
Partial Rearrangements of Space�shared FPGAs
�Extended Abstract�

Oliver Diessel� and Hossam ElGindy�
�Department of Computer Science and Software Engineering

�Department of Electrical and Computer Engineering
The University of Newcastle� Callaghan NSW ����� AUSTRALIA

Abstract� Dynamically recon�gurable �eld�programmable gate arrays
�FPGAs� appear to be highly suited to embedded high performance
computing applications� They naturally support array�based concurrent
computations� which are often needed to meet performance requirements	
applications can be rapidly prototyped� thereby reducing the time to
market	 and� perhaps most interestingly� they can be recon�gured in
system to reduce total hardware requirements� or to support new appli

cations in the future�

How to use a single FPGA chip or system to support multiple simulta

neous real�time circuits is currently under investigation� Such systems
should execute arbitrary sequences of temporally and spatially varying
tasks without degrading performance� Unfortunately� on�line allocation
is by nature sub�optimal� Resources consequently become fragmented�
which possibly delays recon�gurations and thus reduces utilization� We
propose rearranging a subset of the executing tasks to alleviate this prob

lem� We describe and evaluate methods for overcoming the NP�hard
problems of identifying feasible rearrangements and scheduling the rear

rangements when tasks are reloaded from o��chip�

� Introduction

Dynamically recon�gurable �eld�programmable gate arrays 	FPGAs
 are com�
posed of uncommitted logic cells and routing resources whose functions and
interconnections are determined by user�de�ned con�guration data stored in
static RAM� This memory can be modi�ed at run�time� thereby allowing the
con�guration for some part of the chip to be altered while other circuits operate
normally�

The ability to recon�gure parts of a chip while it is operating allows func�
tional componentstasks to be swapped in and out of the chip as needed� thereby
reducing required chip area at the cost of some recon�guration overhead� control�
and memory� Embedded applications that have successfully exploited this fea�
ture to conserve hardware include an image processing system� a recon�gurable
crossbar switch� and a postscript driver� Successful designs for cryptographic
applications� video communications� and neural computing� attest to the suit�
ability of the architecture for high performance array�based computations� An



additional attraction of FPGAs is that they facilitate rapid prototyping by al�
lowing designs to be conceived� implemented� tested� and modi�ed under one
roof�

As more ambitious systems are developed� it is conceivable that it becomes
possible and desirable for related or even disparate embedded functions to share a
single hardware platform� Space�sharing is a way of partitioning the FPGA logic
resource so that each function or task obtains as much resource as it needs and
executes independently of all others as if it were the sole application executing
on a chip just large enough to support it� When the logic resource of an FPGA
is to be shared among multiple tasks� each having its own spatial and temporal
requirements� the resource becomes fragmented� If the requirements of tasks
and their arrival sequence is known in advance� suitable arrangements of the
tasks can be designed and su�cient resource can be provided to process tasks
in parallel� However� when placement decisions need to be made on�line� it is
possible that a lack of contiguous free resource will prevent tasks from entering
although su�cient resource in total is available� Tasks are consequently delayed
from completing and the utilization of the FPGA is reduced because resources
that are available are not being used� The system designer may be tempted to
provide additional resource� thereby increasing the physical and economic needs
of the system�

To maintain system speed� and to contain size and cost� we propose rearrang�
ing a subset of the executing tasks when doing so would allow a waiting task to
be processed sooner� Our goal is to increase the rate at which waiting tasks are
allocated while minimizing disruptions to executing tasks that are to be moved�
We describe two methods by which feasible rearrangements� ones that allow the
waiting task to be accommodated as well� may be identi�ed� We examine the
cost of rearranging a set of tasks by reloading their con�guration bit streams�
and present techniques for scheduling the task movements so as to minimize
delays to the moving tasks� The complexity and performance of the methods are
brie�y reviewed before concluding with some �nal remarks�

� The techniques

Partial rearrangement proceeds in two steps� The �rst step identi�es a rear�
rangement of the tasks executing on the FPGA that frees su�cient space for the
waiting task� and the second schedules the movements of tasks so as to minimize
the delays to executing tasks� The schedule for each feasible rearrangement is
evaluated for the maximum delay to the executing tasks and the time needed
to complete the schedule� The problem of identifying the best rearrangement is
thus linked by feedback to the problem of scheduling the rearrangement�

The following assumptions are made� Tasks are assumed to be independent
and to be contained within orthogonally aligned� non�overlapping� rectangular
sub�arrays of the FPGA� Interdependent sub�tasks are assumed to be con�ned
to the task�s bounding box� The time to load or con�gure a task is assumed to
be proportional to its area�



��� Identifying feasible rearrangements

The problem of deciding whether or not a waiting task can be accommodated
on an FPGA is NP�complete ���� Heuristic solutions are therefore sought� In the
following� two solutions� which we call local repacking and ordered compaction�
are presented�

Local Repacking The local repacking method ��� attempts to repack the tasks
within a sub�array so as to accommodate the waiting task as well� A quadtree
decomposition of the free space in the array is used to identify those sub�arrays
having the potential to accommodate the waiting task because they contain
su�cient free cells in total� A depth��rst search of the tree allows promising
sub�arrays to be identi�ed and evaluated� A repacking of those tasks both par�
tially and wholly contained within the sub�array is then attempted using a
two�dimensional strip�packing method with good absolute performance bounds
���� If the resulting packing represents a feasible rearrangement of the tasks�
movement of the tasks can be scheduled in order to evaluate the cost of the
rearrangement�

Ordered compaction The ordered compaction heuristic ��� places the wait�
ing task at a favourable location� and moves those tasks that initially occupy
the site o� to one side� Ordered compaction therefore has the e�ect of moving
the executing tasks that are to be compacted closer together while preserving
their relative order� Without loss of generality� consider ordered compaction to
the right� It can be shown that in order to minimize the time to complete a
compaction it is best to attempt to place the waiting task adjacent to a pair of
tasks such that one abuts the allocation site on its left� and the other abuts the
allocation site below� The number of potential allocation sites worth checking
is thus signi�cantly reduced� The feasibility of a site can then be decided by
searching a visibility graph that is de�ned over the executing tasks� An optimal
site minimizes the total area of moving tasks�

��� Scheduling task rearrangements

Since the time to reload an individual task is proportional to its area� the choice
of tasks to move �xes the time needed to complete the rearrangement� We as�
sume a task may continue executing until it is suspended prior to moving� The
task is then resumed as soon as it has been reloaded� If its destination is not free
when it is moved� the tasks initially occupying the destination are immediately
suspended and removed� In this work� we distinguish between the minimumpos�
sible cost of moving a task� and the actual cost of moving it� The minimum cost
is the time needed to save and reload the task� which is unavoidable� However�
the actual cost needs to account for the time a task is suspended while other
tasks are being reloaded� The di�erence between the actual and minimum costs
represents a scheduling delay that is to be minimized for all tasks� The problem



of scheduling FPGA task rearrangements to realize this goal is NP�complete
���� Further heuristics are therefore needed� We �rst describe an approximation
algorithm for scheduling rearrangements with arbitrary overlaps between the
initial and �nal arrangements� Then we describe a method that does not delay
the moving tasks more than the minimum if they are to be orderly compacted�

Arbitrary rearrangements The problem of optimally scheduling the tasks
can be viewed as a search for an optimal path in a state�space tree� Each node
represents the choice of task to place into the �nal arrangement next� and a path
from the root to a leaf represents the sequence in which tasks are chosen to be
placed� A depth��rst search heuristic that uses a simple local cost estimator to
determine which node to expand next can be used to �nd a near�optimal path�
While the actual delay to tasks already moved is known� the delay to tasks that
have not yet been moved is approximated by determining the maximumdelay to
the suspended tasks were they scheduled optimally and were they not to cause
any additional suspensions� This method can be constrained to place the waiting
task �rst of all�

Ordered compaction If tasks are moved as they are discovered in a depth�
�rst traversal of the visibility graph of the executing tasks� they are moved to
free destinations� and therefore do not intersect or suspend further executing
tasks� Tasks are not delayed more than the minimum because they are moved
as soon as they are suspended� Although the waiting task is allocated last of all�
the rate at which waiting tasks can be allocated is una�ected�

� Performance assessment

For an FPGA of width W and height H� with m � maxfW�Hg� and n exe�
cuting tasks� the local repacking heuristic requires O	mn logn
 time to check
for the existence of a feasible rearrangement� Ordered compaction� on the other
hand� needs O	n�
 time� Local repacking requires O	n� logn
 time to produce a
schedule� whereas an ordered compaction can be scheduled in O	n
 time�

An experimental assessment of the performance of the methods with simu�
lated task sets indicates partial rearrangements are of signi�cant bene�t 	alloca�
tion delays were reduced by up to ���
 when the mean task con�guration delay
is a small fraction 	���
 of the mean service period and when tasks arrive more
quickly than they can be processed� See Figure �� Local repacking appeared to
be slightly better able to �nd feasible rearrangements than ordered compaction
when tasks were small� This situation reversed as task sizes grew� indicating
better packing methods are then needed� Both methods became ine�ective with
modest increases in the con�guration delay� The bene�ts of local repacking were
overwhelmed by delays to moving tasks at con�guration delays of less than ��
of the service period� Since ordered compaction delayed moving tasks less� it
was capable of sustaining a bene�t at con�guration delays as high as ��� of the
service period�



0102030405060

1
10

10
0

10
00

Mean Allocation Delay (tus)

M
ea

n 
C

on
fig

ur
at

io
n 

D
el

ay
 p

er
 T

as
k 

(tu
s)

M
ea

n 
A

llo
ca

tio
n 

D
el

ay
 a

t S
at

ur
at

io
n 

(M
ax

 T
as

k 
S

iz
e 

32
)

Lo
ca

l R
ep

ac
ki

ng
O

rd
er

ed
 C

om
pa

ct
io

n
Fi

rs
t F

it

02040608010
0

12
0

14
0

1
10

10
0

10
00

Mean Execution Delay (tus)

M
ea

n 
C

on
fig

ur
at

io
n 

D
el

ay
 p

er
 T

as
k 

(tu
s)

M
ea

n 
E

xe
cu

tio
n 

D
el

ay
 a

t S
at

ur
at

io
n 

(M
ax

 T
as

k 
S

iz
e 

32
)

Lo
ca

l R
ep

ac
ki

ng
O

rd
er

ed
 C

om
pa

ct
io

n

�c� �d�

11010
0

10
00

8
16

24
32

40
48

56
64

Mean Allocation Delay (tus)/Percentage Reduction

M
ax

im
um

 T
as

k 
S

id
e 

Le
ng

th
 (c

el
ls

)

M
ea

n 
A

llo
ca

tio
n 

D
el

ay

Fi
rs

t F
it

O
rd

er
ed

 C
om

pa
ct

io
n

Lo
ca

l R
ea

rr
an

ge
m

en
t

P
er

ce
nt

ag
e 

re
du

ct
io

n,
 O

rd
er

ed
 C

om
pa

ct
io

n
P

er
ce

nt
ag

e 
re

du
ct

io
n,

 L
oc

al
 R

ea
rr

an
ge

m
en

t

0102030405060

10
10

0
10

00

Mean Allocation Delay (tus)

M
ax

im
um

 In
te

rta
sk

 A
rr

iv
al

 P
er

io
d 

(tu
s)

M
ea

n 
A

llo
ca

tio
n 

D
el

ay
 (M

ax
 T

as
k 

S
iz

e 
32

)

Lo
ca

l R
ep

ac
ki

ng
O

rd
er

ed
 C

om
pa

ct
io

n
Fi

rs
t F

it

�a� �b�

Fig� �� �a� E�ect of varying the maximum task size� �b� task load� and �c� con�gu

ration delay on allocation performance� �d� E�ect of con�guration delay on execution
delays� Task side lengths� service periods� and intertask arrival periods were uniformly
distributed with a minimum of �� The maximum service period was �xed at ����� time
units �tus�� A � � � cell FPGA was simulated�



� Concluding remarks

When tasks arrive more quickly than they can be processed� and the time to
load a task is small compared to its processing time� partial rearrangements can
reduce queue delays signi�cantly� As a consequence� tasks are completed earlier�
the utilization of the hardware is improved� and the system is more resilient
to saturation� Of the two methods discussed� ordered compaction appears to
perform more e�ectively as the cost of reloading tasks increases because the
rearrangements can be scheduled with less delay to the executing tasks�

The techniques described above do not consider the service needs or deadlines
of real�time tasks� However� if this information is known� it is not di�cult to
determine whether a rearrangement schedule allows individual tasks to meet
their deadlines�

Areas for further investigation include designing an algorithm that avoids
relocating tasks several times� Overcoming the IO bottleneck of reloading tasks
by moving them using on�chip resources is also under investigation� It is hoped
that such techniques will facilitate decentralized or autonomous garbage collec�
tion to further reduce overheads�

References

�� O� Diessel and H� ElGindy� Partial FPGA rearrangement by local repacking� Tech

nical report ������ Department of Computer Science and Software Engineering� The
University of Newcastle� Sept� ����� Available by anonymous ftp�
ftp�cs�newcastle�edu�au�pub�techreports�tr������ps�Z�

�� O� Diessel and H� ElGindy� Run�time compaction of FPGA designs� In W� Luk�
P� Y� K� Cheung� and M� Glesner� editors� Field�Programmable Logic and Applica�

tions� �th International Workshop� FPL��� Proceedings� pages ��� � ���� Berlin�
Germany� ����� Springer�Verlag�

�� K� Li and K� H� Cheng� Complexity of resource allocation and job scheduling prob

lems on partitionable mesh connected systems� In Proceedings �st IEEE Symposium

on Parallel and Distributed Processing� pages ��� � ��� Los Alamitos� Ca� �����
IEEE Computer Society�

�� D� D� K� D� B� Sleator� A ��� times optimal algorithm for packing in two dimensions�
Information Processing Letters� �������� � ��� Feb� �����

This article was processed using the LATEX macro package with LLNCS style


