
Configuration Merging in Point-to-Point Networks

for Module-based FPGA Reconfiguration

SHANNON KOH

and

OLIVER DIESSEL

University of New South Wales

Partial runtime reconfiguration allows some circuit components to be reconfigured while the
remaining circuitry continues to operate. Applications partitioned into modules have the poten-
tial to exploit this capability to virtualize hardware by swapping modules as required. One of
the challenges in doing so is to provide a communication infrastructure that supports the inter-
faces and communication needs of a sequence of dynamic module swaps. In contrast to previous
approaches, which have examined the use of buses and networks-on-chip for this purpose, we ex-
amine the use of customized point-to-point wiring harnesses to provide the dynamic connections
required for dynamic modular reconfiguration in an efficient manner. The COMMA methodology
implements applications on tile-reconfigurable FPGAs, such as the Virtex-4, and its design flow
is integrated with the Early Access Partial Reconfiguration tools from Xilinx. This paper out-
lines the methodology and describes greedy and dynamic programming approaches to merging the
communication graphs of successive configurations in order to generate effective wiring harnesses
within the methodology. Our evaluation indicates merging can markedly reduce total reconfigu-
ration delays at the cost of increased critical path delays. Application of the technique is likely to
be limited to scenarios in which the execution time between reconfigurations is short.

Categories and Subject Descriptors: C.0 [Computer Systems Organization]: General—Sys-
tem architectures; C.3 [Computer Systems Organization]: Special-purpose and application-
based systems—Real-time and embedded systems; C.5.4 [Computer Systems Organization]:
Computer system implementation—VLSI Systems

General Terms: Design, Algorithms

Additional Key Words and Phrases: Dynamic reconfiguration, hardware design, modular design,
modular reconfiguration, reconfigurable hardware

1. INTRODUCTION

The ability of FPGAs to be reconfigured at run time has intrigued researchers
for the past 15 years. In order to enhance the functional density of FPGAs, de-
signers have reconfigured the device to implement various phases of an algorithm
over time [Eldredge and Hutchings 1994; Villasenor et al. 1995] and considered
time- and space-sharing the FPGA resources among multiple concurrently active

Authors’ address: {shannonk, odiessel}@cse.unsw.edu.au; School of Computer Science and Engi-
neering, UNSW Sydney NSW 2052 Australia.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–36.

2 · S. Koh and O. Diessel

tasks [DeHon 1994; Brebner 1997].

As FPGA device sizes and speeds have scaled, the pressure to enhance the func-
tional density of devices at run time has abated. However, the complexity and
circuit area of applications has increased with device size; the arrival of platform
FPGAs has stimulated the desire to implement more ambitious, autonomous sys-
tems; and interest in sharing FPGAs amongst multiple tasks has grown. Methods
for designing and reconfiguring FPGAs in a modular manner are therefore being
intensively studied.

Applications that benefit from a modular design approach are likely to be large,
complex and heterogeneous. Modular design facilitates hierarchical implementa-
tions comprised of off-the-shelf cores, proprietary IP and legacy components. A
modular design style also facilitates rapid prototyping, and collaborative design.

Modular reconfiguration is employed to reuse FPGA resources when applications
are form-factor limited or energy restricted. Typically the FPGA device implements
a variety of components over time that are not all needed at once and that might
not fit onto the device simultaneously. For example, a baseband correlator or codec
might be swapped for one of another type in a software radio. A robotic rover or
satellite-based remote sensing application can thereby save power and make use
of a smaller device. It may be the case that a decision about which modules to
execute in hardware or software is made at run time on the basis of performance
and/or energy considerations. A modular reconfiguration strategy also supports
the multitasking of FPGA-based applications where the amount of FPGA resource
available is determined by runtime conditions.

Creating a successful application that makes use of modular reconfiguration poses
a range of additional challenges to the FPGA designer. These include: exploring the
space of possible reconfigurable implementations to minimize device and circuit area
costs and to maximize performance benefits; living with the constraints imposed
by vendor tools and devices; ensuring design correctness before, during and after
reconfiguration; meeting performance goals such as frequency, latency and through-
put; coping with limited on-chip memory and off-chip bandwidth; maintaining state
and/or restoring context; minimizing configuration memory, reconfiguration delay
and energy overheads; and developing efficient structures for interconnecting dy-
namic modules. To date, more attention has been devoted to the latter, lower level
issues than to the former, higher level ones. Very few inroads have been made
into supporting the design of applications that exploit modular reconfiguration in
a vertically integrated, general manner from design capture through to system in-
tegration and test.

This work extends currently available vendor back-end tools to facilitate design
exploration and implementation of module-based dynamically reconfigurable appli-
cations. We provide a framework with which to structure the reconfigurable systems
architecture and provide a means for estimating the performance of applications
that can be represented as a linear sequence of configurations scheduled over time.
We have implemented and studied methods for reducing reconfiguration overheads
by merging sequences of configurations that are able to share a common point-to-
point communication harness. The resulting flow, which commences with design
capture, interfaces with the modular reconfiguration (bitstream generation) tools.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Configuration Merging for Modular Reconfiguration · 3

Our work does not address all of the needs of a complete dynamic reconfiguration
design flow, but it automatically expands the options available to a designer and
simplifies their implementation.

Currently only the FPGAs from Xilinx support a partial reconfiguration mode
in which a region of the FPGA resources can be reconfigured while the remaining
resources are either halted or continue to run. Devices from other vendors need to
be completely reconfigured to implement a modular reconfiguration.

Xilinx has made available a set of Early Access Partial Reconfiguration (EAPR)
tools to support module-based reconfiguration [Xilinx 2007]. Their tool-flow com-
mences with the identification of so-called partially reconfigurable regions (PRRs)
embedded in a static “base” design. A complete bitstream for a device is comprised
of the bitstream for the static region plus an initial bitstream for each of the PRRs.
To effect a modular reconfiguration, a partial bitstream that reconfigures an entire
PRR is loaded. With careful design, this reconfiguration can be accomplished while
the rest of the design continues to operate.

At its core, a design methodology for implementing modular reconfiguration must
implement communication infrastructure that supports the dynamically chang-
ing communication requirements of the modules placed on the device at runtime.
In [Koh and Diessel 2006a] we proposed the COMMA methodology to analyse an
application and, given the device parameters, to implement and deploy a point-
to-point wiring infrastructure to solve the dynamic communications problem with
minimal overheads.

COMMA advocates the laying out of modules in a regular structure on an FPGA,
but this may extend routing paths as compared to implementing traditional flat-
tened netlists. We analysed the impact on the critical path delay of such a layout
in [Koh and Diessel 2006b], concluding that the increase in delay is acceptable in re-
alistic scenarios, and can even lead to improvements in delay over flattened netlists
as wiring becomes more dense.

Our approach to implementing a wiring infrastructure to support dynamically-
placed modules was presented in [Koh and Diessel 2007]. Graph merging, a central
process in the approach, was introduced to minimize reconfiguration delay overhead
as it is a key issue in dynamic reconfiguration. The proposed algorithms show sig-
nificant reductions in reconfiguration delay for an example optical flow application.

However, the algorithm proposed for graph merging in [Koh and Diessel 2007]
was based on a greedy method and is not optimal. In addition, a more thorough
assessment of graph merging was desired. In [Koh and Diessel 2008] we investigated
an improved dynamic programming approach to graph merging and presented the
results of benchmarking the two algorithms.

This paper provides a comprehensive review of our investigations into this area
to date. We present a summary of the COMMA design flow and its role in struc-
turing the use of the EAPR tools. We describe our exploration of the use of a
point-to-point wiring harness to provide the communication infrastructure needed
to support inter-module communication. We outline the algorithms to automate the
implementation of the wiring harness given the communication needs of dynamic
configurations of communicating modules. Finally, we summarize our empirical as-
sessment of the COMMA approach and conclude with directions for further study.

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 · S. Koh and O. Diessel

Apart from drawing together our previously published results on communication
infrastructure for modular reconfiguration, this paper includes the following pre-
viously unpublished contributions: the running example of communication graph
scheduling and merging presented in Figures 3, 4 and 7; the presentation of Algo-
rithm 1 for merging two subgraphs, and of Algorithm 2 for performing the global
routing of a merged graph; the wire delay and reconfiguration delay cost models
presented in Sections 3.4.4 and 3.4.5; the analysis of the impact of merging on ap-
plication run time reported in Section 5.1.3; and the discussion on reconfiguration
region sizes and availability of Section 5.4.

1.1 Related Work

Current commercial support for implementing dynamic reconfiguration is through
the Early Access Partial Reconfiguration (EAPR) tool-flow [Xilinx 2007] but this
does not advocate any particular strategy or layout for the communications needed
by dynamic modules. Our work offers an approach to using the EAPR tool-flow
within a structured context. The COMMA tool-flow manages the layout of the
reconfigurable module slots and designs the interfaces and custom wiring harness
that allow a dynamic set of modules to communicate.

Previous research efforts to implement inter-module communication infrastruc-
tures include bus-based approaches [Kalte et al. 2004; Ullmann et al. 2004; Hage-
meyer et al. 2007], network-on-chip approaches [Marescaux et al. 2002; Bobda et al.
2005] and off-chip communication handlers [Horta et al. 2002; Majer et al. 2007].
Of particular concern when using buses, NoCs and off-chip communication are the
area, critical path delay and reconfiguration delay overhead. Factors contributing
to these costs include: module adapter latency and area, arbitration (for buses),
network router latency and area (for NoCs), bus and network contention, as well
as I/O delays (for off-chip handlers). A further common problem with the previous
work is that the communication methodology is designed for the general case and
is not customized to the needs of specific applications. These approaches therefore
necessarily rely upon slow resources such as short wires to provide flexibility and
adaptivity at the cost of application performance.

In order to reduce the overheads evident in prior approaches, we have chosen
to use customized point-to-point wiring to implement the wiring for inter-module
communications. Custom point-to-point connections have lower communications
delay and area overhead compared with higher-level approaches. Consequently,
there is a greater chance of meeting area and timing constraints. Furthermore, our
approach does not impose any particular communication protocol; any protocol can
be implemented, as desired.

However, choosing to focus on point-to-point connections raises its own set of
challenges. Since interconnect delay is proportional to the number of wire hops
and overall interconnect length, one needs to be concerned with the layout of com-
munication paths and the placement of reconfigurable slots and modules. As wire
resources are quite limited, reusing them is necessary. And should wiring need to
be reconfigured due to area and/or delay constraints, the free-form nature of point-
to-point layouts could impact on reconfiguration delay, which also suggests layout
needs to be watched.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Configuration Merging for Modular Reconfiguration · 5

Slot
X0Y3

(3)

Slot
X1Y3

(7)

Slot
X0Y2

(2)

Slot
X1Y2

(6)

Slot
X0Y1

(1)

Slot
X1Y1

(5)

Slot
X0Y0

(0)

Slot
X1Y0

(4)

cw

cw

(a) Module placement

Infrastructure
Generation

Device Info and
User-Supplied

Parameters

Partial Module
Bitstreams and

Wiring
Harnesses

Chip and
Communication
Configuration

Communication
Infrastructure

Configurator
Partial

Reconfiguration
Tool Flow

Module Wrapping

(b) Simplified tool flow

Fig. 1. Module placement and simplified tool flow

2. THE COMMA METHODOLOGY

The COMMA methodology for implementing dynamically-reconfigurable applica-
tions advocates the laying out of fixed-sized reconfigurable slots into which modules
can be placed on a tile-reconfigurable device such as the Virtex 4/5 as shown in Fig-
ure 1a [Koh and Diessel 2006a]. This approach maintains the structural advantages
of a paged reconfiguration scheme, which include: a constant slot reconfiguration
delay, the elimination of external (logic area) fragmentation and associated data
structures and algorithms incurred with variable slot sizes, and the possibility of
relocating modules between slots. Critical path delays within and between modules
are also kept low. According to application needs, any subset of the reconfigurable
slots can be reserved for static circuitry. Slots can also be aggregated to form larger
reconfigurable regions by merging the slots across a row of slots, or by merging two
or more slots within a column of slots. An individual slot can also be split into a
number of vertical stripes that span the height of a slot and are customized in their
width. In the COMMA method, such aggregation or sub-division is best done prior
to application mapping and communication infrastructure generation.

A key feature of the approach is that we utilize spare routing capacity and wire
sharing to fashion a bespoke wiring harness that accommodates the intermodule
communications of a sequence of module reconfigurations. In Figure 1a, modules
in the white slots are segregated from the intermodule wiring in the gray wiring
channel. The channel width, represented as “cw” in Figure 1a, is the width in CLBs
of the gap between adjacent slots. The perimeter of the device has a channel width
of cw

2 . The objective of this segregation is to allow independent reconfiguration of
each module without requiring the wiring to be reconfigured, à la Brebner’s fixed
wiring harness [Brebner 1997].

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 · S. Koh and O. Diessel

Since we do not believe current device technology is sufficiently developed to
adopt a fixed wiring scheme capable of efficiently interconnecting reconfigurable
modules in general, we have chosen to tailor the wiring harness to the needs of
specific applications. This strategy can be applied when the designer knows the
placement and communications needs of all modules that are to be supported.
However, when the module sequencing is determined by runtime conditions, it
may not be possible to guarantee the availability of a predetermined placement,
thereby diminishing the efficiency of our approach. A more common problem to
arise is that the device does not provide sufficient wiring resources to allow the
set of interconnections required by a sequence of module reconfigurations to be
implemented. In this case, we are forced to consider reconfiguring the wiring harness
at run time. A principal goal of our strategy is to minimize the number of times the
wiring harness needs to be reconfigured in order to reduce the overall reconfiguration
delay an application is subjected to.

3. WIRING INFRASTRUCTURE GENERATION

Our overall design flow (Figure 1b) involves obtaining device information (i.e. CLB
and IOB grid structure etc.) and user-supplied parameters (e.g. IOB assignments,
timing requirements etc.) to create a chip and communication configuration set
containing device- and application-specific parameters. This is followed by commu-
nication infrastructure generation for the application, which includes one or more
wiring harnesses. Module wrapping maps each module’s ports to specific wires in
its wiring harness through a lightweight or “weightless” interface. The modules and
harnesses are then implemented using a partial reconfiguration tool flow such as the
Xilinx Early-Access Partial Reconfiguration Toolkit [Xilinx 2007]. Please see [Koh
2008] for a more detailed description of COMMA.

Of particular interest in this paper is the Infrastructure Generation process of
Figure 1b. This consists of several steps as illustrated in Figure 2, which elaborates
the dashed area of Figure 1b. The inputs to this process consist of an application
specified as a communication graph and the configuration set obtained from the
previous Configurator process. The outputs of Infrastructure Generation comprise
the low-level details for implementing the wiring harnesses and module wrappers,
which are provided to the Module Wrapping step. The steps in infrastructure
generation are detailed in subsequent sections of this paper.

3.1 Application Specification

An application is specified as a communication graph, which is derived from the
functional partitioning of an application into modules. For example, a JPEG ap-
plication may be decomposed into DCT and Huffman encoder modules, amongst
others.

A communication graph is similar to a task graph that contains physical details
about the tasks and inter-task communications. An example is shown in Figure 3.
Each module has associated with it attributes indicating its approximate size in
terms of the target device resources. In Figure 3, these are specified using three
values “x/y/z” referring to the configurable logic block (CLB) count, the arithmetic
unit or DSP block count and the on-chip RAM block count of a Virtex-4 target
respectively. Each edge represents a communications link between two modules

ACM Journal Name, Vol. V, No. N, Month 20YY.

Configuration Merging for Modular Reconfiguration · 7

Communication
Graph

Module
Clustering

Aggregated
Communication

Graph

Scheduling

Sequence of
Aggregated

Comm . Graphs
Graph Merging

Merged Graphs (to module
wrapping)

Chip and Comm .
Configuration

Implementation &
Bitstream Generation

Details

(from
configurator)

Fig. 2. Wiring infrastructure generation sub-flow

specified using three attributes: its bit-width, the output port number of the source
module, and the input port number of the destination module. External I/Os are
also represented, with or without specific pad numbers.

We assume the full bandwidth of each communication link is required during each
clock cycle. This conservative approach reserves more wires than necessary when
communications could be scheduled to share the wires. Since the real bandwidth
of edges is not modelled, suboptimal partitioning decisions may also result during
the scheduling phase.

At the current stage of development of the system, modules are assumed to
be executing for the period inputs are available for processing. When the graph
can be accommodated on the FPGA without the need for reconfiguration, the
modules can be viewed as being static. If reconfiguration is required to complete
the processing of all modules, those that have already completed processing are
preferentially replaced. If it is not possible to complete the processing of all inputs
before some modules need to be removed to make room for others, the incoming
stream of data needs to be buffered. Data that would have been forwarded from the
resident configuration to modules that have not yet been configured also need to be
buffered. When the amount of this data exceeds on-chip capacity, buffering occurs
off-chip. When reconfiguration has occurred, the buffered data is read back into
the FPGA for processing. To date we have considered the overall development flow
and focussed on satisfying the on-chip communications needs of dynamic module
configurations rather than the detailed requirements and management of buffering.

To assist the partitioning tool in determining temporal partitions that consider
limitations on the number of FPGA I/O pins, memory bandwidth and memory
capacity and that minimize configuration thrashing, the expected period during
which a module of the communication graph is active needs to be known. Our
work has also not yet reached this level of refinement. To our knowledge this is an
as yet unsolved problem.

ACM Journal Name, Vol. V, No. N, Month 20YY.

8 · S. Koh and O. Diessel

A
100 /0/0

D

40/1/0

16 /X/1

External I /O Pads

B

45/1/4
16/2/1

C

50/0/2

12/3/1 16 /2/2

split

12/3/1

B

45/1/4

E

30/0/0

8/3/1 12/2/1

8/2/2

F

20/0/0

8/2/1

G

40/0/0

12/3/1

I

30/0/0

8/2/3

H

40/0/0

8/3/1

8/2/1

External I /O Pads

8/2/X

cl
us

te
r

Fig. 3. An example of a communication graph

ACM Journal Name, Vol. V, No. N, Month 20YY.

Configuration Merging for Modular Reconfiguration · 9

3.2 Module Clustering

The first step in the infrastructure generation process is to aggregate or sub-divide
the modules in the application communication graph such that the logic size of
each node in the graph fits into the size of the slots depicted in Figure 1a. We
use METIS [Karypis and Kumar 1998] for balancing the amount of logic in each
module.

For example, assuming a maximum module size of 60 CLBs, task A of Figure 3
needs to be partitioned, since it is estimated to occupy 100 CLBs, or two module
slots need to be aggregated to accommodate it. The latter approach would be taken
if this module is static or if subsequent temporal partitions contain similarly large
modules and the aggregated slot could be used without significant wastage of slot
resources (internal fragmentation). However, this approach must be taken when
the desired speed and interconnection density of a large module does not allow it
to be partitioned. Tasks E and F of Figure 3 can be packed into a single module
as their combined size is estimated to be 50 CLBs. These changes are reflected
in Figure 4, which illustrates the sequence of temporal partitions obtained from
scheduling the clustered communication graph.

3.3 Scheduling

Without loss of generality, we assume the clustered communication graph to be
too large to fit onto the target device. We therefore partition the graph into a
scheduled sequence of subgraphs, each of which must contain no more nodes than the
total number of slots available on the device. Each subgraph represents one of the
temporal partitions of the application that is loaded onto the device in turn. Each
temporal partition comprises a smaller graph that captures the communications
between the modules needed while the corresponding configuration is active. Note
that this approach is currently limited to DAGs, or cyclic graphs in which the cycles
do not span partitions. Traditional partitioning and scheduling algorithms such as
those of [Gajjala Purna and Bhatia 1999] and METIS [Karypis and Kumar 1998]
are used in this step.

Figure 4 illustrates the sequence of three temporal partitions obtained from
scheduling the communication graph of Figure 3 after clustering, assuming a recon-
figurable slot size of 60 CLBs and a device organized to support 4 slots. Off-chip
buffering has been inserted to transfer intermediate data between the partitions.
An overhead of 8 CLBs and two wires per interfacing module has been added to
provide the interface with suitable off-chip FIFOs. Two modes of execution are
possible for this sequence. When there are no constraints on execution latency and
memory capacity, each temporal partition is loaded in sequence and processes all
input data until it is finished. Otherwise, it is feasible to loop or alternate con-
figuration loading and execution as FIFOs fill or as dictated by latency and/or
throughput targets.

3.4 Graph Merging

The output of the scheduling step is a sequence of communication subgraphs. At
a high level of abstraction, a schedule can be depicted as shown in Figure 5. Each
subgraph can be associated with a constraint d(Gi), which specifies its target max-

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 · S. Koh and O. Diessel

A1
45/0/0

D
40/1/0

16 /X/1

External I /O Pads

B
45/1/4

16 /2/1

C
58/0/2

12 /3/1

16 /2/2

14/3/X

B
45/1/4

E
58/0/0

8/3/1 12 /2/1

8/2/2

G
40/0/0

I
30/0/0

8/2/3

H
40/0/0

8/3/18/2/1

External I /O Pads

8/2/X

A2
55/0/0

24 /2/1

Buffering

14/X/1

14/3/X

Buffering

14/X/1

Fig. 4. A scheduled graph sequence for the communication graph of Figure 3

ACM Journal Name, Vol. V, No. N, Month 20YY.

Configuration Merging for Modular Reconfiguration · 11

G1

d(G1)
G2

d(G2)
G3

d(G3)
Gn-1

d(Gn-1)
Gn

d(Gn)
...

Fig. 5. A scheduled graph sequence

imum critical path delay. This constraint can be specified if it is known that the
modules in the subgraph must operate at a specific minimum clock frequency.

Ideally, a single wiring harness is implemented to support the communications
needs of the entire sequence of subgraphs. But building such a harness may exceed
area and timing constraints. The graph merging step aims to merge contiguous
subsequences from the scheduled graph such that for each merged subsequence,
referred to as a period, a harness can be built that supports the communications
for all subgraphs in the subsequence. Graph merging attempts to reuse previously-
formed connections and to make use of spare wiring capacity to reduce the overall
cost of reconfiguring the wiring at application run time.

The reconfiguration delay of a sequence of merged graphs can thus be split into
two parts: the time to reconfigure individual modules, and the time to reconfig-
ure the wiring harness when it is necessary to do so before the start of a new
period. The goal of graph merging is to minimize the total reconfiguration delay of
the application sequence by selecting appropriate periods and determining module
placements that minimize the need to reconfigure. The critical path delay of each
resulting wiring harness must not exceed the minimum d(Gi) for the graphs of the
corresponding subsequence or period.

An overview of graph merging is depicted in Figure 6. We refer to the main
process as Subsequence merging, which is comprised of two subprocesses: Merge
two subgraphs , which derives a merged graph structure, and Map subgraph, which
maps the merged graph to device resources.

As previously explained, subsequence merging processes the sequence of commu-
nication subgraphs or temporal partitions into periods, each of which has a sin-
gle wiring harness that satisfies the communication requirements of all subgraphs
within the period. This is done by iteratively choosing two (merged) subgraphs
to merge into a single (merged) subgraph and determining whether the resulting
wiring harness meets timing and area constraints when it is mapped to the device.

The subprocess to merge two subgraphs attempts to reduce reconfiguration over-
heads by allocating modules that are common to both subgraphs to the same slot
and by reusing previously formed inter-slot wiring connections. The need to recon-
figure the slots between temporal configurations is reduced by reusing those that
are already appropriately configured. The overall area and critical path delay of
the wiring harness is reduced by reusing existing connections, thereby reducing the
number of times the wiring harness itself needs to be reconfigured.

Mapping the subgraph to the device involves determining global routing paths
for each communication arc in the wiring harness for the subgraph and establishing
whether the mapped wiring harness is likely to meet the application’s area and
timing constraints.

ACM Journal Name, Vol. V, No. N, Month 20YY.

12 · S. Koh and O. Diessel

Subsequence
Merging

Schedule of
Subgraphs

Merged Schedule
of Subgraphs

Merge
Two

Subgraphs

Two Subgraphs

Pick Two
Subgraphs

Merged Subgraph

Map
Subgraph

Critical Path and
Reconfiguration

Delay

Keep Merged
Subgraph

Break Grouping or
Consider Different

Graphs

Meets
Constraints ?

Yes No

Fig. 6. Overview of graph merging

ACM Journal Name, Vol. V, No. N, Month 20YY.

Configuration Merging for Modular Reconfiguration · 13

3.4.1 Subsequence Merging. We compare two approaches to merging the subse-
quences. The first of these employs a greedy method to choose the subsequences
that are to be merged. The second approach employs dynamic programming with
the aim of reducing the overall reconfiguration delay. In this and the following
subsections, we describe and analyse the processes in subsequence merging in the
context of the greedy method. We then finish up the section with a description and
analysis of the dynamic programming approach.

We apply the following greedy algorithm to merge subsequences:

(1) Merge the first two graphs in the application sequence using the algorithm
described in Section 3.4.2.

(2) Map the merged graph using the algorithm described in Section 3.4.3 and ex-
amine the area use and critical path delay:
(a) If the area and timing constraints of the merged graph are satisfied, then

remove the first two graphs from the application sequence and replace them
with the merged graph. Return to step (1) and try to merge the next graph
in the schedule with the merged graph at the start of the sequence.

(b) Otherwise, the constraints are not satisfied and the merge is unsuccessful.
The first graph in the application sequence forms a subsequence on its own,
known as a period. Remove it from the application sequence and add it to
the list of merged subsequences (periods).

(3) Return to step (1) and repeat until the application sequence has been processed
in its entirety i.e. all periods have been formed.

3.4.2 Merging Two Graphs. We define the problem of merging a subgraph G1

with the subgraph G2 following it in the schedule as follows:
Define graph S to be equivalent to G1 with additional, unconnected “blank” nodes

representing empty slots that G1 does not make use of. Place each node in G2 into
S such that the total number of shared arc bits is maximized and the total number of
module swaps is minimized. An arc can be shared if there exists an arc au,v between
two nodes (u, v) in G1, and there exists an arc aw,x between two nodes (w, x) in
G2, and if w replaces u, and x replaces v.

Maximising the number of shared arc bits, or minimizing the number of arc bits
that need to be added to S, is equivalent to the problem of finding the smallest
super-graph of the two graphs G1 and G2. No obvious polynomial time algorithm to
solve this problem has been found. Similarly, no reduction to a known NP-complete
problem has been found. Thus the complexity of the problem remains open and we
propose a heuristic algorithm to solve this problem.

An outline of the algorithm is as follows:

(1) Sort the nodes of G2 into decreasing order of the total number of bits of com-
munication required.

(2) If there are nodes in G2 that have the same type as nodes in S, place them
into the same slot. This saves reconfiguring the modules and allows wires and
interfaces to be shared.

(3) For the rest of the nodes in G2, place each node into a slot (in S) according
to a cost function that accounts for: the total number of communication bits
that are shared for the chosen placement of the node, the total number of bits

ACM Journal Name, Vol. V, No. N, Month 20YY.

14 · S. Koh and O. Diessel

that may be shared due to where as yet unplaced nodes may be placed, and
the impact on reconfiguration time.

In the following description, we illustrate the operation of the algorithm on the
scheduled graph sequence of Figure 4, discuss the cost function we developed for
the algorithm in detail, present the algorithm and analyse its complexity.

Figure 7 illustrates the operation of the algorithm to merge two communication
subgraphs. The illustration assumes the availability of a device with 4 reconfig-
urable module slots. The algorithm commences by setting the slot graph S to the
graph G1, in this case to the first temporal partition of Figure 4. This involves
removing the port information on communication arcs, consolidating the arcs be-
tween each pair of nodes into a single arc and adding a sharing factor to each
arc. Next, those nodes of the successor configuration, G2, that are common to G1

are merged with the corresponding nodes in S. In this illustration, module B is
common to both subgraphs. The remaining nodes of G2 are selected in decreasing
order of total incoming and outgoing arc weight and allocated to the vertices of S

in such a manner so as to minimize the number of arc bits that need to be added to
the existing communications harness. Two of the best possibilities for making such
a selection are illustrated in the figure. In Step (3a), module D replaces module
A2 in S and E′ replaces C. There is no need to add the arc from D to B as the
required number of arc bits between these vertices is already present. Similarly,
the arcs from B to E′ and exiting from E′ off-chip are catered for. However, the
14-bit input from off-chip for module D needs to be added to the graph as does
the 12-bit arc (D, E′). Thus 26 connections in total need to be added for this
merging alternative. In comparison, the merged graph of Step (3b) only requires 8
connection bits to be added in total and is therefore preferred. The 4 other possible
placements for modules D and E′ involve adding a larger number of connections.

Evaluating all possible placements is of exponential complexity. We therefore
developed the following heuristic to determine a good placement for each module:

(1) For each module remaining in G2, examine the cost of placing it at each re-
maining vertex in S by calculating the number of confirmed shared bits β and
the number of unconfirmed shared bits µ.
—The number of confirmed shared bits β is the sum of the arc weights that can

be shared to and from the module with respect to modules that have already
been placed. For example, in Figure 7, placing D as in (3a) shares 8 bits on
its connection with B.

—The number of unconfirmed shared bits µ is the sum of the arc weights to
and from the module that could be shared given estimates for where as yet
unplaced modules could be placed in S. For example, in Figure 7(3b), when
D is considered before E′ is placed, there are 12 unconfirmed shared bits
were E′ placed at C. It should be noted that only those modules that are
as yet unplaced and that are connected to the module being considered for
placement need to be included in the calculation. These are considered in
decreasing total connection weight order. The provisional placement that
maximizes µ is determined for each of these modules, and the correspond-
ing vertex is eliminated as a viable candidate for provisionally placing the
remaining connected modules.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Configuration Merging for Modular Reconfiguration · 15

A1

45/0/0

16 /X/1

B

45/1/4

16/2/1

C

58/0/2

12 /3/1

16/2/2

14/3/X

A2

55/0/0
24/2/1

G1

D

40/1/0

B

45/1/4

E’

58/0/0

8/3/1 12/2/1

8/2/2

14/X/1

14/3/X
G2

A1

B

16/0

C

12/0

16 /0

A224 /0

S

16/0

14/0

1

2

A1

B/B

16/0

C

12 /0

16 /0

A224/0

16 /0

14/0

A1

B/B

16/8

C/E’

12/0

16 /8

A2/D24 /0

16/0

14/14

3a

0/14

0/12

A1/D

B/B

16/0

C/E’

12 /12

16/8

A224/0

16 /14

14/14

0/8

3b

Fig. 7. Merging the first two subgraphs of the scheduled graph sequence from Figure 4

ACM Journal Name, Vol. V, No. N, Month 20YY.

16 · S. Koh and O. Diessel

(2) The cost of placing the module n at vertex m is computed to be: cost(n at m) =
totalbits(m)−β−ν ·µ. The parameter ν is the factor by which an unconfirmed
shared wire contributes to alleviating the total cost.
—The value of ν is set according to how well the algorithm predicts the future

wire sharing. If the number of unconfirmed shared bits is invariably con-
firmed, then the value of ν used should be 1. On the other hand, a value of
0 indicates that unconfirmed shared bits should be left out of the equation
entirely. In our experiments we used a value of 0.5.

(3) Choose the placement with the lowest cost and proceed to the next module. The
lowest cost placement roughly corresponds to that placement which maximizes
the utilization of existing wires.

The algorithm we used to merge two subgraphs is listed as Algorithm 1.

Time Complexity. The main variable that determines the time complexity of
Algorithm 1 is the number of available reconfigurable module slots. Let z denote
the number of slots on the device. The run time of the algorithm is the sum of the
following three cost components:

(1) At line 8, the nodes in G2 are sorted. This can be performed in O(z log z) time
with an algorithm such as in-place merge sort [Katajainen et al. 1996].

(2) The two main loops, commencing at lines 9 and 17 respectively, contain two
nested loops at lines 10 and 20 respectively. Both loops iterate O(z2) times.

(3) The algorithm used to calculate the number of unconfirmed shared bits at line
23 is as described in the above definition. In the worst case, O(z2) provisional
placements need to be considered to complete the calculation.

As the second main loop contains CalculateUnconfirmedSharedBits, the time com-
plexity to merge two subgraphs is O(z4). z is constant with respect to the number
of subgraphs in the application and only grows as larger devices are used.

3.4.3 Graph Mapping. The metrics used to determine the effectiveness of sub-
graph merging are the contribution to the critical path delay by the wiring harness,
and the reconfiguration delay between subgraph execution.

We define subgraph mapping as the assignment of slots to each module in a
subgraph, followed by the determination of estimated global routing paths for each
arc in the subgraph.

Each module in a subgraph is first allocated a slot on the device, with the op-
timization goals being to minimize the number of wires across any cut and the
maximum wire length. Minimizing the cut width serves to reduce the channel
width (and thus to provide more area for module logic) as well as to reduce chan-
nel congestion, which affects the critical path delay when shorter wires and more
switch-box hops have to be used as longer wires become scarce.

The second step in graph mapping is to “map” each wire to the device by estimat-
ing the routing path that is expected to be taken by the low-level routing algorithm.
This step is extremely important as it provides two crucial pieces of feedback to
the subsequence grouping process. Firstly, it reports the estimated critical path
delay to ensure that it does not exceed any predefined timing constraint. Secondly,
it determines whether the subgraph fits the device or not, i.e. whether or not it

ACM Journal Name, Vol. V, No. N, Month 20YY.

Configuration Merging for Modular Reconfiguration · 17

Algorithm 1 MergeTwoSubgraphs

Input: Subgraphs G1 = (V1, A1) and G2 = (V2, A2)

1: [S = (VS , AS)]← G1

2: RemoveAllPortInformation(AS)
3: SetAllSharingFactors(AS , 0)
4: ConsolidateArcs(AS)
5: while |S| < NumSlots do

6: AddEmptyNode(S)
7: end while

8: M2 ← SortDescBits(V2) {sort G2 nodes on descending total edge weight}
9: for all m in M2 do

10: for all v in VS do

11: if m.type is equal to v.type and v is not merged yet then

12: Merge(v, m)
13: M2 ←M2 −m {remove m but retain ordering}
14: end if

15: end for

16: end for

17: for all m in M2 do

18: lowestcost←∞
19: bestnode← ∅
20: for all v in VS do

21: if v is not merged yet then

22: β ← CalcNumConfirmedSharedBits(v, m) {wrt modules already in S}
23: µ← CalcNumUnconfirmedSharedBits(v, m) {wrt modules not yet in S}
24: cost← totalbits(v) − β − ν × µ

25: if cost < lowestcost then

26: lowestcost← cost

27: bestnode← v

28: end if

29: end if

30: end for

31: Merge(bestnode, m)
32: end for

Output: The merged subgraph S

meets area constraints. If either constraint is not met, the merged subgraph cannot
be implemented and a less aggressive merge must be attempted.

It would be best to determine the feasibility and resulting performance of imple-
menting a subgraph on an FPGA using the low-level place-and-route algorithms
provided by the device vendor. However, the delay of doing so for a single subgraph
can be significant and is thus not practical for the iterative procedure followed by
the subsequence merging algorithm. We have therefore sought faster approximate
methods that provide reasonable feedback on the potential to successfully map a
merged subsequence to the target device. It should be noted that the resulting
area and delay are checked to confirm that they do not exceed constraints when the

ACM Journal Name, Vol. V, No. N, Month 20YY.

18 · S. Koh and O. Diessel

wiring harness is eventually implemented using the EAPR tools. If constraints are
exceeded, the derived solution is marked as infeasible and graph merging is rerun.
However, adopting this approach may miss solutions that would have been mapped
with better results by the vendor tools.

Problem Statement. The problem of subgraph mapping can be stated in two
stages. The first stage is to place the modules in the slots:

Given a subgraph G = (V, A), place each module v ∈ V in a slot such

that the estimated channel width utilization and maximum wire length are

minimized.

After a placement has been obtained for each module, the arcs need to be mapped
into the available channels:

Given a subgraph G = (V, A) and for each v ∈ V a placement p(v) = (x, y),
determine a route through the channels for each arc a ∈ A such that the

cost of implementing these routes are minimal, and that the slot and channel

boundaries do not exceed their capacities.

Approach. The first sub-problem, slot allocation, can be solved using integer
linear programming [Fekete et al. 2001; Koh and Diessel 2006b; Koh 2008], or with
floor-placement algorithms such as Capo [Roy et al. 2005]. Both methods aim
to minimize the cut-width and wire lengths. The ILP method produces a set of
optimal allocations for any graph, but does not scale well as device size grows. This
is because the number of possible solutions grows factorially with the number of
slots in the device. On the other hand, a floorplacer may not be optimal but is
fast, and has been shown to produce very good results in standard cell placement
experiments.

As for the second problem, even at this global routing level, routing every wire
into optimal path assignments is very time consuming. It is thus proposed that
heuristics be used to solve this problem. The method is based on the approach of
Lou et al. to modelling the device as a grid of channel cells [Lou et al. 2002] and
the delay-lookup approach of Manohararajah et al. [Manohararajah et al. 2006].
The algorithm for mapping arcs to the device is described in Algorithm 2.

Initially sorting the connections in descending order mimics what a detailed
router does at a higher level by allowing longer connections to use faster rout-
ing paths through the channel cells, thereby reducing the risk these nets become
critical.

The algorithm also makes use of “preferred” routing paths for arcs with source
and destination modules placed further apart. These are allocated by determining
which slot boundary a connection exits from (lines 5–13). It is preferred for com-
municating modules in the same column to use the channels adjacent to the side
edges of the device, or if they are vertically adjacent (abutting), to use the channels
sandwiched between the slots in order to minimize pressure on the centre channel
(refer to Figure 1a for an illustration of the channel layout). Communicating mod-
ules in different columns use the centre channels as a first preference as these have
the shortest routing lengths. As long as the correct exit boundary is chosen, the A*
search coupled with the Manhattan distance heuristic result in the desired path.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Configuration Merging for Modular Reconfiguration · 19

Algorithm 2 MapArcsToDevice

Input: A subgraph G = (V, A)

1: Sort all arcs in A in descending order of length
2: for each arc a ∈ A do

3: repeat

4: Route from the source to the destination slot using a modified A* search
where g(x) and h(x) is the Manhattan distance to the goal calculated using
the vcost and hcost attributes with the following preferred exit heuristic:

5: if the source and destination are in the same column then

6: if they are vertically adjacent then

7: Exit Preference = { N/S(DIRECT), SIDE, CENTER }
8: else

9: Exit Preference = { SIDE, N/S(DIRECT), CENTER }
10: end if

11: else

12: Exit Preference = { CENTER, N/S(DIRECT), SIDE }
13: end if

14: if the route cannot be found then

15: return UNSUCCESSFUL
16: end if

17: u← a.width

18: for all cells c crossed along the route do

19: p← c.{nsew}cap− c.{nsew}util {the remaining capacity of the bound-
ary that has to be crossed}

20: if p < u then

21: u← p

22: end if

23: end for

24: for all cells c crossed along the route do

25: c.{nsew}util← c.{nsew}util + u

26: end for

27: a.width← a.width− u

28: Record the route taken by these u bits of arc a

29: until a.width = 0
30: end for

Once a path has been established we use as much of the available capacity as
possible and seek additional paths to satisfy the required connection width for each
arc.

Time Complexity. The mapping step consists of two parts — allocating the
merged modules to the device slots and routing the wires.

Allocating the merged modules using an ILP solver is of exponential time com-
plexity, but a standard cell placer requires p log p time for p pins. For a device with
z module slots, no graph has more than z modules and O(z2) consolidated edges.
The standard cell placer therefore requires O(z2 log z) time to determine a module
placement.

ACM Journal Name, Vol. V, No. N, Month 20YY.

20 · S. Koh and O. Diessel

An A* search is performed to determine a global route for each connection.
The time complexity of the search is O(q log q) per route, where q is the number
of channel cells in the device. With reference to Figure 1a, the channel cells are
delimited by the dashed lines and defined by the partitioning of the wiring channels
formed by extending the horizontal and vertical edges of all slots to the edges of
the device. Since q is proportional to the number of slots z, the complexity of the
search is therefore O(z log z) per route.

The number of connections in the merged subgraph is O(z2). Thus the time
complexity of the global routing step is O(z3 log z), which dominates the cost of
the placement step of subgraph mapping.

3.4.4 Wire Delay Cost Model. The delay over a given distance is less when
longer wires rather than shorter wires are used because fewer switch boxes are
traversed. Since there is a limited number of long wires, the following cost model
is applied to impose an increasing penalty the more a channel is saturated.

twd(G) = max
a∈AG





∑

c∈channels used(a)

tpd(c)



 (1)

Equation 1 states that the critical path delay twd of a subgraph G is the maximum
delay of any arc. The delay of a single arc is the sum of all the estimated costs of
each channel c used by the wire tpd(c).

tpd(c) = channel cost(c)×

[

1.0 +
θ · num wires exiting channel(c)

channel boundary capacity(c) · σ

]

(2)

Equation 2 is based on the [Lou et al. 2002] definition of the congestion cost, i.e.,
the ratio between the number of wires used and the capacity in a routing channel. In
addition, it introduces a “reasonable saturation rate” 0 < σ ≤ 1 and an “optimality
factor” θ ≥ 0.0 to increasingly penalize the wire delay the more the channels become
saturated. The “reasonable saturation rate” σ specifies what percentage of the total
number of available wires is reasonably used. The “optimality factor” θ specifies
what percentage penalty of the channel cost should be applied as the number of
wires approaches the saturation rate. The cost is calculated after the mapping is
performed.

The delay of a Virtex-4 wire is approximately 80ps per CLB row or column
travelled. Each switch-box hop also takes about 80ps. These figures are estimates
and were obtained experimentally by running the delay mediator in the Xilinx
FPGA Editor for typical routes. If the propagation delay between adjacent CLBs
is about the same as a switch-box hop, then using only single wires may cause the
delay to be close to double that as compared to using longer wires. In this case, if
σ is 1.0 then θ should be close to 1.0. In other words, if all the wires are used, then
it is possible that delay is doubled.

3.4.5 Reconfiguration Delay Cost Model. The reconfiguration delay model is
comprised of the following elements:

—Slot reconfiguration: The time to reconfigure a slot is given by Equation 3.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Configuration Merging for Modular Reconfiguration · 21

rslot = 22 · rframe ·

(

devcols

2
− channelwidth

)

(3)

The slot reconfiguration time expression is derived from the following assump-
tions: approximately 22 frames per CLB column, the time to reconfigure a Virtex-
4 frame, rframe = 0.41µs, devcols CLB columns for the given device and the given
channel width. This accurately estimates the slot reconfiguration delay as the
EAPR tool flow generates partial bitstreams that reconfigure the entire slot.

—Wire reconfiguration: For each channel that a connection occupies:
—For horizontal segments of the connection, 2 frames for every CLB the connec-

tion crosses up to a maximum of 20 frames per column of CLBs. This assumes
the worst case: that single length wires are used and thus two pips per column
need to be configured. Furthermore, no more than 20 of the 22 frames per
column of CLBs configure routing switches.

—If there is a bend in the connection, 2 frames are required for the bend. In the
device model used, a bend in a channel always requires a subsequent bend in
another channel.

—For vertical segments of the connection, a fixed estimate of 4 frames (i.e. 1
5

of the CLB routing resources) per reconfiguration frame page crossed. This is
the mean number of frames which was obtained through experimentation with
difference bitstreams. As reconfiguration frames span multiples of 16 CLB rows
in Virtex-4, the number of pages crossed is easy to determine.

3.4.6 Dynamic Programming Approach to Subsequence Merging. The greedy
method described in Section 3.4.1 merges as many subgraphs into each successive
period as is possible without exceeding wiring harness area or delay constraints.
This approach does not consider the potentially better arrangements possible when
periods are chosen to exploit similarities in structure between consecutive commu-
nication subgraphs. The greedy method is thus unlikely to be optimal.

The problem looks suited to a dynamic programming approach in which the
solutions to longer sequences are formed by combining the solutions to shorter
ones [Cormen et al. 1990]. Unfortunately, the solutions to shorter sequences cannot
be readily concatenated since the cost of doing so partially depends upon the cost
of reconfiguring the wiring harness and the modules. The number of switch boxes
that need to be reset at a period boundary is dependent upon the wire routing
for the previous and next periods. For accuracy, the cost to reconfigure the wiring
would need to be recalculated for every possible combination of periods, which is
prohibitive. Furthermore, the module arrangement at the end of a period might not
suit the needs of the next period, even when one or more modules are common to
the next configuration. It is therefore difficult to assign a fixed reconfiguration cost
to a given merged subsequence that is independent of the subsequence it may be
followed by. However, this problem can be overcome by imposing the assumption
that at the start of each period a complete reconfiguration of the FPGA is performed
to implement the wiring harness and the module arrangement for the first subgraph
of the period. With this assumption, the cost associated with a merged subsequence
of graphs can be assumed to be independent of the previous period and the problem
assumes optimal substructure.

ACM Journal Name, Vol. V, No. N, Month 20YY.

22 · S. Koh and O. Diessel

Let us define a split to be a position between two graphs in the schedule where
we examine the possibility of ending a period and starting another. Let a split at
position k be defined as a split between graph k and graph k + 1 in the scheduled
graph sequence and consider a scheduled graph sequence of length n.

Establish the n × n memoization table. The rows i in this table correspond to
the length of subsequences considered for splitting into optimal periods. Column
j records the optimal split arrangement and the corresponding total reconfigura-
tion delay for splitting a subsequence of length i commencing with graph j in the
schedule. Note that the total reconfiguration cost does not include the delay of the
initial complete reconfiguration required to configure the wiring harness for the first
period in the subsequence and the modules for the first graph in the subsequence.

Record a reconfiguration delay ropt = 0 for each element of the first row of the
table. For each graph in the schedule, this records the zero cost of configuring
its modules after the complete configuration undertaken to implement the wiring
harness and the modules for the period consisting of the graph on its own.

For all subsequences of the schedule of length i : 1 < i ≤ n, the algorithm does
the following (without loss of generality, let the subsequence under consideration
span graphs G1 through Gi):

(1) Consider forming a period over the entire subsequence using the algorithms de-
scribed in Sections 3.4.2 and 3.4.3. Let r0 be the reconfiguration delay incurred
by reconfiguring the modules for all the graphs in the subsequence. If merg-
ing all graphs in the subsequence exceeds area/time constraints on the wiring
harness, then let r0 =∞.

(2) Consider every possible position k : 1 ≤ k ≤ i − 1, for a single split in the
subsequence. Determine the reconfiguration cost rk for that position by adding
the following three cost components:

(a) the reconfiguration cost of the optimal arrangement of splits for the subse-
quence of graphs 1 . . . k, i.e. for the part of the subsequence to the left of
the split k, as determined when subsequences of length k were considered,

(b) the reconfiguration cost of the optimal arrangement of splits for the sub-
sequence of graphs k + 1 . . . i (to the right of k, found for subsequences of
length i− k), and

(c) the cost of the full reconfiguration that is incurred when commencing a new
period after position k.

(3) Let ropt be the minimum of r0 . . . ri−1, which is memoized along with the cor-
responding split arrangement in the dynamic programming table at cell (i, j).

Thus, as longer subsequences are considered, the estimation of the reconfiguration
delay relies on the memoization of shorter subsequences. The best splits at length
n finally indicate the optimal set of periods for the scheduled graph.

An example of this memoization is depicted in Figure 8. The iteration currently
considered is at a subsequence length of i = 7 commencing at graph G1. If a split
were to be placed at k = 3, the optimal split arrangement for subgraphs G1 to G3

obtained from the iteration i = 3 is used for the left of the split. Correspondingly,
the optimal splits for subgraphs G4 to G7 obtained from the iteration i = 4 are
used for the right of the split at k = 3. The total reconfiguration delay is calculated

ACM Journal Name, Vol. V, No. N, Month 20YY.

Configuration Merging for Modular Reconfiguration · 23

G1 G2 G3

G4 G5 G6 G7
G3

G2
G1

G6 G7
G5

G4
G1 G2 G3

G4 G5 G6 G7

i=3

i=4

i=7

k=3

Fig. 8. Memoization example in the dynamic programming algorithm

by adding the previously calculated values from the split arrangements from G1 to
G3 and G4 to G7 together with full reconfiguration delay incurred between G3 and
G4.

The dynamic programming algorithm is listed as Algorithm 3.

Complexity. Half the memoization table needs to be filled in. To fill in an entry,
a trial merge of all graphs in the sequence is attempted during Phase 1 and on
the order of n trial splits and cost comparisons need to be performed in Phase 2.
Phase 2 thus contributes O(n3) to the time complexity of the dynamic programming
algorithm.

Each execution of line 9 involves the merging of the single subgraph numbered
j+i−1 with the shorter merged sequence of subgraphs obtained for period Pj,j+i−2

during the previous iteration of i and commencing with the same subgraph num-
bered j. That is, by storing the merged graphs formed during iteration i− 1, those
for iteration i can be obtained by one further merging operation and stored for
reprocessing during iteration i + 1. As derived in Section 3.4.2, each such merge
takes O(z4) time for a device with z slots. Mapping the merged subgraph in line 10
takes O(z3 log z) time as derived in Section 3.4.3. This merging and mapping can
be abandoned for a given column of the memoization table once the merged subse-
quence commencing with the corresponding subgraph can no longer be mapped.

The algorithm therefore has a worst case performance of O(n3 + n2z4).

Optimality. When the periods are actually implemented on an FPGA, rather
than performing a full reconfiguration of the device at period start, a difference
reconfiguration [Xilinx 2003; 2007] is performed, and thus the algorithm overesti-
mates the reconfiguration delay. This is beneficial when the application is actually
implemented on the device, but the impact of applying the heuristic simplification
should be analysed.

If this simplification were not applied, then the reconfiguration delay between
periods could be reduced in two foreseeable ways, by maintaining the same mod-
ule allocation between periods, and by trying to implement wiring harnesses that

ACM Journal Name, Vol. V, No. N, Month 20YY.

24 · S. Koh and O. Diessel

Algorithm 3 Dynamic Programming Algorithm

1: Create an array Splits[n, n]
2: {Dimensions — [subsequence length, start position]}
3: for i = 1 to n do {i: subsequence length}
4: for j = 1 to n− i + 1 do {j: start position}
5: if i = 1 then

6: Splits[i, j]← 0
7: else

8: {Phase 1: Whole subsequence merged}
9: Create period Pj,j+i−1

10: if map success(Pj,j+i−1) then

11: MinRecfg← EstimateRfgDelay(Pj,j+i−1)
12: else

13: MinRecfg←∞
14: end if

15: BestSplits← 0
16: {Phase 2: Determine best split}
17: for k = 1 to i− 1 do {k: splitposition}
18: TestSplits← Splits[k, j] | Splits[i− k, j + k]
19: S ← CreateSolutionInstance(TestSplits)
20: CurrentRecfg ← EstimateRecfgDelay(S)
21: if CurrentRecfg < MinRecfg then

22: BestSplits← TestSplits

23: MinRecfg← CurrentRecfg

24: end if

25: end for

26: Splits[i, j]← BestSplits

27: end if

28: end for

29: end for

exhibit minimal difference. Investigating algorithms that deal with the additional
complexity is a challenging area for further work.

4. EXPERIMENTAL METHOD

Benchmarks for dynamically reconfigurable computing provided as module-based
communications graphs are not readily available, and manually developing and
implementing a range of applications such as the optical flow algorithm we analysed
in [Koh and Diessel 2007] is too time-consuming. Thus, the methodology used to
conduct these experiments was to generate synthetic applications with a variety
of parameters representative of actual dataflow or streaming applications and to
subject these applications to the infrastructure generation process using the range
of device sizes and architecture parameters possible with the Virtex-4 device family.
The overall goal of the experiments was to observe the results when a variety of
synthetic target applications is mapped onto a range of device sizes with differing
architecture parameters. In order to do this, the experimental procedure illustrated

ACM Journal Name, Vol. V, No. N, Month 20YY.

Configuration Merging for Modular Reconfiguration · 25

Graph
Synthesizer

Application
Parameters

1: Graph Synthesis

Clustered

Non -
Clustered

Graph
Merging

Module
Clustering

Graph
Partitioning

2: Graph Preparation

Device
Parameters

3: Infrastructure Generation

Try Another DeviceTry Another Application

Prepare
Graph

Generate
Harness

Quality
Assessment

Comm -
unication

Graph

Clustered
Comm
Graph

Scheduled
Comm
Graph

Periodic
Comm
Graph

Fig. 9. Experimental procedure

in Figure 9 was followed.
There are three main phases to the experimental procedure, which are executed

iteratively. Initially, a graph is synthesized based on the following parameters: the
number of modules, the amount of variation in the types of modules, the sizes
of the modules and the communication density. This results in an application
communication graph that is then prepared for infrastructure generation based on
device parameters, i.e., the FPGA device size and the channel width assumed for
the wiring harness. The graph preparation phase partitions the graph and outputs
a set of scheduled graphs that are processed by the infrastructure generation phase
to generate the communication infrastructure and to obtain estimates of the total
reconfiguration time and critical path delay.

The communication graph for the synthesized application is then prepared for
a different set of device parameters, and the infrastructure generation phase is re-
executed. This repeats until all device parameters have been exhausted, after which
a new application graph is synthesized.

The experimental procedure also allows for two different modes of operation in the
graph preparation phase — with and without module clustering (see Section 3.2). If
module clustering is not required, that step is skipped and the graph is partitioned
and scheduled as is.

4.1 Parameters Chosen for the Experiments

4.1.1 Application Parameters. The parameters used to generate the application
graphs were as follows:

—Number of Modules: 200. Considering large graphs allows full architectural
exploration to be demonstrated. The directed acyclic graphs we synthesized were

ACM Journal Name, Vol. V, No. N, Month 20YY.

26 · S. Koh and O. Diessel

Device CLB Number CW:2 CW:4 CW:8
XC4VLX Array of Slots CLBs CLBs CLBs

15 64 × 24 8 140 96 32
25 96 × 28 12 168 120 48
40 128 × 36 16 224 168 80
60 128 × 52 16 336 264 144
80 160 × 56 20 364 288 160
100 192 × 64 24 420 336 192
160 192 × 88 24 588 480 288
200 192 × 116 24 784 648 400

Table I. Device Parameters

layered, with modules belonging to discrete “processing stages”. For example,
the DCT or quantization phases of the JPEG algorithm are suitably thought
of as stages in our graphs. The graphs we generated consisted of 200 modules
distributed over 10 to 20 stages, with each stage having between 10 and 20
modules.

—Module Type Variation: Primarily 20% (i.e., 40 module types) to observe the
effects of reducing reconfiguration delay by allocating modules belonging to the
same type in neighbouring subgraphs in the same slots. 0%, 40% and 60% were
also tested to observe the effects of different amounts of variation.

—Module Size: Primarily 60 CLBs. This is approximately the size of a DES core
when mapped onto a Virtex-4 device. As a comparison, a MicroBlaze processor
takes up 226 CLBs, which is slightly larger than a slot on an XC4VLX40 with a
channel width of 2. Module sizes of 35 and 85 CLBs were also tried to observe
the effects of different amounts of clustering.

—Communications Density: An average of 3-6 outgoing edges per module with
an exponentially decreasing distribution of 2 to 32 bits per edge. These choices
reflect “typical” applications in which modules obtain data from one or two source
modules, perhaps interact with a control module, and feed data into one or two
destination modules.

4.1.2 Device and Architecture Parameters. Each application graph was mapped
onto the range of devices available in the Virtex-4 LX series. The LX series was
chosen to be most suited to this experiment because it contains mainly logic. Wiring
harness channel widths of 2, 4 and 8 were chosen as these are the smallest possible
for reasonable slot sizes. Table I lists the devices tested and the number of slots
and slot sizes for each device and channel width. Note that each slot is fixed in
vertical height to 16− cw CLBs and thus only varies in width.

5. RESULTS

5.1 Comparisons between Not Merging, and Merging using the Greedy and Dynamic

Programming Methods

Test runs for 120 different application graphs with parameters as specified in Sec-
tion 4.1.1 were performed on the LX devices shown in Table I. The average reduc-
tions in reconfiguration delay and the estimated contribution to the critical path
by the wiring harness are shown in Figures 10a to 10f. In these plots the modules

ACM Journal Name, Vol. V, No. N, Month 20YY.

Configuration Merging for Modular Reconfiguration · 27

have undergone clustering to pack them into the available slot area.
Three lines are plotted for each graph. One corresponds to not merging the com-

munications subgraphs, a second illustrates the results for the greedy method, and
the third corresponds to the performance of the dynamic programming approach.

Not merging refers to using the COMMA methodology without applying the
graph merging process. Each period consists of just one communication subgraph
or temporal partition, and thus each subgraph has its own wiring harness that needs
to be reconfigured at every subgraph transition. Note that, in this assessment,
modules are still allocated so as to reduce reconfiguration delays and to thereby
provide an unbiased assessment of the benefits of graph merging alone.

5.1.1 Reconfiguration Delay. Figures 10a, 10c and 10e show the total reconfig-
uration delay for channel widths of 2, 4 and 8 respectively, but do not include the
delay incurred loading the initial configuration.

The reconfiguration delay plots 10a, 10c and 10e indicate there is a significant
benefit to graph merging for smaller devices and at larger channel widths in par-
ticular. This benefit is diminished as device size is increased and channel width
decreases. The quantitative benefit from graph merging appears to be related to
the number of subgraphs in an application sequence and consequently the number
of opportunities presented to merge graphs. For a given application, smaller devices
with fewer available slots therefore present more opportunities for reconfiguration
delays to be reduced via graph merging. Furthermore, consistent improvements can
be observed for the dynamic algorithm over the greedy method.

It is also clear from the plots that the reconfiguration delays are always higher
when the channel width is larger. This is because the slot sizes are smaller when
more device area is allocated for channel width, thus more configurations are nec-
essary to implement the entire application. With the COMMA methodology the
system designer can try different channel widths in decreasing order to find the
smallest one that can accommodate the application, while containing overheads
within acceptable bounds.

It is also apparent that there may be some small devices that do not follow general
trends. We will discuss these anomalies in detail in section 5.2.

Note that for channel widths of 2 and 4, i.e., Figures 10a and 10c, there was
a reconfiguration delay of 0 recorded for the LX200 device. The LX200 is large
enough to implement the entire graph, and the value of 0 indicates that there was
no reconfiguration of the initial configuration.

The amount of improvement between the greedy and dynamic programming al-
gorithms largely depends on the application, thus an average difference over all the
test runs may not be as significant as comparing the results for individual applica-
tions. The plot of Figure 11 shows the fraction of test runs achieving a particular
reduction in reconfiguration delay. This graph was derived from the individual runs
that were averaged to plot Figures 10a to 10f. From this summary plot we can see
that performing graph merging with the greedy method results in improvements in
reconfiguration delay of up to 60% for half of the total number of solutions. Us-
ing the dynamic programming algorithm provides further improvements over the
greedy method. Only 11% of the test runs did not achieve a further reduction in
reconfiguration delay over and above the reduction achieved by the greedy method.

ACM Journal Name, Vol. V, No. N, Month 20YY.

28 · S. Koh and O. Diessel

 0

 5000

 10000

 15000

 20000

 25000

 0 20 40 60 80 100 120 140 160 180 200

R
ec

on
fig

ur
at

io
n

D
el

ay
 (

us
)

XC4VLX Device

CW2: NoMerge RD
CW2: Greedy RD

CW2: Dynamic RD

(a) Reconfiguration delay, channel width 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 0 20 40 60 80 100 120 140 160 180 200

C
rit

ic
al

 P
at

h
D

el
ay

 (
ns

)

XC4VLX Device

CW2: NoMerge CP
CW2: Greedy CP

CW2: Dynamic CP

(b) Critical path delay, channel width 2

 0

 5000

 10000

 15000

 20000

 25000

 0 20 40 60 80 100 120 140 160 180 200

R
ec

on
fig

ur
at

io
n

D
el

ay
 (

us
)

XC4VLX Device

CW4: NoMerge RD
CW4: Greedy RD

CW4: Dynamic RD

(c) Reconfiguration delay, channel width 4

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 0 20 40 60 80 100 120 140 160 180 200

C
rit

ic
al

 P
at

h
D

el
ay

 (
ns

)

XC4VLX Device

CW4: NoMerge CP
CW4: Greedy CP

CW4: Dynamic CP

(d) Critical path delay, channel width 4

 0

 5000

 10000

 15000

 20000

 25000

 0 20 40 60 80 100 120 140 160 180 200

R
ec

on
fig

ur
at

io
n

D
el

ay
 (

us
)

XC4VLX Device

CW8: NoMerge RD
CW8: Greedy RD

CW8: Dynamic RD

(e) Reconfiguration delay, channel width 8

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 0 20 40 60 80 100 120 140 160 180 200

C
rit

ic
al

 P
at

h
D

el
ay

 (
ns

)

XC4VLX Device

CW8: NoMerge CP
CW8: Greedy CP

CW8: Dynamic CP

(f) Critical path delay, channel width 8

Fig. 10. Reconfiguration and critical path delays for 120 application graphs com-
prising 200 modules, 20% type variation, 60 CLB exact module size, clustered

5.1.2 Critical Path Delay. Figures 10b, 10d and 10f show the estimated critical
path delays of the wiring harnesses obtained through test runs for channel widths
of 2, 4 and 8 respectively. It is apparent that not merging always results in lower
critical path delays and this is to be expected as the wiring harnesses are then more
sparse and the channel saturation is low. Because both the greedy and dynamic

ACM Journal Name, Vol. V, No. N, Month 20YY.

Configuration Merging for Modular Reconfiguration · 29

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60

P
er

ce
nt

ag
e

of
 S

ol
ut

io
ns

Percentage Improvement in Reconfiguration Delay

[NoMerge -> Greedy] Improvement (%)
[Greedy -> Dynamic] Improvement (%)

Fig. 11. Percentages of reconfiguration delay reduction for graphs with 200 modules, 20% type
variation, 60 CLB exact module size, clustered

algorithm try to merge subgraphs until the wiring harness cannot fit into the wiring
channels, the critical path delays are similar. An improvement to the graph merging
algorithm to reduce the critical path delay may be considered in the future.

It is to be expected that as the device size increases the critical path delay also
increases because the number of module slots increases and the distance between
those that are furthest apart grows. For smaller devices, the delays are higher
with larger channel widths because opportunities for clustering are diminished, and
thus the wiring harness suffers more congestion as more subgraphs are merged per
period. Diminishing critical path delays for larger channel widths on large devices
(LX100 and above) illustrate the benefit of having sufficient channel capacity to
satisfy the wiring needs of large subgraphs.

5.1.3 Estimated Run Time. We estimated the total (runtime) cost of each solu-
tion by varying the number of cycles our synthetic task set was executed for using
Equation 4:

estimated
run time

=
initial config−
uration delay

+
reconfiguration

delay
+

cycle
count

×
critical

path delay
(4)

A summary of our findings is as follows:

—The Dynamic Programming (DP) solution for an LX15 with CW2 is the best
overall when less that 1,150,000 cycles are executed. When more cycles are to be
executed, then the NoMerge solution for the LX15 with CW2 is best.

—When only 1 cycle is executed for each configuration, all but 2 of the Greedy and
1 of the DP solutions are better than NoMerge

—In general, as more cycles are executed, the NoMerge solutions begin to dominate

ACM Journal Name, Vol. V, No. N, Month 20YY.

30 · S. Koh and O. Diessel

the Greedy solutions first, and the DP solutions thereafter, commencing with the
largest devices and widest channel widths. At high cycle counts, even the smallest
devices with narrow channel width are better served by the NoMerge solution.

—More than 173,000 cycles need to be executed for more than 50% of the NoMerge
solutions to outperform the Greedy solutions

—More than 792,000 cycles need to be executed for more than 50% of the NoMerge
solutions to outperform the DP solutions

—At least 50% of the DP solutions outperform the Greedy solutions irrespective
of the number of cycles executed

These results are primarily due to the dominating nature of the reconfiguration
delay at low cycle counts, the lower reconfiguration delay possible with the merging
strategies, and the relatively higher critical path delays of the merging strategies
outweighing their reconfiguration delay benefits at higher cycle counts. In particular
the small relative size of the LX15 provides it with an impressive reconfiguration
delay advantage and lower critical path delays than the larger members of the
family. It therefore appears eminently more suited to the dynamic type of workload
envisaged in this paper. Nevertheless, our results also indicate that merging is
unlikely to provide a benefit to applications where there is a relatively long period
of execution between reconfigurations unless the critical path delay is not influenced
by the method, or the application clock period is longer than the critical path delay
— at a nominal clock frequency of 100 MHz, our results suggest merging will not
benefit applications that run for more than about 1 ms on the smallest device.

It should be noted that the reconfiguration delays and critical path delays we have
reported are estimates based on our approximation algorithms. The run times and
cycle counts at which one strategy is deemed better than another will therefore be
different in real applications, but we would expect similar trends to be observed.

5.2 Reconfiguration Delay Anomaly

Interesting regions in the plots occur where larger devices seem to incur larger
reconfiguration delays, e.g., in Figure 10c between the LX15 and LX25 when the
channel width is 4, and in Figure 10e between the LX40 and the LX60 when the
channel width is 8.

To explain this, note that from Table I the LX15 device has a slot size of 96
CLBs and the LX25 device has a slot size of 120 CLBs when the channel width is
4. Given a module size of 60, the LX15 can fit a single module per slot whereas the
LX25 can cluster two modules per slot. With a type variation of 20%, there are
40 different module types present in the application graphs tested. For the LX15,
there is thus some chance that consecutive subgraphs have common modules that
can be reused to reduce reconfiguration delays. But in the LX25, this chance is
significantly reduced by a factor of 40 since the clustering of two modules per slot
increases the variation in the resulting composite module type. We can see that
this anomaly is not present when the channel width is 2, because the LX15 also has
a slot size of 120 CLBs then, allowing it to fit two modules as well. In addition, it
takes twice as long to reconfigure each slot in the LX25 compared with the LX15,
and since the device is 50% taller it may take up to 50% longer to reconfigure the
wiring.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Configuration Merging for Modular Reconfiguration · 31

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 20 40 60 80 100 120 140 160 180 200

R
ec

on
fig

ur
at

io
n

D
el

ay
 (

us
)

XC4VLX Device

CW2: Clustered DRD
CW2: Non-Clustered DRD

Fig. 12. Reconfiguration delays for clustered and unclustered cases, 200 modules, 20% type
variation, 60 CLB exact module size, channel width 2, dynamic algorithm

Since the number of possible combined module types matter significantly, we have
also performed experiments to investigate how different amounts of type variation
contribute to this effect. The results show that with no type variation, the recon-
figuration delay is very small and the plot is almost flat. There is little difference
in the results for type variations of 20%, 40% and 60% except that there is a slight
increase in reconfiguration delay with larger type variations. More importantly,
they all exhibit the same effect between the LX15 and LX25. These results appear
to confirm our hypothesis.

5.3 The Effect of Module Clustering

The results indicate that module clustering plays a significant role in the observed
reconfiguration delay. Thus we examined the effect of disabling clustering, i.e.,
placing only one module into each slot. Assuming that each module is packed into
the thinnest vertical slice in each slot, not clustering the modules reduces the time
to reconfigure each slot as only the area for one module needs to be reconfigured.
However, the number of configurations increases as the total number of modules is
not reduced through clustering.

Figure 12 shows the results of comparing the clustered and non-clustered recon-
figuration delays for the dynamic programming algorithm with a channel width of
2. The plots show that for smaller device sizes there is no advantage to cluster-
ing the modules due to higher apparent module type variation as explained above.
However, as the device size increases, the number of configurations and periods
are greatly reduced by clustering, as shown for a particular application graph in
Table II.

From Table II we can observe that the LX25 needs 5 periods when clustered and 4
when not. The LX40 uses the same number of periods for both cases, but it must be

ACM Journal Name, Vol. V, No. N, Month 20YY.

32 · S. Koh and O. Diessel

LX25 LX40 LX60

Clustered 5 (10) 4 (5) 3 (3)
Non-Clustered 4 (20) 4 (15) 4 (15)

Table II. Number of periods (and configurations – in parentheses)

 4

 6

 8

 10

 12

 14

 16

 18

 0 20 40 60 80 100 120 140 160 180 200

C
ri
ti
c
a
l
P

a
th

 D
e
la

y
 (

n
s
)

XC4VLX Device

CW2: Clustered DCP
CW2: Non-Clustered DCP

Fig. 13. Comparison between clustered and non-clustered contributions to the maximum critical
path delay of the wiring harness (channel width 2, 200 modules, 20% type variation, dynamic
programming algorithm)

noted that there are many more configurations, 15 vs. 5, as shown in parentheses.
The corresponding region of the plot has the clustered graphs outperforming the
non-clustered graphs. This observation follows on with the LX60 where the number
of periods when clustered is less than when the graphs are not clustered. The LX60
has the same height as the LX40, and thus the same number of slots, and uses the
same number of configurations as the LX40 in the non-clustered case.

Figure 13 shows the comparison between clustered and non-clustered contribu-
tions to the maximum critical path delay of the wiring harness for a channel width
of 2. The plot illustrates that clustering results in shorter critical path delays. This
is because the wiring in each period is likely to be more dense in the non-clustered
case because the intermodule connections for each subgraph are less dense than in
the clustered case. Results for channel widths of 4 and 8 show similar trends.

5.4 The Effect of Reconfiguration Slot Size and Availability

In this section, we attempt to explain the impact of keeping the number of slots
and channel width the same while varying the number of CLBs per slot. Similarly,

ACM Journal Name, Vol. V, No. N, Month 20YY.

Configuration Merging for Modular Reconfiguration · 33

we comment on the likely effect of varying the number of available slots while fixing
the slot size and channel width.

The devices studied (Table I) allow us to compare the results for 16-slot and 24-
slot implementations as the slot size is increased. These correspond to the LX40/60
and LX 100/160/200 regions of Figure 10. Considering the first of these, we note
the reconfiguration delays for CW2 and CW4 are decreasing and converging with
increasing slot size, and this also appears to be true for the critical path delays. In
these regions of the plots, there appear to be diminishing opportunities for merging
as slot size is increased. The case for CW8 is anomalous due to increased module
type variation resulting from module clustering, as described in Section 5.3. For
the larger devices with 24 slots, the reconfiguration delays for CW2 and CW4 do
not appear to differ significantly, but for CW8, again the merging and no-merge
results converge towards the larger slot size end. There is more variability in the
critical path delay results, but it is apparent that for the very largest slots (LX200)
no merging was possible until adequate channel width was provided (CW8).

These observations are supported by the following analysis. When the number of
slots is held constant and the channel width is not varied, as the slot size is increased
there is more chance of clustering modules into these slots. As a consequence,
there is greater dissimilarity between the apparent module types (as exploited by
the merging algorithm) and the communication requirements between the slots
increases. The increased bandwidth requirement exhausts the available routing
capacity and leads to congestion. These factors reduce the capacity for merging to
take place.

Keeping the slot size and channel width constant while varying the number of
slots makes sense were one to use a large device but restrict the use of area for
routing and/or break the assumption that slots are mapped to a single reconfigu-
ration page/frame. We did not test this. Nevertheless, analysis suggests that as
the number of slots is increased, larger subgraphs can be mapped to the device and
thus fewer periods are needed to implement an application. Reconfiguration delay
would therefore be reduced. On the other hand, critical path delays would increase
due to increased channel congestion, which would diminish the opportunities for
merging.

6. CONCLUSION AND FUTURE WORK

The COMMA methodology implements module-based dynamically-reconfigurable
applications specified as communication graphs on an FPGA. The methodology ad-
vocates the layout of modules in a regular structure, performs clustering, scheduling
and placement, and generates sets of point-to-point wiring harnesses to facilitate
inter-module communications across the dynamically-changing module interfaces.
The design goals can be targeted to particular aspects of the application, and in
this paper we have focussed on the total reconfiguration delay. The methodology
is integrated with the Early Access Partial Reconfiguration tool flow from Xilinx
to implement the design on their Virtex-4/5 devices.

We have proposed and assessed two algorithms for merging module communica-
tion graphs with the aim of reducing the total module and wiring harness reconfigu-
ration delays when sequences of module-based reconfigurations are to be supported.

ACM Journal Name, Vol. V, No. N, Month 20YY.

34 · S. Koh and O. Diessel

The results show that graph merging provides reductions of up to 60% in recon-
figuration delay over not merging, and that there can be a further benefit of 50%
to using a dynamic programming approach over a greedy method in the merging
process. The critical path delay is increased due to merging and this is expected as
the wiring channels are more saturated after merging. Based on our investigation,
the lower reconfiguration delay benefits of merging are quickly outweighed by the
higher critical path delays merging incurs. Unless the execution times are relatively
short, or the application clock frequency is not influenced by the critical path delay,
merging may not offer a benefit.

As expected, for an application mapped as a long sequence of fixed sized mod-
ules, larger devices incur lower reconfiguration delays since they can accommodate
more modules with a single wiring harness. However, module clustering can limit
the ability to reuse a slot with an identical module due to the greater variety in ag-
gregated modules created during clustering. The smallest devices inhibit clustering
and can sometimes perform better if the apparent module type variation is smaller
than for slightly larger devices. Disabling clustering altogether can mitigate this
effect.

It is also apparent that a system designer should try to use the smallest channel
width that can accommodate the application, since both the reconfiguration delays
and critical path delays of the wiring harness increase as the channel width increases
and execution time will consequently suffer.

The trend to incorporate an increasing number of specialized hard cores to FP-
GAs will impact on the homogeneity of module slots, as assumed in this work.
Unless a good match exists between the cores required by an application and those
provided by the device, the effect will be similar to having fewer reconfiguration
slots available, and that these are likely to be spaced further apart. We therefore
expect the pressure on routing resources for implementing communication needs to
increase, and graph merging to offer some relief, as demonstrated by the reconfig-
uration delay results of this work.

The methods discussed in this paper apply to application problems that can
be modelled as a linear sequence of configurations. More sophisticated applications
that require forking or joining sequences to be modelled are currently not supported.

The methods are also restricted to application scenarios in which the temporal
relationships and communication requirements of modules are known at design
time. Other than catering for worst-case requirements, the methods are unable to
cope with communication requirements that only become apparent at run time.

These limitations of the methods will be the subject of future investigations.

REFERENCES

Bobda, C., Ahmadinia, A., Majer, M., Teich, J., Fekete, S., and Veen, J. 2005. DyNoC: A
dynamic infrastructure for communication in dynamically reconfigurable devices. In Interna-
tional Conference on Field Programmable Logic and Applications. 153–158.

Brebner, G. 1997. The Swappable Logic Unit: A paradigm for virtual hardware. In IEEE
Symposium on FPGAs for Custom Computing Machines. 77–86.

Cormen, T., Leiserson, C., and Rivest, R. 1990. Introduction to Algorithms. The MIT Press.

DeHon, A. 1994. DPGA-coupled microprocessors: commodity ICs for the early 21stCentury. In
IEEE Workshop on FPGAs for Custom Computing Machines. 31–39.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Configuration Merging for Modular Reconfiguration · 35

Eldredge, J. and Hutchings, B. 1994. Density enhancement of a neural network using FP-

GAs and run–time reconfiguration. In Proceedings IEEE Workshop on FPGAs for Custom
Computing Machines (FCCM’94). 180 – 188.

Fekete, S., Köhler, E., and Teich, J. 2001. Optimal FPGA module placement with temporal
precedence constraints. In Design, Automation and Test in Europe. IEEE, Munich, Germany,
658–665.

Gajjala Purna, K. and Bhatia, D. 1999. Temporal partitioning and scheduling data flow graphs
for reconfigurable computers. IEEE Transactions on Computers 48, 6, 579–590.

Hagemeyer, J., Kettelhoit, B., Köster, M., and Porrmann, M. 2007. A design methodology
for communication infrastructures on partially reconfigurable FPGAs. In International Con-
ference on Field-Programmable Logic and Applications. IEEE, Amsterdam, The Netherlands,
331–338.

Horta, E., Lockwood, J., Taylor, D., and Parlour, D. 2002. Dynamic hardware plugins in
an FPGA with partial run-time reconfiguration. In Design Automation Conference. 343–348.

Kalte, H., Porrmann, M., and Rückert, U. 2004. System-on-Programmable-Chip approach
enabling online fine-grained 1D-placement. In International Parallel and Distributed Processing
Symposium. 141–148.

Karypis, G. and Kumar, V. 1998. A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM Journal on Scientific Computing 20, 1, 359–392.

Katajainen, J., Pasanen, T., and Teuhola, J. 1996. Practical in-place mergesort. Nordic
Journal of Computing 3, 1, 27–40.

Koh, S. 2008. Generating the Communications Infrastructure for Module-based Dynamic Recon-
figuration of FPGAs. Ph.D. thesis, School of Computer Science and Engineering, The University
of New South Wales.

Koh, S. and Diessel, O. 2006a. COMMA: a communications methodology for dynamic module-
based reconfiguration of FPGAs. In International Conference on Architecture of Comput-
ing Systems, Dynamically Reconfigurable Systems Workshop Proceedings. Frankfurt, Germany,
173–182.

Koh, S. and Diessel, O. 2006b. Communications infrastructure generation for modular FPGA
reconfiguration. In IEEE International Conference on Field Programmable Technology. IEEE,
Bangkok, Thailand, 321–324.

Koh, S. and Diessel, O. 2007. Module graph merging and placement to reduce reconfiguration
overheads in paged FPGA devices. In International Conference on Field Programmable Logic

and Applications. IEEE, Amsterdam, The Netherlands, 293–298.

Koh, S. and Diessel, O. 2008. The Effectiveness of Configuration Merging in Point-to-Point Net-
works for Module-based FPGA Reconfiguration. In IEEE Symposium on Field-Programmable
Custom Computing Machines. Napa Valley, California.

Lou, J., Thakur, S., Krishnamoorthy, S., and Sheng, H. 2002. Estimating routing conges-
tion using probabilistic analysis. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 21, 1, 32–41.

Majer, M., Teich, J., Ahmadinia, A., and Bobda, C. 2007. The Erlangen Slot Machine: A dy-
namically reconfigurable FPGA-based computer. The Journal of VLSI Signal Processing 47, 1.

Manohararajah, V., Chiu, G., Singh, D., and Brown, S. 2006. Difficulty of predicting inter-
connect delay in a timing driven FPGA CAD flow. In International Workshop on System-Level
Interconnect Prediction. 3–8.

Marescaux, T., Bartic, A., Verkest, D., Vernalde, S., and Lauwereins, R. 2002. Inter-
connection Networks Enable Fine-Grain Dynamic Multi-tasking on FPGAs. In International
Conference on Field-Programmable Logic and Applications. 741–763.

Roy, J., Papa, D., Adya, S., Chan, H., Ng, A., Lu, J., and Markov, I. 2005. Capo: robust
and scalable open-source min-cut floorplacer. In International Symposium on Physical Design.
IEEE, San Francisco, California, USA, 224–226.

Ullmann, M., Hübner, M., Grimm, B., and Becker, J. 2004. On-Demand FPGA Run-Time
System for Dynamical Reconfiguration with Adaptive Priorities. In International Conference

ACM Journal Name, Vol. V, No. N, Month 20YY.

36 · S. Koh and O. Diessel

on Field Programmable Logic and Applications. Springer Berlin / Heidelberg, Leuven, Belgium,

454–463.

Villasenor, J., Jones, C., and Schoner, B. 1995. Video communications using rapidly recon-
figurable hardware. IEEE Transactions on Circuits and Systems for Video Technology 5, 6,
565–567.

Xilinx. 2003. Two flows for partial reconfiguration: module based or difference based. Xilinx
Application Note 290 .

Xilinx. 2007. Early access partial reconfiguration user guide. User Guide UG208 .

Received Month Year; revised Month Year; accepted Month Year

ACM Journal Name, Vol. V, No. N, Month 20YY.

