Fine-Grained Module-Based Error Recovery in FPGA-Based
TMR Systems

ZHUORAN ZHAO, NGUYEN T. H. NGUYEN, DIMITRIS AGIAKATSIKAS,
GANGHEE LEE, EDIZ CETINT, and OLIVER DIESSEL, UNSW Sydney and Macquarie University

Space processing applications deployed on SRAM-based Field Programmable Gate Arrays (FPGAs) are vul-
nerable to radiation-induced Single Event Upsets (SEUs). Compared with the well-known SEU mitigation
solution—Triple Modular Redundancy (TMR) with configuration memory scrubbing—TMR with module-
based error recovery (MER) is notably more energy efficient and responsive in repairing soft-errors in the
system. Unfortunately, TMR-MER systems also need to resort to scrubbing when errors occur between sub-
components, such as in interconnection nets, which are not recovered by MER. This article addresses this
problem by proposing a fine-grained module-based error recovery technique, which can localize and cor-
rect errors that classic MER fails to do without additional system hardware. We evaluate our proposal via
fault-injection campaigns on three types of circuits implemented in Xilinx 7-Series devices. With respect to
scrubbing, we observed reductions in the mean time to repair configuration memory errors of between 48.5%
and 89.4%, while reductions in energy used recovering from configuration memory errors were estimated at
between 77.4% and 96.1%. These improvements result in higher reliability for systems employing TMR with
fine-grained reconfiguration than equivalent systems relying on scrubbing for configuration error recovery.

CCS Concepts: « Computer systems organization — System on a chip; Reliability; Redundancy;

Additional Key Words and Phrases: SRAM FPGA, radiation-induced errors, configuration memory errors,
partial reconfiguration, dynamic reconfiguration, reliability, mean time to recover, recovery energy

ACM Reference format:

Zhuoran Zhao, Nguyen T. H. Nguyen, Dimitris Agiakatsikas, Ganghee Lee, Ediz Cetin, and Oliver Diessel.
2018. Fine-Grained Module-Based Error Recovery in FPGA-Based TMR Systems. ACM Trans. Reconfigurable
Technol. Syst. 11, 1, Article 4 (January 2018), 23 pages.

https://doi.org/10.1145/3173549

1 INTRODUCTION

SRAM-based FPGAs utilize SRAM cells to both implement a desired digital circuit and to store
its state while operating. Therefore, Single Event Upsets (SEUs) in SRAM-based FPGA designs af-
fect both their user memory space, such as block RAM (BRAM) contents and flip-flop (FF) state,
as well as the configuration memory space that determines the functionality of the design. This

This research was supported under the Australian Research Council’s Linkage (LP140100328) and Discovery (DP150103866)
Projects funding schemes.

Authors’ addresses: Z. Zhao, School of Computer Science & Engineering, UNSW Sydney NSW 2052, Australia, (Current ad-
dress) Room 706, Zhongguancun International Innovation Building, Haidian District, Beijing 100080, China; email: zhuoran.
zhao@outlook.com; N. T. H. Nguyen, D. Agiakatsikas, G. Lee, and O. Diessel, School of Computer Science & Engineering,
UNSW Sydney NSW 2052, Australia; emails: {h.nguyentran, d.agiakatsikas, ganghee.lee, o.diessel}@unsw.edu.au; E. Cetin,
School of Engineering, Macquarie University NSW 2109, Australia; email: ediz.cetin@mgq.edu.au.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 ACM 1936-7406/2018/01-ART4 $15.00

https://doi.org/10.1145/3173549

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 1, Article 4. Pub. date: January 2018.

https://doi.org/10.1145/3173549
mailto:permissions@acm.org
https://doi.org/10.1145/3173549

4:2 Z. Zhao et al.

article is concerned with methods to ensure reliable operation of user circuits in high-radiation
environments. In particular, we focus on the timely and efficient recovery from configuration
memory errors due to SEUs. This article considers approaches to recovering from the most preva-
lent (single-bit) errors.

Reliable space-based digital systems implemented using Commercial Off-The-Shelf (COTS)
SRAM-based FPGAs and programmable System-on-Chips (SoCs) commonly rely on Triple Mod-
ular Redundancy (TMR) to mask the effects of radiation-induced SEUs in the application circuits.
The considerable amount of configuration memory in these devices is also susceptible to radiation-
induced corruption. Two approaches have emerged to deal with this problem. Configuration mem-
ory scrubbing (TMR-S) periodically scans the entire device and corrects configuration memory er-
rors by rewriting the corrupted memory frames. On the other hand, module-based error recovery
(TMR-MER) reconfigures the frames of a TMR module when an error in its configuration mem-
ory is detected. While scrubbing occurs periodically, whether errors are present, TMR-MER relies
on the repeated detection of an error by the same TMR voter to trigger a reconfiguration of the
module presenting the error [6]. Both methods utilize a controller to operate. However, MER also
requires a Reconfiguration Control Network (RCN) to relay error requests from the voters in the
system to the Reconfiguration Controller (RC) [2].

In Reference [2], it was found that FPGA SoCs that rely on TMR-MER have lower reliability than
those relying on TMR-S unless the RCN is also triplicated and corrected when configuration mem-
ory errors become evident. Due to the distributed nature of RCN resources, [2] resorted to scrub-
bing the device when an RCN was affected by configuration memory errors. Although error recov-
ery using scrubbing is slow, and energy is wasted checking/reconfiguring frames that are not in
error, it was found that scrub operations were only occasionally needed, since the triplicated RCN
had a relatively low susceptibility to errors due to the comparatively few resources utilized by it.

The work described in this article aims to address the considerable latency and energy used
scrubbing the device when components outside the modules of the triplicated components, such
as the inter-component nets and the RCN, are affected by configuration memory errors. Our con-
tributions are as follows:

(1) Tolocalize configuration memory errors more precisely than has previously been reported
in the literature and to explain how the response to error signals should be prioritized;

(2) To describe a fine-grained method for dynamically reconfiguring sub-components that
are suspected of containing configuration memory errors; and

(3) To compare the reliability, latency, and energy cost of correcting configuration memory
errors using the proposed approach with (a) TMR-MER, with complete scrubbing of the
device when errors are detected outside the TMR modules; (b) on-demand scrubbing of
the device when an SEU is detected; and (c) periodic scrubbing of the device as a fault
prevention strategy.

The article is organized as follows: Section 2 provides background to our work. Section 3 gives
an overview of the TMR circuit model and the effect of errors in different sub-components of the
model and proposes a repair strategy that reduces the total number of configuration frames and,
thus, the time and energy required to recover an SEU in the system. Section 4 explains how the fine-
grained dynamic partial reconfiguration employed by us is implemented. Section 5 describes our
experimental evaluation and details our findings while concluding remarks are given in Section 6.

This article builds on and extends our earlier work [22] by providing more detailed explanations
of the methods we use to implement fine-grained module-based dynamic reconfiguration and ex-
tending the evaluation of the proposed approach to cover several more complex designs, including
three High Level Synthesis— (HLS) generated circuits and one real nine-component system. While

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 1, Article 4. Pub. date: January 2018.

Fine-Grained Module-Based Error Recovery 4:3

the extended evaluation demonstrates that the initial premise of Reference [22] can be realized
more generally, it also highlights the potential to improve the performance and usability of the
proposed method.

2 BACKGROUND

Both TMR-MER and TMR-S rely on Dynamic Partial Reconfiguration (DPR) to correct SEUs in the
configuration memory. TMR-S can be implemented by simply overwriting all of the configuration
frames, or reading and comparing these frames with a golden copy, to replace any frame that
is found to be in error. TMR-S operates periodically at frame level, detecting and correcting bit-
errors in frames. The period between scrub cycles and the long scrub latency lead to a relatively
high Mean Time To Repair (MTTR), and since scrubbing occurs obliviously, irrespective of error
occurrence, TMR-S also suffers a recovery energy penalty relative to TMR-MER. To reduce the
need for data retrieval from off-chip memory, single frame errors can be detected and corrected
using Error Correcting Codes embedded in the frame. This approach can be complemented with a
device level Cyclic Redundancy Check (CRC) to determine whether a complete reconfiguration of
the device is required [19]. To reduce the energy consumed by the oblivious and periodic nature
of scrubbing in TMR-S, a scrub cycle can be triggered via a dedicated error transmission network
(referred to as an RCN in TMR-MER). The overall MTTR can also be reduced by prioritizing the
frames scanned for different error signatures generated by the network [13].

Until now, as it has been described in the literature, the TMR-MER technique is not as robust
as TMR-S, since the method can only detect and correct errors in the modules that make up the
TMR components, while errors in the majority voters, the interconnecting nets between modules
and voters, the RCN wires, as well as the single points of failure, are almost always neglected.
Furthermore, the TMR-MER technique relies on the vendor’s partial reconfiguration flow [20] to
generate partial bitstreams, but this flow is not able to generate efficient partial bitstreams for
recovering non-block-oriented designs. Hence it is not possible for the flow to generate efficient
partial bitstreams for the nets between the TMR modules.

This article takes a significant step towards solving the above-mentioned drawbacks of TMR-
MER. A repair strategy that enhances the localization of single errors within fully triplicated sys-
tems is presented. Inspired by the fact that scrubbing is able to rewrite a frame without resorting
to the Partial Reconfiguration Flow [20], a fine-grained reconfiguration approach is proposed to
determine configuration frame sets pertaining to sub-components after a system is implemented.
To save the cost of storing partial bitstreams, we describe and evaluate a dynamic bitstream com-
position method that retrieves the desired frame data from the full bitstream at runtime.

3 CONFIGURATION ERROR DETECTION, CLASSIFICATION, AND CORRECTION
3.1 System Architecture

Our system model (Figure 1) assumes that the user circuit comprises n TMR components with
the voters and their input and output nets triplicated to maximize reliability. Each set of tripli-
cated modules, voters, and interconnecting nets comprise a single TMR component, Ci, where
k € {0,1,...n— 1} and n is the total number of components in the system. Figure 1 illustrates Cy
and its interconnections with Cx_; and Cy.;. We assume the modules are acyclic, as discussed in
Reference [9], and that cyclic components are implemented by allowing voter outputs to re-enter
a component as module inputs. While Figure 1 illustrates a linear sequence of TMR components,
in general there may be several immediate predecessors and immediate successors of C.

There are at least three possible approaches to partitioning and constraining the placement and
routing, i.e., floorplanning, the system’s TMR components so that they can be partially reconfig-
ured to recover from SEUs. In the most commonly reported approach, only SEUs in the circuit

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 1, Article 4. Pub. date: January 2018.

4:4 Z. Zhao et al.

H mouty H

= T “vouty o
: Mi o M2 Yko H— Mo
: »| H

mouty 1

mouty_o
mouty_¢
mouty 2

vouly

€90l [ecnt, trg_eq | el logh
done,| S€
clr .
gone
J clr
€n1 ecnt,,,,t’Be”’
olr gone,.

(©)

Controller

Reconfiguration

Fig. 2. Block diagrams of (a) voter Vi ¢, (b) point-to-point RCN, and (c) elaborated NCy logic.

modules themselves (indicated as My g 1,2 in Figure 1) are placed and routed in reconfigurable re-
gions, or pblocks, as Xilinx refers to them. This approach leaves the voters and interconnecting nets
to be recovered by other means—perhaps via selective scrubbing, as proposed in Reference [1], or
via fine-grained modular reconfiguration, as studied in this article. A second partitioning approach
creates three pblocks for each TMR component with each pblock including the circuit module, its
corresponding voter, and some of the interconnecting nets of the component, as illustrated by the
grey box surrounding M ¢ and Vi o. This approach allows both the sub-components and some of
the interconnecting nets to be recovered by modular reconfiguration but does not provide a means
for recovering all of the nets comprising mouty ¢ 2. A third partitioning alternative includes all
of the sub-components of a triplicated component in one pblock, as illustrated by the dashed box
surrounding Cg. The three circuit modules of the TMR component, its nets, and the voters, but not
the voter outputs, which must cross component boundaries, are then recovered by reconfiguring
the one pblock. However, recovery in this case takes 3 times as long as for the second approach.

The voter blocks in our model, as depicted in Figure 2(a), are enhanced, as suggested in Reference
[8], to identify the module whose output differs from the majority. The voters therefore not only
protect the output of the user circuit but also detect which module output (mouty ;) is incorrect in
the minority and raises a 2-bit error report (e ;) identifying that module, where i, j € {0, 1, 2}.

The error reports from the triplicated voter blocks are aggregated by a central RC through three
identical point-to-point RCNs [2]. The RC thus receives triplicated error reports from each com-
ponent. Figure 2(b) illustrates the triplicated RCNs. The RC manages the triplicated Network Con-
trollers (NCs) to check the error state of a particular component. The RCNs are synchronous, and
all NCs operate in lock step and check the voter of each component sequentially.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 1, Article 4. Pub. date: January 2018.

Fine-Grained Module-Based Error Recovery 4:5

The NC aggregates error signals and distinguishes among transient errors in the user circuit and
“permanent” errors that are likely due to configuration memory corruption. Figure 2(c) elaborates
the architecture of an NC. Each of the error signals inputs to a saturating up-down counter. A
permanent error is associated with repeated error signals that are expected to saturate the counter
and trigger an error report, trg_e;, to the RC [6]. Transient errors will result in both up- and
downward counts and will therefore not saturate the counter. A switch selects between the error
triggers of the individual counters.

The RC controls the sel signal to the NC switch to select the output of the desired error counter,
which triggers the partial reconfiguration of the indicated module. The RC then retrieves the frame
data of the indicated module from external memory and writes these to the configuration memory
space. When the reconfiguration is complete, the done signal is asserted to clear the counter.

3.2 Persistent Errors

Permanent errors reported by the counters in the NCs may, as indicated, be due to configuration
memory errors present in one of a component’s modules. But a substantial number of reported
errors are caused by permanent errors present in the voters, the intra-component nets connecting
modules and voters, the nets connecting voters to downstream components, as well as in the wires
of the RCNs and the NCs themselves.

Configuration memory errors in different parts of a component, as shown in Figures 1 and 2,
result in a range of error symptoms. The error reports received by the RC due to errors in the
various sub-components are as follows:

e An error in the configuration of My ; may cause mouty ; to differ from mouty ;, i # j. In
this case, all three error outputs for Cy should report My ; to be in error.

e Errors in the net vout(_y) ; or the majority voter logic of V(;x_1y ; can cause the input for
My j to be incorrect. The three RCNs will then report that M ; is incorrect but cannot
correctly determine whether the error lies with the logic of the upstream voter or with its
corresponding outgoing nets.

e If an error is present in the minority voter logic of Vi ;, then the voter may assert that an
error is present in Cy. while the other two voters report no error. The RC thus only receives
one error report for Cy instead of three.

e An error present in the branch of mout; ; can cause the connected voters to incorrectly
indicate the presence or absence of an error in My ;. If the error is present in the main trunk
of the net, then all three voters, or just two of them, may assert an error. Errors in the part
of mouty_; where it branches may also cause two different voters to indicate that different
modules are in error. This is because a single error in a switch matrix can affect more than
two nets [3]. If an error is present in the switch matrix used by any two of mouty ¢ 1,2, then
two voters may report different modules to be in error.

e Ifan error is present in one of the triplicated RCNs, then that RCN may raise or mask errors
for a random module in some component.

It is evident that errors in the various sub-components of Cx_; and Ci or in RCN; result in
different behaviours at the outputs of the triplicated RCNs, which we refer to as error signatures.
A single error may cause one of three different types of error signature to be observed for Cy.. These
error signatures are as follows: Type-I, three identical error reports (ido 1,2 = My _;); Type-II, one
error report (id; = My ;); or Type-IIL all others, including three false-negative error reports and
two or three (possibly differing) reports.

If the error signature is of Type-I and the reconfiguration of the module indicated by the RCNs
fails to clear the error such that the same error signature is present after the recovery operation,

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 1, Article 4. Pub. date: January 2018.

4:6 Z. Zhao et al.

Wait for possible Issue done signal Allow for module to)
. Fix R
error to emerge to the counters synchronize
R = Lookup the
Chkr+ |_'| Recovery Order
A

E=signature,
CeJ{ =] [

Fig. 3. Repair flow based on the number of consecutive observations of a particular error signature.

Table 1. Sequence in Which Sub-components Are Recovered

Number of Checks (Chk)
Error Signature 1 [2] 3 | 4 | 5 | 6
Type-I ido1,2 =Mk j | Mk | Vig-ry j | voutge—yy ; | mouty | moutg_yy | scrub
Type-1I idi = My ; Vi i mouty NC; ek i scrub
Type-III others mouty | scrub

then the error is deemed to be “persistent.” It should then be suspected that the error may be
present in Vij_yy j, vout(x_1) j, mouty or mout(_yy. For error signatures of Type-II, besides mouty,
Vi i and the RCN logic (NC; & ey ;) could have an error. For error signatures of Type-III, the only
possible cause is an error in mouty.

Other possible RCN outputs, such as a sequence of error reports that changes after each modular
reconfiguration, are likely caused by an accumulation of SEUs or multi-bit upsets. Two or more
errors may then be present in different sub-components. We do not consider these effects in this
article, but all could be dealt with by triggering a complete scrub of the device when they appear.

3.3 Repair Strategy

We propose a repair strategy to guide the design of an RC that is capable of efficiently detecting
and repairing persistent errors in systems using fine-grained dynamic reconfiguration. The repair
strategy includes a repair flow and a recovery sequence as determined by the flow.

3.3.1 Repair Flow. Figure 3 depicts the proposed flow for recovering from persistent errors in
the system. An error check and correction cycle commences at entry point A, when the com-
ponent number, K, and the error signature, E, are cleared. The first component is checked after
initialization. K is incremented while the RCN reports no errors for the component currently be-
ing checked. When an error is reported for Cy the error signature is compared with the previ-
ously recorded signature E and the check index, Chk, is incremented if so. The error signature and
check index indicate which sub-component, R, is to be reconfigured (Table 1). After the dynamic
reconfiguration of the sub-component has been performed, the RC waits for the component to be
resynchronized [6] and issues a done signal to the RCN to reset the error counters for Cy. After the
error counters have been cleared, the RC waits for a period of time to allow any residual error to
once again manifest itself by saturating the error counters. This period depends on the saturation
level of the counter and the latencies of component Cy and the RCN. These wait times are of the
order of a few pus [2, 6]. The RC checks whether Cy is still affected by errors, and if the same error
signature is detected, Chk is incremented to recover the next sub-component indicated by the re-
covery sequence. If errors persist after all suspect sub-components have been reconfigured, a scrub
is performed to sweep away all accumulated errors, and the flow is re-initialized by returning to A.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 1, Article 4. Pub. date: January 2018.

Fine-Grained Module-Based Error Recovery 4:7

3.3.2 Recovery Sequence. Table 1 lists the repair order we use with the flow. The recovery se-
quence is based on the suspects identified for each error signature. For each type of signature, the
priority is to recover logic blocks first, followed by the component nets. The main reason for this
preference is that reconfiguring the block components first results in higher repair efficiency. For
Type-I signatures, My ; is to be recovered if deemed persistent (Section 3.2) and V(x_y) ; is recov-
ered next, followed by the three component nets, vout(_y) j, mouty, and mout_yy. For Type-II
error signatures, Vi ; and mouty are recovered first, followed by NC; and the dedicated routing
for ey ;. For signatures of Type-III, it is only worthwhile recovering mouty before resorting to a
complete scrub of the device.

3.3.3 Triggered Scrubbing. Systems that solely rely on scrubbing to correct configuration mem-
ory errors usually perform a scrub periodically as they do not usually monitor component outputs
to determine when configuration memory errors may be present. However, when the outputs of
system components are monitored using the architecture outlined in Section 3.1, it is feasible to
trigger a scrub cycle when a configuration error is detected. In this case, the error correction flow
of Figure 3 can be adapted to perform a scrub whenever an error is detected and to restart the flow
after the scrub is finished. In this case the prioritized recovery sequence is ignored.

4 FINE-GRAINED DYNAMIC RECONFIGURATION

Conventional TMR-MER SoCs (e.g., References [4, 6, 16]) rely on the vendor’s partial reconfigura-
tion flow [20] to generate partial bitstreams for the component modules. These partial bitstreams
are commonly stored in external memory with a lookup table being used by the RC to index them
[6, 16]. When a permanent error is detected, the RC fetches the indexed file from memory and
writes it to the Internal Configuration Access Port (ICAP). However, as indicated in Section 2, the
flow is not flexible enough for robust and efficient SEU recovery in fault-tolerant systems. This
is mainly because the original intention of the flow was to create a partial region to allow for
dynamic hardware changes. In the architecture described in Section 3.1, the RCN and the inter-
connecting nets between voters and modules are not amenable to modular reconfiguration using
the partial reconfiguration flow, since these nets are spatially distributed and cannot readily be
contained within rectangular bounding boxes.

In this section, we propose a fine-grained dynamic partial reconfiguration approach (FDPR),
which uses the standard FPGA project flow while overcoming the drawbacks of the vendor’s partial
reconfiguration flow when applied to fault-tolerant systems. The approach includes a method for
identifying the sets of frames pertaining to the sub-components, such as the modules and their
outputs, voters, voter outputs, RCN nets, and network controllers, and is applied after the design
is floorplanned and implemented using the standard flow. We also describe a bitstream composition
method that enables retrieving the desired sets of frame data from the full bitstream at runtime.

4.1 Major Columns in 7-Series FPGAs

We illustrate our approach using a Xilinx Artix-7 device, which is similar to other 7-Series Xilinx
FPGAs, such as the Zynq All-Programmable SoCs. Programmable resources on a 7-Series device,
such as Configurable Logic Blocks (CLBs), Digital Signal Processing slices (DSPs), BRAMs, and
Input/Output Buffers (IOBs), are tiled into major columns [18, 20]. The major columns also include
the switch matrices that provide access to the general routing matrix of the FPGA.

A simplified diagram of the layout of an Artix-7 device is shown in Figure 4. The chip comprises
several configuration rows, which correspond to the clock regions of the device and are indexed
in ascending order from the centre of the device towards both its top and bottom edges. Figure 4
depicts a section of the upper-left region of the device. The major columns span the configuration

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 1, Article 4. Pub. date: January 2018.

4:8 Z. Zhao et al.

minor
frames

ClLBm=m
BRAMME
DSP Il
10B =

CMT m
HCLK =
GCLK m

CFG =

frame
length

2 56 7 89 1011121314151617 18 Comn
Index

iy
qa
N

. Simplified Artix-7 layout showing two configuration rows and resources distributed across columns.

i=a|

1

i
v

=t
i

3 rows of major
columns spanning 3

different clock regions
1
]

| [

i

ﬁ
LI

(@)

. One possible floorplan of the system architecture: (a) Logic, (b) Intra-component nets, and (c) RCN.

Q

y
qa
w

rows and are indexed in ascending order from left to right. A major column is configured via a
contiguous set of configuration frames that are indexed by a minor address from left to right.
The number of contiguous frames needed to configure a major column depends on the type of
resources it contains. Clock signals are propagated from a central column of the device to local
clock buffers in a clock region via a dedicated clock network; pairs of major columns share a local
clock buffer.

FDPR can be applied to other Xilinx device families with appropriate adjustments for the frame
size, the number of frames used by each type of resource column, the distribution of resources
across the device, and the number of configuration rows. These concepts also translate to dynam-
ically reconfigurable devices of other vendors with a similar configuration architecture.

4.2 Floorplanning

Floorplanning enables resource allocation within specified regions, known as pblocks, which may
be as narrow as a single major column. The placer can be instructed to only place the logic of
part of a design (a logic block) within a pblock. The router can also be constrained to only use the
switch matrices within the region for the internal routing of the logic block. When a logic block
and its internal routing are constrained in this way, configuration memory errors affecting these
resources can be recovered by just reconfiguring the frames of that region.

Figure 5 illustrates one possible floorplan for the system architecture outlined in Section 3.1.
The circuit spans three rows of major columns. Modules and voters are constrained to be placed
in different major columns as shown in Figure 5(a). Figure 5(b) presents the major columns relat-
ing to the interconnection nets between the modules and the voters. As the output nets from the
triplicated modules (mouty ¢ 1,2) are intertwined, we treat them as a single sub-component for re-
covery purposes. Our experiments show that voter outputs and module outputs are routed around
block boundaries in the gaps between the closest module and voter. Figure 5(c) shows the major
columns relating to the triplicated RCN. The NCs are also isolated and constrained to different
rows of major columns. The NCs connect to the voters via error signals. The signal sinks corre-
spond to switch matrices. The major columns that contain these switch matrices will be recovered
if the RCN signals are determined to be in error. The routes of the triplicated RCN are isolated,

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 1, Article 4. Pub. date: January 2018.

Fine-Grained Module-Based Error Recovery 4:9

Off-chip storage Normal Per-Frame-CRC
. " . . . Bitstream Bitstream
Post-implementation Design gy Bitstream.bit Implementation [Header
time time

v
' frames %y offsets ’ Frame 0 Data ’ Frame 0 Data

Bitstream Bitstream . 1 Dat Frame 0 CRC
Composition Index Table rame 1 Data Header
e H

-’ ",
reconfigure o,

Frame 2 Data

< 2
Tyoe Frame address : Frame N-1 Data
s, X47Y3 CLB 0x00001780 ~ 000017A3 :
Design | ®| X48Y3 DSP 0x00001800 ~0000181B Frame N1 Data] Frame N-1 CRC
Extraction.tcl X49Y3 CLB 0x00001880 ~ 000018A3 Header
X50Y3 CLB 0x00001900 ~ 00001923

Bitstream Footer Bitstream Footer

Reconfiguration Controller

(@) (b) (©

-

Fig. 6. (a) Bitstream composition involves extracting a bitstream index at implementation time and compos-
ing a partial bitstream at runtime. (b) Full bitstream without and (c) with CRC checking enabled.

because they are implemented in different major column rows. However, in large-scale systems,
the RCN connects voters from different regions of the device. It may then become impossible to
isolate the RCN replicas from each other in this way. While rare, it is possible for single SEUs to
cause bridging between the nets of multiple sub-components if these components are not isolated
from each other using a design method such as the Xilinx Isolation Design Flow [21] or RoRA
[15]. An ICAP-based RCN [2], which eliminates the need for the designer to implement the RCN
by relying on built-in FPGA infrastructure, can instead be used for this purpose.

4.3 Dynamic Repair Bitstream Composition

Bitstream composition involves extracting a frame offset index for the on-chip location of sub-
components after the design has been implemented. The frame index is subsequently used at
runtime to retrieve the configuration of a sub-component from off-chip storage when it is to be
reconfigured, as shown in Figure 6(a).

4.3.1 Design Extraction. The detailed routing of nets that interconnect various logic blocks can
be retrieved from the implementation database of the design. The information stored in the data-
base includes the name of any entry or exit Programmable Interconnect Point (PIP) the net uses,
the switch matrices (SMs) that own these PIPs, and the segments of the general routing matrix
forming the net. The major columns that implement the net can be extracted from the names of
the SMs used. Configuration memory errors in a net can thus also be recovered by simply recon-
figuring the configuration frames of the major columns containing the switches it uses.

The Xilinx Vivado CAD tool is able to generate two types of a full bitstream without and with
CRC per frame enabled. In the typical full bitstream file (see Figure 6(b)), the frame address starts
from 0 and is automatically incremented at the end of each frame’s data segment. On the other
hand, a full bitstream for critical systems usually has single-frame CRC checking enabled (see
Figure 6(c)), which includes frame headers that are inserted after every frame of data. The frame
headers contain the CRC check sequence and the address of the previous frame.

Knowing the number of words per frame and per CRC header, we can extract frame addresses
and index them according to their byte offset in the full bitstream file. Using this information
together with the range of frame addresses spanned by a sub-component, we can extract the byte
offsets of the frame data for each sub-component that needs to be reconfigured at runtime.

4.3.2 Dynamic Partial Reconfiguration. When the RC receives an error signature that indi-
cates a sub-component is in error, it invokes a recovery procedure that follows the recovery

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 1, Article 4. Pub. date: January 2018.

4:10 Z. Zhao et al.

sequence described in Section 3.3.2. The recovery procedure involves partially reconfiguring the
sub-components indicated in the sequence and re-checking the error signature until either the
error has been corrected or the device has been completely scrubbed.

The partial bitstream used to reconfigure a sub-component is dynamically formed and written to
the ICAP at runtime. For logic block sub-components, which are generally formed from contiguous
columns of configuration data, the RC starts by issuing, to the ICAP, header commands for a write
operation, which include the number of words that are to be retrieved from off-chip memory. It
then specifies the byte offset of the first frame before issuing a DMA transfer that will load the
frame data from off-chip memory and write the data to the ICAP. Finally, the RC issues a pad frame
and footer commands to end the write operation. For the net sub-components, for which it is more
likely that the major columns that need to be reconfigured are scattered across the device, the RC
needs to form the partial bitstream from several frame sets, with each set involving an indexed
DMA operation into the full bitstream stored off-chip.

5 EXPERIMENTAL EVALUATION

In this section, we evaluate the recovery latency, the energy used in correcting configuration mem-
ory, and the reliability of the proposed approach and compare the results with those obtained for
MER, when scrubbing is used to recover from errors that occur in between the modules, with on-
demand scrubbing of the complete device, which is triggered when SEUs are detected, and with
periodic device scrubbing.

We have evaluated our proposal on three different types of circuits. In the following two sub-
sections (5.1 to 5.2), we first describe our method, report results, and detail our findings on a small,
hand-crafted two-component system [22]. We then more briefly report results and summarize our
findings using the same methodology for three HLS benchmarks of small to medium complexity
in Section 5.3 and on a larger hand-crafted satellite design in Section 5.4.

For each circuit, we report the utilization and recovery times of its logic block and net sub-
components before presenting the results of fault-injection experiments. Fault injection was used
to estimate the distribution of error signatures of Types-I to -III, and we would observe if the cir-
cuits were subjected to real SEUs. Given the observed error signature and knowledge of which sub-
component was targeted by each injected fault, we were able to determine which sub-components
would have been reconfigured, and in which order, according to our proposed recovery sequence.
From these data, we were able to determine the error sensitivity of each sub-component and the
average latency for each recovery strategy considered.

In TMR systems that employ configuration memory error recovery such as scrubbing or module-
based error recovery, a TMR component fails when a second or third module suffers errors before
the errors that have affected the first module are recovered. The rate at which errors are detected
and recovered therefore affects the reliability of the system directly, especially in environments
with high error rates. Given that we are only modifying the error recovery scheme, only the re-
covery rates differ. We therefore use MTTR to compare our proposed error recovery scheme with
conventional on-demand scrubbing and module-based error recovery approaches; lower MTTR
implies a higher recovery rate, which in turn implies higher reliability and availability.

5.1 Experimental Setup

5.1.1 Test Circuit. Figure 7(a) depicts a block diagram of the first test system implemented on a
Nexys-4 Video board using Vivado 2015.4. This board includes a Xilinx Artix-7 XC7A200T device,
which is clocked at 100MHz. The test circuit comprises two TMR components representing both
cyclic state-machine logic and acyclic datapath logic [6]. To represent a typical state machine, we
chose a 64-bit Linear-Feedback Shift Register (LFSR). The LFSR serves as a random test vector

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 1, Article 4. Pub. date: January 2018.

Fine-Grained Module-Based Error Recovery 4:11

I Xilinx Artix-7 XC7A200T FPGA M,
vib, RC&

1012
(Shift Registers)
Fault NC,1,2
Injector |V.I os2[|
g il

LB

Test Harness|

se0,
idhy
(MicroBlaze) -NCu <
donég
g
Decode >
sel,
idy
v [e
_) Injector_||gone; =
d
PC
— HWICAP ||sel.
LFESX idoy
NCH[&
done;

=
Reconfig. o
Controller =

Fig. 7. (a) Artix-7 200T configuration with a MicroBlaze-based test harness and reconfiguration controller
on the left, and the design under test, which includes all logic blocks and their interconnections, to its right.
(b) Floorplan of the test harness and the test circuit in three clock regions on the right side of the device.

Vo ass

Fault Injection
Region (DUT)

(a) (b)

Mz aiz
(LFSR)

generator for the Design Under Test (DUT) and emulates the upstream voters and nets illustrated
in Figure 1. The acyclic datapath logic was represented by a Shift Register (SR) module in which
all logic paths travelled without feedback from the input to the output of the module. The SR
comprised 8 stages of 64-bit registers with a variety of arithmetic operations mapped into the
LUTs of each stage. In our experimental setup, the SR module processed the data generated by the
LFSR module.

The LFSR modules, their voters, and module outputs comprise Cy of the design. As there is
feedback from the LFSR voter back to the LFSR input, the LFSR voter also behaves as an upstream
voter with respect to the LFSR component. The SR modules, its voters, and their connection to the
RCN form C; of the DUT.

We floorplanned the test circuit according to the guidelines provided in Section 4.2. The DUT
contained 26 sub-components in total. These included three identical LESR modules (M, ¢,1,2) and
three SR modules (M;_,1,2), six voters (Vp,1_0,1,2), triplicated NCs (NC,1,2), two sets of nets connect-
ing the modules to their voters (mout, 1), three voter output signals (vouty 1,2), and the dedicated
error signal for each voter (e, 1 ¢,1,2)- The voter output of C; was not evaluated, because it did not
connect to any downstream logic in this design. The frame sets for these sub-components were
extracted using the method described in Section 4.3.

5.1.2 Test Harness. We used a MicroBlaze processor to implement the test harness, which in-
cluded a fault injector, an error signature decoder, and an RC program running the FDPR of
Section 4.3.

We measured the time to reconfigure each sub-component and used the same hardware setup
to time a complete blind scrub of the device. The frames to be scrubbed were also extracted from
the full bitstream as described in Section 4.3.

Figure 7(b) shows the layout of the test system on the device. The test circuit was implemented
in the three shaded clock regions depicted on the right side of the device—we injected faults (con-
figuration bit flips) into this region using dynamic partial reconfiguration. The MicroBlaze was
implemented in the two central clock regions on the left side of the device. This region was not
subjected to fault injection. In total, we injected 16,134,144 faults into 4,992 frames of the DUT,
thereby injecting a fault into every configuration bit of the DUT.

After an error was injected, the RC was programmed to wait for 100us (10,000 clock cycles) to
let the error emerge. Only then did it check the output of the RCNs. For this DUT, a bit was deemed
not to be sensitive if the RCN did not report an error. Otherwise, the RC reported the sensitive bit
location and the error signature to the host. Thereafter, the faulty bit was corrected by reversing

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 1, Article 4. Pub. date: January 2018.

4:12 Z. Zhao et al.

Table 2. Block Sub-component Area and Recovery Time

Sub-component | LUTs | Flip-Flops | Major Columns | Frames | Recovery Time (ms) |

Mo o,1,2 8 64 2 64 2.0
Vo.1 0,12 153 66 2 72 2.3
Mi 01,2 2,548 512 20 712 22.6
NCy,1,2 43 34 2 72 2.3

Table 3. Net Sub-component Area and Recovery Time

Sub-component| PIPs|Switch Matrices| Major Columns|Frames|Recovery Time (ms) |

mout, 10,690 632 35 1,188 39.7
mout; 10,358 637 50 1,712 55.8
vouty o 3,077 161 12 416 13.7
vouty 1 3,050 143 13 452 14.8
vouty ; 3,131 172 12 416 13.7
€0 0 41 11 11 380 123
e 1 41 18 18 624 20.3
ey 41 19 16 552 18.0
e o 22 7 4 136 4.6
e 1 23 7 5 172 5.7
er 22 4 3 100 3.4

the injected bit flip and waiting another 100us to allow the correct data to flush through the test
circuit.

5.2 Results

5.2.1 Fine-grained Dynamic Reconfiguration of Sub-components. Tables 2 and 3 report the uti-
lization, number of major columns, and number of configuration frames for each of the sub-
components in the design, as well as the reconfiguration times that we measured using the pro-
posed fine-grained dynamic bitstream composition method. Using this method, we found that our
platform needed on average 32.7us to transfer a frame from off-chip flash memory to the ICAP.
The transfer time varies a little depending on whether contiguous or non-contiguous frames are
retrieved, but this is a reasonably good result considering the constraints imposed by the board
architecture (SPI flash) and the use of MicroBlaze and AXI-HWICAP. It should be noted that the
design did not include DSPs or BRAMs.

On our platform, we found that to perform a blind scrub of the device we had to overwrite
18,300 frames in total. The latency for a scrub cycle was 432ms, which corresponds to a sustained
transfer rate of one frame every 23.6us. This performance is limited not just by the board and circuit
architecture but also by the need in our test to retrieve each frame individually from the indexed
complete bitstream. It should be noted that the use of a bespoke scrubber could be expected to
take considerably less than 432ms to scrub the device.

On the tested circuit, the worst-case repair time using our proposed repair strategy was 135ms,
which involved the reconfiguration of one of the SR modules, its upstream voter and voter output,
the nets between the SR modules and their voters (mout;), and those of the LFSR modules and their
voters (mouty of the upstream component). This maximum repair time is approximately one-third
of the scrub cycle latency, which represents a substantial reduction in the repair time. At most,

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 1, Article 4. Pub. date: January 2018.

Fine-Grained Module-Based Error Recovery 4:13

Table 4. Fault Injection Results

Error Number of Checks (Chk)

Signature] 1 [2 | 3 [4] 5 |6/ Sub-component Reconfiguration Sequence
Type—IO 4,882 959 N/A|[627|N/A|0 M070’1,2 - ‘/()7(),1’2 — mouly

Type—IIo 15,862|6,623| 159| 44 0 %70,1’2 — mouty — NCO,I,Z — €0 0,1,2

Type-IIIy 3,656 0 mout

Type-Il 633,901(4,788|2,038(748 23|10 M170’1,2 4 ‘/()70,1’2 4 Uout070’1,2 — mout; — mouty
Type-Hl 18,248|7,282| 115 0 0 V1_071,2 — mouly —>NCO’1’2
Type-1II; 4,364 0 mout;

we found we had to reconfigure 4,112 frames, which is less than one-fourth of those needed to
perform a scrub.

5.2.2 Fault Injection Results. Table 4 reports on the fault-injection experiment. The subscripts
indicate the error signatures for the LFSR and SR components (0 and 1), respectively. The ta-
ble reports for each error signature (Type-Iy—Type-III;) how many reconfigurations of the sub-
components were triggered (Number of Checks) according to our repair strategy for the error re-
ports received. The table lists the order in which sub-components would have been reconfigured
to clear errors.

As can be seen from Table 4, a complete scrub of the device was not required to recover any em-
ulated SEU during our fault-injection experiment. We therefore conclude that the repair strategy
is effective at quickly recovering from single errors within the test circuit and that, in the worst
case, the strategy is able to recover from errors substantially faster and using considerably less
energy than a scrub cycle.

In total, 680,913 errors were reported for 16,134,144 fault injections. For error signatures of
Type-1, the number of reports for the LFSR and SR modules differ greatly, because their utiliza-
tions differ substantially (Table 2). For error signatures of Type-II and Type-III, both components
show the same trend on the number of checks per signature. It is clear that voters and the in-
terconnecting nets between voters and modules are more prone to errors than the RCNs. Since
the LFSR component is further away from the NC, its routing net utilization is greater than for
the SR component, and thus, its RCN nets present more errors and take more time to reconfigure
(Table 3).

5.2.3 Error Sensitivity and Recovery Time. Table 5 summarizes the number of critical bits we
found in the test circuit via the fault-injection experiment and the average recovery times for
these sub-components. We have compared the recovery time for sub-components using the fine-
grained DPR approach to MER proposed in this article (MER/FDPR) with, on the one hand, a more
coarse-grained approach that makes use of scrubbing to recover from errors that occur outside the
reconfigurable modules (MER/Scrub) [2] and, on the other hand, by scrubbing whenever any error
is detected in the system (Triggered Scrub).

We determined the number of critical bits found in each sub-component from the number of
errors that were reported for each check (Chk) as listed in Table 4. For example, since 4,882 error
reports were made at Chk = 1 for signature Type-I;, but only 959 were recorded for Chk = 2, we
deduce that 4,882 - 959 = 3,923 reconfigurations of component Cy, i.e., one of the modules M 1,2,
were needed to clear errors affecting this sub-component.

The average recovery times using MER/FDPR were obtained by weighting the time to recover
all components in each reconfiguration sequence by the number of error occurrences for each

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 1, Article 4. Pub. date: January 2018.

4:14

Z. Zhao et al.

Table 5. Sub-component Critical Bits Summary Using Proposed Recovery Sequence

Critical Bits Average Recovery Latency (ms)
Sub-component Found MER/FDPR | MER/Scrub | Triggered Scrub
Mo 012 3,923 2.0 2.0 216.0
mouty o.1.2 10,770 415 216.2 216.0
Vo 0,12 12,321 7.4 2211 216.0
oty 012 1,290 39.0 238.6 216.0
€ 0.1.2 44 61.2 216.0 216.0
M 0.1.2 629,113 22.6 22.6 216.0
mout; o.1.2 12,256 595 2173 216.0
Vi o1z 10,966 23 216.0 216.0
NCo,1,2 230 52.4 216.0 216.0

Table 6. Frames, MTTR, and Energy Results

| | MER/FDPR | MER/Scrub | Triggered Scrub |

Frames 718 1,963 18,300
MTTR (ms) 23 36 216
Energy (m]) 0.38 1.05 9.79

signature. For example, while sub-component ey was only reconfigured 44 times in total, sub-
components V, mouty, and NCy 1., were reconfigured before e, for a total reconfiguration time
of 61.2 ms/event, as can be calculated from Tables 2 and 3. Similarly, sub-component mout, was
reconfigured 3,656 times for a recovery time of 39.7ms/event as a result of error signatures of Type-
IIIy, but it was also reconfigured 627 times for a recovery time of 44ms/event due to signatures of
Type-Iy, 6,464 times for 42ms/event due to signatures of Type-II;, and 23 times for 134.5ms/event
due to signatures of Type-Ij, resulting in an average recovery time of 41.5ms for mout,.

The average recovery time using MER/Scrub is also determined by weighting individual recov-
ery times by the number of occurrences. Sub-components My 1,2 and M; ¢ 1,2 are recovered by
MER when signatures of Type-I, and Type-1; are detected. However, all other sub-components in
the recovery sequences for error signatures of Type-I are recovered by scrubbing after the modules
My 0,12 and M; o1, are reconfigured in a first attempt to clear the error. For error signatures of
Type-II and Type-III, all errors in the sub-modules are recovered by scrubbing. We adopt the con-
vention that determines that the average time to recover from an error via scrubbing is halfway
through the scrub. Thus, since a scrub cycle takes 432ms on our system, the average time to re-
cover from an error via scrubbing is 216ms. Triggered scrubs occur whenever an error is detected
in our system using the voters, RCNs and NCs.

Table 6 compares the average number of frames reconfigured per error, the average MTTR, and
the energy expended to repair the error assuming each frame write consumes 535nJ on average
[17]. While triggered scrubbing needs to scrub 18,300 frames, MER/FDPR only needs to reconfigure
718 frames on average (weighted). While these results are application and device dependent, they
are representative of the gains that are possible. In this experiment, the weighted average MTTR
for MER/FDPR was only 10% of that for scrubbing. Of the methods we studied, MER/FDPR is
therefore also the most energy efficient. Since energy consumed recovering from configuration
memory errors is assumed to be proportional to the number of frames that are rewritten, in this
study we found the fine-grained DPR approach was 2.8x more efficient than MER/Scrub and 26x
more efficient than triggered scrubbing. A periodic scrubbing approach is likely to expend more

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 1, Article 4. Pub. date: January 2018.

Fine-Grained Module-Based Error Recovery 4:15

Table 7. TLegUp Block Utilization and Recovery Time

[Design || MMULT Il SATD Il GSM |
> > >
@ 7] s 3 @ 173 s g. @ 7] ; g
15 lels S1SENS | 2|22l 81885 ¢ |5 5|8 E
Sub-Logic || = | = |[R|A| ~ |~MH = = |AlA| = |&H = = |A|A = |&KE
My 0,1,2 500|352 3| 2| 200 754 || 2,346 | 2,404 | 0 | 0| 416 | 1,564 || 3,784 | 2,976 | 37 | 2| 688 | 2,588
Vo 0.1.2 239 210[0f 72 270 821 2110|0136 512 994 21 0] 0] 144 540
M o.1.2 41 71 0| 0| 72 270 || 1,300 569 | 0| 0] 208 782 ([1,851 | 1,321 | 14 | 2| 482| 1,812
Vio,1,2 175 2|10 0| o4 242 84 2100 72 270 426 21 0|0 72 270
NCo, 1,2 271 221 0| 0| 72 270 27 22|10 0128 484 27 22| 0] 0] 64 242

energy if the period between scrubs is small enough to result in needless scrubs, or, alternatively,
it will compromise MTTR if the period between scrubs is increased to avoid unnecessary scrubs.
With all other factors being equal, the reliability of FPGA-based TMR systems depends only on
the MTTR from configuration memory errors [2, 11]. We therefore deduce that systems employing
MER/FDPR have higher reliability than those relying on MER/Scrub or triggered scrubbing [22].
However, this assessment assumes that all circuits have the same size; in particular, we assume
that the same voter type, RCN, and RC are used to trigger error recovery and/or report on affected
components.

5.3 TLegUp Experiments

The LFSR/SR experiment is hand-crafted and relatively small in scale. The TLegUp experiments
were developed to find out whether the methods described in this article apply to larger circuits
and, in particular, to circuits that are not hand-crafted.

TLegUp [10] extends the well-known LegUp HLS framework [5] to enable the automatic syn-
thesis and implementation of TMR-protected circuits from C-language specifications. Designers
specify the behaviour of the circuit they wish to have implemented as an algorithm written in C,
which is then transformed by TLegUp into a partitioned and triplicated Register Transfer Level
hardware description in Verilog with feed-forward voters inserted at the partition (component)
boundaries. The resulting circuit description can then be implemented using Xilinx CAD tools.

We targeted three small- to medium-scale HLS benchmarks, mmult, satd, and gsm [12], and im-
plemented these on a Xilinx Zynq 7020 device hosted on a Digilent ZedBoard with Vivado 2016.1.
The small-scale Bambu HLS benchmark mmult multiplies two 32-bit integer square matrices of
order 20, while the medium-scale DWARV benchmark satd finds the distance between pixels in a
pair of video frames, and CHStone’s larger gsm benchmark includes a linear predictive encoder to
compress audio signals.

TLegUp was configured to partition all benchmarks into two TMR components to obtain a sys-
tem architecture similar to that described in Section 5.1 and because limitations with TLegUp at
the time of experimentation prevented us from exploring higher degrees of partitioning. The main
circuit modules were manually floorplanned before placement and routing. The utilization of the
modules and their sizes in configuration frames and the time to recover each module using FDPR
are recorded in Tables 7 and 8.

To compare the results of the TLegUp benchmarks with each other and with those of the
LFSR/SR experiment, we have used a standard naming convention: M ¢,1,2 and M; 1,2 refer to
the triplicated modules of components Cy and Cy; Vp o,1,2 and V; g1,z refer to the voters on each
component; NC ; , refers to the network controllers, here arbitrating between point-to-point RCN
nets denoted e ¢,1,2 and e; g,1,2 coming from the corresponding voters; module outputs mout, and
mout; connecting to the voters; and inter-component voter outputs vouty o,1,2 and vouty o,1,2- Note

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 1, Article 4. Pub. date: January 2018.

4:16 Z. Zhao et al.

Table 8. TLegUp Net Utilization and Recovery Time

[Design I MMULT I SATD I GSM |
% > % %
g |83 g | 83 g | 83
L 2] E g g £) E g g g [Z) E g 2
& | 2| 2| 8E| & | 2| 8| 8E| & | 2| & |8E
Sub-Net [17} <3 & A~ 17 <3 &~ & 17} 43 &=
vouty o.1,2 () 1,374 | 157 417 | 1,572 3,549 382 798 2,999 5,213 831 | 1,291 4,848
mouty 21,828 | 871 | 1,332 | 5,013 || 93,467 | 2,723 | 2,958 | 11,124 || 113,325 | 4,437 | 4,192 | 15,755
e 01,2 (7) 35| 13 364 | 1,367 32 12 315 | 1,182 30 9 273 | 1,026
vouty o.1,2 () 397 95 360 | 1,356 14 8 175 656 904 277 | 1,142 4,292
mouty 8,062 | 761 | 1,496 | 5,632 6,546 484 | 1,930 | 7,247 24,141 | 2,158 | 4,200 | 15,783
e1 0.1,2 (%) 32| 16 412 | 1,549 28 9 233 874 29 15 386 | 1,450
Test I I Test I | Test it W | . |
Hamess | ‘/NC [k 0 Harness. ne| M1 Mo Hamess i M11/| s
i . [l [N9ge (U2 = Sl
i 1 o M1 el 1 i ce Test
|1 Mo NC 1 EEL M1 |' 1 N’O | Harness
i vo. 1 Il e Al e A ="
l\<1/11& T‘_'T . f‘i'i | ::|._; .'& ':.f; .!..‘ .
0 Nl F | Mo | NCimiNA o
I L]

(a) (b) (c)
Fig. 8. Floorplans of (a) satd, (b) mmult, (c) gsm, and (d) RUSH designs.

that the results for nets labelled with (*) have been averaged over the three copies of the triplicated
net.

We observe from Table 7 that the TLegUp circuits have considerably larger voter blocks than
the small, hand-crafted LFSR/SR circuit, since many more edges in the data-flow graphs of the
TLegUp circuits are cut when they are partitioned into two components. Consequently, the mout,
and mout; nets are considerably more congested and their recovery times are considerably higher.

Table 9 reports the result of injecting faults into every configuration bit of the design under
test, which spans 4,182 frames on the Zynq 7020 device for mmult and satd and 5,238 frames for
gsm (see Figure 8(a)—(c) for an illustration of the circuit layouts). We report the counts (Chk) for
each error signature type emanating from both components in each design. The table first shows
the sequence in which modules are recovered to eliminate the error. Thereafter, as for Table 4, we
record the number of times each error has occurred.

Similarly to Section 5.2.3, we derived Table 10 from Table 9. Table 10 records the number of
critical bits we found in each module of the circuit and the average time to recover from errors in
these sub-components using MER/FDPR and MER/Scrub. The average recovery time using Trig-
gered scrubbing is 12,656us (half the scrub period) in every case.

We observed that the TLegUp circuits are less sensitive to errors (at most 2/3%) than the small,
hand-crafted LFSR/SR circuit despite gsm having up to 2.4x greater utilization. However, we
recorded several unrecognized errors, which had to be dealt with by scrubbing as per our repair
strategy, and believe that these events are likely due to common mode failures in shared intercon-
nection resources [21]. The cost of recovering from these errors is substantial: In gsm the recovery
latency is as high as that of two scrub cycles. We note that the occurrence of Type-I errors ap-
pears to be related to logic utilization, whereas Type-II and Type-III events are due to voter size
and routing complexity. In these circuits, the mout, and mout; components contribute markedly
to the sensitivities and recovery latencies of the circuits. It is possible that reconfiguration of these

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 1, Article 4. Pub. date: January 2018.

Fine-Grained Module-Based Error Recovery 4:17
Table 9. TLegUp Error Injection Results
Error Number of Checks (Chk)
Design Signature 1 | 2 | 3 | 4 | 5 6 | 7
Type—Io M() 0,1,2 ‘/()7(),1’2 VLO,LZ Uout170,1,2 mouty mouty Scrub
Type-IIo V070,1 2 mouty NCO,I,Z €0 0,1,2 Scrub
Recovery | Type-IIl, mouty Scrub
Sequence Type-h M1_0 1.2 Vl_O, 1,2 Vv()_(]7 1,2 UOUt()_O, 1,2 mouty mouty Scrub
Type-1I; Vio12 | mout; | NCo12 | €1.0,1,2 Scrub
Type-III; mout; Scrub
Type-Iy 7,923 1,038 884 498 282 15 0
Type-II, 14,965 7,595 103 23 1
Type-IIl 3,775 0
MMULT
Type-1; 5,322 1,275 1,225 383 6 0 0
Type-II; 9,135 5,080 82 6 0
Type-III; 1,519 0
Type-Ip 35,117 3,402 1,907 1,708 1,158 28 28
Type-II, 112,132 | 62,955 115 0 0
Type-III 30,615 0
SATD ype-To ’
Type-I; 1,560 270 262 253 119 102 69
Type-II; 1,987 963 74 7 0
Type-III; 329 2
Type-Iy 243,075 | 55,782 | 44,921 37,358 | 20,352 118 10
Type-II, 133,025 | 57,669 0 0 0
GSM Type-1II 28,890 0
Type-I; 59,001 3,315 2,166 1,452 287 58 51
Type-II; 27,887 | 15,768 0 0 0
Type-III; 5,714 0
Table 10. TLegUp Sensitivity and Recovery Time
[Design I MMULT I SATD I GSM |
~ Crit. Avg. Recovery Crit. Avg. Recovery Crit. Avg. Recovery
Sub-component Bits Time (us) Bits Time (us) Bits Time (us)
Recovery Method MER/ | MER/ MER/ | MER/ MER/ | MER/
y FDPR | Scrub FDPR | Scrub FDPR | Scrub
Mo 0,12 6,885 754 754 31,715 1,564 1,564 187,293 2,588 2,588
mouty 11,534 5,248 12,673 94,618 11,504 12,675 106,800 17,517 13,146
Vo 01,2 8,366 335 12,697 50,681 558 12,702 86,931 880 12,994
vouty 0,12 377 2,374 12,926 134 4,646 13,438 1,165 7,363 14,468
€ 0.1.2 22 | 6,954 | 12,656 0 N/A N/A 0 N/A N/A
M 0,12 4,047 270 270 1,290 782 782 55,686 1,812 1,812
mout; 6,538 5,837 12,658 1,233 7,503 12,667 21,819 16,171 12,688
Vio.1.2 4,491 333 12,724 1,231 611 12,914 20,831 1,506 13,696
vouty 0,12 216 2,605 13,410 550 3,071 14,220 17,006 7,608 15,244
€1 0.1,2 6 7,555 12,656 7 8,738 12,656 0 N/A N/A
NCy, 1.2 156 5,841 12,656 182 10,604 12,656 0 N/A N/A
Unrecognized 1 19,368 12,656 99 34,892 13,643 61 51,297 14,595
Total 42,639 181,740 497,592

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 1, Article 4. Pub. date: January 2018.

4:18 Z. Zhao et al.

Table 11. TLegUp Recovery Time and Energy

[Design I MMULT I SATD I GSM |
MER/ | MER/ | Triggered || MER/ | MER/ | Triggered || MER/ | MER/ | Triggered
Recovery Method FDPR | Scrub Scrub FDPR | Scrub Scrub FDPR | Scrub Scrub
Frames 697 5,766 7,692 1,736 6,377 7,692 1,636 4,329 7,692
MTTR (us) 2,624 9,585 12,656 6,521 | 10,667 12,656 6,146 7,955 12,656
Energy (u]) 373 3,085 4,115 929 3,412 4,115 875 2,316 4,115

sub-components may have masked errors that actually occurred in the RCN nets and the NCs
whose resource usage overlapped with major columns of the mout nets.

As in Section 5.2.3, Table 11 summarizes the average number of frames that were reconfigured
to correct a configuration memory error, the MTTR from configuration errors, and the reconfigu-
ration energy using MER/FDPR, MER/Scrub, and Triggered scrubbing.

Across the TLegUp circuits, we observed that MER/FDPR has better recovery latency and lower
energy cost than MER/Scrub and either triggered or periodic scrubbing. However, MER/FDPR
presents implementation difficulties, since certain elements of the design, such as voter inputs and
outputs, need to be manually identified, and thus the firmware for the RC cannot be automatically
generated. We note that some major columns of a design may be overwritten multiple times to
recover the system from some rare errors—inefficiencies therefore remain in the approach. This
leads us to consider the potential to benefit from modifying our approach—to reduce the high costs
of recovering relatively insensitive components such as RCN nets and voter outputs at the ends
of our repair sequences, especially when the cost to recover dense mout sub-components is high,
we should scrub at an earlier point in the sequence, perhaps after the sub-component blocks have
been reconfigured, to cut off the long tail in our average recovery latencies.

5.4 RUSH Experiment

The LFSR/SR and TLegUp experiments involved small- to medium-scale designs comprising two
components each. To test the MER/FDPR approach on a larger circuit, we also experimented with
applying the approach to recover from errors in a nine-component system implemented on a Xilinx
Artix-7 XC7A200T FPGA.

The test circuit (see Figure 8(d)) is one of two configurations deployed on the RUSH platform [2,
7], which we developed to test the reliability of SRAM-based FPGA circuits in the thermosphere
as part of the European Commission’s QB50 Project [14]. The configuration consists of nine com-
ponents that are representative of digital sub-systems for satellites. These include a 21-tap 16-bit
iterative (single MAC) Finite Impulse Response (FIR) filter; an 8-to-3-bit Block Adaptive Quantizer
(BAQ); an 8,096-word deep 32-bit FIFO; three 32-bit Shift Registers (SR1-3), having different lengths
and a variety of combinational functions between each stage; and three 32-bit Binary Search Trees
(BST1-3) of different heights, which include a variety of combinational functions at each node.
There are no dependencies between the components; thus each component acts as Cy, comprising
modules My o,1,2, and is directly connected via its voters Vj 1,2 and error nets ey o 1,2 to a network
controller NCy ; 2 and a MicroBlaze processor acting as the reconfiguration controller. The system
was manually floorplanned and implemented using Vivado 2016.1.

Tables 12 and 13 report the resource utilization, frame occupancy, and partial reconfiguration
times (recovery times) for the RUSH circuit modules and nets, which include the connections
(mouty) between the components and their voters. As before, nets labelled with (*) report average
utilizations over three individual nets. Note that the routing complexity of the RUSH mout nets is
far lower than that of the TLegUp circuits, since only necessary voters are inserted into a hand-
partitioned circuit. The data widths being checked are smaller as well.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 1, Article 4. Pub. date: January 2018.

Fine-Grained Module-Based Error Recovery 4:19

Table 12. RUSH Block Utilization and Recovery Time

Comp | Sub-Logic | LUTs | FFs | DSPs | BRAMs | Frames | Recovery Time (us) |

FIR Mo 01,2 29 22 1 0 64 1,009
Vo 0.1.2 498 213 | 0 0 144 2,244
Mo o,1,2 64 71 0 8 64 1,009
FIFO Vo 0.1.2 231 102 0 0 144 2,244
Mo 01,2 196 196 | 0 2 72 1,122
BAQ Vo 0.1.2 333 144 | 0 0 72 1,122
SR3 Mo 01,2 5,318 | 10,626 | 31 0 796 12,451
Vo 0,1,2 48 30 0 0 72 1,122
Mo 01,2 3,767 | 6,189 | 31 0 480 7,515
BST2 Vo 0.1.2 48 30| 0 0 64 1,009
Mo 01,2 1384 | 2510 | © 0 144 2,244
BST1 Vo 0.1.2 48 30| 0 0 72 1,122
Mo 01,2 9,117 | 12,205 | 31 0 1,228 19,183

BST L
ST Vo 0,1, 48 30 0 0 66 1,070
SR2 Mo 01,2 2,632 | 5,280 | 10 0 208 3,253
Vo 0.1.2 48 30| 0 0 64 1,009
SR1 Mo 01,2 1,608 | 3,264 | © 0 410 6,454
Vo 0.1.2 48 30| 0 0 72 1,122
RCN | NCy 1, 104 92| 0 0 72 1,122

Table 13. RUSH Net Utilization and Recovery Time

| Comp | Sub-Net | PIPs | SMs | Frames | Recovery Time (us) |

FIR mout 8,484 596 752 11,777
eo 0.1.2 (*) 43 18 443 6,918
mouty 3,862 301 602 9,481
FIFO €0 0,1,2 (*) 36 15 377 5,907
mout 6,492 510 352 5,497
BAQ eo 0.1.2 (*) 28 8 144 2,244
SR3 mout 621 107 936 14,586
€0 0,1,2 (*) 41 25 699 10,958
mouty 598 103 904 14,134
BST2 e0 0.1.2 (%) 53 33 812 12,716
mout 527 59 360 5,610
BST1 eo 0.1.2 (*) 54 33 885 13,835
mout 728 249 1,566 24,515
BST3 eo 0.1.2 (*) 39 20 292 4,562
SR2 mout . 545 53 228 3,588
eo 0.1.2 (*) 54 36 704 11,029
SR1 mout) 656 103 552 8,637
eo 0.1.2 (*) 53 35 503 7,853

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 1, Article 4. Pub. date: January 2018.

4:20 Z. Zhao et al.

Table 14. RUSH Error Injection Results

Error Number of Checks (Chk)

Component | Signature 1 | 2 | 3 | 4 | 5

Recovery Type-I Mo 0,12 Vo 0.1.2 mout Scrub

Sequence Type—II ‘/()70’ 1,2 mouty NCO, 1,2 €0 0,1,2 Scrub
Type-III mout, Scrub
Type-1 646 77 46 25

FIR Type-II 287 58 37 34 33
Type-III 29 2
Type-I 332 80 71 52

FIFO Type-II 80 5 2 0 0
Type-III 27 0
Type-I 1,205 24 6

BAQ Type-II 156 36 2 1 0
Type-III 7 0
Type-I 19,462 33 33 18

SR3 Type-II 17 4 4 1 0
Type-III 7 1
Type-I 12,719 109 107 89

BST2 Type-II 16 4 2 0 0
Type-III 3 0
Type-I 5,000 75 73 67

BST1 Type-II 18 11 1 1 1
Type-III 0 0
Type-I 41,663 91 89 20

BST3 Type-II 14 0 0 0 0
Type-III 6 0
Type-I 9,277 16 15 4

SR2 Type-1I 21 6 6 3 1
Type-III 2 0
Type-I 5,406 8 7 5

SR1 Type-II 25 10 8 4 0
Type-III 6 1

Table 14 reports the result of injecting 1,000,000 random errors into the RUSH design under test,
which spans 17,330 frames of the Artix-7 200T device. Random testing was undertaken due to the
expected two-month turnaround time needed to perform exhaustive fault-injection testing on the
RUSH platform. Like in Table 9, we report the counts (Chk) for each error signature emanating
from each component of the design. We first indicate the sequence in which modules are recovered
to eliminate the error and then record the number of times each error occurred.

We derived Table 15 from Table 14, as previously explained. The table records the number of
critical bits we found in each sub-component of the circuit and the average time to recover from
errors using MER/FDPR, MER/Scrub, and Triggered scrubbing. Entries labelled with (**) report the
total number of errors found for the net and the average recovery latency for each error.

We observed less than 10% critical bits in response to 1,000,000 randomly injected configura-
tion errors, which is consistent with Xilinx’s estimates of the distribution of critical bits within a

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 1, Article 4. Pub. date: January 2018.

Fine-Grained Module-Based Error Recovery 4:21

Table 15. RUSH Sensitivity and Recovery Time

Average Latency (us)
. . MER/ MER/ Triggered
Comp Sub-Comp Critical Bits FDPR Serub Serub
My 0.1.2 569 1,009 1,009 131,357
FIR Vo o2 260 2364 | 131,477 131,357
mout 69 13,450 131,664 131,357
€0 0.1.2 (") 1| 23332 | 131,357 131,357
My 0.1.2 252 1,009 1,009 131,357
FIFO Vo o.1.2 84 2,352 | 131,465 131,357
mout 49 8,931 131,748 131,357
€0 0.1,2 () 0 0 0 0
My 0,1, 1,181 1,122 1,122 131,357
BAQ Vo o.1.2 138 1,268 | 131,503 131,357
mout, 45 6,544 131,457 131,357
€0 0,1,2) 1 9,985 131,357 131,357
Mo o0,1,2 19,429 12,451 12,451 131,357
SR3 Vo o1z 13 1,122 | 131,357 131,357
mout, 21 | 24,281 | 140,251 131,357
e 0.1.2 (") 1| 29168 | 131,357 131,357
My 0.1.2 12,610 7,515 7515 131,357
BsTo | Voorz 14 2,083 | 132,431 131,357
mout 23 20,893 137,238 131,357
€0 0.1,2 () 0 0 0 0
My 0,1, 4,925 2,244 2,244 131,357
BsT1 | Voo 9 1,621 | 131,856 131,357
mout, 16 7,574 132,199 131,357
ey o,1,2 () 0 0 0 0
Mo o0,1,2 41,572 19,183 19,183 131,357
BsT3 | Voo 16 3,468 | 133,755 131,357
mout 75 43,148 149,005 131,357
€0 0.1.2 (") 0 0 0 0
My 0.1.2 9,261 3,253 3,253 131,357
SR2 Vo o,1,2 16 1,212 131,560 131,357
mout 13 7,194 134,110 131,357
e 0.1.2 (**) 2 | 14,691 | 131,357 131,357
Mo o.1,2 5,398 6,454 6,454 131,357
SR1 Vo o.1.2 16 1,525 | 131,760 131,357
mout 9 10,570 132,791 131,357
€0 0,1,2) 4 20,192 131,357 131,357
Others NCo, 1,2 ’ 18 12,365 131,357 131,357
Unrecognlzed 321 148,230 134,556 131,357
Total 96,431

bitstream. We again observed some (0.3%) unrecognized errors and suspect these are caused by
errors in the input vector logic or the global control logic. In contrast to the TLegUp results, the
cost of recovering from unrecognized errors in the RUSH circuit is not excessive: on average, just
13% more than for triggered scrubbing. Not surprisingly, Type-I errors are most prevalent due to
the majority of frames being dedicated to logic block components.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 1, Article 4. Pub. date: January 2018.

4:22 Z. Zhao et al.

Table 16. RUSH Recovery Time and Energy

| | MER/FDPR | MER/Scrub | Triggered Scrub |

Frames 874 1,041 18,300
MTTR (ys) 13,586 15,969 131,357
Energy (uJ) 468 557 9,791

Table 16 summarizes the average number of frames that were reconfigured to correct a config-
uration memory error, the MTTR from configuration errors, and the reconfiguration energy using
MER/FDPR, MER/Scrub, and Triggered scrubbing.

For RUSH, a larger, albeit hand-crafted design, we found that MER/FDPR also outperforms
MER/Scrub and scrubbing in terms of recovery latency and recovery energy. The MTTR of
MER/FDPR was found to be 14.9% lower than for MER/Scrub and 89.7% lower than for Triggered
Scrubbing. The energy devoted to recovering from configuration memory errors in MER/FDPR
was 16.0% lower than for MER/Scrub and 95.2% lower than for Triggered Scrubbing. We can ex-
pect even greater margins were MER/FDPR pitted against periodic scrubbing.

6 CONCLUSION

We have proposed a fine-grained module-based error detection and dynamic reconfiguration
scheme that can detect and recover from configuration memory errors in SRAM FPGA-based TMR
circuits more rapidly, using less energy, and more reliably than scrubbing-based methods.

We evaluated our method by injecting faults into three types of circuits: a small hand-crafted
system, three HLS benchmarks, and a large hand-crafted design. The results consistently demon-
strate superior recovery times and reduced energy cost to recover from errors with our approach.
We recorded reductions in MTTR with respect to triggered scrubbing of between 48.5% for a
medium-scale HLS circuit and 89.4% for a small, hand-crafted circuit. Reductions in reconfiguration
energy with respect to triggered scrubbing ranged between 77.4 and 96.1% on the same circuits, re-
spectively. More significant reductions compared with periodic scrubbing can be expected. These
results are of importance in high-radiation environments, such as in GEO satellites, where design-
ers are increasingly wanting to utilize SRAM FPGAs in fault-tolerant and time-critical applications.

Our method allows systems to recover from configuration errors that occur in the nets between
TMR components by reconfiguring just those frames that include the critical bits of the affected
nets. In so doing, the method only rarely relies on a scrub cycle to recover from those errors,
which traditional module-based recovery schemes cannot access. Our method does not require any
additional hardware components or partial bitstreams. Instead, it relies on post-implementation
techniques to identify the addresses, within the full bitstream, of the configuration frames that
relate to the logic blocks and inter-block nets of the design. These addresses are used at runtime
to dynamically compose partial bitstreams to reconfigure the sub-components in a predetermined
order according to the error signature presented by the TMR voters.

Our analysis has also found opportunities to further tune the recovery sequence to optimize
the recovery latency and energy cost. We intend to explore this problem further in the future.
We also plan to investigate automated approaches to extracting, from a full bitstream, the sub-
component frame information given information about the design hierarchy. While our methods,
as presented, will successfully cope with some accumulated and multi-bit errors, they would need
to be modified to guarantee all such errors are detected and corrected. Assessing our method with
accumulated errors and adjusting for these is thus of interest to us, as is testing our approach using
radiation-beam experiments.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 1, Article 4. Pub. date: January 2018.

Fine-Grained Module-Based Error Recovery 4:23

REFERENCES

(1]
(2]
(3]
(4]
(5]

(6]
(7]

(8]
(9]
(10]

(11]

(12]

(22]

Dimitris Agiakatsikas, Ediz Cetin, and Oliver Diessel. 2016. FMER: A hybrid configuration memory error recovery
scheme for highly reliable FPGA SoCs. In FPL. 1-4.

Dimitris Agiakatsikas, Nguyen T. H. Nguyen, Zhuoran Zhao, Tong Wu, Ediz Cetin, Oliver Diessel, and Lingkan Gong.
2016. Reconfiguration control networks for TMR systems with module-based recovery. In FCCM. 88-91.

Ghazanfar Asadi and Mehdi B. Tahoori. 2005. Soft error rate estimation and mitigation for SRAM-based FPGAs. In
FPGA. 149-160.

Cristiana Bolchini, Antonio Miele, and Chiara Sandionigi. 2011. A novel design methodology for implementing
reliability-aware systems on SRAM-based FPGAs. IEEE Trans. Comput. 60, 12 (2011), 1744-1758.

Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona, Jason H. Anderson, Stephen Brown,
and Tomasz Czajkowski. 2011. LegUp: High-level synthesis for FPGA-based processor/accelerator systems. In FPGA.
33-36.

Ediz Cetin, Oliver Diessel, Lingkan Gong, and Victor Lai. 2013. Towards bounded error recovery time in FPGA-based
TMR circuits using dynamic partial reconfiguration. In FPL. 1-4.

Ediz Cetin, Oliver Diessel, Tuo Li, Jude A. Ambrose, Thomas Fisk, Sri Parameswaran, and Andrew G. Dempster. 2016.
Overview and investigation of SEU detection and recovery approaches for FPGA-based heterogeneous systems. In
FPGAs and Parallel Architectures for Aerospace Applications. Springer, 33-46.

Sergio D’Angelo, Cecilia Metra, Sandro Pastore, A. Pogutz, and Giacomo R. Sechi. 1998. Fault-tolerant voting mech-
anism and recovery scheme for TMR FPGA-based systems. In DFT. 233-240.

Jonathan M. Johnson and Michael J. Wirthlin. 2010. Voter insertion algorithms for FPGA designs using triple modular
redundancy. In FPGA. 249-258.

Ganghee Lee, Dimitris Agiakatsikas, Tong Wu, Ediz Cetin, and Oliver Diessel. 2017. TLegUp: A TMR code generation
tool for SRAM-based FPGA applications using HLS. In FCCM. 1-4.

Daniel McMurtrey, Keith S . Morgan, Brian Pratt, and Michael] Wirthlin. 2008. Estimating TMR Reliability on FPGAs
Using Markov Models. Technical Report. Brigham Young University. Retrieved from http://scholarsarchive.byu.edu/
facpub/149.

Razvan Nane, Vlad-Mihai Sima, Christian Pilato, Jongsok Choi, Blair Fort, Andrew Canis, Yu Ting Chen, Hsuan
Hsiao, Stephen Brown, Fabrizio Ferrandi, Jason Anderson, and Koen Bertels. 2016. A survey and evaluation of FPGA
high-level synthesis tools. IEEE Trans. Comput.-Aid. Des. Integr. Circuits Syst. 35, 10 (2016), 1591-1604.

Gabriel Luca Nazar, Leonardo Pereira Santos, and Luigi Carro. 2015. Fine-grained fast field-programmable gate array
scrubbing. IEEE Trans. VLSI Syst. 23, 5 (2015), 893-904.

QB50 Project. 2009. Homepage. Retrieved June 6, 2017 from https://www.qb50.eu.

Luca Sterpone, Matteo Sonza Reorda, and Massimo Violante. 2005. RoRA: A reliability-oriented place and route al-
gorithm for SRAM-based FPGAs. In PRIME, Vol. 1. IEEE, 173-176.

Martin Straka, Jan Kastil, Zdenek Kotasek, and Lukas Miculka. 2013. Fault tolerant system design and SEU injection
based testing. Microprocess Microsy 37, 2 (2013), 155-173.

Jorge Tonfat, Fernanda Kastensmidt, and Ricardo Reis. 2015. Analyzing the effectiveness of a frame-level redundancy
scrubbing technique for SRAM-based FPGAs. IEEE Trans. Nucl. Sci. 62, 6 (Dec. 2015), 3080-3087.

Xilinx Inc. 2013. UG470: 7 Series FPGAs Configuration User Guide. Retrieved from https://www.xilinx.com/support/
documentation/user_guides/ug470_7Series_Config.pdf.

Xilinx Inc. 2015. PG036: Product Guide - Soft Error Mitigation Controller (v4.1). Retrieved from https://www.xilinx.com/
support/documentation/ip_documentation/sem/v4_1/pg036_sem.pdf.

Xilinx Inc. 2015. UG909: Vivado Design Suite User Guide—Partial Reconfiguration. Retrieved from https://www.xilinx.
com/support/documentation/sw_manuals/xilinx2017_1/ug909-vivado-partial-reconfiguration.pdf.

Xilinx Inc.2016. XAPP1222: Isolation Design Flow for Xilinx 7 Series FPGAs or Zyng-7000 AP SoCs (Vivado Tools).
Retrieved from https://www.xilinx.com/support/documentation/application_notes/xapp1222-idf-for-7s-or-zyng-
vivado.pdf.

Zhuoran Zhao, Dimitris Agiakatsikas, Nguyen T. H. Nguyen, Ediz Cetin, and Oliver Diessel. 2016. Fine-grained
module-based error recovery in FPGA-based TMR systems. In FPT. 101-108.

Received June 2017; revised October 2017; accepted December 2017

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 1, Article 4. Pub. date: January 2018.

http://scholarsarchive.byu.edu/facpub/149.
https://www.qb50.eu
https://www.xilinx.com/support/documentation/user_guides/ug470_7Series_Config.pdf
https://www.xilinx.com/support/documentation/ip_documentation/sem/v4_1/pg036_sem.pdf ignorespaces
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_1/ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1222-idf-for-7s-or-zynq-vivado.pdf

