
  

 

 

Institut für Angewandte Informatik 

und Formale Beschreibungsverfahren 

 

 

STUDIENARBEIT 

 

FPGA Crossbar Switch Architecture 
for Partially Reconfigurable Systems 

 

von 

 

Till Fischer 

 

Eingereicht am 07.05.2010 beim 

Institut für Angewandte Informatik  

und Formale Beschreibungsverfahren 

am Karlsruher Institut für Technologie 

 

 

Referent: Prof. Dr. Hartmut Schmeck 

Betreuer: Dr. Oliver Diessel (UNSW) 

 

 

 

Heimatanschr ift:  

Hainstraße 35  

65597 Hünfelden  

Studienanschr ift:  

Wielandtstraße 16  

76137 Kar lsruhe  

http://www.kit.edu


 
 

Studienarbeit am 

Institut für Angewandte Informatik und Formale Beschreibungsverfahren 

Thema: FPGA Crossbar Switch Architecture for Partially Reconfigurable Systems 

Autor: Till Fischer 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Till Fischer  



 
 

Ich versichere hiermit wahrheitsgemäß, die Arbeit bis auf die dem Aufgabensteller bereits 

bekannte Hilfe selbständig angefertigt, alle benutzten Hilfsmittel vollständig und genau an-

gegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert oder 

mit Abänderung entnommen wurde. 

 

Karlsruhe, den 07.05.2010 ...............................................................



 
 

 

  



 
 

Zusammenfassung 

In den letzten Jahren haben sich durch immer höhere Integrationsdichten in der Chiptech-

nologie die verfügbaren Ressourcen auf FPGAs vervielfacht. Damit sind stetig komplexere 

Implementierungen bis hin zu ganzen System-on-Chips auf einem einzelnen FPGA möglich 

geworden. Gleichzeitig wurde die Fähigkeit zur Rekonfiguration immer flexibler, womit sich 

inzwischen genau definierte Bereiche auf dem Chip zur Laufzeit modifizieren lassen, ohne 

dass eine Unterbrechung der übrigen Hardware nötig ist (modulare dynamische partielle 

Rekonfiguration). Vorteile dieser Technik sind unter anderem Platz- und Energieeinsparun-

gen durch Auslagern nicht benötigter Komponenten oder die vereinfachte Wartung und 

Aktualisierung von Hardware. Allerdings sind besondere Maßnahmen erforderlich, um den 

Betrieb eines derartigen partiell rekonfigurierbaren Systems mit geringem Overhead zu ge-

währleisten. Dazu zählen insbesondere spezielle Kommunikationsstrukturen, von welchen 

nun verlangt wird, dass sie sich den weniger statischen Anforderungen anpassen können. 

Eine derartige Struktur wird in dieser Arbeit vorgestellt. 

Aktuelle Plattformen für partielle Rekonfiguration benutzen vorwiegend Busse oder feste 

Verbindungen, welche durch ihre Inflexibilität der partiellen Rekonfiguration nur bedingt 

gerecht werden. Daher schlagen neuere Forschungen Networks-on-Chip als sehr flexible 

Alternative vor. Das größte Problem von diesem Ansatz ist jedoch der hohe Overhead, wel-

cher mit einer derartigen Netzwerkarchitektur einher geht. In dieser Arbeit wird daher eine 

angepasste Crossbar Switch Architektur vorgestellt, welche eine erhöhte Flexibilität gegen-

über einfachen Bussen mit einem geringem Kontrolloverhead verbindet. Informationen 

werden hier auf dedizierten Kanälen übertragen, welche nach initialer Einrichtung nur ein 

Minimum an zusätzlichem Aufwand verursachen. Neue Konfigurationen für die Kanäle kön-

nen in kürzester Zeit eingerichtet werden, es sind also trotzdem häufige Anpassungen mög-

lich. Außerdem wird eine nebenläufige Übertragung auf allen Kanälen angeboten, es kommt 

also zu keiner gegenseitigen Blockierung der Kommunikationspartner. Da schließlich sämtli-

che Kommunikation gepuffert wird, ist ein asynchroner Betrieb der Komponenten möglich. 

Diese Eigenschaften müssen durch den Verbrauch von zusätzlichen Ressourcen erkauft 

werden. Allerdings berücksichtigt die Implementierung das spezielle Layout von FPGAs und 

es wird außerdem die allgemeine Crossbar Switch Architektur angepasst, um eine schlechte 

Skalierung zu vermeiden. 

In dieser Arbeit werden zuerst einige alternative Lösungen zur on-chip Kommunikation in 

partiell rekonfigurierbaren Systemen vorgestellt, bevor der Entwurf und die Implementie-

rung der neuen Architektur genauer beschrieben wird. Abschließend erfolgt eine Auswer-

tung anhand des implementierten Prototyps sowie ein Vergleich mit den alternativen Lö-



 
 

sungen. Es zeigt sich, dass der Flächenoverhead gut kontrolliert werden kann und für kleine 

Systeme eine höhere Performance erreicht wird. Für größere Systeme offenbart sich jedoch 

ein an Stärke zunehmender Leistungseinbruch. Hier wird neben anderen Vorschlägen zur 

Verbesserung auch eine einfache Erweiterung vorgestellt, welche dieses Problem behebt. 



 
 

 

Abstract 

Partial reconfiguration offers several benefits for a system on chip. But in order to take ad-

vantage of this technique, easy access and low overhead must be provided. One key issue 

therefore is the on-chip communication architecture. Current reconfigurable systems use 

buses and fixed links, which are quite inflexible; recent proposals suggest using networks on 

chip instead. The problem of the latter approach is the high overhead which is required to 

control the dataflow. In this work, XBar is presented: a customized crossbar switch architec-

ture for reconfigurable systems on chip, which provides flexibility without high control 

overhead. Channels are established in order to transfer data, and once the channel is set up, 

data can be delivered with a minimum of additional effort. Concurrent transmission is poss-

ible on all channels, so interruptions due to blocking cannot occur. Furthermore, new chan-

nel configurations can be established in a very short period of time, so frequent changes are 

possible. Since communication is buffered, the infrastructure may be used asynchronously 

and components of different clock domains can be connected. The scalability is worse than 

with a packet-switched network on chip and it is not possible to provide the same amount 

of flexibility. However, better overall results can be achieved particularly for throughput and 

latency for small systems. Furthermore, the design of partially reconfigurable modules is 

eased.





 
 

Acknowledgements 

First and foremost I would like to thank my supervisor, Dr Oliver Diessel, for his excellent 

support during my work. His guidance and the helpful notes he provided were a great assis-

tance. Also I’d like to thank you for the offer to attend the FPT’09 in Sydney, which was a 

unique opportunity to experience the conference at close range. 

Furthermore, I should like to thank Prof Hartmut Schmeck from the University of Karlsruhe, 

who brought me in contact with Dr Diessel. Without your help my internship at the Universi-

ty of New South Wales would not have been possible. My thanks also go to the University of 

New South Wales for the Practicum Exchange Program, which enabled me to study in Aus-

tralia. 

Last but not least I would like to thank my family, who supported me in any possible way, 

and of course I am deeply grateful for the enduring encouragements of my girlfriend Ursula 

during my far too long absence. 

 



 
 

 



ix 
 

Table of Contents 

List of Figures ................................................................................................................ xiii 

1 Introduction ............................................................................................................ 1 

1.1 Motivation ................................................................................................................. 1 

1.2 Contributions ............................................................................................................ 2 

1.3 Outline....................................................................................................................... 3 

2 Fundamentals .......................................................................................................... 5 

2.1 FPGAs ........................................................................................................................ 5 

2.2 Partial Reconfiguration ............................................................................................. 6 

2.3 Xilinx Tools ................................................................................................................ 7 

2.3.1 ISE Design Suite ................................................................................................. 8 

2.3.2 XDL .................................................................................................................... 9 

2.4 Interconnects ............................................................................................................ 9 

2.4.1 Point-to-Point Connections ............................................................................. 10 

2.4.2 Shared Resource ............................................................................................. 10 

2.4.3 Network .......................................................................................................... 10 

2.4.4 Hybrid Interconnects ...................................................................................... 13 

3 Related Work......................................................................................................... 15 

3.1 ReCoBus .................................................................................................................. 15 

3.1.1 Design and Implementation ............................................................................ 16 

3.1.2 Evaluation........................................................................................................ 17 

3.2 NoC: Work of Marescaux et al. ............................................................................... 18 

3.2.1 Routing ............................................................................................................ 19 

3.2.2 Routers and Topology ..................................................................................... 19 

3.2.3 Network Interface ........................................................................................... 20 



x 
 

3.2.4 Evaluation ........................................................................................................ 20 

3.3 NoC: CoNoChi .......................................................................................................... 21 

3.3.1 Routing ............................................................................................................ 21 

3.3.2 Routers ............................................................................................................ 22 

3.3.3 Topology and Adaptability .............................................................................. 23 

3.3.4 Evaluation ........................................................................................................ 23 

3.4 Xilinx Crossbar Switch ............................................................................................. 24 

3.4.1 Crossbar Switch basics .................................................................................... 24 

3.4.2 Design and Implementation ............................................................................ 25 

3.4.3 Evaluation ........................................................................................................ 26 

3.5 Conclusion ............................................................................................................... 27 

4 Design .................................................................................................................... 29 

4.1 Requirements .......................................................................................................... 29 

4.2 Design Decisions ...................................................................................................... 31 

4.3 Architecture............................................................................................................. 33 

4.3.1 Overview ......................................................................................................... 34 

4.3.2 Interfaces ......................................................................................................... 36 

4.3.3 Switching Structure ......................................................................................... 38 

4.3.4 Control Logic .................................................................................................... 39 

4.4 Design Flow ............................................................................................................. 40 

5 Implementation ..................................................................................................... 45 

5.1 XDL Hard Macro ...................................................................................................... 45 

5.1.1 Cross-Points ..................................................................................................... 46 

5.1.2 Maintaining Density ........................................................................................ 48 

5.1.3 I/O, timing and final structure ......................................................................... 48 

5.2 COREGenerator FIFOs ............................................................................................. 50 

5.3 VHDL Top-Level Entity ............................................................................................. 51 

5.3.1 Behavior .......................................................................................................... 51 



xi 
 

5.3.2 Exemplary Implementation............................................................................. 54 

6 Evaluation ............................................................................................................. 57 

6.1 Impact of design parameters .................................................................................. 57 

6.1.1 Area ................................................................................................................. 57 

6.1.2 Performance.................................................................................................... 58 

6.1.3 Comparison ..................................................................................................... 60 

6.2 Reconfiguration and switching performance ......................................................... 61 

6.3 Scaling and Flexibility .............................................................................................. 61 

6.4 Field of Use.............................................................................................................. 62 

7 Conclusion and Future Work .................................................................................. 65 

A. Source Code .......................................................................................................... xiii 

Acronyms....................................................................................................................... xv 

Bibliography ................................................................................................................ xvii 

 

 





xiii 
 

List of Figures 

Figure ‎2.1: ADM-XRC-4 Board [3] ............................................................................................. 6 

Figure ‎2.2: Interconnection methodologies ............................................................................. 9 

Figure ‎2.3: Network topologies .............................................................................................. 12 

Figure ‎3.1: ReCoBus interface [19] ......................................................................................... 16 

Figure ‎3.2: ReCoBus shared read multiplexer [19] ................................................................. 16 

Figure ‎3.3: ReCoBus multiplexer interleaving [19] ................................................................. 17 

Figure ‎3.4: ReCoBus delay with no pipelining [14] ................................................................. 18 

Figure ‎3.5: ReCoBus delay with pipelining [14] ...................................................................... 18 

Figure ‎3.6: NoC router with 2 input and 2 output ports [16] ................................................. 20 

Figure ‎3.7: CoNoChi router [21] .............................................................................................. 22 

Figure ‎3.8: CoNoChi architecture [22] .................................................................................... 24 

Figure ‎3.9: Xilinx Crossbar cascaded structure [23] ................................................................ 26 

Figure ‎4.1: Communication Patterns ...................................................................................... 30 

Figure ‎4.2: Abstraction of a PRR ............................................................................................. 34 

Figure ‎4.3: XBar schematic view ............................................................................................. 35 

Figure ‎4.4: PRR with adapter .................................................................................................. 36 

Figure ‎4.5: XBar interface ....................................................................................................... 37 

Figure ‎4.6: Basic switching structure ...................................................................................... 38 

Figure ‎4.7: XBar FIFO control logic .......................................................................................... 39 

Figure ‎4.8: XBar block diagram ............................................................................................... 40 

Figure ‎4.9: EA PR design flow [24] .......................................................................................... 41 

Figure ‎4.10: XBar design flow ................................................................................................. 43 

Figure ‎5.1: Implementation domains ...................................................................................... 45 

Figure ‎5.2: Cross-Point implementation ................................................................................. 47 

Figure ‎5.3: Interleaving vertical bundles ................................................................................. 48 

Figure ‎5.4: Final hard macro implementation ........................................................................ 50 

Figure ‎5.5: XBar transfer behavior .......................................................................................... 52 

Figure ‎5.6: Test application on host machine ......................................................................... 54 

Figure ‎5.7: Test environment on Virtex-4 VLX160 .................................................................. 55 

  



xiv 
 

Figure ‎6.1: Used slices for varying interface width ................................................................. 58 

Figure ‎6.2: Used slices for varying number of modules .......................................................... 58 

Figure ‎6.3: Used slices for varying FIFO depth ........................................................................ 58 

Figure ‎6.4: PR system with MMU ............................................................................................ 63 

Figure ‎7.1: One CLB row of the switching structure with pipeline stages .............................. 65 

 



 

1 

 
 

1 Introduction 

1.1 Motivation 

In the course of time, available resources on FPGA devices have increased thanks to conti-

nuous advances in integration density. As a result, more and more complex designs can be 

implemented on a single FPGA, up to whole System-on-Chips (SoC). Simultaneously, recon-

figuration capabilities of FPGAs were enhanced and became more flexible; partial reconfigu-

ration evolved. This enabled the possibility to update, add or remove parts of a system while 

the rest continues to operate. Exploiting this feature has been an area of particular research 

interest in recent years and this still holds true today. 

Obviously, there are several benefits of partial reconfiguration [1]. First of all, it is possible 

to change parts of the hardware, which might be required due to maintenance for example, 

without demanding a shutdown of the system. Such updates are possible at any time, both 

locally and remotely. As a consequence, updates can even be applied in critical situations, 

when access is not possible under conventional circumstances. Furthermore, hardware can 

be shared. Only those components, which are necessary at a certain point of time, must be 

available. This allows realization of even larger systems on smaller FPGA devices. This can 

lead to reductions in power consumption and overall costs. System performance may in-

crease, since more specialized components can be used. Additionally, reconfiguration times 

can be reduced by difference-based partial reconfiguration [2]; bitstreams can remain 

smaller by containing configuration data for parts that effectively change only. Finally, it is 

expected that partial reconfiguration could significantly reduce iteration times for hardware 

development. If only small parts of the system had to be re-synthesized, this process could 

be completed within minutes rather than hours. This would allow use of fast software de-

velopment methodologies for hardware design, too. However, this is not yet applicable at 

this point of time, since iteration cycles are still very long. 

While the advantages of module-based partial reconfiguration are evident and benefits 

were shown for several applications, less attention was paid to the communication infra-

structure, which is necessary to enable cooperation of separate components in a reconfi-

gurable system. However, special requirements apply to such an infrastructure, since com-

munication partners may change during runtime. Current reconfigurable platforms use bus-

es and fixed links as interconnects which provides neither good performance nor flexibility. 



 

2 

 
 

Because of this, current research focuses on Networks-on-Chip (NoC) to satisfy the specific 

demands of a partially reconfigurable system. Most of these approaches utilize similar tech-

niques to those used in common computer networks (local area networks, internet etc.). 

Data is split into several packets which are transferred independently between routers until 

the destination is reached. Because of this, all links in the network can be shared for all con-

nections and a very high flexibility may be achieved. Furthermore, it is possible to serve 

rapidly changing communication needs: it makes no difference whether two succeeding 

packets are sent to the same target or if changing destinations are addressed. 

However, very high control overhead is introduced at the same time, and in fact the benefits 

might not be exploited. Without question, highly flexible NoCs are superior to other solu-

tions if completely unpredictable situations occur. But contrary to the computer networks 

addressed formerly, where nothing is known about the requirements of each participant, 

the communication needs of a specific system component can be predicted very well in 

most cases. Because of this, a different approach is considered in this work: a crossbar 

switch is evaluated as on-chip interconnection between partially reconfigurable modules. 

Crossbar switches can be treated as networks on chip as well, but instead of providing con-

trol headers with every message, connections are set up in advance. On the one hand, this 

significantly reduces the overhead when data is transferred as long as communication part-

ners are fixed, and on the other hand, throughput will not suffer from concurrent communi-

cation, since data can be transferred in parallel. However, a crossbar switch is not a light-

weight structure and it has to be examined whether an efficient implementation is possible 

and if the area overhead can be justified. 

1.2 Contributions 

This work focuses on how a crossbar switch might be designed to allow efficient implemen-

tation on Xilinx FPGA devices. The special requirements of a module-based partially reconfi-

gurable system are taken into account, as well as resources and capabilities of partially re-

configurable FPGAs.  

As part of this work a generator application is provided, which is capable of creating custo-

mized VHDL entities of the proposed communication infrastructure. A custom design flow is 

introduced, which explains how the crossbar switch can be instantiated in the static design 

of a partially reconfigurable system. 



 

3 

 
 

The proposed design is implemented on a certain device and evaluated for different para-

meters. Furthermore, a test environment for a specific parameterization is introduced which 

can be used to visualize the behavior for different configurations. Benefits and drawbacks 

are compared to other approaches and reasonable application scenarios are suggested. This 

work also identifies the weak points of the proposed architecture and recommends im-

provements to certain problems. 

1.3 Outline 

The background to this work is summarized in Chapter ‎2. Some basics about FPGA architec-

tures are explained and the different development tools are introduced. Furthermore, an 

overview of the different communication models is given. 

Chapter ‎3 reports on related work in the field of on-chip interconnects for reconfigurable 

systems. Three different approaches are presented for this purpose. Furthermore, a very 

efficient technique for implementing a crossbar switch on certain Xilinx FPGAs is shown. 

In Chapter ‎4 the new crossbar switch is introduced. Based on several requirements, which 

are enumerated in the beginning of that chapter, the specific design decisions are explained. 

Finally, the resulting design is presented in detail. 

Implementation specific details are addressed in Chapter ‎5. This also contains the transfer 

behavior for a precise example. A test environment is described in this chapter as well. 

Chapter 6 provides the results of the evaluation for several different parameters and the 

proposed architecture is compared to the alternative approaches presented in Chapter ‎3. 

Scenarios that may benefit from this approach are identified. Several possible improve-

ments are pointed out, which are discussed briefly in Chapter ‎7. 

 





 

5 

 
 

2 Fundamentals 

This chapter explains the fundamentals which are referred to in more detail later on in this 

work. First, the Field Programmable Gate Array (FPGA), the basic hardware resource used 

for implementation, is introduced. Afterwards, the ability to partially reconfigure these de-

vices is presented. Subsequently, the tools needed for partial reconfiguration and some 

more specific tools used for the implementation are described. These tools are provided by 

the chosen FPGA manufacturer, Xilinx Inc. Finally, an introduction to the different intercon-

nection systems considered for the design or used in related works is given. 

2.1 FPGAs 

Historically, the main field of use for FPGAs is emulation, evaluation and rapid prototyping 

of application specific integrated circuits. More recently FPGAs have become the implemen-

tation device of choice for small volumes and have proven themselves to be capable of high 

performance and lowest power as well. They unite the advantages of Programmable Logic 

Devices (PLDs) and Gate Arrays. The former are logic components, which can be configured 

to realize a specific but rather simple function. The latter comprise a large number of fixed 

and non-programmable logic resources, but the routing between these can be defined by 

the user. The market leader for FPGA technology is Xilinx Inc., and some of the abbrevia-

tions and details in the context of FPGA architectures within this work may be specific to 

Xilinx devices. Actual FPGAs provide both a large number of simple programmable logic 

resources in Configurable Logic Blocks (CLBs) and a lot of routing resources to individually 

connect the components. A hardware description can be mapped into the resources of the 

FPGA to implement the described behavior. 

The main component of the CLB is a so-called look-up table (LUT) which is used to store a 

logic function. For each possible combination of inputs one output value can be configured. 

So any logic function with the corresponding number of inputs can be implemented within a 

LUT. Additionally, other resources like multiplexers and flip-flops exist in the CLBs, which are 

used to combine functions and select combinational or sequential paths. 

For interconnection a huge amount of wires must exist within the fabric. To individually 

connect distinct components, it must be possible to create custom connections. In the FPGA 

architecture of Xilinx, several switch matrixes and switch boxes are used for this purpose. 



 

6 

 
 

Which wires have to be connected by a switch, and which not, is stored together with the 

remaining configuration data of the FPGA. 

Typically, configuration data is transferred to the FPGA using a bitstream and then stored in 

SRAM. This means that after cutting the power supply to the device, the data is lost. Be-

cause of this, many systems offer nonvolatile memory for configuration data and automati-

cally configure the FPGA on boot up. Furthermore, additional resources that can be ac-

cessed from the FPGA are integrated in the most cases. For example, on the development 

board used in this work (ADM-XRC-4, see Figure ‎2.1), 6 SSRAM (Synchronous Static Random 

Access Memory) blocks are arrange around a Virtex-4 VLX160 FPGA. 

 
Figure ‎2.1: ADM-XRC-4 Board [3] 

In addition to external resources, modern devices may also contain several dedicated com-

ponents within the chip fabric. For example, Xilinx devices offer internal memory blocks 

(Block RAM), multipliers (DSP Slices), whole processor cores (PowerPC) and several other 

dedicated resources for quite some time. 

Additionally, the capabilities of dynamic reconfiguration are further exploited. An actual 

research topic is so-called partial reconfiguration as it is described in the following section. 

2.2 Partial Reconfiguration 

Partial reconfiguration describes the ability to change the configuration of a certain area of 

the chip, while the rest of the implemented design continues operation. Partial reconfigura-

tion became available to the user with the XC4000 device family. Theoretically, it was al-

ways possible to partially reconfigure FPGAs, if configuration data is stored in SRAM. How-



 

7 

 
 

ever, if configuration bitstreams for the device have to be transferred as a whole, operation 

has to be stalled during the update process. This changed with the Virtex-II device family, 

where distinct frames could be addressed for reconfiguration. This was further enhanced 

with Virtex-4 devices and much more flexibility is provided nowadays: only 1-dimensional 

partial reconfiguration was possible with Virtex-II devices; more recent devices support al-

most any rectangular shape as a partially reconfigurable region (PRR). The smallest reconfi-

guration frame is now constrained only by the height of a clock region of the FPGA device 

(Virtex-4: 16 CLBs [4], Virtex-5: 20 CLBs [5], Virtex-6: 40 CLBs [6]) and can be as narrow as 1 

CLB. The modules, which can be loaded into a PRR, are referred to as partially reconfigura-

ble modules (PRMs). 

An important issue when working with PRMs is to ensure correct communication between 

the reconfigurable regions and the remaining design. Xilinx handles the problem by enforc-

ing every signal from/to a PRR to be routed through so-called bus macros. These are pre-

routed components placed to fixed locations on the FPGA during design time. Basic bus 

macros are provided for all devices capable of partial reconfiguration, but creating a user-

defined bus macro is possible as well [7]. 

The benefit of partial reconfiguration is obvious and several advantages were already listed 

in the introduction. For example, it is possible to add or remove parts of a system as neces-

sary; similar to swapping out pages from main memory to the hard drive. As a result, more 

functionality can be implemented while utilizing the same area, and overall power con-

sumption can be reduced – as long as removing a component does not disrupt correct oper-

ation of the system. 

2.3 Xilinx Tools 

Since in this work a Xilinx FPGA was used, the provided tools for implementation are briefly 

described in this section. The main development environment is the Integrated Software 

Environment (ISE) Design Suite described in ‎2.3.1. Because the communication infrastruc-

ture has to be embedded into a partially reconfigurable design, the Early Access Partial Re-

configuration (EA PR) overlay is needed.1 In order to floorplan the PRRs and to create the 

distinct bitstreams for each module and the static design, PlanAhead has to be used. Anoth-

                                                           
1
 During this work, Xilinx announced ISE 12.1, which will support partial reconfiguration designs out of 

the box and EA PR will become deprecated. 



 

8 

 
 

er utilized part of the ISE Design Suite is COREGenerator, which provides specialized IP-cores 

for Xilinx FPGAs. 

In order to implement the low-level part of the design, the Xilinx Design Language (XDL) was 

used, which is described in section ‎2.3.2. 

2.3.1 ISE Design Suite 

The ISE Design Suite is a suite of tools supporting the complete design flow for integrated 

systems from a high-level description via synthesis and implementation down to final bit-

stream generation for the FPGA device. Most of the tools can be accessed out of the Project 

Navigator which is the main interface to the user. Nevertheless, there are some additional 

tools like COREGenerator (‎2.3.1.1), PlanAhead (‎2.3.1.2) and FPGA Editor (‎2.3.1.3) which 

provide their own, complex interfaces. 

However, the ISE Design Suite was intended for conventional (static) designs not involving 

partial reconfiguration, so some changes have to be made. Xilinx introduced the EA PR over-

lay for this purpose. The most important modification applied by this patch is to check 

whether for all signals, which pass the border of a PRR, a bus macro is used. 

2.3.1.1 COREGenerator 

COREGenerator is a design tool that delivers parameterizable IP-cores optimized for Xilinx 

FPGAs. The documentation for COREGenerator is split into several independent guides for 

the separate cores. For this work the FIFOGenerator [8] was used to create FIFO buffers as 

described in section ‎4.3.2. COREGenerator is an easy way to include IPs into an ISE design 

and provides a lot of licensed as well as free IP-cores. 

2.3.1.2 PlanAhead 

PlanAhead is a powerful layout and floorplanning tool for FPGA designs. The steps between 

synthesis and place-and-route are streamlined in order to provide more control over how 

the design is implemented. In particular, the complicated handling of partially reconfigura-

ble designs is eased via a hierarchical design methodology. 

2.3.1.3 FPGA Editor 

The FPGA Editor provides a detailed graphical view of all FPGA components and the routing 

resources. It can be used to view and explore a placed and routed design, and facilitates 

low-level modifications on the logic configuration and interconnections. 



 

9 

 
 

2.3.2 XDL 

XDL was intended to be a human readable low-level design language providing full control 

over all FPGA primitives and connections [9]. Although XDL was never developed further 

and all documentation vanished with the release of version 7 of the ISE suite, the original 

functionality and the conversion tool are still available in current releases. Basically, XDL 

provides the same level of access to FPGA resources as the FPGA Editor does, but unlike 

using the FPGA-Editor it is feasible to create large designs efficiently. XDL source code 

should not be written directly; instead any scripting language can be used to create the XDL 

code for the design. 

The result can be converted to a Xilinx NCD file, which can contain all placement and routing 

information. If designed with care, direct conversion into a bitstream and configuration of 

the FPGA is possible. A more useful approach is to convert the NCD into a hard macro (NMC 

file). Hard macros can be instantiated as black box modules within ISE using any hardware 

description language like Verilog or VHDL. See section ‎4.4 for more information about this 

design flow. 

2.4 Interconnects 

Several possible interconnection methodologies exist to provide communication between 

different modules. Basically, they can be distinguished between four groups: point-to-point 

connections, shared resources, networks and hybrids of the former as sketched in Figure ‎2.2. 

Point-to-Point Shared Resources (Bus) Network

Hybrid
 

Figure ‎2.2: Interconnection methodologies 



 

10 

 
 

2.4.1 Point-to-Point Connections 

The simplest interconnection methodology is to provide separate wires for every connection 

that has to be made. Since nothing has to be shared this approach promises to achieve the 

best performance. On the other hand a huge amount of resources is needed and this ap-

proach scales poorly for larger numbers of modules. 

2.4.2 Shared Resource 

A typical shared resource is a bus. All modules are connected to this shared element, but 

access is provided exclusively to one element only and arbitration is necessary. Furthermore, 

all communication is synchronized by a certain clock, so all modules are either restricted to 

use the same clock, or retiming has to be performed by the modules. Additionally, shared 

resources are characterized by poor scaling as well, since the infrastructure is saturated if a 

certain number of components is reached: throughput may be high for a small number of 

elements, but performance will significantly decrease when the components block each 

other from communication. Furthermore, assuring fairness is another issue that cannot be 

solved easily. Complex mechanisms like priority levels must be introduced; otherwise a less 

important module could prevent on-time delivery of critical messages just by continuously 

requesting the communication resource. 

2.4.3 Network 

In a network, the distinct modules are no longer connected directly by one or more wires, 

but a series of switching elements in between is introduced. Networks are much more flexi-

ble and scalable than point-to-point interconnects or shared resources. A popular example 

for a network involving a huge number of heterogeneous components is the internet. How-

ever, due to advances in integration density and increasing chip complexity networks are 

becoming an appropriate solution for on-chip interconnects as well. Such a network is re-

ferred to as Network-on-Chip (NoC). 

The group of network-based interconnects can be further distinguished by mainly three 

characteristics as proposed by Salminen et al. in [10]2: switching characteristic (‎2.4.3.1), 

topology (‎2.4.3.2) and routing (‎2.4.3.3). 

                                                           
2
 Salminen et al. refer to point-to-point connections and buses as network topologies. In this work 

they are not considered to be networks due to the lack of switching elements. 



 

11 

 
 

2.4.3.1 Switching Characteristics 

The switching characteristics can either be circuit- or packet-switching. Circuit switching 

means that before sending data, a dedicated path which is referred to as channel has to be 

established from the source to the target. Every network segment used for a certain channel 

cannot be used for another channel at the same time. As long as no changes are made to 

this allocation, the network behaves and performs similarly to point-to-point interconnec-

tions. Nevertheless, there is some overhead to construct the channel. 

When using packet-switching, the segments within the network are shared by several con-

nections. Therefore, the data is split into several packets and additional information about 

the source, target and the content is added within a header to allow correct delivery. The 

switching elements forward packets according this information and are referred to as rou-

ters. This technique promotes high flexibility and optimizes the utilization of the resources: 

connections are not bound to a specific channel and alternative routes may be taken. Work-

load can be distributed evenly throughout the network, failing components can be avoided 

and advanced features such as different priority levels are easy to implement. However, this 

comes with a lot of overhead: with every packet, additional data for the header is required 

and the packets have to be processed by every router along the path. This results in low 

throughput, and latency increases. Furthermore, routers are rather complex and require 

more area and power than the switches of the former approach. Finally, additional issues 

like packets arriving in the wrong order may have to be considered. 

2.4.3.2 Topology 

A wide variety of network topologies has been studied. Some popular examples are given in 

Figure ‎2.3. 



 

12 

 
 

Ring Star Crossbar

Custom2D Mesh 2D Torus
 

Figure ‎2.3: Network topologies 

Each topology can be implemented using either circuit- or packet-switching. However, some 

topologies suggest a specific approach. The ring, for example, behaves poorly if imple-

mented using circuit switching: if, without loss of generality, a channel is established to con-

nect the modules on top and bottom, the remaining modules on the left or the right are 

completely blocked from communicating since there is no segment available to connect 

them. On the other hand, the crossbar as depicted in Figure ‎2.3 should be implemented 

using circuit-switching, since otherwise the overhead due to packet processing is needlessly 

large. 

2.4.3.3 Routing 

According to [10] routing can be deterministic or adaptive. Deterministic means that all data 

routed between two given modules always follows the same path through the network. 

When adaptive routing is implemented, different packets between the same modules may 

take different routes. It is obvious that routing in circuit switched networks is always deter-

ministic, as long as the channels remain established. However, if a channel between two 

modules is torn down and then reestablished, other segments may be used. If this is the 

case, a circuit-switched network may be adaptive to a certain extent. As always, adaptive 

routing offers more flexibility and fault tolerance but also involves additional issues like out-

of-order delivery as mentioned previously. 



 

13 

 
 

2.4.4 Hybrid Interconnects 

Hybrid interconnects combine one or more of the former approaches. For example, in order 

to create a hierarchy within a multiprocessor system, a bus could be used to connect each 

processor with a local cache, peripherals and a network interface, and a network could be 

used to interconnect all of these interfaces to provide inter-processor communication. 

The main advantage is that positive attributes of several architectures are combined. In the 

example above, the bus can provide low-latency access to the components, but only as long 

as the number is small. Thus, a network is introduced in order to overcome scaling problems 

of the bus architecture. For another example it may be assumed that a system requires high 

throughput for application data, but low latency is necessary for some synchronization mes-

sages as well. In this case several point-to-point connections could be used for the time-

critical messages, while a high bandwidth network is responsible for the application data. 

The main drawback is reduced flexibility of the architecture. When several methodologies 

are combined like in the examples above, the resulting interconnect is optimized for a cer-

tain situation but may be inappropriate for other cases. 





 

15 

 
 

3 Related Work 

In the field of interconnects for partially reconfigurable systems, several solutions have al-

ready been proposed. Although a Network-on-Chip may be favored for flexibility and scala-

bility reasons over rather simple structures like buses, actual platforms for partial reconfigu-

ration like the Erlangen Slot Machine (ESM) [11] and the work of Ullmann et al. [12] are still 

using less complex approaches. The reason is the following: in order that benefits can out-

weigh the drawbacks introduced by a NoC, a system of more than just a few modules has to 

be designed: as long as the number of modules involved in communication remains small, 

the overhead introduced by additional switches and management is comparatively high. But 

actual systems being implemented on FPGAs currently do not utilize more than a low num-

ber of PRMs; using a NoC is disadvantageous not only in respect of implementation com-

plexity but also in bandwidth, delay and area. 

Because of this, the communication infrastructure used by the ESM is introduced in sec-

tion ‎3.1 as an example. This infrastructure is called Reconfigurable Multiple Bus (RMB) [13] 

and was further developed into an easy-to-use solution for both dynamically reconfigurable 

and static System-on-Chips referred to as ReCoBus [14]. Subsequently, two different Net-

work-on-Chips are analyzed. The first proposal by Marescaux et al. presented in section ‎3.2 

was published in [15] 2002 and further developed in [16] one year later, while CoNoChi 

(Configurable Network-on-Chip, [17]) surveyed in section ‎3.3 is a more recent approach, 

which really exploits the capabilities of partial reconfiguration. Finally, in section ‎3.4 the 

implementation of a high-performance crossbar-switch targeting Xilinx FPGAs [18], just like 

the subject of this work but in a static context, is examined. 

3.1 ReCoBus 

The ReCoBus architecture was designed to provide inter-module communication within a 

partially reconfigurable platform, but can also be used in static SoCs. All classes of bus sig-

nals that follow established on-chip standards such as AMBA and CoreConnect (shared and 

dedicated read/write) are supported. The interface of the bus is depicted in Figure ‎3.1. 

For each module, dedicated interrupt and selection signals are supplied. Furthermore, 

shared read/write data buses as well as an address bus exists, and one signal specifies 

whether in the current cycle the bus is driven by the master (write) or by slaves (read). 



 

16 

 
 

 
Figure ‎3.1: ReCoBus interface [19] 

For the PRRs into which modules can be placed, it is proposed to divide the reconfigurable 

FPGA area into several slots. These slots should be rather narrow, to provide a higher 

placement flexibility for modules that span one or more slots. Furthermore, narrow slots 

reduce the internal fragmentation of the modules, since the region boundaries can be 

tightly placed around the module. An interface has to be given at an exactly known location 

within each slot, so that any of them is universally valid for all arbitrary modules. 

The ReCoBus is delivered as one single hard macro, which is completely placed and routed. 

In doing so, adding and removing modules is similar to plugging/unplugging boards into the 

fixed PCI slots of some desktop computer. This provides a simple abstraction for working 

with partially reconfigurable modules. On the other hand, the place and route process of 

the remaining static design is made more difficult, since several resources are unavailable. 

For example, if a certain hard macro wire is also required for a critical connection in the 

static design, it is not possible to consider reallocation of this wire. Upon other terms, dif-

ferent allocations of this wire could be evaluated in order to optimize overall performance. 

3.1.1 Design and Implementation 

A special issue has to be solved when implementing the shared read signal. For a shared 

read, a bus multiplexer has to be provided for each data line. A possible implementation for 

several slots can be a multiplexer chain as shown in Figure ‎3.2. 

 
Figure ‎3.2: ReCoBus shared read multiplexer [19] 

But because it is desired to have narrow slots, the slot count will be higher than the number 

of modules. As a consequence, the logic overhead for the chained structure is very high, and 



 

17 

 
 

even more important, the combinational path is long and signal propagation takes more 

time. This issue was solved using interleaved multiplexer chains such as in Figure ‎3.3. 

 
Figure ‎3.3: ReCoBus multiplexer interleaving [19] 

In this example, four interleaved multiplexer chains are provided. Although 8 slots exist in 

the system, each chain is only 2 segments deep. It is also clear from this example, that in 

order to provide a specific interface width, the module has to span a minimum number of 

slots. Assuming that each multiplexer chain represents a set of 8 signal wires, the bus pro-

vides a total width of 32 bits and at least four slots have to be used by a module, to access 

the full bandwidth. However, this is considered to be noncritical, since practical experience 

showed that the interface width is usually related to the complexity of a module. So if a 

wide interface is needed, the module is probably complex (=large) and will utilize several 

slots anyway. 

3.1.2 Evaluation 

Despite using interleaved multiplexer chains, the worst-case delay is still very high. In [14] 

the propagation delay of this critical path for a 32-bit wide bus with 4 interleaved multiplex-

er chains is evaluated as shown in Figure ‎3.4. The entered parameter λ resolves to 
𝑅

𝑁
− 1, 

whereby R is the number of available slots and N is the number of interleaved chains. W in 

the graph refers to the width of each slot in number of CLBs. 

For a high-performance bus clocked at a frequency of at least 100 MHz, the propagation 

delay must be lower than 10 ns. With no further optimization, this bus could not be used to 

connect more than 16 slots on most FPGA devices. To overcome this problem, pipeline 

stages were added. After applying this enhancement, the propagation delay was reduced 

considerably as visible in Figure ‎3.5. A test system has been implemented on a Virtex-II de-

vice using the enhancements just mentioned. The system consisted of 8 slots being 2 CLBs 

wide and a bus of 32 bits. Each slot contained a very simple test module like a counter or an 

adder. The achieved data rate was reported to be 800 MB/s at a clock speed of roughly 100 

MHz. 



 

18 

 
 

 

 
Figure ‎3.4: ReCoBus delay with no pipelining [14] 

 
Figure ‎3.5: ReCoBus delay with pipelining [14] 

3.2 NoC: Work of Marescaux et al. 

The Network-on-Chip proposed by Marescaux et al. is intended to be a communication in-

frastructure within a SoC for application data only. This means control and configuration 

data for the system is supposed to use other infrastructures concurrently existing on the 

chip. Control of these networks is achieved by a so-called operating system for reconfigura-

ble systems (OS4RS) [20]. 

Only the network for application data is examined here. It uses packet-switching and the 

topology can be chosen, but is fixed during runtime. In addition, a specific routing algorithm 

is realized. As always, the main network components are the routers. But besides these, 

separate network interfaces called net cells are used to wrap each module. 

According to [15], the tightest constraint for an on-chip network is the limited space on the 

single chip. Most network interconnects realized in the past target multi-chip circuits and 

can be found in the world of multi-processor computing. In this case, however, the commu-

nication architecture has to be implemented together with all remaining components within 

a single FPGA. So the main challenge for the NoC design is to keep the resource overhead 



 

19 

 
 

low. Therefore, the components were designed to be as simple as possible. The following 

design decisions are affected by these restrictions. 

3.2.1 Routing 

According to the classification in section ‎2.4.3.3, a deterministic routing algorithm is imple-

mented; nevertheless a decent amount of adaptability is provided. This is offered by routing 

tables attached to each router (see section ‎3.2.2) which can be modified during run-time by 

the operating system. Virtual cut-through is used as the switching technique: when a packet 

arrives at some router, forwarding can already be started before the packet has been re-

ceived completely. In this way, the latency of the network is reduced. Virtual cut-through is 

commonly implemented by splitting the packet into several so-called flits, prepended by a 

header. Wormhole routing is a very similar approach; the major difference is that with vir-

tual cut-through it must always be guaranteed that a packet can be transferred as a whole. 

This allows flow control at packet level, but large buffers capable of containing a complete 

packet must exist throughout the network, since forwarding may be blocked: if packets 

from different sources have to be forwarded to the same target this cannot occur simulta-

neously. Because of this, each router has to check whether the target is ready to receive, 

before transfer can be started. This is done by dedicated handshake signals between adja-

cent routers. 

3.2.2 Routers and Topology 

As mentioned before, the routers are the main building blocks in the network. Each router is 

individually parameterizable in the number of input- and output-ports. All of these ports are 

fully identical; no distinction is made whether another router or the network interface of a 

module is connected to a given port. This means that all functionality required for higher 

levels of communication than physical addressing can be implemented within the network 

interface of the module, which keeps the routers simple. By leaving the number of ports 

customizable for every router, different topologies can be created. For example in order to 

realize a 2D-Torus as shown in Figure ‎2.3, every router would have 5 input and 5 output 

ports: 4 are needed to connect the adjacent routers, and one port is used for the interface 

of the corresponding module. 

Packet forwarding to the next router is implemented by a crossbar switch, which is con-

tained within every router and can connect any input to any output port. An example is 

given in Figure ‎3.6 for a 2 input/2 output router. 



 

20 

 
 

 
Figure ‎3.6: NoC router with 2 input and 2 output ports [16] 

It is also shown in this picture that one arbiter and one output queue is attached to each 

output port. The arbiter is needed to select the input port, which is currently allowed to 

store data in the output queue if multiple inputs have to be connected to the same output. 

The output queue is necessary, since packets have to be stored when blocked. This can oc-

cur because of the chosen routing algorithm, which is also the reason for having one routing 

table attached to every input port. 

3.2.3 Network Interface 

The purpose of the network interface is to decouple the module from the communication 

network, which allows using different clock speeds for the distinct components of the sys-

tem. Therefore, buffers capable of containing several messages are provided. Furthermore, 

high-level services like virtual addressing and packet redirection can be implemented in the 

interface. In the first version of this architecture, even the routing tables were included in 

the network interface and routers were forwarding the packets only by a given number of 

hops in X and Y direction. 

3.2.4 Evaluation 

Not much information was provided about the resources, used to implement one router on 

a Virtex-II Pro device. According to [16], somewhat more than 500 slices are used to imple-

ment one router having 5 input and 5 output ports, but additionally BlockRAMs are needed 

for the message queues. However, the amount of slices used increases quadratically with 

the number of ports due to the growing crossbar switch size and the arbiters needed for 

each output port. Unfortunately, nothing is said about the bit with of each provided port. 

Furthermore, no statistical data is given for the network interfaces (net cells). 

The network latency is kept low by using virtual cut through switching. Processing the head-

er flit including handshakes and setting the crossbar switch takes three clock cycles. Every 

following clock cycle one flit is transferred. So the latency is equal to three times the num-

ber of hops plus the number of flits for the packet. This appears to be rather low, but is valid 

only as long as the packet is never blocked. Latency decreases considerably, as soon as con-



 

21 

 
 

current traffic occurs in the network. However, this is exactly what has to be expected when 

a packet-switched network is chosen instead of less flexible infrastructures. According to [16] 

the maximum clock speed for the network is 50 MHz, which results in data rates of around 

100 MB/s between adjacent routers when a bit width of 16 is assumed per port. 

3.3 NoC: CoNoChi 

Contrary to the approach of Marescaux et al, CoNoChi is intended to be the only communi-

cation infrastructure within a given SoC. Thus, it has to be flexible enough to satisfy both the 

needs for application- and configuration data3. A high degree of flexibility is achieved via a 

complex routing mechanism, which includes several network layers and supports different 

message classes for prioritization and quality of service (QoS). 

The routers are the main components of the network, again, and packet-switching is used to 

distribute the data as well. A separate network interface exists for each module, but not 

much is said about this element, apart from the fact that it is module-dependent and there-

by implemented within the PRM. 

However, the main difference to the former approach is adaptability of the topology. This is 

not only possible by parameterization during design time, but can be done dynamically dur-

ing runtime. This allows the number of overall routers to be minimized in order to keep the 

area overhead low. 

3.3.1 Routing 

A much more complex network protocol is implemented compared to the work of Mares-

caux et al. First of all, two different addressing methodologies exist: physical addressing, 

which refers to a specific router within the network topology, and logical addressing, which 

specifies a so-called processing unit. This can either be a PRM or part of a PRM. Routing is 

based on the physical address only and similar to the former approach, routing tables are 

used again. Furthermore, a deterministic algorithm is implemented, and adaption is enabled 

by updating the tables. However, in this case the same network is used to distribute routing 

tables as for the application data. Packets containing configuration data belong to a special 

message class and can be distinguished from common application data. Routers recognize 

these packets and update their routing table if the physical address of the packet matches 

their own address. Some details are given about the algorithm that is used to calculate the 

                                                           
3
 While application data usually requires high bandwidth and may suffer from some latency, configu-

ration data must be delivered in the shortest possible time but consists of only a few bits 



 

22 

 
 

routing tables: the Floyd-Warshall-Algorithm is executed by a dedicated control instance4 

which maintains a global view of the network. So routes are optimized in respect of the 

number of hops by this technique; however the algorithm is very complex5. But if the Po-

werPC, which is embedded on some Xilinx FPGAs, can be utilized, calculation time is noncrit-

ical, since updates of the routing tables are only necessary if some reconfiguration has to be 

done, which will take longer anyway [17]. 

Packets are always forwarded as a whole, and no technique like virtual cut-through or 

wormhole routing is implemented in order to reduce latency. Receiving, processing and 

forwarding the packet takes 5 clock cycles in any case. 

3.3.2 Routers 

The basic structure of the router is depicted in Figure ‎3.7, which is quite similar to the pro-

posal of Marescaux et al. However, only the bit width provided at each port can be custo-

mized; the number of ports is restricted to the fixed value of 4 (both for inputs and outputs). 

 
Figure ‎3.7: CoNoChi router [21] 

Because of this, the topology is restricted to a 2 dimensional structure. On the other hand, 

this goes with the reconfiguration capabilities of recent FPGAs. This is important since the 

topology is supposed to be adapted during runtime as described in section ‎3.3.3. Further-

more, all ports are homogeneous and can be connected either to another router or the in-

terface of one module. However, not more than one module can be connected to the same 

router. 

                                                           
4
 part of an OS4RS or a static hardware component 

5
 O(n

3
), whereby n is the number of edges in the graph (λ  links in a network) 



 

23 

 
 

Corresponding to the message queues in the work of Marescaux et al, FIFOs are provided as 

buffers, which are large enough to store a complete packet. However, packets are stored at 

the input and not at the output port. Thus only one arbiter is needed per router (labeled as 

switch control in Figure ‎3.7). Furthermore, there is only one routing table and no distinction 

on which port a packet has arrived is possible. But multiplexers are used again to connect 

every input port with all possible outputs. 

3.3.3 Topology and Adaptability 

As already stated in the previous section, only 2-dimensional topologies can be realized, 

since the number of ports is fixed. In return, CoNoChi supports adaption of the network 

topology during runtime by dynamically adding or removing routers from the network. Even 

the size and location of PRRs can be changed. A detailed description of how this technique is 

realized can be found in [22]; the specific design flow for Xilinx FPGAs is described in this 

paper as well. Since several limitations exist for the few tools available to create a partially 

reconfigurable design, it is an extensive process to create such a system. It might be argued 

that the additional effort is not justified by the gained flexibility. 

The basic procedure is to initially divide the FPGA area into several PRRs of the same shape 

and size, which results in so-called tiles as shown in Figure ‎3.8. These tiles represent the 

smallest reconfiguration granularity and must be large enough to contain a router. In addi-

tion, some static components might reside in a separate region of the chip. Any tile can be 

configured to be one of four basic building blocks: horizontal or vertical connection wires, a 

router or the part of a module. Afterwards, bitstreams have to be created for every compo-

nent and for every tile that is a possible target of this component. 

3.3.4 Evaluation 

A prototype of the network was implemented on a Virtex-4 device and revealed that 480 

slices are needed for the router, which is hardly affected by the bit width provided. In addi-

tion, 4 BlockRAMs are required for the FIFOs and routing tables. Because of this, one tile 

was chosen to be 12 by 16 CLBs large, which is aligned to the reconfiguration capabilities of 

the Virtex-4 and provides enough resources to contain a router: 192 CLBs contain 768 slices; 

furthermore 8 BlockRAMs were available on the specific device per tile. However, a signifi-

cant area overhead is introduced by this approach: especially if a tile contains horizontal or 

vertical connection wires, the resources are poorly exploited. 

The maximum clock speed that could be achieved for the routers of the prototype system 

was 159 MHz. 



 

24 

 
 

 
Figure ‎3.8: CoNoChi architecture [22] 

3.4 Xilinx Crossbar Switch 

The network architectures introduced so far use packet switching. As mentioned before, this 

technique introduces some control overhead with every packet that is sent. Circuit switch-

ing, on the contrary, introduces overhead only for establishing the channel, afterwards data 

is transferred more efficiently. A typical example for a circuit-switched network is the cross-

bar switch. In this work it is examined whether this approach is an adequate solution for 

partially reconfigurable systems, and a custom crossbar switch is designed for this purpose. 

However, there are several crossbar switch implementations available, which do not target 

a reconfigurable environment. The Xilinx Crossbar Switch introduced in this section was 

motivated by a customer’s need for a very large crossbar switch, and a very efficient imple-

mentation technique was required. 

3.4.1 Crossbar Switch basics 

An n × m crossbar switch refers to a structure that is capable of connecting n inputs to m 

outputs in a matrix manner: traditionally, several switches are arranged in a matrix (see 

Crossbar in Figure ‎2.3) and can be switched to short-circuit a horizontal and a vertical wire 

in order to connect one output with one input. For an n × m crossbar being capable of con-

necting any input with any output simultaneously, the considerable number of n × m so-

called cross-points must exist. A straightforward implementation uses large multiplexers for 

every output which is used to select one of the inputs. However, this requires enormous 



 

25 

 
 

resources and when regular FPGA logic is utilized (slices and LUTs), limits are quickly 

reached: As described in [18], a 928 × 928 crossbar switch was required, which had to be 

capable of connecting any input with any output. Within one 4-input LUT a 2:1 multiplexer 

can be implemented by using one input as select line determining which of the two other 

inputs is mirrored to the output. Since there are 8 LUTs within one CLB, a 16:1 multiplexer 

can be implemented within this CLB. Accordingly 58 CLBs are needed for a 928:1 multiplexer. 

Replicating this multiplexer for every input, 58 × 928 = 53.824 CLBs would be needed. One 

of the largest FPGAs available at that time, a Virtex-II XC2V6000, provides 8.448 CLBs; the 

more recent Virtex-4 VLX160 used in this work, as well one of the largest devices in his fami-

ly, has 16.896 CLBs. Obviously this is not enough for the required design. 

In [18] the issue was solved using the routing fabric as logic resource. The main component 

responsible for flexible routing in Xilinx’ FPGA architecture is the so-called switch box. Ac-

tually, this component is getting close to the original idea of a crossbar switch with horizon-

tal and vertical wires. On Xilinx FPGAs these cross-points are called programmable intercon-

nect points (PIP), and their state is selected within the configuration bitstream. 

3.4.2 Design and Implementation 

A detailed description of how the Xilinx Crossbar Switch was implemented can be found in 

[23]. Basically, by utilizing the switch box attached to every CLB, any of the 33 inputs can be 

connected to at least one pin of every LUT in the CLB. When the remaining inputs of the LUT 

are tied to logic “1” and the LUT is configured as an and-gate at the same time, any of the 33 

inputs of the switch box can be selected for the LUT output. Following this technique, every 

LUT can represent a 33:1 multiplexer together with the switch box. If only 32 of the 33 in-

puts are utilized the 928 × 928 crossbar switch can be implemented using only 29 × 116 CLBs 

as depicted in Figure ‎3.9 (29 × 32 = 928 inputs, 116 × 8 = 928 outputs). However, this struc-

ture was further modified in order to improve the aspect ratio of the utilized are. As a result, 

a square region of 58 × 58 CLBs could be achieved. Furthermore, pipeline stages were in-

cluded, which enabled higher clock speeds. The netlist for the specific FPGA was created 

using XDL (see section ‎2.3.2). 

Since the cross-points are not implemented using conventional logic, updating the switch 

configuration cannot be realized by changing register values or by any other straightforward 

approach. Instead, the FPGA must be reconfigured in order to change the state of the PIPs 

and content of the LUTs. But using the convenient flow for partial reconfiguration (EA PR) is 

not possible: a bitstream had to be generated for every possible combination of switch set-



 

26 

 
 

tings (928928 altogether), which is not feasible. If bitstreams were generated in advance, a 

lot of space would be needed for storing. But complete bitstream generation during runtime 

is not feasible as well, since the place and route process is very complex and time consum-

ing. The solution was to use JBits, which is a java-based application that is capable of mani-

pulating bitstreams. However, JBits is deprecated and does not support bitstreams for de-

vices more recent than Virtex-II. 

 
Figure ‎3.9: Xilinx Crossbar cascaded structure [23] 

3.4.3 Evaluation 

The final 928 × 928 crossbar switch was successfully implemented on a XC2V6000 device 

and occupied 60% of the resources on this FPGA model. A clock speed of 155.5 MHz could 

be achieved on all channels. This results in an aggregated throughput of 144.3 Gbits/sec, but 

unfortunately no value is specified for the latency of the structure. A new switch configura-

tion could be written to the device within 220 µs. 



 

27 

 
 

3.5 Conclusion 

Specific architectures were described in this chapter for the basic bus and network inter-

connection methodologies. It is apparent that each of the proposals introduces certain pros 

and cons. 

The bus implementation stands out for implementing established standards beeing used in 

real partially reconfigurable platforms and exceeding the stage of a prototype. This corres-

ponds with the fact that buses are the most widely used structure for static system-on-chips. 

There is no reason to expect a completely different trend for partially reconfigurable sys-

tems (PR systems) which are now emerging. It is merely logical that familiar structures are 

explored in the very beginning. Furthermore, a bus is quite a simple structure, causing a 

minimal area overhead and it is easy to use, since just a few fundamental protocol defini-

tions have to be obeyed. But on the other hand, buses are neither scalable nor very flexible, 

as pointed out in ‎2.4.2. However, scalability becomes more important with larger SoCs 

which involve a larger number of more varied components. Flexibility, on the other hand, is 

needed particularly in a partially reconfigurable system: since certain parts can be changed 

during runtime, the communication structure should be able to satisfy changing require-

ments. 

Because of this, Networks-on-Chip have appeared as another approach. They provide a 

much greater scalability and flexibility. Just like the architectures described in this chapter, 

most other NoC proposals use packet switching, which further enhances these characteris-

tics. Obviously, the major drawback of this approach is the overhead that is introduced both 

for area and packet processing. But there are still other problems which have not yet been 

mentioned. Not only is the interconnection more extensive, but the complexity of the con-

nected modules also increases, since the involved overhead applies to them as well. Besides 

identifying the source of a packet in order to recombine data belonging together, reordering 

might be necessary within the module, since just a few NoCs provide mechanisms for this. 

Accordingly, splitting messages into several parts to comply with the maximum packet size is 

often delegated to the module. The same applies to creating the appropriate headers. Fur-

thermore, it is still an open question whether this higher flexibility is actually needed: it 

might be argued that even in a partially reconfigurable SoC the communication needs re-

main predictable to a certain extent, since modules are still working together to execute 

certain, well-known tasks. But packet-switched networks can play out their strengths partic-

ularly in the case of a very large number of participants being completely independent from 



 

28 

 
 

each other. This does not apply to current PR designs, just because the required integration 

density for such large systems cannot yet be achieved on FPGAs. 

Circuit-switched networks can be considered as an intermediate solution. In contrast to 

packet-switched networks, sophisticated module interfaces are not required and the control 

overhead is considerably lower. In addition, more flexibility is possible than with a bus. On 

the other hand, a new problem may arise as already stated in ‎2.4.3.2: depending on the 

network topology, certain components might be prevented from receiving or sending data, 

even though both communication partners are idle. The crossbar topology circumvents this 

situation. However, the area overhead is worse again, since it scales as the square of the 

number of connected modules. Otherwise, it was shown by Xilinx that implementing a very 

large crossbar switch is possible on FPGAs. Because of this, the behavior of a crossbar switch 

in a partially reconfigurable system is explored in more depth within this work. 

Unfortunately, the Xilinx Crossbar Switch is not applicable for a practical analysis. First of all, 

it was not designed to be used in a PR design. While this issue could be solved by some 

modifications, another more serious problem prevents the usage of this solution: the Xilinx 

Crossbar Switch architecture is incompatible with recent FPGA devices, since partial reconfi-

guration has to be accessed in an extraordinary manner. As stated in section ‎3.4.2, bit-

stream modifications are done during runtime using JBits, which is deprecated. It seems to 

be rather futile to use an old Virtex-II with limited partial reconfiguration capabilities for 

present day investigations. Decoding the appropriate parts of the bitstream for the provided 

Virtex-4 FPGA was also considered to be going beyond the scope of this work. Instead, a 

custom architecture, as discussed in the next chapter, was designed. 

 



 

29 

 
 

4 Design 

For the reasons given in section ‎3.5, it was chosen to investigate the use of a crossbar switch 

as an interconnection in a PR system. A new crossbar switch, referred to as XBar, was there-

fore designed and is described in this chapter. First, the requirements for the interconnec-

tion are explained, followed by the major design decisions and a reasoning of the choice. 

Subsequently, the architecture is explained in detail and information is provided on how to 

embed the crossbar switch into a custom design. 

4.1 Requirements 

Several requirements apply to the communication infrastructure. Some of them address the 

unique requirements of partial reconfiguration; others apply to conventional inter-module 

communication as well. Furthermore, some additional conditions were assumed, which 

have no general validity, but are required as a consequence of the current state of technol-

ogical development. However, some requirements are mutually contradictory, and a trade-

off has to be made. 

Small area overhead. The FPGA area utilized for the communication infrastructure should 

remain as small as appropriate. Even though devices are getting larger, the possible 

modules to be implemented do so as well. Furthermore, less area overhead results in 

higher speed, since delays are reduced and lower costs follow when smaller FPGAs can 

be used. Finally, power consumption is reduced as well. On the other hand, constrain-

ing the available resources always affects the maximum bandwidth that can be 

achieved. 

High bandwidth. Communication between modules may require high bandwidth. In particu-

lar, accelerators for multimedia or network applications are often processing data 

streams that cannot be buffered for a long period of time, since new data arrives con-

stantly. Bandwidth can be increased by providing more wires per interface (= area 

overhead) or raising the clock speed, which requires additional pipeline stages (= higher 

latency). 



 

30 

 
 

Low latency. Communication between modules may require low latency. If modules per-

form handshakes for synchronization, the appropriate signals must have a low delay in 

order to work efficiently. For example, a buffer-full-signal is useless when it arrives sev-

eral cycles too late. 

Fast switching. The time, which is required to establish a new channel or change the desti-

nation of an existing one should be short in order to avoid large overheads when com-

munication patterns change frequently. However, at this stage rather fixed channels 

are assumed, but more flexible switching to new configurations must not be prevented 

by the architecture (see also external control below). 

Support for different communication patterns. There are four basic communication pat-

terns that may occur between modules as depicted in Figure ‎4.1. Any of these cases 

should be supported without introducing high overheads like sending the same infor-

mation multiple times. 

One-to-One
(Unicast)

One-to-All
(Broadcast)

One-to-Many
(Multicast)

Many-to-One
 

Figure ‎4.1: Communication Patterns 

Support for different clock speeds. The connected modules might run with different clock 

speeds, so the communication infrastructure must provide asynchronous interfaces. 

Any module should be able to send or receive data depending on its local clock, and 

should not be constrained by a global communication clock. 

Uniform PRRs. It should be possible to configure a module into any PRR using the same 

module implementation6. This can be achieved by providing a universally valid interface, 

which is independent of the associated region. 

                                                           
6
 This does not mean that the respective bitstreams are also equal. This may not be possible, because 

signals of the static design might cross the PRRs at different locations. 



 

31 

 
 

Limited number of PRRs. It is assumed that the number of partially reconfigurable regions 

does not exceed 8. The main reason for this assumption is to ease the prototype im-

plementation, which would be much more complex if more regions would exist: several 

additional precautions would have to be taken which might be neglected with this sim-

plification. Other reasons for this rather conservative assumption are the problems that 

occur when a higher number of PRRs is involved on a single FPGA. First of all, available 

resources are still a limiting factor and it is not possible to provide a high number of 

partially reconfigurable regions without the need to split some modules to span over 

more than one region. But this would lead to a complex module design, which should 

be avoided. Secondly, actual constraints that apply to partial reconfiguration require a 

distinct bitstream for every PRR. When the number of regions is increased, the number 

of bitstreams that has to be stored for every module grows accordingly. Furthermore, 

actual application scenarios for partial reconfiguration only involve a certain number of 

modules which operate in parallel. This assumption does not mean that the overall 

number of different modules has to be small.  

External control. At this stage of the work it is assumed that reconfiguration management 

and setting up the connections is dedicated to an external controller. However, this is 

not applicable in all cases. It may be necessary that a module can establish a new chan-

nel to another module on demand and without introducing high communication over-

head. The architecture of the crossbar should be designed in such a way that adding a 

module-driven control interface is feasible at a later date. 

4.2 Design Decisions 

The final design, which is described in section ‎4.3, is affected by some fundamental deci-

sions which are discussed below. Predominantly they are justified by the requirements de-

fined in the first section of this chapter. 

Use circuit switching. Circuit switching was chosen as the switching characteristic of the 

design. This option is quite obvious because of the topology associated with a crossbar 

– there are many more interconnection wires and switches than modules. Actually, the 

number of cross-points and links grows quadratically. This only makes sense if commu-

nication is realized by exclusive channels between the modules: since alternative links 

exist, other components are not prevented from communicating despite the fact that 

some links are already assigned to other channels. In contrast, if packet-switching was 



 

32 

 
 

used, interconnections could be shared, and the additional links would not be exploited 

efficiently. 

Parameterize interface width and number of PRRs. As mentioned before, providing a high 

bandwidth affects the utilized area and vice versa. This issue cannot be solved in gen-

eral and is tackled by providing a parameter for the bit width of the interface, which is 

the crucial factor. This allows the trade-off to be done by the user according to his con-

straints. However, the value applies to the interface of all PRRs, because all of them 

have to be equal in order that modules can be similarly placed in any PRR. The overall 

number of PRRs is parameterized for analogous reasons.  

Bundle wires to reduce complexity. Channels cannot be established on a per-wire level. 

Instead, if one module should be connected with another one, a channel providing a bit 

width of a multiple of 7 must be established. This particular value results from some 

constraints arising during implementation: an efficient cross-point implementation ex-

ists for bundles of 8 wires (see section ‎5.1). However, one wire is needed for indicating 

data presence (see section ‎4.3.4). As a result, each interface of n bits is divided into 

k = n ÷ 7 bundles which can be switched independently. However, this removes some 

flexibility and channels might not be fully exploited, for example when a bundle is used 

to implement a single handshake signal. On the other hand, the overhead to manage 

connections is significantly reduced. An efficient implementation of the control logic 

would be hindered by a finer grained switching mechanism. Furthermore, it can be ex-

pected that the proportion of modules requiring only a very narrow channel will be low: 

very short messages usually contain control information, which are typically associated 

with some additional payload. Because of this, cannels often have to be wider anyway. 

Remove certain cross-points to reduce area and wire delay. A crossbar switch consists of a 

large array of cross-points. If there is one of these switching elements for every pair of 

wires or wire groups, their number will be large: if N is the number of modules and k is 

the number of bundles per module, k2 × N2 cross-points are needed. Unfortunately, 

every additional switch not only causes an increase in area, but also in propagation de-

lay. However, it might be feasible to improve this structure: in the case that it does not 

have to be possible to connect every input with every output, several cross-points may 

be removed. Of course, this precondition does not apply without constraints: it must 

always be possible to connect any module with any other module, regardless in which 

PRR it is placed. Furthermore, the interface must remain universally valid: if bit n of in-

terface i can be connected to bit m of interface j, it must be possible to access bit m of 



 

33 

 
 

any other interface in some way as well. According to these requirements, certain 

cross-points were excluded as described in section ‎4.3. Afterwards, only k × N2 cross-

points remain, which is still quadratically dependent on the number of modules, but 

only linearly dependent on the provided link width.  

Use buffers between clock regions to allow asynchronous operation. In order to support 

asynchronous operation of the interconnected modules, data has to be buffered before 

and after being transferred through the switch. Simple FIFO message queues were cho-

sen for this purpose, because the additional control cost is low. However, distinct FIFOs 

for the different bundles of each interface are required, because bundles may need to 

remain independent. 

Do not use partial reconfiguration to update switch configuration. As pointed out in sec-

tion ‎3.4.2, it is not possible to change the state of cross-points by partial reconfigura-

tion following the common flow for PR designs. Nor is a solution like JBits available for 

recent FPGA devices. Since the exact content of the bitstream is kept a secret by Xilinx, 

manual modification seems not to be an alternative. Because of this it was chosen not 

to make use of partial reconfiguration to control the switch settings, although this is a 

serious drawback, since some potentially more efficient implementations are pre-

vented. 

Design certain elements at a low-level. It was decided to implement the switching structure 

in a low-level format and not to utilize some higher level design language like VHDL for 

this purpose. The first reason is that a higher logic density can be achieved by optimiz-

ing the design for the special logic resources of FPGAs. A second reason is that the ar-

ray-like structure of the crossbar does not have to be abstracted to basic components 

like multiplexers before they are mapped to FPGA resources again, and the view of ho-

rizontal and vertical wires connected by cross-points remains valid. Furthermore, the 

implementation can be oriented towards the Xilinx Crossbar Switch. By this it is possi-

ble to introduce partial reconfiguration with less effort, when access to the bitstream 

does become available. 

4.3 Architecture 

This section describes the architectural design of the new crossbar switch called XBar. Basi-

cally, the design is divided into two parts. The first part is the higher-level design covering 

the interfaces and buffers, as well as the control logic. The other part is the low-level design 



 

34 

 
 

of the switching structure, also providing separate internal interfaces, and can be viewed as 

a black-box module from the higher level. But first, the external view of the switch and the 

supported features are described. Subsequently, the interaction between the main building 

blocks is detailed. 

4.3.1 Overview 

When restricted to data links only, the XBar offers two distinct interfaces to every partially 

reconfigurable module: one for sending data, and one for receiving data. An abstraction of a 

partially reconfigurable region which is compatible to this (incomplete) XBar interface is 

given in Figure ‎4.2. As mentioned before, a set of wires is always bundled together, which 

results in having k bundles that can be switched independently. Because of this, every inter-

face is also divided into k ports. Each of them can be utilized to establish a connection which 

is independent of the others, except for the fact that they are synchronized by the same 

clock related to the PRR. This limitation could be avoided, but assuming only one clock for 

each module seems to be reasonable. The number of input and output ports is always the 

same, because the amount of sent and received data within the whole system is assumed to 

be in similar dimensions. However, an asymmetric design might be considered (see chap-

ter ‎7). 

PRR

Data 
Out

Data 
In

 
Figure ‎4.2: Abstraction of a PRR 

The crossbar switch must provide the possibility to connect any output interface of the vari-

ous PRRs with any input interface. In particular, this can also be the input of the same region, 

in order to provide some feedback to a module. A small system consisting of two PRRs with 

three ports per interface and the corresponding XBar in between is depicted in Figure ‎4.3. 

Every partially reconfigurable region is shown both at the top and on the left side of the 

switch. Of course, this is not the actual arrangement for implementation, but it is useful to 

illustrate the interconnections. Each region actually only exist once. Following this abstrac-

tion, all XBar inputs are on the top and all outputs are on the left. Inside the crossbar, basi-

cally a set of horizontal and vertical wires exist. It must be kept in mind that wires are bun-

dled together, so each line in the picture below forms one of these bundles. As mentioned 



 

35 

 
 

in section ‎4.2, cross-points do not exist for every pair of links. In Figure ‎4.3, every cross-point 

is represented by a black dot. It can be seen that every bundle coming from the top can be 

connected to one and only one horizontal bundle for each specific PRR. Furthermore, the 

appropriate horizontal bundle is always connected with the same interface port, regardless 

which PRR is addressed. Thereby it is ensured that interfaces are independent of the region 

that they belong to. 

PRR 0 8

PRR 1

Data 
Out

Data 
In

P
R

R
 0

P
R

R
 1

 

 

 

 

 

 

k*8

 

 

 

 

 

 

Data 
Out

Data 
In

D
at

a 
O

u
t

D
at

a 
InD

at
a 

O
u

t

D
at

a 
In

Inputs

O
u

tp
u

ts

XBar

 
Figure ‎4.3: XBar schematic view 

A problem introduced by removing cross-points might be that modules have to be designed 

in such a way that some functionality is provided at a specific port, since ports are not inter-

changeable any longer. In practice, this should not be a major problem, because the mod-

ules are usually designed for co-operation anyway. However, when IP blocks are supposed 

to be used, adjusting the interfaces might not be possible. This issue can be solved by intro-

ducing adapters between the PRR and the crossbar switch as shown in Figure ‎4.4. The adap-

ter could be updated using reconfiguration every time another module is configured into 

the adjacent PRR. Thus, no change will have to be made to the given module. 



 

36 

 
 

PRR

X
B

ar

Adapter
 

Figure ‎4.4: PRR with adapter 

Furthermore, all the required communication patterns are supported. In the case of unicast, 

data can be transferred very efficiently since all available links may be utilized simultaneous-

ly and high bandwidth can be achieved. Multicast and broadcast obtain similar results since 

data has to be sent only once to reach all destinations: all horizontal wires can be driven by 

one module simultaneously. However, if data has to be received from several sources within 

the same module (according to the Many-to-One pattern), the corresponding interface has 

to be shared, since every horizontal wire may only be connected with one vertical wire at a 

time. Sharing can be realized in two different ways. First, the interface can be shared along 

the ports: any port can be connected to another module and data can be received from all 

modules in parallel. However, the maximum number of different sources is constrained by 

the number of ports in this case. Another solution is to share the interface in time: data 

from different sources is not received simultaneously; instead only one module is connected 

at a time. The complete interface may be used then and there is no limitation in the number 

of sources. But the control overhead to manage time sharing is high: an arbiter has to de-

cide which module is allowed to access the shared ports and data sent by others in the 

meantime has to be buffered. Furthermore, the addressed module cannot distinguish be-

tween the different sources without additional information as might be provided by tagging 

the data. 

Because the control overhead should be minimal, time sharing is not currently supported. 

Moreover, the drawback of the first approach is only minor, since the overall number of 

modules is supposed to be small and it is unlikely to expect a high number of different 

sources. 

4.3.2 Interfaces 

As mentioned before, the interface does not consist of pure data links as assumed in the 

previous section. The main issue in this context results from the fact that a PRM may run 



 

37 

 
 

with a different clock speed than the crossbar switch. Data cannot simply be sent out every 

clock cycle; instead transfer has to be controlled. This should be achieved in a straight-

forward manner in order to keep the overhead low. 

FIFOs are used to allow asynchronous operation of the components. In the case of XBar 

inputs, the input of each FIFO is synchronized by the clock of the PRM, while the output is 

synchronized by the clock of the crossbar switch. Analogously, this is done exactly the other 

way round in the case of XBar outputs. So first of all, the clock of the PRM has to be distri-

buted to the XBar. Furthermore, read enable (rd_en) and write enable (wr_en) signals are 

provided, which can be used immediately to control the FIFOs, which is the easiest way to 

control the dataflow. However, since data might be stored in a specific FIFO more frequently 

than it can be consumed, an overflow must be prevented. Therefore, the full signal of each 

FIFO is passed on to the PRM in order to prevent it from sending further data. Accordingly, 

FIFOs may run empty, which also has to be signaled to the module at the switch output. 

Since any port should operate independently of the others, the FIFOs and signals have to be 

provided as part of the discrete ports. The resulting interface for one PRR is depicted in Fig-

ure ‎4.5. In this example, two input and two output ports exist and the maximum channel 

width will be 14 bits, because 7 data bits are associated with every port. 

PRR 0

d
at

a

d
at

a

fu
ll

d
at

a

fu
ll

em
p

ty

d
at

a

In Port 0 In Port 1 Out Port 0 Out Port 1

Out Port 0-0 Out Port 0-1 In Port 0-0 In Port 0-1

7

7 7

7

rd
_e

n

rd
_e

n

em
p

ty

w
r_

en

w
r_

en

CLK

CLK 0

cl
k_

p
rm

XBar
 

Figure ‎4.5: XBar interface 

For the FIFOs themselves, IP-blocks are instantiated. The COREGenerator introduced in sec-

tion ‎2.3.1.1 is used to create the IP. Several parameters can be specified, the most impor-

tant are the following: operation mode, implementation, data width, data depth, provided 

signals and the threshold values for full and empty states. 

For operation mode asynchronous is chosen, which will allow using the FIFO between two 

clock regions as assumed in this work. Data width must be 7, because this is the number of 

bits available for the payload at each port. Implementation refers to the choice if the FIFO 



 

38 

 
 

should be realized using Block RAM or Distributed RAM. This property can be chosen by the 

user at design time of the crossbar switch. Data depth is another parameter that can be 

defined by the user. The value must be a power of 2 and the minimum is 16. Suggestions for 

appropriate settings can be found in section ‎5.2. The signals provided are chosen to match 

the description made previously in this section: rd_en, wr_en, empty and full. 

The threshold value for full is 𝐹𝐼𝐹𝑂𝑑𝑒𝑝𝑡 𝑕 − 5, since the control logic has to know the buffer 

state five cycles in advance in order to stop further transfers early enough: another five 

entries might still follow, although the full signal of the output buffer is asserted. This is be-

cause it takes the control logic one cycle to react to the FIFO states, and up to four entries 

per channel may be present in the switching structure simultaneously (see Section ‎5.1). 

Their delivery cannot be stopped anymore. The threshold value for empty is zero, so empty 

is asserted if and only if the corresponding buffer is really empty. 

4.3.3 Switching Structure 

The heart of XBar is the internal switching structure, which is designed to match the FPGA 

resources as closely as possible. Furthermore, it was decided not to use reconfiguration 

capabilities which would enable routing resources to be part of the logic implementation 

(see section ‎3.5). Instead the standard components, namely the CLBs, have to be used. It is 

possible to implement a cross-point between two bundles, represented by a black dot in 

Figure ‎4.3, within a single CLB (see section ‎5.1). Because of this, and the fact that CLBs are 

located uniformly throughout the FPGA area, a dense mesh of CLBs was used to implement 

the array of cross-point switches. Following this approach, a four by four cross-point struc-

ture can be mapped to an array of 16 CLBs as depicted in Figure ‎4.6. A more detailed de-

scription of the realization, especially how to keep the structure closely meshed after re-

moving cross-points can be found in section ‎5.1. 

CLBCLBCLB

CLBCLBCLB

CLBCLB CLB

CLB CLBCLB

CLB

CLB

CLB

CLB

“0”

“0”

“0”

“0”

 

 

 

 

 

 

 

 

 

 

 

  

   

 
Figure ‎4.6: Basic switching structure 



 

39 

 
 

It is not possible to realize this structure using a common hardware description language, 

thus it is implemented independently of the other components and stored as a hard macro. 

How to merge this macro with the remaining implementation of the switch is explained in 

Section ‎4.4. 

4.3.4 Control Logic 

The hard macro introduced in the previous section is a very static structure. Data is for-

warded, without further ado, based on the state of the cross-points. However, these states 

have to be configured to match the current communication needs. Control logic is intro-

duced for this purpose. But as mentioned in Section ‎4.1, at this stage of the work the inter-

connection management is implemented within an external controller, which is also respon-

sible for reconfiguration. Accordingly, the controller within the crossbar acts as an interface 

between an external host and the state selector of the individual cross-points (called xconfig) 

only. 

Furthermore, the control logic must manage the internal dataflow. The necessary effort for 

one pair of FIFOs is shown in Figure ‎4.7. 

hard
macro

Channel

FIFO FIFO

In Port Out Port

7 7

em
p

ty

rd
_e

n

d
at

a d
ata

w
r_en

fu
ll

&

&
delay 1

data present

 
Figure ‎4.7: XBar FIFO control logic 

For a better understanding, it is assumed that the depicted input FIFO is assigned perma-

nently to the output FIFO of the figure. Of course this is not necessarily true, since the state 

of each cross-point may be changed at runtime. When data is available at a specific XBar 

port (or within the corresponding FIFO, respectively) it may be passed on to the switching 

structure by asserting rd_en. This signal is also propagated through the switching structure 

together with the payload, in order to signal the presence of data. Because of this, only 7 of 

8 available wires per bundle can be used for the payload as mentioned before. After a cer-

tain delay, data will become valid at the hard macro output and wr_en of the destination 



 

40 

 
 

FIFO is set automatically. But since data from the input FIFO will not be valid before one 

additional cycle after rd_en was asserted, rd_en of the previous cycle must be considered. 

Furthermore, rd_en stays asserted by mistake for one cycle, if the last entry of the FIFO was 

just read. In order to deassert the data present signal on time, the empty signal must be 

taken into account, too (see timing diagram in Figure ‎5.5 for a better understanding). The 

result can be used to signal presence of data correctly. The reason for sending this control 

bit through the hard macro is that there is then no need for the internal controller to con-

sider the exact latency of the switching structure. 

Furthermore, data must not be transferred if the target FIFO is full. Because of this the ap-

propriate full signal has to be evaluated by the control logic before rd_en of the source may 

be set. The and gate with two inverted inputs serves this purpose. Since it takes several 

cycles until data has passed the hard macro and the new FIFO state has been evaluated, the 

FIFOs are configured to advance full by five entries. 

Figure ‎4.8 shows how the previously described components fit together. The parts visible in 

the diagram match the interface which is shown in Figure ‎4.5. 

XBar

fu
ll

fu
ll

em
p

ty

em
p

ty

Out Port 0-0 Out Port 0-1 In Port 0-0 In Port 0-1

from 
macro

to
macro

to 
macro

to xbarmacro XCONFIG

FIFO FIFO FIFO FIFO

Control Logic

hard
macro

h
o

st
co

n
tr

o
l

wr_en

rd
_e

n

rd
_e

n

CLK

IN

XCONFIG

OUT

clk_prm

clk_switch

clk_prm

clk_switch

clk_prm

clk_switch

clk_prm

clk_switch

CLK 0

from 
macrowr_en

 
Figure ‎4.8: XBar block diagram 

4.4 Design Flow 

A standard design flow for a PR design was introduced by Xilinx with the EA PR overlay for 

the ISE design suite. However, the latest version supported by this overlay is ISE 9.2i, while 

the most recent version available is ISE 11.4. During this work it was officially announced 

that the EA PR flow, based on a modular design flow, as described below and in [24], will 



 

41 

 
 

become deprecated with the release of ISE 12.1. EA PR will stay available for researchers in 

the Xilinx University Program (XUP) only. 

The main difference between the EA PR flow and a conventional FPGA design is that mor 

than one pass of the implementation tools is necessary. The design is divided into discrete 

components and a separate synthesis, mapping, placement and routing process is required 

for each component. Every PR design is composed of the following parts: 

Top-level design. Contains all user constraints (I/O pins, timing, etc.) and describes how the 

remaining parts belong together: PRRs are defined here as well and bus macros have to 

be placed at the boundaries for crossing signals 

Static design. Contains all components not being reconfigured during runtime 

PRMs. At least two PRMs must exist, in order for a PR design to make any sense 

Merging the static part and the PRMs is eased by the PlanAhead tool. The different compo-

nents can be imported into one project; the definition of PRRs and bus macro placement is 

simplified by a graphical user interface. However, it is recommended to analyze the interac-

tion of system components by implementing a complementary non-PR design first. This is 

represented by the steps ○,1 to ○,4 in Figure ‎4.9, showing the complete EA PR design flow. 

 
Figure ‎4.9: EA PR design flow [24] 

The crossbar switch belongs to the static design. But the switch implementation itself con-

sists of several parts again: the hard macro, designed using XDL, the FIFOs, which are IP-

blocks and finally a VHDL entity description also containing the control logic. Because of this, 

a custom design flow as shown in Figure ‎4.10 was introduced, which also demonstrates how 

to merge the XBar with the remaining static components of a PR design. 



 

42 

 
 

The starting point of any new design is the XBarGenerator; a Windows based application, 

which is used to create a custom version of the XBar. After the parameters are defined by 

the user, several files based on these values are created: 

XDL File. Contains the complete XDL design of the switching structure 

SCR File. Contains additional information to convert the XDL design into a hard macro 

VHD and PCF Files. The VHD files contain the entity description of the hard macro and XBar. 

Furthermore, a synthesizable VHDL implementation is provided. The PCF file is passed 

on to the place & route (PAR) tool and contains physical constraints to ensure the cor-

rect propagation delays within the hard macro. No additional modification needs to be 

done on these files by the user. 

XCO File. Contains COREGenerator parameters which are used to create the appropriate 

FIFOs 

Two additional steps are required before the XBar is ready to use: First, the XDL design has 

to be converted into a hard macro (NMC file). Therefore, the first step is to convert the XDL 

design into an equivalent NCD file, which is achieved by the xdl command provided with 

ISE. Unfortunately, it is not possible to convert the XDL design directly into an NMC file, 

since the xdl tool removes all hard macro external pins. However, they are an essential ele-

ment, since they define the interface of the hard macro. So, in a second step the external 

pins must be restored. This is achieved by an FPGA Editor script (SCR file) parsed by the 

fpga_edline command. A batch script automates the NMC generation. The created hard 

macro contains all components and nets of the switching structure. However, the nets are 

not routed, in order to provide more flexibility in the place & route step for the merged 

design. 

What remains is to import the resulting files into the ISE project of the static design. In addi-

tion, the FIFO IP-block has to be generated. This happens automatically if the XCO file was 

imported correctly into the ISE project. Subsequently, the crossbar switch is ready to be 

instantiated using common VHDL code. 



 

43 

 
 

XBarGenerator

XDL SCR
VHD, 
PCF

xdl -xdl2ncd

ISE 9.2i

fpga_edline

NMC

NCD

static 
design 
VHD

static 
design

xd
l2

n
m

c.
b

at

COREGenerator

FIFO
IP

XCO

 
Figure ‎4.10: XBar design flow 

 





 

45 

 
 

5 Implementation 

In this chapter the implementation part of this work is described in more detail. Following 

the design flow introduced in section ‎4.4, implementation can be divided into four discrete 

domains as shown in Figure ‎5.1: VHDL (XBar top-level entity and control logic) – CORE-

Generator (FIFOs) – XDL (switching structure) – C++ (XBarGenerator, which is creating the 

other sources). 

fu
ll

fu
ll

em
p

ty

em
p

ty

Out Port 0-0 Out Port 0-1 In Port 0-0 In Port 0-1

from 
macro

to
macro

to 
macro

to xbarmacro XCONFIG

FIFO FIFO FIFO FIFO

Control Logic

hard
macro

wr_en

rd
_e

n

rd
_e

n

CLK

IN

XCONFIG

OUT

clk_prm

clk_switch

clk_prm

clk_switch

clk_prm

clk_switch

clk_prm

clk_switch

from 
macrowr_en

XCO File, COREGenerator

VHDL

XDL

 
Figure ‎5.1: Implementation domains 

The XBarGenerator is not described deeply, since it is a helpful application with no signific-

ance for the crossbar switch implementation, which is the main focus. In essence, the design 

parameters entered by the user are used to customize template files containing the basic 

source code. The remaining domains are described in the following sections. Finally, a test 

environment demonstrating the correct operation is presented. 

5.1 XDL Hard Macro 

The switching structure described in this section is the most complex part of the implemen-

tation. The fundamental idea was introduced in section ‎4.3.3 and is recapitulated shortly in 



 

46 

 
 

the following. The switching structure provides the possibility to connect a bundle of vertical 

input wires with different bundles of horizontal output wires. A so-called cross-point may 

exist at any location at which horizontal and vertical bundles intersect. Each cross-point can 

have two states: either the intersecting wires are connected or they are left unconnected. 

One cross-point is implemented within one CLB as described in ‎5.1.1. 

The complete structure forms a regular mesh of CLBs and can be moved to any FPGA loca-

tion because of the uniform occurrence of CLBs. However, the crossbar switch as shown in 

Figure ‎4.3 differs from the initial situation as depicted in Figure ‎4.6, since certain cross-

points are removed. In section ‎5.1.2 it is explained how the reduced cross-point allocation 

can be implemented in a very dense manner. 

Finally, section ‎5.1.3 describes how the cross-point states are triggered and the remaining 

I/O for the hard macro, the external pins, are introduced. This involves another optimization 

affecting the hard macro layout. Afterwards the final structure with all modifications is pre-

sented. 

5.1.1 Cross-Points 

As mentioned before, one cross-point can be implemented within a single CLB. A CLB can be 

further divided into four similar elements called slices. In turn, each slice contains two LUTs 

realizing any 4-input logic function, two flip-flops which can, among other things, be used to 

synchronize the LUT output, and several multiplexers to choose between different outputs 

or to enable features like input inverters, carry chains etc. Additionally, one switch matrix 

and one switch box are assigned to each CLB. The most important components for this de-

sign are illustrated in Figure ‎5.2. 

All together there are 8 LUTs available, each of them provides one output. This is the reason 

for having 8 wires per bundle. It is not possible to implement a reliable and fast cross-point 

with a larger number of wires within one CLB as long as the switch matrix or switch box is 

considered to be fixed. This applies to the current situation, since partial reconfiguration is 

the only way to change these settings which is rejected for the reasons given earlier. Never-

theless, there is some other logic apart from the LUTs available within the CLB, which could 

be used for integration of additional wires. For example, some multiplexers would be ap-

propriate. However, the behavior would be hardly predictable, since if other resources than 

LUTs were used, the switching characteristic for the distinct wires would differ: while LUT 

input-to-output delay (TILO) is always 0.2 ns, the fastest multiplexer that could be used 



 

47 

 
 

(F5MUX) has a delay (TIF5) of 0.46 ns on the Virtex-4 device used in this work (Virtex-4 

VLX160 Speed Grade -10) [25]. 

The input assignment of each LUT, the LUT content and switch matrix configuration is de-

picted in Figure ‎5.2. Each LUT is configured to realize a 2:1 multiplexer. One wire of the hori-

zontal bundle and one wire of the vertical bundle are connected to inputs of each LUT. Addi-

tionally, one net distributing the state of the cross-point (xconfig) is connected as selector to 

the third LUT input. The fourth input remains open. According to the selector value, either 

the data on the horizontal wire or the vertical wire is forwarded. 

CLB

Switch Matrix

Slice

Slice

Slice

Slice

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

G1
G2
G3
G4

Y

F1
F2
F3
F4

X

G1
G2
G3
G4

Y

F1
F2
F3
F4

X

G1
G2
G3
G4

Y

F1
F2
F3
F4

X

G1
G2
G3
G4

Y

F1
F2
F3
F4

X

horizontal bundle out

xconfig

ve
rt

ic
al

 b
u

n
d

le

horizontal bundle in

Switch 
Box

xc
o

n
fi

g

G3 G2 G1

ve
rt

ic
al

 
w

ir
e

h
o

ri
zo

n
ta

l 
w

ir
e 

in

Y

h
o

ri
zo

n
ta

l 
w

ir
e 

o
u

t

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

 
Figure ‎5.2: Cross-Point implementation 

Data transferred in a vertical direction is bypassed along the CLBs. Long wires may be used 

to distribute data to destinations further down the structure. By contrast, data transferred 

in a horizontal direction has to traverse all CLBs in between, and is delayed by TILO every 

time. Thus it is important to keep the number of hops in the horizontal direction low. 



 

48 

 
 

5.1.2 Maintaining Density 

Maintaining the density of the switching structure is important for two reasons. First, the 

utilized FPGA area should be small to reduce overhead. Second, a smaller structure comes 

with shorter wires and propagation delays are reduced. Therefore, higher clock speeds can 

be achieved and throughput is improved. The basic structure is very dense in the case of a 

fully occupied crossbar switch (fully occupied means that there is a cross-point at every in-

tersection of wires), but this is not the case in the current design. However, by interleaving 

the vertical links it is still possible to utilize all CLBs within a rectangular region for the 

switching structure. Figure ‎5.3 shows how this is possible for the cross-points of a design 

having 2 PRMs with 3 input and 3 output ports each (this is according to the setup in Fig-

ure ‎4.3). In principle the structure is just compacted horizontally, so that there is only one 

CLB column per PRM, while the number of CLB rows still matches the number of overall 

output ports. 

As explained in the previous section, the number of CLB columns has a strong impact on the 

propagation delay. Because of this, it is expected that an increase of the number of modules 

will result in significantly lower clock speeds. This is confirmed in section ‎6.1.2 and a poten-

tial countermeasure is presented in chapter ‎7. 

CLB

CLBCLB

CLBCLB

CLB

CLB

CLB

“0”

“0”

“0”

“0”

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CLBCLB

CLB CLB

“0”

“0”  
Figure ‎5.3: Interleaving vertical bundles 

5.1.3 I/O, timing and final structure 

In order to instantiate the hard macro, an interface must be defined. This is done by adding 

so-called external pins. They are similar to I/O pins of a chip fabric and they must be used for 

any I/O communication. External pins can be added to any component of the hard macro, 

for example the slice input associated with a LUT can be used. No restrictions regarding the 



 

49 

 
 

location exist, though it is possible to add an external pin to any CLB in the switching struc-

ture. Nevertheless, external pins are kept at the border of the hard macro and separate 

CLBs are used for this purpose. The reason is that all cross-points are asynchronous compo-

nents, which is required to propagate data with low latency. But at inputs and outputs syn-

chronization is required, in order to ensure correct operation, since only data associated 

with a specific clock cycle may be transferred at a time. 

Furthermore, it must be assured that data reaches the output within one clock cycle. Usual-

ly, correct timing behavior is checked automatically during the place & route step. However, 

this is not possible, because a hard macro is treated as a black-box module by the Xilinx 

timing tools and correct timing must be manually verified. Therefore, the propagation delay 

of the path through the switching structure from the input CLB to the corresponding output 

CLB must be examined. This propagation delay is given by 

𝑑𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 = 𝑑𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 + 𝜆 ⋅  𝑑𝑕𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 + 𝑇𝐼𝐿𝑂  

whereby dhorizontal is the wire delay for the horizontal wire, dvertical is the wire delay for one 

vertical section between two cross-points, TILO is the LUT input-to-output delay and λ refers 

to the number of CLBs which have be traversed in vertical direction and corresponds to the 

number of modules in the worst case. The worst-case value for dhorizontal and dvertical can be 

specified in XBarGenerator to ensure correct operation for a certain clock speed. A physical 

constraint file (PCF) based on these values is generated, which contains the appropriate 

constraint for each net and has to be merged with the PCF of the static design. The PAR tool 

will attempt to meet these constraints and throws a warning otherwise. However, this 

means that estimating the maximum clock speed for a specific design is complicated and it 

is not possible to provide exact values. 

The output CLBs are placed next to the left most cross-point CLB column. Accordingly, all 

input CLBs could be placed at the top of the switching structure. However, this is modified 

by placing half of the inputs on the bottom edge to improve the arrangement of inputs. 

Because the structure tends to be narrow and high, having inputs only on the top might be a 

bottleneck. A lot of wires would need to be routed to the same location and input FIFOs 

could not be distributed evenly around the hard macro. Furthermore, placing the crossbar 

switch between several modules is eased, since it can be accessed from different sides. 

Two additional groups of external pins exist. First, an interface for the xconfig state selector, 

which is used to set the state of each cross-point is needed. It is implemented similarly to 



 

50 

 
 

the data inputs and placed in the rightmost CLB column. Finally, dummy drivers are needed 

for each vertical bundle. External pins are used here, but they are tied to logic 0 when the 

hard macro is instantiated. This forces PAR to connect the corresponding pin with the 

TIEOFF component residing next to every switch matrix. 

Figure ‎5.4 shows the resulting structure with two input and two output ports for each of the 

four modules. On the left is the schematic view, each CLB is illustrated by a square as before. 

The picture on the right is a screenshot of the corresponding hard macro implementation as 

depicted in the FPGA Editor; CLBs having external pins are highlighted. 

out

out

out

out

out

out

out

out

in

in

in

in

in

in

in

in

xconfig

xconfig

xconfig

xconfig

xconfig

xconfig

xconfig

xconfig

in in

inin

out

out

out

out

xco
n

fig

 
Figure ‎5.4: Final hard macro implementation 

5.2 COREGenerator FIFOs 

The implementation of the FIFOs is realized by the COREGenerator. However, the user may 

choose between different specifications. While most settings like data width can be derived 

directly from the properties of the remaining design, two parameters require application-



 

51 

 
 

dependent modifications and must be defined by the user at design time. First, it must be 

decided whether the FIFOs should be implemented using Block RAM or Distributed RAM 

and, second, the number of words stored in each FIFO must be configured. The choice made 

for the former may depend on the latter: while a large FIFO can be implemented efficiently 

using Block RAM, the number of slices needed for a similar FIFO using Distributed RAM is 

significantly higher (see section ‎6.1.1). On the other hand it may be preferred to keep the 

Block RAM available for modules. Furthermore, Block RAM is not available at all locations 

within the FPGA and the best achievable clock speed was found to be slightly higher when 

Distributed RAM was used – provided that the FIFO depth was very small (compare sec-

tion ‎6.1). A larger FIFO (64 entries or more) performs better when implemented using Block 

RAM. 

It is recommended to keep the depth small since large buffers pose several drawbacks and 

the benefits are rather low. Obviously, the area overhead increases with the size of the buf-

fer. Furthermore, the main purpose of the FIFOs is to connect components of different clock 

domains. This is already achieved by a very small buffer. A reason for having a larger num-

ber of slots within one FIFO is to allow continuous data transmission, even though the target 

is blocked. But for the case that the target just consumes data more slowly than the source 

can provide it, a larger buffer does not make any sense: once the FIFO is full, the situation is 

identical for any depth. In the long term, large buffers are only beneficial if the target is able 

to catch up with the source again despite intervening interruptions. However, another prob-

lem arises when the buffers are large and modules have to be reconfigured: the correspond-

ing buffers need to be emptied before the new configuration can start operation. But this 

may take longer for large FIFOs, of course. 

5.3 VHDL Top-Level Entity 

The top-level entity of the crossbar-switch is implemented using conventional VHDL code. 

All necessary parameters are declared in a VHDL package which is provided by XBarGenera-

tor. Since most of the details were already described in section ‎4.3, only the precise transfer 

behavior is described in the following paragraph. Subsequently, a test environment used for 

verification is presented. 

5.3.1 Behavior 

Since all ports between a PRR and the top-level entity of XBar are equivalent to the pinout 

of the respective FIFO, the XBar transfer behavior as shown in Figure ‎5.5 correlates with the 



 

52 

 
 

FIFO read/write behavior described in [8]. The upper part of the diagram refers to an input 

FIFO of the crossbar switch; the lower part describes the behavior of the corresponding 

output FIFO. Both FIFOs are connected with two clock domains, one on the reader’s side 

and one on the writer’s side. The writer clock domain of the input FIFO and the reader clock 

domain of the output FIFO correspond to the clock domains of the connected modules. The 

background of the corresponding signals is shaded in the diagram. The remaining signals of 

both FIFOs are synchronous to the XBar clock. So altogether there are three clock domains: 

source module, destination module and control logic. The initial state of the source FIFO is 

empty while the destination FIFO is filled with 4 entries. The FIFO depth is assumed to be 9. 

It has to be considered that this value was chosen to keep the diagram small and is not a 

valid parameter. The full signal is always advanced by 5 cycles, so the output FIFO signals full 

to the control logic in the beginning. 

c
o

n
tr

o
l 
lo

g
ic

d
e

s
t.
 m

o
d

u
le

s
o

u
rc

e
 m

o
d

u
le

clk_src

wr_en

data in

full

1 2 3 4

clk_dst

rd_en

data out

empty

x2 x3 x4x1 1 2 3 4

5

5

empty

full

rd_en

wr_en

data out 1 2 3 4 5

1 2 3 4 5data in

1

3

4

5

6

7

2

clk_switch

X
B

ar
 o

u
tp

u
t 

FI
FO

X
B

ar
 in

p
u

t 
FI

FO

8

9

10

11

12

13

5

5

 
Figure ‎5.5: XBar transfer behavior 

In this example, first wr_en is asserted by the source module and data is applied synchron-

ously (○1 ). Every clock cycle one entry can be stored in the FIFO. Additionally, in the cycle 

following the assertion of wr_en, empty of the input FIFO is deasserted (○2 ), since the FIFO 



 

53 

 
 

contains one entry then. Subsequently, after the fourth entry is written, the full signal of the 

FIFO is set (○3 ). Since the source module cannot react before one additional cycle, one more 

entry might be written and wr_en is deasserted thereafter at ○4 . Supposing the destination 

module asserts rd_en at ○5 , the data stored in the output FIFO will be made available after 

the next rising clock edge of clk_dst (○6 ). As a result, full of the output FIFO is deasserted 

after the following rising clock edge of clk_switch (○7 ). Now it is possible to start the actual 

transfer and rd_en of the input FIFO is asserted by the control logic (○8 ). Subsequently, the 

FIFO entries will become available at the output of the source FIFO (○9 ), but it will take 3 

additional cycles to traverse the switching structure before the destination FIFO is reached 

at ○10 . Starting transfer also results in resetting the full signal of the input FIFO, which was 

asserted at ○3 . 

A signal to presence valid data is multiplexed with the payload in the switching structure 

(see section ‎4.3.4) and controls wr_en of the output FIFO. However, rd_en of the source will 

be deasserted too late (○11 ), since one cycle is necessary to react on the corresponding asser-

tion of empty. So precautions must be taken for the data present signal, in order to deassert 

wr_en on time such as at ○12 . Contrary to the solution presented in ‎4.3.4, FIFOs could be 

configured to provide a valid signal for data that could be used for this purpose. This would 

be beneficial at the output of the crossbar switch, too: the deassertion of rd_en as per-

formed by the destination module at ○13  will be possible only by coincidence. Instead, the 

empty signal of the previous cycle must be evaluated to ensure that the current entry is 

valid. On the other hand, the interface is smaller using the current approach. This was pre-

ferred in order to reduce the number of bus macros needed between PRRs and static design. 

As stated previously, the full signal is asserted 5 cycles in advance. This is required to ensure 

that all data that was already read from the input FIFO but has not reached the destination 

yet can still be stored. Currently, the same IP core is used for FIFOs both at the output and 

the input of XBar, so some space might be wasted at the input side, since this FIFO signals 

full before it actually is in order to avoid overflow at the output side. However, there is no 

reason for this limitation and allowing a different threshold value for the full signal at the 

source is easy to implement. On the other hand, modules will benefit from advanced full 

notifications, too, and the impact of wasting a few slots is rather low. 

Data is always sent as soon as possible in order to keep the FIFOs at the inputs free and at 

the outputs filled. However, it is not always possible to forward data, even though the tar-

get buffer is ready: in the case of more than one addressed port (multicast), the slowest 



 

54 

 
 

target determines the maximum transfer speed. If at least one of the destinations is blocked, 

all transfer from the associated source has to be stopped by the control logic. If no destina-

tion is configured, data is still accepted by XBar and remains in the input FIFO until the 

cross-point configuration is updated and a target exists.  

5.3.2 Exemplary Implementation 

To verify the behavior, a test environment was implemented. It comprises a wrapper mod-

ule containing XBar and a control application running on the host machine. The wrapper 

module is implemented in VHDL and corresponds to the static part of a PR design. It pro-

vides access to the XBar by utilizing the local bus of the XRC-4 development board, which is 

connected to the PCI bus of the host. The control application is a MFC based Windows ap-

plication which allows the state of any cross-point to be selected in a user-friendly GUI (see 

Figure ‎5.6). Data can be read or written from or to any port of the crossbar switch. Further-

more, different clock speeds can be configured for the XBar. Nevertheless, performance 

cannot be evaluated using this setup, since the local bus has a maximum clock speed of 66 

MHz and provides only 32 bits data width which is not enough to saturate the crossbar 

switch. 

The floorplan of the associated FPGA implementation is shown in Figure ‎5.7. The depicted 

crossbar switch provides 4 interfaces with 4 input and 4 output ports each, and thereby 

provides channels of up to 28 bits per module. For behavioral verification, FIFOs are imple-

mented using distributed RAM and the depth is configured to be 16. Wires of the switching 

structure are colored red, FIFOs at XBar inputs are highlighted yellow, FIFOs at XBar outputs 

are green and the control logic is white. Cyan wires belong to the wrapper module. 

 
Figure ‎5.6: Test application on host machine 



 

55 

 
 

Input buffers

Output buffers

hard macro

 
Figure ‎5.7: Test environment on Virtex-4 VLX160 





 

57 

 
 

6 Evaluation 

In this chapter the proposed crossbar switch architecture is evaluated and compared to 

other on-chip communication infrastructures. In section ‎6.1 several designs for different 

parameters were implemented to determine the area utilization and performance. The re-

sulting data is used to estimate scaling of the architecture. Subsequently, set-up time for a 

cross-point configuration is investigated. Afterwards, the amount of flexibility is evaluated 

and the architecture is compared to other approaches. Finally, possible applications of this 

architecture are discussed. This also includes reasons why this crossbar switch is not appro-

priate for certain applications and which features need to be added to expand the applica-

tion domain. 

6.1 Impact of design parameters 

There are 4 major design parameters, which are explored in the following: 1. number of 

modules, 2. interface width, 3. FIFO implementation and 4. FIFO depth. Basically, no test 

case showed unexpected results. These are presented in two separate sections for area 

utilization and performance. In section ‎6.1.3 the results are compared with reference values 

of the related work. 

6.1.1 Area 

Calculating area utilization is delegated to the Xilinx tools and thus relatively straightforward. 

Figure ‎6.1 shows the number of slices needed by the XBar design for a varying per-module 

interface width. For a better comparison both 2-module and 4-module designs were imple-

mented and the logic for all components (FIFOs, control logic, switching structure) is in-

cluded in the figures. The FIFO depth was kept constant at 16 and Block RAM was used for 

their implementation. The graph shows the linear scaling which is expected. For every addi-

tional port, two additional FIFOs per module must be provided. And because several cross-

points were removed from the basic crossbar switch layout, the switching structure (hard 

macro) is also growing linearly with an increasing number of ports. This is in contrast to the 

result of increasing the number of modules. In this case the area for the hard macro grows 

quadratically. This explains the slightly different course of the line in  Figure ‎6.2, which is not 

linear anymore. 



 

58 

 
 

In order to evaluate FIFO resource usage, a crossbar switch providing 28 bit wide interfaces 

to 4 modules was implemented using both Block RAM and Distributed RAM. In the case of 

Block RAM, only few additional resources are needed to provide a larger FIFO. However, for 

each FIFO one Block RAM is used (on a Virtex-4 up to 1024 FIFO slots can be realized using 

one Block RAM). So in the case of this example 32 Block RAMs are required for the switch (4 

modules × 8 ports). In the case of Distributed RAM a massive amount of FPGA logic is re-

quired to provide enough memory. Obviously, Distributed RAM is only an appropriate solu-

tion for very small buffers. 

 
Figure ‎6.1: Used slices for varying interface width 

 
 Figure ‎6.2: Used slices for varying number of modules 

 
Figure ‎6.3: Used slices for varying FIFO depth 

6.1.2 Performance 

Performance is a rather unclear term and may refer to several different aspects. In this con-

text, we are mainly concerned with latency and throughput. Of course, these metrics are 

usually antagonistic. As stated in ‎2.4.3, latency normally suffers as throughput is increased 

221
442

662
884

1104
492

985

1474

1968

2461

0

500

1000

1500

2000

2500

3000

7 14 21 28 35

Sl
ic

e
s

Interface bit width per module

2 modules 4 modules

221
492

795

1132442

985

1592

2269

0

500

1000

1500

2000

2500

2 4 6 8

Sl
ic

e
s

Number of modules

7 bit interfaces 14 bit interfaces

2370 3185 3956
5585

8848

16178

1968 2582 2737 3122 3249 36970

5000

10000

15000

20000

16 32 64 128 256 512

Sl
ic

e
s

FIFO depth

Distributed RAM Block RAM



 

59 

 
 

and vice versa. Since the latency within the hard macro is always 1 clock cycle, the latency of 

the crossbar switch is constant as well: four clock cycles are required to transfer data from 

the input buffer to the output buffer: 1. rd_en is asserted at the input FIFO, 2. the entry 

becomes available and is forwarded to the input register of the hard macro, 3. the hard 

macro is traversed, 4. the entry is written to the output FIFO. However, from the module 

perspective, the latency is higher: 2 more cycles (but of different clock domains) for writ-

ing/reading the FIFOs are required. Additionally, data may accumulate in these buffers and 

the latency for messages will increase further in this case. Contrary to latency, throughput is 

dependent on the design parameters and can be expressed by simple formulae, e.g. the 

maximum aggregated throughput is: 

𝑡𝑕𝑟𝑜𝑢𝑔𝑕𝑝𝑢𝑡𝑚𝑎𝑥 ,𝑎𝑔𝑔 = 𝑤𝑖𝑑𝑡𝑕𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 ∙ #𝑚𝑜𝑑𝑢𝑙𝑒𝑠 ∙ 𝑓𝑚𝑎𝑥  

whereby widthinterface and #modules are design parameters and only the maximal achievable 

frequency fmax remains to be estimated. 

However, this is not as straightforward as identifying area utilization, since readings cannot 

simply be taken from the synthesis tools. The biggest problem concerning clock estimation 

arises when routing the hard macro. Timing constraints must be defined manually for each 

net; specifying a maximum input-to-output delay is not possible. Thereby, the place and 

route tools are prevented from exploring the whole design space. In addition, applying very 

tight constraints leads to much worse results than actually possible. Furthermore, nets of 

the remaining design narrow the scope for alternatives within the hard macro routing. The 

routing paths available to the switching structure are thus dependent on the remaining im-

plementation and cannot be easily calculated. Finally, the specific target device and its 

speed grade have to be considered. All in all, finding correct values for net constraints is 

quite difficult. 

Precise values for some different configurations can be found in Table ‎6.1. For the reasons 

given previously, better results may be possible, but degradation may also result if the XBar 

is embedded into a more complex design. As may be expected, the maximum clock speed 

that can be achieved drops as the interface width or the number of modules increases. It 

shows that the impact of the interface width is not as high as the impact of number of mod-

ules. This can be followed easily by looking at the switching structure: its width is related to 

the number of modules, but it is independent of the interface width. Thus, propagation 

delays increase more significantly as the number of modules increases. This can also be de-

rived directly from the formula in section ‎5.1.3, where λ is equal to the number of modules. 



 

60 

 
 

For only two modules the critical path is not within the switching structure. However, this is 

no longer true as soon as the number of modules increases. It is possible to reduce this criti-

cal path by introducing pipeline stages within the switching structure as suggested in chap-

ter ‎7. But doing so has a bad effect on latency. 

Parameter Max. frequency Aggregated throughput 

2 modules, 7 bit 400 MHz 7 5.6 Gbit/sec 

2 modules, 28 bit 345 MHz 19.32 Gbit/sec 

2 modules, 56 bit 323 MHz 36.18 Gbit/sec 

4 modules, 7 bit 222 MHz 6.22 Gbit/sec 

4 modules, 28 bit 182 MHz 20.38 Gbit/sec 

4 modules, 56 bit 161 MHz 36.06 Gbit/sec 

Table ‎6.1: Clock speed and throughput for different designs 

Another insight regarding maximum frequency involves the implementation methodology of 

the FIFOs. Naturally, higher clock speeds can be achieved for smaller buffers. However, 

while Block RAM shows much better performance for buffer sizes above 64 slots, smaller 

buffers run faster when using Distributed RAM. This is because Block RAM cannot be ac-

cessed as easily depending on their location on the FPGA and long wires may have to be 

introduced. But depending on the top-level layout of the PR design, this drawback may be 

insignificant, since PRRs will probably not abut the crossbar switch, anyway. The remaining 

design parameters for the FIFOs, which are not mentioned in the table above, were Distri-

buted RAM for implementation and 16 slots for the depth. 

6.1.3 Comparison 

Since a crossbar switch is a rather heavy structure providing a large number of parallel wires, 

it might be expected that area overhead will be a big problem. Fortunately, this is not the 

case. Of course, compared to a bus, more resources are used by the communication infra-

structure, but the introduced NoCs show worse results for settings as in the scope of this 

work. For example, when four CoNoChi routers are instantiated, which is the minimum to 

connect four modules, 3072 slices are used. A corresponding XBar configuration only uses 

1968 slices and provides a significantly higher throughput and lower latency at the same 

time. Compared to this, buses perform less well: 6.4 Gbit/sec can be achieved by the ReCo-

Bus architecture, but has to be shared by all modules. Similar data rates can be achieved 

between all modules connected to the crossbar switch in parallel. However, comparing pre-

                                                           
7
 limited by the maximum frequency for this FPGA device 



 

61 

 
 

cise values is difficult here, since the architectures were implemented on different devices. 

Compared to the Xilinx Crossbar Switch, area utilization for the switching structure is high. 

As mentioned before it is a great advantage to use routing resources to implement the 

switching structure. However, only the switching structure could benefit from this approach. 

Since most logic is already needed for buffers and control logic, this improvement carries 

less weight for the current design. But it would be feasible to include all cross-points again, 

and much higher switching flexibility could be provided. 

6.2 Reconfiguration and switching performance 

Updating the cross-point configuration is very fast. Just two cycles after writing the configu-

ration register, the new setting becomes valid. This is an advantage compared to the Xilinx 

crossbar switch solution, which uses partial reconfiguration capabilities of FPGAs to update 

switch settings. As mentioned in section ‎4.1, it is possible to provide a configuration inter-

face to each module, which would allow establishing new channels with high frequencies at 

runtime. However, before a new configuration is applied, all buffers affected by the update 

should be empty, since otherwise data sent earlier might be delivered to the wrong destina-

tion.  

6.3 Scaling and Flexibility 

Crossbar scaling is a critical issue, since the number of cross-points and wires grows as the 

square of the numbers of inputs and outputs. However, this aspect is less problematic in 

this architecture, since critical resources were reduced by removing several cross-points. 

But it is still not possible to use this structure as interconnection for a large number of com-

ponents. Even if additional improvements like pipeline stages were introduced, the main 

reason, why communication between hundreds of modules is not possible, remains: the 

centralized structure requires all components to be arranged around a single communica-

tion block. Components must be placed farther and farther away from this central point, but 

all data has to be sent through it. Obviously, this becomes inefficient. Nevertheless, com-

pared to a bus, scaling is better. There is no critical point at which saturation is reached, 

since additional bandwidth is provided together with each additional module. Both for bus-

es and the structure proposed in this work, scaling could be improved by introducing hierar-

chies: several independent instances of the same interconnection structure could be com-

bined. This yields to architectures with hybrid properties, but reduces flexibility as explained 

in section ‎2.4.4. 



 

62 

 
 

Packet switched networks provide several routers operating independently and thereby do 

not suffer such scaling problems. Nonetheless, another issue arises and limits might be 

reached quickly as well: latency is the problem in this case. Small synchronization messages 

and handshakes cannot be handled efficiently if delivery takes 20 or more cycles – which 

may be the case as soon as just a few hops have to be taken. Of course, this problem can be 

tackled with the same technique as mentioned previously, such as providing a separate low-

latency network. 

A lot of flexibility is provided by XBar, but it must be said that the potential is not fully ex-

ploited. It is possible to establish multiple channels per module, the link width can be 

adapted at runtime, modules may send and receive data simultaneously, and messages are 

transferred in parallel once the connections are established, so no blocking occurs. These 

are great advantages over bus-like approaches, where any communication is limited to the 

static properties of the architecture. But in order to play out all the strengths of this flexibili-

ty, configuration must be accessible by modules and not only by some host controller as it is 

currently the case. Because such an external controller can consider pre-known communica-

tion needs only. If unexpected requirements arise for some module, no efficient mechanism 

exists to adjust the established channels, although these changes could be done very fast. 

Providing an appropriate controller within the switch could even be used to simulate pack-

et-switched behavior by frequently changing the destinations. However, this will reintro-

duce the overhead which should be avoided by limiting to rather fixed channels during the 

lifetime of one module. 

6.4 Field of Use 

The proposed communication architecture was designed for inter-module communication. 

Special requirements of partially reconfigurable systems were taken into account and an 

appropriate amount of flexibility is provided. Nevertheless, this solution still suits better to 

data stream processing than concurrently interacting applications, because of the circuit 

switched approach. High throughput can be provided on several parallel channels which 

matches requirements of multimedia or network applications perfectly. Furthermore, the 

structure imposes creation of processing chains, since once a path is set up, data may rush 

through without further ado. 

It might be considered to use the crossbar switch to manage access to peripherals or memo-

ry. A PRM can take over the role of an adapter by forwarding data to several XBar ports and 

may contain an arbiter to manage access to an exclusive resource. But particularly in the 



 

63 

 
 

case of memory access, the connection flexibility might not be needed, since memory 

access should be provided to all PRMs. Because of this, it is more reasonable to provide this 

access separately by a dedicated interface. Another reason is that addresses must be sup-

plied together with data, and the XBar interface is not laid out therefore. 

If shared memory has to be implemented, a bus could be used as an additional communica-

tion infrastructure. However, higher performance can be achieved if distinct memory cells 

are accessed simultaneously, as it is possible with the development board used in this work. 

In order to increase performance, memory cells could be linked directly to a specific PRR, 

which would prevent memory sharing, or a memory management unit (MMU) can be intro-

duced. The latter case is visualized in Figure ‎6.4. In this figure, local bus access is managed 

by the MMU as well. This is also proposed by Alpha Data, the manufacturer of the board 

used in this work, in order to provide consistent access to external resources [26]. 

At its current stage, the crossbar switch should be used for predictable communication pat-

terns only. Cross-point configurations must be known in advance and set up before the cor-

responding component starts operation. Again, this suits the conditions that apply when 

data streams are processed. Furthermore, error detection is not implemented, so reliability 

is expected of the modules, as long as no further precautions are taken. 

FPGA

PRR 0

PRR 1

Data 
Out

Data In

Data 
Out

Data In

XBar MMU
Mem I/O

Mem I/O

SSRAM

SSRAM

Lo
ca

l B
u

s

 
Figure ‎6.4: PR system with MMU 

A simple application scenario involves compression- and encryption-modules, which are 

connected in series in order to speed-up transfer over a low speed channel that cannot be 

trusted (e.g. radio waves). The modules could be exchanged independently according to the 

currently required algorithm. Partial reconfiguration is beneficial in this scenario, since the 



 

64 

 
 

algorithms might change frequently if the same accelerator is shared for several different 

connections. Furthermore, adding support for additional algorithms will be possible at any 

time because all that has to be done is providing the bitstream for a new PRM. 



 

65 

 
 

7 Conclusion and Future Work 

In this work a crossbar switch architecture for inter module communication in a partially 

reconfigurable system, called XBar, was introduced. Design and implementation were ex-

plained in detail and correct operation of the implementation could be shown. The proposal 

is suitable for small configurations consisting of up to 8 partially reconfigurable regions. This 

matches what is actually possible on a single FPGA device using the tools currently available. 

On these terms high throughput can be achieved on multiple independent channels. Fur-

thermore, a rather high amount of flexibility is provided within the infrastructure compared 

to bus architectures commonly in use. However, it showed that competing against packet 

switched approaches is not possible in this field. Neither is it possible to achieve better scal-

ing behavior with the crossbar switch approach than with rather decentralized NoCs. On the 

other hand, these flexible networks have not yet been shown to be competitive against less 

complex structures such as buses regarding performance, since they introduce high over-

head which reduces throughput and raises latency. And it is still uncertain which amount of 

flexibility is really needed. Furthermore, scaling is less important when limiting to smaller 

systems and last but not least, interfacing packet switched networks is much more compli-

cated. 

Some questions were raised during this work and several issues remain to be solved. First it 

might be asked whether the restriction to the very symmetric design is useful. While the 

interfaces of any pair of PRRs must remain equal to allow arbitrary placement of modules, 

having different input and output bit widths is no violation of this design requirement. As a 

result, additional flexibility could be introduced at design time and only minor changes on 

the current implementation would be necessary for realization. 

A big problem is the performance drop for a higher number of modules. Pipeline stages are 

the most straightforward approach to tackle this problem. Implementing pipeline stages 

would be very easy: all that has to be done is placing additional registers on the critical path 

within the switching structure as depicted in Figure ‎7.1. 

CLBCLBCLBCLB
“0”

CLBCLB

 
Figure ‎7.1: One CLB row of the switching structure with pipeline stages 



 

66 

 
 

In all shaded CLBs the synchronized slice output would be used for the horizontal nets in-

stead of the asynchronous one. In this case, data is not forwarded along the path before the 

next clock cycle. The maximal propagation delay between two of such pipeline CLBs would 

be much smaller than the propagation delay for the whole path and remarkably higher fre-

quencies could be achieved. But latency would differ for varying paths through the switch-

ing structure, which leads to both more complex control logic and more complicated mod-

ule design. Another modification on the switching structure that might be considered is 

reducing the density by having “free” CLB columns in between to provide more wire candi-

dates for vertical nets. Furthermore, better estimations for propagation delays would be 

favored in this context. Currently only worst-case values can be assumed for all segments of 

the path. As a result, the estimated propagation delay is much higher than it actually is. 

As already stated before, the field of use for the XBar could be extended by introducing a 

more powerful internal controller. If an appropriate interface would be provided, modules 

could manage the cross-point configuration on their own. This would ease the design of self-

organized and fault tolerant systems. Furthermore, fewer resources are wasted, since chan-

nels that are rarely needed may be destroyed immediately after use without notifying the 

host controller. So control overhead would be reduced in this example as well. However, the 

area overhead which is necessary to provide such functionality will increase. 

Another issue arises when the top-level design for the partially reconfigurable system has to 

be implemented. Following the EA PR tool flow for a PR design, bus macros are needed as 

interface for every partially reconfigurable region. Since the standard bus macros provided 

by Xilinx are rather inflexible and must be instantiated with care, automatically generated 

bus macros corresponding to the XBar interface would speed up the system implementation. 

The XBarGenerator application could be extended easily for this purpose. 

 



xiii 
 

A. Source Code 

Since several thousand lines of code were written for this work, it is not possible to include 

them in this document. All additional sources created during this work can be accessed via 

the web: http://www.stud.uni-karlsruhe.de/~upbof. The directory index of the filed archive 

is shown below. 

Directory Description 

/bin Compiled applications 

 

/XBarGenerator Windows XBarGenerator application, can be used to create all 

HDL sources for different parameters 

/xrc-4-test Windows GUI to interact with the ADM XRC-4 board and can 

be used to test the XBar behavior 

/bit Bitstreams for ADM XRC-4 board with VLX160 FPGA 

 

/src All source code 

 

/cpp C++ sources 

 

/XBarGenerator Visual Studio 2008 project: XBarGenerator application 

 

/xrc-4-test Visual Studio 2008 project: xrc-4-test application 

 

/hdl HDL sources 

 

/xrc-4-test ISE 9.1i_PR14 project: test environment corresponding to 

xrc-4-test application 

 

http://www.stud.uni-karlsruhe.de/~upbof




xv 
 

Acronyms 

CLB 
Configurable Logic Block   

CoNoChi 
Configurable Network-on-Chip   

EA PR 
Early Access Partial Reconfiguration   

ESM 
Erlangen Slot Machine   

FIFO 
First In, First Out (memory)   

FPGA 
Field programmable Gate Array   

GUI 
Graphical User Interface   

IP 
Intellectual Property   

ISE 
Integrated Software Environment   

LUT 
Look-Up Table   

MFC 
Microsoft Foundation Classes   

MMU 
Memory Management Unit   

NoC 
Network-on-Chip   

OS4RS 
Operating System for Reconfigurable 
Systems   

PAR 
Place & Route   

PIP 
Programmable Interconnect Point   

PLD 
Programmable Logic Device   

PR design 
partially reconfigurable design   

PR system 
partially reconfigurable system   

PRM 
Partially Reconfigurable Module   

PRR 
Partially Reconfigurable Region   

QoS 
Quality of Service   

RMB 
Reconfigurable Multiple Bus   

SoC 
System-on-Chip   

SSRAM 
Synchronous Static Random Access 
Memory   

VHDL 
VHSIC HDL, Very High Speed Integrated 
Circuit Hardware Description Language   

XDL 
Xilinx Design Language   

XUP 
Xilinx University Program   





xvii 
 

Bibliography 

[1] Xilinx, Inc., "Benefits of Partial Reconfiguration," Xcell Journal, 2005. 

[2] Xilinx, Inc., "Difference-Based Partial Reconfiguration," Xilinx Application Note XAPP290, 

December 2007. 

[3] Alpha Data, "ADM-XRC-4 Datasheet," April 2009. 

[4] Xilinx, Inc., "Virtex-4 family overview," Xilinx Datasheet DS112, 2004. 

[5] Xilinx, Inc., "Virtex-5 family overview: LX, LXT and SXT platforms," Xilinx Datasheet 

DS100, 2007. 

[6] Xilinx, Inc., "Virtex-6 family overview: LX, LXT and SXT platforms," Xilinx Datasheet 

DS150, 2009. 

[7] B. Zhang, M. Huebner, C. Schmutzler, J. Becker, W. Stechele, C. Claus, "An XDL-based 

busmacro generator for customizable communication interfaces for dynamically and 

partially reconfigurable systems," in Workshop on Reconfigurable Computing Education 

at ISVLSI 2007, Porto Alegre, Brazil, 2007. 

[8] Xilinx, Inc., "LogiCORE™ FIFO Generator v4.2," Xilinx User Guide UG175, October 2007. 

[9] Xilinx, Inc. (2000, July) Xilinx Design Language. [Online]. xilinx6.1/help/data/xdl/xdl.html 

[10] A. Kulmala, T.D. Hämäläinen, E. Salminen, "Survey of Network-on-chip," in OCP White 

Paper, 2008. 

[11] J. Teich, A. Ahmadinia, C. Bobda, M. Majer, "The Erlangen Slot Machine: A Dynamically 

Reconfigurable FPGA-Based Computer," in Journal of VLSI Signal Processing Systems, 

2007, pp. 15-31. 

[12] M. Hübner, B. Grimm, J. Becker, M. Ullmann, "On-Demand FPGA Run-Time System for 

Dynamical Reconfiguration with Adaptive Priorities," in Field Programmable Logic and 

Application, 2004, pp. 454-463. 

[13] A.K. Somani, H. Schröder, H. Schmeck, A. Spray, H.A. ElGindy, "RMB - a reconfigurable 

multiple bus network," in Second International Symposium on High-Performance 

Computer Architecture (HPCA-2), San Jose, 2003, pp. 108-117. 

file:///C:/Users/Fischer/Documents/UNSW/Studienarbeit/xilinx6.1/help/data/xdl/xdl.html


xviii 
 

[14] C. Haubelt, J. Teich, D. Koch, "Efficient Reconfigurable On-Chip Buses for FPGAs," in 

16th International Symposium on Field-Programmable Custom Computing Machines, 

2008, pp. 287-290. 

[15] A. Bartic, D. Verkest, S. Vernalde, R.Lauwereins, T. Marescaux, "Interconnection 

Networks Enable Fine-Grain Dynamic Multi-tasking on FPGAs," in Field-Programmable 

Logic and Applications, 2002, pp. 741-763. 

[16] J.-Y. Mignolet, V. Nollet, T. Marescaux, D. Verkest, S. Vernalde, R. Lauwereins, T.A. 

Bartic, "Highly scalable network on chip for reconfigurable systems," in International 

Symposium on System-on-Chip, 2003, pp. 79-82. 

[17] R. Koch, C. Albrecht, T. Pionteck, "Applying Partial Reconfiguration to Networks-on-

Chip," in Field Programmable Logic and Applications, Madrid, 2006, pp. 155-160. 

[18] P. Alfke, C. Fewer, S. McMillan, B. Blodget, D. Levi, S. Young, "A high I/O reconfigurable 

crossbar switch," in Field-Programmable Custom Computing Machines, 2003, pp. 3-10. 

[19] The ReCoBus Project Website. [Online]. http://www.recobus.de 

[20] P. Coene, D. Verkest, S. Vernalde, R. Lauwereins, V. Nollet, "Reconfigurable 

Architectures Workshop," 2003. 

[21] T. Pionteck, C. Albrecht, B. Maehle, R. Koch, "An Adaptive System-on-Chip for Network 

Applications," in 13th Reconfigurable Architectures Workshop associated with the 20th 

International Parallel and Distributed Processing Symposium, 2006. 

[22] R. Koch, C. Albrecht, E. Maehle, T. Pionteck, "A Design Technique for Adapting Number 

and Boundaries of Reconfigurable Modules at Runtime," in International Journal of 

Reconfigurable Computing, 2009. 

[23] C. Fewer, "Cross Bar Switch Implemented in FPGA," Xilinx White Paper WP166, 

September 2002. 

[24] Xilinx, Inc., "Early Access Partial Reconfiguration User Guide," Xilinx User Guide UG208, 

September 2008. 

[25] Xilinx, Inc., "Virtex-4 FPGA Data Sheet," Xilinx Datasheet DS302, 2009. 

[26] Alpha Data, "ADM-XRC SDK 4.9.3 User Guide," 2009. 

 

http://www.recobus.de/

