCV400 device is listed in

the second column. The third column lists the maximum possible percentage

reduction as predicted by Algorithm 3 for the listed symbol sizes.

Analysis

Table 6.2 show that the LZ method compresses sparse circuits better than

dense ones, as expected. These tables show that the compression increases

slightly when the symbol size is increased from 1-bit to 6-bits. However, it

decreases after 9-bits. It should be noted that these figures are optimistic

and the real performance will be less.

The LZSS method with frame reordering not only requires a complex

algorithm but also a complex hardware decompressor. The decompressor

presented in [75] requires a crossbar whose size depends upon the frame size.

Since the area complexity of a crossbar is Θ(n2), the system scales poorly

with the device size. Moreover, the work in [75] makes no attempt to take

into account the configuration port as a design parameter. This is important

for two reasons:

• If the code size does not match the configuration port size then some

fragmentation is likely to be observed. This is a performance factor in

the case of variably sized code words.

• As the port size is increased, one should observe a corresponding de-

crease in the reconfiguration time. In other words, the hardware de-

compressor must also scale with the port size.
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6.3.2 A method based on inter-frame differences

Recently, a configuration compression method targeting Virtex has been pre-

sented in [71] that exploits both inter- and intra-configuration regularities.

This method focuses on inter-frame differences. A beneficiary frame of a given

frame in an input configuration is the one that needs the minimum number of

bit flips to convert it into the target frame. Once a difference frame has been

generated, Huffman encoding is applied on the runs of zeros and ones sepa-

rately, i.e. the symbol set consists of runs of zeros and ones. An algorithm

to determine beneficiary frames in a given configuration is also presented in

[71]. Please note that the problem of frame dependency is also present in

this case as the beneficiary frame of a frame must already be on-chip before

the difference frame can be loaded onto the device for decompression. These

concepts are then generalised for inter-configuration compression. With a

small set of benchmark circuits (rsa, des, tripledes, jpeg) the authors demon-

strated 26-76% compression. While no decompressor is detailed, the authors

do acknowledge that up to 3KB of on-chip memory might be needed to store

Huffman tables.

The results of Section 4.6 suggest that if the distance metric between two

frames is taken to be the number of bits that are different in the target frame

from the candidate beneficiary frame, then most likely a null frame will be

the closest. In order to test this hypothesis, a simulation was performed.

Algorithm 4 compares each non-null frame with every other non-null frame

in the input configuration and determines the minimum distance between

them. This distance is then compared with the distance between each frame

and the corresponding null frame. If the distance with the null frame is no

larger, the null frame is taken to be the beneficiary frame. The output is the

total number of null beneficiary frames as a percentage of the total number

of input non-null frames.

Results for the set of benchmark circuits are shown in Table 6.3. This

table clearly shows that in almost all cases, a null frame is as close as it is
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possible to get to each frame in the configuration. This result can easily be

explained in the light of the configuration model. As the total number of set

bits in a given φ′ is small and are almost randomly distributed, there will be

almost no overlap between the non-null bits of any two frames.

Algorithm 4 Inter-frame difference simulation

Input:frames[];

int v,vφ, temp min;
for i = 1 to total number of input frames do

temp min← ∞
if (frames[i]==null frame[i]) then

continue;
end if
v++;
for j = 1 to total number of input frames do

if (i==j) then
continue;

end if
if diff(frames[i],frames[j])<temp min then

temp min = diff(frames[i],frames[j]);
end if

end for
if diff(frames[i],null frames[i])<=temp min then

vφ++;
end if

end for

Output: vφ/v;

6.3.3 Conclusions

The analysis presented above suggests that complex algorithms to re-order

frames so as to decrease the distance between successive frames are somewhat

redundant. Thus, the author suggests that what is actually found common

between frames by the methods of [53, 71] are null data. Thus, the method

of [53] can be seen as compressing approximate φ′ using LZSS while the

method of [71] applies Huffman encoding to these configurations. The latter
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Circuit #Non-null 100*vφ/v
frames

encoder 696 100
uart 1,031 100
asyn-fifo 1,579 100
adder-sub 1,545 100
2compl-1 1,726 100
spi 1,163 100
fir-srg 632 100
dfir 1,161 100
cic3r32 939 100
ccmul 1,055 100
bin-decoder 2,263 99
2compl-2 2,180 100
ammod 1,655 100
bfproc 2,159 100
costLUT 1,526 100
gpio 2,127 100
irr 1,492 100
des 2,590 100
cordic 1,796 100
rsa 2,125 100
dct 2,314 100
blue-tooth 2,879 99
vfft1024 2,781 100
fpu 2,880 99

Table 6.3: Results of executing Algorithm 4 on the benchmark circuits.
Target device = XCV400.
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method outperforms the former because LZSS demands a fixed length index

to the buffer while Huffman encoding relaxes this condition. The model

suggests that both techniques are likely to be sub-optimal for typical circuits

for the following reason. Consider a typical φ′ and a fixed-sized LZSS buffer

(e.g. twice the frame size). As various runs of zeros are almost randomly

distributed, it is less likely that LZSS finds long patterns of successive runs.

Moreover, since the total number of runs that are likely to be encountered in

a buffer of twice the frame size is expected to be small, LZSS will not have

sufficient data to detect patterns. On the other hand, Huffman encoding is

optimal when the symbol frequencies are distributed according to increasingly

negative powers of two [79]. Figure 6.6 illustrates this is not the case for the

frequencies of zeroes runlengths by plotting the shortest 32 runlenghts of the

four previously studied circuits against exp = 2−x.

6.4 Compressing φ′ Configurations

This section discusses configuration compression in the light of the model

outlined in the previous section. Two simple compression methods are stud-

ied: Golomb encoding and hierarchical vector compression. It is shown that

both schemes perform reasonably well for the benchmark circuits with vector

compression providing slightly better performance.

6.4.1 Golomb encoding

The Golomb encoding scheme is a variable-to-variable encoding that can be

considered to be a variant of runlength encoding. Let us suppose that we

would like to encode the runlengths of zeros in an input φ′. The runlengths

can be of size 0, 1, 2, ...n. Golomb encoding divides the runlengths into groups

of size m (Table 6.4). The parameter m is the optimisation parameter. The

jth group of runlengths is assigned a unique group prefix by concatenating

j ones followed by a zero. Within each group, m runlengths are identified
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Figure 6.6: Comparing probability distribution of the shortes 32 runlengths
in four selected φ′ configurations with exp=2−x. Target device = XCV400.
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Group
Group Run-length Prefix Tail Codeword

0 00 000
A0 1 0 01 001

2 10 010
3 11 011
4 00 1000

A1 5 10 01 1001
6 10 1010
7 11 1011
8 00 11000

A2 9 110 01 11001
10 10 11010
11 11 11011

... ... ... ... ...

Table 6.4: Golomb Encoding: an example for m=4 (taken from [12]).

0001 00100000001001000000100001000001 1 00001Input Vector
Runlengths

Output vector

272644053

011 1001 000 1000 1000 1010 010 1011 001

Figure 6.7: An example of Golomb encoding (taken from [12]).

using a binary code (also called the tail). Thus, each runlength can be

uniquely identified by concatenating its group prefix with its tail. An example

encoding is shown in Figure 6.7.

In order to evaluate the performance of Golomb encoding, the complete

φ′ configurations for all benchmark circuits were compressed using Golomb

encoding for various m ranging from 2 to 512.

Results are shown in Tables 6.5 to 6.7. These tables present the percent-

age reduction in the amount of configuration data for various values of m for

three Virtex devices. The column under the heading Shan. % red. lists the

best possible percentage reduction compared to the complete CLB configu-

ration. The following columns then list the percentage reduction achieved

using Golomb encoding.
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Tables 6.5 to 6.7 demonstrate that Golomb encoding compresses the con-

figurations reasonably well. The φ′ configuration for the smallest circuit,

encoder on an XCV400, is compressed by 97.92% while the optimal com-

pression predicted by the entropic model is 99%. In general, the deviation

from the ideal increases with k. However, this increase is small compared to

the increase in k. For example, k increases from 4,394 to 155,387 which is al-

most a 36 fold increase. The difference between the ideal and real percentages

only increases from 1% to about 10% (for the case of the fpu circuit).

6.4.2 Hierarchical vector compression

This section discusses another technique for compressing sparse bit vectors.

This method is illustrated in Figure 6.8 (taken from [14]). Let us refer to

the uncompressed vector as Level-0 (l0) (in the example, |l0| = 27). This

vector can be compressed as follows. Partition the vector into equal sized

blocks each of size b0 bits. In the example, b0 has been taken to be three.

Next, drop the blocks that only contain zeros. However, this will not allow

us to reconstruct the original vector as we need to know where to insert the

zeros. Create a new vector (l1) whose length, |l1|, is equal to the number

of blocks at l0 (nine in this example). The leftmost bit of this new vector

corresponds to the leftmost block of the l0 vector, the second bit corresponds

to the second block and so on. A bit in the l1 vector is set if there is a set

bit in the corresponding block at l0. For example, the leftmost block in the

l0 vector has a set bit therefore the leftmost bit in the l1 vector is set.

The resulting l1 vector can now be compressed by applying the above

procedure recursively. In the example, it is assumed that the block size is

still the same, i.e. b1 = 3. The vector at l2 and the resulting compressed

vector are shown in Figure 6.8. This procedure can be repeated until a

reasonable compression is achieved. The number of levels lj and associated

block sizes, b0, b1..bj , are the optimisation parameters in this procedure.

The benchmark φ′ configurations for variously sized devices were exam-
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Level−0

Level−1

Level−2

001 101 000 000 000 000 110 000 010

bits

001 101 110 010

000 101110

101

b

Figure 6.8: An example demonstrating the hierarchical vector compression
algorithm. The uncompressed vector address is shown at Level-0. The re-
sulting compressed vector is shown below the levels of compression (taken
from [14]).

ined. The hierarchical vector compression was then applied to each φ′. The

lowest block size, b0, was varied from 2 to 128. Higher level block sizes were

set to be the same and between two and five levels of compression in total

were considered. The block size is therefore referred to as b in the following.

The best results were obtained for all circuits when three levels of com-

pression were used with b = 4 or b = 8. By three levels of compression it is

meant that the recursive compression procedure was stopped once the Level-

3 vector was produced. Tables 6.5 to 6.7 report the results for three Virtex

devices. It can be observed that vector compression performs within 5% of

the limit predicted by Shannon’s formula. It performs better than Golomb

encoding for small k but slightly worst for larger k. A second observation

is that its optimisation parameters, l and b, vary less as compared to the

optimisation parameter, m, of Golomb encoding.

6.5 ARCH-IV: Decompressing Configura-

tions in Hardware

The previous section showed that simple techniques such as Golomb encoding

and hierarchical vector compression perform reasonable compression when
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Circuit Shan. Golomb VA ARCH-IV
%red. %red. m %red. b %red.

encoder 98 96 256 97 8 97
uart 97 96 128 96 8 96
asyn-fifo 97 95 128 95 4 95
add-sub - - - - - -
2compl-1 - - - - - -
spi 96 94 128 94 4 95
fir-srg 96 94 128 94 8 95
dfir 96 94 128 94 4 95
cic3r32 96 93 64 94 4 94
ccmul 95 93 64 93 4 93
bin-decod - - - - - -
2compl-2 - - - - - -
ammod 95 92 64 92 4 93
bfproc 93 90 64 91 4 92
costLUT 92 89 64 90 4 90
gpio 86 82 32 83 4 83
irr 85 78 64 81 4 81
des - - - - - -
cordic 80 74 16 76 4 76
rsa 80 74 16 76 4 76
dct 78 72 16 74 4 74
blue-th - - - - - -
vfft1024 - - - - - -
fpu - - - - - -

Mean 91 88 89 89

Table 6.5: Comparing theoretical and observed reductions in each φ′. The
target was an XCV200.
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Circuit Shan. Golomb VA ARCH-IV
%red. %red. m %red. b %red.

encoder 99 98 256 98 8 97
uart 99 98 256 98 8 97
asyn-fifo 98 97 256 97 8 96
add-sub 98 97 256 97 8 96
2compl-1 98 97 256 96 4 95
spi 98 97 256 97 8 96
fir-srg 98 96 256 97 8 96
dfir 98 96 256 97 8 96
cic3r32 98 96 128 97 8 96
ccmul 98 96 128 96 8 95
bin-decod 97 96 128 95 4 94
2compl-2 97 95 128 94 4 94
ammod 97 95 128 95 8 95
bfproc 97 94 128 94 4 94
costLUT 96 94 128 94 4 93
gpio 93 89 128 90 4 90
irr 93 88 32 90 4 90
des 89 85 32 86 4 86
cordic 90 85 32 87 4 87
rsa 89 84 32 86 4 86
dct 89 84 32 86 4 86
blue-tooth 78 73 16 74 4 74
vfft1024 78 71 16 73 4 73
fpu 69 63 16 62 4 62

Mean 93 91 91 90

Table 6.6: Comparing theoretical and observed reductions in each φ′. The
target was an XCV400.
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Circuit Shan. Golomb VA ARCH-IV
%red. %red. m %red. b %red.

encoder 99 99 512 99 8 99
uart 99 99 512 99 8 99
asyn-fifo 99 99 512 99 8 99
add-sub 99 99 512 98 8 98
2compl-1 99 98 512 99 8 99
spi 99 98 512 99 8 99
fir-srg 99 98 512 99 8 99
dfir 99 98 512 99 8 99
cic3r32 99 98 512 99 8 99
ccmul 99 98 512 98 8 98
*bin-decod 99 98 512 97 8 97
*2compl-2 99 98 256 97 8 97
ammod 99 98 256 98 8 98
bfproc 98 97 256 97 4 97
costLUT 97 97 256 98 4 98
gpio 97 95 256 95 4 95
irr 97 95 128 96 8 96
des 95 93 128 93 8 92
cordic 96 92 64 94 8 94
rsa 95 92 64 93 4 94
dct 95 92 64 93 4 94
blue-tooth 90 87 32 88 4 88
vfft1024 91 85 32 88 4 88
fpu 86 81 32 83 4 83

Mean 97 95 96 96

Table 6.7: Comparing theoretical and observed reductions in each φ′. The
target was an XCV1000.
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compared with the fundamental entropy limit. For a set of benchmark cir-

cuits, it was found that both methods provide similar levels of performance.

Vector compression is preferred for hardware implementation because it is

simpler and provides slightly better performance.

This section presents ARCH-IV, which incorporates a hardware vector de-

compressor. The design of ARCH-IV is an enhancement of ARCH-II which

was discussed in Chapter 5. ARCH-IV is designed with b = 4 and a con-

figuration port width of 4-bits. It is assumed that vector compression is

performed to the height of three levels.

6.5.1 Design challenges

This section discusses various challenges associated with the decompressor

design. In order to motivate the discussion, please consider Figure 6.9 which

illustrates a general model of a memory. Data is written into the memory

via a port while an internal controller generates the necessary signals for the

network and for the array in order to perform a read or a write operation.

The required on-chip decompressor not only needs to interface with the

memory controller but also with the data distribution network. With the

designs of Chapter 5 in mind, the first design requirement is that the decom-

pressor should decompress at the same rate as data is input to the device

thereby translating the compression gain into a reduction in reconfiguration

time. This constraint demands a higher bandwidth from the on-chip data

distribution network. In other words, the network should allow the distribu-

tion of uncompressed data from the decompressor to the memory array at

the same rate at which data is being uncompressed.

On the flip side of the coin, reconfiguration time should decrease as the

port size is increased. This requirement means that the decompressor should

scale with an increase in the port size and should still be able to match the

externally available bandwidth with the internal bandwidth. The problem is

complicated by the fact that different circuit configurations are compressed
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Figure 6.9: The environment of the required decompressor.

to different degrees and therefore one cannot simply fix the ratio between the

internal and external bandwidths.

Lastly, the configuration memory of an FPGA shares VLSI resources with

the computational plane (CLBs, switches and the user IO pins) and therefore

must not demand significant additional chip area.

6.5.2 Solution strategy

In order to simplify the design of the decompressor, the design of the internal

network is fixed. It is assumed that the memory array is implemented using

SRAM cells and sufficient on-chip bandwidth exists for the decompressor to

write one frame of data to the destination register within a single cycle. Vir-

tex provides such a mechanism. A two-dimensional mesh of control and data

wires is needed to fulfil this requirement. This network model is already well

established in the memory design arena. No doubt more elaborate network

models can be conceived. Modern chips contain several metal layers and thus

a tree-like network that mirrors the hierarchical compression scheme can be

designed. However, such designs are likely to demand significant additional

area and would thus be less attractive for designers of future FPGAs.
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As stated above, it is assumed that an SRAM-style internal interconnect is

available whereby the required decompressor can access at most one frame at

a time. The decompressor therefore can perform decompression on a frame-

by-frame basis. The input data is also compressed on a frame-by-frame basis

using the hierarchical compression method. Later it is shown that frame-

by-frame compression yields results similar to those for device-level vector

compression.

Please note that the block size that is used in the vector compression

is not considered to be an indepedant variable in the decompressor design.

This is because it was previously shown that a fixed block size of b = 4

is sufficiently good for all circuits on Virtex devices and b = 8 is the next

best choice. The same is true for the number of compression levels used,

which is fixed at three. These results will be confirmed again for frame-level

compression. With these decisions, the main concern is the scalability of the

decompressor with increasing device size and with increasing configuration

port width.

6.5.3 Memory design

ARCH-II is enhanced to incorporate a vector decompressor resulting in

ARCH-IV. The new memory internally generates null frames in the same

manner as ARCH-II while the input φ′ configuration is being decompressed.

The generated null frames are then modified based on the uncompressed φ′

data before writing to the target frame registers.

In ARCH-IV, the vector decompressor receives φ′ vectors (Figure 6.10)

and outputs uncompressed data into the mask register. The size of the null

frame register is set to f bits. Once the mask register is full, i.e. it contains

a complete frame of φ′, the contents of the null frame are written into the

intermediate register based on the contents of the mask register. A bit in

the null frame register is written to the intermediate register as is if the

corresponding bit in the null frame is cleared, otherwise it is complemented.
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The memory operates in a pipelined fashion. As decompressing a frame

can take several cycles, the null frame generator is used in the background

to generate null frames for the null blocks. The null blocks address is stored

in the NBA register. When a φ′ vector for a frame is ready, the null frame

generator is switched to generate a null frame for the user block address

(UBA register) instead of the null block address. The required user frame

is then written to the intermediate register as explained above. The process

iterates until all user frames have been loaded. When there are many more

null than user frames to be written, configuration may need to continue

after decompression has finished to complete circuit loading. The worst case

scenario is that only 1 bit per user frame needs to be loaded. For an XCV400,

such a frame can be decompressed in 7 cycles, thus if such a pathological

configuration has more than 7 times as many null frames it will need to wait

after loading is completed before the device is available for use. Typical

configurations need many more cycles on average to load user frame data,

and therefore provide ample time for all null frames to be loaded in the

background. As an example, consider the circuit encoder on an XCV400.

The total amount of VA data for this circuit is only 2% of the complete

XCV400 bitstream size. This amounts to around 5,760 bytes which is almost

double the total number of frames in the device (2,880).

6.5.4 Decompressor design

The configuration port size in the new memory is set to 4 bits so that it

matches the block size. As three levels of compression are used, four bits of

the Level-3 vector span 256 bits at Level-0. The decompressor therefore op-

erates in units of 256 bits (Figure 6.11). These units are sequentially selected

using a control shift register which is initialised by asserting the topmost bit.

The Vector Address (VA) decoding system performs decompression of the

input φ′ vector and outputs 64 bits of the Level-0 vector at a time. This 64-

bit word is temporarily stored in the vector-address-decoder register (VAD
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Figure 6.10: The proposed memory architecture.

register). At the same time, the VA decoding system outputs a 4-bit control

word in the data-forwarding control (DFC) register. This 4-bit word selects

one of the four 64-bit registers currently selected by the control shift-register.

The decompressor reads in a φ′ and sequentially updates the entire mask reg-

ister 64-bits at a time. Once 256-bits of a unit are updated, the control shift

register is signalled and the next unit is selected. The cycle repeats until all

units in a frame are updated. Note that there can be a final partial block

in the mask register because Virtex frames are not always a multiple of 256

(e.g. XCV400 has an 800-bit frame).

The architecture of the VA decoding system is shown in Figure 6.12. The

VAD register is a 4×16 register controlled by a 16-bit word which selects one

of the 4-bit registers at a time. A hierarchical vector is decoded by traversing

the various compressed levels in parallel. The Level-i vector is latched into

the V ADi register one 4-bit compressed VA word at a time. Each register

produces a sequence of 4-bit output vectors that respectively indicate which

bits in the VA word, from most to least significant, are set. In turn, the
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Figure 6.11: A high-level view of the decompressor.

V AD1 output vectors indicate which 4-bit block of the VAD Register the

next 4 bits from the interface circuit (corresponding to l0) are written to.

V AD2 output vectors control which block of 16 bits the V AD1 vectors refer

to, and the V AD3 vectors determine which 64-bit block of the mask register

the VAD Register contents are written to. The internal details of a VAD can

be found Section 5.3.2.

6.5.5 Design analysis

As discussed in the previous section, the approach followed in the ARCH-IV

design is to perform decompression on a frame-by-frame basis. This method

is likely to increase the size of the compressed bitstream as the frame sizes

cannot always be an integral multiple of bj+1. Due to this factor, additional
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data needs to be inserted at higher levels to make for even-sized blocks. This

is compensated for in the results shown for three device in Tables 6.5 to 6.7

under the ARCH-IV % red. columns. These results show that the enhanced

configuration architecture achieves comparable results to the previously anal-

ysed methods.

In terms of area, the main component that is added to the existing Virtex

is the decompressor. This system is based on the vector address decoder

(VAD) of Chapter 5. The area of the decompressor is therefore approximately

three times that of the VAD (Section 5.3.3). The current Virtex already

contains a 32-bit configuration bus. Thus, ARCH-IV adds a 32-bit bus that

spans the height of the chip and a small number of gates for the decoding

system. As only one VAD operates on the input datum at any point in time,

the critical delay of the decompressor is the same as that of a single VAD

(i.e. around 14 nsec, see Section 5.3.3).

Table 6.8 shows the performance of ARCH-IV as compared to the current

Virtex. Comparing the performance of ARCH-IV with that of ARCH-II (see

Table 5.2) shows that VA compression decreases the reconfiguration time of

small circuits significantly more than it does that of large circuits. ARCH-
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IV offers an additional benefit of eliminating the mask control circuitry from

ARCH-II.

ARCH-IV assumes a 4-bit configuration port. This system can be readily

scaled to wider port sizes. Assume that the port size is increased from 4 to 4p

where p is a strictly positive integer. The system is scaled by implementing

p decompressors each with its own mask register. Each p is assigned a 4-bit

portion of the port and operates independently of the other decompressors.

The p decompressors share a single 64-bit bus to reach their assigned mask

register, When a particular decompressor is ready to write its 64-bit word

to its mask register, it asserts a bus request signal. As several decompressors

can assert this signal simultaneously, a priority decoder is used to resolve bus

conflicts. The decompressors that are waiting to access the bus are stalled

and the user needs to insert dummy data to the bitstream to account for

this.

As the port size is increased from 4-bits to 4p bits, reconfiguration time

ideally decreases by a factor of p. However, the proposed architecture is

likely to pose some additional overhead due to port stalling. The operation

of ARCH-IV was simulated for various values of p. The simulation method is

similar to that is presented in Appendix C. The number of cycles needed to

configure each benchmark circuit on an XCV400 was determined. For each

circuit, a reduction factor was computed by dividing the number of cycles at

the port size under consideration by the number of cycles needed in the base

case which was taken to be p = 1. Figure 6.13 shows the mean reduction

factors over all circuits for various values of p.

Table 6.9 compares the overall performance of ARCH-III and ARCH-IV.

The first column lists the port size in bits. The second and third columns list

the mean reconfiguration time on ARCH-III and ARCH-IV respectively when

compared to Virtex. This figure is calculated from the last rows of Tables

5.2 and 6.8. The rows of Table 6.9 are calculated from the data plotted in

Figures 5.15 and 6.13. For example, when p = 2, ARCH-III and ARCH-

IV reduce reconfiguration time by a factor of 0.51 and 0.57 respectively.

163



Circuit % Reduction
XCV200 XCV400 XCV1000

encoder 90 92 94
uart 91 95 97
asyn-fifo 92 95 98
add-sub - 95 95
2compl-1 - 94 98
spi 89 93 97
fir-srg 82 90 97
dfir 89 94 97
cic3r32 89 92 94
ccmul 87 89 92
bin-decod - 94 96
2compl-2 - 92 95
ammod 86 91 96
bfproc 84 92 96
costLUT 83 90 91
gpio 81 87 92
irr 77 83 90
des - 84 93
cordic 75 79 89
rsa 73 81 86
dct 72 83 83
blue-th - 74 87
vfft1024 - 72 82
fpu - 62 79

Mean 98 87 92

Table 6.8: Percentage reduction in reconfiguration time of ARCH-IV com-
pared to current Virtex.
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Figure 6.13: The overhead of ARCH-IV for large sized ports.

Thus, the mean reconfiguration time of these devices at a port size of 16 bits

is calculated to be 19% and 3% of Virtex reconfiguration time. Table 6.9

suggests that, assuming typical circuits, reconfiguration time of ARCH-IV is

almost negligible compared to Virtex even at medium sized ports.

While ARCH-IV can be scaled well for practical port sizes, it can be

further enhanced. One method to reduce the contention over the DF bus

is to pipeline the operation of forwarding the frames to the memory array.

Figure 6.14 shows an enhanced ARCH-IV, which splits the memory array into

two halves, labelled top and bottom. The intermediate register is also split

into two halves. The idea is when the top half of a frame is updated in the

top half of the DF register of a decompressor, it is immediately scheduled for

a transfer to the top half of the intermediate register while the decompressor

operates on the bottom half of the frame. If a circuit spans both top and

bottom of the device then some of the delay that arises due to contention

over the DF-Bus in ARCH-IV can be hidden.

165



Port size %Reconfiguration Time
(bits) of Virtex

ARCH-III ARCH-IV

8 38 5
16 19 3
32 11 2
64 6 2

128 4 2

Table 6.9: Percentage reduction in mean reconfiguration time for the bench-
mark set of ARCH-IV compared to current Virtex.

Additional hardware is necessary to control the scheduling of the two

memory planes. Firstly, we need another decoder to select one of the two

halves for a write operation. Secondly, the DF-Bus arbiter has to be shared

between the two halves. We do not need to replicate the DF-Bus arbiter as

only one of the halves can be written to in any one cycle, therefore needing

only one arbiter that can be shared among the two halves of each decom-

pressor.

It is envisaged that the above method of pipelining ARCH-IV applies to

devices such as Virtex-4 [124]. These FPGAs have a fixed-sized frame and

appear to have several memory pages that span the entire width of the device

(similar to the arrangement shown in Figure 6.14).

6.6 Conclusions

This chapter has three main contributions.

• It has developed the idea of entropy of reconfiguration an objective

measure of configuration compression quality. The entropy of reconfig-

uration for a set of benchmark circuits was measured and shown to be

almost constant indepedant of the circuit and device sizes.

• It has shown that simple off-the-shelf techniques such as Golomb en-
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Figure 6.14: Pipelining the operation of loading the frames.

coding and hierarchical vector compression perform reasonable com-

pression of the configurations under test.

• It has presented new scalable configuration architectures that incor-

porate a configuration decompressor system inside the FPGA. These

systems have shown to translate the reduction in configuration data,

made possible by compression, into a proportionate reduction in recon-

figuration time.
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The above analysis, however, ignores the power dissipation which in-

creases by at least the same proportion by which reconfiguration time is de-

creased. The power increases because of the increased rate at which switches

are flipped inside the memory in order to store configuration frames. ARCH-

IV can easily be further enhanced to allow the user to vary the configuration

port size during reconfiguration. Thus, depending on the applications, re-

configuration speed can be traded off against reconfiguration power.

The analysis of this thesis suggests that if the null configuration of a device

entirely consists of zeroes then there are only a small number of bits that need

to be flipped in the memory during reconfiguration. This fact can possibly

be used to design a memory that is power efficient during reconfiguration.

Such a memory will only switch on those rows of the SRAM cells where there

is a set bit to be written as opposed to ARCH-IV where all rows of the device

are simultaneously switched on for a write operation.
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Chapter 7

Configuration Encoding for

Generic Island-Style FPGAs

7.1 Introduction

The thrust of this thesis is to reduce reconfiguration time of an FPGA at

its configuration data level. In particular, the aim is to reduce the amount

of configuration data that needs to be loaded onto the device in order to

configure a given circuit. So far, the thesis has examined various methods to

reduce the amount of configuration data corresponding to typical circuits on

Virtex FPGAs [123]. This chapter examines the application of these methods

to a wider class of island-style FPGAs.

The previous chapters have presented several characteristics of typical

Virtex configurations which were formalised into an entropic model of config-

uration data in Chapter 6 (see Figure 7.1). The model views Virtex configu-

rations as mainly consisting of null data with a small amount of non-null data

randomly distributed over the area spanned by the input circuit. The benefit

of this model is that it predicts the size of the compressed bitstream that an

optimal runlength compression method outputs and therefore allows us to

compare the performance of various proposed compression techniques. Sev-
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eral empirical tests have shown that the assumptions underlying the model

are valid and that its predictions are accurate for practical purposes. The

previous chapters also showed that existing compression methods, such as

vector compression, offer reasonable performance in practice.

Virtex devices are general purpose FPGAs and it can be claimed that the

results obtained on these devices have a certain degree of generality. Never-

theless, it is instructive to examine how well the methods of previous chapters

stand the empirical tests on non-Virtex FPGAs. This chapter tests the ap-

plication of the previously described configuration model for a wider class of

FPGAs. It is shown that the model reasonably predicts the bounds on com-

pression for a set of benchmark circuits on hypothetical FPGA architectures.

Therefore, this chapter examines the performance of vector compression and

Golomb encoding for a set of benchmark circuits on the assumed FPGAs and

shows that vector compression remains a practical and efficient compression

method. Section 7.2 outlines the testing method and also serves as a guide

to the rest of the chapter.

7.2 Experimental Method

The goals of these experiments are to show that:
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• The characteristics of Virtex configurations remain true for various

other island-style FPGAs. In particular:

– The configurations are sparse, i.e. k << n.

– The distribution of various runlengths in each configuration fol-

lows an exponential curve.

– The runlengths are randomly distributed.

• Vector addressing performs well as compared to the fundamental com-

pression limit.

The approach followed is to consider a range of hypothetical architectures

that are representative of real FPGAs and a set of benchmark circuits that

have been extensively used by others to study these architectures. Each

circuit was mapped onto the chosen architectures and configuration data for

these devices was generated. These configurations were then fed into various

programs that were previously used to analyse Virtex configurations.

A simulation environment was set up to experiment with hypothetical

FPGA architectures. The goal of the simulation environment was to generate

the final bitstream, that when loaded onto the hypothetical device, configures

the circuit. This environment was the core of the experimental method and

is therefore discussed in detail in subsequent sections. Here, an overview is

provided.

Figure 7.2 illustrates the experimental setup. TVPack and VPR are open

source CAD tools that are used for the research of FPGA architectures, CAD

algorithms and designflows [4, 119]. These tools accept a high-level descrip-

tion of an FPGA architecture and a BLIF netlist of a circuit. The tools

automatically map the input circuit onto the specified architecture and out-

put details of the final mapping. The tools also output some of the imple-

mentation details of the FPGA such as the total amount of area needed to

implement the device using specified VLSI parameters. Section 7.3 provides

a brief description of these tools while details can be found in [119].
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A set of programs, collectively referred to as VPRConfigGen, was devel-

oped in order to generate the final configuration data. Input to VPRCon-

figGen is the low-level description of the mapped circuit, the high-level de-

scription of the circuit and implementation details of the specified FPGA

architecture. The output is configuration data for the specified architecture

in various formats. Section 7.4 describes the operation of these programs in

more detail.

TVPack/VPR and VPRConfigGen together provide an environment in

which one can specify an FPGA architecture at a high-level and can produce

configuration data for a given circuit targeted to the specified architecture.

With this experimental setup, the next step is to select candidate architec-

tures and a set of benchmark circuits. Since both architecture and circuit

spaces are large, it is difficult to examine all possibilities. An additional

problem is that placement and routing algorithms consume considerable pro-

cessing time. Therefore, only a small number of circuits can be examined on

a small number of architectures in a reasonable amount of time. For this

172



research, the 20 largest circuits in the MCNC suite [100] were chosen as

suitable benchmark (also known as Toronto 20). These circuits are chosen

because they are large in size and are available in a format understood by

the TVPack/VPR tools.

The approach taken to narrow down the architecture space is illustrated in

Figure 7.3, which maps architecture points onto a two dimensional space. An

architecture point contains devices that have the same structure but different

levels of resources. In the space depicted in Figure 7.3, each point represents

devices of the same architecture but different sizes. A horizontal line in the

space is referred to as an ARCHRouting subspace. Architecture points that lie

on these line have the same logic architecture but they differ in their routing

architecture. Similarly, vertical lines are referred to as ARCHLogic subspaces.

Virtex and Virtex-II lie in the same ARCHRouting subspace. It appears that

the logic architecture of Virtex-4 devices is similar to that of Virtex-II devices.

However, little details could be found on the routing architecture of Virtex-

4. Virtex-II and Virtex-4 therefore lie on the same ARCHLogic subspace but

they might lie on different ARCHRouting subspaces.

The approach followed in this chapter is to first examine an architecture,

ARCHx, that closely resembles Virtex. A set of benchmark circuits are

mapped onto ARCHx using the simulation environment discussed above.

The resulting configuration data is subjected to the analysis reported in

the previous chapters. The aim of this experiment is to show that a small

deviation in Virtex architecture does not result in any significant changes in

the results. More precisely, the experiments with ARCHx aim to show:

• The amount of non-null data is small compared to the size of the com-

plete configuration bitstream.

• The model of configuration data that was derived in Chapter 6 is a

reasonable approximation and one can therefore gauge the size of the

smallest possible configuration for a given mapped circuit.
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• Vector compression and Golomb encoding provide reasonable compres-

sion compared to the maximum possible compression.

Sections 7.5 and 7.6 describe the above experiments and show that the

above statements hold for typical ARCHx configurations.

The next step was to examine a wider architecture space. Traversing the

entire, or even a moderately large part of, the entire architecture space is

too difficult in practice. This chapter examines two sub-spaces, ARCHCLB

and ARCHsegment, that lie orthogonal to each other. Devices in ARCHCLB

differ from each other in terms of the CLB size while devices in ARCHsegment

differ from each other in terms of the distribution of various wire segment

lengths. Section 7.7 examines the impact of changing the number of look-up-

tables in a CLB on the overall reconfiguration time of the circuit. A range

of device architectures is examined. For the benchmark circuits it is shown

that, in general, a medium-sized CLB offers a reasonable compromise between

reconfiguration time, FPGA area and circuit frequency. Section 7.8 extends

this analysis to include the channel routing architecture of the FPGA. It
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shows that for the circuits under test, the channel routing architecture of the

target device has lesser impact on the overall reconfiguration time. It should

be pointed out that the term routing architecture generally includes the CLB

connection blocks as well. In the light of these results, Section 7.9 discusses

configuration architectures for a generic island-style FPGA.

7.3 TVPack and VPR Tools

TVPack and VPR are open source CAD tools that have been extensively

used in research on FPGA architectures. The overall flow employed by this

design suite is shown in Figure 7.4. An input circuit is first synthesised using

logic optimisation tools such as SIS [82]. The resulting netlist is technology

mapped using FlowMap [18] which outputs a .blif file [105]. The .blif file is

fed into TVPack, which clusters the logic gates in the input netlist into the

target logic elements. The output of TVPack is a technology-mapped netlist

in .net format.

The input to VPR is a description of an island-style (or mesh-like) FPGA

architecture and a technology-mapped netlist in .net format. It maps the

input circuit onto the target device and outputs a placed and routed circuit.

The user specifies the target device in a .arch file. This file contains values

of various device parameters. These device parameters are explained with

reference to Figure 7.6. An FPGA is taken to be an array of CLBs, or logic

clusters, surrounded by a routing network. The building block of a CLB is

called a basic logic element (BLE). A BLE consists of an l input LUT, and

an optional Flip-Flop (FF) as shown in Figure 7.5. The number of BLEs

per CLB is specified by a parameter m. The total number of inputs, I, to

each CLB is therefore l ×m and the number of outputs, O, is m. We ignore

the clock and reset inputs for simplicity. Within a CLB, each input of each

BLE can connect to any of the I inputs and to any of the O outputs. These

connections can be made using multiplexors that are referred to as imuxs.
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The routing architecture consists of switch blocks and connection blocks.

Switch blocks can be programmed by the user to connect together wires in

the channels. VPR supports various types of switches such as disjoint, Wilton

and universal switches. A detailed description of these switch types can be

found in [51]. The present work focuses on the disjoint switch. This switch is

characterised by the number of tracks in a channel, W . Even though W can

vary from one channel to another, we assume that all channels are uniform.

Given this assumption, there are W programmable interconnect points per

switch block.

The user can construct a hierarchical interconnect by varying the length

of various wires in each channel. The length of a wire is specified by the

number of CLBs it spans. Figure 7.7 shows an example of a hierarchical

architecture. The proportion of different length wires in the channels is an

architectural parameter that can be specified for VPR. It should be noted

that wires of length greater than 1 have different starting positions in different

horizontal and vertical channels. VPR performs this staggering to produce

valid architectures and to improve routability.

Input and output connection blocks, in Figure 7.6, connect a CLB to its

neighbouring switches. An input connection block is implemented as a set

of multiplexors that connect a track in the neighbouring routing channel to

a CLB input pin. The internal population of an input connection block is

specified by the parameter Fcinput. This fraction specifies the proportion of

the wires that can be connected to the CLB inputs. For example, Fcinput =

0.5 means that a CLB can take its input from only half of the available wires

in the neighbouring channel. The output connection blocks are specified

by the parameter Fcoutput which has a similar meaning. Output connection

blocks are slightly different from the input connection blocks in the sense

that a CLB output can drive multiple wires. The internal switches of an

output connection block are therefore implemented as pass transistors. The

parameters sb and cb refer to the switch and connection block population

respectively. These fractions determine the percentage of the tracks that are
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Parameter Description Typical
value

l Number of inputs per LUT 4-6
m Number of LUTs per CLB 4-8
W Number of tracks per channel Circuit size dependant
Fcinput Input connection block population 0.5-1.0
Fcoutput Output connection block population 0.5-1.0
sb Switch block population 1.0
cb Connection block population 1.0
Switch type Routing switch type Disjoint, Wilton,

Universal
Segements lengths The length of the routing wires 1,4, chip-length

Table 7.1: Various parameters of VPack/VPR and their typical values.

connected by the respective blocks.

Table 7.1 provides a list of the above parameters and their typical values.

VPR tools take many more parameters but they are less relevant to the sub-

sequent discussion. Unless otherwise stated, these parameters are assumed

to take their default values which are listed in [119].

7.4 VPRConfigGen Tools

A set of Java programs, VPRConfigGen, was developed to generate configu-

ration data from the files output by the TVPack/VPR tools. The procedure

employed by VPRConfigGen is described below in detail.

7.4.1 CLB configuration

CLB configuration consists of LUT contents, imux settings, clock and reset

signals. The last two are ignored in this analysis. VPR does not keep a

track of the LUT contents during its operation. This is because it is a

place and route tool and this information is not important for its operation.

Nevertheless, the input .blif file contains a description of the logic gates that

are to be mapped onto the device. The input .blif file is parsed by converting
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................

................

.names n\_n764 [1493] [6749] [6750] [1490]

11-- 1

1-1- 1

1--1 1

................

................

Figure 7.8: An example entry in a .blif file.

the sum-of-product representation of each logic gate into a truth table (i.e.

16-bit truth table for a 4 input LUT). A typical example of the contents

of the .blif file is shown in Figure 7.8. It describes a gate, which takes 4

input nets, n n764, [1493], [6749] [6750] and outputs to net [1490]. Let us

label these inputs a,b,c and d. The name of the first input signal is unique

and can be called a pseudo-name of the gate (e.g. n n764). Followed by the

.name line is the description of the function computed by this gate. In each

row, a ‘1’ means that the input is used in uncomplemented form, a ‘0’ means

that it is used in complemented form while a ‘-’ represents a don’t care. The

bit in the last column lists the output of the function for the inputs in the

corresponding row. The function represented in the figure is ab + ac + ad.

The LUT contents can thus be generated from the input .blif file. How-

ever, for our final analysis, we also need to determine which particular LUT

in the device is used to implement this gate, i.e. the x and y co-ordinates

and the BLE number within the target CLB. A two step procedure completes

this step. The .net file produced by TVPack lists the names of the input gate

and the name of the CLB onto which they are mapped. Each CLB is given a

unique name. Within the specified CLB, the BLE number allocated to each

gate can also be inferred.

Partial contents of an example .net file are shown in Figure 7.9. Followed

by the .clb keyword is the name of the CLB. The next line contains the pinlist

which is not shown here for simplicity. After that there are four lines. After
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................

................

.clb [846]

pinlist: ...............

subblock: [n\_n764] .......

subblock: [1354] .......

subblock: [1833] .......

subblock: [6495] .......

................

................

Figure 7.9: An example entry in a .net file.

the key word subblock :, there is a list of input/output nets. The pseudo-

name appears as the first signal and can be matched with its entry in the

.blif file. The order in which gates appear in a .clb statement is taken to

be their subblock number. VPRConfigGen maintains an internal list of the

block number that has been assigned to each gate within a CLB. The actual

(x, y) co-ordinates of each CLB are determined from the .place file output

by VPR. A .place file simply lists the names of all CLBs and their x and y

co-ordinates.

The .net file produced by TVPack is also used to generate the imux

configuration. In an architecture with 4 BLEs/CLB, there will be 16 inputs

and 4 outputs. There will be 16 imuxes corresponding to the LUT inputs.

Each imux will be a 20:1 device needing 5 bits for its configuration.

7.4.2 Switch configuration

The procedure to generate routing configuration operates on the .route file

which is output by VPR. An example of a .route file is shown in Figure 7.10.

Switch configuration is generated every time a net passes from a track in one

channel to another track in a different channel. It should be noted that a net

cannot change track numbers if the switch type used is subset. It is assumed

that each programmable interconnect point (PIP) in the subset switch is

181



................

................

Net 555 (n\_n1129)

SOURCE (5,17) Class: 1

OPIN (5,17) Pin: 19

CHANY (4,15) to (4,18) Track: 16

CHANX (1,14) to (4,14) Track: 16

IPIN (2,14) Pin: 10

SINK (2,14) Class: 0

................

................

Figure 7.10: An example entry in a .route file.

implemented using six transistors. A 1 is output if the corresponding PIP is

to be switched on, otherwise the output is 0.

A difficulty arises in computing the final configuration of each switch for

hierarchical architectures. In these cases, wire segments with length greater

than 1 will not have a switch at each junction of the horizontal and vertical

channels. VPR internally staggers the starting position of each such segment

in each channel therefore making it difficult to retrieve the dimensions of each

switch from the .route file. However, when the option -fullstats is switched

on, an x.echo and a y.echo file is produced. These files contain the starting

positions of each wire segment in the first horizontal and first vertical chan-

nels. The formula to determine the starting position of each segment in the

rest of channels is provided in [119] and is used by VPRConfiGen to adjust

the sizes of the switch in each channel.

7.4.3 Connection block configuration

The connection block configuration is produced from the .route file. The

connection block configuration is updated each time a net makes a connection

from a channel to an input pin of a CLB or from an output pin of a CLB to
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a channel. The size of the connection block is determined from the number

of tracks in each channel and the number of inputs and outputs per CLB.

7.4.4 Configuration formats

The final configuration bitstream is output to three different files. The

pseudo-code for this last step is shown in Figures 5 to 7. These bitfiles are

then analysed with various programs as discussed in the following sections.

The first format is output by first visiting each CLB in the array and

outputting its configuration. Then, each connection block is visited and

its configuration output. Lastly, each switch configuration is output. The

traversal is in the row major order. The second format visits the location

(x, y) and outputs CLB, connection block and switch block configuration

in the same order. The third format outputs the configuration at location

(x, y) by following the flow of signals from a routing channel to a CLB output,

i.e. input connection block, imux, CLB, output connection block and switch

block.

7.5 Measuring Entropy of Reconfiguration

The set of 20 MCNC benchmark circuits was considered. An experimental

architecture, ARCHx, was defined for the TVPack/VPR CAD tools. The

parameters of this design are listed in Table 7.2. The 20 circuits were mapped

onto ARCHx and configuration data in three different formats was generated.

Table 3 lists the circuits and their important parameters. The first column

lists the circuit name. The second lists the total number of BLEs used to

map the circuit. The next column lists the total number of CLBs needed.

The third column list the total number of nets in the circuit. These figures

are reported by TVPack. The next two columns list the number of CLB rows

and columns needed to route the circuit on ARCHx. The column under the

heading Clb cfg lists the total amount of CLB configuration data needed for
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Algorithm 5 Output Configuration in Format 1

for i = 1 to clb rows do
for i = 1 to clb columns do

output LUT configuration(i,j);
output IMUX configuration(i,j);

end for
end for
for i = 1 to clb rows do

for i = 1 to clb columns do
output ICON configuration(i,j);
output OCON configuration(i,j);

end for
end for
for i = 1 to clb rows do

for i = 1 to clb columns do
output SWITCH configuration(i,j);

end for
end for

Algorithm 6 Output Configuration in Format 2

for i = 1 to clb rows do
for i = 1 to clb columns do

output LUT configuration(i,j);
output IMUX configuration(i,j);
output ICON configuration(i,j);
output OCON configuration(i,j);
output SWITCH configuration(i,j);

end for
end for

Algorithm 7 Output Configuration in Format 3

for i = 1 to clb rows do
for i = 1 to clb columns do

output ICON configuration(i,j);
output IMUX configuration(i,j);
output LUT configuration(i,j);
output OCON configuration(i,j);
output SWITCH configuration(i,j);

end for
end for
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Parameter Description Typical
value

r Number of CLB rows Set by VPR
c Number of CLB columns Set by VPR
l Number of inputs per LUT 4
m Number of LUTs per CLB 4
W Number of tracks per channel Set by VPR
Fcin Input connection block population 1.0
Fcoutput Output connection block population 1.0
sb Switch block population 1.0
cb Connection block population 1.0
Switch type Routing switch type Disjoint
Segements lengths The length of the routing wires L1(50%),L4(%20),

L8(20%),Longline(10%)

Table 7.2: CAD parameters for FPGA architecture ARCHx.

this circuit. The columns Con cfg and Sw cfg list the amount of connection

block and switch block configuration respectively. These three columns, when

summed, provide the size, n, of the complete bitsream for ARCHx for the

given circuit. The next three columns list the number of set bits in CLB,

connection, and switch block configuration data. The sum of these three

quantities will provide the value of k. The last column shows the total, k, as

a percentage of the complete bitstream size.

Table 7.3 clearly establishes the sparsity of configuration data, i.e. k is

relatively small in each case. Comparing these results with those found in

the case of Virtex devices, we observe that overall k is slightly higher. In the

case of Virtex, k was typically found to be significantly less than 10% of the

complete bitstream size whereas here it is around 14%. This discrepancy is

likely due to the fact that VPR generates the minimum sized FPGA needed

to place and route the input circuit, and allocates the minimum possible

channel width, In contrast, the ISE tools used minimum area within a given

device size to implement the circuit and the channel width was fixed at a

sufficiently large size to accomodate the most densely connected of typical

circuits.

The configuration files generated by the VPRConfigGen tool were exam-
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Figure 7.11: The relationship between runsize i and P (X = i), i > 0, for
four selected circuits on ARCHx.
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ined. Runs of zeros in each file were considered and it was found that they

follow a similar pattern to that determined for Virtex configurations (as dis-

cussed in Chapter 6). Figure 7.11 shows the distribution of the runlengths

for four selected circuits on ARCHx. The entropy of reconfiguration was

calculated assuming that the symbol set consisted of runs of zeros. Table 7.4

lists the results assuming the final bitstream was output in the three different

formats. The predicted reduction in bitstream sizes for each circuit is listed

under the column H . It can be seen that percentage reduction is highest

with format 1 even though the other two formats offer a similar value of en-

tropy. Format 1 is better than the other two because it clearly differentiates

between the configuration data of disparate resources.

In order to establish the randomness of the set bits in the VPR configura-

tions, the experiments of Section 6.2.4 were repeated. The results were found

to be similar to the Virtex case which suggests that for practical purposes,

one can consider the set bits in an FPGA configuration data to be randomly

located and can therefore apply Shannon’s formula to measure the entropy.

Table 7.4 suggests that VPR configuration can be compressed less than

the Virtex configurations. This is probably due to the higher ratio of set bits

for reasons explained above. The mean entropy of an XCV400 circuits was

found to be around 5 while in the case of Format 1 configurations of VPR it

is around 3.5. Ignoring the effect of different benchmark sets and of different

place and route tools, this result suggests that Virtex configurations contain

more information. This again can be explained by noting that circuits on a

Virtex device must take into account a fixed amount of resources as opposed

to VPR, which adds more resources as needed. However, it does not mean

that overall VPR architectures are better in terms of circuit area and delay.

This highlights the need for future research in the architecture domain where

area/time/reconfiguration-entropy are considered as three parameters of the

design space and are optimised as such. Section 7.7 and 7.8 present a few

initial experiments in this direction.
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7.6 Compressing Configuration Data

Two compression methods were considered: vector compression and Golomb

encoding. The configuration data corresponding to the benchmark circuits

on ARCHx was examined. Vector compression was applied with various

sized blocks and at several levels. The block size was kept constant at each

level. Two levels of vector compression provided best results in all cases (i.e.

up to Level-2 vector was generated in each case). The optimal block sizes

were found to be 4 and 8. Table 7.4 shows the results for Formats 1 (F1), 2

(F2) and 3 (F3) respectively. The optimal value of the block size, b, is also

listed.

Golomb encoding was applied on the test data for various values of m. It

was found that m = 4 was optimal for most cases. Table 7.4 shows the results

for Formats 1(F1), 2 (F2) and 3 (F3) respectively. The optimal value of m

is also listed. These tables demonstrate that vector compression performs

better than Golomb encoding in almost all cases. These results show that

Format 1 allows for the best compression. Moreover, theoretically optimal

compression would gain no more than an additional 10% reduction in the

bitstream size if Format 1 is used.

7.7 The Impact of Cluster Size on Reconfig-

uration Time

This section considers a vertical subspace (see Figure 7.3) and examines a

range of alternative architectures. Configuration data for these architectures

is generated using the method described in Section 7.4. The best possible

compression for these configurations is calculated and vector compression is

applied on each set of data. The predicted results are then compared to

the actual performance of vector compression. The focus of this and the

following section is not so much on proving the validity of the configuration
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Parameter Description Typical
value

r Number of CLB rows Set by VPR
c Number of CLB columns Set by VPR
l Number of inputs per LUT 4
m Number of LUTs per CLB 2,4,8,16
W Number of tracks per channel Set by VPR
Fcin Input connection block population 1.0
Fcoutput Output connection block population 1.0
sb Switch block population 1.0
cb Connection block population 1.0
Switch type Routing switch type Disjoint
Segements lengths The length of the routing wires L4(100%)

Table 7.5: CAD parameters for FPGA architectures ARCHCLB.

model but rather on studying the impact of the FPGA architecture (i.e.

CLB and routing architecture) on the size of the complete bitstream and the

performance of vector compression in this context.

A family of FPGAs, ARCHCLB, was specified. Table 7.5 provides details

about various parameters of the ARCHCLB subspace. The number of BLEs

per CLB were taken from the set {2,4,8,16}. Only length 4 wires were used

as other researchers have shown that this distribution produces a reasonable

balance between routability, critical delay and the area of a range of circuits

[4]. A total of four architectures was examined. As placement and routing

is a time consuming task, only the first ten circuits listed in Table 7.3 were

mapped onto each architecture. The total area needed by each instance of

FPGA (i.e. for each circuit) was recorded from the VPR output. VPR out-

puts this area in terms of the total number of minimum sized transistors

that are needed to implement the target FPGA. It should again be empha-

sised that as VPR was allowed to define the minimum sized FPGA, this area

changes from circuit to circuit. Similarly, the critical delay of each circuit

was recorded from the output of VPR. In its default operation, VPR contains

values of the transistor/wire sizes and delays that corresponds to a generic

0.35μm process.

Each architecture was considered and the arithmetic mean of all 10 FPGA
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Figure 7.12: Mean area and delay for the benchmark circuits with various
CLB sizes. L4 signifies that Length-4 wires were used in all architectures.

areas was calculated. Similarly, the geometric mean of 10 critical delays was

calculated for each architecture (in the same manner as in [4]). Figure 7.12

plots both the mean area, measured in number of minimum sized transistors,

and the mean critical delay, measured in seconds. It can be seen that increas-

ing the CLB size increases the total area but at the same time the critical

delay of the circuit is reduced. This is a because as the CLB becomes larger,

more components of the input circuit can be packed into the logic blocks. As

the delay within a CLB is less than between CLBs, the overall critical delay

is reduced.

The configuration data for each of the 10 circuits on each of the four ar-

chitectures was output in Format 1. The final bitsream sizes, their entropies

and the results of applying vector compression were recorded and, for each

architecture, the arithmetic mean of all 10 circuits was calculated. Figure

7.13 shows the mean configuration sizes for variously sized CLBs. The min-
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Figure 7.13: Mean of complete configuration sizes (L4 complete), mean of
minimum possible configuration sizes (L4 H) as predicted by the entropic
model of configuration data and mean of vector compressed configuration
sizes (L4 VA) for the benchmark circuits under various CLB sizes. L4 means
that Length-4 wires were used in each routing channel. Format 1 was used
in all configurations.

imum possible mean configuration size, as predicted by the entropy, and the

vector compressed configuration size is also plotted in the figure.

Several observations can be made regarding Figure 7.13.

• There is a significant decrease in the complete configuration size as the

number of BLEs per CLB is increased from 2 to 8. This is expected as

more components of a circuit are packed into CLBs and the inter-CLB

connectivity is reduced. This results in lesser configuration data for

switches.

• The compression in the range 2-8 BLE/CLB is significant. This is

because for small CLBs, the router needs significant inter-CLB connec-
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tivity and the configurations tend to have a high sparsity (i.e. smaller

values of k).

• Increasing the CLB size from 8 BLEs to 16 does not significantly impact

upon either the total bitstream size, or the compression.

• The mean of the smallest possible configuration size does not vary

significantly over a range of CLB sizes. This suggests that the mean

information content for all circuits changes little from one architecture

to another.

• Vector compression delivers reasonable compression in all cases and fol-

lows the entropy curve steadily. Note that a thorough study of Golomb

and LZSS encoding is needed to demonstrate the VA superiority over

the entire domain.

In summary, while the size of the complete bitstream is a feature of the

architecture, the size of the bitstream actually needed to configure a circuit

is less dependant on the target FPGA design. This gap can be bridged

using vector compression which is a light-weight technique that performs

well in practice. Thus, vector compression efficiently hides the artifacts of

the architecture from the user who is mainly interested in providing only as

much of configuration data as is needed by the design at hand.

7.8 The Impact of Channel Routing Archi-

tecture on Reconfiguration Time

It is difficult to parameterise the complexity of the routing architecture. More

complex routing architectures might be constructed by having several hier-

archies of wires. This means wires of several different lengths will be present

in each routing channel. In VPR, the user can vary the relative proportion

of wires of different lengths in a channel. Four architectures were specified.
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Parameter Description Typical
value

r Number of CLB rows Set by VPR
c Number of CLB columns Set by VPR
l Number of inputs per LUT 4
m Number of LUTs per CLB 4
W Number of tracks per channel Set by VPR
Fcin Input connection block population 1.0
Fcoutput Output connection block population 1.0
sb Switch block population 1.0
cb Connection block population 1.0
Switch type Routing switch type Disjoint
Segements lengths The length of the routing wires L1(10%), Longline(10%)

L8(x%), L4((80-x)%)
x ∈ {10, 20, 40, 60}

Table 7.6: CAD parameters for FPGA architectures ARCHswitch.

The general parameters of these are shown in Table 7.6. Each architecture

was specified with the same CLB architecture, but differed from the others

in the ratio between Length-4 and Length-8 wires. Configuration data for

each architecture was generated using the VPR/VPRConfigGen tool flow.

The output was produced in Format 1.

Figure 7.14 shows a comparison between FPGA area and circuit delay as

the fraction of Length-8 wires is increased. Overall there is an increase in

area and a decrease in critical delay.

However, varying the proportion of wire lengths has much less of an im-

pact on these parameters as varying the CLB size (compare with Figure

7.14). For example, when the number of BLEs/CLB was increased from 2 to

16, the mean area almost doubled while the mean critical delay was reduced

by more than 30%. Changing the proportion of Length-8 wires from 0.1 to

0.6 increases the area by less than 10% while the delay is reduced by less

than 15%. Figure 7.15 shows the mean configuration sizes, mean of vector

compressed configuration sizes and mean of predicted minimum configura-

tion sizes obtained using the entropic model. It can be seen that changing

the proportion of wires does not incur any significant change in either of

these quantities. A possible explanation of these results is that the propor-
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Figure 7.14: Mean area and delay for the benchmark circuits for various
Length-4:Length-8 wire ratios. HR signifies hierarchical routing.

tion of switch configuration for Length-8 wires is quite small compared to

the total amount of configuration. Therefore, varying the proportion of the

wires does not impact upon the configuration size or its compression to any

great degree.

7.9 Generic Configuration Architectures

The results of this chapter show that the configuration architectures that

were designed for Virtex can easily be implemented for a wider variety of

island-style FPGAs. The decompressor system presented in Chapter 6 con-

sisted of three vector address decoders. More levels of vector compression

were needed for Virtex because each Virtex device has a fixed amount of

resource and a circuit either fits onto a device of a certain size or must be

mapped onto a larger device. VPR tools, on the other hand, derive an ar-
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chitecture with minimal resources. In any case, practical devices will always

have a certain degree of constraints on device size that are possible within

an architecture family. Given a range of possible device sizes, 2 to 3 levels

of vector compression with a block size of 4 or 8 is sufficient for practical

purposes.

7.10 Conclusions

This chapter has taken the results of previous chapters and has tested them

for a wider range of circuits and architectures. This simulation study shows

that a high level of sparsity exists in typical FPGA configurations. Simple

compression techniques, such as vector compression, can compress this data

by 35%-55%. Theoretically the best compression possible would allow only

an additional 10% compression for all cases.
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Chapter 8

Conclusion & Future Work

This thesis has examined techniques for reducing reconfiguration time of fine-

grained island-style FPGAs at their configuration data level. The approach

followed has been to reduce the amount of configuration data, through effi-

cient encoding, to accelerate reconfiguration. An attempt has been made to

gauge the information content of typical configuration data, thereby allowing

us to measure the performance of various encoding methods. In the light of

the entropic model, two simple encoding methods, namely Golomb encoding

and hierarchical vector compression, have been analysed in detail. It is shown

that both methods outperform existing methods in terms of the quality of

compression and in terms of the complexity of the compressor and the de-

compressor. Vector compression is chosen for hardware implementation due

to its superior performance and simplicity. New configuration memory ar-

chitectures have been presented that incorporate vector compression in their

hardware. It is shown that with these enhancements, a 10-fold increase in

reconfiguration speed is practical if the power dissipation is acceptable. It

is believed that the proposed methods are readily implementable in current

and future generations of SRAM-based FPGAs.

The author believes that the research reported in this thesis is not limited

to new FPGA architectures. Consider improving application-level program-
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ming interfaces, such as JBits. Two bottlenecks can readily be identified:

1. A JBits program internally maintains a complete configuration that

is updated at runtime as directed by the program logic. This is a

memory intensive operation to which microprocessor architectures are

poorly suited.

2. JBits internally performs bit-level operations on a large amount of con-

figuration data and as such Java is not a suitable language for this

application.

An alternative proposal might be a Vector Addressed Bits (VBits) inter-

face, which internally maintains a compressed version of configuration data,

and as such all update operations are performed on the compressed data in

order to reduce the time needed to perform reconfiguration. The updated

configuration can either be decompressed in software, or in hardware, for

final upload.

FPGAs have become an important computational resources for a range of

embedded systems such as those involving software-defined radios, medical

imaging, networking, encryption, high speed scientific data acquisition and

analysis, remote and unmanned vehicles, automotive and imaging [33]. The

distinguishing feature of these applications is that they have stringent per-

formance (area/time/power) requirements. There is a performance penalty

of using an FPGA as a replacement for an ASIC [49]. However, it can be

argued that this penalty can be offset to a considerable extent by using fast

runtime reconfiguration.

The reconfiguration times of contemporary FPGAs limit their applicabil-

ity to a narrow domain of applications. Consider an XCV1000 device that

takes around 25ms to completely reconfigure. We can ignore the overhead of

reconfiguration in a particular application if the configured circuit executes

for more then 250ms. Thus, Virtex realistically allows not more than 4 useful

circuit reconfigurations per second. With a 90% reduction in reconfiguration
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time, as has been shown in this thesis, up to 40 useful circuit reconfigurations

per second are possible. This processing rate is close to what is needed by

high quality video applications. Thus, the techniques presented in this thesis

are likely to open new avenues for deploying runtime reconfigurable FPGAs

as first class compute resources.
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Appendix A

A Note on the Use of the Term

‘Configuration’

The term configuration in the context of Field Programmable Gate Arrays is

overloaded with different meanings. In order to clarify the discussion, various

common uses are listed below:

• The term configuration can mean a configuration state of an FPGA. For

example as in ‘the configuration of the device was changed to adapt to

the new functional requirements’.

• It can also mean configuration data that resides in the configuration

memory of an FPGA. For example as in ‘the configuration was stored

on the host machine’. Typically, a configuration in this context means a

configuration file that contains configuration data for the device under

consideration while configurations mean several configuration files.

• A third meaning of the term implies the process of loading configuration

data onto the device. For example as in ‘while the configuration was

in progress, the host continued running its applications’.

• The term partial configuration means either partial configuration data

or the process of loading partial configuration data.
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The term reconfiguration almost always mean the process of altering the

configuration state of the device by loading new configuration data onto the

device. The term runtime or dynamic reconfiguration means reconfiguring

while the device is performing a meaningful computation from the user’s

point of view.
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Appendix B

Detailed Results for Section 4.8
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Circuit XCV100 XCV200 XCV300 XCV400 XCV600 XCV800 XCV1000
encoder 4,230 4,302 4,421 4,394 4,168 4,312 4,320
uart 5,402 5,321 5,135 5,129 5,333 5,110 5,536
asyn-fifo 5,363 5,441 5,669 5,885 5,930 5,880 5,913
add-sub - - 5,770 5,997 6,206 6,419 6,155
2compl-1 - - 7,552 7,806 8,060 8,338 9,212
spi 7,977 7,983 8,046 7,956 7,885 7,742 8,041
fir-srg 8,520 8,534 8,269 8,503 7,982 8,013 8,169
dfir 8,083 7,981 8,559 8,535 8,395 8,490 8,710
cic3r32 8,722 9,061 8,770 9,092 8,685 9,258 8,478
ccmul 9,554 9,956 9,771 9,956 10,152 9,953 10,215
bin-decod - - 8,612 10,670 11,292 11,080 10,648
2compl-2 - - - 11,154 11,633 12,213 12,738
ammod 11,667 11,546 11,575 11,653 11,605 11,921 12,032
bfproc 14,179 14,753 14,812 14,859 14,988 15,913 15,497
costLUT 16,403 16,424 16,321 16,752 16,439 16,201 16,093
gpio - 30,762 30,518 30,924 31,267 32,045 32,226
irr - 34,830 34,927 33,648 35,397 34,119 33,506
des - - - 48,118 49,226 48,255 49,827
cordic - 48,759 49,484 49,364 49,327 50,072 50,202
rsa - 49,179 49,989 50,121 50,782 50,710 51,283
dct - 52,916 52,241 52,999 54,272 53,637 53,959
blue-th - - 90,700 100,996 101,500 102,286 101,776
vfft1024 - - 111,825 113,695 114,947 114,484 114,648
fpu - - 134,403 155,387 157,139 154,524 155,354

Table B.1: The amount of non-null data in bits. Configuration granularity
= 1 bit.
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Circuit XCV100 XCV200 XCV300 XCV400 XCV600 XCV800 XCV1000
encoder 6,740 6,878 7,228 7,034 6,660 6,970 6,938
uart 8,376 8,300 7,906 7,962 8,230 7,998 8,708
asyn fifo 9,248 9,436 9,894 10,212 10,330 10,338 10,332
add-sub - - 10,576 11,002 11,354 11,760 11,238
2compl-1 - - 13,784 14,340 14,760 15,358 17,168
spi 12,638 12,732 12,862 12,684 12,534 12,514 12,754
fir srg 13,028 13,132 12,974 12,994 12,446 12,616 12,614
dfir 12,606 12,536 13,204 13,166 13,184 13,248 13,690
cic3r32 13,360 13,770 13,552 13,572 13,652 14,580 13,366
ccmul 15,274 16,258 16,108 16,312 16,468 16,446 16,710
bin-decod - - 15,446 19,312 20,434 20,034 19,290
2compl-2 - - - 20,290 21,202 22,442 23,564
ammod 18,570 18,642 18,550 18,770 18,742 19,558 19,782
bfproc 22,420 23,298 23,108 23,984 24,346 26,094 25,808
costLUT 27,000 26,902 26,948 27,490 27,030 26,546 26,410
gpio - 51,042 50,614 51,378 52,290 54,138 54,304
irr - 56,224 55,652 53,794 56,676 54,166 53,882
des - - 77,886 78,778 80,994 79,170 82,808
cordic - 76,460 76,612 76,782 76,792 77,284 77,520
rsa - 79,138 80,936 81,768 82,482 82,988 83,556
dct - 80,308 79,288 80,390 83,614 82,012 82,984
blue th - - 142,688 160,006 160,846 162,426 162,918
vfft1024 - - 175,000 175,884 176,192 175,234 176,288
fpu - - 215,592 250,130 252,446 250,110 252,990

Table B.2: The amount of non-null data in bits. Configuration granularity
= 2 bits.
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Circuit XCV100 XCV200 XCV300 XCV400 XCV600 XCV800 XCV1000
encoder 12,244 12,532 13,396 12,844 12,172 12,832 12,656
uart 15,304 15,084 14,320 14,540 14,928 14,584 15,900
asyn-fifo 17,144 17,372 18,024 18,572 18,888 18,916 19,016
add-sub - - 19,660 20,516 21,064 21,940 21,044
2compl - - 25,956 26,932 27,916 28,916 32,612
spi 22,996 23,292 23,356 23,408 22,828 22,900 22,944
fir-srg 23,464 23,868 23,392 23,652 22,852 23,192 22,916
dfir 23,172 23,000 24,256 23,936 24,100 24,216 24,892
cic3r32 24,772 25,492 25,204 25,128 25,060 27,288 24,804
ccmul 27,692 30,064 29,680 29,988 30,204 30,152 30,724
bin-decod - - 28,892 36,000 38,280 37,640 36,232
2compl-2 - - - 38,316 40,160 42,364 44,724
ammod 33,824 33,876 33,796 34,384 34,492 36,116 36,548
bfproc 41,056 42,420 42,168 44,028 45,272 48,312 47,912
costLUT 48,676 48,388 48,880 49,740 48,480 47,864 47,372
gpio - 92,448 91,724 93,724 95,084 98,716 99,380
irr - 101,940 101,184 97,444 102,908 98,320 98,008
des - - 141,384 143,312 147,668 144,220 152,040
cordic - 137,916 137,544 137,928 138,364 139,444 139,960
rsa - 141,672 144,860 146,776 147,752 148,408 149,728
dct - 145,568 143,276 145,752 152,004 148,380 150,212
blue-th - - - 289,568 292,224 295,540 296,836
vfft1024 - - 311,440 315,512 318,516 316,672 317,692
fpu - - - 450,600 455,648 453,156 458,868

Table B.3: The amount of non-null data in bits. Configuration granularity
= 4 bits.
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Circuit Virtex Frame RAM DMA VA
(bits) (bits) %red. %red. %red.

encoder-xcv100 297,920 12,244 77 69 42
uart-xcv100 304,192 15,304 72 62 42
asyn-fifo-xvc100 498,624 17,144 81 73 64
add-sub-xcv100 - - - - -
2compl-1-xcv100 - - - - -
spi-xcv100 417,536 22,996 70 60 56
fir-srg-xcv100 203,840 23,464 37 17 9
dfir-xcv100 416,192 23,172 69 57 56
cic3r32-xcv100 399,616 24,772 66 52 53
ccmul-xcv100 382,144 27,692 60 46 51
bin-decod-xcv100 - - - - -
2compl-2-xcv100 - - - - -
ammod-xcv100 401,408 33,824 54 38 51
bfproc-xcv100 502,208 41,056 55 39 60
costLUT-xcv100 505,344 48,676 47 27 58
gpio-xcv100 - - - - -
irr-xcv100 - - - - -
des-xcv100 - - - - -
cordic-xcv100 - - - - -
rsa-xcv100 - - - - -
dct-xcv100 - - - - -
blue-th-xcv100 - - - - -
vfft1024-xcv100 - - - - -
fpu-xcv100 - - - - -

Table B.4: Comparing various addressing schemes. Granularity = 4 bits.
Target device = XCV100.
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Circuit Virtex Frame RAM DMA VA
(bits) (bits) %red. %red. %red.

encoder-xcv100 297,920 20,848 78 73 66
uart-xcv100 304,192 26,536 73 68 65
asyn-fifo-xvc100 498,624 30,568 81 76 78
add-sub-xcv100 - - - - -
2compl-1-xcv100 - - - - -
spi-xcv100 417,536 39,320 71 67 71
fir-srg-xcv100 203,840 39,656 39 34 41
dfir-xcv100 416,192 40,240 70 64 71
cic3r32-xcv100 399,616 43,384 66 59 69
ccmul-xcv100 382,144 47,648 61 56 66
bin-decod-xcv100 - - - - -
2compl-2-xcv100 - - - - -
ammod-xcv100 401,408 57,440 55 49 66
bfproc-xcv100 502,208 70,952 56 48 70
costLUT-xcv100 505,344 84,120 48 37 67
gpio-xcv100 - - - - -
irr-xcv100 - - - - -
des-xcv100 - - - - -
cordic-xcv100 - - - - -
rsa-xcv100 - - - - -
dct-xcv100 - - - - -
blue-th-xcv100 - - - - -
vfft1024-xcv100 - - - - -
fpu-xcv100 - - - - -

Table B.5: Comparing various addressing schemes. Granularity = 8 bits.
Target device = XCV100.
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Circuit Virtex Frame RAM DMA VA
(bits) (bits) %red. %red. %red.

encoder-xcv100 297,920 34,912 77 77 75
uart-xcv100 304,192 42,496 72 73 73
asyn-fifo-xvc100 498,624 51,552 79 78 82
add-sub-xcv100 - - - - -
2compl-1-xcv100 - - - - -
spi-xcv100 417,536 62,560 70 71 75
fir-srg-xcv100 203,840 61,232 40 51 50
dfir-xcv100 416,192 66,400 68 70 74
cic3r32-xcv100 399,616 71,264 64 70 72
ccmul-xcv100 382,144 75,536 60 64 70
bin-decod-xcv100 - - - - -
2compl-2-xcv100 - - - - -
ammod-xcv100 401,408 93,248 54 60 67
bfproc-xcv100 502,208 115,088 54 60 69
costLUT-xcv100 505,344 139,504 45 47 64
gpio-xcv100 - - - - -
irr-xcv100 - - - - -
des-xcv100 - - - - -
cordic-xcv100 - - - - -
rsa-xcv100 - - - - -
dct-xcv100 - - - - -
blue-th-xcv100 - - - -
vfft1024-xcv100 - - - - -
fpu-xcv100 - - - - -

Table B.6: Comparing various addressing schemes. Granularity = 16 bits.
Target device = XCV100.
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Circuit Virtex Frame data RAM DMA VA
(bits) (bits) %red. %red. %red.

encoder-xcv400 556,800 12,844 86 81 6
uart-xcv400 824,800 14,540 89 86 28
asyn-fifo-xvc400 1,263,200 18,572 91 87 53
add-sub-xcv400 1,236,000 20,516 90 85 52
2compl-1-xcv400 1,380,800 26,932 88 81 56
spi-xcv400 930,400 23,408 85 79 36
fir-srg-xcv400 505,600 23,652 72 63 19
dfir-xcv400 928,800 23,936 85 79 35
cic3r32-xcv400 751,200 25,128 80 72 20
ccmul-xcv400 844,000 29,988 79 70 28
bin-decod-xcv400 1,810,400 36,000 88 81 66
2compl-2-xcv400 1,744,000 38,316 87 79 65
ammod-xcv400 1,324,000 34,384 84 78 54
bfproc-xcv400 1,727,200 44,028 85 79 64
costLUT-xcv400 1,220,800 49,740 76 66 49
gpio-xcv400 1,701,600 93,724 67 56 61
irr-xcv400 1,193,600 97,444 51 37 44
des-xcv400 2,072,000 143,312 59 45 65
cordic-xcv400 1,436,800 137,928 42 28 50
rsa-xcv400 1,700,000 146,776 48 36 57
dct-xcv400 1,851,200 145,752 53 38 61
blue-th-xcv400 2,303,200 289,568 25 3 62
vfft1024-xcv400 2,224,800 315,512 15 6 60
fpu-xcv400 2,304,000 450,600 17 47 55

Table B.7: Comparing various addressing schemes. Granularity = 4 bits.
Target device = XCV400.
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Circuit Virtex Frame RAM DMA VA
(bits) (bits) %red. %red. %red.

encoder-xcv400 556,800 21,872 87 84 44
uart-xcv400 824,800 25,112 90 88 62
asyn-fifo-xvc400 1,263,200 33,056 91 89 75
add-sub-xcv400 1,236,000 37,456 90 86 74
2compl-1-xcv400 1,380,800 49,840 88 82 76
spi-xcv400 930,400 40,776 85 82 65
fir-srg-xcv400 505,600 40,200 73 69 35
dfir-xcv400 928,800 41,760 85 82 64
cic3r32-xcv400 751,200 43,680 80 76 56
ccmul-xcv400 844,000 52,720 79 74 60
bin-decod-xcv400 1,810,400 66,712 88 82 80
2compl-2-xcv400 1,744,000 70,856 86 80 79
ammod-xcv400 1,324,000 59,736 85 82 74
bfproc-xcv400 1,727,200 76,720 85 82 79
costLUT-xcv400 1,220,800 85,920 76 70 69
gpio-xcv400 1,701,600 159,288 68 65 74
irr-xcv400 1,193,600 163,160 54 49 62
des-xcv400 2,072,000 242,832 60 57 74
cordic-xcv400 1,436,800 227,848 46 46 64
rsa-xcv400 1,700,000 241,544 52 52 69
dct-xcv400 1,851,200 243,784 56 51 71
blue-th-xcv400 2,303,200 485,680 29 26 66
vfft1024-xcv400 2,224,800 519,656 21 20 64
fpu-xcv400 2,304,000 743,560 -9 -9 55

Table B.8: Comparing various addressing schemes. Granularity = 8 bits.
Target device = XCV400.
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Circuit Virtex Frame RAM DMA VA
(bits) (bits) %red. %red. %red.

encoder-xcv400 556,800 35,680 86 87 68
uart-xcv400 824,800 41,120 89 89 78
asyn-fifo-xvc400 1,263,200 55,184 91 90 84
add-sub-xcv400 1,236,000 66,304 89 86 83
2compl-1-xcv400 1,380,800 89,568 86 84 83
spi-xcv400 930,400 68,400 84 84 77
fir-srg-xcv400 505,600 64,896 73 76 59
dfir-xcv400 928,800 67,936 84 85 77
cic3r32-xcv400 751,200 72,848 79 82 71
ccmul-xcv400 844,000 86,592 78 79 73
bin-decod-xcv400 1,810,400 120,880 86 83 85
2compl-2-xcv400 1,744,000 128,720 84 82 84
ammod-xcv400 1,324,000 98,720 84 85 82
bfproc-xcv400 1,727,200 127,280 84 86 84
costLUT-xcv400 1,220,800 146,208 75 74 76
gpio-xcv400 1,701,600 250,144 69 71 77
irr-xcv400 1,193,600 255,488 55 66 67
des-xcv400 2,072,000 379,888 61 67 75
cordic-xcv400 1,436,800 343,872 49 62 66
rsa-xcv400 1,700,000 361,008 55 63 70
dct-xcv400 1,851,200 380,800 56 62 72
blue-th-xcv400 2,303,200 741,776 32 44 62
vfft1024-xcv400 2,224,800 785,968 25 45 58
fpu-xcv400 2,304,000 1,117,472 -3 22 45

Table B.9: Comparing various addressing schemes. Granularity = 16 bits.
Target device = XCV400.
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Circuit Virtex Frame RAM DMA VA
(bits) (bits) %red. %red. %red.

encoder-xcv1000 942,240 12,656 92 88 -54
uart-xcv1000 1,269,216 15,900 92 89 -15
asyn-fifo-xvc1000 2,275,104 19,016 95 92 36
add-sub-xcv1000 2,170,272 21,044 94 90 33
2compl-1-xcv1000 2,422,368 32,612 92 86 39
spi-xcv1000 1,683,552 22,944 91 89 13
fir-srg-xcv1000 1,681,056 22,916 91 89 13
dfir-xcv1000 1,166,880 24,892 87 82 -25
cic3r32-xcv1000 601,536 24,804 74 64 -143
ccmul-xcv1000 1,256,736 30,724 85 78 -17
bin-decod-xcv1000 3,699,072 36,232 94 90 60
2compl-2-xcv1000 3,038,880 44,724 91 85 51
ammod-xcv1000 2,914,080 36,548 92 89 49
bfproc-xcv1000 3,822,624 47,912 92 88 61
costLUT-xcv1000 525,408 47,372 44 24 -183
gpio-xcv1000 3,523,104 99,380 82 76 56
irr-xcv1000 1,981,824 98,008 69 60 23
des-xcv1000 5,606,016 152,040 83 76 72
cordic-xcv1000 3,043,872 139,960 71 63 48
rsa-xcv1000 2,867,904 149,728 67 59 45
dct-xcv1000 2,374,944 150,212 60 48 33
blue-th-xcv1000 5,240,352 296,836 65 52 67
vfft1024-xcv1000 3,842,592 317,692 48 34 54
fpu-xcv1000 4,561,440 458,868 37 19 58

Table B.10: Comparing various addressing schemes. Granularity = 4 bits.
Target device = XCV1000.
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Circuit Virtex Frame RAM DMA VA
(bits) (bits) %red. %red. %red.

encoder-xcv1000 942,240 22,400 92 90 21
uart-xcv1000 1,269,216 27,824 92 91 41
asyn-fifo-xvc1000 2,275,104 34,208 95 93 67
add-sub-xcv1000 2,170,272 38,864 94 91 65
2compl-1-xcv1000 2,422,368 61,424 91 87 68
spi-xcv1000 1,683,552 39,064 92 91 55
fir-srg-xcv1000 1,681,056 40,000 92 91 55
dfir-xcv1000 1,166,880 41,872 87 86 35
cic3r32-xcv1000 601,536 43,216 75 71 -27
ccmul-xcv1000 1,256,736 53,776 85 82 39
bin-decod-xcv1000 3,699,072 66,968 94 91 79
2compl-2-xcv1000 3,038,880 83,888 90 85 74
ammod-xcv1000 2,914,080 64,840 92 90 73
bfproc-xcv1000 3,822,624 85,920 92 90 79
costLUT-xcv1000 525,408 80,200 47 36 -52
gpio-xcv1000 3,523,104 172,360 83 80 75
irr-xcv1000 1,981,824 164,136 71 68 55
des-xcv1000 5,606,016 265,928 83 80 82
cordic-xcv1000 3,043,872 232,520 73 72 69
rsa-xcv1000 2,867,904 247,824 70 69 66
dct-xcv1000 2,374,944 253,488 63 59 59
blue-th-xcv1000 5,240,352 507,400 66 62 77
vfft1024-xcv1000 3,842,592 529,624 52 48 68
fpu-xcv1000 4,561,440 768,848 41 37 67

Table B.11: Comparing various addressing schemes. Granularity = 8 bits.
Target device = XCV1000.
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Circuit Virtex Frame RAM DMA VA
(bits) (bits) %red. %red. %red.

encoder-xcv1000 942,240 36,416 92 91 58
uart-xcv1000 1,269,216 45,392 92 92 68
asyn-fifo-xvc1000 2,275,104 58,480 94 93 82
add-sub-xcv1000 2,170,272 70,192 93 92 80
2compl-1-xcv1000 2,422,368 114,000 90 88 80
spi-xcv1000 1,683,552 62,144 92 92 75
fir-srg-xcv1000 1,681,056 65,776 91 92 75
dfir-xcv1000 1,166,880 67,008 87 89 63
cic3r32-xcv1000 601,536 69,488 75 79 29
ccmul-xcv1000 1,256,736 88,192 85 85 64
bin-decod-xcv1000 3,699,072 121,952 93 91 87
2compl-2-xcv1000 3,038,880 155,392 89 86 83
ammod-xcv1000 2,914,080 111,552 92 92 84
bfproc-xcv1000 3,822,624 148,864 91 92 87
costLUT-xcv1000 525,408 131,040 45 52 7
gpio-xcv1000 3,523,104 278,256 83 83 82
irr-xcv1000 1,981,824 259,072 71 78 69
des-xcv1000 5,606,016 447,584 83 83 86
cordic-xcv1000 3,043,872 354,320 75 80 77
rsa-xcv1000 2,867,904 376,096 71 76 74
dct-xcv1000 2,374,944 399,760 63 67 68
blue-th-xcv1000 5,240,352 799,584 67 70 78
vfft1024-xcv1000 3,842,592 816,528 54 64 69
fpu-xcv1000 4,561,440 1,181,776 43 54 66

Table B.12: Comparing various addressing schemes. Granularity = 16 bits.
Target device = XCV1000.
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Appendix C

Simulating ARCH-III

This section details the method used to simulate the operation of ARCH-III.

The goal of this method is to determine the time needed to load an input

configuration under various port sizes. ARCH-III has a port size of 8p bits

where p is a non-zero integer. In an ideal architecture, increasing p should

decrease the reconfiguration time by a factor of p. However, various VADs

in ARCH-III will stall due to contention over the configuration bus. Adding

the null bypass to the design can also result in contention over the DF-Bus.

Extra pad data must therefore be inserted into the configuration bitstream

to account for these waits. The procedure described in this section calculates

this overhead. We first consider the case where the null bypass is not present

and we only need to stall for the C-bus.

In order to simplify the simulation procedure, the steps needed to load

the controller commands and the block addresses are ignored. Moreover, it is

assumed that no null blocks are specified. In other words, only user blocks are

examined. The input blocks are partitioned evenly among the p configuration

ports in case there are less than p user blocks in the φ′ configuration under

test. As the block addresses are ignored, the simulation is oblivious to the

boundaries between the blocks. It considers all frames that are assigned to

ith V ADi as a list where 0 ≤ i ≤ p−1. The input to the simulation procedure
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Timings[0] Timings[1]

1 2 5 6

2 3 6 8

1 3 5 8

2 3 6 8

1 2 6 8

3 6 8 9

V AD0 V AD1

Figure C.1: An example Timings[] stacks (p = 2).

is p lists of frames.

The first step in the simulation assigns independant stall-free timings

to each input frame. Each input frame is considered in isolation and it is

assumed that it begins loading at time t = 0. It is assumed that no stalls

occur. Let the vector address (VA) byte that corresponds to the first eight

bytes of a particular frame contain k0 set bits where 0 ≤ k0 ≤ 8. It will

take k0 + 1 cycles to load the VA byte and the associated frame data. If the

frame starts loading at t = 0 and there are no stalls then the target VAD

will finish processing the first eight-byte portion of the frame at t = k0 + 1.

Similarly, the VAD will finish processing the second eight-byte portion of the

frame at time t = k0 +k1 +2 where k1 is the number of set bits in the second

eight-byte portion of the frame and so on.

An example of the above procedure is given in Figure C.1 where it is

assumed that p = 2. The figure shows three frames in each list where each

frame is assigned timings in an independant fashion (i.e. t = 0 is the start

time for each frame). In the figure, each frame is represented by four hor-

izontal boxes where each box corresponds to one of the eight-byte portions

(i.e. the frame size is 32 bytes). The first frame lies at the bottom of the

list and the leftmost box represents the independant stall-free timing of the

first eight-byte portion of this frame. Consider V AD0. There is a one in the

bottom left position of Timing[0] meaning that no byte updates are required

within this portition. The next box on its right contains a two meaning no
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update is required within this portion of the frame either. After this, how-

ever, two frame bytes are to be updated that will finish loading at t = 5.

The entire frame is processed at t = 6. At this stage, the mask bytes are not

considered.

The next step of the simulation updates the timing integers, that are

assigned to each frame in the first step, by considering the times at which

more then one VAD will require an access to the C-bus in order to transfer the

frame and the mask bytes. The procedure iterates over all lists one by one.

At each iteration it pops the leftmost timing integer and examines whether

this time clashes with the other VADs. If it does then this timing integer is

changed into the smallest integer that does not clash with the others in the

bottommost frame of each list. Note that two cycles of the C-bus are needed

by each VAD; one to transfer the frame bytes and the other to transfer the

mask data. All subsequent timing integers are considered in the light of this

update. The finish time of the bottommost frame in each list is determined in

this fashion. If the last integer clashes with some other integer then it means

that there is contention over the DF-bus. The finish time of this frame is

updated by giving it the smallest integer than does not clash with the finish

times of the other bottommost frames.

In the next step, the finish time for the bottommost frame is then consid-

ered as a start time of the next frame and the bottommost frame is evicted

from the list. The start time of the second frame is then added to each tim-

ing integer in the second frame. The second step is repeated to calculate the

finish time of the new frame and the procedure iterates until all frames are

processed. The maximum of all finish times is taken to be the time required

by ARCH-III to load the configuration under test.

The second step of the simulation is explained with the help of Figure C.2.

A cache is maintained to perform quick comparisons. The leftmost integer

from the bottommost frame in Timings[0] is evicted and is put in the cache.

The leftmost integer from the bottommost frame in Timing[1] is then evicted

and is compared with the contents of the cache. This comparsion also takes
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into account the extra cycle needed for the mask byte. Since there is a 1 in

the cache, it means that the C-bus is busy at time t=2 as well. Thus, the first

available slot, which is t=3, is allocated to Timings[1]. The procedure then

considers the Timings[0] again (step-2). Since the t=2 is already used (note

the presence of a 1 in the cache), it means that there is a clash. The number

is incremented to 5 (the smallest integer with no clash) and is added to the

cache. Step-3 repeats this procedure. The numbers upto 5 are evicted from

the cache as 6 and 8 are greater then all of these. This step is necessary to

keep the cache size small. The finish times for the first frame in Timings[0]

and Timings[1] are 13 and 15 respectively. These integers are then added

to each integer in the respective next frame of the list and the procedure

iterates.
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Figure C.2: An example simulation of ARCH-III (p = 2).
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