
RTL Simulation of High Performance Dynamic
Reconfiguration: A Video Processing Case Study

Lingkan Gong 1, Oliver Diessel 1, Johny Paul 2, Walter Stechele 2

1 School of Computer Science and Engineering, University of New South Wales

{lingkang,odiessel}@cse.unsw.edu.au
2 Institute for Integrated Systems, Technische Universität München

{johny.paul,walter.stechele}@tum.de

Abstract—Dynamically Reconfigurable Systems (DRS) allow
hardware logic to be partially reconfigured while the rest of the
design continues to operate. For example, the AutoVision driver
assistance system swaps video processing engines when the driv-
ing conditions change. However, the architectural flexibility of
DRS also introduces challenges for verifying system functionality.
Using AutoVision as a case study, this paper studies the use of
a recent RTL simulation library, ReSim, to perform functional
verification of DRS designs. Compared with the conventional
Virtual Multiplexing approach, ReSim more accurately simulates
the AutoVision system before, during and after reconfigurations.
With trivial development and simulation overhead, ReSim as-
sisted in detecting significantly more bugs than found using
Virtual Multiplexing. To the best of our knowledge, this paper is
the first significant effort towards functionally verifying a cutting-
edge, complex, real-world DRS application.

I. INTRODUCTION

Due to the exponential increase in hardware design costs and

risks, the electronics industry has begun shifting towards the

use of reconfigurable devices such as FPGAs as mainstream

computing platforms. Compared with customized chips, hard-

ware/software systems implemented on reconfigurable devices

achieve shorter time-to-market and are more amenable to

upgrades and bug fixes over the product life-cycle.

Dynamically Reconfigurable Systems (DRS) extend the flex-

ibility of FPGAs by allowing partial reconfiguration of hard-

ware modules at run time. By mapping multiple reconfigurable

hardware modules to the same physical region of the FPGA,

such systems are able to time-multiplex their modules at run

time and adapt themselves to changing execution requirements.

For example, the video-based driver assistance system of the

AutoVision project swaps video processing engines to adapt to

changing driving conditions (e.g., highway, countryside, urban

traffic, tunnel) [1]. Recent development of the project extends

the system flexibility to reconfiguring video engines during the

processing of a single frame [2].

For modern hardware designs, either FPGA-based or ASIC-

based, functional verification has become a significant chal-

lenge and IP reuse is one of the design methodologies that

reduces verification effort [3]. By integrating or re-integrating

proven IPs from previous projects, design productivity is

significantly improved. However, while thoroughly verified

sub-modules and IPs are essential, they do not guarantee

the correctness of the integrated design [4]. For dynamically

reconfigurable designs on FPGAs, apart from verifying each

configuration of the system, it is therefore essential to test and

debug the integrated DRS design, including the behavior im-

mediately before, during and after partial reconfiguration [5].

Unfortunately, FPGA vendors such as Xilinx do not provide

methods for simulating the reconfiguration process [6]. The

difficulty of simulating partial reconfiguration thereby adds to

the difficulties of simulating an integrated DRS design and,

ultimately, to the application of IP-reuse design methodology.

Using the AutoVision driver assistance system [1], [2] as a

case study, this paper aims to study the application of IP-reuse

methodology to the design and verification of DRS designs.

In particular, we reused proven IPs from the original design

and optimized the design for better performance and resource

utilization. We used Register Transfer Level (RTL) simulation

to test and fix any potential bugs relating to the reconfiguration
process in the re-integrated AutoVision system. The main

contributions of this case study include:

• An analysis of the challenges and opportunities for ap-

plying the IP-reuse design and verification methodology

to DRS designs; and

• An assessment of existing simulation approaches, Virtual

Multiplexing [7] and ReSim-based simulation [8], in the

functional verification of DRS designs.

To the best of our knowledge, this paper is the first significant

effort towards functionally verifying a cutting-edge, complex,

real-world DRS application. We aim to inspire researchers and

designers to consider the value of RTL simulation to facilitate

functional verification of DRS designs, thereby reducing, if

not eliminating, reliance on costly on-chip debug cycles.

The rest of this paper is organized as follows. Section 2

outlines related efforts in functionally verifying DRS. Section

3 provides an overview of the Design Under Test (DUT), the

Optical Flow Demonstrator, and formulates the verification

goal of this paper. Section 4 illustrates the simulation envi-

ronment and methods. Section 5 reports on the verification

results and the last section concludes the paper.

2013 IEEE 27th International Symposium on Parallel & Distributed Processing Workshops and PhD Forum

978-0-7695-4979-8/13 $26.00 © 2013 IEEE

DOI 10.1109/IPDPSW.2013.79

106

II. BACKGROUND AND RELATED WORK

The most common approach to simulating Dynamic Partial

Reconfiguration (DPR) has been to insert a multiplexer into

the design to interleave the communication between recon-

figurable modules connected in parallel [7]. As the inserted

multiplexer does not exist in the implemented design, it is

known as a virtual multiplexer. This method is the basis

for more recent efforts in simulating DPR. However, it only

models module swapping and fails to simulate other aspects of

DPR, such as module isolation and bitstream retrieval, which

is increasingly handled on-chip.

The more recent Dynamic Circuit Switch method [9], [10],

[11] improves the simulation accuracy of DRS designs in

various aspects. It adds simulation-only artifacts to the RTL

code of DRS designs in order to deactivate, switch and

activate hardware tasks. It injects undefined “X” values to

the static region to mimic the spurious outputs from modules

undergoing reconfiguration. However, it still assumes that the

reconfiguration delay is zero or a constant number and does

not simulate bitstream traffic. Furthermore, reconfiguration is

triggered by monitoring designer-selected signals in the RTL

code whereas on real FPGAs, module swapping is triggered by

bitstream transfer. Therefore, bugs introduced by the transfer

of bitstreams and the triggering of module swapping can not

be detected until the implemented design is tested on the target

FPGA [5].

ReChannel [12] is a SystemC-based, open source library to

model DPR. The work extends SystemC with new classes such

as rc_reconfigurable to encapsulate reconfiguration op-

erations such as module swapping. However, such extension

only focuses on the high-level modeling of DPR whereas

the reconfiguration details (e.g. module isolation, bitstream

retrieval, accurate reconfiguration delay, triggering of module

swapping) of a design are not modeled or verified.

The primary drawback of the existing work is that it fails to

provide the accuracy required to verify the design undergoing

reconfiguration since the interpretations and the manipulations

of bitstreams are not simulated. Unfortunately, simulating the

bitstream traffic involves interpreting the bit-level configura-

tion memory settings for the module to be configured, which

undesirably exposes the details of the FPGA fabric to the

verification of the user design. Our recent work, ReSim [8],

[13], improves the simulation accuracy by using simulation-

only bitstreams as substitutes for the real bitstreams so as to

accurately model the transfer of bitstreams and the timing of

reconfiguration, and is the first work to support the cycle-

accurate RTL simulation of the complete reconfiguration pro-

cess of an integrated DRS design. This paper presents a case

study of applying ReSim to the verification of a real-world

DRS design created using various IPs, and compares ReSim

with the traditional MUX-based simulation approaches.

It should be noted that DRS designs can also be tested and

validated on the target FPGA under real-world conditions. On-

chip debugging requires designers to insert probe logic using

vendor tools such as Chipscope [14] and to re-implement the

design every time a different set of user design signals need to

be probed. The debug turnaround time is therefore at least as

long as the time-consuming implementation stage. Moreover,

since probing logic can only visualize a limited number

of signals for a limited period of time, on-chip debugging

typically requires many more iterations to identify the source

of a bug than simulation requires. This paper compares on-

chip debugging with simulation using our own development

experience.

III. THE OPTICAL FLOW DEMONSTRATOR

The AutoVision driver assistance system uses an Optical Flow

algorithm to determine the speed and distance of moving

objects (e.g. cars) on the road so as to identify potentially

dangerous driving conditions [2]. As illustrated in Figure 1,

the demonstrator uses reconfigurable video processing engines

to accelerate the Optical Flow algorithm. In particular, each

input video frame is first processed by a Census Image

Engine (CIE) to generate a feature image. The reconfiguration

controller (IcapCTRL) then reconfigures the CIE engine with

a Matching Engine (ME), which compares two consecutive

feature images and computes the motion vectors. Significantly,

the hardware must be reconfigured twice per video frame to

sustain the real-time throughput of the application. Finally, the

embedded software running on an on-chip PowerPC processor

draws the motion vectors and outputs the video frame. In the

system, the engines and the reconfiguration controller transfer

video data and bitstreams via a Processor Local Bus (PLB),

whereas the software sets parameters of the engines and the

reconfiguration controller via a Device Control Register Bus

(DCR).

To perform the study reported here, both the hadware and

the software of the Optical Flow Demonstrator were slightly

modified from the original design, but can be viewed as a

re-integration of the original design. In terms of hardware

architecture (see Figure 1), the reconfiguration controller was

modified to access the memory via the PLB bus instead of

the original NPI interface. As far as the system software is

concerned (see Figure 2), the processing flow was pipelined

to better exploit the parallelism of the system. In particular,

the PowerPC processor draws motion vectors for the previous

frame while the engines are processing the current frame. The

start, end and reconfiguration of the video processing engines

are controlled by Interrupt Service Routines (ISR) that are

independent of the main software functions.

The primary focus of this paper is the verification of the

reconfiguration machinery (moderately shaded parts of Figure

1), which is defined as hardware and/or software that enables

partial reconfiguration. In particular, the DUT instantiates a

reconfiguration controller (IcapCTRL) to transfer bitstreams

from memory to the FPGA’s ICAP port. To avoid the prop-

agation of erroneous signals from the region undergoing

reconfiguration, an Isolation module was used to isolate

107

Figure 1. The hardware architecture of the Optical Flow Demonstrator

Figure 2. The processing flow of the Optical Flow Demonstrator

the engines during reconfiguration. Furthermore, the DCR reg-

isters were moved from inside the engines to the outside so as

to avoid breaking the DCR daisy chain during reconfiguration.

Since the DUT is an integration of various proven IPs from

the original design, we focused on the verification of system

integration. In particular, we aimed to verify that:

• The modified reconfiguration machinery (i.e., the PLB-

based IcapCTRL) and its software driver were correct

and were correctly integrated with the rest of the system

hardware and software; and that

• The interrupt-driven reconfiguration sequence (i.e., the

start and the end of partial reconfiguration in the pipelined

processing flow) was working and was correctly inte-
grated with the rest of the system hardware and software.

IV. SIMULATION ENVIRONMENT

The simulation environment we used had the same architecture

as the DUT (see Figure 1), although some of the hardware

modules were replaced with Verification IPs (VIP) [3]. A

VIP differs from an IP since it only assists the verification

of other modules and is therefore typically written in high-

level languages such as C/C++/SystemC. For example, since

the simulation environment does not have a camera or a

display, the video input and output modules were replaced

with SystemC VIPs to mimic the input/output video stream.

In particular, Video VIPs read/write frames from/to the video

files on disk and transfer to/from the simulated main memory

via cycle-accurate PLB bus operations. On the other hand,

since the processor netlist provided by Xilinx is too slow to

run any realistic software, we used a PowerPC Instruction

Set Simulator (ISS) [15] to emulate the operations of the

target processor so that the software could run as if it were

running on a real processor. We studied two methods for

simulating DPR in the autoVision system: a traditional Virtual

Multiplexing and a ReSim-based simulation method.

A. Virtual Multiplexing

We first used the traditional Virtual Multiplexing method [7]

to simulate the reconfiguration process in the demonstrator.

This method requires creating an Engine_wrapper to

instantiate both engines (see Figure 3). A multiplexer inside

the Engine_wrapper selects one active engine at a time

and DPR is simulated by switching the multiplexer between

engines. The selector of the virtual multiplexer is controlled by

108

an Engine_Signature_Register, which is controlled

by software via the DCR bus.

Figure 3. Virtual Multiplexing

Although Virtual Multiplexing is able to mimic the intra-

frame reconfiguration of the AutoVision system, in simula-

tion, DPR is triggered by software instead of by transferring

a bitstream to the internal configuration port (ICAP). The

IcapCTRL module is instantiated in the design but is not used

in simulation. Therefore, the software and hardware tested

in simulation do not match what is actually implemented.

Furthermore, since multiplexing the simulated engines does

not generate erroneous signals, as implemented designs might,

the isolation mechanism (i.e., the Isolation module) is not

tested in simulation. Using Virtual Multiplexing to simulate

DPR therefore only provides limited assistance in debugging

DPR of the AutoVision system. This study used it as a baseline

simulation environment for simulation and debugging.

B. ReSim

ReSim-based simulation allows more accurate modeling of

DPR compared with Virtual Multiplexing. As illustrated in

Figure 4, the user design of ReSim-based simulation is com-

posed of the RTL of the DUT (i.e., the engines and the

reconfiguration machinery, illustrated as lightly and moder-

ately shaded blocks in the figure), and is kept the same

for both simulation and implementation. On the other hand,

ReSim-based simulation uses simulation-only artifacts (i.e.,

open boxes in the left half of the figure) as substitutes

that mimic the behavior of the corresponding features of

the target FPGA (illustrated as darkly sharded boxes in the

right half of the figure) during the reconfiguration process. In

particular, simulation-only bitstreams (SimB) are substitutes

for real configuration bitstreams, possible configuration ports

are represented by an ICAP artifact, and the Extended Portal is

an artifact that mimics the behavior of the part of configuration

memory to which a reconfigurable region (RR) is mapped.

These artifacts are not instantiated in the implemented design

and adding these artifacts does not change the reconfiguration

machinery of the design. In essence, these artifacts substitute

for and abstract away the details of the corresponding device

components.

Table I AN EXAMPLE OF SIMB FOR CONFIGURING A NEW MODULE

SimB Explanation Actions Taken
0xAA995566 SYNC Word Start the "DURING Reconfigura-

tion" phase

0x20000000 NOP –

0x30002001
0x01020000

Type 1 Write FAR
FA=0x01020000

Informs the Extended Portal to
select the module id=0x02 to be
the next active module in recon-
figurable region id=0x01

0x30008001
0x00000001

Type 1 Write CMD
WCFG

0x30004000
0x50000004

Type 2 Write FDRI
Size=4

0x5650EEA7
0xF4649889
0xA9B759F9
0x4E438C83

Random SimB Word 0
Random SimB Word 1
Random SimB Word 2
Random SimB Word 3

Word 0 starts error injection
Word 3 ends error injection and
triggers module swapping

0x30008001
0x0000000D

Type 1 Write CMD
DESYNC

End the "DURING Reconfigura-
tion" phase

In ReSim-based simulation, the reconfiguration controller

IcapCTRL transfers a SimB to the ICAP artifact. A SimB

mimics the impact of a real bitstream on the simulated

user design. Table I provides an example of a SimB that

configures a new module. Similar to a real bitstream, a SimB

starts with a SYNC word (0xAA995566) and ends with a

DESYNC command. However, instead of containing bit-level

configuration memory settings for the module to be configured,

as found in a real bitstream, a SimB contains numerical IDs

for the module to be configured and the target reconfigurable

region. For example, the SimB in Table I requests that the

current module in the RR with ID = 0x1 be replaced by the

new module with ID = 0x2 (see the bold SimB entries in the

table). In addition, the length of a SimB is defined by the

designer. For example, the designer can use a short (e.g. ~100

words) SimB to reduce the simulation-debug turnaround time,

can adjust the length to test various scenarios of the bitstream

transfer mechanism (e.g., FIFO overflow/underflow), and can

set the length of a SimB to be the same as a real bitstream

to achieve the maximum level of accuracy in simulating the

reconfiguration process.

While the SimB is being written, an Error Injector artifact

is connected to the static region and mimics spurious outputs

from the region undergoing reconfiguration. By default, ReSim

injects undefined “x” values to all outputs of the RR, which is

similar to X injection proposed by DCS [11]. Furthermore,

for advanced users, the error sources in ReSim can also

be overridden for design-/test- specific purposes using the

object-oriented programming techniques, thereby providing

extra flexibility to the designer compared with [11].

The ICAP artifact interacts with the user design (i.e., the

reconfiguration controller) and parses the SimB. After the

SimB has been completely written to the ICAP artifact, the

Extended Portal drives the multiplexer according to the engine

ID extracted from the SimB, and connects the newly selected

109

Figure 4. ReSim-based simulation

engine. Compared with Virtual Multiplexing, the benefits of

using ReSim are as follows:

• Since ReSim uses a SimB to replace real bitstreams,

the bitstream transfer datapath (e.g., the RTL code of

the IcapCTRL) is verified in simulation. The delay

of reconfiguration is determined by bitstream transfer

instead of being zero or a constant. A bug in the bitstream

transfer datapath prevents the new engine from being

swapped in simulation.

• Although ReSim connects all engines in parallel, like

Virtual Multiplexing, the selection of engines is triggered

by the SimB. Thus, ReSim-based simulation does not use

the indirect mechanism of the “Engine_Signature”

register and the software driver that controls the reconfig-

uration process does not have to be changed for simula-

tion purposes. Nor does ReSim rely on non-synthesizable

components/mechanisms, such as the Reconfiguration

Condition Detector found in [10], to trigger module

swapping. Therefore, ReSim-based simulation verifies the

real design intent.

• Since errors are injected into the static region when the

SimB is being written to the ICAP, the isolation logic and

the software driver that controls such logic is verified in

simulation. If, for example, the designer failed to move

the DCR registers out of the engines, the DCR daisy

chain would break as a consequence of the injected errors

propagating to the DCR bus of the static region.

As ReSim abstracts away the details of the FPGA fabric, the

simulation-only layer can be regarded as a vendor independent

device, and simulation can be thought of as functionally veri-

fying a design on such a vendor independent device. ReSim-

based simulation thereby captures the interaction between

the user design and the FPGA fabric (e.g., the timing of

reconfiguration events), and balances the need for accuracy

with the requirement for physical independence [8]. However,

mismatches between the simulation-only layer and the target

FPGA can lead to bugs that would remain undetected by

ReSim. For example, flipping a configuration bit of a real

bitstream may cause incorrect logic to be reconfigured to

the FPGA. Since a SimB does not model the individual

configuration bits that are found in a real bitstream, it can

not detect bugs that incorrectly change the configuration data

of a bitstream. Generally speaking, since ReSim is physically

independent, it can only assist in detecting bugs that are not

related to the FPGA fabric of the target device.

V. DEVELOPMENT PROGRESS AND RESULTS

We ran the simulations using ModelSim 6.5g on a Windows

XP, Intel 2.53GHz Dual Core machine. The simulation per-

formance of the testbench is summarized in Table II. In the

pipelined processing flow, the video engines are the bottleneck

of the system throughput (see Figure 2). The time required to

process one frame is determined by the video engines and

is therefore the sum of the execution time of CIE (1.1ms),

ME (1.4ms), 2 DPR intervals (<0.1ms) and 3 ISR intervals

(0.5ms).

Overall, it took 11 minutes to simulate the processing of one

frame. The Elapsed Time of each execution stage increases

with the Simulated Time and also increases if the simulated

design has more signal activities. For example, since the CIE

engine has more signal fliping activities, the Elapsed Time to

simulate 1.1ms of CIE operations (6min) is longer than the

time to simulate 1.4ms of ME operations (4.5min). Since all

bugs identified in this study (see Section V-A) were detected

within the first 2-4 frames, the debug turnaround time for

simulation was therefore at most 44 minutes per iteration.

It should be noted that since the length of a SimB (4K

words) is significantly smaller than that of the real bitstream

110

(129K words), the Simulated Time and the Elapsed Time for

performing DPR can be ignored.

Table II TIME TO SIMULATE ONE VIDEO FRAME

Simulated
Time (ms)

Elapsed
Time (min)

CensusImg Engine 1.1 6

Matching Engine 1.4 4.5

PowerPC Interrupt Handler 0.5 0.5

Dynamic Partial Reconfiguration < 0.1 negligible

Overall 3.0 11

The simulation overhead of ReSim is trivial. Using Model-

Sim profiling tools, we found that 1.4% of simulation time

was spent in the Engine_Wrapper multiplexer, which was

triggered whenever the engine IOs toggled. Other simulation-

only artifacts (e.g., Extended Portal, Error Injectors) consumed

just 0.3% of the simulation time, but this would increase if a

design were to perform DPR more frequently.

A. Development Workload and Bugs Detected

Figure 5 illustrates the progress of verification in terms of

Lines of Code (LOC) changed and bugs detected. The LOC

numbers were reported by a version control tool and included

design source such as HDL, scripts, software (*.c, *.h), con-

straint files, development log files and project files. It should

be noted that since we used the Embedded Development

Kit (EDK) framework [16], some of the design source files

were generated by the tool and also contributed to the LOC

numbers. As a result, the LOC numbers should be thought of

as reference data that indicate the relative development effort.

The development had a few important milestones:

• By the end of Week 3, the designer finished assembling

the modified Optical Flow Demonstrator (see Figures 1

and 2) as well as an initial testbench. Since design files

of the Optical Flow Demonstrator and the legacy VIPs

(i.e., the Video VIPs and the PowerPC ISS) were initially

added to version control, the reported LOC number were

very high. However, most design files were reused from

previous projects, and the designer’s workload involved

re-integrating legacy components and simulating sanity

checks such as a “hello world” program and a “camera

to VGA display” application.

• The real verification work began in Week 4, when the

designer started using Virtual Multiplexing to simulate

the system. While not able to identify many DPR bugs,

Virtual Multiplexing was helpful in detecting most of the

bugs in the static design. In particular, between Week

6 and Week 9, the designer fixed 3 extremely costly

bugs in the static region and Virtual Multiplexing-based

simulation passed. Apart from bug fixes, the design itself

was stable during this period. The LOC numbers were

contributed to by changes to the testbench aimed at

improving the simulation throughput and to reducing

debug turnaround time.

• In the last 2 weeks, the designer used ReSim to simulate

DPR and detected 2 software bugs and 6 DPR bugs in the

system. The simulation passed at Week 11, after which

no more bugs were detected.

The majority of the workload was incurred in setting up

the baseline simulation environment and debugging the static

part of the design (Week 1 to Week 9). Given the baseline

simulation environment, the extra workload of using Virtual

Multiplexing was small, which involved “hacking” the system

hardware (250 LOC) and software (100 LOC) so as to add

the Engine_Wrapper multiplexer. The workload involved

in simulating the design with ReSim was also trivial. In

particular, the designer needed to create a Tcl script (80 LOC)

to generate simulation-only artifacts, and write HDL code (50

LOC) to instantiate the artifacts in the testbench. Since the

modifications do not involve the design itself, ReSim-based

simulation verifies design intent, covers all aspects of DPR,

and tests system integration.

Table III lists a few DPR bugs detected in the DUT. Although

individual engines and their software drivers were already

FPGA-proven from the original design, bugs were intro-

duced through mismatches between module parameters (e.g.,

bug.dpr.4) and software/hardware parameters (e.g., bug.dpr.5).

Therefore, it was found to be highly desirable to have an

integrated simulation environment to test the entire system.

Virtual Multiplexing was used at the beginning of the project.

Since the IcapCTRL module was not exercised, we were un-

able to detect bugs (e.g. bug.dpr.6b) in the modified bitstream

transfer datapath. On the other hand, module swapping was

simulated by writing to the engine_signature register,

which did not match the real module swapping operation on

the target FPGA. Such a mismatch introduced some false

positive bugs (e.g., bug.hw.2).

After the design was mature enough, we used ReSim-based

simulation to test the reconfiguration machinery of the sys-

tem. Apart from detecting bugs introduced by modifying the

original design, we were able to identify 3 potential bugs

in parts of the system that were the same as the original

one. For example, the “engine reset bug” (bug.dpr.6b) was

not exposed before because the original design used a faster

configuratoin clock. This bug was identified because ReSim

did not activate the newly configured module until all words

of the SimB were successfully written to the ICAP. The use

of SimBs more accurately models the timing associated with

partial reconfiguration.

B. Lessons Learnt

For safety-critical applications such as AutoVision, a bug

could lead to data corruption (i.e., errors in pixel values) or

system failure. For the example bugs listed, failing to transfer

the bitstream or reset the new engine could lead to system

111

Figure 5. Development workload and bugs detected

Table III SELECTED LIST OF DETECTED BUGS

Bug Description Bug Fixes Comments

bug.hw.2:
The CIE/ME was not reset correctly. This
was because the engine_signature regis-
ter was not correctly initialized and no engine
was selected to be active.

Reset engine_signature at start up. Since
the engine_signature register only exists
in Virtual Multiplexing-based simulation, this
bug was a “false alarm”.

Since ReSim does not change
the user design, this bug would
NOT have been introduced with
ReSim-based simulation.

bug.dpr.4:
The IcapCTRL module was used in point-to-
point mode in the original system, and it failed
to work with the shared PLB bus in the modified
Optical Flow Demonstrator.

Changed some parameters of the IcapCTRL
module so that it worked on shared buses. This
bug was introduced by changing the way an IP
was integrated.

Since ReSim models bitstream
traffic, these bugs can ONLY be
detected by ReSim-based simu-
lation.

bug.dpr.5:
After changing a parameter of the IcapCTRL
module, the software driver was not updated
accordingly and the SimB was not successfully
transferred.

Updated the software driver of the IcapCTRL
module to reflect the changes in the hardware.
In particular, the calculation of bitstream size
had to be changed. This bug was caused by a
mismatch between hardware and software.

bug.dpr.6b:
The system software failed to wait until the
completion of bitstream transfer before resetting
the engines. This bug was introduced since
the modified design used a different clocking
scheme that slowed down the bitstream transfer,
and the software was not updated to slow down
the reset operations accordingly.

The bug could be fixed by modifying the design
so that reset would only be triggered at the
end of bitstream transfer. However, in order to
avoid re-designing the third-party IP, we simply
delayed the reset of engines by adding several
dummy loops in the software.

Since ReSim more accurately
models the timing of recon-
figuration events, this bug can
ONLY be detected by ReSim-
based simulation

failure and cause serious catastrophes. It is therefore critical to

thoroughly verify the design, especially the system integration,

before using the system.

From the development progress and the bugs detected, we

notice that system integration could be much more difficult

than a designer might expect, even if the individual modules

and software functions were FPGA-proven and reused. Al-

though most design parts were reused, the designer of this

study was new to the AutoVision project. As a result, much

time was spent on understanding the hardware signals and

software functions of legacy design parts, especially during

debugging. This contributed to the relatively long time spent

(i.e., 11 weeks) to complete the project. Furthermore, since

the designer was not fully aware of the assumptions and

constraints of legacy design parts, many bugs were introduced

by integrating two correct modules with incorrect parameters

112

(e.g., bug.dpr.4, bug.dpr.5). These bugs can not be exposed in

module-level tests and can be extremely time consuming to

trace in the integrated system.

The original project tested and debugged the integrated Optical

Flow Demonstrator using ChipScope [2]. For this case study

and our host machine, the implementation and bitstream

generation iteration took 52 minutes, and, as described in

Section II, the debug turnaround time for on-chip debugging

would therefore have been at least that much time per iteration,

which is longer than the longest debug turnaround time for

simulation (i.e. 44 minutes as described earlier). Furthermore,

on-chip debugging typically requires several iterations to trace

a bug. It could be anticipated that bugs such as the “engine

reset bug” (bug.dpr.6b) would be extremely time consuming

to trace using ChipScope.

For our case study, full system simulation significantly reduced

the debug effort. In particular, since the Optical Flow Demon-

strator is a complex software/hardware system, it is not possi-

ble, in general, to distinguish a software bug from a hardware

bug when the system is not working (e.g., bug.dpr.6b). Full

system simulation with both system hardware and software

has the advantage of allowing the designer to move back and

forth between the software running on the ISS and the RTL

hardware. However, one significant overhead of full system

simulation is that the designer has to build a simulation envi-

ronment, which took 3 weeks in this case study. Fortunately,

the investment in simulation such as Verification IPs can be

reused across several projects and is still worthwhile. A full

system simulation environment is therefore highly desirable to

assist in debugging the integrated design.

Considering the development workload, 9 weeks out of 11

were spent on re-integrating the design and setting up the

baseline simulation environment. To reduce such effort, it is

recommended that the designers plan for verification, espe-

cially full system simulation, at the commencement of a DRS

design project. For example, when some VIP is lacking, the

designer needs to decide whether to build such IP or modify

the design without compromising system performance. The

HDL coding style should be simulation and synthesis friendly.

VI. CONCLUSIONS AND FUTURE WORK

As with modern ASIC designs, functional verification has

become a significant challenge for cutting-edge, complex DRS

designs. Using AutoVision as a case study, this paper studied

and analyzed the functional verification of complex DRS

designs. The DUT of this study, a modified Optical Flow

Demonstrator, can be viewed as an integration of proven IPs

from various sources. From the development workload and

the bugs detected, we identified that it is challenging and

essential to verify an integrated system, including the behavior

immediately before, during and after reconfiguration.

We used two methods, Virtual Multiplexing and ReSim-based

simulation, to verify the DPR aspects of the modified Optical

Flow Demonstrator. Virtual Multiplexing does not simulate an

integrated design. In particular, the reconfiguration controller

is not exercised and the isolation logic is not tested. Further-

more, the user software has to be “hacked” so as to model the

module swapping. In contrast, ReSim-based simulation mim-

ics the behavior of the FPGA fabric and enables cycle-accurate

simulation of an integrated design immediately before, during

and after reconfiguration. It is thereby able to effectively detect

bugs missed by Virtual Multiplexing. For this case study, the

development overhead of integrating ReSim into an existing

simulation testbench was trivial compared with that of the

testbench itself. The simulation overhead of ReSim was 1.7%,

which was caused by selecting the engine IOs and using

simulation-only artifacts such as error injectors. ReSim has

been released as an open source tool under the BSD license,

and is publicly available via http://code.google.com/p/resim-

simulating-partial-reconfiguration .

REFERENCES

[1] C. Claus, J. Zeppenfeld, F. Muller, and W. Stechele, “Using Partial-Run-
Time Reconfigurable Hardware to accelerate Video Processing in Driver
Assistance System,” in Design, Automation and Test in Europe (DATE),
2007, pp. 1–6.

[2] F. Altenried, “Time-sharing of Hardware Resources for Image Process-
ing Accelerators using Dynamic Partial Reconfiguration,” Bachelor’s
Thesis, Technical University of Munich, 2009.

[3] M. Keating and P. Bricaud, Reuse Methodology Manual for System-on-
a-Chip Designs. Kluwer Academic Publishers, 2002.

[4] The International Technology Roadmap for Semiconductors: 2009,
2009. [Online]. Available: http://www.itrs.net/reports.html

[5] L. Gong and O. Diessel, “Modeling Dynamically Reconfigurable
Systems for Simulation-based Functional Verification,” in Field-
Programmable Custom Computing Machines (FCCM), IEEE Symposium
on, 2011, pp. 9–16.

[6] Partial Reconfiguration User Guide (UG702), Xilinx Inc., 2010.
[7] W. Luk, N. Shirazi, and P. Y. Cheung, “Compilation tools for run-time

reconfigurable designs,” in Field-Programmable Custom Computing
Machines (FCCM), IEEE Symposium on, 1997, pp. 56 – 65.

[8] L. Gong and O. Diessel, “ReSim: A Reusable Library for RTL Sim-
ulation of Dynamic Partial Reconfiguration,” in Field-Programmable
Technology (FPT), International Conference on, 2011, pp. 1–8.

[9] P. Lysaght and J. Stockwood, “A Simulation Tool for Dynamically
Reconfigurable Field Programmable Gate Arrays,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 4, no. 3, pp. 381
– 390, 1996.

[10] I. Robertson, J. Irvine, P. Lysaght, and D. Robinson, “Improved
Functional Simulation of Dynamically Reconfigurable Logic,” in Field
Programmable Logic and Applications (FPL), International Conference
on, 2002, pp. 541–574.

[11] I. Robertson and J. Irvine, “A Design Flow for Partially Reconfigurable
Hardware,” ACM Transactions on Embedded Computing Systems, vol. 3,
no. 2, pp. 257–283, 2004.

[12] A. Raabe, P. A. Hartmann, and J. K. Anlauf, “ReChannel: Describing
and Simulating Reconfigurable Hardware in SystemC,” ACM Transac-
tions on Design Automation of Electronic Systems, vol. 13, no. 1, p. 15,
2008.

[13] L. Gong and O. Diessel, “Functionally Verifying State Saving and
Restoration in Dynamically Reconfigurable Systems,” in Field Pro-
grammable Gate Arrays (FPGA), ACM/SIGDA International Symposium
on, 2012, pp. 241–244.

[14] ChipScope Pro 12.1 Software and Cores (UG029), Xilinx Inc., 2010.
[15] IBM PowerPC Multi-Core Instruction Set Simulator User’s Guide,

International Business Machines Corp., 2010. [Online]. Available:
http://www.ibm.com/developerworks/power/iss/

[16] EDK Concepts, Tools and Techniques (UG683), Xilinx Inc., 2010.

113

