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Abstract

The configuration memory of SRAM-based Field-Programmable Gate Arrays (FPGAs)
is susceptible to radiation-induced Single Event Upsets (SEUs). This has limited their
adoption for space applications and led to intensive research to discover techniques for
mitigating the radiation effects in such devices.

The reliability of FPGA user circuits is commonly improved by applying Triple Modular
Redundancy (TMR), whereas configuration memory errors are corrected by reloading a
golden bitstream for the design. Two approaches have emerged for doing so. The first,
known as scrubbing, periodically refreshes the configuration memory of the entire device.
The second makes use of dynamic partial reconfiguration to reload the configuration of
an individual circuit module that has been found to be in error. This latter approach,
which we refer to as Module-based Error Recovery (MER) holds promise for being more
responsive and needing less energy than scrubbing, at the cost of greater implementation
complexity.

The research work reported in this thesis aims to clarify the design, and improve the relia-
bility of FPGA systems that employ TMR with MER. The research has involved studying
and contributing to the development of several aspects of TMR-MER infrastructure, most
notably, the design of reliable Reconfiguration Control Networks (RCNs) for conveying
reconfiguration requests to a central reconfiguration controller, new reliability models for
TMR-MER systems and improved scheduling techniques to check for faulty modules.

This thesis evaluates the impact of RCNs on system reliability and performance. Results
show that a “hard RCN” is the most reliable despite having the highest network latency.
As the order in which voters are checked for errors over the RCN has an impact on
overall system reliability, this thesis then proposes a Voter Scheduling Engine (VSE) for
dynamically prioritizing the TMR component to be checked next. This thesis proposes
reliability models for TMR-MER systems suffering multiple SEUs and employing round-
robin or Variable-Rate Voter Checking (VRVC) and proposes the use of a genetic algorithm
to determine a static schedule for maximizing the system reliability. Simulation results
indicate that the mean time to failure of TMR-MER systems employing VRVC is up to
400% greater than when the usual round robin is used to check components for errors.

The thesis concludes with directions for further study.
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Chapter 1

Introduction

1.1 Why SRAM-based FPGAs in Space?

Future satellite-based space missions are expected to acquire and process very high data

rates from active and passive instruments [36]. Recent internal studies at NASA’s Jet

Propulsion Laboratory (JPL) estimate approximately 1–5 Terabytes per day of raw data

(uncompressed) are expected, for example, from spectroscopy instruments [120]. Hence,

there is the need to implement high performance, on-board processing systems that can

handle such data rates and that, for example, are able to perform lossless data compression

to reduce data volumes to those within the downlink capabilities of the spacecraft and

existing ground stations. Apart from the increase in performance, the next generation of

on-board processing is also required to be flexible and re-programmable in-orbit and during

active service. This brings about challenging requirements for future on-board processing

systems that cannot be met with space-qualified processors available today [50,88,160].

The implementation devices most suited to meeting such requirements are Field Pro-

grammable Gate Arrays (FPGAs). FPGAs offer a low Non-Recurring Engineering (NRE)

cost alternative to Application-Specific Integrated Circuit (ASIC) technologies for custom

hardware. Although FPGAs cannot provide the same level of performance as an ASIC,

they offer at least an order of magnitude computational efficiency advantage over general-

purpose processors. FPGAs also offer the flexibility to be reconfigured on-demand for

in-field bug fixes, upgrades or entirely new applications.

FPGAs, in general, have demonstrated their benefits in a variety of space-based projects

[106,170]. More examples include Mars Exploration Rovers, which use Xilinx FPGAs for
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motor control and landing pyrotechnics [138], and the Los Alamos National Laboratory

satellite (CFEsat), which uses nine FPGAs as part of its high performance computing

payload [137]. Another example is the Sentinel-2 spacecraft, a current mission of the

European Space Agency (ESA), whose payloads are mostly FPGA based [53].

FPGAs are typically classified into three different types based on the technology used to

store the configuration. These include anti-fuse, flash and SRAM-based FPGAs [173].

Until now the most commonly used implementation technology in space has been anti-

fuse, which uses One-Time Programmable (OTP) fuses to permanently set the state of

each FPGA configuration bit. The advantage of these devices is their relative immunity

to radiation-induced effects and they are generally the most reliable type of FPGA to use

in space applications [99]. However, the main drawback of anti-fuse FPGAs is that the

configuration data cannot be changed once it is configured. This prevents the user from

updating the device in-flight or from using them in reconfigurable computing applications.

The second most commonly used technology in space is based on flash memory technology.

Recently, flash-memory based FPGAs, such as the ProASIC3 devices from Microsemi, have

been considered for use in space-based instruments [102, 107]. Flash cells are generally

immune to radiation-induced upsets and, thus the configuration memory of a flash FPGA

is protected from upsets [98]. However, the use of flash FPGAs on long-term space-

based missions is problematic due to their rather low immunity to Total Ionizing Dose

(TID) effects and Single Event Latch-ups (SELs) [14, 103]. Although flash FPGAs can

be reconfigured and offer good performance, the limitation of the number of times that

they can be reconfigured renders them less desirable for use in long-term missions or in

reconfigurable systems that are regularly reconfigured.

SRAM-based FPGAs use static memory cells to store the internal FPGA configuration.

These static memory cells require power to store configuration state and must be pro-

grammed from external memory after the FPGA is powered up. There are two types

of SRAM-based FPGAs, including radiation-hardened and Commercial, Off-The-Shelf

(COTS) FPGAs. Compared to COTS FPGAs, radiation-hardened FPGAs are more com-

monly used in space because they provide protection against radiation-induced faults

in the configuration and application memory. However, apart from the sale and use of

these devices being restricted by the International Traffic in Arms Regulations (ITAR)

rules [37], these devices are orders of magnitude more expensive than equivalently sized

COTS FPGAs, consume more power to operate and usually lag a couple of process gen-

erations behind current COTS device technologies. Most importantly, because they are

much smaller in size and cannot be reconfigured at run time, they are more limited and
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less flexible than COTS devices [20].

COTS SRAM-based FPGAs offer additional flexibility over OTP FPGAs in both the de-

velopment and operation of space instruments. In [126], Pingree describes the typical

problems of one-time programmable FPGAs that were used in the command and teleme-

try interface of the key instrument on NASA’s Juno spacecraft. To meet requirements,

engineers had to design and configure the FPGA two years before launch. The FPGA

configuration could not be modified, improved or corrected without significantly impact-

ing on the project cost and schedule. Moreover, the 5-year trip to Jupiter also required

calibration activities that had to be performed without altering the FPGA configuration.

It is therefore impractical to use an OTP FPGA when the numerous reasons for poten-

tially needing to update the FPGA configuration to better meet mission objectives are

considered. This is not the case with SRAM-based FPGAs that can be updated at any

stage of a mission.

Due to the benefits of COTS SRAM-based FPGAs, there is growing interest in using them

for data-intensive processing applications, such as those that are prevalent in space-based

systems, particularly for use in low cost, low orbit, micro- and nano-satellites, which are

typified by far lower costs and shorter life-cycles than large-scale, higher orbit satellites

designed for communications, scientific and defence applications. In addition to their

ready availability, low cost and flexibility, these FPGAs contain abundant programmable

logic resources and high-bandwidth on-chip memories that are suitable for complex, high-

throughput applications, such as signal-processing. Modern SRAM-based FPGAs can also

be reconfigured to allow different applications to be instantiated at different times and for

specific mission objectives using the one device. Last but not least, reconfigurability can

also be used for uploading new applications and for fixing bugs found in the existing

design.

1.2 Scope and Objectives

1.2.1 Scope

Current state-of-the-art SRAM-based FPGAs, which can include on the order of a billion

configuration memory bits, are being looked to as suitable candidates for hosting com-

plex, high-performance, space-based and extra-terrestrial digital systems due to their low

cost, low power consumption, run-time reconfigurability, and their impressive processing
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performance [50, 88]. However, the designers of space-based and extra-terrestrial SRAM-

based FPGA applications must consider the impact of ionizing radiation, i.e., high-energy

charged particles and cosmic rays, on the device, primarily in the form of Single Event

Upsets (SEUs) [26]. SEUs may alter the logic state of any static memory element, i.e.,

configuration latches, user flip-flops, internal block memory and other device-specific con-

trol registers. Since millions of configuration latches within an FPGA are programmed to

implement the user functionality, an SEU in the configuration memory can adversely and

dramatically affect the expected FPGA functionality. Therefore, in this thesis we mainly

focus on techniques to mitigate configuration memory SEUs.

Apart from shielding, which may not be feasible in micro- and nano-satellites, the safe

use of FPGAs in harsh radiation environments requires the implementation of robust SEU

mitigation design techniques. Hardware redundancy, such as Triple Modular Redundancy

(TMR), is one of the most commonly used techniques [146, 167]. TMR can mask any

single design failure by voting on the result of three functionally equivalent replicas. The

TMR technique can be applied at different levels of granularity. At the coarse end of the

spectrum, it can be applied to the system as a whole, whereas at the fine end of the spec-

trum, it can be applied to each individual memory element of a system. More fine-grained

application of TMR offers shorter error detection latencies together with higher area over-

heads due to the additional voters needed. However, TMR is unable to correct errors or

eliminate erroneous values that have become trapped within a cyclic user circuit or within

the configuration memory. Errors trapped in user circuitry can, though, be corrected

by resetting the faulty module or by resynchronizing the module with its functionally

equivalent siblings. To deal with configuration memory errors, TMR is usually combined

with error recovery techniques, such as scrubbing [26,66], or Module-based Error Recovery

(MER) [20]. We use the term TMR-Scrubbing to refer to an FPGA-based TMR system

in which configuration memory errors due to SEUs are recovered by scrubbing, whereas

TMR-MER is used to refer to FPGA-based TMR systems that rely on module-based error

recovery to correct configuration memory errors due to SEUs.

Both TMR-Scrubbing and TMR-MER rely on Dynamic Partial Reconfiguration (DPR)

to correct configuration memory errors. TMR-Scrubbing is typically initiated periodi-

cally and commonly involves reading back each configuration memory frame of the device,

checking it for errors using in-built Error-Correction Code (ECC) or by comparing it to

a golden reference, correcting any errors that are found and writing back any corrected

frame (memory segment). In contrast, TMR-MER is commonly triggered when repeated

errors are detected by the voter associated with a TMR component and involves rewrit-

ing the configuration memory for the specific module that has been found to be in error.
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TMR-Scrubbing, which could be referred to as a frame-based recovery technique, is thus

more fine-grained than TMR-MER in its corrective action, but involves reading or writ-

ing the entire configuration memory contents. On the other hand, TMR-MER is more

coarse-grained than TMR-Scrubbing, in so far as the configuration memory contents of

a complete module are rewritten; multiple configuration memory errors affecting the one

frame/module can thus be corrected in a single action, and correction is typically faster

with TMR-MER than with TMR-Scrubbing.

In the past couple of decades, more research has focused on the use of TMR-Scrubbing than

on TMR-MER to improve the reliability of SRAM-based FPGA systems [146]. However,

TMR-MER is being seen as offering certain advantages over TMR-Scrubbing. A significant

drawback of TMR-scrubbing is that it results in unnecessary power consumption because

it is invoked periodically even when no SEU has occurred [158]. Furthermore, the delay in

correcting errors using TMR-scrubbing may be excessive: current state-of-the-art FPGAs,

e.g., Xilinx UltraScale XCVU440, can include on the order of a billion configuration bits

and the time required to read back the entire configuration memory during a scrub cycle

can thus exceed 120 ms. This means that SEUs will be detected in the system after 60

ms on average, which could be too long for time- and safety-critical systems. TMR-MER

aims to avoid these costs by reconfiguring just that portion of the device that is suspected

of being in error and by providing low-latency error detection via the TMR voters [20].

TMR-MER, thus, aids both the system power consumption and reliability [3, 158], which

are both desirable outcomes for space-based systems. In this thesis, we explore a new

approach to further improve the reliability of TMR-MER systems. We thereby aim to

further understand the relative merits of TMR-MER and TMR-Scrubbing.

1.2.2 Objectives

This thesis aims to provide solutions to further improve the reliability of TMR-MER

systems. The thesis has three objectives.

Both TMR-Scrubbing and TMR-MER utilize a controller to operate, but TMR-MER

also requires a means of relaying Reconfiguration Requests (RRs) from the voters in the

system to a central Reconfiguration Controller (RC) [4]. A star-, bus-, or ring-based

Reconfiguration Control Network (RCN) is often employed to perform this function [4].

Another alternative is to use the in-built FPGA configuration infrastructure to access

distributed status registers containing the RRs [4]. The performance and reliability of the

RCN are important for a few reasons. Firstly, the latency of the RCN has a direct impact
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on the Mean Time To Recover (MTTR) from errors in the system, and the sooner the

module is recovered, the lower the likelihood that the protection provided by TMR will

fail. On the other hand, the RCN is often implemented as a non-redundant component

in the system, whereby it introduces a single point of failure that can greatly compromise

system reliability. Therefore, the first objective of this thesis is to focus our attention on

the design of the RCN for high performance with low resource utilization so as to reduce its

sensitivity to SEUs. We investigate possible network topologies for implementing an RCN

and compare their area, performance, and upset vulnerability with a view to establishing

the best solution for a given operating environment.

Irrespective of the RCN topology and technique employed, the voters, which trigger a

module-based reconfiguration by raising a request, cannot be checked in parallel. They

must be checked sequentially. Conventionally, the voters are checked in round-robin or-

der [4, 20, 152, 163]. Round robin is appropriate when the system contains similarly sized

TMR components, which are equally likely to suffer SEUs. However, when TMR com-

ponents vary in size, such as in the RUSH (Rapid recovery from SEUs in Reconfigurable

Hardware) payload [30], the order in which the voters of TMR components are checked has

an inevitable impact on overall system reliability. Intuitively, larger components are more

susceptible to configuration memory SEUs, and thus should be checked more frequently

than smaller ones. Therefore, the second objective of this thesis is to propose an on-chip

Voter Scheduling Engine (VSE) to help the RC dynamically adjust the order in which

RRs from TMR voters are checked for module errors based on the likelihood of the next

checked component being in error [113]. The approach was implemented based on the

idea that the RRs from the more vulnerable components, i.e., those comprising a greater

number of essential bits [89], are checked more frequently than the less vulnerable ones.

Consequently, the VSE work prompted us to investigate whether a static voter checking

schedule could be found to enhance TMR-MER system reliability beyond that possible

with the dynamic voter checking method. Therefore, the third objective of this thesis is

to explain our approach to developing a static schedule for checking voters that maximizes

the reliability of TMR-MER systems. It has also been noted that while TMR-MER is

generally effective for mitigating SEUs affecting the configuration memory [4], it is not well

suited to protecting systems against multiple coincident SEUs that affect multiple modules

of a TMR component and that thereby defeat the protection afforded by redundancy.

Therefore, to fulfil the third objective, we investigate the reliability of TMR-MER systems

consisting of multiple triplicated components operating in harsh radiation environments,

such as in geosynchronous orbit during solar flares and in high-energy physics laboratories

like the Large Hadron Collider, where multiple coincident SEUs are more likely to occur
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[123]. Our main interest in this objective is in determining the impact on overall system

reliability of varying the order and rate at which the voters of TMR components are

checked for RRs.

To achieve the objectives mentioned above, and to demonstrate their applicability in

general, we have conducted experiments both on synthetic systems comprising a variety of

TMR components, and on the RUSH micro-satellite payload, which contains 9 differently

sized components. The RUSH payload is described in detail in the Appendix of this thesis.

1.3 Thesis Contributions

The work described in this thesis aims to improve the reliability of TMR-MER systems.

The key contributions of this thesis are:

1.3.1 Reconfiguration Control Network

We compare four RCNs with respect to reliability, latency, scalability and power consump-

tion. Fault injection experiments were conducted to evaluate the impact of each RCN on

system reliability. We demonstrate that the hard network, which uses the Internal Con-

figuration Access Port (ICAP) of the FPGA to read the voter state, achieves the highest

reliability in a case study that is implemented on the RUSH (Rapid recovery from SEUs

in Reconfigurable Hardware) payload [30]. We also show that the Mean Time To Detect

(MTTD) configuration memory errors is greatest for the ICAP-based approach due to

the relatively large latency involved in retrieving user state this way, but we demonstrate

an effective optimization that significantly narrows the gap in MTTD between this hard

approach and the soft RCNs. Finally, we assess the reliability of a real system employing

module-based recovery relative to the same system using blind scrubbing. We have deter-

mined that scrub-based error recovery results in higher reliability unless the RCN is itself

triplicated and repaired when its configuration becomes corrupted.

1.3.2 Voter Scheduling Engine

We propose and evaluate a Voter Scheduling Engine (VSE) that dynamically prioritizes

and manages the voter checks in an FPGA-based TMR-MER system. The proposed VSE

is based on the idea that the currently most vulnerable TMR component needs to be
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checked next. Moreover, we incorporate the VSE into an ICAP-based RCN to readback

configuration frames that contain the health status of the system’s TMR components

[4, 163].

Furthermore, we assess and compare the reliabilities of a TMR system with MER, whereby

the TMR voter states are checked in a round-robin fashion, with that of the same system

implementing VSE. We demonstrate that TMR systems that utilize the VSE to determine

which component to check next are generally more reliable than those using a round-

robin order for checking component voters. This is especially the case when the period

between two successive checks is increased, e.g., when there is an increased number of

TMR components to check, or when the check frequency is reduced for the purpose of

saving energy. Results obtained using four different radiation conditions show that the

failure probability of the TMR system incorporating VSE is up to 50% lower than that

of the same system using round-robin voter checking during a simulated 30-day mission

in Geostationary Equatorial Orbit (GEO) and during a simulated 10-year mission in Low

Earth Orbit (LEO).

1.3.3 Variable-Rate Voter Checking

In the second objective, we developed methods for identifying the next component to check

at run time based on the likelihood that the component has failed since the last check [113].

In contrast, the third objective is to report on an off-line approach to determining a fixed

voter checking sequence that maximizes system reliability. Our contributions are:

• To derive reliability models of TMR-MER systems that comprise finitely many TMR

components whose voters are checked in round-robin order and at a variable rate. We

refer to such a schedule as Variable-Rate Voter Checking (VRVC). Previous work has

primarily focused on the effects of SEUs on SRAM FPGA-based systems while our

analysis considers the impact of multiple consecutive events, which is an important

consideration in providing a more accurate analysis of the system reliability in high

radiation environments.

• To propose a Genetic Algorithm (GA) for finding the optimal rate at which to check

all components so as to maximize the Mean Time To Failure (MTTF) and the

reliability of TMR-MER systems.

• To show that power consumed checking for errors can be reduced by reducing the

checking frequency. In this case, VRVC is capable of ensuring a higher system
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reliability than round robin or VSE.

• To demonstrate that MTTD is reduced by 44% and 30% on average when VRVC is

used instead of round robin and VSE, respectively.
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Checking in FPGA-based TMR Systems,” School of Computer Science and Engi-

neering, UNSW Sydney, Tech. Rep., 05 2017 [115].

The work described in this thesis is published in papers [111, 113, 116], papers under-

review [112, 114], and a technical report [115], as well as partly in the published pa-

pers [4,57,58]. The contributions of this author to the papers [4,57,58] in which he is not

the lead author is as follows. In [4], this author: (1) surveyed the RCN designs available

in the literature, (2) helped propose optimized RCN architectures for experimental evalu-

ation, helped implement the synthetic layout and RUSH layout described in the Appendix

and obtain implementation results, including design logic and routing utilization, latency,

power consumption estimates and numbers of essential bits that were reported from the

implementation tool for experimental evaluations; (3) proposed the fault injection proce-

dure and contributed to the proposal of the “RePin” approach for generating test vectors

during fault injection experiments and assisted in implementing the fault injection cam-

paign; and (4) analyzed the system reliability. Paper [4] is described in part in Section

3.3.

In [58], this author reviewed the literature on reconfiguration controllers for systems that

support dynamic partial reconfiguration and implemented the firmware for various fault-

tolerant methods such as TMR-Scrubbing, TMR-MER and Frame/Module-based Error

Recovery (FMER) [3] running on the Programmable Configurable Controller (PCC). In

[57], this author was only involved in reviewing the literature on reliable reconfiguration

controllers for fault-tolerant systems. The literature reviews of both papers [57, 58] are

included in Section 3.2 of this thesis.
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1.5 Thesis Outline

This thesis is organized as follows. After reviewing the radiation effects on SRAM-based

FPGAs and the sources of radiation, Chapter 2 details SRAM-based FPGA architectures

and analyses radiation-induced effects on each memory type within these devices. Next,

it provides a survey of the techniques used to mitigate these radiation-induced effects

with the aim of improving FPGA-based system reliability and provides an overview of

two techniques that have been widely used to mitigate configuration memory errors in the

literature. This chapter also describes related work on novel techniques that have been

proposed to further improve system reliability. Finally, practical and theoretical methods

to validate the effectiveness of mitigation techniques for radiation-induced effects are given

in this chapter.

Chapter 3 describes the architecture and operation of reliable TMR-MER systems includ-

ing the design of suitable voters, a reliable RC and, most importantly, the study of RCNs

available in the literature.

Chapter 4 describes our proposed approach for dynamically scheduling voter checks to

enhance TMR-MER system reliability.

Chapter 5 presents a solution to the question that Chapter 4 raises as to whether it is

possible to find a static voter checking schedule that maximizes system reliability.

The last chapter concludes the thesis and discusses directions for future work in enhancing

system reliability estimations.

The thesis includes one Appendix, which describes an implementation of a TMR-MER

system that has been deployed in a CubeSat, and that has been used as a case study in

obtaining results for Chapters 3 – 5.
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Chapter 2

Background and Related Work

This chapter provides background related to SRAM-based FPGAs that are used in radia-

tion environments. The chapter begins with a general discussion on the possible effects of

radiation on SRAM-based FPGAs (Section 2.1), which is followed by a description of com-

mon radiation sources that digital circuits are exposed to in the field (Section 2.2). Section

2.3 describes the heterogeneous architecture of modern SRAM-based FPGAs that include

different memory types, e.g., configuration memory and user memory, and describes the

consequences if these memories suffer errors caused by radiation-induced effects, primar-

ily Single Event Upsets (SEUs). Section 2.4 provides an overview of the techniques used

to mitigate against SEUs in each type of memory within an SRAM-based FPGA. For

example, the use of redundancy, such as Duplication with Compare (DWC) and Triple

Modular Redundancy (TMR), can be combined with error recovery techniques to miti-

gate SEUs. In Section 2.5, we focus on two upset mitigation techniques — TMR with

configuration memory scrubbing (TMR-Scrubbing) and TMR with Module-based Error

Recovery (TMR-MER), both of which are proven to be able to mitigate configuration

memory errors in SRAM-based FPGAs with a view to improving overall system avail-

ability and reliability. Section 2.6 reviews the previous work on utilizing novel techniques

to further improve system availability and reliability. Sections 2.7 and 2.8 provide both

practical and theoretical methods that have been widely used to assess the effectiveness

of SEU mitigation techniques in FPGAs. The last section summarizes the chapter.
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2.1. RADIATION EFFECTS ON SRAM-BASED FPGAS

2.1 Radiation Effects on SRAM-based FPGAs

Radiation is the emission or transmission of energy in the form of atomic or subatomic

particles moving at high speeds (usually greater than 1% of the speed of light) [171]. Par-

ticularly in space, radiation is generated by particles emitted from a variety of sources both

within and beyond our solar system. When high-energy particles such as electrons, heavy

ions or protons travel through a semiconductor circuit, they may not only cause degra-

dation, but may also cause negative effects on the operational circuit such as introducing

malfunctions or even permanently damaging the semiconductor system [118,119].

Modern System-On-Chip (SOC) integrated circuits (ICs) are increasingly using Static Ran-

dom Access Memory (SRAM) to provide high-speed, on-chip memory such as for registers

and cache. This is particularly so for conventional FPGAs, which also use SRAM to store

circuit configuration (look-up table and routing settings) as well as for block RAM stor-

age. For the past two decades, such SRAM-based FPGA devices have been investigated by

many researchers seeking to improve the suitability of these devices in radiation environ-

ments, particular in space [51,83,146]. It has certainly been established that SRAM-based

FPGAs are very sensitive to the radiation environments — particularly radiation-induced

effects.

Figure 2.1 presents an overview of common radiation effects on digital circuits, including

SRAM-based FPGAs. High-energy ionizing radiation has two types of effects that include

a long-term and damaging effect known as Total Ionizing Dose (TID), and immediate

effects known as Single-Event Effects (SEEs). When investigating the effects of radiation

on SRAM-based FPGAs, both TID and SEEs must be considered.

TID is defined as the total amount of radiation dose that a device can tolerate before

failing to meet the electrical parameters specified for the device. In Complementary Metal

Oxide Semiconductor (CMOS) devices, TID generates electron-hole pairs within the gate

oxide from the total ionizing energy deposited by photons or charged particles over time.

TID is a cumulative effect that leads to the degradation of electrical parameters, such as

decreasing the threshold voltage, increasing the leakage current and modifying the timing

of MOS transistors [14, 122, 189]. For long-term missions, or for missions with extreme

ionizing radiation environments, the accumulation of ionizing radiation ultimately causes

the device to fail [49]. Many factors may affect the TID absorbed by an FPGA device

such as orbit/location, length of mission, placement in the satellite, and the thickness of

shielding around the satellite. FPGAs may be exposed to 1 – 5 krad(Si) per year for short

missions in near Earth orbits, whereas these numbers are about 10 – 100 krad(Si) per
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Figure 2.1: Common radiation effects on digital circuits [146]

week for missions to Jupiter [134]. FPGA devices vary in their TID limits. For example,

COTS Xilinx Virtex 6 FPGAs have a TID limit of 380 krad(Si), whereas space-grade

Xilinx Virtex-5QV devices can withstand up to 1,000 krad(Si) [134].

On the other hand, SEEs are electrical disturbances caused by the direct ionization of a

silicon lattice by an energetic charged subatomic particle. Such ionization may lead to

destructive (e.g., Single Event Latchup (SEL)) or non-destructive events, as can be seen

in Figure 2.1. Non-destructive events, which are also called “soft errors”, include non-

stable events, such as Single Event Transients (SETs), or stable events, such as SEUs and

Single Event Functional Interrupts (SEFIs). SEEs are random and happen according to a

probability related to energy level, flux, and cell susceptibility. A brief summary of these

SEEs is provided below [44,69]:

• Single-event latch-ups (SELs): An SEL is an abnormal, high-current state in a device

caused by the passage of a single energetic particle through sensitive regions of the

device structure, resulting in the loss of device functionality. In many cases the

current is high enough to cause permanent damage to the device. If the device is

not permanently damaged, power cycling of the device (off and back on again) is

necessary to restore normal operations. For example, a SEL may occur in a CMOS

device when a single particle triggers shorting of power to ground via a parasitic p-n-

p-n thyristor structure. Any device considered for use in high radiation environments

must be tested for SELs [79].
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• Single-event upsets (SEUs): An SEU is a state change (or bit-flip) of a single data

bit or memory cell caused by ionizing particles [69]. In terrestrial applications, the

two ionizing radiation sources of concern are alpha particles emitted from package

impurities and high-energy neutrons caused by the interaction of cosmic rays with the

Earth’s atmosphere. When an ionizing particle passes through the various material

layers of a semiconductor device, it creates an ionization path with free electrons

and holes such that charge can be transferred from one node to the other. This may

result in a toggling of the state of the memory cell, i.e., changing a logic “1” to a

logic “0” or a logic “0” to a logic “1”. Unlike a SEL, the SEU itself is not considered

permanently damaging to the device [118,119].

• Single-event transients (SETs): A single event effect may cause one or more transient

voltage pulses, i.e., glitches, to propagate through the circuit. We call such events

single-event transients. Since the output glitches do not change circuit “state”, as in a

memory SEU, one differentiates between SETs and SEUs. However, if the temporary

glitch propagates through digital circuits and is latched, it may appear as an SEU.

Like SEUs, SETs do not cause any permanent damage within the device [69].

• Single-event functional interrupts (SEFIs): A SEFI is an SEE that results in the

interference of the normal operation of a complex digital circuit. SEFIs are typically

used to indicate failure in support circuits, such as loss of configuration capability,

power on reset, JTAG functionality, a region of configuration memory, or the entire

configuration [8, 190].

Another class of non-destructive SEE, not shown in Figure 2.1, is referred to as Multiple-

Bit Upsets (MBUs). An MBU is defined as any event that causes more than one SEU from

a single charged particle [131]. MBUs affect multiple configuration bits simultaneously.

The techniques presented in this thesis deal with SEUs. MBUs, which in current process

technology devices occur about 5% of the time, will also be dealt with using our techniques

when they affect the one module of a TMR component. However, when MBUs affect

multiple modules of a TMR component, stronger techniques for detecting the errors in

the first place are needed.

2.2 Radiation Environments

Radiation is prevalent in many environments. In this section, we review several important

radiation environments where FPGAs are particularly useful, including space environ-
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ments, terrestrial environments and high-energy physics environments.

2.2.1 Space Environments

Digital circuits used in space are subjected to many environmental threats that can de-

grade many circuit components. These threats include vacuum, solar ultraviolet radiation,

charged particle (ionizing) radiation, plasma and surface charging and arcing, temperature

extremes, vibrations, and so on. Perhaps, the most dangerous threat for digital circuits is

the pervasive influence of charged particle radiation [18] since those particles causes single

event effects as described in the previous section.

Three primary sources of these particles involve the solar wind and flares, Galactic Cosmic

Rays (GCRs) and the Van Allen radiation belts [44, 69]. High-energy charged particles,

which include protons and electrons are emitted by the sun as part of the solar wind.

During intense solar flares, which may last from a few hours to several days, the number

of particles emitted can dramatically increase by several orders of magnitude compared to

those present under normal conditions. GCRs must also be considered as they are particles

similar to those found in the solar wind and in solar flares, but they originate outside the

solar system. In many cases, GCRs are much more massive and energetic than particles

of solar origin. The Van Allen radiation belts are the third threat and involve charged

particles trapped in the Earth’s magnetic field. The Van Allen radiation belts extend from

100 km to 65,000 km beyond the Earth’s surface and consist mainly of electrons up to

a few MeV and protons of up to several hundred MeV energy [44]. Due to the Earth’s

asymmetric magnetic field, a region in the Atlantic near Argentina and Brazil, known as

the South Atlantic Anomaly (SAA), has a relatively high concentration of electrons. The

SAA is known to cause problems such as: single event upsets in digital circuits [108].

The radiation environment in space is well characterized and varies considerably based on

the altitude, inclination, and eccentricity of an orbit. It is also heavily dependent on the

transient solar weather and the 11-year solar cycle [121]. One of the challenges of using

FPGAs in space is estimating the upset rate of the devices and handling infrequent but

harsh space weather events, such as solar flares.

2.2.2 Terrestrial Environments

At terrestrial, Earth-based altitudes, the predominant sources of radiation include both

cosmic-ray radiation and terrestrial sources [74]. As mentioned in the previous section,
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cosmic radiation may come from sources outside the solar system and is dominated by

high- and low-energy neutron-induced reactions between cosmic radiation and atoms in

the atmosphere. Terrestrial sources of radiation include naturally occurring materials in

the Earth, such as soil, rocks, water and the air. Most of them are relatively low in

energy and thus have little impact on electronic systems. However, there is an exception,

namely, alpha particles emitted from radioactive impurities in electronic device packaging

and chip materials, which can cause soft errors [74]. Fortunately, these can be eliminated

using improved manufacturing techniques. For example, the use of a Dual Interlocked

storage CEll (DICE) design [22] to fabricate the memory cells of SRAM-based FPGAs

can improve the soft-error resistance by nearly 1,000 fold [187], while only doubling area,

energy consumption and gate delay compared with standard SRAM cells [92].

Problems with terrestrial-based neutron radiation from cosmic rays have become more

commonplace. While the incidence of radiation-induced effects in the terrestrial environ-

ment is lower than in space, physics, system design and system locations have combined

to make systems increasingly vulnerable to terrestrial radiation environments. Therefore,

digital circuits operating in the terrestrial radiation environment can also experience ad-

verse radiation effects, leading to their malfunctioning [96]. The impact of these upsets

must be considered with regard to high-reliability applications, such as medical devices

or systems that contain a large number of FPGAs, such as scientific instruments, data

centres and supercomputers [130].

2.2.3 High-Energy Physics Experiments

High-Energy Physics (HEPs) is the branch of physics that studies the properties and

interactions of the fundamental particles of nature that constitute matter and radiation.

HEP experiments use particle accelerators, such as the Large Hadron Collider (LHC), to

accelerate charged particles almost to the speed of light before causing them to collide

head on. The collisions generate a number of by-products that are studied to learn more

about the subatomic structure of matter and the fundamental laws of nature.

High-energy particles collide within HEP experiments to create a radiation environment.

The intensity of the radiation environment depends on the type of experiment and on the

location within the experiment. Basically, the closer to the particle collision, the higher

the radiation level.

In the past, due to their sensitivity to radiation, SRAM-based FPGAs were rarely used in

HEP, especially in the inner detector, where the radiation field is very high, and may even
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be higher than in some space-based environments [33]. However, in environments with

moderate radiation fields, SRAM FPGAs based on 28 nm feature sizes and on Silicon On

Insulator (SOI) technology can tolerate the radiation present when used with appropriate

SEU mitigation methods [33]. SRAM-based FPGAs have thus been used to track sub-

atomic particles resulting from collisions because of their fast and dense resources [59,62].

2.3 SRAM FPGA Architectural Vulnerabilities

In the early days, FPGAs were mainly used to implement the interfaces between devices

and sub-systems. However, modern FPGAs enable far more complex operations as they

are very sophisticated devices containing a wide variety of heterogeneous resources. These

include

• Configurable Logic Blocks (CLBs), including programmable look-up tables (LUTs)

to implement combinational logic, and user flip-flops for storing synchronous logic

state;

• Digital Signal Processing (DSP) slices provide advanced high-speed arithmetic and

comparison functions, including multiplication and accumulation;

• Block Memory (BRAM) modules provide large storage capacity in the form of true

dual port RAM;

• Digital Clock Manager (DCM) blocks provide clock frequency synthesis and de-skew;

• Phase Lock Loop (PLL) blocks provide clock distribution delay compensation, clock

multiplication/division, coarse/fine-grained clock phase shifting, and input clock jit-

ter filtering;

• Bidirectional Input/Output Blocks (IOBs);

• High-speed serial transceivers supporting full-duplex, clock-and-data recovery;

• PCI Express (PCIe) endpoints and root port designs, which implement a general

purpose serial interconnect that can be used for peripheral device interconnects,

chip-to-chip interfaces and bridge to many other protocol standards;

• Hard processors, embedded for processing solutions spanning high performance, low

power and very low cost; and
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• User configurable Analog to Digital Converter (ADC) interfaces with on-chip thermal

and supply sensors.

The sensitivity of these resources to radiation-induced effects varies. An understanding of

these effects can only be gained through direct radiation testing [153,154].

Numerous radiation tests on the Xilinx Kintex-7 XC7K325T FPGA have proven the feasi-

bility of deploying commercial SRAM-based FPGAs in radiation environments [17,68,90].

Although COTS SRAM-based FPGAs cannot provide high-radiation immunity compared

with other FPGA types, they are surprisingly resistant to TID and SELs, especially in Low

Earth Orbit (LEO), and if proven to be sufficiently reliable, may even have applications

in geosynchronous satellites. Hiemstra et al. reported that no change in post-irradiation

supply current was observed after a Kintex-7 FPGA received an equivalent total dose of

17 krad (SI), which guarantees sufficient device lifetime in space for a short period at

moderate radiation levels [68]. Moreover, Lee et al. predicted the latch-up event rate to

be 9.2 × 10−5 per device day in Geostationary Earth Orbit (GEO), and those observed

latch-ups are “non-destructive”, which can be tolerated by discharging the device through

the auxiliary power-rail [90]. More importantly, heavy ions, which could cause latch-ups

on commercial SRAM-based FPGAs, are scarce in LEO [90]. In this section, we therefore

focus on the effects of soft-errors, primarily SEUs, on COTS SRAM-based FPGAs.

From a fault-tolerance perspective, SRAM-based FPGAs can be thought of as devices that

consist of two layers, namely a configuration layer and an application layer. The former

comprises the configuration memory and the logic needed to access this memory, while

the latter is composed of memory resources that are used by the implemented user designs

to store application state. User designs are configured by means of the configuration

memory bit settings. Therefore, memory elements in an SRAM-based FPGA device can

be classified into two groups: configuration and user memory bits. The configuration

memory bits are used to specify the particular circuit mapped onto the FPGA, whereas

the user memory bits (e.g., flip-flops and the contents of distributed and block RAM

elements) hold the current state of the circuit. Unless the user design is dynamically

reconfigurable, the contents of the configuration memory bits should remain unchanged

during operation, while the contents of the user memory bits may change on any clock

cycle. Moreover, all FPGAs also contain internal state to manage the internal operation

and configuration of the FPGA.

This section discusses the effects of radiation-induced SEUs on the configuration memory,

block RAMs, user flip-flops, and internal proprietary state of an SRAM-based FPGA.
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To aid this discussion, we refer to a Xilinx Artix-7 XC7A200T FPGA to illustrate these

issues. Table 2.1 reports the most important user-accessible internal state of the Artix-7

XC7A200T FPGA [184]. This device contains over 91 million bits that are susceptible to

radiation-induced upsets. The impact of SEUs within each of these memory types will be

described below.

Table 2.1: Memory bits within the Artix-7 XC7A200T Xilinx FPGA

Memory type Number of bits Percentage distribution

Configuration 77,845,216 85.0

Block RAM 13,455,360 14.7

User Flip-flops 269,200 0.3

Total 91,569,776 100.0

2.3.1 Configuration Memory

As can be seen in Table 2.1, the device configuration memory accounts for 85% of the

memory latches in the Artix-7 XC7A200T FPGA. This implies that the most susceptible

memory type in this device, as in all SRAM FPGAs, is the configuration memory. The

configuration memory bits include all LUT values, other internal CLB settings, IOB con-

figuration settings, block RAM control settings, DSP slice settings, clock manager settings,

and all programmable interconnect points (PIPs). They are used to specify the particular

circuit mapped onto the FPGA. Moreover, SRAM-based FPGAs use static memory cells

for configuration storage, allowing these devices to be reprogrammed by loading a new

configuration into the memory: a different logic function and/or routing organization can

be implemented by reconfiguring, or changing, the configuration memory settings.

Since static memory cells are susceptible to radiation-induced SEUs, if SEUs occur within

the configuration memory, they may lead to a malfunction of the user circuit design in

different ways. Figure 2.2 illustrates four typical circumstances in which a circuit fails

due to SEUs occurring in the configuration memory, where Figure 2.2(a) depicts the

relationship between the circuit configured on the device and the configuration memory.

The data in the switch matrix, LUTs, user flip-flops and the output MUX form a two-

input AND gate with a D-type flip-flop before exiting the CLB. In Figure 2.2(b), the upset

directly changes the LUT content, which in this case changes the implemented function to

an XNOR gate. In Figure 2.2(c), the upset disables the output latch, which changes the

circuit mode from synchronous to asynchronous. SEUs in the Switch Matrix (SM) may

cause two possible effects. As depicted in Figures 2.2(d) and (e), a configuration memory
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Figure 2.2: Examples of SEU effects on different types of logic cells [11, 61,136].
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upset may bridge two routes together that affects two routing nets, or may disconnect an

input to the CLB [11].

However, not all upsets to the configuration memory will cause the design to fail in its

intended operations. In any circuit implementation, only a small portion of configuration

memory bits are associated with the circuitry of the design — these are referred to as

essential bits [89], and a large number of configuration memory bits are unused for specific

designs — these are referred to as non-essential bits. SEUs presenting in non-essential bits

will not cause any of the above-mentioned failure modes [26]. Note that upsets corrupting

essential bits do not necessarily affect circuit operation. The bits that do influence circuit

functionality when corrupted are referred to as sensitive or critical bits, which form a

subset of the essential bits. The actual number of sensitive bits varies from design to

design. Fault injection is frequently performed to determine the number of sensitive bits

in a design [61,76] (see Section 2.7).

2.3.2 Block RAMs

In the early days, Block RAMs (BRAMs) accounted for a small portion of memory cells

within an FPGA device [11]. However, modern FPGAs embed more BRAMs to support a

variety of operations and computations. BRAMs are distributed across the device provid-

ing a large amount of internal memory bandwidth to support high-performance computing

and memory buffering. As can be seen in Table 2.1, BRAMs account for 14.7% of on-chip

memory, which is the second largest memory component within the example FPGA.

BRAMs, which are implemented using SRAM, are also susceptible to radiation-induced

upsets. Upsets in BRAMs may cause application errors. The impact of such data errors

on system behaviour depends on how the data are used in the system. Like configuration

memory, not all BRAM cells are used in a specific application. If upsets occur in unused

memory words, they will not impact on the system. However, if upsets occur within the

used memory space, errors can propagate throughout the system and cause a variety of

undesirable effects.

2.3.3 User Flip-flops

User programmable Flip-Flops (FFs) are an important architectural component of all

FPGAs. Most FPGA circuit designs use FFs to implement sequential logic circuits such

as Finite State Machines (FSM), counters, synchronizers and registers. Upsets in the user
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FFs may be caused by SETs or SEUs. SETs cause transient glitches in the intermediate

signals and combinational logic gates. Such glitches may be latched into FFs as incorrect

values [16], while SEUs may directly affect the internal state and output values of the FFs.

Table 2.1 shows that user FFs account for the smallest portion of accessible memory cells

within an SRAM-based FPGA. However, user FFs typically hold values that are very

important to correct circuit operation. Upsets in the FFs therefore often cause circuits to

malfunction. For example, if the FFs holding the state of an FSM are upset, these cause

the FSM to enter an unintended state. Even worse, such upsets may cause the FSM enter

non-existent, deadlock states.

2.3.4 Internal Proprietary State

Internal state plays an important role for all FPGAs as it is used to manage the internal

operations and configuration of the FPGA [180]. As the name implies, most of this

internal state is not visible to the user, but is crucial for the FPGA to operate properly.

Fortunately, this internal state makes up a very small portion of the memory cells within an

FPGA, thus, it is far less sensitive to radiation than the other memory types. However,

any upset occurring in internal registers may lead to strange behaviour for the FPGA.

Such behaviour normally cannot be resolved by the FPGA itself and is often classified as

a SEFI. For example, the radiation testing in [190] observed a couple of SEFIs, such as

clearing of configuration memory and loss of state data (power-on-reset SEFI) and loss of

communication with configuration logic (SelectMap SEFI and JTAG SEFI).

2.3.5 Final Remarks on FPGA Architectural Vulnerabilities

The configuration memory bits account for the largest proportion of memory cells within

SRAM-based FPGAs, e.g., more than 80% of modern Xilinx FPGA memory is used to

configure the device. Since the susceptibility to SEUs of the various memory types on an

FPGA is similar [186], there is therefore a roughly four-fold greater probability of SEUs

occurring in configuration memory bits than in user memory bits. Since configuration

memory upsets have the potential to alter the function of a LUT or the routing between

nodes, they can lead to apparently “permanent” errors, such as logic or stuck-at faults,

manifesting in user circuits until the altered configuration state is corrected. In this thesis

we mainly focus on proposing approaches for detecting and correcting SEUs that have

occurred in the configuration memory bits of an SRAM-based FPGA.
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2.4 Mitigating SEUs in SRAM FPGAs

Designers have been interested in using SRAM-based FPGAs in radiation environments,

such as space and high-energy physics, due to their high-performance, low Non-Recurring

Engineering (NRE) cost and flexibility. However, they are susceptible to radiation-induced

soft errors. Therefore, many studies have been conducted to mitigate the effects of soft

errors on SRAM-based FPGAs in order to satisfy reliability requirements. Techniques

involving hardware changes to the FPGA fabric or device architecture have been applied

by FPGA vendors. For example, the space-grade Xilinx Virtex-5QV FPGA provides

radiation-hardened by design (RHBD) techniques to protect the configuration memory

cells from single-event upsets [187]. However, these devices are orders of magnitude more

expensive than equivalently sized off-the-shelf FPGAs, consume more power to operate

and usually lag a couple of process generations behind industry-leading device technologies

in terms of performance. Most importantly, because they are much smaller in size, they

are more limited and less flexible than COTS devices [20].

This section focuses on reporting the techniques used by FPGA researchers and designers

to mitigate soft errors, particularly SEUs, within COTS SRAM-based FPGAs. These

techniques involve using hardware redundancy to mask and detect configuration memory

SEUs combined with the use of dynamic partial reconfiguration to correct configuration

memory SEUs, using Error Correction Code (ECC) to protect against SEUs occurring in

BRAMs, using redundancy to protect against SEUs in FFs and using system redundancy

to mitigate against SEUs occurring in internal proprietary state.

2.4.1 Terminology

Before we proceed further, we first introduce common terminology that describes an ab-

normal state of a system, including: fault, error and failure. We will use this terminology

throughout this thesis. Typically, a fault is understood to be the cause of an error, and

an error to be the cause of a failure. For example, in functional safety standard ISO

26262 [172], a fault is defined as an “abnormal condition that can cause an element or

an item to fail”. An error is defined as the “discrepancy between a computed, observed

or measured value or condition, and the true, specified, or theoretically correct value or

condition”. Finally, a failure is defined as the “termination of the ability of an element, to

perform a function as required”. In this thesis, we view an erroneous FPGA output as a

failure. Although the failure is always caused by a fault, a fault does not necessarily cause
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a failure. In an FPGA circuit design, a bit-flip or an SEU in a memory cell is viewed as a

fault.

2.4.2 Hardware Redundancy

During run time, either temporal or spatial redundancy can be applied to the system in

order to mask the effects of SEUs in the FPGA configuration memory. Temporal redun-

dancy, like its name implies, uses redundancy in time [70,159]. A computation is performed

on the same hardware at least at two different times to mitigate failures that occur during

one of the redundant computations. However, the drawback of temporal redundancy is

that circuit performance is degraded at least two fold. On the other hand, spatial redun-

dancy involves several identical circuit structures running in parallel in order to remove

single points of failures. Morgan et al., showed that the use of spatial redundancy, such

as TMR is more reliable than that of temporal redundancy [105].

Two common forms of spatial redundancy include DWC [77,110,152] and TMR [146,167].

DWC duplicates the user design and uses a comparator to compare the outputs of the two

replicas in order to detect upsets in the configuration memory and in user memory. DWC

logic requires up to 33% less area and results in higher performance than TMR [157].

However, DWC does not allow the corrupted replica to be identified, thus the entire

component has to be reconfigured to erase faults in the configuration memory. Therefore,

DWC is unsuitable for safety-critical and real-time systems. On the other hand, TMR

triplicates the user design, with each module operating in parallel. The outputs of the

three identical modules are fed into a voting circuit that arbitrates between them. If any

one of the triplicated modules suffers an error, the other two outvote its output provided

that they continue to operate normally. Under such circumstances, TMR not only provides

the means to identify a faulty unit, but also improves system reliability.

When applied to FPGAs, TMR can be implemented at the system level by using three

separate FPGAs. Doing so normally results in a higher cost and a physically larger system

that comprises more components and consumes more power than its simplex equivalent.

Secondly, TMR can be applied at the system level but within the one FPGA device.

Thirdly, the design can be triplicated at the level of a system’s function units that are

implemented within the one FPGA device. Examples of such units are Finite Impulse

Response (FIR) filters, Block Adaptive Quantizer (BAQ) compressors or the pipeline

stages of a processor. Finally, triplication may be implemented at the level of basic

elements in one FPGA such as counters, decoders, multiplexers, and adders, and at the
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level of individual registers. In this thesis, we focus on the third type of triplication

outlined, namely triplication of a system’s function units.

Alternative methods can be used to mitigate radiation-induced SEUs in SRAM-based

FPGAs, including reduced precision redundancy [148], design diversity redundancy [155],

state machine encoding [117], and special-purpose placement and routing [149]. Such

alternatives have not gained as much traction as TMR, perhaps because they are less

general or less straightforward to implement.

While TMR is easy to implement and improves system reliability, it has a significant area

cost as the resulting circuit is at least three times the size of the original circuit, and

normally operates at a slower clock frequency than the unreplicated (simplex) design. A

good deal of FPGA-related research has been directed at reducing the cost of TMR by

focusing on protecting the important parts of a circuit [78], and optimizing the placement

of voters on feedback paths [81], while ensuring multiple errors do not cause the circuit to

fail [25].

TMR on its own does not provide a means of correcting a faulty unit. When a triplicated

module contains no feedback paths, SEUs are detected as transient errors in the output.

However, when an SEU is trapped in a feedback path, or the configuration memory is

affected, errors can persist, and some method for eliminating the error is needed. If

feedback values are voted on, then they can be masked, and therefore prevented from

being recirculated [25]. A simple method for clearing the user circuit is to reset the

system. However, a reset may delay the operation of time-critical systems excessively.

Typically, TMR is combined with error recovery techniques, which rely on the dynamic

partial reconfiguration capabilities of modern FPGAs to correct configuration memory

errors.

2.4.3 Dynamic Partial Reconfiguration

Dynamic Partial Reconfiguration (DPR) allows for the selective reading and writing of

configuration memory while the device operates [26]. DPR controllers need to access the

configuration data through a configuration memory port, such as the Internal Configu-

ration Access Port (ICAP), Processor Configuration Access Port (PCAP), SelectMap, or

using Joint Test Action Group (JTAG) [180]. In fault-tolerant systems, the DPR con-

troller, which we refer to as a Reconfiguration Controller (RC), can detect and correct

configuration memory upsets without any interruption of the user logic function. The

configuration memory is read/written in a packet format, and each packet contains a slice

26



2.4. MITIGATING SEUS IN SRAM FPGAS

of configuration data that is referred to as a configuration memory frame. A configuration

bitstream contains the data for a series of frames together with a bitstream header and

footer, and optional frame headers that control the configuration port registers, such as

the frame address register, configuration and command registers [180].

To prevent the build-up of upsets within the configuration memory, the upsets in the

configuration memory can be repaired using DPR. To date, two upset mitigation tech-

niques that rely on both TMR and DPR have emerged – TMR-Scrubbing and TMR-MER.

By triplicating components and voting on their outputs, TMR helps to protect the user

data and to detect configuration memory errors, while by reconfiguring the configuration

memory, DPR swiftly corrects configuration memory errors. A brief overview of both

TMR-Scrubbing and TMR-MER follows.

2.4.3.1 TMR-Scrubbing

TMR-Scrubbing involves repairing upsets within the configuration memory bits by writing

the correct configuration data back into the configuration memory [26]. TMR-Scrubbing

can be considered to be similar to the scrubbing employed in conventional memory sys-

tem to preserve the integrity of the memory [139]. TMR-Scrubbing is typically initiated

periodically and commonly involves reading back each configuration memory frame in the

device, checking for errors, correcting any that are found and writing back the corrected

frame, when necessary.

A variety of TMR-Scrubbing methods have been introduced in the literature. These

include blind scrubbing and readback scrubbing [63]. Blind scrubbing continuously writes

valid configuration frame data into the device over the existing configuration data [26],

whereas readback scrubbing involves reading back configuration memory to detect upsets

within the bistream and configuring the bitstream only when an upset in the bitstream

is detected. Readback scrubbing can further be classified into several variants such as

readback and repair with golden copy; readback with ECC and repair with golden copy;

readback and repair with ECC; and readback with Cyclic Redundancy Check (CRC) [63].

Xilinx provides an Intellectual Property (IP) block, the so-called Soft Error Mitigation

(SEM) controller [188], which can be used for both blind and readback scrubbing as

described above. One of the most commonly used modes of the SEM controller is readback

with ECC. In this mode, the controller is able to detect soft errors in the configuration

memory by reading configuration frames and calculating an ECC based on the built-in

FrameECC primitive [179]. In the Xilinx Artix-7 XC7A200T device, the period of a scrub
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cycle is 18.3 ms at the maximum ICAP throughput, which is about 1.01 us per frame

(the device has 101 words per frame and the ICAP is 32-bit wide running at 100MHz).

To correct errors in a frame, the SEM controller can fetch frames from off-chip memory

(0.83 ms per frame, as measured on a Nexys Video Artix-7 FPGA board [38]) or flip the

incorrect bit by using ECC information (0.61 ms per frame). While the later approach

can only correct single errors, it can be further enhanced to be capable of correcting two

adjacent errors in a frame via a hybrid algorithm based on CRC and ECC (18.79 ms per

frame). Blind scrubbing therefore is quick, but readback and repair is very much slower.

Note that most of the above values depend on the device family and system-level design

used. They may increase for larger devices, which contain far more configuration frames

than an Artix-7 XC7A200T [188].

2.4.3.2 TMR-MER

Modern Xilinx FPGA technology provides the flexibility for in-situ programming and re-

programming without going through re-fabrication. DPR provides further flexibility by

allowing the run-time modification of a user design via the loading of a partial config-

uration file. Following a full configuration of an FPGA, a partial configuration file can

be downloaded to modify the pre-defined reconfigurable regions in the FPGA without

affecting the functions of those parts of the device that are not being reconfigured [183].

TMR-MER utilises this characteristic of modern FPGAs to recover from configuration

memory errors. For example, while a TMR component in the system is running, the vot-

ers associated with the TMR component can identify which module is in error (see Section

3.1). A corresponding partial configuration file can then be loaded to overwrite the faulty

module without compromising the integrity of its two sibling modules, which continue to

function correctly [20]. This method is restricted to correcting errors that occur in a single

module, and in particular, cannot detect errors in circuits that are not triplicated. Please

see Section 2.5 for a more detailed description of TMR-MER.

2.4.4 Error Correction Code for Block RAM Memories

Modern FPGAs provide built-in Hamming code error correction to support the detection

and correction of errors within BRAM memories [181]. To assist with error detection and

correction of individual words within a memory block, parity and check bits are added

to the BRAM memories. For example, in 7-Series Xilinx FPGAs, BRAMs use 8 bits of

a 72-bit wide RAM to store the parity check code. Eight protection bits are optionally
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generated during each write operation and stored with 64 bits of data into the memory.

These bits are used during read operations to correct any single bit error, or to detect

(but not correct) any two-bit error.

The built-in error correction code is used to protect the data within the BRAM from

single bit upsets during a read operation, but it does not correct the errors stored in the

BRAM. To correct the stored BRAM values, some form of memory scrubbing must be

employed [93, 139]. For high-level radiation environments, BRAMs are sometimes also

triplicated to avoid single points of failures in the memory, such as stuck-at upsets on the

write-enable signal, which may flush all data in the memory. Implementing BRAMs using

both TMR and memory scrubbing provides a robust memory protection strategy [93].

2.4.5 Flip-flop Mitigation

TMR can be used to protect the state of FFs from SEUs in all FPGA types [94]. For

SRAM-based FPGAs, the combinational circuits forming the input logic of the FFs should

be protected with TMR, as such circuits are considerably larger and therefore much likelier

to suffer a configuration upset than the FFs themselves. When FFs are located within a

cyclic circuit, such as an FSM, voters need to be inserted on the feedback path to enable

resynchronization of the triplicated state [78, 82]. Some radiation-hardened FPGAs, such

as the RTG4 from Microsemi, implement individual FFs using three internal FFs and

dedicated voters (transparent to the users) to guard against the effect of SEUs on the

FFs [168].

2.4.6 System-level Mitigation

To mitigate SEFIs and to further improve the reliability of FPGA-based systems in harsh

radiation environments, system-level redundancy techniques can be used. For example,

some systems apply TMR at the system level using triplicated FPGA devices [21]. In such

a system, all three FPGAs contain the same functional design and have the outputs voted

on in a hardened device. While this approach provides a high-level of SEU tolerance, it

is costly, and correctly designing applications using this approach can be a challenge. For

example, if one FPGA has failed due to an SEU, resynchronizing it with the other FPGAs

requires special design techniques. Alternatives to device redundancy, such as external

watch-dog timers, radiation-hardened system monitors and system check-pointing can be

used to mitigate SEUs at the system level.
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2.4.7 Final Remarks in Mitigating SEUs on SRAM FPGAs

A range of techniques operating at various levels within the system has been proposed

to mitigate radiation-induced effects on different types of memory. The above review has

shown that the approach using device redundancy for system-level mitigation provides

the best approach from a reliability perspective. However, the cost of implementing this

approach is prohibitively high in terms of design effort, device cost, mass, and power

consumption. With the aim of reducing the overall cost, while still achieving reasonable

system reliability, many researchers have been assessing the use of both TMR-Scrubbing

and TMR-MER within a single FPGA device, particularly focusing on their impact on

overall system reliability. In this thesis, we also focus on these approaches implemented

on a single FPGA device and explore new techniques with the aim of improving overall

system reliability.

2.5 TMR-Scrubbing and TMR-MER Overview

Both TMR-Scrubbing and TMR-MER rely on DPR to correct configuration memory er-

rors. TMR-Scrubbing involves periodically reading the current state of the configuration

memory within the FPGA and writing correct values back into the configuration memory.

In contrast, TMR-MER is commonly triggered when repeated errors are detected by the

voter associated with a TMR component and involves rewriting the configuration mem-

ory for the module that has been found to be in error. TMR-Scrubbing, which could be

referred to as a frame-based recovery technique, is thus more fine-grained in its corrective

action but involves reading or writing the entire configuration memory contents [26, 63].

On the other hand, TMR-MER is more coarse-grained in that the configuration memory

contents of a complete module are rewritten. Multiple configuration memory errors af-

fecting the one module can thus be corrected in a single action and correction is typically

completed more promptly.

TMR-Scrubbing consumes more energy than TMR-MER [158], because it is invoked pe-

riodically rather than when errors are present and it involves reading the entire configu-

ration memory contents. Since it is invoked at regular intervals rather than when errors

are detected by voters, and because the configuration memory of the entire device is read,

TMR-Scrubbing also has a higher MTTD than TMR-MER. While TMR-MER is triggered

by a voter signalling the presence of an error, state-of-the-art FPGAs may include on the

order of a billion configuration bits and the time required to read back the entire config-
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uration memory during a scrub cycle may take on the order of 100 ms. This means that

SEUs will be detected in the system after half the device has been scanned, on average,

which could be too long for critical systems.

As it is commonly described in the literature, the TMR-MER technique is not as robust as

TMR-Scrubbing [4]. Both TMR-Scrubbing and TMR-MER utilize a controller to operate

[66, 152], but TMR-MER also requires extra networking infrastructure, which we refer

to as a Reconfiguration Control Network (RCN), to carry out its operations. Modern

FPGAs, such as those offered by Xilinx, include built-in resources and provide soft IPs

to aid TMR-Scrubbing [188], but use of TMR-MER is not supported nearly as well;

design complexity and the likelihood of introducing design errors are therefore increased.

For example, a designer who wishes to employ TMR-MER needs to design a suitable

reconfiguration controller, a method for detecting and signalling reconfiguration requests,

storage for partial bitstreams and a data resynchronization mechanism.

The use of TMR-MER affords several benefits over TMR-Scrubbing, but also introduces

several additional costs. The main benefits of TMR-MER are that the system is able to

respond more dynamically to configuration memory errors and that this, in turn, enhances

reliability and availability.

Configuration memory errors are detected by individual voters when faults occur repeat-

edly within the one module. Rather than having to read back half of the FPGA’s config-

uration frames, on average, to detect an error when incorporating TMR-Scrubbing recov-

ery [141], TMR-MER utilizes the voters of the system to rapidly detect errors within a

few tens to hundreds of clock cycles [27]. When an error is detected by a voter, a reconfig-

uration request that identifies the module to be reconfigured must be conveyed to the RC.

The performance of the RCN determines the latency in transmitting this request. As the

investigation of this thesis indicates, this is typically possible within a few microseconds

at most. Overall, the time to detect errors with TMR-MER is therefore in the order of

microseconds, compared to milliseconds for TMR-Scrubbing [4].

Repairing errors by TMR-MER is also typically much faster than for TMR-Scrubbing

since TMR-MER is usually achieved by reconfiguring the faulty module, whereas TMR-

Scrubbing necessitates reading the entire memory contents of the device. Thus the size

of the module to be repaired, rather than the device size, determines the correction time.

Most work focuses on modules of the size of a relatively small number of device resources

(a few hundred CLBs, FFs and routing) to medium-sized components such as linear filters

[29] and a processor stage [129]. Typical module sizes range between 10s and 100s of

configuration memory frames (several kB) as opposed to 10,000s of frames (many MB)
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involved at device level. It can therefore be expected that error repair also takes two to

three orders of magnitude less time for TMR-MER. This responsiveness to errors afforded

by TMR-MER can be crucial to the success of a mission when errors occur in rapid

succession at critical stages such as during spacecraft manoeuvres, communications with

Earth and during remote sensing when particular areas of interest are observed.

Since TMR-MER replaces all the configuration memory contents for a module, it inher-

ently repairs multiple errors, such as Multiple Bit Upsets (MBUs), which simple TMR-

Scrubbing modes, such as ECC-based Single Error Correction, Double Error Detection

(SECDED) [188], are generally unable to fix. Only more complex TMR-Scrubbing ap-

proaches, such as frame replacement, which comes with many of the costs of TMR-MER,

are capable of dealing with MBUs efficiently [188].

TMR-MER comes with some considerable costs. However, most of these have not yet

been quantified as they mainly deal with greater design complexity. The designer needs to

consider modifications to the voter design to be able to detect configuration memory errors;

an RCN is needed to convey reconfiguration requests to an RC; an RC that can process

reconfiguration requests and manage modular reconfiguration needs to be designed; secure

storage for the module-based partial bitstreams needs to be incorporated; a module-based

resynchronization method also needs to be developed. If the designer were to choose a

simple TMR-Scrubbing-based configuration memory recovery method instead, most of

these design modifications are not needed. Instead, the designer could make use of IP

provided by the device vendor and in-built hardware to perform TMR-Scrubbing. This

is the case when SECDED is used [188]. If a frame replacement TMR-Scrubbing method

is used, then the designer also needs to develop a more sophisticated scrub controller,

implement a method for securely storing the device configuration, and implement a method

for accessing the golden configuration on a frame-by-frame basis.

Of considerable concern is that much of the additional logic used to implement and support

TMR-MER may be implemented in a non-redundant manner and therefore introduces ad-

ditional single points of failure. Nevertheless, irrespective of the configuration memory er-

ror recovery approach taken, FPGA-based TMR systems inevitably include non-redundant

components such as clock managers, ICAP and off-chip ports. Periodically invoked recov-

ery, such as TMR-Scrubbing, is likely to deal with configuration memory errors that occur

in these components better than TMR-MER does, since non-redundant components don’t

have voters to trigger TMR-MER. Agiakatsikas et al. proposed Frame-/Module-based Er-

ror Recovery (FMER) that combines both scrubbing and MER to recover configuration

memory errors in SoCs that contain both non-redundant and redundant components to
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exploit the benefits of both approaches and thereby improve the SoC’s availability [3].

2.6 Related Work on Novel Techniques for Improving Sys-

tem Reliability

The literature describes techniques that have been developed to decrease the mean time

to detect and correct configuration memory errors in FPGA-based systems with a view to

improving system reliability. These techniques are based either on frame-based scrubbing

[10,91,110,140,141,143] or on TMR-MER [4,20,29,113,152,163].

The use of scrubbing has been extensively researched in the literature. Numerous studies

have shown that scrubbing approaches that are based on the critical metrics that directly

affect system reliability are more reliable than conventional scrubbing, which periodically

and systematically scrubs from the first frame of the device to the last. Asadi et al.

proposed an approach that reduces MTTD by scrubbing only those configuration frames

that contain sensitive bits, which affect the circuit operation when they are flipped [10].

In [91], Lee et al. presented a heterogeneous scrubbing approach that varies the scrub

rates of different components based on the number of sensitive bits they contain. In [110],

Nazar et al. presented a mechanism that statistically finds an optimal frame to commence

scrubbing at in order to reduce the mean time to repair configuration memory errors.

In addition, Santos et al. showed that overall system reliability is improved when the

rate at which scrubbing is performed is based on the criticality of user tasks [140]. In

[143], Sari et al. presented a methodology that combines check-pointing and scrubbing

to guarantee the fault tolerant execution of real-time tasks in FPGA-based embedded

systems. They introduced four scrubbing approaches to reduce the time overhead of the

scrubbing method. Scrubbing approaches include: full scan, which involves the scrubbing

the entire FPGA configuration memory; partial scan, which considers only the sensitive

frames of the SoC design [141]; constrained scan, which is similar to the partial scan, but

the design is constrained with less number of sensitive frames [141]; and selective scan,

which involves scrubbing operational tasks and excludes scrubbing unused tasks. Last but

not least, Schmidt et al. applied a netlist analysis using the Xilinx bitgen tool to identify

essential and critical bits in the configuration memory and constrained the placement and

routing of a given design with the aim of reducing the number of frames that need to be

scrubbed and thereby improving system reliability [144]. The work we describe in Chapter

5 checks the voters of components for configuration memory errors based not only on the

number of essential bits contained in the TMR modules but also on the recovery times
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of the modules. This is similar to the approach of [91], but does not involve any further

action, such as scrubbing or modular reconfiguration, when errors are not present.

TMR-MER systems utilize an RCN such as a star-based [3, 4, 20, 152], a bus-based [4],

or an ICAP-based network [163] to convey the status of the individual TMR component

voters to an RC, which determines whether or not configuration memory errors are present.

To determine whether any configuration memory upsets have occurred, most TMR-MER

systems check the voters of the TMR components in round-robin order [20, 29, 152, 163].

However, doing so increases the response time for checking the voters of highly vulnerable

TMR components. Intuitively, the rate at which a TMR component requests error recovery

depends on its failure rate or its criticality. Therefore, the RCN arbiter should check

components with high failure rates more frequently than those with lower failure rates in

order to minimize the chance that the system becomes unusable. In Chapter 4, we develop

a method for identifying the next component to check at run time based on the likelihood

that it has failed since the last check of the component [113]. In Chapter 5, we report

on an off-line approach to determine a fixed voter checking sequence in a TMR-MER

system. Our work in Chapter 5 aims to enhance the system’s error detection capabilities

and thereby raises overall system reliability by checking the TMR component voters for

module errors at different pre-determined rates.

2.7 Measuring FPGA SEU Sensitivity

SRAM-based FPGAs are more and more relevant to a growing number of safety-critical

applications, ranging from automotive control to aerospace domains. Designers of safety-

critical applications demand accurate methods for evaluating the SEU sensitivity of their

designs.

The SEU sensitivity profile differs from FPGA design to FPGA design since each design

uses a different set of FPGA resources. As mentioned in Section 2.3, modern FPGAs are

very complex heterogeneous devices that contain a variety of resources. The behaviour of

these resources is defined by a custom combination of configuration memory bits within

the device. The number of configuration memory bits associated with an FPGA design

determines the SEU sensitivity of the design. Generally, smaller designs utilising fewer

FPGA resources are less sensitive to SEUs than larger designs, which make use of more

memory resources.

The benefit of any SEU mitigation technique can be determined by accurately gauging the
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SEU sensitivity of a given FPGA design. To estimate FPGA design sensitivity, a variety of

techniques have been used in the literature. The standard for measuring SEU sensitivity

is to use accelerated radiation testing [123]. The benefit of radiation testing is that we can

then observe the effect of SEUs on all memory types inside the device under test (DUT),

such as internal proprietary state cells, which are not accessible via fault-injection testing.

The SEU sensitivity measured by radiation testing can therefore be expected to be closest

to that observed in the field.

In radiation testing, high-energy particles are applied to the DUT to gauge the response

to upsets within the memory resources of the device. During the radiation test procedure,

frame readback is used to count SEUs, which are then recorded and repaired. When an

SEU is detected, the output of the DUT is checked for errors and the results are recorded.

In order to obtain the configuration memory upset rates, the configuration memory of the

DUT is read back and compared to the original state to yield SEU counts after a specific

time period. Upsets on the internal proprietary state are observed based on SEFI events,

which are extremely rare [190] and which are unique to radiation testing.

On the other hand, many studies have explored the use of fault injection techniques

to obtain similar information on SEU sensitivity [123, 133]. Fault injection methods

can be grouped into two main approaches, namely, simulation-based fault injection and

emulation-based fault injection. Simulation-based fault injection utilizes simulation tools

to introduce errors into a model of the target system [19,73]. The basic idea of simulation-

based fault injection is to first simulate the fault-free design in order to store the golden

results. Each fault is sequentially simulated by loading the state of the design just before

fault activation time, injecting the SEU, comparing the current results with the golden one

and classifying the effect of the injected fault. However, simulation-based fault injection

is a slow process. It may not be feasible to obtain the SEU sensitivity in a reasonable

period of time. This is because identifying the SEU sensitivity of a given FPGA design

requires injecting a significant number of faults, possibly one for each configuration bit of

the device, and simulating the operation of the design with a range of inputs. Therefore,

simulation-based fault injection is used to inject a small set of carefully selected faults to

outline possible design bugs.

To accelerate the fault injection process, emulation-based fault injection approaches have

been developed in recent years [5, 6, 9, 34, 43, 71, 73, 95, 142]. This type of fault injection

utilizes FPGA hardware to prototype the Component Under Test (CUT) and to support

inserting faults into the FPGA rather than using simulation tools.

Using emulation-based fault injection to evaluate the SEU sensitivity of a given FPGA
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Figure 2.3: Basic emulation-based fault injection algorithm [75,133]

36



2.7. MEASURING FPGA SEU SENSITIVITY

design has many advantages, including low cost, rapid testing and the ability to customize

the experiment. Quinn et al., mentioned that accelerated radiation testing can cost up

to $1,500 per hour and that the available facilities for conducting the experiment are

limited [133]. For emulation-based fault injection, the total cost includes the support

hardware for fault injection and the engineering effort to create and run the emulation

system. Since hardware emulation is exploited to boost the simulation performance, the

results are obtained far more quickly than with simulation-based approaches. Emulation-

based fault injection is about four orders of magnitude faster than simulation-based fault

injection [34,43]. Indeed, when the FPGA designs are more complex and very large, fault

injections have to be considered. Moreover, emulation-based fault injection can be used

to test different scenarios and experiments since the type and location of faults can be

customized by test designers. For example, the test designers can modify the fault injection

system to perform Multiple-Independent Upsets (MIU) [34,123,156], Multiple-Cell Upsets

(MCU) [32,132] and target upsets at specific regions of the device [4, 31].

Host 

PC Interface

Emulation Platform

Fault List

FPGAEmulation controller

Fault Injection

Input Stimuli

CUT

Fault 
Classification

Emulation 
Manager

Fault 
Dictionary

Figure 2.4: Autonomous Emulation System [47]

Figure 2.3 depicts a baseline fault emulation process, while Figure 2.4 illustrates a typical

hardware system that is used in fault emulation testing. Such a system includes the CUT

and the emulation controller that controls the fault emulation test procedure. As can

be seen in Figure 2.3, there are a few common functions that are required in every fault

emulation system including [75,94,133]:

• The ability to access the internal configuration memory where the faults are inserted;

• The ability to stimulate the input and execute the CUT;
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• The ability to report system output faults;

• The ability to clear the error and re-sync the design.

Each of these steps is detailed in the following subsections.

2.7.1 Fault insertion

The first operation of a fault injection system is to insert faults into the CUT. Fault inser-

tion involves three main steps, including reading a segment of the configuration memory,

corrupting a bit and rewriting the corrupted memory segment back into the FPGA. A

number of methods can be used to access configuration memory in the FPGA via a con-

figuration port such as JTAG, SelectMap, ICAP, and PCAP available in Xilinx FPGA

devices [180]. The JTAG boundary scan port is a popular access point for emulation-

based fault injection since it is available in most FPGA devices [1, 55, 60, 101, 127, 151].

JTAG provides a serial interface to access the configuration memory that can be used by

many tools and software. However, JTAG is relatively slower than the other configuration

ports.

Along with JTAG, most FPGA manufacturers also provide other means to access config-

uration memory at higher throughput. For example, Xilinx FPGAs provide both external

and internal parallel configuration ports with which faults can be inserted much faster than

with JTAG. On Xilinx devices, the external port is called SelectMap, while the internal

ports include ICAP, available from the Virtex II on, and PCAP, available in 7-Series Zynq

devices. Xilinx also provides an IP core [188] that has the capability of modifying the

configuration memory and implementing fault emulation. In recent years, the use of inter-

nal ports to implement emulation-based fault injection has become more prevalent since

it is relatively easy to implement such a fault injection system using evaluation boards.

These systems only use one FPGA to implement the entire system, including the CUT,

the emulation controller and an interface to the host PC. Note that Altera FPGAs also

provide similar facilities for fault injection [43].

Emulating faults in the user memory is much more difficult than emulating faults in the

configuration memory. As the configuration memory values are static, it is easier to read,

write and modify these values, whereas accessing user memory while the circuit is operating

is difficult to do directly, and may corrupt user data.
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2.7.2 Input Stimulation

Once the fault is inserted, the input is stimulated to test the circuit. It is difficult to cover

all possible input values since the input vector set increases exponentially with the input

data width. Moreover, some fault locations such as those in sequential logic may only

be triggered by a specific sequence of input values. The best techniques create input test

vectors that test all functions of the circuit. Such techniques include random testing [40],

structural testing [193] and statistical testing [128]. Random testing creates test vectors by

randomly sampling all possible input values according to a specific probability distribution.

Structural testing uses information about the CUT implementation to select input data

for test cases that exercise each coverage element at least one. Statistical testing combines

both random testing and structural testing. In other words, statistical testing generates

test vector sets by sampling the input domain according to a probability distribution

and such vector sets must satisfy the test cases of structural testing. When the input

test vectors are difficult to craft, one of the most common alternatives is to use pseudo-

random input sequences, which can be generated using linear feedback shift registers, as

input stimuli. The larger the number of input stimuli covered, the higher the probability

that the inserted faults will be detected.

2.7.3 Error Detection

The next step of the fault emulation system is to detect system output errors. There are

two main methods used to detect errors. The first one is to use a redundant design that

acts as the golden reference circuit. A golden circuit is designed to be identical to the

CUT, but is not subjected to fault injections. The golden circuit can be implemented in

a different FPGA device or on the same device with the CUT. The outputs of both the

CUT and the golden circuit are compared and any difference between them is identified as

a system error in the CUT. Alternatively, only the CUT is implemented and subjected to

fault injection. In this case, its outputs are compared with a set of predefined, expected

output values.

An important attribute for error detection in an FPGA fault emulation system is the period

of time that the FPGA system is permitted to execute to allow errors to be detected after

a fault has been inserted. The longer the period of time given, the higher the probability

that the inserted fault manifests as an output error that is detected. If the period is

too short, it is possible that the inserted fault causes an error, but that the error is not

observed at the output of the CUT. This is because the time period is either insufficient
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for errors to propagate to the CUT output or the random input stimuli do not cover the

circuit element into which the fault was inserted.

2.7.4 Error Clearance

The last step of the fault emulation system is to prepare the system for the next fault to

be inserted. The preparation involves clearing the inserted fault and returning the CUT

to a known good state. It should be noted that even if an inserted fault does not cause

an observable error at the output of the CUT, it is possible that a latent error exists in

the CUT. Thus, the next fault insertion may activate the previous faults, thereby causing

the CUT to output errors, which leads to incorrect fault attribution. However, this is

not the case if MIU injections are considered where multiple faults are inserted and they

are removed at prescribed intervals, or once the faults cause the CUT to output errors.

To return the CUT to a known, fault-free state, the system resets the state of the user

flip-flops to their initial values.

2.7.5 Final Remarks on Measuring FPGA SEU Sensitivity

Compared to accelerated radiation testing and simulation-based fault injection, emulation-

based fault injection has lower cost, obtains results faster and allows a wider variety of

fault scenarios to be tested. Emulation-based fault injection is particularly beneficial in

assessing the SEU sensitivity of complex design where very large fault lists and sets of

input values are needed to conduct the experiment. In this thesis, emulation-based fault

injection testing is used to validate the work in Chapters 3 and 5.

2.8 Reliability Model

In this section, we outline how we model the reliability of a non-replicated component, the

reliability of a TMR component and the reliability of a complete FPGA-based TMR-MER

system. Our analysis is based on the number of critical or sensitive bits per component

for which we use the number of essential bits reported by the vendor’s tools as a worst

case estimate.

In the following, we assume that the flip of a single essential bit leads to a module failure

if the module is not triplicated. With this assumption, the module failure rate λm is given
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by the product of the bit error rate, λbit, and the number of essential bits in module m.

We also assume that the three modules of a TMR component have the same failure rate

λm.

Using SPENVIS [67], the bit error rates of the configuration memory of Xilinx 7–series

FPGAs for different orbits and different environmental conditions were calculated as shown

in Table 2.2. To determine these error rates, we used the solar min, the worst week, the

worst day and the peak 5-minute average flux of the CREME-96 model [161] with 2.54 mm

aluminium shielding. The cross–section areas of the 7 series FPGA families was obtained

from [68].

Table 2.2: Bit failure rates in different orbits [67]

Orbit
Altitude (km)

Solar Worst Worst Peak

Inclination
Min Week Day 5-Min

λ (SEUs/Bit/s)

GEO
35,768

1.71E-13 2.16E-11 7.34E-11 2.66E-10
0o

GPS
20,200

1.54E-13 1.43E-11 4.84E-11 1.75E-10
55o

LEO
2,000

1.92E-14 7.01E-13 2.33E-12 8.41E-12
51.6o

We assume that module reliability decreases exponentially over time t as expressed by the

function:

Rm(t) = e−λmt, (2.1)

whereby the reliability, Rm(t), of a module at time t denotes the probability that the

module operates without any failure in the interval [0, t].

When module m is triplicated, its reliability function is given by [167]:

RTMR
m (t) = 3R2

m(t)− 2R3
m(t). (2.2)

The reliability function of a TMR component i with Module-based Error Recovery (MER)

for an SEU rate of λi is given by [100]:

RTMR
i (t) =

e−
1
2

(at)
(
a sinh

(
bt
2

)
+ b cosh

(
bt
2

))
b

, (2.3)

with a = 5λi + µi and b =
√
λ2
i + 10λiµi + µ2

i . µi denotes the repair rate of a module,

which is the reciprocal of the time needed to recover the faulty module, and it can be
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expressed as:

µi =
1

ti
=

1

td + tc + tsync
≈ 1

td + tc
, (2.4)

where td denotes the average error detection time, tc the error correction time and tsync

the synchronization time, which is omitted in our study as it normally only accounts for a

small fraction of the recovery time. td depends on the method used to detect errors while

tc depends on parameters of the target system and the size of the module or the device.

The average failure rate λTMR
i for a TMR component with repair can be estimated ac-

cording to [123] by

λTMR
i =

1−RTMR
i (ti)

ti
. (2.5)

where ti is the time needed to recover the faulty module.

Typically, a system contains N interdependent TMR components connected in series such

that the failure of any one TMR component causes the system to fail. Note that this

definition of a series system is from a reliability perspective and not always an electrical

or mechanical one. In other words, the output of the first component is not necessarily

connected to the input of the second component, etc. For example, a microprocessor may

consist of four units, namely, an instruction fetch unit, a decode unit, an execution unit,

and a memory access unit. Although all units are not physically connected in series, the

failure of any one unit leads to the malfunction of the microprocessor. The failure rate of

a series TMR system, λs, is the sum of all component failure rates [85]:

λTMR
s =

N∑
i=1

λTMR
i . (2.6)

Using Equations (2.1) and (2.6), the reliability function of a TMR system can be finally

calculated as:

RTMR
s (t) = e−λ

TMR
s .t. (2.7)

The failure probability of a TMR system over time interval [0, t] can then be estimated

as follows:

FP TMR
s (t) = 1−RTMR

s (t). (2.8)

Note that Equation (2.6) holds true only if µ � λ, which ensures repairs are completed

independently [145].

In this thesis, we will use this model to evaluate the reliability of systems studied in

Chapters 3 and 4.
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2.9 Summary

This chapter has provided an overview of radiation-induced effects on SRAM-based FPGAs

as well as the radiation sources that may affect such devices in the field. It has also reviewed

the architecture of SRAM-based FPGAs that are threatened by radiation-induced soft

errors and surveyed common techniques to mitigate such soft errors. Two approaches are

commonly used in the literature — TMR-Scrubbing has been extensively researched, but

this is not the case for TMR-MER. Intuitively, TMR-MER has many advantages with

respect to TMR-Scrubbing, but the design of TMR-MER is more complicated. In this

thesis, we explore TMR-MER in detail in order to better understand and compare the

relative merits of TMR-MER and TMR-Scrubbing.

Previous works have mainly applied TMR-Scrubbing for improving system reliability.

Many novel techniques have been proposed in the literature. In contrast, research into

boosting the overall system reliability using TMR-MER is limited. We therefore conclude

that there is significant room for improving the reliability of state-of-the-art TMR-MER

systems.

Along with fault injection testing, reliability models are useful tools for estimating at

an early stage the effectiveness of an FPGA design employing a mitigation technique.

The model described in Section 2.8 assumes that the repairs of soft errors are completely

independent. While this is reasonable at low error rates, the problem with this assumption

at high error rates is that the methods for correcting configuration memory errors are

inherently sequential, hence the models do not consider the effect of configuration memory

errors on other TMR components while a faulty module is being repaired. Therefore, it is

necessary to have accurate reliability models that consider multiple coincident SEUs that

may occur in different TMR components and to use these models to analyse the impact

of the new approaches on the overall TMR-MER system reliability.
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Chapter 3

Reliable TMR-MER System

Model

As mentioned in Chapter 2, both upset mitigation techniques — Triple Modular Re-

dundancy with configuration memory scrubbing (TMR-Scrubbing) and Triple Modular

Redundancy with Module-based Error Recovery (TMR-MER) — utilize a controller to

operate. However, TMR-MER also requires a Reconfiguration Control Network (RCN)

to relay error requests from the voters in the system to the Reconfiguration Controller

(RC) [4].

Figure 3.1 illustrates an FPGA-based TMR-MER system. The voter associated with each

TMR component identifies which module, if any, is suffering from a persistent fault, and

raises a Reconfiguration Request (RR). Requests from the voters of different TMR com-

ponents across the device are observed by an RC via an RCN. If the RC observes a fault

in one of the modules of any of the system’s TMR components, it fetches the partial

bitstream corresponding to the module from off-chip memory and reconfigures it by writ-

ing the bitstream to the Internal Configuration Access Port (ICAP) present in advanced

FPGAs from Xilinx. After the faulty module has been reconfigured and resynchronized1

with the remaining two modules of the TMR component, the voter resumes its normal

checking function.

In this chapter, we describe three hardware aspects for designing a reliable FPGA-based

TMR-MER system including TMR components, the RC and the RCN. The chapter starts

1Resynchronization is readily achieved if the module logic is acyclic [29]
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Figure 3.1: An example TMR-MER system diagram

by describing the typical design of a TMR component and the internal structure of a voter

needed by the TMR-MER approach (Section 3.1). This is followed by a survey of RCs

that have been report for both TMR-Scrubbing and TMR-MER in the literature (Section

3.2). The main contribution of this chapter appears in Section 3.3, which provides details

of 4 RCN topologies commonly used by the TMR-MER approach as well as a comparison

of the RCNs in terms of reliability, latency and power consumption.

3.1 A TMR Component

A TMR component is created by replicating a critical system unit into three functionally

identical units that perform the same operation at the same time. A majority voter

is used to generate a single output from the three units that agrees with at least two

of the outputs of the triplicated system, as shown in Figure 3.2(a). Such units can be

independent sub-systems, such as an FIR filter and a BAQ compressor, or they can be

interconnected and interdependent components, such as the stages of a processor, including

the instruction fetch unit, the instruction decode unit, the execution unit, and the memory

write-back unit [129]. If the triplicated unit contains a cyclic data-path (e.g., counters or

accumulators) and the data-path suffers a configuration or data-path memory error, an

output error may persist in the feedback path of the cycle leading to ongoing disagreement

between the faulty unit with the other remaining functionally correct ones, even after the

error has been corrected [78]. To avoid such feedback path errors, majority voters need to

be inserted into these feedback paths as illustrated in Figure 3.2(b) [25]. As the majority
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voting circuitry is a single point of failure, voters also need to be triplicated to assure high

reliability as demonstrated in Figure 3.2(c) and 3.2(d).
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Figure 3.2: Triple Modular Redundancy

When designing a TMR component, it is necessary to consider resynchronization of dat-

apath state after the reconfiguration of a faulty module in order to realign the outputs of

the TMR component. Unfortunately, the resynchronization techniques needed differ from

TMR design to TMR design. For a typical circuit design, a synchronizing voter can be

inserted into the feedback edges of the circuit in order to feedback values that have been

voted upon and thus break the recycling of incorrect state [25,78]. This approach is suitable

for processing circuitry where the feedback edges in the circuit are easily identified. For

triplicated Finite State Machine (FSM) circuits, check-points and state prediction logic, as

proposed in [125], are more applicable. After the faulty module has been reconfigured, the

prediction logic guides the FSM to enter a checkpoint state, in which the correct values are

copied to all modules. For soft-processors, the synchronization can be achieved in a num-

ber of ways that trade the cost of implementing extra hardware against the time needed

for the synchronization process. Such techniques include applying a reset to synchronize

the processor internal states, using TMR shared memory to synchronize program and

data memory, and using interrupts to minimize the synchronization time for both internal

state and the data and instruction memory of the triplicated processors [72,86]. Note that

most synchronization techniques require a trigger after the reconfiguration, which calls for

something like the RCN used by the TMR-MER system to be able to communicate the

synchronization request. More details of RCNs are given in Section 3.3.

In this thesis, we only consider FPGA designs that have synchronization voters inserted
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Figure 3.3: Voter internal structure.

on the feedback paths of the circuit. In addition, some extra logic is added to the majority

voter for detecting errors and for triggering the reconfiguration of a faulty module. The

following describes the internal structure of the voter that we used in the systems described

in this thesis.

Figure 3.3 shows the internal structure of a voter, which fulfils two roles:

• Error Detection - detecting errors and distinguishing between “transient” and “per-

manent” errors, and

• Reconfiguration Trigger - generating a reconfiguration request when a permanent

error is detected.

Error-Detection: We refer to the kth bit of output j for module i using the symbol ωi,j,k.

We use a majority voter (mv) to form the checked output Ωj,k = ω1,j,kω2,j,k +ω2,j,kω3,j,k+

ω3,j,kω1,j,k. The corresponding output of each module can then be checked by reference to

the checked output i.e. ∀i, ei,j,k = ωi,j,k ⊕ Ωj,k is an error signal for module i, output

j, bit k. An error check (ec) block for each bit k of each output j produces these signals.

Reconfiguration Trigger: All error signals ei,j,k for module i are OR-ed together (ei) to

detect the presence of an error in any output of module i during the current clock cycle.

If the module is acyclic, which it is if all feedback edges are voted on, an error occurring

on successive cycles suggests the presence of a permanent error that can only be cleared

via reconfiguration. We use an n-bit saturating up/down error counter (sc) to count

the number of successive errors for each module. If the value of the counter reaches a

threshold, e.g., 3 in a 2-bit counter, the output flag will be set high and fed to the encoder

(en) block. The voter status (vs), the output of the encoder, is registered and has four

different binary values i.e., 00, 01, 10 and 11 corresponding to the 1st module being in
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error, the 2nd module being in error, the 3rd module being in error, and no-error being

present, respectively. The voter status is read by the RC to detect the presence of a faulty

module before reconfiguring it.

After the faulty module has been reconfigured and resynchronized with its two remaining

working modules, the saturating counter for that particular module is reset by the RC

to its initial state. For acyclic modules, this occurs after new inputs have reached the

output of the reconfigured module i.e. after a period of time corresponding to the latency

of the module. Please note that the clock and reset signals for the saturating counters are

intentionally not shown in Figure 3.3 for the sake of clarity.

3.2 Reconfiguration Controller

Both TMR-Scrubbing and TMR-MER employ user logic to manipulate configuration bit-

streams by reading from and writing to an FPGA configuration port, such as ICAP in

advanced Xilinx FPGAs. The RC, which oversees this process, is thus a critical compo-

nent for fault-tolerant applications in FPGA systems used in high radiation environments.

For such applications, it is equally important to reduce the risks of radiation-induced er-

rors to the RC itself and ensuring its reliability is therefore of paramount importance in

guaranteeing that the overall system operates reliably.

While various reasons could cause an FPGA design to fail in the presence of radiation,

the most common failure is due to the corruption of the configuration memory induced by

radiation [135]. User and research interest has focused on devising autonomous methods

for detecting and recovering from configuration memory errors as they occur. Broadly

speaking, the controllers that oversee fault detection and recovery, and the golden copy

of the recovery bitstreams are located either on- or off-chip [66]. In this section, we

examine on-chip controllers that fetch externally stored bitstreams and access an internal

configuration port to check and overwrite the configuration memory as seen in Figure 3.1.

Please note that the controller also needs to ensure that partial bitstreams are reliably

read. This can be done by triplicating the memory controller [58] and/or by performing

CRC checking before a partial bitstream is fully loaded through the ICAP [176,191].

The two fundamental operations of the RC are reading and writing the configuration

memory to detect and recover from configuration memory errors. For example, in the

TMR-MER approach, the existence of an error can be determined by reading voter status

by configuration readback via the configuration port [4, 163] (see Section 3.3). After an
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error is detected, TMR-MER approaches typically recover from the error by partially

reconfiguring the erroneous module [152, 162]. In TMR-Scrubbing, the RC refreshes the

FPGA device by periodically rewriting the configuration memory [26,146]. A more efficient

scrubbing method relies on ECC stored with each configuration memory frame [188]. The

RC reads the configuration memory so as to calculate and check the ECC data, which

can isolate single bit errors. A corrected configuration frame is written back to the device

when an error is identified. Last but not least, fault injection, which is a commonly-used

technique for test and debug purposes, is typically implemented by intentionally writing

an erroneous frame to the FPGA device [5,6,9,34,43,71,73,95,142], as detailed in Section

2.7. Since it is specialized for accessing the configuration memory, the RC can also be

used to perform this function.

The RC plays an important role in reliable FPGA designs, and there are a variety of

different use cases for it. Various proprietary and academic controllers have been developed

to meet the general needs of dynamically reconfiguring FPGAs as well as the specific

requirements posed by radiation fault-tolerant applications. In the following subsections,

we review the RCs that have been reported in the literature.

3.2.1 Commonly Used Reconfiguration Controllers

FPGA manufacturers provide IPs that can be used for fault recovery such as the HW-

ICAP [178] and the SEM controller [188] from Xilinx. HWICAP is a general-purpose

IP block that provides a flexible bus-based interface to the ICAP and allows arbitrary

configuration data to be written to or read from that port [178]. Software can send any

command sequence to the ICAP, including single frame R(ead)/W(rite) as well as par-

tial/complete bitstreams; it can therefore be programmed to perform any fault recovery

task the designer wishes to implement. HWICAP is commonly used with a soft processor

such as MicroBlaze [177]. Unfortunately, the microprocessor + HWICAP solution is slow

and the programmability, which is needed to improve flexibility comes at the cost of a

large resource overhead [164]. On the other hand, the SEM controller [188] is a dedicated

IP for fault recovery, is light-weight and fast. However, the SEM controller is neither

open, nor can it be customized, since it is based on the PicoBlaze processor [175], which

does not have an official C compiler and suffers from an extremely small instruction store

(1,024 words). Hence, the controller cannot readily be reprogrammed to perform new or

different scrubbing functions.
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3.2.2 High Performance Reconfiguration Controllers

Several academic development efforts have achieved ICAP throughput approaching the

maximum rated capacity of 400 MB/s but invariably compromise on flexibility and/or

reliability. Representative efforts include:

• AC-ICAP [23] for Kintex-7, which provides an Advanced eXtensible Interface (AXI)

interface and therefore can be interfaced to a MicroBlaze or user logic, achieves 380

MB/s ICAP throughput using 1286 LUTs, 1193 FFs and 22 BRAMs, and supports

single frame R/W as well as the loading of partial bitstreams, but does not support

the loading of arbitrary commands, preventing state capture, for example;

• A self-recovering controller [42], developed for Virtex-4, that has the ability to recover

from errors within the controller by loading pre-stored recovery bitstreams, achieves

380 MB/s throughput, performs single frame R/W and loads partial bitstreams, and

also supports ECC scrubbing. While fast, this controller’s flexibility is compromised

by virtue of being PicoBlaze based, as discussed in Section 3.2.1;

• An open source controller [164], developed for Virtex-6, that can be over-clocked to

drive the ICAP at up to 838 MB/s, uses 586 LUTs, 672 FFs and 8 BRAMs, but is

inflexible as it only supports the loading of partial bitstreams;

• Another open source controller [24], also designed for Virtex-6, that only supports

loading of protected bitstreams by performing SECDED at 320 MB/s or CRC at

395 MB/s, which uses about 590 LUTs, 300 FFs, and 1 BRAM; and

• More recent FPGAs, such as the Xilinx Zynq 7-Series SoCs, provide hard-core pro-

cessors that can configure the FPGA logic using the Processor Configuration Access

Port (PCAP). The high-speed configuration memory access through the PCAP prim-

itive can be combined with the built-in ECC capabilities of the FPGA to perform

fast device scrubbing with a throughput af 145 MB/s [150].

A number of researchers, such as [80], have worked on pure hardware-based RCs for

better performance but are more resource intensive to implement than combined software-

hardware approaches. Furthermore, hardware-only designs are not programmable and

lack the flexibility needed to develop and explore different fault detection and recovery

applications.
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3.2.3 Reliable Reconfiguration Controllers

Various proprietary and academic RCs have been developed to meet the general needs

of dynamically reconfiguring FPGAs as well as the specific requirements posed by fault-

tolerant applications in harsh radiation environments. The HWICAP [178] and the SEM

controller [188] are Xilinx IPs that can be used for fault recovery. HWICAP, which is

commonly used with a soft processor such as a MicroBlaze, suffers from large resource

overheads and slow performance [58], while the SEM controller fails to meet flexibility

needs as it does not allow alternative user-defined scrubbing functions, such as selective

scrubbing of user-nominated regions [3], to be developed. Significantly, the MicroBlaze is

not designed to withstand SEUs, and it is not known whether the HWICAP or the SEM

controller have been designed to be fault tolerant. Furthermore, without knowing their

implementation, applying fault-tolerance techniques, such as TMR, to proprietary IP is

non-trivial.

Focusing on the reliability of the RCs themselves, in [41, 42] a self-recovering RC that

has the ability to correct any error in its configuration memory by writing a pre-stored

recovery bitstream to the ICAP has been proposed. This RC can perform single frame

R/W, load partial bitstreams and supports ECC scrubbing. Heiner et al. demonstrated an

internal readback scrubber by triplicating the ICAP control circuits and by implementing

user memory scrubbing to recover from SEUs in the RC’s BRAMs [64]. However, the

RCs of the approaches detailed in [41, 42, 64] are based on the PicoBlaze processor [175],

which does not have an official C compiler and suffers from a very limited instruction space

(1,024 words). These RCs cannot therefore readily be reprogrammed to perform new or

more sophisticated fault recovery functions [58].

Psarakis et al. presented a self-healing RC that is able to perform the reconfiguration

process by itself. To enable self-healing, a minimum set of critical instructions and the logic

responsible for their execution was hardened by applying TMR or DWC to an OpenRISC

processor [129].

3.2.4 Programmable Configuration Controllers

As described in the previous sub-section, a number of investigations have studied tech-

niques for designing fast, light-weight, and easy-to-use RCs for general purpose FPGA-

based systems [124]. For space-based applications, in particular, the requirements for low

resource utilization (area), high speed and flexibility are not only motivated by, but also
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constrained by, the desire to reduce the risk of radiation-induced faults to the RC itself.

On the one hand, the more resources devoted to the implementation of the RC, the more

area exposed to radiation-induced SEUs, which has a direct impact on the MTTF of the

design, the single most important factor determining its reliability. On the other hand,

the greater the area of the design in terms of configuration frames used, the longer the

MTTR from a configuration memory error via modular reconfiguration or scrubbing. This

factor directly impacts on availability, and in a TMR design, upon the reliability of the

design as well, since recoveries that are successfully completed before further errors affect

the other, correctly functioning replicas, avoid design failure.

It should be noted that system reliability is not solely dependent on the RC’s area and

speed. There is usually an architectural limit as to how reconfiguration speed influences

reliability. For example, in space applications that use slow flash memories for storing

bitstreams, the reconfiguration speed is limited by the rate at which the flash memory can

be read. Resource utilization is another important criterion. A resource hungry controller

introduces more essential bits and is therefore more susceptible to radiation-induced SEUs.

Removing unused functionality is an effective means of reducing resource usage but the

controller may not remain flexible enough to be reused in a range of applications, or

to implement alternative fault detection/recovery algorithms. For example, the surveys

in [63, 66, 146] cite a large number of possible scrubbing algorithms. The design space is

further enlarged if we also consider TMR-MER as a fault recovery strategy. It is therefore

necessary to design an RC that is specifically designed for space-based applications, and

that balances the trade-off between performance, resource utilization and flexibility.

To balance this trade-off, Gong et al., proposed a Programmable Configuration Controller

(PCC) to assist in detecting and recovering from SEU errors in space applications [58].

PCC is a soft Application Specific Instruction Set Processor (ASIP) based on the RISC-V

instruction specification [169]. It supports all RISC-V integer instructions and benefits

from a complete compiler tool chain with a large development community. PCC can run

fault detection/recovery software using the general instructions defined by the RISC-V

specification while being able to benefit from the high reconfiguration throughput provided

by instructions specifically customized for this purpose. The PCC implementation is based

on v-Scale [97] and PicoRV [174], two versions of RISC-V that have low resource usage.

The PCC can be used in either standalone mode or peripheral mode, as configured at

design time by passing Verilog parameters or VHDL generics, to meet different system

design requirements. Through 5 case studies, Gong et al., demonstrated that the use of

an ASIP architecture for reconfiguration control in applications prone to radiation-induced

corruption strikes a good balance between speed, resource utilization and flexibility [58].
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However, PCC itself is a single point of failure in a system. Thus, a triplicated PCC was

also proposed by Gong et al., [57] to make it more reliable.

3.3 Reconfiguration Control Networks

In this section, we focus on the choice and design of the RCN, which collects reconfigu-

ration requests from the system’s TMR voters and communicates these to an internal or

external reconfiguration controller [66,146]. The performance and reliability of the RCN is

important for a number of reasons. On the one hand, the latency of the RCN has a direct

impact on the MTTD errors in the system. On the other hand, if the RCN is implemented

in a non-redundant manner, it introduces a single point of failure that compromises system

reliability. Furthermore, the RCN can be used to trigger a scrub cycle rather than relying

on a periodic or error rate-based trigger. Hence, the results presented in this section are

of relevance to any SRAM FPGA-based TMR system irrespective of the type of error

recovery method used.

Considering the importance of the RCN in TMR-MER system design, we provide a com-

prehensive study of the variety of RCNs reported in the literature. The RCN is typically

realized by utilizing configurable resources such as Configurable Logic Blocks (CLBs) and

programmable interconnection resources. However, an RCN can also be implemented us-

ing the FPGA’s hardwired configuration network. In this work we distinguish between

RCNs that are implemented in programmable logic, which we refer to as soft networks,

and those that are implemented using hardwired non-programmable resources, which we

refer to as hard networks.

Soft RCNs can be realized with simple star networks [20, 152] or with more complex

networks such as bus [109] and token ring networks [28, 192]. In soft networks, routing

congestion may occur as the number of TMR components in the system increases. In

contrast, hard networks [4, 163] rely on the built-in configuration network of the FPGA

to provide access to the state of health of the TMR components. This results in reduced

demand for routing resources, and therefore also enhances the reliability of the RCN

component.

In this section, we compare four RCNs with respect to reliability, latency, scalability and

power consumption. Fault injection experiments are conducted to evaluate the impact

of each RCN on system reliability. In a case study that is implemented on the RUSH

(Rapid recovery from SEUs in Reconfigurable Hardware) payload [30], we demonstrate
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that the hard network, which uses the Internal Configuration Access Port (ICAP) to read

the voter state, achieves the highest reliability. We also show that MTTD is greatest for

the ICAP-based approach due to the relatively large latency involved in retrieving user

state this way, but we demonstrate an effective optimization that significantly narrows the

gap between this hard approach and the soft RCNs. Finally, we assess the reliability of

a real system employing module-based recovery relative to the same system using blind

scrubbing. Results show that scrub-based error recovery results in higher reliability unless

the RCN is itself triplicated and repaired when its configuration becomes corrupted.

The section is organized as follows: sub-section 3.3.1 reviews the literature available on

RCN designs, with sub-section 3.3.2 describing the architecture of the various RCN types

we studied. Sub-sections 3.3.3 to 3.3.4 describe the fault emulation system we implemented

to assess the soft error vulnerability of our designs and the model we used to evaluate the

reliability of our implementations. Sub-section 3.3.5 describes our experimental method

and reports our findings while concluding remarks and directions for further study are

given in Section 3.3.6.

3.3.1 RCN Survey

Several types of networks for aggregating reconfiguration requests from TMR voters have

been described in the literature. These include examples of a star network [20,152], a bus

network [109], a token ring network [28,192], and an ICAP-based readback approach [163].

Star networks use simple interfaces to directly connect the voter outputs, which are dis-

tributed across the device, to a central Network Controller (NC) [20,152]. In star networks,

the interconnecting wires may need to span the entire device and therefore pass through

numerous programmable interconnection resources. This not only increases their suscep-

tibility to SEUs, but also introduces latency. Star networks described in the literature

typically involve polling of the remote (voter) interfaces by a central controller imple-

menting a round-robin algorithm. It would be feasible to also consider an interrupt-driven

approach whereby voters interrupt a central arbiter to transfer a reconfiguration request.

In [109] the authors utilized the AXI core to transfer the outputs of individual modules

to a central voter. While not serving as an RCN, any shared messaging resource, such as

this bus, could be used to convey reconfiguration requests from distributed components to

a central controller. The use of a shared bus allows new modules to be readily integrated

into the system while avoiding the need for dedicated routing resources as used in star

networks. However, a bus requires more complex interconnection interfaces than star
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networks, which results in an increased soft-error vulnerability, power consumption and

latency.

In [28, 192] a token ring network is implemented that spans all voters in a daisy-chained

manner. The design uses complex network interfaces that require significantly more logic

than the endpoints of the point-to-point connections found in the star networks in [20].

However, token ring topologies usually link neighbouring components and therefore uti-

lize a reduced number of global wires for interconnecting them. In contrast, star and

bus topologies realize mixed distance connections and thus utilize various interconnection

resources, including both local and global wires. Usually, SRAM-based FPGAs integrate

more local than global wires and therefore token ring networks, which tend to utilize more

local wires, are considered to be more scalable than star and bus networks. However, in

token ring networks, the latency increases with the number of components on the network.

Another drawback of this topology is that when a link suffers a configuration memory er-

ror the ring no longer functions as intended, whereas the star topology is inherently more

robust as all links are independent.

A fourth approach that has been described in the literature makes use of the ICAP to

read the outputs of the TMR modules or to read the voter states in a round-robin fashion

[163]. The former uses software to centrally compare the outputs of each module in order

to reduce the overheads of distributed voting and to reduce the likelihood of the voter

mechanism becoming corrupted. An ICAP-based communications scheme eliminates the

need for a soft network and therefore reduces routing pressure, implementation time,

and improves reliability. Reliability is enhanced since the built-in hard reconfiguration

network is utilized to obtain module or voter outputs. This approach has the potential to

be scalable as it does not require user routing resources and utilizes a moderate amount

of logic to implement the central controller.

3.3.2 RCN Architecture

In this section, we describe the architecture of the four RCN types identified in the liter-

ature and provide average latencies for obtaining a reconfiguration request.

Each RCN is composed of distributed Network Interfaces (NIs), a central NC and an

interconnection network between them as illustrated in Figure 3.4. In the figure, each

majority voter provides a 2-bit error info signal to the corresponding NI. Three possible

values of the error info signal — 00, 01, and 10 — represent the error states of the

triplicated modules respectively, while the value 11 that indicates there is no error. Note
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Figure 3.4: Components of an RCN

that a voter raises an RR to the NC by means of the error info value. Once the NC

receives an RR, it issues a req and a (log2N + 2)-bit module id signal to the RC, which

invokes the MER process to recover the faulty module. (Note that N denotes the number

of TMR components in the TMR-MER system.) After MER is completed, the RC asserts

a done signal to the NC, which is used to commence re-synchronization of the reconfigured

module and to resume checking the next component.

3.3.2.1 Star Network

Figure 3.5 illustrates an overview of a typical star network implementation. Each NI

contains a 2-bit buffer that connects directly to the NC. The NC consists of two modules,

namely an arbiter and a multiplexer. The arbiter selects which voter is to be checked in a

round-robin manner while the multiplexer transfers the error info from the selected voter

to the arbiter. When the arbiter receives an RR, it sends req and module id signals to

the RC. The RC invokes modular reconfiguration for the faulty module before issuing a

reconfiguration done signal to the arbiter for it to resume voter checking.
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Figure 3.5: The architecture of a star network
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Figure 3.6: The architecture of a bus network
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Figure 3.7: The architecture of a token ring network

3.3.2.2 Bus Network

A simple bus network that aggregates the error messages from the voters is illustrated

in Figure 3.6. The bus network works similarly to the star network. The multiplexer

architecture of the star network is replaced with a global address signal. The registers

in the NI are controlled by the address decoder (dec) and the register outputs drive the

common bus signal through an OR gate. If the bus signal indicates an RR, the NC triggers

the reconfiguration process in the RC.
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3.3.2.3 Token Ring Network

Figure 3.7 shows the basic token ring network architecture. In contrast to the star ar-

chitecture, the NIs provide a (log2N + 2)-bit message that indicates which module is in

error. When the val signal toggles and the message on the data signal is a token, the

OutRegs in the NI latch the token before passing it on to downstream NIs. If an NI needs

to send an RR, it keeps the token and its OutRegs latch the corresponding module id.

The downstream NIs pass this message to the NC. The NC operates in a similar manner

to that described for the star network. When the reconfiguration of a module has been

completed, a done message is released to signal to the requesting NI that reconfiguration

has finished and that the token should therefore be released.

3.3.2.4 ICAP-based Voter Checking

The ICAP-based readback approach eliminates the soft interconnection network by using

a modified RC component to check the TMR component voters directly. The voter error

info signal is registered and the RC polls these register outputs in a round-robin manner

via ICAP configuration frame readbacks. When the RC receives a reconfiguration request,

it triggers a reconfiguration operation to correct the faulty module.

Configuration Frame Readback The Xilinx FPGA configuration memory is arranged

into frames that are tiled about the device. These frames are the smallest addressable

segment of the configuration memory space. The frame size varies among FPGA families;

in the case of Xilinx 7–Series FPGAs, it consists of 101 32-bit words. Each frame possesses

a unique address that can be used to dynamically read or write to the configuration

memory.

Xilinx 4—7 Series devices allow users to read the configuration memory via the ICAP.

There are two modes of readback, namely Readback Verify (RbV) and Readback Capture

(RbC) [180]. We use the RbC mode to check the voter state of each TMR component since

this mode allows the state of the CLB configuration memory cells to be read. This can be

done by issuing a GCAPTURE command to the ICAP so as to sample all CLB register

values into configuration memory cells. These values can then be read back along with the

configuration frame containing the voter status bits. However, designers must know the

frame address and configuration bit offset of the SRAM cell corresponding to the desired

output of the voter for this approach to work. These parameters are given in the logic
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allocation (*.ll) file, which is automatically generated by the Xilinx ISE/Vivado design

tools. The logic allocation file includes four fields, namely, a bit offset, a frame address, a

frame offset, and information for each configured resource as depicted in Figure 3.8. The

registers corresponding to the voter status of a TMR component are determined from the

information fields that then allow the frame addresses and frame offsets to be extracted.

logic allocation file *.ll

<bit offset>  <frame addr> <offset>  <Information>
Bit 19488835 0x0042021f   3107 Block=SLICE_X4Y48 Latch=AQ Net=voters[6]/status_bits[1]

Bit     568762 0x0000021f   3162 Block=SLICE_X4Y148 Latch=DQ Net=voters[2]/status_bits[0]
Figure 3.8: Extract of a Xilinx logic allocation file

Xilinx devices expect a specific sequence of commands to be sent to the ICAP in order

to read a data frame [180]. A frame read request necessitates the read of a dummy word

and a pad frame before the desired data frame can be read. The time to read a frame in

Xilinx 7–Series FPGAs is approximately 230 clock cycles. This includes 20 clock cycles for

issuing initialization commands, 203 clock cycles for the frame read, and 10 clock cycles

for issuing concluding commands [180]. The frame read time depends on the throughput

of the ICAP, which supports 32-bit transfers at a rate of 100 MHz. At the maximum

rated speed, the time for reading a frame through the ICAP primitive in 7–Series FPGAs

is thus approximately 2.3 us. This latency can be reduced if voter registers are placed at

the bottom of each clock region so that the voter registers are located at the beginning of

the data frame. When this is done, the frame read can be aborted after the voter registers

have been read. The frame read time can thus be reduced by as much as 1 us down to

about 1.3 us [180].

3.3.2.5 RCN Latency

RCN latency is defined as the average period of time needed for the NC to receive a

reconfiguration request from a voter. As described in Section 3.3, all four networks check

voters in a round-robin manner. Thus, assuming a system with N TMR components or

NIs and one NC, the average latency of the token ring network is given by

latency = (N + 1)× chop ×
1

Fnetwork
, (3.1)

where chop denotes the number of clock cycles per node hop, and Fnetwork denotes the

clock frequency of the RCN. Equation (3.1) corresponds to the average time needed for

the token to arrive (half the ring) and the time for the request to make it back to the NC

(also half the ring).
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The RCN latency for all other topologies is given by

latency =
N

2
× chop ×

1

Fnetwork
, (3.2)

which corresponds to the time it takes to check half the voters in the system, on average,

before the one that wishes to raise a reconfiguration request is checked.

3.3.3 Fault Emulation System

In this section, we outline the fault emulation system we implemented to assess the soft

error vulnerability of the RCNs we studied. As detailed in Chapter 2, fault emulation

involves the use of hardware-based methods to artificially insert faults into FPGAs. A

typical fault emulation system needs to provide an ability to access internal memory to

inject a fault, an ability to stimulate and execute the circuits, an ability to determine

output errors and an ability to clear errors [133].

Figure 3.9 outlines our fault emulation procedure. We use the Xilinx AXI HWICAP IP

for flipping configuration memory bits and a MicroBlaze processor to control this process.

Once the system has been initialized, the MicroBlaze halts and waits for a fault injection

address from a PC host. A uniformly distributed random configuration bit address is

generated. The MicroBlaze reads the corresponding frame, flips the addressed bit and

writes the frame back using the HWICAP to emulate an SEU. Note that we do not

inject faults into either the MicroBlaze or the HWICAP in order to avoid their corruption

throughout the fault injection campaign. Of the 18,300 configuration frames in the Artix-7

XC7A200TFBG-484 targetted in our study, 14,250 frames are contained in the region that

represents the design under test.

Once a fault is inserted, the circuit is tested using all possible input stimuli. In our case,

there are four possible error info values that would normally be presented to an NI. An

input stimulus is usually provided through external pins on the FPGA. However, we felt

that errors injected into the nets leading from the external pins to the NIs of the network

would influence the results of our experiments. We therefore developed a different method

for stimulating input values. As can be seen in Figure 3.10, the input stimulus of each

NI is realized through what we call a “RePin” architecture, which is composed of two

SLICEM LUT (LUTM) blocks configured as distributed RAM. Each LUTM provides a

single bit of stimulus that can also be changed using the ICAP. Given the site number

and logic locations, the positions of the LUTM bits can be obtained from the *.ll file as

described in Section 3.3.2.4.
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An essential step in the fault emulation procedure involves detecting system errors. The

MicroBlaze processor checks the integrity of the design while the LUTMs are manipulated

to simulate different error info signals arising from a voter. For each NI, we iterate through

every possible combination of the error info signal while holding the inputs to every other

NI constant at “11”, which signifies the “no error” condition. Whenever a new error info

value is written, the MicroBlaze processor checks that the correct RR is received. In the

case of the soft networks, we wait for the maximum number of clock cycles required for

the NC to receive an RR, then the req and module id signals are read using the AXI

GPIO interface. In the case of the ICAP-based RCN, the MicroBlaze processor utilizes

the ICAP to read back the values of each NI’s status flip-flops in order to determine the

RR. If the RR is as expected, we change the error info signal to the next value. When we

have cycled through all 4 possible values and there is no unexpected RR, we move on to

the next NI. If an unexpected RR is received, an error report is sent to the PC.

The fault emulation tool must also remove the injected fault and return the circuit to a

known functioning state before injecting the next fault. In our system, the injected fault

is fixed by writing back the frame as it was before injection, all NI inputs are set to “11”,

the RCN is reset and the software returns to wait for a new fault injection address from

the PC.

3.3.4 Reliability Evaluation

The reliability of an FPGA-based system composed of N TMR components that use MER

to recover from configuration memory errors and an RCN for aggregating reconfiguration

requests can be derived as follows. We model the reliability of the RCN (RRCN (t)) using

Equations (2.1, 2.2 or 2.3). Respectively, the reliability of each TMR component RTMR
i (t)

in the system is modelled using Equation (2.3). Finally, the reliability of the system is

given by the product of the reliability of each individual component, namely the RCN and

the N TMR components [145]:

RTMR
s (t) = RRCN (t)

N∏
i=1

RTMR
i (t). (3.3)

In this derivation, it is assumed that failures follow a Poison distribution and the occur-

rence of errors in modules or components are statistically independent and uncorrelated.

Note that Equation (3.3) holds true only if the recovery rate is much greater than the

error rate, which ensures repairs are completed independently [145]. Moreover, since the
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main objective of this section is to evaluate the impact of various RCN architectures on

the total reliability of FPGA-based designs that incorporate MER, we omit inclusion of

the reconfiguration controller and the voters in our reliability analysis as these would

have the same impact in each case. In this thesis, we estimate the relative reliability of

the techniques under study. However, to estimate the absolute reliability of the system,

the reconfiguration controllers and the voters would need to be included as additional

components in the evaluation of Equation (3.3).

3.3.5 Experiments and Results

In this section we evaluate the performance of the networks presented in Section 3.3.2,

in terms of resource utilization, latency, operating frequency, power consumption and soft-

error vulnerability. All networks were implemented on a Xilinx Artix-7 XC7A200TFBG484-

1 FPGA, as hosted on the RUSH experiment board, as described in the Appendix, using

the vendor’s Vivado 2014.4 implementation tools with default settings. The comparison

of the networks is based on data obtained from the implementation tools and also on

fault-injection experiments as described in Section 3.3.3.

3.3.5.1 Experiments

As mentioned in Section 3.3.2, an RCN consists of NIs, a central NC and the interconnec-

tion network between them. In these experiments the same voter interface and RC designs

were used irrespective of the RCN type being tested. The same NI and NC locations were

also used for all RCN designs. In the first experiment we studied “synthetic” layouts

in which the TMR components, their voters, and thus the NIs were assumed to be dis-

tributed in a checkerboard pattern across the majority of the device area. Moreover, the

NIs and the NC were always located in partitions that utilized the same FPGA resources

irrespective of the RCN topology. To obtain resource utilization and performance results,

we initially implemented designs that only contained the components of the RCNs being

tested and constrained the implementation tools to prevent optimizations across the port

interfaces of the NIs and the NC. To perform the fault injection experiments, we added

a MicroBlaze-based RC for injecting faults and distributed RAM-based test vectors to

each of the RCNs tested. We tested each RCN type for networks comprising 7, 15 and 31

voters. The synthetic layout of a 31-voter design (in this case for testing the star network

topology) is shown in Figure 3.11, in which the design under test into which faults were

injected is depicted as the shaded region to the right of the RC.
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In the second experiment, we investigated the utilization, performance and system relia-

bility of each RCN when used to collect reconfiguration requests for the RUSH payload.

For this case study, we implemented the four network types with the 9 TMR components

comprising the RUSH experiment, as described in the Appendix.

������������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������������

��

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

�� �

� �

� �

� �

�
�
�
�
�
�
�
�
�
	
�


�
�
�
�
�

Figure 3.11: Synthetic layout of a 31-voter design

3.3.5.2 Results

Implementation results: Table 3.1 presents information extracted from the vendor’s

implementation tools. The results are listed according to the resource utilization of the

design; the dynamic power consumption and the number of essential bits follow the same

pattern. In contrast, the vendor’s power analysis tools reported the same amount of static

power consumption for all RCN designs. Given that the RCN designs utilized less than

0.2% of the total FPGA resources on average, we believe that the contribution of the RCN

to the total static power consumption of the FPGA is negligible, and due to this we have

obtained the same result for all RCN designs.

It can be seen from Table 3.1 that the ICAP-based RCN was realized with the fewest

resources compared to the other RCN architectures. This is primarily because the ICAP

NIs are implemented with just two Flip-Flops (FFs) and a small amount of support logic

being mapped to Look-Up Tables (LUTs). As expected, the number of Programmable

Interconnection Points (PIPs) and Switch Matrices (SMs) used by the ICAP approach is

significantly lower than for the other approaches. As a consequence, the ICAP-based RCN

has on average 2.7, 3.6 and 6.0 times fewer essential bits than the synthetic layouts of the
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star, bus and ring networks respectively. However, the ICAP-based RCN suffers from high

network latency. It requires two to three orders of magnitude more time than the other

RCNs to transfer reconfiguration requests to the NC. In contrast, the ring has the lowest

latency, since it can achieve a higher operating frequency and only needs 1 clock cycle

per node hop. We used Equations (3.1) and (3.2) to calculate the latency for each RCN.

The latency of the ICAP approach is on average over 175 times that of the ring and the

latency of the star and bus networks was about 1.4 times that of the ring for the synthetic

layouts.

We investigated an optimization of the ICAP RCN that entails constraining the registers

of those groups of NIs that are located within each clock region. These registers are forced

to be placed into a single configuration frame so that they can be accessed in a single

frame read. With reference to Figure 3.11, which depicts 4 voters per clock region (the

10 grey rectangles), this optimization resulted in the creation of horizontal wires leading

from each voter to a frame that was centrally located in each clock region. Instead of

requiring 31 separate frame reads to check all voters, this approach reduced the number

of frame reads needed to 8 in total — one for each clock region used by the design. The

results of this implementation are reported in Table 3.1 in the ICAP column headed L1*.

As can be seen, this optimization reduced the latency of the ICAP approach by a factor of

4 while increasing the number of essential bits used over the unoptimized 31-voter ICAP

design by 32%.

Table 3.2: Fault injection results

Type ICAP STAR BUS RING

# voters Avg σ Avg σ Avg σ Avg σ

7 7.0 1.5 8.2 2.3 16.8 2.1 51.0 4.7

15 8.2 3.5 17.0 3.0 36.6 5.0 122.1 16.7

31 20.7 1.4 38.6 4.6 78.6 7.9 213.4 27.3

Avg: average number of observed errors

σ: Standard deviation

Fault injection results: We implemented the fault emulation system described in Sec-

tion 3.3.3 to conduct fault injection experiments for the synthetic layouts of each of the

four RCN types. For each RCN type, we made 5 trials, in each of which we injected one

million faults. Table 3.2 tabulates the average number and standard deviation of observed

errors per one million injected faults. These results demonstrate that the ICAP-based

RCN is more reliable than the other approaches. Additionally, the number of errors that
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Table 3.3: Results of mapping 9 TMR components to a Xilinx Artix-7 XC7A200TFBG-484

Design
Essential Bits Failure rate (λm)

nf tc (ms)
(ne) (upsets/s/module)

FIR 12,042 (0.02%) 3.25× 10−6 65 1.2

FIFO 41,842 (0.07%) 1.13× 10−5 192 3.5

BAQ 48,963 (0.08%) 1.32× 10−5 73 1.3

BST1 281,604 (0.46%) 7.60× 10−5 145 2.6

SR1 285,914 (0.46%) 7.72× 10−5 378 6.8

SR2 515,904 (0.84%) 1.39× 10−5 474 8.5

BST2 793,534 (1.30%) 2.14× 10−4 610 11.0

SR3 1,403,647 (2.30%) 3.79× 10−4 1,090 19.6

BST3 1,833,235 (3.00%) 4.95× 10−4 1,483 26.7

occur in each RCN is directly proportional to the number of voters and thus the number

of essential bits per design.

RUSH case study results: Table 3.3 lists details of the 9 TMR designs of the RUSH

payload. These include a single MAC-based 21-tap Finite Impulse Response (FIR) filter

with 16-bit signal width, an 8-to-3-bit Block Adaptive Quantizer (BAQ), an 8,096-word

deep 32-bit FIFO, three 32-bit Shift Registers (SRs) having different lengths and a range

of combinational logic between the stages, and three 32-bit Binary Search Trees (BSTs) of

different heights and a variety of combinational logic at each node (please refer to Appendix

A.2.2 for additional details of these designs). Table 3.3 also presents the number of essential

bits (ne), the number of frames (nf ) and the correction time (tc) of each TMR module.

The failure rate of each module is calculated assuming λbit = 2.7 × 10−10 upsets/bit/s,

which is a high failure rate that corresponds to the peak-5-min condition at GEO, as

shown in Table 2.2. This high failure rate was chosen to clearly show the reliability trends

in Figure 3.12. We observed similar trends for lower failure rates when time t in Equation

3.3 was increased. Note that in our design, since we were using the AXI HWICAP, the

ICAP throughput using the MicroBlaze was limited to 10 MB/s, considerably less than the

maximum possible throughput of 400 MB/s, because the AXI bus requires multiple clock

cycles to execute an instruction and since the bandwidth to the external flash memory is

limited. This reduced ICAP throughput increases the latency for checking a voter using

the ICAP to 60 us per voter, and we therefore observe a much higher network latency

under these conditions.

Figure 3.12 plots the system reliability for each RCN type and the 9 RUSH applica-
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Figure 3.12: Reliability of RUSH payload using (a) Unprotected RCN, (b) TMR triplicated
RCN, and (c) TMR triplicated RCN with recovery

tion circuits using Equation (3.3) against the reliability of a blind scrub implemented on

the same system. The MicroBlaze RC and off-chip flash configuration storage used by

the RUSH system supports a random FPGA configuration frame read latency of 60 us

and a sustained frame write period of 18 us per frame. Blind scrubbing, which entails

rewriting each configuration frame of the device, therefore takes 330 ms on the Artix-7

XC7A200TFBG-484 used in the RUSH payload, and errors are recovered by scrubbing

after 165 ms on average. Please note that in Figure 3.12, the scrub plots only account for

the 9 application components; they specifically exclude the RCN component, which is not

needed for blind scrubbing.

Figure 3.12(a) assumes the four RCNs are implemented as single, non-replicated compo-

nents. While the ICAP RCN results in the best reliability for MER, all 4 RCNs weigh

down the reliability of the system because they are single points of failure.

Figure 3.12(b) assumes the RCNs are implemented as triplicated components, but that

the errors that occur in this component are not repaired. The RCN triplication is done

by triplicating the voters and connecting each voter to an RCN. For the ICAP-based

RCN, the statuses of triplicated voters can be constrained to one frame so that they are

read by the RC at the same time. Some limited error mitigation is therefore in place.

Only the ICAP outperforms scrubbing over the time period shown. However, eventually

(when t > 120, 000 s) even this approach succumbs to errors that remain unrepaired and

scrubbing once again dominates.

In Figure 3.12(c) we assume that the device is partially reconfigured in its entirety when an

error in the triplicated RCN component is detected. This error recovery period is longer

than desired, but the approach ensures any error in the network is corrected. Despite

the long recovery time (equivalent to reconfiguring the complete device), the reliability
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is not significantly affected because errors occur infrequently in the relatively small RCN

components.

The results indicate that the system relying on the ICAP-based RCN, despite being af-

fected by severely reduced voter checking frequency, has significantly better reliability than

those utilizing one of the three soft network topologies studied. It should be noted that

the reliability comparison between the ICAP-based voter checking approach and the other

RCNs is not completely fair because the RC in the ICAP-based voter checking approach

requires more instruction and data memory to store program and voter addresses for the

readback operation. However, this can be alleviated if the RCs of the four approaches are

implemented using a radiation-hardened processor.

3.3.6 Final Remarks for Reconfiguration Control Networks

In this section, we have compared four RCN types in terms of reliability, scalability,

resource utilization, power consumption and sensitivity to configuration memory errors.

The utilization and performance of these RCNs were assessed for networks with 7, 15 and

31 voters. The results demonstrate that the ICAP-based readback approach, which uses

the built-in reconfiguration mechanism available in FPGAs, requires the least resources of

those networks studied.

The results of a case study that was implemented on the RUSH payload and of fault

injection testing indicate that the ICAP-based readback approach has the highest system

reliability despite having a relatively high latency. This higher latency may not be too

problematic except when radiation levels become much higher than the checking rate

assumed in our work or the number of components to be checked becomes very large. It

should also be noted that the time to read one frame using this approach is far smaller than

the time to recover the module when an error is found. We have shown that the latency

of the ICAP approach can be reduced by clustering the registers that are to be read from

one clock region into a single frame. This optimization does not have a significant impact

on the resource utilization. We have also determined that for the reliability of MER to

be competitive with scrubbing in a real system, the RCN must also be triplicated and

repaired when errors affect it.
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3.4 Summary

This chapter has provided the possible implementation of a TMR component and the

survey of RCs as well as a thorough study of RCNs. We have concluded that the use of

a hard network has the highest system reliability despite having a relatively high latency.

However, it should be noted that the high latency of the ICAP-based network, and the

relatively high MTTD that follows, is insignificant compared to the MTTR errors when

either scrubbing or MER is used. We have also concluded that a TMR-MER approach is

less reliable than TMR-Scrubbing unless the RCN is implemented with redundancy and

repaired when it suffers from configuration memory errors.

One direction for further study is to consider the order in which TMR components are

checked, as explored in Chapters 4 and 5. Further work is envisaged to derive comprehen-

sive reliability models for complete TMR-MER systems, as described in Chapter 5.
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Chapter 4

Dynamic Scheduling of Voter

Checks in TMR-MER Systems

As mentioned in Chapter 3, implementing TMR with Module-based configuration memory

Error Recovery (TMR-MER) requires a Reconfiguration Control Network (RCN), which

is an infrastructural component that collects status messages from the system’s TMR

voters and communicates these to an internal or external Reconfiguration Controller (RC)

[66, 146]. Typically, the RCN involves an arbiter that periodically collects the status

messages from TMR voters in a predetermined order, usually in a round-robin manner

[4, 28, 152,163,192]. However, doing so increases the response time in checking the voters

of highly vulnerable TMR components. Intuitively, the rate at which a TMR component

requests error recovery depends on its failure rate. Therefore, the RCN arbiter should

check components that are likely to suffer higher failure rates more frequently than those

with lower failure rates in order to minimize the chance that the system fails.

In this chapter, we propose and evaluate a Voter Scheduling Engine (VSE) that dynami-

cally prioritizes and manages the voter checks in a TMR-MER system. The proposed VSE

is based on the idea that the TMR component that is most likely to have suffered an error

since the last check should be checked next. Moreover, we incorporate the VSE into an

RCN that utilizes the Internal Configuration Access Port (ICAP) available in advanced

Xilinx devices to readback configuration frames that contain the health status of the sys-

tem’s TMR components [4, 163] (so-called ICAP-based RCN). As we have demonstrated

in Chapter 3, an ICAP-based RCN requires the least programmable resources and there-

fore provides the highest system reliability against SEUs compared to the other networks

that have been reported in the literature. Notwithstanding, the proposed VSE can be
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applied to any RCN that is able to randomly check voter status messages. In particular,

a VSE-based RCN could be used to trigger a scrub cycle rather than solely relying on

periodic scrubbing. Hence, the results presented in this chapter are of relevance to any

SRAM FPGA-based TMR system supporting random voter checks irrespective of the type

of error recovery method used.

We assess and compare the reliability of a TMR-MER system in which the TMR voter

states are checked in a round-robin fashion with that of the same system implementing

VSE. We demonstrate that TMR-MER systems that incorporate the VSE are generally

more reliable than those using a round-robin order. This is especially the case when the

period between two successive checks is increased e.g. when there is an increased number

of TMR components to check or when the check frequency is reduced for the purpose of

saving energy. Results show that the failure probability of the TMR system incorporating

VSE is up to 50% lower than that of the same system using round-robin voter checks

during a simulated 30-day mission at GEO and also during a simulated 10-year mission

in LEO.

The chapter is organized as follows: Section 4.1 describes our proposed VSE, its role in an

ICAP-based RCN, and how it can be implemented. Section 4.2 describes our experimental

method and reports our findings, while conclusions and directions for further study are

given in Section 4.3.

4.1 Scheduling Voter Checks

In this section, we detail a VSE along with its implementations in either software or

hardware, that respectively require linear or logarithmic time to determine which TMR

component to check next.

4.1.1 Voter Scheduling Engine (VSE)

Since the ICAP interface can only read one configuration frame at a time [180], using

an ICAP-based RCN, the voter status bits cannot be readback in parallel. In principle,

they must be read sequentially. Nevertheless, it should be possible for the checks to be

scheduled so as to statistically decrease the error detection time and thereby improve the

reliability of the system. To achieve this, a TMR component is checked based on the

period of time since it was last checked and the number of sensitive bits it contains. We
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use the number of essential bits [89] reported by the vendor’s tools as a worst case estimate

of the number of sensitive bits.

Scheduling is based on the idea that the likelihood of a configuration memory error being

present in a TMR component is proportional to the product of the number of essential

bits contained in the component and the amount of time elapsed since it was last checked.

Therefore, the components with a large number of essential bits are checked more fre-

quently than those with less essential bits. The VSE is designed to implement this idea.

In more detail, the component that is selected to be checked next is the one that currently

has the least probability that all three modules are working. We assume that the three

modules of a TMR component contain the same number of essential bits and that SEUs are

statistically independent and considered to follow a Poisson distribution. The probability

that the three modules of component i are still working after time τ is given by [145]:

Pi(τ) = e−3λMiτ , i = 1..N, (4.1)

where λ denotes the bit error rate, Mi denotes the number of essential bits of a module

of component i, and N denotes the number of TMR components in a system.

For a constant bit error rate λ, Pi(τ) is the same over any fixed period τ . In other words,

in the arbitrary time window between two consecutive checks of component i, we can

consider that Pi(τ) starts from 1 when the voter of component i is checked and no error

is detected (τ = 0) and that Pi(τ) decreases until the next check. Pi(τ) can therefore be

estimated by

Pi(τ) = e−3λMiτ = e−3λMini∆to , (4.2)

where ni denotes the number of checks of other components that have been performed

since the last time component i was checked and ∆to denotes the period between any two

successive checks of any pair of components (assumed to be a constant).

Ideally, we want the VSE to find the next component to check in constant time. However,

since Pi(τ) changes non-linearly and dynamically, it is difficult to determine the component

with the smallest Pi(τ) at the current moment in constant time.

To illustrate this problem, consider three components I, II and III, with varying Pi(τ)

as depicted in Figure 4.1. Assuming that PI(τ), PII(τ) and PIII(τ) are in ascending order

and Pi(τ) of other components in the system are shown as being contained within the

dashed region of the graph area, the voters associated with components I, II and III are

checked at times n∆to, (n+ 1)∆to and (n+ 2)∆to, respectively. After each check, PI(τ),

PII(τ) and PIII(τ) are reset and proceed to decrease in the next time window according
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Figure 4.1: Example of component records changing places.

to their error sensitivity. After component III is checked, many other components may

have smaller Pi(τ) and they will need to be checked in subsequent cycles. As can be

observed from Figure 4.1, PIII(τ) is higher than PII(τ) at time (n+ 3)∆to, however, this

relationship changes at time (n + 5)∆to. On the other hand, Pi(τ) of the most recently

checked component will always be smaller than that of less recently checked components

that were more reliable when it was checked. For example, PII(τ) is smaller than PI(τ)

at time (n + 2)∆to. Since PII(τ) decreases faster (higher failure rate) than PI(τ), the

relationship of components II and I will never change until component II is again checked.

In this work, the VSE simply searches the list of Pi(τ) of all TMR components to obtain

the component with the smallest Pi(τ), i.e. the component with the highest probability

that at least one of the three modules of the TMR component will fail during the next

observation period, and therefore should be checked next.

When a configuration memory error is detected in a TMR module through the voter of

the component, MER is invoked to reconfigure the faulty TMR module so as to correct

the error. During the reconfiguration period, the ICAP cannot be used to read voter

statuses according to the usual schedule since it is occupied reconfiguring the module that

was found to be in error. Moreover, since the reconfiguration period of a TMR module

may be much longer than the time period between voter checks, the likelihood that TMR

components have suffered errors will have increased during this period. A feasible approach

is to recommence the voter checks starting with the voter of the component with the largest

Mi followed by all the successively smaller ones. This is sensible because the larger the

component’s Mi, the higher the probability that errors will have occurred in it after a

substantial period of time. Once the voters of all components have been checked and no

errors have been detected, the system resumes the VSE-based schedule.
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4.1.2 VSE Implementations

The VSE plays the role of the arbiter of the ICAP-based RCN. The interface between

the VSE and the RC can be seen in Figure 4.2. The VSE selects the component that

needs to be checked next and asserts the component ID to the RC, while the RC reads the

associated configuration frame and checks the status message of the voter(s) associated

with the component ID. If the RC does not detect a reconfiguration request from the voter

of the asserted component ID, it sends an Update signal to the VSE, which commences

the search for the component to check during the next cycle. On the other hand, if the

RC detects a reconfiguration request, then it commences reconfiguring the faulty module

in order to correct the error. After the reconfiguration has been completed, the RC checks

all components in descending order of their Mi before it resets the VSE and returns to

the normal VSE schedule.
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Figure 4.2: Interface between the VSE and the RC.

In the VSE implementation, we use the Mini product in terms of ∆to units as a proxy

for representing Pi(τ) in Equation (4.2) as it is inversely proportional to Pi(τ). The

Mini product ranks the records in the list of N elements and eliminates the overhead

of calculating the exponential function and multiplications. The algorithm involves two

steps, which include: (1) finding the largest Mini product, and (2) updating the Mini

product for each node. These steps require O(N) time in sequential software.

With the proposed hardware implementation, as depicted in Figure 4.3(a), N − 1 Condi-

tional Blocks (CBs) are connected together as a binary tree in which N records are stored

at the leaf nodes. Each record consists of the current Mini product and an identification

(IDi) corresponding to component i. The IDi are assigned to components according to

their Mi values with the component with the largest Mi being assigned 1. The CBs that

are connected to the leaf nodes, and which are referred to as the leaf CBs, perform two

functions, which involve: (1) comparing the two records and forwarding the record with

the greater Mini value to the node in the next level-up, and (2) updating the records at
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Figure 4.3: (a) VSE and (b) Conditional Block interface.

the leaf nodes. The internal CBs only perform the first function. If the two records contain

the same Mini values, the component with the smaller IDi is chosen. The record with

the greatest Mini product reaches the root CB after log(N) steps. The root CB asserts

the ID of the selected component to the RC and to the leaf CBs. These CBs update their

records after they receive an Update signal from the RC. The record of the component

that was just selected for checking is reset, while all other records are incremented by their

corresponding Mi amount.

The CB interface is depicted in Figure 4.3(b) where the x-bit signals M1, M2 and M denote

the Mini products, and the y-bit signals ID1, ID2, and ID represent the component IDs.

x depends on the size of the Mini product while y depends on the number of TMR

components in a system.

Since the VSE schedules voter checks based on the Mini product, the Mi values can be

modified by the user to impose user-defined priorities, if so desired. One limitation of the

VSE is that when the number of TMR components is increased, the search time increases

logarithmically while the hardware overhead increases linearly as shown in Section 4.2.2.

4.2 Experimental Analysis

In this section we evaluate the VSE in terms of resource utilization, operating frequency,

and scalability. We also evaluate and compare the reliability of a TMR system that checks

voters in a round-robin fashion with one that uses the VSE to schedule voter checks. The

systems were implemented on a Xilinx Artix-7 XC7A200TFBG484-1 FPGA using Vivado

2014.4 CAD tools.
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4.2.1 Experiments

We conducted two types of experiments. In the first, the VSE is implemented as a stan-

dalone module on the Artix-7 FPGA in order to obtain resource utilization and per-

formance results. We tested the VSE with systems containing 4, 8, 16 and 32 TMR

components.

In the second set of experiments, we compared the reliability of the three configurations

as listed in Table 4.1. In the first configuration, we checked the voters in round-robin

order. In the second configuration, we assumed that the VSE is implemented in an off-

chip radiation-hardened device. And in the third and final configuration, we implemented

the VSE on-chip as an additional triplicated system component.

Table 4.1: Configurations for the second set of experiments

Configuration # of TMR components Voter Checking

I 9 Round robin

II 9 Off-chip VSE

III 10 (including the VSE) On-chip VSE

To test these approaches, three system configurations comprising the 9 TMR compo-

nents of the RUSH experiment described in the Appendix and listed in Table 4.3 were

implemented. Note that the VSE was only included as a TMR component in the third

configuration. The VSE used in the second and third configurations was configured with

x = 10 and y = 4. A MicroBlaze (MB) processor was used to implement the RC and the

AXI HWICAP IP was used to reconfigure faulty modules in the three configurations.

We injected faults into each TMR component in order to verify the operations of the MB

and to measure the correction time (tc) for each TMR module. The MB controls the fault-

injection procedure, which involves reading the corresponding frame, flipping one bit, and

writing the frame back using the HWICAP. After injecting a fault, the MB commences

checking the voter statuses of all TMR components and reconfigures any faulty module as

needed. The correction time accounts for the time interval from the error being detected

until the last word of the partial bitstream is written to the HWICAP. Note that the

recovery time of a TMR component is the sum of the detection time, the correction time

and the synchronization time. In our study, we omitted the synchronization time as it

normally only accounts for a small fraction of the recovery time.
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Table 4.2: Area and performance of the VSE mapped to a Xilinx Artix-7 XC7A200TFBG-
484 FPGA

x− y N Slices LUTs FFs Freq (MHz)

32 – 5 32 894 (2.53%) 1922 (1.43%) 1527 (0.57%) 104

32 – 4 16 579 (1.73%) 1595 (1.19%) 968 (0.36%) 117

32 – 3 8 282 (0.84%) 749 (0.55%) 454 (0.16%) 141

32 – 2 4 114 (0.34%) 305 (0.22%) 196 (0.07%) 191

16 – 5 32 419 (1.25%) 1032 (0.77%) 775 (0.28%) 122

16 – 4 16 314 (0.93%) 832 (0.62%) 488 (0.18%) 164

16 – 3 8 146 (0.43%) 380 (0.28%) 230 (0.08%) 197

16 – 2 4 58 (0.16%) 154 (0.11%) 100 (0.03%) 270

8 – 5 32 232 (0.69%) 583 (0.43%) 399 (0.14%) 130

8 – 4 16 158 (0.47%) 426 (0.31%) 248 (0.09%) 174

8 – 3 8 77 (0.23%) 298 (0.14%) 118 (0.04%) 220

8 – 2 4 31 (0.09%) 79 (0.05%) 52 (0.01%) 271

4.2.2 Results

4.2.2.1 VSE Component

Table 4.2 presents the resource utilization and maximum clock frequency of the VSE as

the number of TMR components and the sizes, x and y, of Mi and IDi are varied. As

the number of TMR components increases, the resources needed to implement the VSE

increase almost linearly. As can be seen in Table 4.2, the VSE utilises a small amount

of resources and can readily handle a design with 32 components, in which x = 32 and

y = 5. This small footprint ensures that the placement and routing of other components

is not affected and that the VSE can easily be TMR protected for a small overhead.

So as to reduce the wire requirements of the VSE search tree, we normalize the Mi value

to the size of the smallest TMR component. This means that the Mini product does not

overflow an 8-bit or a 16-bit value. In this case, the CBs with x = 8 or x = 16 can be used

to implement the VSE. As can be observed from Table 4.2, the resource utilization of the

VSE with x = 8 and of the VSE with x = 16 is reduced by approximately 75% and 50%,

respectively, with substantially higher clock frequencies than for the VSE with x = 32.

In addition, the proposed VSE can update and find which component to check next in

O(log N) clock cycles. For example, the VSE only needs 5 clock cycles to find the next

component to check in a 32-component system. This time is much quicker than the time
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Table 4.3: Results of mapping 10 TMR components to a Xilinx Artix-7 XC7A200TFBG-
484 FPGA

Design
Essential Bits Norm Mi nf

tc (ms) td (∆to)

Mi (relative to FIR) MBlaze I II III

BST3 1,833,235 152 1,483 26.7 4.5 1.7 1.7

SR3 1,403,647 117 1,090 19.6 4.5 1.7 1.7

BST2 793,534 66 610 11.0 4.5 3.3 3.4

SR2 515,904 43 474 8.5 4.5 4.8 4.8

SR1 285,914 24 378 6.8 4.5 8.2 8.4

BST1 281,604 23 145 2.6 4.5 8.2 8.4

BAQ 48,963 4 73 1.3 4.5 41.0 41.3

FIFO 41,842 3 192 3.5 4.5 56.0 54.7

FIR 12,042 1 65 1.2 4.5 164.4 157.4

VSE 51,293 4 144 2.6 – – 41.3

needed to check voters using the ICAP-based RCN when both the RC and the VSE

operate at 100 MHz (the maximum clock frequency to access the ICAP). The hardware

implementation of VSE can scale in size and still be expected to promptly return the ID

of the next component to check even with the ICAP operating at maximum frequency.

For example, a VSE for a very large system comprising 128 components returns the next

ID to check in the minimum time needed to fetch one voter status, as long as the VSE is

operated at 7 MHz or faster.

4.2.2.2 Case Study Results

Table 4.3 records the number of essential bits (Mi), the normalized Mi (ratio of each

component’s Mi relative to the component with the smallest Mi), the number of frames

(nf ), the correction time (tc) and the average detection time (td) in number of observation

periods (∆to) for each TMR component for the three configurations studied. These TMR

components include the VSE design and the 9 user application designs of the RUSH

payload (see Appendix A.2.2 for details of the designs). In our design, the MB-based RC

and off-chip flash configuration storage support a sustained frame write period of 18 us

per frame which was used to measure the tc of each component in Table 4.3.

Figure 4.4 plots the failure probabilities of the three configurations during a 30-day mission

in GEO orbit at the peak 5-min radiation condition as ∆to was varied using Equation (2.8).

The bit failure rates were obtained from Table 2.2 as shown in Chapter 2. For clarity, we
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Figure 4.4: Failure probabilities of the three configurations in GEO orbit at the peak
5-min condition during a mission of 30 days.

have plotted 2 sub-figures in which ∆to ranges from 1 us to 1 ms and then from 1 ms to 1 s.

As can be seen in Figure 4.4, configuration II is generally less vulnerable than configuration

I. As the observation period (∆to) is increased, the gap between the failure probabilities

of the two configurations increases, but eventually the gap decreases because of the failure

probabilities of the two configurations tend towards 100%. Moreover, the reliabilities of

configurations II and III are similar as errors occur infrequently in the relatively small

VSE component.

Figure 4.5(a) presents the failure probabilities of configuration III during a 30-day mission

for the four GEO orbit conditions as ∆to is varied. It can be observed that similar

system failure probabilities can be achieved at different conditions by adjusting ∆to. This

implies that depending upon the environment that the system is operating in, we can vary

the operating frequency of the voter checks to save energy, while maintaining a desired

reliability.

Figure 4.5(b) depicts the percentage decrease in the failure probability of configuration III

relative to that of configuration I during a 30-day mission for the four GEO orbit conditions

as ∆to is varied. It can be seen that the percentage decrease is similar at different GEO

orbit conditions when ∆to is less than 0.01 second. For the peak 5-minute condition,

the highest percentage decrease is 30%, while it is 45% for the worst day and 50% for

the worst week and solar min conditions. However, as ∆to is increased, the percentage

decreases under all conditions eventually decline to zero because the failure probabilities

of both configurations approach 1. Similar results are also obtained for longer missions

in the three orbits. For example, the percentage decrease is up to 50% for four radiation

conditions for a 10-year mission in LEO orbit, while it is also up to 50% for solar min and
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Figure 4.5: (a): Failure probabilities of configuration III with four radiation conditions in
GEO orbit during a 30-day mission, (b) Percentage decrease in the probability of failure
in configuration III versus configuration I.

worst week, 40% for worst day and 10% for peak 5-min conditions for a 1-year mission in

GPS orbit.

Figures 4.4 and 4.5 suggest that one needs to examine the duration of a mission and the

voter checking frequency in order to evaluate the robustness of TMR systems that employ

either voter checking approach. For the sake of energy saving in space-based applications

in long-term missions, the checking frequencies may be decreased [66]. In this case, the

VSE is capable of ensuring a higher reliability than round robin.

Table 4.4 shows the failure probabilities of configurations I, II, and III during a 30-day

mission in the GEO, GPS and LEO orbits. In this table, we present the failure probabilities

of the TMR-MER system when ∆to = 10 ms. To compute the values in Table 4.4, we used

Equation (2.8) in which the corresponding bit failure rates were obtained from Table 2.2.

At these operating points, we can confirm that configurations II and III are generally

more reliable than configuration I and that they have similar reliability. Furthermore, the

failure probabilities of the three configurations operating in LEO orbit are two to three

orders of magnitude less than those in GPS and GEO orbits.

Please note that for the comparison of the VSE and round-robin approaches, the failure

probability models are only based on the number of TMR components in the system. As

explained in Section 3.3.4, we have not included the RC and the voters in our reliability

estimates since they have the same impact on the failure probability of the two systems.
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Table 4.4: Failure probabilities of the three configurations when ∆to = 10 ms

Orbit\Configuration I II III

GEO

Solar min 1.23E − 7 1.00E − 7 1.03E − 7

Worst week 2.89E − 3 2.31E − 3 2.32E − 3

Worst day 2.28E − 2 1.83E − 2 1.83E − 2

Peak 5-min 2.68E − 1 2.21E − 1 2.22E − 1

GPS

Solar min 9.98E − 8 7.79E − 8 7.81E − 8

Worst week 8.75E − 4 6.99E − 4 7.02E − 4

Worst day 9.98E − 3 7.98E − 3 8.02E − 3

Peak 5-min 1.23E − 1 0.99E − 1 0.99E − 1

LEO

Solar min Negligible

Worst week 2.10E − 6 1.68E − 6 1.69E − 6

Worst day 2.33E − 5 1.86E − 5 1.87E − 5

Peak 5-min 3.03E − 3 2.42E − 3 2.43E − 3

4.3 Final Remarks on Dynamic Scheduling of Voter Checks

in TMR-MER Systems

In this chapter, we proposed the use of a VSE to schedule the voter checks in an FPGA-

based TMR-MER system that employs an ICAP-based RCN. The VSE plays the role

of an arbiter in prioritizing checks of critical components. We have also pointed out

that any system that uses an RCN that provides random access to component voters can

benefit from using a VSE to prioritize the checks of more vulnerable components. We

have presented practical algorithms for checking voters in both hardware and software to

maximize the system reliability.

A TMR-MER system that includes a VSE is generally more reliable than one that checks

voters in a round-robin fashion. The failure probabilities of the former are up to 50%

lower than those of the latter for a 30-day mission in GEO orbit with solar min and worst

week conditions, and up to 45% and 30% lower with worst day and peak 5-min conditions,

respectively.

The proposed approach is fair since each voter will eventually be checked. By modifying

the record of the number of essential bits, we can impose a user-defined priority with

which to check the voters. The cost of our method is the design and hardware cost of the

moderately complex VSE.
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Chapter 5

Static Scheduling of Voter Checks

in TMR-MER Systems

In Chapter 4, we proposed an on-chip Voter Scheduling Engine (VSE) to help the Recon-

figuration Controller (RC) dynamically adjust the order in which Reconfiguration Requests

(RRs) from TMR voters are checked based on the likelihood of the next component that

is to be checked being in error. The approach was implemented based on the idea that

the RRs from the more vulnerable components, i.e., those comprising a greater number of

essential bits [89], are checked more frequently than the less vulnerable ones. We found

that VSE was able to boost system reliability by up to 50% relative to a static round-robin

voter checking schedule. A question that work raised, and which we in this chapter answer

in the affirmative, is whether a static voter checking schedule could be found to enhance

TMR-MER system reliability by a similar margin or even beyond that possible with the

dynamic voter checking method.

It has been noted that while TMR-MER is generally effective for mitigating SEUs affecting

the configuration memory [4], it is not well suited to protecting systems against multiple

coincident SEUs that affect multiple modules of a TMR component and that thereby

defeat the protection afforded by redundancy. In this chapter, we investigate the reliability

of TMR-MER systems consisting of multiple triplicated components operating in harsh

radiation environments, such as in geosynchronous orbit during solar flares, and in high-

energy physics laboratories, like the Large Hadron Collider, where multiple coincident

SEUs are more likely [123]. Our main interest in this chapter is in determining the impact

of varying the order and rate at which the voter RRs of TMR components are checked for

errors on overall system reliability.

83



CHAPTER 5. STATIC SCHEDULING OF VOTER CHECKS IN TMR-MER
SYSTEMS

Reliability models for TMR-MER systems have not yet been studied in detail. When

they are mentioned, Markov models are used to compute the system reliability with the

assumption that the recovery of modules of multiple TMR components occurs indepen-

dently [4]. While acceptable at low error rates, the problem with this assumption at high

error rates is that the methods for correcting configuration memory errors are inherently

sequential, hence the models do not consider the effect of configuration memory errors

on other TMR components while a faulty module is being reconfigured. In this chapter,

we develop reliability models that consider multiple coincident SEUs that may occur in

different TMR components and use these to analyze the impact of the order in which we

check voters for reconfiguration requests.

Several models for estimating the reliability of SRAM FPGAs in the presence of SEUs

have been introduced in the literature. Heron et al. introduced a reliability model in

which the overall reliability of the FPGA is calculated based on physical reliability and

SEU reliability [65]. This model parses the netlist of a design to estimate the number

of essential bits used for configuring essential items such as LUTs, MUXs, FFs/latches,

wires and switch resources in the design. However, the model does not consider the effect

of hardware redundancy or the effect of multiple coincident SEUs. Edmonds presented a

reliability model of TMR designs without recovery that considers coincident upsets [45].

Ostler et al. introduced a reliability model for a one-component TMR design employing

TMR-Scrubbing under harsh radiation environments where multiple coincident SEUs are

more probable [123]. Their model requires orbit- and condition-specific SEU rates and

design-specific estimates of the probability of failure during a single scrubbing period.

Our work proposes reliability models of SRAM FPGA designs, also under harsh radiation

environments, where multiple coincident SEUs may occur, like [123], but for TMR-MER

designs that contain multiple TMR components. The requirements of our models are

similar to those of [123], but the probability of failure of a TMR component is estimated

during two consecutive observations of the TMR component voters rather than during a

single scrub period.

Our contributions in this chapter are:

• To derive reliability models of TMR-MER systems that comprise finitely many TMR

components whose voter RRs are checked in round-robin order and at a variable

rate (so-called Variable-Rate Voter Checking (VRVC)). Previous work has primarily

focused on the effects of single events on SRAM FPGA-based systems while our

analysis considers the impact of multiple consecutive events, which is an important

consideration in providing a more comprehensive and accurate analysis of system
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reliability.

• To propose a Genetic Algorithm (GA) for finding the optimal fixed rate at which

to check all components so as to maximize the MTTF and the reliability of TMR-

MER systems. The results show that using round robin for voter checks is not

necessarily the best. Instead, scheduling of the voter checks according to component

vulnerability substantially improves the system MTTF and reliability. Simulation

results indicate that the MTTF of TMR-MER systems can be increased by up to

400% when VRVC rather than round robin, is used.

• To demonstrate that the MTTD is reduced by 44% and 30% on average when VRVC

is used instead of a static round robin and dynamic VSE voter checking regimes,

respectively.

• To show that the power consumed checking for errors can be reduced by reducing

the checking frequency. In this case, VRVC is capable of ensuring a higher system

reliability than the static round robin and the dynamic VSE approaches. In this case

the reliability of a system using VRVC is far higher than that of the same system

using round robin for voter checking.

This chapter is organized as follows: Section 5.1 presents reliability models for TMR-MER

systems that consist of finitely many components whose voters are checked in round-robin

order or at a variable rate. Section 5.2 presents the results of a small simulation study

used to assess the models derived in Section 5.1 on a system comprising two components.

Section 5.3 describes two genetic algorithms used to derive a voter checking schedule with

the objective of maximizing the system reliability when systems are composed of n compo-

nents. Section 5.4 describes our simulation experiments to assess the performance of the

proposed VRVC relative to VSE and round-robin voter checking, while Section 5.5 details

our experimental method, reports on our findings and discusses the results. Concluding

remarks and directions for further study are given in Section 5.6.

5.1 Reliability Model

In this section, we introduce models that estimate the reliability of TMR-MER systems.

These models are then used to estimate the reliability of FPGA-based designs in harsh
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radiation environments when multiple coincident upsets are more probable1. We describe

a general reliability model that has been widely used to estimate the reliability of FPGA-

based systems. Based on this general model, we outline a procedure for estimating the

reliability of TMR-MER systems that consist of an arbitrary number of TMR components

and whose voters are checked in either round-robin order or at a variable rate.

5.1.1 General Reliability Model

The reliability of a TMR component k over time ∆t, Rk(∆t), can be expressed w.r.t.

the failure probability of the component, FPk(∆t), which is the sum of the individual

likelihoods that the component fails for all u SEUs that may affect the device during ∆t.

These relationships are given in [123] as:

Rk(∆t) = 1− FPk(∆t),

FPk(∆t) =

∞∑
u=1

P (Fk|Eu)P (Eu,∆t),
(5.1)

where event Fk is the failure of component k during the period of time ∆t and event Eu

is that u SEUs have occurred in the device during the period of time ∆t. Failure of TMR

component k means that at least two of the three modules suffer from errors and that the

component’s voters therefore fail to produce the correct output.

P (Fk|Eu) can be estimated for various values of u using the number of sensitive bits per

component, for which we use the number of essential bits reported by the vendor’s tools

as a worst case estimate. Sensitive bits are those bits that cause a functional error if

they change state, while essential bits are those bits associated with the circuitry of the

design [89].

P (Eu,∆t), the probability of event Eu occurring during ∆t, can be modelled with a

Poisson distribution [123],

P (Eu,∆t) = e−ν
νu

u!
, (5.2)

where ν is the expected number of SEUs suffered by the device during a period of time

∆t and is obtained from the product of the failure rate of one configuration memory bit

1Please note that the model presented does not take into account Multiple-bit upsets
(MBUs) i.e., more than one upset in a configuration word or frame from a single charged
particle [131].
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of a device (λbit), the number of configuration memory bits of a device (nc) and the time

period (∆t):

ν = λbit × nc ×∆t. (5.3)

λbit depends upon the radiation level, the IC process technology and the circuit architecture

of the FPGA fabric.

Once the failure probability of component k is known, the failure rate λk of component k

is given by [123]:

λk =
FPk(∆t)

∆t
. (5.4)

Since a TMR component can fail in different scenarios (see Figure 5.1 and associated dis-

cussion in Section 5.1.2) with different failure rates (λik), it is more meaningful to compute

the composite failure rate of each component (λck). This parameter can be calculated for

the expected proportions (ρik) in which each scenario occurs:

λck =
∑
i=1

ρikλ
i
k. (5.5)

where
∑
ρik = 1.

Typically, a system contains N interdependent TMR components connected in series such

that the failure of any one TMR component causes the system to fail. The failure rate of

a series TMR system, λs, is the sum of all component failure rates [85].

λs =

N∑
k=1

λck. (5.6)

Furthermore, the MTTF of the series TMR system is given by the reciprocal of the system

failure rate.

MTTF =
1

λs
=

1∑N
k=1 λ

c
k

. (5.7)

Finally, the system reliability is calculated as follows:

Rs(t) = e−λs.t. (5.8)

In this chapter, the main objective is to compare the reliabilities of TMR-MER systems

that employ round robin, VSE and VRVC. As explained in Section 3.3.4, we do not

therefore consider the impact of non-redundant modules, such as the RCN, the RC, and

the voters, on system reliability.
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Table 5.1: Notation

Symbol Definition

N Number of TMR components in the system.

Ck Component k, k = 1..N .

nc Number of configuration memory bits in the device.

nek Number of essential bits per module of component k (assumed to be
identical for all three modules).

Okn Ck is observed for the nth time by checking its voter(s).

∆to The time period between successive voter observations (assumed to be
constant for a given system setting).

∆tdk The time period between two consecutive observations of Ck.

∆trk The time period to recover a faulty module of Ck.

∆tk The total time period over which Ck can fail.

∆tdij The time period between successive observations of Ci and Cj.

∆td′ij The average time period between two consecutive observations of Ci in
the interval between two consecutive observations of Cj.

∆tgdkf The time period between two consecutive observations of Ck in group g
in which f is the first component suffering and being recovered from an
error.

5.1.2 Failure Rates of TMR-MER Systems in which Voters are Checked

in Round-Robin Order

5.1.2.1 Two-Component Systems

Based on the general reliability model described in Section 5.1.1, we estimate the failure

rate of systems comprised of two TMR components connected in series. Hereafter, we say

that if the output of one module of a TMR component repeatedly differs from that of the

other two, that the component is suffering from an “error”, and if, after the component

suffers another one or more SEUs, the outputs of the remaining two modules repeatedly

differ, that the component has “failed”. We also assume that once a faulty module is

detected, it is dynamically reconfigured to correct the error.

In a two-component system, a component may fail in one of four different ways that are

classified into two groups as shown in Figure 5.1 using the notation listed in Table 5.1.

(Note that Figure 5.1 only describes the modes in which C1 can fail; the modes in which
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Figure 5.1: Failure mode for component 1 in two-component systems in which the voters
are checked in round-robin order.
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C2 can fail can be derived in a similar manner.):

Group 0: No other component suffers an error

– Case 1 (Figure 5.1(1)): C1 suffers from two or more SEUs that cause it to fail during

the period of time between two consecutive checks of its voters (e.g., during ∆t1 — the

period of time between O12 and O13).

– Case 2 (Figure 5.1(2)): C1 suffers an error from one or more SEUs during the period of

time between two consecutive checks of its voters (between O12 and O13 in Figure 5.1(2)).

Thereafter, C1 fails if one or more SEUs affect its remaining working modules during the

period of time during which it is recovering from the previous error (e.g., during ∆tr1 —

from time O13 to the end of the recovery process of C1).

Group 1: One other component suffers an error

– Case 1 (Figure 5.1(3)): C1 suffers from two or more SEUs that cause C1 to fail during

a period of time between two consecutive checks of its voters that is longer than usual

because the system is recovering from an error in C2. C1 fails during the period of time

that commences after it is observed to be without an error (at O12), continues while C2

is checked and recovered, and finishes when C1 is observed again at O13.

– Case 2 (Figure 5.1(4)): C1 suffers an error from one or more SEUs during the period

of time between two consecutive checks of it (between O12 and O13) while the system is

recovering from an error in C2. C1 then fails if one or more SEUs affect a second or third

module of C1 while it is recovering from the previous error.

To summarize, in case 1 of either group, component k fails, i.e., suffers multiple errors

to its different modules, between successive voter checks. In case 2, on the other hand,

component k suffers an error to one of its modules during this period, and then fails

following subsequent upsets to its other modules while recovering from the first error.

Estimating the Probabilities of Component Failure The failure probability of

component k in case 1 of either group g, g = 0, 1 (FP 1
kg) is computed based on FPk(∆t)

in Equation (5.1) with corresponding ∆tk as shown in Figures 5.1(1) and 5.1(3).

FP 1
kg =

∞∑
u=1

P (Fk|Eu)P (Eu,∆tk). (5.9)
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FP 1
kg is calculated by summing the failure probabilities of component k for all u SEUs that

occur in the device during the period of time between two consecutive checks of component

k. Please see Section 5.1.2.1 for a more detailed explanation.

The failure probability of component k in case 2 of either group g, g = 0, 1 (FP 2
kg) is the

joint probability that event Mk (i.e., that component k suffers an error) occurs during

the period of time ∆tdk as shown in Figures 5.1(2) and 5.1(4) and that component k fails

during the period of time ∆trk given the occurrence of event Mk.

FP 2
kg =

∞∑
u=1

P (Mk|Eu)P (Eu,∆tdk)
∞∑
u=1

P (Fk|MkEu)P (Eu,∆trk), (5.10)

where P (Mk|Eu) denotes the conditional probability that event Mk occurs given u SEUs,

and P (Fk|MkEu) denotes the conditional probability that component k fails given u SEUs

following the occurrence of event Mk (see Section 5.1.2.1 for a more detailed explanation).

Estimating the Conditional Probabilities of Component Failure The following

conditional probabilities are user-design specific and must be estimated for each design

that is implemented.

P (Fk|Eu) is the failure probability of component k given u SEUs in the device. If the

number of SEUs is 1, the failure probability of component k is zero because one SEU

cannot cause a malfunction of a TMR component. Thus, P (Fk|E1) = 0. Empirically, this

failure probability is not exactly zero because there are a few single configuration bits that

do indeed cause the TMR design to fail [149]. However, applying the techniques that are

described in [149] remove such bits from the TMR design.

If the number of SEUs is u and u > 1, component k fails only if one SEU affects one of the

three modules first and then at least one of the other SEUs affects one of the other two

working modules of this component. In other words, the failure probability of component

k given u SEUs in the device is the product of the probability that one SEU affects one

of the three modules and the complement of the probability that the u − 1 SEUs occur

outside the other two remaining working modules of component k. The failure probability

of component k in this case is calculated as

P (Fk|Eu) =
3nek
nc

(1−
u−1∏
i=1

nc − 2nek
nc

). (5.11)

P (Mk|Eu) is the conditional probability that component k suffers an error given u SEUs

in the device. If u SEUs occur in the device, component k suffers an error only if one SEU
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affects one of the three TMR modules of component k and none of the other SEUs affect

the two remaining working modules. Hence, P (Mk|Eu) is estimated as follows:

P (Mk|Eu) =
3nek
nc

u−1∏
i=1

nc − 2nek
nc

. (5.12)

P (Fk|MkEu) is the conditional probability that component k fails given that u SEUs occur

in the device and that component k has suffered an error. If u SEUs occur in the device,

the failure of component k occurs only if at least one SEU affects one of the other two

remaining working modules of component k. Thus, P (Fk|MkEu) is estimated as follows:

P (Fk|MkEu) = (1−
u∏
i=1

nc − 2nek
nc

). (5.13)

Estimating Failure Rates, λikg Based on (5.4), the failure rate of component k in each

case i of group g is estimated as follows:

λ1
kg =

FP 1
kg

2∆to +
∑g

i=1 ∆trk′
,

λ2
kg =

FP 2
kg

2∆to +
∑g

i=1 ∆trk′ + ∆trk
,

(5.14)

where k′ 6= k and k′ is chosen based on g. For example for k = 1, if g = 0, the sums

(
∑g

i=1 ∆trk′) in (5.14) are invalid and assigned 0; if g = 1, then k′ = 2.

Estimating the Proportion ρikg by which Component k Fails in Each Case i of

Group g These parameters are calculated for the likelihood by which component k fails

in each case:

ρikg =
αikg∑1

l=0

∑2
j=1 α

j
kl

, (5.15)

where αikg, i = 1, 2 and g = 0, 1, denotes the likelihood that case i of group g occurs. We

estimate αikg as follows: αik0 = 3nek
nc

and αik1 =
3nek′
nc

3nek
nc

, because the likelihoods of cases

1 and 2 of group 0 occurring depend upon the likelihood of component k suffering an

error, while that of cases 1 and 2 of group 1 occurring depend upon the likelihood of both

components k′ and k suffering errors.

The composite failure rate of component k, λck, is calculated by substituting for λik and ρik
into Equation (5.5). The system failure rate can be computed by summing all λck.
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5.1.2.2 N−Component Systems

Based on the results from sub-section 5.1.2.1, we next estimate the composite failure rates,

λck, of all TMR components for a system that consists of N TMR components in which

configuration memory errors are recovered by MER. At this juncture in our analysis it is

still assumed that the N components are being checked for errors in round-robin order.

Component k, k = 1..N , may fail in one of many different ways which we classify into N

groups as follows:

• Group 0 involves two cases in which component k fails during the period of time

between two consecutive checks of its voter(s) or in which it suffers an error during

this period and fails while recovering from that error. This group corresponds to

group 0 of the two-component system analysed in Section 5.1.2.1.

• Group 1 involves 2(N − 1) = 2
(
N−1

1

)
cases that component k fails or suffers an er-

ror while the system recovers from an error in one of the other components. This is

because there are N−1 cases that one other component may be recovered before com-

ponent k is next checked. This group corresponds to group 1 of the two-component

system.

• Group 2 involves 2
(
N−1

2

)
, N > 2 cases that component k fails or suffers an error

while the system recovers from errors in two other components. Since components

are checked in round robin order, the order of components that suffer errors is taken

into account. With N −1 components, there are
(
N−1

2

)
combinations that two other

components may need to be recovered before component k is next checked.

• ...

• Group (N −1) involves 2
(
N−1
N−1

)
cases that component k fails or suffers an error while

the system recovers from errors in the other N − 1 components. This is because

there is only one combination that all other components may need to be recovered

before component k is next checked.

From the foregoing, it can be observed that group g, g = 0..N − 1 involves 2
(
N−1
g

)
cases

that component k fails or suffers an error while the system recovers from errors in g other

components. Since the components are checked in round-robin order, if more than one

component suffers an error, these are also recovered in round-robin order. Therefore, if

g other components suffer errors, there are
(
N−1
g

)
combinations that g other components

are recovered before component k is next checked.
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Let FP imkg , i = 1, 2, m = 1..
(
N−1
g

)
and g = 0..N−1, be the failure probability of component

k in case im of group g. FP 1m
kg is computed by (5.9) while FP 2m

kg is computed by (5.10).

Thus, based on (5.4), the failure rate of component k in each case in group g is estimated

as follows:

λ1m
kg =

FP 1m
kg

N∆to +
∑g

i=1 ∆trk′
,

λ2m
kg =

FP 2m
kg

N∆to +
∑g

i=1 ∆trk′ + ∆trk
,

(5.16)

where k′ 6= k and k′ are all the indices of components applicable in case m. For example

for N = 3 and k = 1, if g = 0, the sums (
∑g

i=1 ∆trk′) of (5.16) are invalid and are assigned

0; if g = 1, then m = 1 or 2 and k′ = 2 or 3, respectively; if g = 2, then m = 1 and k′ = 2

and 3.

Additionally, the expected proportion (ρimkg ) in which each scenario occurs is calculated as

follows:

ρimkg =
αimkg∑N−1

r=0

∑(N−1
g )

t=1

∑2
j=1 α

jt
kr

, (5.17)

where αimkg denotes the likelihood that case im occurs. Therefore, we estimate αimkg =

3nek
nc

g∏
i=1

3nek′
nc

because the likelihood of each case αimkg occurring depends upon the likelihood

of g other components suffering errors in a row. Note that k′ here is similar to (5.16),

except when g = 0, the product (
g∏
i=1

3nek′
nc

) is assigned the value 1.

The composite failure rate of component 1 is calculated by substituting for λik and ρik in

(5.5) with (5.16) and (5.17). The system failure rate and reliability are calculated using

(5.5) and (5.8) with λck for each component of the system.

5.1.3 Failure Rates of TMR-MER Systems Employing VRVC

VRVC is defined as a periodic schedule in which component voters are checked at specific

times and in which the more vulnerable components’ voters are checked more frequently

than those of the less vulnerable ones. For example in a system of 4 components, one period

of a schedule could be 4-3-4-2-4-3-4-2-3-1 in which each digit represents the component

whose voters are to be checked. In this case, component 4 is deemed more vulnerable and

hence checked more frequently when compared to the other components, and component

1 is deemed least vulnerable and hence checked less frequently. In this sub-section, we

94



5.1. RELIABILITY MODEL

����� �����������

���

����

��������	�
���
�����

��� ��� ���

��	
��
�	 �������	

��� ��� ������	 �����	

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

��	��

���	��	�����	

����

��������	�����
����

��� ��� ���

��	��

���	��	�����	
�������	

��
�

���

��	
��
�	

�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

���

��	��������	

��	��

���	��	�����	

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������	 ������	

Figure 5.2: Failure of component 1 in systems employing variable-rate voter checking

first consider a system that consists of two components and then generalise the model to

obtain the reliability of systems that consist of any number of TMR components.

5.1.3.1 Two-component Systems

Similar to the cases described in Section 5.1.2, we observe that C1 fails in one of four

different ways as partly depicted in Figure 5.2 using the notation of Table 5.1. Note that

p in Figure 5.2 denotes the nominal number of times that C2 is checked between two

consecutive checks of C1 due to its greater susceptibility to SEUs than C1’s. In case 1

of group 1 (Figure 5.2(3)), we assume that the system detects an error in C2 x checks

after C1 is checked (at O12) where x varies from 1 to p. In this analysis, we associate

with x = 1..p the number of checks that the system performs before it detects an error in

C2. Thus, each case of group 1 involves p sub-cases that have the same likelihood of both

components suffering an error (ρik). For example, given the following schedule for checking

two components: 1-2-2-2-2-1-2-2-2-2-1... where each digit denotes the observation of the

corresponding component, ∆td1 and ∆td2 in group 0 are 5∆to and 1.25∆to, respectively.

Both ∆td12 and ∆td′21 in group 1 are ∆to. Furthermore, with such a schedule, there are

four checks of C2 during the period of time between two consecutive checks of C1. Thus,

x = 1..4.
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The observations of C2 differ slightly from those of C1. C2 may also fail in one of four

different ways, but the number of sub-cases in group 1 is only 1. This is because between

any two consecutive checks of C2, C1 is checked at most once.

Let FP 1
k0 and FP 2

k0 be the failure probability of component k in cases 1 and 2 of group

0; and let FP 1x
k1 and FP 2x

k1 be the failure probability of component k in cases 1 and 2 of

group 1 where x = 1..pk and pk denotes the number of times that component k is checked

between two consecutive checks of component k′ ( k′ 6= k). FP 1
k0 and FP 1x

k1 are computed

by (5.9) while FP 2
k0 and FP 2x

k1 are computed by (5.10) with corresponding ∆tk in each

case, as partly shown in Figure 5.2.

Thus, based on (5.4), the failure rate of component k in each case is estimated as follows:

λ1
k0 =

FP 1
k0

∆tdk
, λ2

k0 =
FP 2

k0

∆tdk + ∆trk
,

λ1x
k1 =

FP 1x
k1

∆tdkk′ + (x− 1)∆td′kk′ + ∆to + ∆trk′
,

λ2x
k1 =

FP 2x
k1

∆tdkk′ + (x− 1)∆td′kk′ + ∆to + ∆trk′ + ∆trk
.

(5.18)

Additionally, the expected proportion, ρikg, in which each scenario occurs can be calculated

as follows:

ρixkg =
αixkg∑1

r=0

∑pk
t=1

∑2
j=1 α

jt
kr

, (5.19)

where αikg, i = 1, 2 denotes the likelihood that case i occurs. Therefore, αixkg is estimated

as αik0 = 3nek
nc

(x is implicitly assigned 0) and αixk1 =
3nek′
nc

3nek
nc

, because the likelihood of

cases 1 and 2 occurring in group 0 depends upon the likelihood of component k suffering

an error, while that of cases 1 and 2 occurring in group 1 depends upon the likelihood of

both components k′ and k suffering errors.

The composite failure rate of component k is calculated by substituting for λik and ρik in

(5.5) with (5.18) and (5.19).

The above observations allow us to compute the system failure rate.

5.1.3.2 N-component Systems

Without loss of generality, we assume that the components are numbered and ranked k, k

= 1..N , into increasing vulnerability order, and that component k is therefore checked

more frequently than component k–1. After the reconfiguration of a faulty module is
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finished, the system checks all other components in descending order of vulnerability

before recommencing the planned schedule. For example, in a system of 4 components,

after component 2 is recovered, components 4, 3 and 1 need to be checked in that order

before resuming the variable-rate schedule. If multiple errors occur in a sequence, the

system checks all other components that have not been reconfigured. In doing so, the

system is fair in reconfiguring all components of the system if an error is detected.

Based on the results from the previous section, we generalize the approach for estimating

the composite failure rate, λck, of all components in a system containing N components

that are checked at different rates.

Before detailing the failure cases of one component in a TMR-MER system that employs

variable-rate voter checking, we define nPk as the well-known k-permutations of n, which

is 0 when k > n or k < 0, and otherwise is equal to n!
(n−k)! . In an N−component system,

component k may fail in various ways that may be classified as belonging to one of N

groups as follows:

• Group 0 involves two cases that component k fails during the period of time between

two consecutive checks of it or suffers an error during this period and fails while

recovering from that error.

• Group 1 involves 2(N−1) = 2(k−1P1 +N−kP1) cases that component k fails or suffers

an error while the system recovers from an error in one of the other components.

This is because there are k−1P1 cases that a component with an index less than k

and N−kP1 cases that a component with index greater than k is recovered before

component k is next checked.

• Group 2 involves 2(k−1P1
N−kP1 + N−kP2), N > 2 cases that component k fails or

suffers an error while the system recovers from errors in two other components. In

the first sub-group, we assume that one of k−1P1 = (k − 1) components with in-

dices less than k is the first component to suffer an error. As the system checks

all components in decreasing vulnerability order after any module is reconfigured,

the second component to suffer an error must belong to the N−kP1 = (N − k) com-

ponents with indices greater than k. Alternatively, we assume that one of N−kP1

components with indices greater than k is the first component to suffer an error.

After reconfiguring the faulty module of the first component, the system checks all

other components that have indices greater than k that have not yet been recon-

figured. Thus, the second component that suffers an error must also belong to the

upper group, consisting of (N − k − 1) components. Thus in the second sub-group,
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we have N−kP1
N−k−1P1 = N−kP2 combinations of two components that may need to

be recovered before component k is next checked.

• ...

• Group N -1 involves 2(k−1P1
N−kPN−2 + N−kPN−1) cases that component k fails or

suffers an error while recovering from errors in N − 1 other components.

To summarise, the system failure rate can be computed by considering all possible cases

in which each component may fail. A component k may also fail in different groups

g, g = 0..N–1 in which g other components suffer an error first. Each group involves
k−1P1

N−kPg−1 + N−kPg situations. This is because group g includes k−1P1
N−kPg−1 situa-

tions in which the first component to suffer an error, f , is such that the rank of f < k and
N−kPg situations in which the rank of f > k. Each situation involves two cases as sum-

marized in Section 5.1.2 and each case involves a number of sub-cases that are schedule

dependent.

Let FP 11
k0 and FP 21

k0 be the failure probabilities of component k in cases 1 and 2 of group

0, respectively; and let FP 1mx
kg , FP 2mx

kg be the failure probabilities of component k in cases

1mx and 2mx of group g, g > 1 respectively, where m = 1..k−1P1
N−kPg−1 + N−kPg; and

x denotes the nominal number of checks of component f between two consecutive checks

of component k. FP 11
k0 and FP 1mx

kg are computed by (5.9) while FP 21
k0 and FP 2mx

kg are

computed by (5.10).

Thus, based on (5.4), the failure rate of component k in each case is estimated as follows:

λ11
k0 =

FP 11
k0

∆tdk
, λ21

k0 =
FP 21

k0

∆tdk + ∆trk
,

λ1mx
kg =

FP 1mx
kg

∆tgdkf
, λ2mx

kg =
FP 2mx

kg

∆tgdkf + ∆trk
.

(5.20)

Note that x in group 0 is implicitly assigned 0.

∆tgdkf is defined as the period of time between two consecutive observations of component

k while the system is recovering g other components commencing with f as exemplified

in Figure 5.3 with g = 1 and with the notation of Table 5.1. ∆tgdkf , g > 0 is given as:

∆tgdkf =

∆tdkf + (x− 1)∆td′fk +
∑g

1 ∆trk′ + (N − k + 1)∆to, if f < k

∆tdkf + (x− 1)∆td′fk +
∑g

1 ∆trk′ + (N − k)∆to, if f > k

where k′ 6= k and k′ involves the indices of all components in each case of group g. This is

because ∆tgdkf involves the time period between two successive observations of components
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Figure 5.3: ∆tgdkf when f > k and g = 1

k and f (∆tdkf ), the period between checking component f for the first and the xth times

((x − 1)∆td′fk), the time period needed to recover the faulty modules of g components

(
∑g

i=1 ∆trk′), and the time period needed to recheck other components of higher rank

than component k.

Additionally, the expected proportion, ρimxkg , in which each scenario occurs is calculated

as follows:

ρimxkg =
αimxkg∑N−1

r=0

∑k−1P1
N−kPr−1+N−kPr

t=1

∑pkf
l=1

∑2
j=1 α

jtl
kr

, (5.21)

where αimxkg denotes the possibility that case imx in group g occurs. Therefore, we estimate

αimxkg as follows:

αimxkg = 3nek
nc

g∏
i=1

3nek′
nc

(5.22)

because the likelihood of each case αimxkg occurring depends upon the likelihood of g com-

ponents suffering errors consecutively. Note that k′ in (5.22) is similar to its use in (5.20),

except when g = 0, in which case the product (
g∏
i=1

3nek′
nc

) is assigned 1.

The composite failure rate of component 1 is calculated by substituting λik and ρik in (5.5)

with (5.20) and (5.21). The system failure rate and reliability are calculated using (5.5)

and (5.8) with λck for each component of the system.

Most of the timing parameters for computing the composite failure rate of one component

(as partly shown in Figure 5.2) differ from those of the others and are not constant.

Fortunately, we can statistically determine their average values based on a real schedule

as described in Section 5.3
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5.2 Simulating a 2-Component System

We interrupt the main flow of our presentation to report on an early simulation we under-

took to assess the performance of VRVC. In this section we present results of simulations

that aimed to assess the reliability of systems comprising two components using both

round-robin and VRVC as the time period between successive voter observations was var-

ied. As will be seen, non-linearities in our results suggest that determining an optimal

voter checking schedule is likely to be NP-hard and thus motivate the development of

evolutionary approaches to finding good schedules, as discussed in the next section.

In our study, we simulated a system comprising two components, C1 and C2, containing

100,000 and 1,000,000 essential bits and having assumed reconfiguration times of 0.2ms

and 2ms, respectively. Simulation parameters were based on a Xilinx Artix-7 XC7A200T

device, containing nc = 77, 845, 216 configuration bits in total, and operating in a Geosta-

tionary Equatorial Orbit (GEO) with an anticipated upset rate of 2.66E-10 upsets/bit/s

at the peak-5-min condition (Table 2.2). We used the expressions derived in Sections

5.1.2.1 and 5.1.3.1 to calculate the MTTF for a round-robin checking schedule, as well

as for VRVC as the number of checks, p, of C2 was varied relative to the 1 check made

per period of component C1. These calculations were performed as the voter observation

period (∆to) ranged from 1µs to 1s.

In this case study, we run a brute force search for all possible number of checks for each

component. We calculated the ratios of VRVC MTTF to round-robin MTTF on specific

voter observation times varying from 1µs to 1s. For each voter observation time, we assign

the number of checks for C1 to 1 and increase the number of checks for C2, p, from 1 (i.e.,

round-robin approach) to until the MTTF ratio starts decreasing. The previous p value

before the MTTF ratio is decreased is the one that provides maximum system reliability.

We also iterated by assigning number of checks for C2 to 1 and increasing the number of

checks for C1. However, the second case always results in system MTTF less than the

round robin approach.

Our results, plotted in Figure 5.4(a), show that a better MTTF is achieved by VRVC

at all voter observation periods. Figure 5.4(b) shows that the number of checks p of C2

that is needed for each check of C1 to obtain the best MTTF for VRVC relative to round

robin varies depending on the voter observation period. The results confirm our intuition

that the larger components should be checked more frequently than smaller ones in order

to maximize system reliability. With the assumptions made in this study, we found that

use of VRVC rather than round robin to check voters led to a significant improvement in
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Figure 5.4: (a) MTTF (years) of the VRVC and round-robin voter checking approaches.
(b) Peak MTTF ratio achieved when varying the voter checking rate relative to checking
voters in round-robin order, and the corresponding rate p at which C2 is checked relative
to C1 to achieve the peak MTTF ratio.

system MTTF of up to 70%. It also came as a surprise to us that there was no direct

relationship between the module sizes and the optimal rate p at which the larger of the

two modules should be checked.

As can also be seen from Figure 5.4(b), the maximum benefit of VRVC (relative to round

robin) and the number of checks p of C2 needed to achieve this optimal MTTF are non-

linear functions of the voter observation period. Unfortunately, it is infeasible to use

an exhaustive search, as we have done in this study, to determine the optimal number of

checks to perform on each component as the number of components in the system increases.

For this reason, in the next section we develop a heuristic approach using evolutionary

algorithms to determine a “good” checking schedule.

5.3 Scheduling Voter Checks

Many optimization problems in the real world, such as multi-modality, dimensionality

and differentiability, are very complex in nature and quite hard to solve using conven-

tional techniques. Techniques, such as steepest decent, linear programming and dynamic

programming, generally fail to solve optimization problems with non-linear objective func-

tions or with many local optima. To solve such hard problems, more powerful optimization

algorithms, such as evolutionary algorithms, which include genetic algorithms (GAs), are

needed [12].
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As can be seen from Figure 5.4(b), clearly, the peak MTTF ratio, which is the function

we wish to maximize, is non-linear, and even for a 2-component system, we observe two

maxima. We therefore propose to use a GA, which is a probabilistic search method based

on an evolutionary approach, to heuristically determine the rate at which all triplicated

components in a system should be checked so as to maximize the system reliability. Once

the rate at which components should be checked has been determined, we use a second

GA, as detailed in [52], to generate a schedule in which the determined number of voter

checks are distributed as evenly as possible per schedule period. The schedule produced

by the second GA is needed to evaluate the fitness of individual solutions to the first GA,

which determines the number of checks to be performed. The second GA is therefore

nested within the first GA’s evaluation function.

Note that apart from evolutionary algorithms, other meta-heuristic optimization tech-

niques have been developed to solve non-linear problems with multiple minima. These in-

clude the Artificial Immune Algorithm [48], Ant Colony Optimization [39], Particle Swarm

Optimization [84], and several more. In this thesis, we only use GAs to find a static sched-

ule for voter checks. However, it may be worthwhile trialling the above techniques as well

to determine which method produces the best results.

5.3.1 Genetic Algorithm

A typical GA requires a genetic representation of the solution domain and a fitness function

to evaluate the solution domain. Possible solutions (individuals) are represented by a

data structure called a chromosome. A chromosome is composed of simple elements called

genes. An initial population of possible solutions is randomly created. As long as the

stopping condition (e.g., exceeding a given number of generations) has not been met, a new

generation is created. This involves computing the fitness value of each individual in the

population. Individuals that represent desirable solutions (e.g., high fitness values or small

system failure rates in our case) are selected with high probability to produce offspring.

In a crossover process, some parts of the selected individuals (parent chromosomes) are

combined to create a new individual (a child chromosome). Furthermore, in a mutation

process the child’s chromosome is randomly changed to introduce new genetic information.

The children created by crossover and mutation are inserted into the new population,

thereby replacing other low-fitness individuals. In our work, a GA is used for finding

the number of times each TMR component should be checked per schedule period. The

algorithm has the following characteristics:
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(i) Representation: The solution domain is a population (P ) in which each chromosome

in P is an array consisting of N genes (e.g., [d1 ... dN ]) representing N TMR components.

the values dk, k = 1..N , which are each greater than 0 and arranged into monotonically in-

creasing order, represent the number of times that each TMR component must be checked

in one period of the schedule.

(ii) Initialization: An initial population is formed of individuals that are created by gen-

erating N random numbers between 1 and an upper bound value (e.g., 50) that are sorted

into ascending order.

(iii) Evaluation: The fitness value is the system failure rate, as estimated using the analy-

sis outlined in Section 5.1, corresponding to each individual in population P . Please note

that chromosomes that do not satisfy the constraints on dk and duplicate chromosomes

are removed from the population before proceeding to the next step. Eliminating dupli-

cate chromosomes prevents super chromosomes from dominating the population and helps

maintain the diversity of the population [54].

(iv) Selection: A tournament selection is adopted for the application of the selection

procedure [56]. This approach involves running several “tournaments” among a few indi-

viduals chosen at random from the population. The individuals with the best fitness are

selected for the application of crossover and mutation. Note that selection is performed

on the enlarged sample space in which both parents and offspring have the same chance

of competing for survival.

(v) Crossover : We use a uniform crossover method, which randomly selects genes from

the first and the second parent to generate an offspring. For example, with N = 3,

two chromosomes [1 3 5] and [2 4 6] may create an offspring of [1 4 5] or [2 3 5]. The

probability of crossover is a user-defined value e.g., 0.25, by which we expect that on

average an offspring inherits 25% genes of the first parent and 75% genes of the second

parent.

(vi) Mutation: Mutation alters one or more genes with a probability equal to the mutation

rate (e.g., 10%) of a parent selected during the tournament. For example, with N = 3,

assuming the second gene of the chromosome [1 2 5] is selected for mutation, a new value

is generated by randomly adding 1 to, or subtracting 1 from, the mutated number. Thus

the chromosome after mutation is [1 3 5] assuming addition was selected.

After the mutation function is finished, a new population is created and the evaluation

procedure is repeated. When the GA function meets the stopping condition, it terminates
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and returns the best individual of the current population.

5.3.2 Scheduling of Voter Checks

Calculating the system failure rate requires all timing parameters, most of which can only

be obtained from a real schedule. A real schedule must ensure fair voter checking among

all TMR components. These voter checks, in turn, are required to be evenly distributed so

that the temporal gap between any two consecutive checks of the same TMR component

is as constant as possible. The problem of creating such a sequence of voter checks belongs

to the class of Response Time Variability Problems (RTVP) [35], which arises whenever

products, clients, jobs or, as in this work, voter checks, need to be sequenced in such a way

that the variability in the period between the instants at which they receive the necessary

resource is minimized.

The RTVP is formulated as follows. Given N positive integers d1 ≤ ... ≤ dN associated

with the number of checks of N TMR components, respectively, let D =
∑N

k=1 dk and

the rates rk = dk
D for k = 1..n. Let S = s1s2...sD, a vector of length D where TMR

component k occurs exactly dk times, be a solution of an instance of the RTVP that

consists of a circular sequence of copies of S. For any two consecutive checks of TMR

component k we define the distance τ between them as the number of voter checks of

other TMR components that separates them plus 1. Since TMR component k is checked

exactly dk times in S, then there are exactly dk distances τk1 , ..., τ
k
dk

for k. Note that the

sequence is circular, s1 comes immediately after sD; therefore, τkdk is the distance between

the last occurrence of TMR component k in the preceding cycle and the first occurrence

of the same component in the current cycle. Obviously, the two are the same for dk = 1.

Since

τk1 + ...+ τkdk = D, (5.23)

then the average distance τ̄k between the TMR component k in S equals

τ̄k =
D

dk
=

1

rk
, (5.24)

and it is the same for each feasible sequence S. The response time variability for TMR

component k is formulated as follows

RTVk =

dk∑
j=1

(τkj − τ̄k)2, (5.25)
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and the objective is to minimize the total response time variability (RTV) that is formu-

lated as follows

RTV =
N∑
k=1

RTVk =
N∑
k=1

dk∑
j=1

(τkj − τ̄k)2. (5.26)

Unfortunately, the RTVP is NP-hard [35]. To solve our RTVP, we utilize the GA that is

detailed in [52] to find the optimal schedule of voter checks.

5.3.3 Mean Time To Detect Errors

The MTTD errors is defined as the average elapsed time interval between a configuration

bit being affected by a fault and the instant that the erroneous TMR module is detected.

MTTD errors for each component is inversely proportional to its checking rate and is

estimated by half the average distance τ̄k of component k in the circular sequence S. In

addition, the numbers of errors occurring in each component are component dependent;

we therefore factor these numbers in when calculating the MTTD for the whole system.

The MTTD (in units of ∆to) can be estimated as follows:

MTTD =

∑N
k=1 ek

τ̄k
2∑N

k=1 ek
=

∑N
k=1 ek

D
2dk∑N

k=1 ek
(5.27)

where ek denotes the number of errors that occur in component k and D =
∑N

k=1 dk

denotes the length of one period of the voter checking schedule. If the voters are checked

in round-robin order, dk = 1, ∀k and D = N , thus MTTD = N
2 in units of ∆to.

5.3.4 Power Consumption

The power consumption of the components involved in the ICAP-based voter checking

approach can be divided into two parts: the power consumed and dissipated by the con-

figuration port and built-in configuration controllers and the power consumed and dissi-

pated by the RC circuitry. Both parts substantially contribute to the overall FPGA power

consumption and dissipation [66].

Checking voters continuously provides the quickest response to errors and therefore the

highest reliability. When error rates are high, this may be necessary. However, for much

of the mission, the error rates may be low enough to allow the checking rate, and thus the

power consumption, to be reduced.
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5.4 Simulations

Simulation experiments were carried out to assess the performance of the VRVC schedule

relative to both round-robin voter checking and the dynamically determined VSE approach

presented in Chapter 4. These experiments involved simulating FPGA-based systems

comprising sets of TMR components and assessing the MTTF for each voter checking

method at low- and high-radiation orbit conditions. In the following, we describe our

experimental set-up before presenting the results of the simulations.

5.4.1 Assumptions and Implementation

Our reliability models require an orbit-specific SEU rate and design-specific parameters,

such as the total number of configuration bits in a device, the voter observation time, the

number of essential bits for each module, the recovery time of each module and the voter

observation schedule, which is produced by the genetic algorithms.

Similar to the case study of the two-component system reported in Section 5.2, we sim-

ulated a Xilinx Artix-7 XC7A200T device operating in GEO and in Low-Earth Orbit

(LEO). The radiation levels of the peak-5-min condition at these orbits are expected to

result in 2.66E-10 and 8.46E-12 upsets/bit/s, respectively as reported in Table 2.2. The

total number of device configuration memory bits for this device is nc = 77, 845, 216.

We assume that the voter reconfiguration requests are checked at 1µs intervals, which

correspond to the fastest configuration frame read time that the ICAP-based RCN can

provide for this device. In order to assess the impact on reliability of reducing the system

power consumption by reducing the voter checking frequency, we varied the voter checking

period, ∆to, from 1µs to 1s.

We simulated systems comprising 3 – 20 TMR components to assess the performance of

the schedules being studied as the number of components was varied. For each simulation,

the size of each triplicated module, as measured in number of essential bits, was chosen

randomly in a range from 10,000 to 2,000,000 bits using one of three size distributions:

uniform, quadratic and exponential. For a given number of system components (3 – 20) and

at each orbit level (LEO, GEO), we evaluated the performance of each schedule (VRVC,

round robin, VSE) over 5 trials for each module size distribution (uniform, quadratic,

exponential). In the following, we report on the average of the 5 trials that were carried

out for each distribution.
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The recovery time of a TMR module is given as the product of the number of its Con-

figuration Frames (CFs) and the reconfiguration time per CF. As the typical ratio of

configuration bits not affecting a design to those (essential) bits that do affect a design

ranges between 9:1 and 4:1 [7], we made the pessimistic assumption that the ratio is 9:1

in our simulations. In other words, we assumed that 10% of the configuration memory

bits per CF were essential. This has the effect of dilating the time to recover module

configuration memory errors, which in turn increases (by as much as twice) the likelihood

that subsequent errors occur before recovery from a previous error has been completed.

As detailed in Section 5.3, two GAs were implemented to obtain a schedule to yield the best

possible system reliability. Fine tuning the parameters of a GA is almost always a difficult

and time-consuming task [13,46]. In this section, we undertook experimentation using the

following parameter values; further experimentation with the GA parameters is reported

on in the next sub-section. The GA to determine the rate at which components should be

checked per period was initialised with 100 random chromosomes with the value of each

gene being randomly chosen to be in the range 1 – 50 with a uniform distribution. Since

the simulation experiments are time consuming, particularly for 20-component systems,

we decided that the GA should be terminated after 100 generations. In addition, the

crossover rate and the mutation rate were set to 25% and 10%, respectively. As discussed,

we implemented the GA from [52] to find the best distribution of checks once the check

rates had been determined.

5.4.2 Results and Discussion

The results of our simulations demonstrate that the use of VRVC improves TMR-MER

system reliability. The results are detailed in the following:

5.4.2.1 VRVC vs Round Robin

The ratio of MTTFs for systems employing VRVC to those checking voters in round-robin

order are consistently greater than 1, and become larger as the voter observation time,

∆to, is increased (Figure 5.5). It can be observed that the ratios are almost completely

independent of the orbital/radiation conditions.

Figure 5.5 also shows that when the number of essential bits of all TMR components are

exponentially distributed, the average ratios are more than 80% better for all simulated

systems and as much as 400% better in 20 component systems, while when they are
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Figure 5.5: Average ratios of MTTFs for VRVC to those for round robin for systems
consisting of 4, 5, 10 and 20 components in LEO (red) and GEO (black plots)
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Figure 5.6: Average ratios of MTTFs for VRVC to those for VSE for systems consisting
of 4, 5, 10, and 20 components for LEO (red) and GEO (black plots)

uniformly and quadratically distributed, the average ratios are up to 40% and 60% better,

respectively.

We observed that the change in MTTF ratios were not consistent as ∆to was varied. We

believe this observation relates to the relative reconfiguration times of the modules, which,

as seen in Equations (5.14), (5.16), (5.18), and (5.20), also influence system reliability.

To summarize, the VRVC approach was found to always be beneficial, but it is of greatest

benefit when the system contains many TMR components that differ markedly in size.
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5.4.2.2 VRVC vs VSE

In all simulated systems involving 4–20 components, the MTTFs for VRVC are higher than

those for VSE and the gap between the two approaches increases as the voter observation

time is increased (Figure 5.6). However, we also observed that the gap decreases when

the voter observation time becomes greater than 10−2s at very high radiation levels, as

present in GEO. This is because the MTTFs eventually decline to 0, as partly shown in

Figure 5.4(a), when the voter observation time becomes so large as to significantly increase

the likelihood of component failures since recoveries are not undertaken frequently enough.

Furthermore, since VSE adopts dynamic voter checks based on the number of essential

bits per TMR component, the MTTF results of the VSE approach also vary and are

unpredictable.

5.5 Experimental Analysis

In this section, we evaluate and compare the performance of the VRVC approach with that

of VSE and round-robin voter checking when each are implemented on the experimental

CubeSat payload, RUSH, which is described in detail in the Appendix. We assessed the

reliability of the system using VRVC, VSE and round robin for voter checking in LEO

and GEO. In the course of this assessment, we examined the response of the GA used

to schedule VRVC as its parameters were fine tuned. Our experiments also gauged the

trade-off between system reliability and power consumption for the three methods studied

as the clock frequency of the RC was reduced. Finally, we conducted fault injection testing

of the exemplar system in order to evaluate the mean time to detect errors using each of

the three methods.

5.5.1 Experiments

5.5.1.1 Implementation

The RUSH payload, described in the Appendix, consists of a token-ring network [28], an

RC and the 9 user application TMR components listed in Table 5.2. However, in this

experiment, rather than using the token-ring network, we used the ICAP-based voter

checking method described in Chapter 3. In addition, the RC was created with minimal

features and could be operated at 100MHz, 50MHz, 20MHz, or 10MHz. The RC was used
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Table 5.2: Results of mapping 9 TMR components to a Xilinx Artix-7 XC7A200TFBG-484
FPGA

Design
Essential Bits RC tr (ms) – # checks (dk)

ne 100MHz 50MHz 20MHz 10MHz

BST3 1,833,235 26.7 – 47 49.5 – 45 72.4 – 47 118.7 – 49

SR3 1,403,647 19.6 – 41 43.8 – 40 64.0 – 39 104.9 – 46

BST2 793,534 11.0 – 28 24.5 – 31 35.8 – 34 58.7 – 36

SR2 515,904 8.5 – 27 21.7 – 29 31.7 – 33 52.0 – 29

SR1 285,914 6.8 – 26 13.6 – 24 19.9 – 25 32.6 – 25

BST1 281,604 2.6 – 23 5.9 – 23 8.6 – 20 14.0 – 25

BAQ 48,963 1.3 – 15 3.0 – 18 4.4 – 18 7.1 – 14

FIFO 41,842 3.5 – 12 7.8 – 12 11.4 – 13 18.7 – 13

FIR 12,042 1.2 – 08 2.6 – 11 3.9 – 10 6.3 – 11

to reconfigure faulty modules and was also used for flipping configuration memory bits

during the fault injection experiment described in the next sub-section. Due to power lim-

itations of the CubeSat that deploys the exemplar system, all components were operated

at 10MHz.

The designs were implemented using Vivado 2014.4 with default settings.

5.5.1.2 Fault Injection

We performed a fault injection experiment to assess the MTTD in the RUSH system using

each of the three voter checking schedules.

The RC was used to manage the fault injection process. The RC received a random

configuration bit address generated by a host PC. The RC read the corresponding frame,

flipped the addressed bit and wrote the frame back using the HWICAP to emulate the

occurrence of a memory error due to an SEU. Note that we did not inject faults into the

RC in order to avoid corrupting it during the experiment. Of the 18,300 configuration

frames in the FPGA targeted in our study, 17,330 frames were contained in the design

under test. Once a fault was injected, the RC waited for 10ms and checked the error

status of all voters before reporting which component, if any, was in error.
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5.5.2 Results and Discussion

5.5.2.1 Example Design Results

Table 5.2 lists the 9 TMR designs of the RUSH payload (please refer to Appendix A.2.2

for details of the designs). Table 5.2 also reports the number of essential bits (ne) and

the recovery times (tr
2) per triplicated module (tr is the time interval between an error

being detected in a module until the last word of the partial bitstream used to recover that

module is written back to the FPGA via the AXI HWICAP IP). The table also reports

the number of checks (dk) made of each component per VRVC schedule period so that the

system MTTF was maximized when the RC was operated at different clock frequencies

under GEO radiation conditions (we observed similar dk under LEO conditions). The

period between successive voter observations (∆to) was 71µs, 142µs, 355µs and 711µs

when the RC was operated at 100MHz, 50MHz, 20MHz and 10MHz, respectively. This

is a consequence of the number of clock cycles needed by the RC at that frequency to

process the instructions to check a voter.

Table 5.3 reports two metrics. The first is the MTTF in years for systems employing

VRVC, VSE and round robin for voter checking in GEO. The second is the power con-

sumption in mW of (i) the RC on its own, and (ii) the RC including the 9 components,

when the RC is operated at different clock frequencies. The percentage reduction in power

consumption, relative to the RC operating at 100MHz, is indicated in parentheses. This

power consumption figure relates to the energy expended checking the voters at intervals

of ∆to, and therefore applies to all schedules equally.

We found that the TMR-MER system using VRVC is more reliable than the same system

using round robin when the available power in the system is constrained. Table 5.3 shows

that the system reliabilities (as given by the MTTF) are proportional to the rates at which

the system recovers from errors. However, for the sake of saving energy in space-based

applications during long missions, the voter checking frequency can be reduced [66]. For

example, when the RC runs at 10MHz compared to 100MHz, the energy consumption

of the RC alone is reduced by 40% and that of the whole system is reduced by 25%

(Table 5.3). In this case, the ratio of the MTTF achieved using VRVC to that obtained

using round robin for voter checking increases from 118% for the RC operating at 100MHz

to 129% at 10MHz. It can also be observed that the MTTFs of systems employing VRVC

are greater than those that employ VSE at all four RC clock frequencies.

2tr is also referred to as tc in Chapters 3, 4 and the Appendix.
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Table 5.3: MTTF and power consumption at various RC clock frequencies in GEO

RC operating frequency 100MHz 50MHz 20MHz 10MHz

MTTF
Round-robin 103.0(-15%) 49.0(-15%) 28.0(-20%) 16.0(-23%)

(years)
VSE 116.4(-4%) 54.9(-5%) 32.6(-7%) 19.2(-7%)

VRVC 121.7(0%) 57.6(0%) 35.1(0%) 20.7(0%)

Power RC 252(0%) 196(-22%) 163(-35%) 152(-40%)

(mW) RC+TMR comps 456(0%) 394(-14%) 357(-22%) 344(-25%)

10
0

10
1

10
2

10
3

1.24

1.25

1.26

1.27

1.28

1.29

1.3

Generation
(UB = 10)

R
a

ti
o

10
0

10
1

10
2

10
3

1.24

1.25

1.26

1.27

1.28

1.29

1.3

Generation
(UB = 20)

10
0

10
1

10
2

10
3

1.24

1.25

1.26

1.27

1.28

1.29

1.3

Generation
(UB = 50)

10
0

10
1

10
2

10
3

1.24

1.25

1.26

1.27

1.28

1.29

1.3

Generation
(UB = 100)

 

 

PS = 10 PS = 20 PS = 50 PS = 100

Figure 5.7: Ratio of MTTF for VRVC to MTTF for round robin for the exemplar system
while the number of generations, the population size (PS), and the upper bound (UB) of
the initial check rate is varied.

Figure 5.7 plots the ratio of the MTTF for systems employing VRVC to the MTTF for

those checking voters in round-robin order as the parameters of the proposed GA are

varied. The parameters we varied included the maximum number of generations, the

population size (PS), and the upper bound value (UB) for the number of checks to be

performed per period in the initial population. The crossover rate and the mutation rate

were left at 25% and 10%, respectively. Here we show the results of the RC operating at

10 MHz under GEO conditions. As can be seen in Figure 5.7, the GA tends to attain a

similar optimal result in most cases. We also observed similar trends when the crossover

rate was set to 25%, 50% or 75% with respect to the mutation rate was set to 10%, 50%

and 90%.

The experiments show that the UB affects the performance of our proposed GA. This is

because when UB is small (e.g., 10), the genetic diversity is limited and the GA is likely

to become stuck in a local optimum. When UB is large (e.g., greater than 50), the GA is
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more likely to find the global optimum. On the other hand, PS affects the starting point

of the GA, but it does not significantly affect the final results.

To summarise, in order to find a schedule that maximizes the system reliability, we found

that the proposed GA should be initialized with a small PS (e.g., 10) to aid rapid evalua-

tion, a modest UB (e.g., 50) for the sake of obtaining short schedule lengths and to assist

in finding the optimal result, and a large number of generations (e.g., greater than 1000)

to have a good chance of attaining the optimal result.

5.5.2.2 Fault Injection Results

On average, VRVC allows errors to be detected 44% faster than with round robin and

30% faster than when VSE is used to check voters. Table 5.4 provides the average number

of errors in each component that we found after four trials of one million injected faults.

Table 5.5 tabulates the MTTD errors using the round-robin, VSE and VRVC approaches

as well as the percentage reduction from round robin and VSE to VRVC when the RC is

operated at different clock frequencies. The MTTDs are calculated using Equation (5.27)

with the number of checks listed in Table 5.2, and in Table 4.3, together with the average

number of errors per component, as tabulated in Table 5.4.

Table 5.4: Average number of errors found in components

Design # Errors ek (%)

BST3 38,828 (39.1)

SR3 26,701 (26.9)

BST2 13,830 (13.9)

SR2 9,643 (9.7)

SR1 4,522 (4.6)

BST1 4,053 (4.1)

BAQ 684 (0.7)

FIFO 696 (0.7)

FIR 396 (0.4)

5.5.3 Further Discussion

It is of some concern that much of the additional logic used to implement and support

TMR-MER, such as the RC, the RCN and voters, may be implemented in a non-redundant

manner and therefore introduce single points of failure. Nevertheless, irrespective of the
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Table 5.5: Mean time to detect errors

Configuration \ ∆to 71µs 142µs 355µs 711µs

Round robin (µs) 320(-39%) 639(-37%) 1596(-45%) 3200(-53%)

VSE (µs) 290(-26%) 580(-25%) 1451(-31%) 2905(-39%)

VRVC (µs) 230(0%) 465(0%) 1105(0%) 2088(0%)

configuration memory error recovery approach taken, FPGA-based TMR systems in-

evitably include non-redundant components, such as the clock network, internal state

registers, ICAP and off-chip ports, which also introduce single points of failure when

used. Therefore, in order to further improve system reliability, the non-replicated mod-

ules should be triplicated, if possible, so as to be protected from SEUs along with the

other TMR components of the system. Since these components may be distributed across

the device, the standard partial reconfiguration design flow [183] cannot be used to recover

them in a modular fashion. One solution is to use FMER [3], which combines scrubbing

and MER to recover configuration memory errors in SoCs that combine both single points

of failure and triplicated sub-systems. In this case, our reliability model can be applied to

find a voter checking schedule that enhances, if not maximizes, system reliability.

A limitation of the reliability models proposed in this chapter is that the number of

failure cases increases exponentially with the number of TMR components in the system,

which impacts on the scalability of our approach. Approximation methods that reduce

the complexity of the reliability models should be considered in the future. It should be

noted that other approaches, such as Markov models [4,100], face the same problem, since

in them the number of states increases exponentially with increasing component numbers.

It is known that if TMR components have similar vulnerability in terms of the number

of essential bits and recovery times, checking voters in round robin order maximizes the

system reliability. However, most systems consist of a variety of components with different

vulnerabilities as illustrated in the example RUSH system, and partitioning these TMR

components into similar sizes is a challenge. In this case, checking the component voters

at different rates based on the vulnerability of each TMR component generally improves

the system reliability while reducing the partitioning burden.

Finally, it should be noted that in our work we have neglected the additional system

vulnerability that accrues from the memory used to store the schedule. However, this

overhead is small, being on the order of tens of bytes, and therefore does not pose a

concern for overall system reliability, particularly since it can also be readily protected

using ECC, such as SECDED available in modern FPGAs.
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5.6 Final Remarks on Static Scheduling of Voter Checks in

TMR-MER Systems

In this chapter, we have presented reliability models for TMR-MER systems that consist of

an arbitrary number of components whose voters are checked in either round-robin order

or at variable rates. We have proposed a genetic algorithm to derive a voter checking

schedule that has the potential to significantly enhance the system reliability. We assert

that any FPGA-based TMR system that uses a reconfiguration control network to provide

random access to component voters can benefit from using variable-rate scheduling to

prioritize checks of more vulnerable components. The benefits become more significant as

the radiation level increases and/or as the checking frequency decreases.

The results show that using VRVC improves the mean time for the system to fail by up to

400% compared to checking voters in a round-robin manner. The results also show that

the MTTFs of TMR-MER systems employing VRVC are greater than those that employ

a VSE to choose the next component to check at run time. Moreover, we have shown that

the power consumption of TMR-MER systems can be significantly reduced by reducing

the clock frequency of the RC without compromising system reliability. Finally, through

fault injection testing, we have demonstrated that the mean time to detect errors can be

reduced by 44% and 30%, respectively, when VRVC is used instead of round robin and

VSE.
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Chapter 6

Conclusions

This chapter concludes this thesis. It starts with concluding remarks on the contributions

of this thesis, in which we highlight the main findings of each chapter. Then, we propose

three directions for future work to further enhance the system reliability estimation de-

scribed in Chapter 5 and to further improve system reliability by considering user-defined

metrics such as the criticality of a TMR component.

6.1 Concluding Remarks

Reliable space-borne digital systems implemented using COTS SRAM-based FPGAs and

programmable SoCs require rapid, low-energy, flexible and reliable SEU mitigation tech-

niques. In this thesis, we focused on the use of TMR combined with Module-based config-

uration memory Error Recovery (MER) to mitigate the effects of configuration memory

SEUs. The use of TMR-MER requires a Reconfiguration Control Network (RCN) to

mediate Reconfiguration Requests (RRs) from the system’s voters to a Reconfiguration

Controller (RC). Typically, the RC observes the RRs raised by voters as they are checked

in round-robin order. However, TMR-MER systems may contain many different TMR

components with different sensitivities. Intuitively, the more highly sensitive components

should be observed for errors more frequently in order to detect and correct errors more

quickly where they are most likely to occur, and thus improve system reliability. In this

thesis, the main objective has therefore been to discover the best order in which to check

voters so as to maximize system reliability.

Chapter 2 first explained the radiation challenges for COTS SRAM-based FPGAs deployed
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in space, which should be carefully considered by system designers. It then provided in-

formation on SRAM-based FPGA architectures (i.e., configuration memory, Block RAM

memory, user flip-flops and internal proprietary state) and their vulnerability in radiation

environments. Chapter 2 also provided an overview of existing SEU mitigation techniques

for each memory type in SRAM-based FPGAs. Since configuration memory accounts for

the largest proportion of memory within these devices, more than four times as much as

all the other memory types considered together, we mainly provided an overview of the

mitigation techniques (e.g., TMR-MER and TMR with configuration memory scrubbing

(TMR-Scrubbing)) on configuration memory errors. Intuitively, TMR-MER has several

benefits over TMR-Scrubbing in terms of system reliability and power consumption, but

the design of TMR-MER systems is more complicated. We therefore focused on research-

ing the TMR-MER approach with the aim of maximizing its system reliability. We also

provided the related work with a view to using novel techniques in our work to improve

system reliability; this helped us to understand the state-of-the-art techniques and to

propose new techniques for improving the reliability of TMR-MER systems. Finally, we

provided background information on both practical and theoretical approaches to mea-

suring the effectiveness of SEU mitigation techniques. By reviewing the literature, this

chapter highlighted research gaps that we aimed to fill with this thesis.

In Chapter 3, we outlined the implementation of reliable TMR-MER systems including

TMR components, an RC and an RCN. We first detailed the implementation of a TMR

component as well as the design of the voters that need to be used in TMR-MER systems.

We then provided a survey of RCs that have been implemented in the literature. Finally,

we provided a comprehensive study of RCNs available in the literature. We concluded that

the in-built configuration memory update network provides better overall reliability than

any soft network implemented in user logic. The main reason for this is that use of this

in-built network avoids use of wire and switch resources in the user logic that would be

vulnerable to SEUs, particularly because it is difficult and expensive to protect distributed

soft networks using TMR design techniques.

In Chapter 4, we proposed an approach for dynamically scheduling the voter checks in

TMR-MER systems based on the vulnerability of each TMR component at the next check

time. The proposed approach, which we called the Voter Scheduling Engine (VSE), chooses

the TMR component that is most likely to have suffered an error to be checked next. We

asserted that any RCN that supports random voter checks can benefit from using the

VSE. The results showed that use of a VSE is generally more reliable than checking voters

in the conventional round-robin fashion. The failure probabilities of the former are up

to 50% lower than those of the latter for a 30-day mission in GEO orbit with solar min
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and worst week conditions, and up to 45% and 30% lower with worst day and peak 5-min

conditions, respectively.

After proposing the VSE for dynamically scheduling voter checks, the question was raised

whether it was possible to statically schedule voter checks in order to eliminate the need of

the VSE module and further improve system reliability. Chapter 5 answered this question

by providing reliability models for TMR-MER systems where voter statuses are checked

in round-robin order or at a variable rate and by proposing a genetic algorithm to find

a static schedule using Variable-Rate Voter Checks (VRVC). Using the derived reliability

models and the genetic algorithm, we demonstrated that the use of VRVC can further

improve the system reliability compared to systems using the VSE or that the energy

used to check the correct functioning of the system can be reduced using VRVC without

compromising on reliability.

By using reliability models and fault-emulation test procedures on numerous synthetic

applications and on the RUSH payload, this thesis has demonstrated that a TMR-MER

system should use an ICAP-based RCN and triplicate the voter statuses in order to im-

prove the system reliability. We also found that the use of round robin to schedule voter

checking in TMR-MER systems is not necessarily the best, instead checking voters at

specific rates based on the vulnerability of TMR components results in much higher sys-

tem reliability. We have also devised methods that can cope with all naturally occurring

levels of radiation in the vicinity of the Earth by considering multiple coincident SEUs,

which are more likely to occur in high radiation environments. Theoretically, we found

that TMR-MER systems with triplicated RCNs be more reliable than those employing

TMR-Scrubbing (Chapter 3). However, to strengthen this claim and to further under-

stand and compare the relative merits between TMR-MER and TMR-Scrubbing, we aim

to conduct practical experiments such as conducting radiation testing on the ground and

deploying both methods to enable in-flight comparison in a future CubeSat mission. Dur-

ing these tests, apart from configuration memory errors that can be recovered, we expect

that we may observe some unrecoverable errors. These unrecoverable errors may involve

(1) errors that have occurred in the internal proprietary state, which have resulted in the

clearing of configuration memory and loss of state data (power-on-reset SEFI) and loss

of communication with configuration logic (ICAP SEFI); (2) errors that have occurred in

the configuration memory of the ICAP interface, which have resulted in loss of communi-

cation with configuration logic; and (3) errors that have occurred in the external memory

controller interface, which impacts on fetching the correct partial bitstreams in order to

recover the faulty modules from faults.
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6.2 Future Work

6.2.1 Criticality-aware Scheduling of Voter Checks

The study on scheduling of voter checks is solely based on the number of essential bits

and the recovery time needed to repair detected errors with the assumption that the

“criticality” of all TMR components is the same. In practice, some components, such as

clock managers, may be more critical than others since failures on these components affect

the operation of the whole system. One direction for further study is to incorporate the

criticality level of components as a user-defined input to the reliability models of TMR-

MER systems in order to improve the accuracy of the system reliability estimation and to

explore mitigation approaches that boost the reliability of the most critical subsystems.

6.2.2 Adaptive Scheduling of Voter Checks

Another direction for future work involves proposing models to estimate the system re-

liability in real environments. As we saw in Table 2.2 of the background chapter, there

are many different levels of radiation in space environments. For example, in GEO orbit

sometimes the radiation level is extremely high and at other times it can be approaching

levels normally only present in LEO orbit [123]. Thus, by adapting the scheduling of voter

checks based on the radiation level, we aim to maintain the system reliability at a high

level while reducing the power consumption. This can be achieved by adjusting the voter

checking frequency, which has been demonstrated in both Chapters 4 and 5.

6.2.3 Pre-empting the Recovery of Less Critical Components to Recover

Errors in More Critical Components

Last but not least, we suggest studying the merits of schedules that pre-empt lengthy

reconfigurations of low criticality components to check critical components so as to help

boost reliability and reduce overall energy consumption. This idea could be incorporated

with the user-defined criticality level that we suggested above. There are a couple of

reasons why we suggest this for future work. The first is that TMR-MER systems may

include many differently-sized applications, some of which require a long recovery time but

are not critical, whereas others are small and thus have short recovery times, but are also

critical to the system. Secondly, we cannot check voter statuses using the ICAP-based
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approach while a module is being recovered. Intuitively, to improve system reliability, the

critical components need to be prioritized for checking in order to detect errors occurring in

them and to correct these errors as soon as possible. Therefore, pre-empting the recovery

of modules with long recovery times and low criticality in order to check high-criticality

components appears to be worthwhile for further consideration.
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Appendix

In this Appendix, we describe the implementation of one of two configurations used in

an FPGA-based TMR system deployed on an experimental CubeSat payload [2]. The

Appendix provides an overview of the QB50 RUSH (Rapid recovery from SEUs in Recon-

figurable Hardware) payload, which is one of three in-house designed payloads incorporated

into the UNSW-EC0 QB50 CubeSat [2] (Section A.1). Section A.2 details the implemen-

tation of the TMR-MER system designed for the RUSH payload, while Section A.3 gives

a specific overview of design considerations when the TMR-MER configuration is imple-

mented in the RUSH board. Section A.4 reports the resource utilization of the TMR-

MER system and relevant results when the VSE described in Chapter 4 and the VRVC

described in Chapter 5 were implemented in the RUSH board. Section A.5 summarizes

the Appendix.

A.1 The QB50 RUSH Payload

The QB50 project [165], funded through the European Union Framework Programme

7 (FP7) and overseen by the Von Karman Institute (VKI) in Belgium, envisaged the

launch of around 50, 2U and 3U CubeSats into Low Earth Orbit (LEO) with the aim

of providing a temporal and spatial image of the largely unexplored lower thermosphere.

The individual CubeSats of the QB50 mission have been developed by various universities

around the world compliant with the QB50 requirements [166], one of which was to carry

one of the three VKI sensor payloads. RUSH is one of three additional payloads that

were developed for the UNSW-EC0 QB50 CubeSat [2], which is shown in Figure A.1. The

primary objective of the RUSH payload is to demonstrate and validate new approaches to

rapidly recovering from SEUs in reconfigurable hardware. The experimental goals of the

RUSH payload are to:
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• Demonstrate and validate the partial reconfiguration approach to rapidly recovering

from SEUs in reconfigurable hardware;

• Compare reconfiguration time and power consumption of TMR-Scrubbing with that

of TMR-MER;

• Map SEU event occurrences in the thermosphere; and

• Demonstrate in-orbit reconfiguration.

6 

EPS 

S-Band 

UHF 

OBC 

Namuru (in-house designed FPGA-based GPS receiver) 

 

Cube Sense 

seL4 (in-house designed secure micro-kernel multiprocessor) 

RUSH (in-house designed FPGA-based SEU mitigation experiment) 

iMTQ 

INMS (VKI experiment) 

Figure A.1: UNSW-EC0 CubeSat Structure

Figure A.2 illustrates a block diagram of the RUSH payload. As can be observed from

Figure A.2, at the heart of the RUSH payload design is a Xilinx Artix-7 XC7A200T FPGA,

chosen for its high logic density to power consumption ratio. The FPGA is connected to a

flash device, which is partitioned into two sections that are used to store two configurations:

one for a TMR-MER configuration, and the other for a TMR-Scrubbing configuration.

The FPGA is connected via a UART interface to a Microcontroller Unit (MCU), which

acts as an interface between the FPGA and the UNSW-EC0 CubeSat system bus, and

communicates with the On-Board Computer (OBC) via I2C. The MCU oversees the overall

operation of the RUSH payload, controls the power-up/down of the FPGA and logs SEU
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Figure A.2: High level block diagram of RUSH payload

detection and recovery statistics. To fulfil the requirements for the MCU in the proposed

design, a Microsemi SmartFusion 2 System-On-Chip (SoC) was selected. Furthermore,

since the SoC is based on non-volatile FLASH memory it is resilient to SEUs [104]. A small

number of additional components provide ancillary functions such as providing regulated

power, clock sources, programming interfaces and status indicators.

The primary objective of the RUSH experiment is to test and validate a TMR-MER

approach and to compare the performance of TMR-MER with that of TMR-Scrubbing,

implemented using the Xilinx SEM controller [188]. To this end, two configurations were

developed that are essentially identical in terms of their resource utilization, whereby

one configuration employs TMR-MER to guard against and recover from soft errors in

user logic and configuration memory, and the other configuration utilizes the Xilinx SEM

controller to continuously scan and scrub the FPGA configuration memory. To enable
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comparison of SEU susceptibility and recovery, the two configurations incorporate essen-

tially the same user circuitry, but the TMR-Scrubbing configuration does not partially

reconfigure its triplicated components.

The experiment is intended to play a vital role in testing the susceptibility of Artix-7

FPGAs in low-earth orbit, and to demonstrate the use of dynamic partial reconfiguration

on an FPGA in space. The user design is composed of 9 components chosen for their uti-

lization of all FPGA resource types (LUTs, FFs, DSPs, and BRAMs). These components

are replicated to fill the FPGA area, thereby creating the largest possible surface for SEUs

to occur with this type of device. During the experiment SEU events are logged by the

MCU and the time, location, and time to recover from them will be transmitted to the

Earth when UNSW-EC0 passes over any of the ground stations available for the QB50

mission. Due to power limitations of the UNSW-EC0, the RUSH experiment will not run

continuously. To deal with this, the available uptime will be evenly distributed between

the two configurations. Furthermore, activity of both configurations will be scheduled

such that they occur at similar times and locations.

In this Appendix, the payload that employs the TMR-MER approach (the so-called TMR-

MER configuration) is described.

A.2 TMR-MER Configuration

In this section, we provide details of the implementation of the TMR-MER configuration.

We start by providing an overview of the TMR-MER system that is deployed in the

UNSW-EC0 QB50 CubeSat. We then describe the TMR-MER configuration including

the implementation of all TMR components, of the reconfiguration controller and of the

interface between the FPGA and the micro-controller.

A.2.1 Overview

Figure A.3 depicts an overview of the TMR-MER configuration that was implemented

in the RUSH payload. The configuration uses a token-ring network [28] to perform the

function of the Reconfiguration Control Network, a Microblaze System (MBS) playing the

role of the Reconfiguration Controller and the MCU interface. The token-ring network

comprises a Network Arbiter (NA) node and 9 user application nodes, including a Finite

Impulse Response filter, a Block Adaptive Quantiser, and other TMR components. These
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user application nodes are triplicated and all outputs are voted on by majority voters. The

MBS comprises a MicroBlaze soft processor [177], a DMA controller (DMAC) [182], a Flash

controller [185] and a HWICAP [178]. The MBS is used to control the dynamic partial

reconfiguration of the FPGA. The MCU interface is a standard logic design implementing

an FSM

The typical operation of the TMR-MER configuration is as follows. If an error occurs

in one module of a TMR component, a Reconfiguration Request (RR) is triggered by the

voter and transferred through the token-ring RCN network until the RR reaches the NA

node1. The NA node decodes the RR and sends the corresponding module ID (M ID) and

the request signal (R requested) to the MicroBlaze processor. The processor then issues

a command to the DMAC that fetches the bitstream associated with the faulty module

from the flash memory, and writes the bitstream to the HWICAP in order to reconfigure

the erroneous module. The MicroBlaze processor then issues a reconfiguration done signal

(R done) to the NA indicating that state synchronization can commence. Meanwhile, the

MCU interface receives signals from the MBS and the NA and sends them to the MCU

to record the current TMR-MER system status.
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Figure A.3: High level block diagram of TMR-MER payload

1 The details of how the RR is transferred through the nodes are described in [28]
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Figure A.4: A single accumulator FIR block diagram

A.2.2 TMR Components

Apart from the NA, the MBS and the MCU interface, the TMR-MER configuration also

contains 9 TMR components. These TMR components include a single MAC-based 21-tap

Finite Impulse Response (FIR) filter with 16-bit signal width, an 8-to-3-bit Block Adaptive

Quantizer (BAQ), an 8,096-word deep 32-bit FIFO, three 32-bit Shift Registers (SRs)

having different lengths and a range of combinational logic between the stages, and three

32-bit Binary Search Trees (BSTs) of different heights and a variety of combinational

logic at each node. These components were selected as being representative of circuits

that are commonly included in space-based applications and that utilize a mixture of

FPGA resources. Note that these components are not interconnected and therefore operate

independently. The design of each TMR component is described below.

A.2.2.1 Finite Impulse Response Filter

An N -tap FIR filter can be implemented using any number of accumulators from 1 to N .

Figure 4 illustrates a cyclic (temporal) design using just a single accumulator. Note that

this design feeds the accumulated sum of the delayed inputs (buffered in the Data Storage

block) and scaled by the corresponding coefficients (stored in the Coefficient Storage block)

back to an adder. For an N -tap filter with a single accumulator, a filter output value is

produced N clock cycles after each sample is input. The contents of the Data Storage

block are then shifted by one delay unit and a new input can be processed. Not illustrated
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in the figure is a finite state machine including a counter that controls the operation of

the filter.

We implemented a 21-tap single accumulator FIR filter with 16-bit signal and 32-bit

accumulator values.

A.2.2.2 Block Adaptive Quantizer

The most commonly used technique for on-board Synthetic Aperture Radar (SAR) data

compression is the BAQ algorithm [15, 87]. With the BAQ approach, SAR data (both

the In-phase (I) and Quadrature (Q) channels) are divided into blocks of size N and

the standard deviation of each block is used to adapt the quantizer threshold values for

that block. In this way, the raw SAR data, which is originally m-bits wide, is optimally

quantized block-by-block using n < m-bits [15]. Figure A.5 depicts the BAQ architecture

we used.

Figure A.5: BAQ architecture

In our design, N was chosen to be 256 samples, m = 8 and n was set to 3-bits. The

standard deviation calculation was replaced with an average magnitude calculation, |I|,
|Q|, to eliminate the need for a square root operation [87]. The quantization threshold

values, ITh/QTh, were determined by calculating the average magnitude for a block of

N raw SAR data samples and looking up the corresponding thresholds in Look-Up Tables
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(LUTs). The design thus takes 256 cycles to calculate |I| and |Q| for a particular block and

a further 256 cycles to realise the quantization. These two operations can be overlapped

for successive blocks of N samples to obtain a continuous output stream.

A.2.2.3 Binary Search Trees

Figure A.6 shows an overview of a Binary Search Tree (BST) that is implemented in the

TMR-MER configuration. The data input is shifted to all the leaves i.e., M1 to MN of the

tree. The data output is the results of the smallest value of the data. We also implemented

addition and multiplication in each node in order to utilize as many resources as possible.
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Figure A.6: Binary Search Tree Architecture

In the TMR-MER configuration, three BSTs of different heights and incorporating a

variety of combinational functions at each node were implemented.

A.2.2.4 Shift Registers

Similar to the BSTs, we also implemented synthetic Shift Registers (SR) as illustrated in

Figure A.7. A number of adders, multipliers and multiplexers were included at each stage

to maximize the resource utilization.
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Figure A.7: Shift Register Architecture

A.2.2.5 FIFO

Of the components described so far, only the BAQ utilizes BRAMs in its design. However,

the BRAM resources used by the BAQ design account for a very small portion of total block

RAMs available in the FPGA. We therefore implemented a FIFO with 32-bit input/output

and 8,096 word depth.

A.2.3 MicroBlaze Processor

The MicroBlaze processor in this system plays the role of a reconfiguration controller. The

MicroBlaze serves three main functions. The first one is to observe the reconfiguration

requests originating from the NA and to obtain the ID of the faulty module. When the

MicroBlaze processor receives a reconfiguration request from the NA, it issues a command

to the DMAC, which commences fetching the corresponding partial bitstream and writes

it to the HWICAP. When reconfiguration is finished, the MicroBlaze processor generates a

pulse of the done signal to the NA. This pulse indicates that the TMR component should

commence synchronisation with its siblings. The last function is to produce heartbeat

pulses for the MCU interface at 10ms intervals. The heartbeat indicates that the MicroB-

laze processor is still functioning. If it is no longer detected by the MCU, the MCU power

cycles the FPGA.
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Figure A.8: Simplified 7-Series Xilinx FPGA layout showing two configuration rows and
resources distributed across columns.

A.2.4 MCU Interface

The MCU interface is responsible for reporting the current status of the TMR-MER system

to the MCU. An IamAlive signal indicates that the TMR-MER system is still operating

correctly. UART signals are used to send module ID information, while interrupt signals

help the MCU timestamp the error detection time associated with the reconfiguration

request signal, and the error correction time associated with the done signal.

A.3 Design Considerations

A.3.1 Floor-planning

Programmable resources on a 7-Series Xilinx FPGA device, such as Configurable Logic

Blocks (CLBs), Digital Signal Processing slices (DSPs), BRAMs, and Input/Output Buffers

(IOBs), are tiled into columns [183] [180]. A simplified diagram of the layout of a 7-Series

Xilinx FPGA device is shown in Figure A.8. The chip comprises several configuration

rows, which correspond to the clock regions of the device and are indexed in ascending

order from the centre of the device towards both its top and bottom edges. Figure A.8

depicts a section of the upper-left region of the device.

Floor-planning enables resource allocation within a specified region, which may be as
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narrow as a single column. The placer can be instructed to only place the logic of part of

a design (a logic block) within such a specified region. The router can also be constrained

to only use the switch matrices within the region for the internal routing of the logic block.

When a logic block and its internal routing are constrained in this way, the design can be

partially reconfigured to recover from configuration memory errors that affect the block

by just reconfiguring the configuration frames of that region.

A given FPGA-based TMR-MER design can have many different floorplans [20]. However,

it is good practice to create a partition that makes most efficient use of interconnect and

clocking resources [183]. It is suggested that the height of the partition should align to

clock region boundaries, and that the left and right edges of the partition should be placed

between two resource columns (for example, CLB-CLB, CLB-BRAM or CLB-DSP) and

not between two interconnect columns (INT-INT). This allows the place and route tools

the full use of all resources [183]. Please note that more floor-planning constraints can

also be found in [183].

A.3.2 Full Bitstream and Partial Bitstream Layout

To implement the TMR-MER configuration, we used the partial reconfiguration design

flow from Xilinx, which allows for the dynamic change of modules within an active design

[183]. The TMR-MER configuration includes a full bitstream and partial bitstreams for

reconfigurable modules.

In the TMR-MER configuration, all bitstreams are stored back-to-back in the flash off-chip

memory. The layout of the full and partial bistreams can be seen in Figure A.9. To keep

track of the partial bitstreams, the starting address (e.g., Address Module 1 1 denotes the

starting address of module 1 of component 1) and the length (e.g., Length Module 1 1

denotes the length of the partial bitstream associated with module 1 of component 1) are

used. They are stored in the MicroBlaze processor, which uses them to issue a command

to the DMAC to fetch the corresponding partial bitstream of a faulty module.

A.4 Resource Utilization and Layout

Table A.1 presents the resource utilization with respect to LUT, FF, DSP and BRAM

counts of the 9 TMR components implementing the TMR-MER configuration. It also

reports the number of essential bits, the number of configuration frames and the correction
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Partial Bitstream Module N_1
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Address Module 1_2

Address Module 1_3

Address Module N_1

Address Module N_2

Address Module N_3

Length Module 1_1

Length Module 1_2

Length Module 1_3

Length Module N_1

Length Module N_2

Length Module N_3

Figure A.9: The layout of a full bitstream and partial bitstreams in the external flash
memory

time per module (tc). Note that tc is the time interval from when an error is detected

in the module until the last word of the partial bitstream used to recover that module is

written back to the FPGA via the AXI HWICAP IP. The layout of the 9 components and

the location of their voters (-V), as well as that of the MicroBlaze-based reconfiguration

controller (RC) is depicted in Figure A.10.

Table A.2 reports the resource utilization of the MBS in terms of LUTs, FFs and BRAMs.

Note that the resource utilization does not include DSP usage because the MB was con-

figured with minimal features.

A.5 Summary

In this Appendix, we have described the implementation of the TMR-MER system de-

ployed in the UNSW-EC0 QB50 CubeSat. The design of the 9 TMR user components was

presented along with that of the MicroBlaze soft processor and the MCU interface. We

have also provided design considerations when a TMR-MER system is implemented in a

Xilinx FPGA device and when the partial reconfiguration design flow is used. Finally, we

have reported on the resource utilization of the TMR components and the MBS system.

The layout of the design on the device has also been depicted.
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Figure A.10: System layout of RUSH payload

Table A.2: Results of mapping the MBS to a Xilinx Artix-7 XC7A200TFBG-484

Module LUTs FFs BRAM

AXI DMA 1286 (0.96%) 1837 (0.68%) 2 (0.55%)

AXI EMC 821 (0.61%) 465 (0.17%) 0 (0%)

AXI HWICAP 338 (0.25%) 966 (0.36%) 1 (0.27%)

MicroBlaze 2165 (1.61%) 1799 (0.67%) 5 (1.37%)

AXI Peripheral 1715 (1.27%) 973 (0.36%) 0 (0%)

Local memory 8 (0.01%) 4 (0%) 8 (2.19%)

Others 16 (0.01%) 33 (0.01%) 0 (0%)

MBS (total) 6349 (4.72%) 6077 (2.26%) 16 (4.38%)
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