Simulation-Based Functional Verification of Dynamically
Reconfigurable Systems

LINGKAN GONG and OLIVER DIESSEL, University of New South Wales

Dynamically reconfigurable systems (DRS) implemented using field-programmable gate arrays (FPGAs) al-
low hardware logic to be partially reconfigured while the rest of the design continues to operate. By mapping
multiple reconfigurable hardware modules to the same physical region of an FPGA, such systems are able
to time-multiplex their modules at runtime and adapt themselves to changing execution requirements. This
architectural flexibility introduces challenges for verifying system functionality. New simulation approaches
are required to extend traditional simulation techniques to assist designers in testing and debugging the
time-varying behavior of DRS. This article summarizes our previous work on ReSim, the first tool to allow
cycle-accurate yet physically independent simulation of a DRS reconfiguring both its logic and state. Further-
more, ReSim-based simulation does not require changing the design for simulation purposes and thereby
verifies the implementation-ready design instead of a variation of the design. We discuss the conflicting
requirements of simulation accuracy and verification productivity in verifying DRS designs and describe
our approach to resolve this challenge. Through a range of case studies, we demonstrate that ReSim assists
designers in detecting fabric-independent bugs of DRS designs and helps to achieve verification closure of
DRS design projects.

Categories and Subject Descriptors: B.6.3 [Logic Design]: Design Aids—Verification; 1.6.7 [Simulation
and Modeling]: Simulation Support Systems

General Terms: Verification
Additional Key Words and Phrases: FPGA, dynamically reconfigurable systems, verification

ACM Reference Format:

Lingkan Gong and Oliver Diessel. 2014. Simulation-based functional verification of dynamically reconfig-
urable systems. ACM Trans. Embedd. Comput. Syst. 13, 4, Article 97 (February 2014), 23 pages.

DOILI: http://dx.doi.org/10.1145/2560042

1. INTRODUCTION

Due to the exponential increase in hardware design costs and risks, the electronics
industry has begun shifting towards the use of reconfigurable devices such as field-
programmable gate arrays (FPGAs) as mainstream computing platforms. An FPGA
is a special type of integrated circuit that can be repeatedly programmed to perform
an arbitrary logic function. Traditionally, an FPGA device is programmed when the
system is powered up. Using dynamic partial reconfiguration (DPR), the programming
and reprogramming of the FPGA can occur at system runtime and can be controlled by
the system itself (i.e., self-reconfiguration). In particular, dynamically reconfigurable
systems (DRS) implemented on FPGAs can reprogram/reconfigure part of their circuits
at runtime to adapt to changing execution requirements [Xilinx 2010c; Altera 2010].

The authors thank Xilinx for their generous donations.

Authors’ addresses: L. Gong (corresponding author) and O. Diessel, School of Computer Science and Engi-
neering, University of New South Wales; corresponding author’s email: lingkan.gong@unswalumni.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

(© 2014 ACM 1539-9087/2014/02- ART97 $15.00

DOI: http://dx.doi.org/10.1145/2560042

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 97, Publication date: February 2014.

97:2 L. Gong and O. Diessel

By mapping multiple reconfigurable hardware modules (RM) to the same physical
reconfigurable region (RR) of the FPGA, the system can time-multiplex its submodules
at runtime, and the design density of a DRS is increased [Wirthlin and Hutchings 1998].
Designing effective DRS poses several challenging research problems, and function-
ally verifying the correctness of such systems is one of them. Register transfer level
(RTL) simulation is the most common method of verifying hardware (either ASIC- or
FPGA-based) design functionality. Since DPR is the process of reprogramming the con-
figuration memory of the FPGA fabric with a configuration bitstream, cycle-accurate
simulation of the reconfiguration process involves modeling the configuration memory
and the configuration bitstream. However, the organization of the FPGA fabric, includ-
ing the configuration memory and the configuration bitstream, is proprietary to the
FPGA vendors. Furthermore, even if the simulation models of the FPGA fabric were
available, the simulation would be performed at too low a level of detail and would
significantly reduce verification productivity. As a result, new simulation approaches
need to extend traditional simulation techniques to assist designers in testing and
debugging DRS designs while part of the design is undergoing reconfiguration.
ReSim [Gong and Diessel 2011a, 2011b, 2012; Gong et al. 2013] is a reusable simu-
lation library for supporting cycle-accurate simulation of modular reconfigurable DRS
designs. The core idea of ReSim is to use a simulation-only layer to emulate the phys-
ical fabric of FPGAs so as to assist designers! in testing/debugging/verifying the user
design. The following compares ReSim with previous RTL simulation tools for DRS
designs (e.g., [Luk et al. 1997; Robertson and Irvine 2004; Hansen et al. 2013]).

—ReSim-based simulation is cycle accurate. Using the simulation-only layer, the re-
configuration process, including the transfer of configuration bitstreams and the sub-
sequent module swapping, can be emulated, except that simulation-only bitstreams
instead of real bitstreams are used and interpreted [Gong and Diessel 2011b, 2012].
Although the simulation-only layer is not a completely accurate model of the FPGA
device, the user design, which is the focus of verification, is simulated in the desired
cycle-accurate manner.

—ReSim-based simulation is physically independent. Instead of modeling the config-
uration bits of the FPGA fabric, the simulation-only layer only utilizes user design
parameters (e.g., a list of interfacing signals that crosses RR boundaries, the affilia-
tion of RMs and RRs, and the target FPGA family) to model reconfiguration [Gong
and Diessel 2011b]. Therefore, the productivity of verifying a DRS design is not com-
promised for the level of simulation accuracy. One significant extra benefit of physical
independence is that FPGA vendors do not need to disclose the details of the FPGA
device in order to support simulation of partial reconfiguration.

—The simulated design is implementation ready. Since the simulation-only layer em-
ulates the target FPGA, the user design does not need to be changed for simulation
purposes [Gong and Diessel 2011b, 2012]. As a result, a user design bug exposed by
ReSim-based simulation reveals an actual bug in the implemented design, and the
design as implemented instead of some variation of it is simulated and verified.

Our research project focuses on the effective modeling [Gong and Diessel 2011a], simu-
lation [Gong and Diessel 2011b, 2012], and functional verification of DRS designs, and
we use both simple in-house designs as well as cutting-edge real-world applications
[Gong et al. 2013] as our case studies. This article achieves the following.

—It summarizes our research into functional verification of DRS designs.

1Since design engineers also spend significant time in testing and debugging, this document does not explic-
itly distinguish between design engineers and verification engineers but refers to both as designers.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 97, Publication date: February 2014.

Simulation-Based Functional Verification 97:3

Reconfigurable

A Module A
’
’
]
K
o Reconfigurable
’
B B B bitstreams ot Module B
application data I;ecgnﬁgurable r s
Static egion K oo
application logic | P
“
/— '} K

User Design

Configuration

Memory

Configuration
Port (ICAP)

Physical Layer

Fig. 1. Conceptural diagram of a DRS design.

—It provides a comprehensive set of case studies and presents a summary of the lessons
learned.

—1It presents a number of improvements to the ReSim library.

—It discusses possible future research directions.

The rest of this article is organized as follows. Section 2 summarizes verification chal-
lenges identified in our previous publications and illustrates the way ReSim resolves
such challenges. We back up our claims in Section 2 with a comprehensive set of case
studies in Section 3. Our case studies cover a range of DRS design styles, and we fo-
cus on real bugs detected in the development process. Section 4 outlines related work
and forecasts future directions for the functional verification of DRS designs. Section 5
concludes.

2. RESIM-BASED SIMULATION OF DRS DESIGNS
2.1. Challenges in Verifying DRS Designs

Compared with traditional static FPGA designs, DPR introduces additional flexibility
for system designers but also introduces challenges to the verification of design func-
tionality. Figure 1 illustrates the design under test (DUT) to be simulated and tested.
Before reconfiguration, the static logic should properly synchronize with the old RM to
pause the ongoing computation. During reconfiguration, a reconfiguration controller
transfers the configuration bitstream (depicted by a sequence of small black squares
alongside communication links in the figure) of the new RM to the configuration port
(e.g., Internal Configuration Access Port, ICAP).2 During this period, the static part
must isolate the RR to avoid the propagation of spurious outputs from partially config-
ured RMs. After reconfiguration, the incoming RM needs to be initialized to a known
state before it starts execution. We refer to the logic that performs the synchroniza-
tion, isolation, and initialization of RMs as well as the bitstream transfer logic as the
reconfiguration machinery (moderately shaded blocks in the figure).

Our previous work identified the potential bugs that could be introduced to DRS
designs before, during, and after reconfiguration [Gong and Diessel 2011a]. Since tra-
ditional RTL simulation does not model characteristic features of DPR (i.e., module
swapping and its triggering condition, bitstream traffic, bitstream content, spurious
RM outputs, and undefined RM state); it only offers limited assistance in detecting

2Bitstream transfer can be performed by either an internal or an external reconfiguration controller.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 97, Publication date: February 2014.

97:4 L. Gong and O. Diessel

DPR-related bugs [Gong and Diessel 2011b, 2012]. However, it is challenging to accu-
rately model these characteristic features. This can be explained by considering the
two conceptual layers identified in a typical DRS design (see Figure 1).

—User Design Layer. The user design comprises all user-defined modules. These include
the application logic (lightly shaded blocks) performing the required processing tasks
of the application, as well as the reconfiguration machinery (moderately shaded
blocks) that manages the reconfiguration process.

—Physical Layer. The physical layer (darkly shaded blocks) represents the FPGA device
which contains the logic/routing resources comprising the fabric of the device, the
configuration memory controlling the function and interconnection of the fabric, the
configuration distribution network commencing with the configuration port (e.g.,
ICAP, SelectMap), and the configuration bitstream used to program/reprogram the
device. The implementation of the physical layer is proprietary to the FPGA vendor.

In traditional FPGA-based hardware designs, the physical layer is statically config-
ured and does not interact with the user design. In DRS designs, on the other hand,
the components of the FPGA fabric interact with the user design in the process of
partial reconfiguration (see the links between the two layers in Figure 1). In particular,
bitstreams are transferred by the user design, and the bitstreams subsequently over-
write the configuration memory, thereby changing the functionality of the user design.
Therefore, a completely accurate simulation of the reconfiguration process involves
modeling the FPGA fabric (i.e., fabric-accurate simulation).

As FPGA vendor tools do not provide a simulation model for the FPGA fabric, it is
nontrivial for designers to accurately simulate the interactions between the user design
and the physical layer. Potential bugs, either arising from the reconfiguration process
or from integrating DPR with the rest of the system, cannot therefore be detected until
the integrated design is tested on the target device.

On the other hand, even if the simulation model of the FPGA fabric were available,
fabric-accurate simulation would include a multitude of unnecessary details for veri-
fication. Since the user design would be represented by configuration bits instead of
RTL signals, the designer would not be able to focus on the desired user logic and ver-
ification productivity could thus be significantly reduced. For the sake of productivity,
it is therefore desirable that functional verification is physically independent.

An effective simulation method therefore needs to strike a balance between simula-
tion accuracy and verification productivity. Furthermore, this balance is constrained
by the desire for the simulated design to be implementation ready, that is, the captured
design should not be changed for simulation purposes.

2.2. The Simulation-Only Layer

The core idea of ReSim is to use a simulation-only layer to emulate the physical
fabric of FPGAs so as to achieve the desired balance between accuracy and physi-
cal independence. Figure 2 redrafts Figure 1 with the physically dependent blocks
(darkly shaded boxes) replaced by their corresponding simulation-only artifacts (open
boxes). In particular, the configuration bitstreams are replaced by simulation-only bit-
streams (SimB), possible configuration ports are represented by a CP artifact?, and
the part40f configuration memory to which each RR is mapped is substituted by an RR
artifact.

ReSim uses a simulation-only bitstream to model the bitstream traffic. A SimB cap-
tures the essence of a real bitstream in that it serves the purpose of and effects the

3The CP artifact was called “ICAP artifact” in previous publications.
“The RR artifact was called “Extended Portal” in previous publications.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 97, Publication date: February 2014.

Simulation-Based Functional Verification 97:5

Reconfigurable Region
000 simulation-only bitstream
application data Reconfigurable
Static Module A -4
application logic _ ;
A
Reconfigurable
Module B
A ’ A
User Design cecee
o y \ /4
[m] Configuration Memory
) A= (RR artifact)

Configuration Port |4 j
(CP artifact) |

Simulation-only Layer

Fig. 2. Using the simulation-only layer.

Table I. An Example of SimB for Configuring a New Module

Entry SimB Explanation Actions Taken
1 0xAA995566 SYNC Word Start the *DURING
Reconfiguration** phase
2 0x20000000 NOP -
3 0x30002001 Type 1 Write FAR Select the module id=0x02
0x01020000 FA=0x01020000 to be the next active
module in reconfigurable
region id=0x01
4 0x30008001 Type 1 Write CMD
0x00000001 WCFG
5 0x30004000 Type 2 Write FDRI Pad frame: not required
0x50000010 Size=16 Configuration data: 16
words (4 frames)
6 0x5650EEA7 SimB Frame 0 Word 0 Module signature; Module

0xF4649889 SimB Frame 0 Word 1 state data; Enable/Disable
error injection

0xA9B759F9 SimB Frame 3 Word 2
0x4E438C83 SimB Frame 3 Word 3

7 0x30008001 Type 1 Write CMD End the **DURING
0x0000000D DESYNC Reconfiguration** phase

mediation of module swapping. To improve verification productivity, the size of a SimB
is significantly reduced. Table I provides an example of a SimB that configures a new
module. Similar to a real bitstream, a SimB starts with a SYNC word (entry 1 in Table I)
and ends with a DESYNC command (entry 7 in Table I). However, a SimB differs from a
real bitstream in the frame address and the configuration data fields.

Instead of containing frame addresses for the configuration data, as found in a real
bitstream, a SimB contains numerical IDs for the module to be configured and the
target reconfigurable region. The example DRS design shown in Figure 3 has three
RRs with RRID = 0,1,2 and RRO, for example, has 2 RMs with RMID = 0,1. In the
example SimB, six consecutive words (entries 3-5 in Table I) request that the RR with
ID = 0x1 be reconfigured with a module with ID = 0x2.

Instead of containing configuration bits of RMs, as found in a real bitstream, the con-
figuration data section of a SimB contains simulation-only frames (entry 6 in Table I).

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 97, Publication date: February 2014.

97:6 L. Gong and O. Diessel

1RR = N frames MNA

DRS_DESIGN_TOP

RRO
R0 ~{Hiodlid
R1 —{liodlieR

frame 0

frame 1

frame n
frame N-1

RR1

RMO RR2
RM1 g i fgavr\?oerds

RM2 X
RM3 = 128 bits

| word3 [word2 | word1 | word0 |
128 95 63 31 0

Fig. 3. Configuration memory in ReSim-based simulation.

In particular, each RR is composed of a user-defined number of simulation-only frames
and each frame contains four words (see Figure 3). Our previous work [Gong and Dies-
sel 2011b] used simulation-only frames to indicate the start and end of error injection.
In Gong and Diessel [2012], words 1-3 of each frame are used to store the value of
user-selected RTL signals, which represent the state data of the simulated RM. This
article further extends word 0 of each frame with a sequence of signature data that are
expected to be kept unchanged and are constantly checked throughout the simulation.
If any bit of the signature data is corrupted because of a bitstream retrieval or transfer
bug in the design, the signature check would fail during simulation.
Simulation-only bitstreams model two characteristic features of DPR.

—Bitstream Traffic. Since ReSim uses a SimB to replace real bitstreams, the bitstream
transfer datapath (i.e., the transfer, compression, decryption, and arbitration of bit-
streams) is exercised in simulation. Furthermore, the length of a SimB is significantly
shorter than a real bitstream and can be adjusted to exercise various scenarios of
the bitstream transfer mechanism (e.g., FIFO full/empty).

—Bitstream Content. The configuration data of a SimB contain the signature of the
RM to be reconfigured. Checking the signature verifies that a correct bitstream is
written to the configuration port. Furthermore, the configuration data of a SimB also
contain data for state elements (i.e., flip-flops, memory cells). Since ReSim correlates
the stored state data with the state of the simulated module, incorrect state data,
typically caused by bugs in the design, can propagate to RMs of the simulated user
design after state restoration and can therefore be quickly identified in simulation.
Recent work [Hansen et al. 2013] uses real bitstreams to simulate the reconfigu-
ration process. However, since the contents of real bitstreams cannot currently be
interpreted by simulation models, they only provide limited benefits in terms of
detecting bugs.

The CP artifact models the configuration port of a DRS design. During simulation, it
interacts with the user-defined reconfiguration controller according to the interfacing
protocol specified by the device configuration guide (e.g., [Xilinx 2009b, 2010d, 2010e,
2013]). Furthermore, a CP artifact takes a simulation-only bitstream as input [Gong
and Diessel 2011b] or returns a readback SimB to the user design [Gong and Diessel
2012]. The library built-in CP artifact models the ICAP port of Xilinx FPGAs. To sim-
ulate DRS designs mapped to FPGAs from other vendors, the built-in CP artifact can
be derived and extended using the object-oriented programming techniques supported
by ReSim [Gong and Diessel 2011b].

The RR artifact is the placeholder for RMs in simulation and it models the following
characteristic features of DPR.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 97, Publication date: February 2014.

Simulation-Based Functional Verification 97:7

—Module Swapping and Triggering Condition. ReSim-based simulation connects all
RMs in parallel like most existing approaches do (e.g., [Luk et al. 1997; Robertson
and Irvine 2004]). However, since the selection of the active RM is triggered by the
SimB, any runtime-dependent events that delay the bitstream transfer also delay
the module swapping. Instead of being modeled using an approximated constant
value, the reconfiguration delay is more accurately modeled. Furthermore, since
failing to transfer the SimB correctly prevents the new RM from being swapped
in, a bug in the bitstream transfer controller or datapath can quickly be identified.
Recent work [Hansen et al. 2013] extends our idea to extract reconfiguration timing
information from the target FPGAs. Using the extracted timing, the simulation can
more accurately model module swapping and its triggering condition.

—Spurious Outputs and Undefined Initial State. Since errors are injected into both the
static and reconfigurable regions when the SimB is being written to the CP artifact,
the isolation and the initialization logic can be exercised and tested in simulation.
Failing to isolate the RR correctly can quickly be identified as a consequence of
the injected errors propagating to the static region. Failing to initialize the newly
configured module correctly can be detected, since the injected errors are not cleared.
Compared with DCS, which only drives undefined “x” values to the static region
[Robertson and Irvine 2004], our approach injects errors to both the static and the
reconfigurable regions. Furthermore, in our approach, the start and end of error
injection is also triggered by the SimB, which more accurately models the timing of
the error injection operation.

Using a simulation-only layer, modular reconfiguration [Gong and Diessel 2011b]
and configuration readback [Gong and Diessel 2012] can be simulated in the desired
cycle-accurate manner. The user-defined reconfiguration controller reads/writes SimBs
from/to the simulated CP artifact as if it were reading/writing a real configuration port.
The RR artifact uses RRIDs/RMIDs instead of frame addresses to drive module swap-
ping and to save and restore state data of simulated RMs.

Use of a simulation-only layer to emulate an FPGA device is analogous to the use
of a bus functional model (BFM) to emulate a microprocessor when testing and veri-
fying peripheral logic attached to a microprocessor bus [Xilinx 2010b]. Although the
BFM is not a completely accurate representation of the microprocessor, it is accurate
enough to capture the interactions between the microprocessor and the bus periph-
eral to be tested. Furthermore, since the BFM approach abstracts away the internal
behaviors of a processor such as pipelines, BFM-based simulation is more productive
than simulating a completely accurate processor model. Similarly, the simulation-only
layer emulates the FPGA device and captures the interactions between the physical
device and the user design to be tested. Furthermore, the simulation-only layer ab-
stracts away the details of the FPGA fabric and significantly improves the verification
productivity compared with fabric-accurate simulation.

2.3. Extended ReChannel

Use of the simulation-only layer can also be extended to transaction-level modeling
(TLM). Our previous work proposed a top-down modeling methodology using ReChan-
nel [Raabe et al. 2008], a SystemC-based library that models DPR to verify DRS
designs at a high level. In this article, we extend the ReChannel library with new
classes and data structures to model the bitstream traffic and triggering condition
of DPR. Since TLM modeling abstracts away the signal-level details of individual
modules, these extensions do not consider signal-level reconfiguration activities, such
as spurious RM outputs and undefined initial RM state. With these new extensions,
TLM can be used in the following example scenarios.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 97, Publication date: February 2014.

97:8 L. Gong and O. Diessel

—PFor design space exploration or performance evaluation purposes, the bitstream
traffic is simulated to decide whether to use a dedicated or a shared datapath for
bitstream transfer.

—System-wide integration bugs relating to a sequence of reconfiguration events can
be detected in the TLM model. For example, deadlocks caused by circular waiting of
multiple swapped-out modules can be detected by accurately modeling the timing and
triggering of module swapping. As another example, illegal requests to reconfigure a
module still undergoing reconfiguration can be detected by more accurately modeling
the reconfiguration delay.

—In order to test and debug any embedded software that could be in control of the
reconfiguration process, the TLM model should be functionally equivalent to the
implemented design from the programmer’s point of view. The designer therefore
needs to simulate the bitstream traffic byte by byte if the software buffers and
transfers bitstream data byte by byte. Software bugs, such as setting an incorrect
bitstream transfer size, could be detected in simulation.

2.4. Capabilities and Limitations

As the simulation-only layer abstracts away the details of the FPGA fabric, it can be
regarded as a fabric-independent FPGA device, and simulation can be thought of as
functionally verifying the user design layer of a DRS on such a fabric-independent
FPGA. Simulation using the simulation-only layer assists designers in detecting
fabric-independent bugs of a DRS design. These bugs include, but are not limited to
the following:

—system integration bugs and software bugs described in Section 2.3;

—Dbugs in synchronizing the static region and RMs before reconfiguration, such as,
failing to block a reconfiguration request until the RM is idle;

—bugs in the bitstream transfer logic, such as cycle mismatches, FIFO overflow, errors
in driving the ICAP signals;

—bugs in isolating the region undergoing reconfiguration, such as isolating the RR too
early or too late;

—Dbugs in initializing the newly configured module, such as resetting the RM before it
is completely reconfigured, loading the RM pipelines with incorrect data.

However, the simulation-only layer is not exactly the same as the FPGA fabric. Table 11
lists the differences between a Virtex-5 FPGA, as an example of a target device, and
our simulation-only layer, representing a fabric-independent FPGA. The mismatches
between the two can lead to bugs that remain undetected using the simulation-only
layer (i.e., False Negative bugs) and bugs that are incorrectly reported using the
simulation-only layer (i.e., False Positive bugs). These bugs, which could be categorized
as being fabric-dependent, include the following:

—errors in the bitstream itself (e.g., setting an incorrect frame address in the bitstream,
single or multiple bit flips in the bitstream);

—errors in interpreting the content of the bitstream (e.g., accessing an incorrect state
bit in a bitstream).

In theory, fabric-dependent bugs would not be introduced to modular reconfigurable
DRS designs created by vendor tools, and ReSim can thereby provide assistance in ver-
ifying modular reconfigurable DRS designs. On the other hand, if a system is designed
to directly modify or generate bitstreams at runtime, ReSim can only offer limited help
to test and verify it. Furthermore, ReSim does not nor does it aim to provide assistance
in verifying implementation-related bugs, such as the following.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 97, Publication date: February 2014.

Simulation-Based Functional Verification 97:9

Table II. Differences between the Virtex-5 FPGA Fabric and the Simulation-Only Layer

Virtex-5 FPGA Simulation-only Layer
Configuration -Frame Address is -Frame Address is
memory composed of RA, CA and composed of RRID, RMID,
MNA and MNA
- A frame has 41 words - A frame has 4 words
-Frame organization is not -Word 0: signature data
open -Words 1-3: state data
Bitstream -Normal Frame Address -Modified frame address
-Pad words and frames -No pad word or frame
-Size is determined by the -Reduced size
resources used
Logic - State bits are sparsely - State bits are grouped and
allocation distributed in a frame stored contiguously

-Has a bit-width field

—timing violation errors in the placed and routed design, and
—possible short or open circuits, if any, caused by partial reconfiguration [Beckhoff
et al. 2010].

3. CASE STUDIES

We demonstrate the value of ReSim and ReSim-based functional verification via a num-
ber of case studies. The first is a generic DRS computing platform through which we aim
to illustrate ReSim-based verification on an in-house, processor-based DRS design. The
second, fault-tolerant application uses DPR to recover from circuit faults introduced by
radiation, and we aim to demonstrate verifying an in-house, nonprocessor-based DRS
system. Using a third-party design, a video-based driver assistance system [Claus et al.
2007], we then study the use of ReSim to perform functional verification of cutting-edge,
complex, real-world DRS applications. Finally, we present the application of ReSim to
vendor reference designs.

Overall, we aim to demonstrate that ReSim is flexible enough to simulate various
DRS design styles. It should be noted that unless explicitly described, all bugs de-
tected in our case studies were real bugs exposed during the project development.
Furthermore, these bugs revealed design flaws in the user designs instead of in the
simulation-only layer or in any simulation testbench. Therefore, our case studies can
be used as examples to guide future designers in verifying their DRS designs.

3.1. Case Study I: In-House DRS Computing Platform

The DUT of our first case study is the XDRS computing platform (see Figure 4), which
is similar to existing generic DRS platforms (e.g., [Bobda et al. 2005; Jara-Berrocal
and Gordon-Ross 2010; Sedcole et al. 2007]. This case study aims to use XDRS as a
representative system to study the verification of generic DRS computing platforms.

The XDRS computing platform has a control-centric processor and a computation-
centric accelerator. It runs a demo streaming application in which the RRs of the
xps_xdrs accelerator are reconfigured with simple mathematical computational cores (a
Maximum or a Reverse module). Reconfiguration is managed by the in-house xps_icapi
controller module and its software driver. It should be noted that the XDRS platform is
similar to but not the same as the one illustrated in Gong and Diessel [2011a, 2011b].
In particular, in order to systematically study the top-down modeling and the coverage-
driven verification of the platform, the system was redesigned from scratch, and the
new platform targets a ML507 board instead of an ADM-XRC-4 board.

Using Extended ReChannel, the designer performed TLM modeling and co-simulated
the hardware platform and the streaming application software. TLM modeling

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 97, Publication date: February 2014.

97:10 L. Gong and O. Diessel

streaming application

. xps_xdrs driver *
| Virtex-5 || ReSim * microprocessor bus :

PPC440 = "c e o e e e e e e 0 0 0 0 0 e e PLBv46
microprocessor
RESRAC Bus master/slave xps_intc
attachment it

DDR2
Memory

T uoibay
|qe.nbyuoday
T uoibay
Iqeinbyuoday
cesscsccas
0 uoibay
IqeJnbyuoday

,-
o
..a
as
,....)ge
s
....E.a

Fig. 4. The XDRS demonstrator.

identified potential design defects in the system hardware (e.g.,, BUG-
Example.XDRS.1). For DPR bugs such as BUG-Example.XDRS.2, the source of errors
was the software. For DPR bugs such as BUG-Example.XDRS.3, the bugs were caused
by both system software and hardware. Therefore, it was found to be highly desirable to
have a simulation environment to test the integrated SW/HW system, including when
it is being reconfigured.

BUG-Example. XDRS.1. The xps_icapi module uses an ICAPI_DONE flag to
indicate the end of bitstream transfer. Such a flag should be set to 1 at
power up but was incorrectly initialized to 0. This bug was detected in the
TLM model of the system, but it revealed a potential bug that could also
exist in the RTL design.

BUG-Example.XDRS.2. To accelerate bitstream transfer, the system soft-
ware buffers bitstreams in a fast DDR2 memory. However, the software
failed to flush the bitstream data from the processor cache to the DDR2
memory and the xps_icapi module transferred incorrect bitstream data
from the DDR2 memory during reconfiguration. The bug was easily identi-
fied since un-flushed SimB data was transferred to the simulated ICAP port
but the new RM was not swapped in during simulation. This bug would not
have been identified without modeling bitstream traffic.

BUG-Example.XDRS.3. The SyncMgr mistakenly requested a second recon-
figuration before the first one had finished (i.e., an illegal reconfiguration
sequence). The bug was detected because the delay associated with the
first reconfiguration was accurately modeled by transferring the SimB us-
ing Extended ReChannel. The designer fixed the bug by modifying the
hardware to report such illegal reconfiguration requests and by adding a
reconfiguration_in progress flag to the software driver.

ReSim-based RTL simulation accurately simulates the synchronization, isolation,
and initialization mechanisms of the XDRS system. For example, the isolation bug,
BUG-Example.XDRS.4, was easily identified, since ReSim models the spurious outputs

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 97, Publication date: February 2014.

Simulation-Based Functional Verification 97:11

of RMs during reconfiguration. In order to thoroughly verify the design, we analyzed
the test coverage data reported by the simulator and created tests to cover all possible
reconfiguration scenarios. For example, BUG-Example. XDRS.5 was not exposed until
we attempted to cover all possible reconfiguration requests scenarios. In both exam-
ples, ReSim allowed cycle-accurate simulation of the transition from before to during
reconfiguration and from during to after reconfiguration, which are essential to detect
bugs in RTL designs.

BUG-Example. XDRS.4. The Isolation module, which disconnects the RM
during reconfiguration, resumed such connection one cycle too early af-
ter reconfiguration. The bug was identified because the errors injected by
ReSim propagated to the static part in the mismatched cycle.

BUG-Example. XDRS.5. before reconfiguration, the RM should block a re-
configuration request until it finishes processing the current input sample.
However, if a reconfiguration request arrived precisely when the RM had
just started processing a sample, the RM failed to block the reconfiguration
request.

We mapped a second DRS application to XDRS and performed ReSim-based ver-
ification. The second application periodically reconfigured one slot of the xps_xdrs
accelerator with either an adder core or a maximum core. Apart from computation, each
core maintained a statistic register, the value of which was copied across config-
uration periods, and the saving and restoration of the statistic register was per-
formed via the ICAP. It should be noted that the periodic application was derived
from Gong and Diessel [2012] and was redesigned in order to target the generic XDRS
platform.

We detected five software bugs (e.g., BUG-Example.XDRS.6) while simulating the
periodic application. The simulated design was subsequently tested on an ML507 board
with a Virtex-5 FX70T FPGA, and we detected one fabric-dependent bug (i.e., BUG-
Example.XDRS.7). Since ReSim failed to mimic the exact behavior of the target device,
BUG-Example. XDRS.7 was missed by ReSim-based simulation and was identified by
debugging the implemented design using ChipScope [Xilinx 2010a]. However, as Chip-
Scope was only able to visualize a limited number of signals for a limited period of
time, we used five iterations to trace the cause of one bug, and each iteration involved a
59-minute turnaround time to insert new probing logic and to reimplement the design.
ChipScope-based debugging was therefore found to be time consuming.

BUG-Example. XDRS.6. The application software passed an incorrect
pointer to the restoration routine of the software driver. The data de-
referenced from this incorrect pointer was used to restore the statistic
register. The bug was detected as a consequence of incorrect values being
restored to the simulated statistic register.

BUG-Example. XDRS.7. The number of pad words returned from ICAP was
not the same as the designer had expected. The software attempted to
extract state bits from the wrong bit positions, and the extracted state
value was therefore incorrect.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 97, Publication date: February 2014.

97:12 L. Gong and O. Diessel

B Message:
RReq
RAck
RDone

L

]
m | bitstream

Ring Network Specification

-

BEFORE Reconfiguration (Synchronization)
- reconfigure a faulty module immediately &
- send reconfiguration request via the network

DURING Reconfiguration (Isolation)
- use a voter to isolate the RR @

AFTER Reconfiguration (Initialization) —
- feed module pipelines with input data or T—
voted values from its sibling modules

Fig. 5. The hardware architecture of the fault-tolerant DRS.

3.2. Case Study II: In-House Fault-Tolerant Application

The second case study involves the design of signal processing circuits to be used
in space-based applications (e.g., Synthetic Aperture Radar) [Cetin et al. 2013]. In
particular, a module suffering from permanent single event upsets (SEU) is recovered
by reconfiguring it with a correct copy. DPR has been used in such fault-tolerant
applications (e.g., [Paulsson et al. 2006; Ichinomiya et al. 2010; Cetin et al. 2013]),
and this case study aims to apply ReSim and coverage analysis to verifying the DPR
activities in fault-tolerant applications. We also compared the results of coverage-
driven verification with ad-hoc on-chip debugging.

In the fault-tolerant DRS application (see Figure 5), voters that protect signal pro-
cessing circuits are connected via a self-timed ring network. For each computing node
(i.e., nodes 0 or 1), if the voter detects that one copy of the protected circuit is perma-
nently affected by an SEU, it initiates a reconfiguration request by passing messages
over the network. DURING reconfiguration, the module undergoing reconfiguration
may produce spurious outputs, which are ignored by the voter. Thus, the voter works
as an isolation module during reconfiguration and is therefore considered to be a
component of the reconfiguration machinery (i.e., moderately shaded modules). After
reconfiguration, the execution state of the newly reconfigured module is recovered by
loading its pipelines with correct values either from the input data stream or from the
checked feedback of its sibling modules [Cetin et al. 2013].

In order to compare simulation with on-chip debugging, we deliberately used Chip-
Scope to test the RC-node (i.e., node 2) and detected four bugs. For example, the designer
accidentally introduced BUG-Example.FT.1, and since the designer thought it was a
bug in the logic, it took him five hours to trace the bug, which would have been identi-
fied very quickly in simulation. We then used traditional RTL simulation (i.e., without
ReSim) to test the two computing nodes and detected ten bugs in the voter and the
voter network-interface.

BUG-Example.FT.1. The designer accidentally created a level-sensitive
clock instead of an edge-sensitive one, as desired.

We used ReSim to test the integrated design (i.e., including all three nodes) and
detected seven DPR-related bugs in the reconfiguration machinery. By analyzing the

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 97, Publication date: February 2014.

Simulation-Based Functional Verification 97:13

causes of the bugs, we determined that four out of the seven DPR-bugs could have been
detected by prior simulation methods, such as Virtual Multiplexing [Luk et al. 1997] or
DCS [Robertson and Irvine 2004]. In particular, since bitstreams are transferred over a
dedicated datapath, reconfiguration could be modeled with a constant delay. However,
three bugs could only have been identified using ReSim, and we describe two of these
bugs (i.e., BUG-Example.FT.2, BUG-Example.FT.3) in detail.

BUG-Example.FT.2. Afterreconfiguration, the system failed to feed enough
data to the RM pipelines. This bug was exposed since the errors injected to
the pipeline registers of the simulated RM were not properly flushed and
propagated to the static region after reconfiguration.

BUG-Example.FT.3. Typically, reconfiguration is slower than transferring
a message between two nodes. The expected operation of the RC-node is
therefore: start reconfiguration; transfer an RAck message to a computing
node; end reconfiguration; transfer an RDone message to a computing node.
However, when the bitstream is very small and when the computing node
is executing with a very slow clock, reconfiguration can finish before the
RAck message is transferred. Under such a circumstance, the RC-node did
not correctly send the RDone message.

Coverage analysis was applied to the ReSim-based simulation of the integrated
design. For example, we randomized the SimB size so as to exercise the design with
various SimBs and randomized the operating frequencies of nodes so as to cover various
clock-frequency-related coverage items. We were able to identify a corner case bug
(i.e., BUG-Example.FT.3), which is only exposed when the system reconfigures a very
small RM whose bitstream is short. Unfortunately, such a scenario was not covered
when testing the RC-node on the FPGA, and it is difficult to test since the size of
a real bitstream cannot easily be adjusted for test purposes. Therefore, although on-
chip debugging tests real-world conditions, it can sometimes only validate a limited
number of the possible execution scenarios for a design. Previous simulation methods
(e.g., [Schallenberg et al. 2009]) tend to annotate the reconfiguration delay according
to the size of a real bitstream, which may also limit the possible scenarios that can be
exercised. Since a SimB is not dependent on the FPGA fabric, the size of a SimB can
easily be adjusted for test purposes. ReSim-based simulation is therefore better able
to exercise some of the corner cases of a design.

3.3. Case Study llI: Third-Party Video-Processing Application

The third case study involved the design and verification of a cutting-edge, dynamically
reconfigurable driver-assistance system [Gong et al. 2013], which was modified from a
recent design of the AutoVision project [Altenried 2009]. In particular, the DUT (see
Figure 6) could be viewed as a re-integration of the original design modules. We thereby
were able to study the application of an IP-reuse methodology to the verification of the
system and analyze the bugs detected.

In order to compare ReSim-based simulation with virtual multiplexing, we delib-
erately used virtual multiplexing [Luk et al. 1997] to simulate the system at the
beginning of the case study. Using virtual multiplexing, we inserted a multiplexer
to switch the currently active engine with the selection being performed by writing
to a software-accessible engine _signature register instead of by transferring a bit-
stream. With this simulation approach, the software and hardware tested in simulation

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 97, Publication date: February 2014.

97:14 L. Gong and O. Diessel

Off-chip Memory

DDR2 Controller
PowerPC
@Virtex5 ol LIS-IPIF
video data videodata f bitstream H
plb_v46_2 'l -m plb_v46_1
.
H
video_out_ video_in_ Y
[module module 3
DCR-regs DCR-regs Reconfigurable Region
Engine_0
plb_v46 0
xps_intc Xps_uart _
+T T 4

Fig. 6. The hardware architecture of the video-processing application [Gong et al. 2013].

did not match what was actually implemented, and we even detected a false pos-
itive bug (i.e., BUG-Example.AUTO.1) in the engine signature register. Further-
more, since the IcapCTRL module was instantiated in the design but was not used in
simulation, virtual multiplexing was unable to detect bugs in the bitstream trans-
fer datapath (e.g., BUG-Example. AUTO.2). Last but not least, since multiplexing
the simulated engines did not generate erroneous signals, as implemented designs
might do, the isolation mechanism (i.e., the Isolation module) was not tested in
simulation.

BUG-Example AUTO.1. The engine signature register was not cor-
rectly initialized, thus no engine was selected to be active. Since the
engine_signature register only exists in Virtual Multiplexing, this bug was
a false alarm. Since ReSim does not change the user design, this bug would
not have been introduced with ReSim-based simulation.

We started using ReSim after the design had matured and detected six DPR-related
bugs that were missed by virtual multiplexing (e.g., BUG-Example.AUTO.2, BUG-
Example.AUTO.3, and BUG-Example.AUTO.4). Although individual engines and their
software drivers were already FPGA-proven from the original design, bugs were intro-
duced through mismatches between module parameters (e.g., BUG-Example.AUTO.2)
and software/hardware parameters (e.g., BUG-Example.AUTO.3). Apart from de-
tecting bugs introduced by modifying the original design, we were able to identify
three potential bugs in parts of the system that were original. For example, BUG-
Example., AUTO.4 was not exposed before because the original design used a faster
configuration clock. This bug was identified because ReSim did not activate the newly
configured module until all words of the SimB were successfully written to the ICAP.
Therefore, the use of SimBs more accurately modeled the timing associated with par-
tial reconfiguration, and ReSim-based simulation was effective in testing the integrated
driving-assistance system.

3.4. Case Studies IV & V: Vendor Reference Designs

These case studies demonstrate the use of ReSim to verify two vendor reference designs.
Since the reference designs had already been proven, it is not surprising that we were
not able to detect bugs using ReSim-based simulation. However, simulating vendor
reference designs demonstrates the robustness and the flexibility of ReSim.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 97, Publication date: February 2014.

Simulation-Based Functional Verification 97:15

Table lll. The Effect of SimB Size on Verification Coverage

SimB Individual Accumulated CPU
Test ID Size (B) Coverage (%) Coverage (%) Time (s)

1 32 56.7 56.7 253
2 48 68.62 68.85 251
3 80 69.01 69.64 257
4 144 69.01 69.64 264
5 272 69.01 69.64 310

BUG-Example. AUTO.2. The IcapCTRL module was directly connected to
memory in the original system, and it failed to work with the shared PLB
bus as used in the modified Optical Flow Demonstrator. Since ReSim mod-
eled bitstream traffic, this bug was readily detected by ReSim-based simu-
lation. This bug was introduced by changing the way the IP was integrated.

BUG-Example. AUTO.3. After changing a parameter of the IcapCTRL mod-
ule, the software driver was not updated accordingly and the SimB was not
successfully transferred. This bug was detected when a new engine was not
swapped in due to the bug in the bitstream transfer process. The bug was
introduced by a mismatch between hardware and software.

BUG-Example. AUTO.4. The system software failed to wait until the com-
pletion of bitstream transfer before resetting the engines. This bug was in-
troduced when the design was modified to use a different clocking scheme
that slowed down the bitstream transfer and the software was not updated
to slow down the reset operations accordingly. Since ReSim more accu-
rately modeled the timing of reconfiguration events, this bug could only be
detected by ReSim-based simulation.

In the first case study, a Fast PCle configuration (FPCle) reference design loads a
lightweight PCle endpoint logic block within the required time at startup. The rest of
the FPGA is then dynamically configured with the core application logic via the estab-
lished PCle link [Tam and Kellermann 2010]. In addition to performing cycle-accurate
simulation on the reference designs, as reported in Gong and Diessel [2011b], we tuned
the SimB to analyze the coverage of the Fast PCle reference design. In particular, we
adjusted the size of the SimB to exercise various scenarios of the bitstream datapath
(see Table III). It should be noted that the following coverage analysis was performed
on FPCle design that used a 64-entry FIFO to buffer the bitstream instead of the
1024-entry one provided with the reference design.

To exercise the FIFO_FULL scenario, we increased the SimB size from 48 to 80 bytes,
which is beyond the 64-byte FIFO capacity, and the coverage increased accordingly. The
table also assists in selecting an optimal test set for regression. Considering Test 3, the
individual coverage using 80 bytes of SimB was less than the accumulated coverage
for Tests 1, 2, and 3. This increase in coverage was achieved through the addition
of the shorter tests, which exercised scenarios that were missed by the longer test.
Therefore, Tests 1, 2, and 3 form an optimal set of “golden” tests which achieve the
highest accumulated coverage for the least simulation time.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 97, Publication date: February 2014.

97:16 L. Gong and O. Diessel

In the last case study, a Reconfigurable Peripheral reference design instantiates
the bus-based xps_hwicap IP core as a reconfiguration controller in order to swap
peripheral modules (e.g., the xps math module) attached to a bus [Xilinx 2009a]. By
modeling the bitstream traffic, ReSim-based simulation was used to test the hardware
logic and the software driver of the xps_hwicap IP core and to verify that the core
was correctly integrated with the rest of the system. It should be noted that in order
to simulate the system, we changed the reference design slightly. Since the reference
design did not provide source code for the math cores, we designed our own simple
math cores. Furthermore, since we did not have a simulation model for the provided
SD card, we assume that bitstreams are correctly copied from the SD card to the DDR2
memory.

Although the design was proven, we were able to expose a potential isolation bug
in the system (i.e., BUG-Example.UG744.1). This isolation bug was not exposed in the
reference design because RMs were not accessed during reconfiguration. The bug was
exposed after modifying the software to access the RM during reconfiguration and was
identified during ReSim-based simulation of the modified design and when running
the modified design on the target FPGA.

BUG-Example.UG744.1. The Reconfigurable Peripheral reference design
did not isolate the RR undergoing reconfiguration. Spurious outputs could
therefore propagate from the RR to the static part of the system

3.5. Summary and Lessons Learnt

Our case studies demonstrate that ReSim can be applied to a range of DRS design
styles. In particular, we demonstrated the use of ReSim with in-house designs (i.e.,
the XDRS platform and the fault-tolerant DRS), a third-party design (i.e., AutoVision),
and reference designs; with hardware-only designs (i.e., the FPClIe reference design
and the fault-tolerant DRS) and with microprocessor-based HW/SW designs; with demo
applications (i.e., streaming and periodic applications) and with real-world applications
(i.e., a fault-tolerant application and a video processing application); a design that saves
and restores module state via the configuration port (i.e., the periodic application on
XDRS); with designs that use customized reconfiguration controllers (i.e., xps_icapi,
IcapCtrl) and vendor IP (i.e., the xps_hwicap core); as well as with designs that were
mapped to Virtex-5 (i.e., XDRS, fault-tolerant DRS, AutoVision) and to Virtex-6 (i.e.,
the two reference designs).

Table IV summarizes the case studies. We summarize these case studies in terms of
the development workload®, simulation overhead, and bugs detected. The bugs in the
table were all exposed in verifying the designs, that is, it does not include the isolation
bug (i.e., BUG-Example.UG744.1) that was deliberately introduced to the Processor
Peripheral reference design. The table also does not include false positive bugs (i.e.,
BUG-Example.AUTO.1) identified in the case study.

3.5.1. Development Workload. The extra development workload for using ReSim in-
volved creating parameter scripts [Gong and Diessel 2011b], which ranged from 50-150
LOC (Tcl) for these case studies. The parameters include a list of interfacing signals
that cross RR boundaries, the affiliation of RMs and RRs, and the target FPGA family

5The lines of code (LOC) of designs only includes the reconfiguration machinery.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 97, Publication date: February 2014.

Simulation-Based Functional Verification 97:17

Table IV. Summary of Case Studies

Complexity of the Parameter = Simulation DPR-related
reconfiguration Script Overhead Bugs

Case Study machinery (LOC) (LOC) (%) (ReSim/Others)
XDRS 1300 (Verilog, excluding 50 (Tcl) 8.3 34/0
(Streaming Application) EDK code)

+ 1150 (C)
XDRS 1300 (Verilog, excluding 50 (Tecl) 6.8 5/1
(Periodic Application) EDK code)

+ 1750 (C)
Fault-tolerant DRS 2150 (Verilog, exclud- 60 (Tcl) 20.9 18/4

ing ICAP-I & Flash con-

troller)
AutoVision 1250 (VHDL) 80 (Tcl) 1.7 7/0

+ 400 (C)
Fast PCIe Configuration 3500 (Verilog, excluding 150 (Tel) 0.3 -
(XAPP883) CoreGen code)
Processor Peripheral 2400 (VHDL) 50 (TcD) 0.7 -
(UG744) + 3200 (C)

[Gong and Diessel 2011b]. Generally speaking, the workload of using ReSim is trivial
compared to the effort spent creating a DRS design and a testbench.

3.5.2. Simulation Overhead. For each case study, we used the ModelSim profiling tool
to evaluate the simulation overhead of ReSim. We found that 0.3—20.9% of simulation
time was spent in ReSim. The simulation overhead of ReSim is proportional to the num-
ber of signals crossing the RR boundary, since all boundary signals are multiplexed as
opposed to being connected to the static part directly. The overhead is also proportional
to the frequency of reconfiguration in a specific simulation run, since each reconfigura-
tion involves costs to swap modules and inject errors and includes a scenario-dependent
delay to transfer the SimB. Overall, the simulation overhead was lower for more com-
plex designs (e.g., AutoVision, FPCle, etc.) and was higher for simpler designs (e.g., the
fault-tolerant DRS).

3.5.3. Bugs Detected. From the bugs detected in the case studies, we notice that the
reconfiguration process could be much more difficult to verify than a designer might
expect. Correctly verifying the RMs and the static region is essential but does not
guarantee the correct transition from one configuration to another. Table V lists all
example bugs described in this section (including false positive bug(s) and deliberately
introduced bug(s)). Apart from citing the Bug ID, we add to each bug a tag indicat-
ing the key words associated with each bug so as to remind readers of the details of
these bugs. Bugs could be introduced immediately before (e.g., BUG-Example. XDRS.2,
BUG-Example.XDRS.5,---), during (e.g., BUG-Example.XDRS.4, BUG-Example.
AUTO.2, - -), and after (e.g., BUG-Example.FT.2, BUG-Example. AUTO.4, - - -) reconfig-
uration. Bugs could be introduced to hardware, software (e.g., BUG-Example.XDRS.2,
BUG-Example.XDRS.6, BUG-Example.AUTO.3), and a mixture of hardware and soft-
ware (e.g., BUG-Example.XDRS.3, BUG-Example.AUTO.4). Even when individual
modules and software functions were FPGA-proven and reused, bugs could still
be introduced due to mismatches between module parameters (e.g., BUG-Example.
AUTO.2), inconsistencies between software and hardware (e.g., BUG-Example.
AUTO.3), and using proven IP in a different scenario (e.g., BUG-Example.FT.3, BUG-
Example.AUTO.4). Therefore, it is highly desirable to test and debug an integrated DRS

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 97, Publication date: February 2014.

L. Gong and O. Diessel

Table V. Summary of Example Bugs Described in Case Studies

Bug ID Bug Tag Section Detected by
BUG-Example. XDRS.1 ICAPI.DONE 3.1 Extended ReChannel
BUG-Example. XDRS.2 Flush_Cache 3.1 Extended ReChannel
BUG-Example.XDRS.3 Multiple_Recon 3.1 Extended ReChannel
BUG-Example.XDRS.4 Isolation_Mismatch 3.1 ReSim
BUG-Example. XDRS.5 Block_Until_Idle 3.1 ReSim
BUG-Example. XDRS.6 Restoration_Pointer 3.1 ReSim
BUG-Example. XDRS.7 Wrong_Pad_Word 3.1 On-chip Debugging
BUG-Example.FT.1 Level_Clock 3.2 On-chip Debugging
Could have been de-
tected by ReSim
BUG-Example.FT.2 Feed_Pipeline 3.2 ReSim
BUG-Example.FT.3 Too_Quick_Recon 3.2 ReSim
BUG-Example.AUTO.1 Sig_Reg 3.3 Virtual Multiplexing
BUG-Example. AUTO.2 IcapCtrl PLB 3.3 ReSim
BUG-Example.AUTO.3 Driver_Update 3.3 ReSim
BUG-Example.AUTO.4 Engine _Reset 3.3 ReSim
BUG-Example.UG744.1 Bus_Isolation 3.4 ReSim

On-chip Debugging

design, including the process of reconfiguring the design with a range of configuration
bitstream sizes that could be expected at runtime.

Bugs that can only be detected by ReSim/Extended ReChannel-based simulation are
marked in bold in the “Detected by” column in Table V (see detailed descriptions of each
bug in relevant sections). Other bugs could also be detected with previous methods,
such as virtual multiplexing [Luk et al. 1997] and DCS [Robertson and Irvine 2004]. For
example, BUG-Example.XDRS.1 and BUG-Example.XDRS.5 could have been detected
by traditional RTL simulation, because exposing the two bugs did not require modeling
any characteristic features of DPR. As another example, BUG-Example.UG744.1 could
also be detected by DCS, which also injects errors to the static region while the RM
is being reconfigured [Robertson and Irvine 2004]. However, since ReSim models the
characteristic features of DPR, it is able to detect bugs that would have been missed
by previous methods (see Section 3.3). Furthermore, since ReSim does not require
changing the design for simulation purposes, it does not introduce false positive bugs
(e.g., BUG-Example.AUTO.1). For a complete list of all DPR-related bugs detected in
the case studies, please refer to Gong [2013].

Our case studies indicate that it is nontrivial to insert probe logic and to debug
the implemented DRS design using ChipScope (see BUG-Example. XDRS.7, BUG-
Example.FT.1). Furthermore, on-chip debugging does not collect coverage and can
only validate a limited number of scenarios for the implemented design (see BUG-
Example.FT.3). Even when a module is FPGA-proven, a bug can still be introduced
during system integration (see BUG-Example.AUTO.2). However, on-chip debugging is
completely accurate and can detect fabric-dependent bugs (e.g., BUG-Example. XDRS.7)
which cannot be detected by ReSim-based simulation (see Section 2.4). Given the

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 97, Publication date: February 2014.

Simulation-Based Functional Verification 97:19

difficulty of meeting both the requirements of simulation accuracy and verification pro-
ductivity, we do not advocate replacing on-chip debugging with simulation approaches.
Nevertheless, we believe that it is highly desirable to perform simulation to identify
and fix as many fabric-independent bugs as possible in the early stages of the design
cycle, and to leave the fabric-dependent part of the design to be tested on the target
FPGA.

4. RELATED AND FUTURE WORK
4.1. Related Work

Most existing approaches for simulating DRS do not model the FPGA fabric and thereby
compromise simulation accuracy. For example, at the RTL level, MUX-based methods
such as Luk et al. [1997] and Robertson and Irvine [2004] instantiate all RMs in the
simulation environment and select one RM at a time. High-level modeling techniques
such as Raabe et al. [2008] and Schallenberg et al. [2009] extend SystemC with new
classes or language constructs to model reconfiguration. These methods only model
module swapping and fail to capture other characteristic features, such as bitstream
traffic. Furthermore, since the design needs to be manually changed/modeled for sim-
ulation purposes (e.g., by inserting a virtual multiplexer), MUX-based methods verify
a variation of the design instead of the implementation-ready design. Recent work
[Hansen et al. 2013] extends ReSim by using real bitsteams and extracting reconfigu-
ration timing information from the target FPGA devices. While slightly improving the
modeling accuracy, the simulation is undesirably dependent on the FPGA fabric. The
work did not study how many more bugs could be detected with such improvement in
accuracy.

Formal verification mathematically proves that a hardware design meets its formal
specification [Drechsler 2004]. Formal methods have been used to verify reconfigurable
cores at runtime by running an online prover [Singh and Lillieroth 1999] or by checking
the proof carried by the hardware task to be reconfigured [Drzevitzky et al. 2009]. For-
mal verification can also be used at system design time. The tiny pi-calculus approach
applies a subset of pi-calculus to formally model the reconfiguration rules/directives
(i.e., when to reconfigure what) of a DRS design [Seffrin et al. 2010]. Symbolic simu-
lation has been used to verify reconfigurable streaming applications meet their exe-
cutable software specification [Todman et al. 2012]. However, existing formal methods
can only capture the module swapping operation (e.g., using the reconfigure_if condi-
tional statement [Todman et al. 2012]) in the formal specification and fail to model other
DPR-related properties, such as “a module should be swapped in after the transfer of
a bitstream”.

DRS designs can also be tested using vendor tools (e.g., ChipScope [Xilinx 2010a]).
However, ChipScope-based debugging is a time-consuming step for FPGA-based de-
signs. Furthermore, it requires expert knowledge of the ChipScope tool in order to
probe signals of RMs [Xilinx 2011], which introduces additional complications to the
on-chip debugging of DRS designs.

4.2. Future Work

Since using the simulation-only layer offers only limited assistance in detecting fabric-
dependent bugs, we propose two possible directions to resolve such a verification gap
but leave both directions as future work.

One direction is to further improve the simulation accuracy of the simulation-only
layer by capturing more details of the FPGA fabric (e.g., placement information, con-
figuration bits). Recent work [Hansen et al. 2013] is an example of such extension so as
to simulate module relocation in slot-based DRS designs. As another example, instead

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 97, Publication date: February 2014.

97:20 L. Gong and O. Diessel

of simulating the entire FPGA fabric, it is possible to simulate a small portion of the
design (e.g., the LUTSs that are fine-grained reconfigurable) in a fabric-accurate man-
ner, which can significantly improve the simulation accuracy for scenarios of interest.
The more accurate the simulation-only layer is, the less mismatches exist between the
simulation-only layer and the target FPGA, and the fewer false positive and negative
bugs are introduced.

On the other hand, given the fundamental conflict between simulation accuracy and
verification productivity, it is more or less inevitable to rely on on-chip debugging to
identify fabric-dependent bugs. Therefore, the other way to resolve the verification
gap is to improve the verifiability of a DRS design by changing the way a DRS is
designed without compromising other design requirements. In particular, the following
is desirable.

—The designer keeps the fabric-dependent part to a minimum or avoids using fabric-
dependent features in the design. This can also improve the portability of the design
while reducing verification difficulty.

—The designer reuses existing proven design tools and IP so as to avoid creating
fabric-dependent components from scratch.

—The designer separates the fabric-dependent and fabric-independent parts so as to
localize potentially unidentified bugs to the fabric-dependent part of the design. By
carefully partitioning the design, the designers can maximize the number of fabric-
independent bugs that could be exposed using the simulation-only layer and field
testing can focus on debugging the fabric-dependent part, which requires less effort
than debugging the entire design.

The simulation-only layer can also be extended to formal verification. For DRS designs,
a formal specification may state, in formal language, that “a module should be swapped
in after the transfer of a bitstream”, and such a statement requires accurately modeling
characteristic features of reconfiguration with acceptable levels of detail of the FPGA
fabric. It would be possible to implement the simulation-only layer such that it can
easily be used by formal verification tools. As a result, designers could then formally
describe DRS design properties that involve both user design modules and components
of the physical layer.

Looking ahead, dynamic reconfiguration has changed the way engineers design hard-
ware and will also change the way hardware is verified. With dynamic reconfigurabil-
ity, a DRS can be designed to be open-ended, which means that hardware RMs can
be sourced externally to the system [Xilinx 2010c]. Since RMs are not known at sys-
tem design time, a DRS needs the capability to verify its correct reconfiguration and
execution at runtime. Despite limited research being done, runtime verification is a
long-term trend for future DRS designs. Compared with design-time verification, run-
time verification of open-ended DRS designs introduces two main challenges.

—Hardware modules/tasks sourced externally to the system may not have been thor-
oughly verified. Functional bugs could exist in the module itself or could be introduced
when integrating the module with the rest of the system. Even for thoroughly veri-
fied modules, the reconfiguration process could introduce bugs to the system. If, for
example, the frame addresses had been corrupted, reconfiguration could incorrectly
change the static user logic.

—Apart from checking bugs that are unintentionally introduced to the design, the sys-
tem also needs to identify malicious hardware tasks that could damage the system.
Therefore, runtime verification needs to verify the credibility of the source of con-
figuration bitstreams and reconfiguration requests. The verification problem thus
morphs into a security problem.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 97, Publication date: February 2014.

Simulation-Based Functional Verification 97:21

Using the

Verification Productivity Simulation-only layer + Static designs
A X DRS designs
High-level modeling High -level modeling
e.g. [Raabe et al. 2008] . &g C/C++/SystemC
X—0X

N
Ext. '\

., ReChannék\ RTL simulation

. e.g. Verilog/VHDL
MUX [Luk et al. 1997] X;
DCS [Robertson and Irvine 2004] * .

Timing simulation

i.e., simulating the design netlist
. with delay annotation
Fabric-accurate simulation *y

>
Simulation Accuracy

Fig. 7. Accuracy and productivity trade-off in simulating DRS designs.

Since runtime verification directly tests hardware tasks on the target FPGA, it is
not necessary to provide designers with a simplified simulation model of the FPGA
device and runtime verification should therefore be 100% accurate. However, runtime
verification suffers from low visibility and controllability. Furthermore, the system
may not be able to afford the resources to perform the verification. Existing runtime
verification techniques are still ad-hoc (see Section 4.1), and significant effort is needed
to address these issues.

5. CONCLUSIONS

As with modern ASIC designs, functional verification has become a significant chal-
lenge for DRS designs. This article has studied simulation-based functional verifica-
tion of advanced, dynamic reconfiguration capabilities of modern FPGA-based designs.
We summarize our work on the simulation library, ReSim, which enables a unified
simulation environment to test and debug integrated DRS designs. The case studies
demonstrated that ReSim can achieve sufficient accuracy for functional verification
and that ReSim-based simulation assists in detecting bugs that would be missed using
traditional methods. The development and simulation overheads of using ReSim are
typically insignificant.

For the verification of hardware designs, designers need to find a balance between
simulation accuracy and verification productivity (see Figure 7). For static designs,
either FPGA-based or ASIC-based (the solid line in the figure) cycle-accurate RTL
simulation is at the middle of the spectrum and is suitable for functional verification.
However, designers have to sacrifice either accuracy or productivity in simulating DRS
designs (the dotted line in the figure). Although fabric-accurate simulation is completely
accurate, its productivity is too low for verifying design functionality. Without being
dependent on the fabric, previous work using either RTL simulation (e.g., MUX-based
method [Luk et al. 1997], DCS [Robertson and Irvine 2004]) or high-level modeling
(e.g., ReChannel [Raabe et al. 2008]) maintains the desired level of productivity while
sacrificing accuracy in simulating the reconfiguration process.

By mimicking the FPGA fabric using a simulation-only layer, ReSim significantly
improves simulation accuracy over previous RTL-level approaches with negligible pro-
ductivity penalties and significantly improves simulation productivity compared with
fabric-accurate simulation. Using similar concepts, Extended ReChannel also improves
the accuracy of high-level modeling without sacrificing much productivity. Extended
ReChannel and ReSim are two representatives of simulation methods that use the
simulation-only layer approach (the dashed line in Figure 7). Other work (e.g., [Hansen

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 97, Publication date: February 2014.

97:22 L. Gong and O. Diessel

et al. 2013]) has studied alternative trade-offs between simulation accuracy and veri-
fication productivity in the verification of DRS designs.

ReSim has been released as an open-source tool under the BSD license
and is publicly available via http://code.google.com/p/resim-simulating-partial-
reconfiguration/ .

ACKNOWLEDGMENTS

The researchers would like to thank Mr. Jens Hagemeyer from the University of Paderborn for his guidance on
state restoration on Virtex-5 FPGAs. We also thank Mr. Johny Paul and Prof. Walter Stechele from the Techni-
cal University of Munich for providing the AutoVision design as an important case study for assessing ReSim.

REFERENCES

Florian Altenried. 2009. Time-sharing of hardware resources for image processing accelerators using dy-
namic partial reconfiguration. Bachelor’s thesis. Technical University of Munich. (2009).

Altera. 2010. Increasing design functionality with partial and dynamic reconfiguration in 28-nm
FPGAs (WP01137). Altera Inc. http:/www.altera.com/literature/wp/wp-01137-stxv-dynamic-partial-
reconfig.pdf.

Christian Beckhoff, Dirk Koch, and Jim Torresen. 2010. Short-circuits on FPGAs caused by partial run-
time reconfiguration. In Proceedings of the International Conference on Field Programmable Logic and
Applications (FPL). 596-601.

Christophe Bobda, Mateusz Majer, Ali Ahmadinia, Thomas Haller, Andre Linarth, and Jurgen Teich. 2005.
The Erlangen slot machine: Increasing flexibility in FPGA-based reconfigurable platforms. In Proceed-
ings of the International Conference on Field-Programmable Technology (FPT). 37-42.

Ediz Cetin, Oliver Diessel, Lingkan Gong, and Victor Lai. 2013. Towards bounded error recovery time in
FPGA-based TMR circuits using dynamic partial reconfiguration. In Proceedings of the International
Conference on Field Programmable Logic and Applications (FPL).

Christopher Claus, Johannes Zeppenfeld, Florian Muller, and Walter Stechele. 2007. Using partial-run-time
reconfigurable hardware to accelerate video processing in driver assistance system. In Proceedings of
the Design, Automation and Test in Europe (DATE). 1-6.

Rolf Drechsler. 2004. Advanced Formal Verification. Kluwer Academic Publishers.

Stephanie Drzevitzky, Uwe Kastens, and Marco Platzner. 2009. Proof-carrying hardware: Towards runtime
verification of reconfigurable modules. In Proceedings of the International Conference on Reconfigurable
Computing and FPGAs (ReConFig). 189-194.

Lingkan Gong. 2013. ReSim case studies. http:/code.google.com/p/resim-simulating-partial-reconfiguration/.

Lingkan Gong and Oliver Diessel. 2011a. Modeling dynamically reconfigurable systems for simulation-
based functional verification. In Proceedings of the IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM). 9-16.

Lingkan Gong and Oliver Diessel. 2011b. ReSim: A reusable library for RTL simulation of dynamic par-
tial reconfiguration. In Proceedings of the International Conference on Field-Programmable Technology
(FPT). 1-8.

Lingkan Gong and Oliver Diessel. 2012. Functionally verifying state saving and restoration in dynami-
cally reconfigurable systems. In Proceedings of the ACM/SIGDA International Symposium on Field
Programmable Gate Arrays (FPGA). 241-244.

Lingkan Gong, Oliver Diessel, Johny Paul, and Walter Stechele. 2013. RTL simulation of high performance
dynamic reconfiguration: A video processing case study. In Proceedings of the International Parallel and
Distributed Processing Symposium (IPDPS).

Simen Gimle Hansen, Dirk Koch, and Jim Torresen. 2013. Simulation framework for cycle-accurate RTL
modeling of partial run-time reconfiguration in VHDL. In Proceedings of the International Workshop on
Reconfigurable Communication-Centric Systems-on-Chip (ReCoSoC). 1-8.

Yoshihiro Ichinomiya, Shiro Tanoue, Motoki Amagasaki, Masahiro Iida, Morihiro Kuga, and Toshinori
Sueyoshi. 2010. Improving the robustness of a softcore processor against SEUs by using TMR and
partial reconfiguration. In Proceedings of the IEEE Symposium on Field-Programmable Custom Com-
puting Machines (FCCM). 47-54.

Abelardo Jara-Berrocal and Ann Gordon-Ross. 2010. VAPRES: A virtual architecture for partially recon-
figurable embedded systems. In Proceedings of the Design, Automation and Test in Europe (DATE).
837.

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 97, Publication date: February 2014.

Simulation-Based Functional Verification 97:23

Wayne Luk, Nabeel Shirazi, and Peter Y. K. Cheung. 1997. Compilation tools for run-time reconfigurable
designs. In Proceedings of the IEEE Symposium on Field-Programmable Custom Computing Machines
(FCCM). 56-65.

Katarina Paulsson, Michael Hubner, Markus Jung, and Jurgen Becker. 2006. Methods for run-time failure
recognition and recovery in dynamic and partial reconfigurable systems based on Xilinx Virtex-II Pro
FPGAs. In Proceedings of the IEEE Computer Society Annual Symposium on Emerging VLSI Technolo-
gies and Architectures. 1-6.

Andreas Raabe, Philipp A. Hartmann, and Joachim K. Anlauf. 2008. ReChannel: Describing and simulating
reconfigurable hardware in SystemC. ACM Trans. Des. Autom. Electron. Syst. 13, 1, 15.

Ian Robertson and James Irvine. 2004. A design flow for partially reconfigurable hardware. ACM Trans.
Embed. Comput. Syst. 3, 2, 257-283.

Andreas Schallenberg, Wolfgang Nebel, Andreas Herrholz, and Philipp A. Hartmann. 2009. OSSS+R: A
framework for application level modelling and synthesis of reconfigurable systems. In Proceedings of the
Design, Automation and Test in Europe (DATE) 970-975.

Pete Sedcole, Peter Y. K. Cheung, George A. Constantinides, and Wayne Luk. 2007. Run-time integration of
reconfigurable video processing systems. IEEE Trans. VLSI Syst. 15,9, 1003-1016.

Andre Seffrin, Alexander Biedermann, and Sorin A. Huss. 2010. Tiny-n: A novel formal method for spec-
ification, analysis, and verification of dynamic partial reconfiguration processes. In Proceedings of the
International Conference on Engineering of Reconfigurable Systems and Algorithms (CSREA). 1-6.

Satnam Singh and Carl J. Lillieroth. 1999. Formal verification of reconfigurable cores. In Proceedings of the
IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM). 25-32.

Simon Tam and Martin Kellermann. 2010. Fast Configuration of PCI Express Technology through Partial
Reconfiguration (XAPP883). Xilinx Inc.

Tim Todman, Peter Boehm, and Wayne Luk. 2012. Verification of streaming hardware and software codesigns.
In Proceedings of the International Conference on Field-Programmable Technology (FPT). 147-150.

Michael J. Wirthlin and Brad L. Hutchings. 1998. Improving functional density using run-time circuit
reconfiguration. IEEE Trans. VLSI Syst. 6, 2, 247-256.

Xilinx. 2009a. PlanAhead software tutorial: Partial reconfiguration of a processor peripheral (UG744). Xilinx
Inc.

Xilinx. 2009b. Virtex-4 FPGA Configuration User Guide (UG071). Xilinx Inc.
Xilinx. 2010a. ChipScope Pro 12.1 software and cores (UG029). Xilinx Inc.
Xilinx. 2010b. EDK concepts, tools and techniques (UG683). Xilinx Inc.
Xilinx. 2010c. Partial Reconfiguration User Guide (UG702). Xilinx Inc.
Xilinx. 2010d. Virtex-5 FPGA Configuration User Guide (UG191). Xilinx Inc.
Xilinx. 2010e. Virtex-6 FPGA Configuration User Guide (UG360). Xilinx Inc.

Xilinx. 2011. Partial reconfiguartion - Can I insert chipscope cores within reconfigurable modules? Xilinx
Inc. http://www.xilinx.com/support/answers/42899.

Xilinx. 2013. 7 Series FPGAs Configuration User Guide (UG470). Xilinx Inc.

Received May 2013; accepted October 2013

ACM Transactions on Embedded Computing Systems, Vol. 13, No. 4, Article 97, Publication date: February 2014.

