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Efficient fine-grained processor-logic interactions on the
cache-coherent Zynq platform

ALEXANDER KROH and OLIVER DIESSEL, University of New South Wales, Australia

The introduction of cache-coherent processor-logic interconnects in CPU-FPGA platforms promises low-
latency communication between CPU and FPGA fabrics. This reduced latency improves the performance of
heterogeneous systems implemented on such devices and gives rise to new software architectures that can
better use the available hardware.

Via an extended study accelerating the software task scheduler of a microkernel operating system, this
paper reports on the potential for accelerating applications that exhibit fine-grained interactions. In doing
so, we evaluate the performance of direct and cache-coherent communication methods for applications that
involve frequent, low-bandwidth transactions between CPU and programmable logic.

In the specific case we studied, we found that replacing a highly optimised software implementation of
the task scheduler with an FPGA-based scheduler reduces the cost of communication between two software
threads by 5.5%. We also found that, while hardware acceleration reduces cache footprint, we still observe
execution time variability because of other non-deterministic features of the CPU.
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1 INTRODUCTION
The emergence of tightly-coupled CPU-FPGA platforms is challenging the traditional model of
offloading a large computational workload from the CPU. Such platforms provide cacheable data
access to shared main memory that is coherent with that of the CPU. For the programmable logic
part of the device, such systems offer low-latency data access to main memory that is similar in
latency to memory local to an FPGA accelerator card or module. The need for bulk transfers of data
frommain memory to FPGA-local memory to improve data locality is thereby reduced. Additionally,
CPU cache-coherent data access can further reduce latency and programming complexity.

While these CPU-offload accelerators may still benefit from the improved communication perfor-
mance of tightly-coupled, cache-coherent platforms, the provided low-latency data access allows
for a more co-operative hardware/software programming model. If the bulk transfer of data can be
replaced by fine-grained, low-latency interactions, a task can be split into small subtasks that are
better suited to either software or programmable logic.
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Fig. 1. Accelerated OS kernel scheduler architecture.

When a fine-grained co-operative system is CPU-bound, the completion time for a task is
solely determined by the time required for the CPU subtasks to complete. In this case, although
communication latency increases the response time of a hardware subtask, it is the communication
overhead, as counted in CPU execution cycles, that impacts the overall execution time of the task.
This overhead comes from data marshalling, the execution of data transfer and synchronisation
instructions as well as data dependencies on high-latency sources. The communication overhead
observed by the CPU must therefore be carefully balanced with the CPU-FPGA communication
latency.

Anticipating the difficultly of accelerating short-running tasks, the study presented in this paper
was primarily motivated by a desire to determine if migrating software functions to programmable
logic can reduce the execution time jitter of a software task. Reduced jitter is particularly important
for real-time systems, which require a known bound on execution time. Large jitter leads to
pessimism in the worst case execution time (WCET) – a metric that determines if an external event
can achieve a timely response.

Jitter is caused by the non-deterministic nature of execution on modern superscalar processors.
Instruction throughput enhancing features, such as the cache hierarchy and branch predictor,
reduce the amount of time that the CPU spends idle. This is typically done by predicting program
and data flow with stochastic heuristics. For example, the instruction and data caches are typically
configured for random cache-line replacement when new data requires space in the cache. This
random replacement causes jitter in execution time as the choice of cache line determines future
data access completion times.When software functions are implemented in hardware, the associated
code and data no longer need to occupy the cache. This improves the likelihood that critical OS or
application code stays resident in the cache.
In this paper, we evaluate the ability of the tightly-coupled Xilinx Zynq®-7000 series All Pro-

grammable System on Chip to support fine-grained interactions. The target for our case study is
the software task scheduler of a microkernel Operating System (OS). Fine-grained interaction in
this case involves the insertion and removal of a software thread handle from a priority queue
that is implemented in hardware (Figure 1). Communication between the kernel software and the
hardware-resident task queue involves the transfer of a single 32-bit word in both cases.
The task scheduler is the primary function of all OS. Not only is the scheduler invoked peri-

odically to ensure CPU time-sharing between threads, it is also invoked on demand to facilitate
communication or synchronisation between two threads, and when scheduling high-priority tasks
in response to critical external events.
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A large amount of effort is invested into the optimisation of the scheduler. The scheduler is a
very frequently executed function of the OS and is a key element contributing to the WCET of
event handling. When a critical event arrives, the appropriate event handler must be scheduled for
execution. The handling of the event may also require communication with other software tasks in
order to achieve the required goal.
Given that the OS scheduler is highly optimised and involves operations that are very short

in nature, we expect it to be challenging to gain any improvement in execution time through
hardware acceleration. The choice of this case study motivates us to optimise the communication
methods used to the best of our ability. By careful selection of fine-grained communication methods
between software and hardware, we have been able to achieve a 5.5% reduction in execution time
for synchronous communication between two threads.

Hardware acceleration also provided a significant improvement in execution time variance. The
migration of the software task scheduler into hardware removed most sources of non-deterministic
execution time and reduced execution time variance by 58%. Unfortunately, further improvement
was limited by the dominating influence of the branch predictor of the CPU.

This paper is organised as follows: Section 2 highlights related work on accelerating Operating
System kernel schedulers. Section 3 describes both the software and hardware architectures of the
OS kernel scheduler that we used in our study. Our experiment setup and evaluation of execution
time and jitter is presented in Section 4. Future work is outlined in Section 5, while conclusions are
drawn in Section 6.

2 RELATEDWORK
Prior work has studied themigration of an OS kernel scheduler from software to hardware, primarily
as a means to improve execution time and jitter in real-time systems. However, prior work has
generally been limited to either soft-core systems [6, 15], simulated hardware [10, 11, 14] or loosely-
coupled systems [5, 13]. To the best of our knowledge, the performance benefits of this migration has
not been evaluated using low-latency, cache-coherent communication with fixed-core processors.
Ong et al. augmented a soft-core NIOS-II processor with a hardware-accelerated task sched-

uler. The accelerator was connected to the system interconnect bus and additionally provided a
periodic timer and processor interrupt. The authors observed a 72% improvement in inter-task
communication execution time and a reduction in interrupt request (IRQ) handler jitter from 25.4%
to 1.59% [15]. Although these improvements are significant, the use of a soft- rather than fixed-core
processor penalises the CPU in the evaluation. It is well known that fixed-circuits have higher
maximum operating frequencies when compared to programmable logic.

Hardware assisted scheduling has shown promise in symmetric multi-core architectures. Using
cycle-accurate simulation, Necul et al. showed that hardware-assisted scheduling can reduce the
context switch time between two threads from 10,000 CPU cycles to 947 CPU cycles [14]. While
the scheduler chooses the next thread for execution, it has no access to the CPU register file: saving
and restoring CPU state must be done in software. The proposed system uses dedicated ports on
an ARM926EJ-S processor for communication between the CPU and the scheduler, implemented
in hardware. The authors measured throughput improvements in graphic filtering and network
packet processing applications to be 46× and 10×, respectively.
Mooney et al. proposed a modular OS framework [13]. In their work, the system engineer

can choose between hardware or software equivalent implementations for OS subsystems. Key
subsystems include dynamic memory management, locking, and deadlock detection. Hardware-
assisted locking aims to improve both execution time and the predictability of lock access times.
By moving locking to hardware, deadlock detection improves system safety without significant
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run-time overheads. Simulated hardware experiments showed that hardware-assisted OS functions
can provide speed-ups of 27% or more for database applications.

Hardware schedulers can be provided as programmable logic [10], or as dedicated circuits within
an Application Specific Integrated Circuit (ASIC) [14]. While ASIC implementations provide fixed
scheduling policies, programmable logic allows for flexible, application-specific scheduling policies
that can be swapped on-demand.
The deployment of hardware schedulers has been explored as both independent coprocessors

and integrated CPU features. In the latter case, the scheduler has direct access to the execution
pipeline and register file of the CPU. This allows the scheduler to swap the entire thread context
in a single cycle without degrading CPU pipeline performance [6]. Such an architecture requires
modification of the CPU itself. Modern systems on chip (SoC), such as the Xilinx Zynq and Intel
Cyclone V, offer programmable logic and a high-performance general purpose fixed-core processor
on a single die, but these systems do not provide direct access to the CPU register file.
Prior work has implemented a hardware-accelerated software task scheduler on the Zynq SoC

[5]. The focus of that work was on obscuring the view of thread context from other threads by
storing it in programmable logic. The study showed up to 50% speedup (1500 CPU cycles), even
though the entire thread context (68 bytes) had to be transferred between CPU and accelerator on
every context switch. Although that work used a tightly-coupled CPU-FPGA system, it did not
explore the use of the low-latency, cache-coherent communication that such coupling provides.

3 SYSTEM ARCHITECTURE
In our work, we decided to investigate accelerating the seL4 microkernel [9]. seL4 kernel operations
are very short in nature and difficult to accelerate using the traditional CPU-offload model. Addition-
ally, the kernel is the central gateway for all application resource management and communication:
the performance of the kernel impacts all hosted applications.

seL4 has a complete WCET analysis [4, 16] and has recently been extended for RT applications
[12]. seL4 is considered to be a microkernel because operating system services and device drivers
are implemented as user-space applications rather than being provided directly by the kernel. A
key advantage of this approach is that only a small amount of software must be trusted to ensure
the correct operation of the system. Drivers, servers and applications all execute in a low-privilege
operating mode of the CPU and are isolated by the memory management unit (MMU) hardware
of the CPU. Because of this isolation, inter-process communication (IPC) is used frequently to
communicate between tasks.
We decided to attempt to accelerate the kernel scheduler because it is a very frequently used

function of the kernel. Although the scheduler is not a long-running operation, the performance of
the scheduler is critical to IRQ handler latency and efficient IPC between client-server application
software. Once the system has been initialised, the kernel provides 3 key functions, all of which
can result in an invocation of the kernel scheduler.

(1) IRQ delivery. When the kernel receives an IRQ exception, the kernel unblocks any thread that
is waiting for the IRQ. If the unblocked thread is of a higher priority than the currently active
thread, the kernel must reinsert the active thread into the scheduling queue and replace it
with the new highest priority runnable thread.

(2) Preemption IRQ. The preemption IRQ ensures the fair sharing of CPU time between threads
of the same scheduling priority. When the preemption IRQ arrives, the kernel reinserts the
current thread into the scheduling queue and replaces it with the next runnable thread in
round-robin order.
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Fig. 2. Software architecture of legacy scheduler.

(3) Inter-Process Communication. IPC is a primitive for data transfer and synchronisation between
threads. When a thread sends an IPC request to another thread, the kernel blocks the sender
and inserts the receiving thread into the scheduling queue. The scheduler is then invoked to
choose a new thread for execution.

seL4 provides a fixed-priority preemptive scheduler such that a thread never executes while a
runnable thread of higher priority exists in the system. It has been carefully tuned for low-latency
IPC through software optimisations that consider both the number of instructions executed, data
locality and cache footprint. We therefore expect it to be challenging to gain a benefit from hardware
acceleration.

3.1 Software scheduler
The set of runnable threads in the seL4 microkernel is implemented as a doubly-linked list with
one list for each thread priority (Figure 2). The kernel maintains the next and previous pointers of
this list along with the thread context as part of the Thread Control Block (TCB) of each thread.
The kernel appends a thread to the tail of its associated list when it has exhausted its allocated
execution time interval or when it transitions from the blocked to the runnable state. If the thread
has been preempted, perhaps because a higher priority thread has become unblocked and is now
runnable, the kernel records the remaining execution time of the thread and adds the thread to the
head of its associated list, rather than the tail. The kernel maintains a set of head and tail pointers
for each priority in a global structure known as the ksReadyQueues. When the kernel invokes the
scheduler, it walks the ksReadyQueues from the highest priority (255) to the lowest priority (0) until
it finds a non-empty list of runnable threads. If a non-empty list of runnable threads is found, the
scheduler removes the thread at the head of this list and marks it as the active thread. If no runnable
thread is found in the system, the kernel schedules an implicit idle thread until an external IRQ
causes a waiting thread to become runnable again.
The seL4 kernel implements a fastpath, a hand-optimised path for common operating system

calls. The fastpath allows IPC from a low-priority sender thread to a higher- or equal-priority
receiver thread to complete without costly scheduler invocations. Under these conditions, because
the kernel implements a fixed-priority preemptive scheduler, the kernel knows that there is no
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runnable thread with a higher priority than the IPC sending thread. If the receiver is blocked
waiting for this IPC and is of a higher- or equal-priority to the sender, the kernel knows that the
receiver will be the new highest priority runnable thread in the system. For this reason, the sender
can be blocked and the receiver can immediately become the new active thread without invoking
the task scheduler of the kernel.
Since the commencement of this work, the software architecture of the kernel scheduler was

further optimised by supplementing the design with a two-level bitmap lookup. Each bit in the
second level bitmap corresponds to one of 32 priorities. If the bit is set, the associated priority
contains at least one runnable thread. If the bit is clear, there are no runnable threads for the
associated priority. In the same way, the first-level bitmap reflects the presence of a runnable thread
in each group of 32 priorities. The scheduler uses the single-cycle Count Leading Zeroes CLZ
instruction on the first level bitmap and maps the result to the appropriate second level bitmap. The
scheduler repeats this process on the second level bitmap to find the highest priority at which a
runnable thread can be found. Finding the highest-priority runnable thread thus becomes a constant
time operation, irrespective of its location within the ksReadyQueues.

3.2 Accelerator design
The hardware design must provide the same features as the software design to ensure compatibility.
It must allow a thread to be inserted at both the head and tail of a selected ksReadyQueue and allow
a thread to be removed from the head of the highest priority non-empty ksReadyQueue.
A simple structure that satisfies these design goals is a priority queue. While much research

has been undertaken on priority queue implementations [7, 8], the behaviour of insertions with
equal priority are generally ill-defined. In our case, it is important that threads of equal priority are
removed from the priority queue in the order in which they were inserted. Since our research is not
focussed on priority queue hardware design and implementation, we used a trivial implementation
to explore our ideas.
We used a hardware architecture that closely follows that of the software architecture for this

study (Figure 3). We replaced the ksReadyQueues by FIFOs, where FIFO data represents a reference to
the TCB of a thread in main memory. By transferring only the location of the TCB in main memory,
we reduced the throughput requirement for priority queue transactions. This also preserved the
ability of the CPU to optimise reads and writes to cacheable global memory when accessing thread
context.
The H signal of the priority queue allows the scheduler to add a thread to either the head or

the tail of a FIFO. Write enable (WE) and read enable (RE) signals control the addition (push) or
removal (pop) of a FIFO entry. If the scheduler asserts neither WE nor RE, a read operation returns
the appropriate entry from a FIFO without removal. The scheduler uses the SEL signal to select a
specific priority (FIFO) for the priority queue operation. Each FIFO also provides an E signal, which
indicates if the corresponding FIFO is empty. Each E signal is routed to a 256-bit asynchronous
priority encoder. When the state of any E signal changes, the priority encoder output updates to
reflect this change before the next rising edge of the subsystem clock. The priority encoder allows
the scheduler to both identify and remove the highest priority runnable thread from the set of
runnable threads in a single clock cycle. With the P signal asserted, the priority queue ignores the
SEL signal and uses the priority encoder output in its place to select the highest priority non-empty
FIFO as the target of the transaction.

The hardware implementation provides acceleration by offloading the task of manipulating the
priority queue from software. The software implementation of the ksReadyQueues requires that
software maintains a doubly-linked list of threads for each priority. Our hardware implementation
relieves the burden of list maintenance from software by allowing software to manipulate the head
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Fig. 3. Hardware architecture of the priority queue.

or tail of a ksReadyQueue with a single transaction to the accelerator. Additionally, the highest
priority thread in the ksReadyQueues can be requested and removed from the schedule in a single
transaction. This eliminates the need to search the scheduling queue or maintain a hierarchy of
bitmaps.
We acknowledge that the use of fixed-size FIFO components presents scalability concerns in

the design, however, more scalable priority queue implementations can also be supported. One
must only ensure that the number of clock cycles required to update the highest priority runnable
thread is less than the number of clock cycles between scheduler transactions. Alternatively, FIFO
content can be stored in off-chip RAM with high-priority runnable threads cached in block RAM
for low-latency access.

3.3 Target system hardware
We used Avnet’s Zedboard to evaluate our design. The Zedboard is a low-cost development platform
that features the XC7Z020 Zynq SoC. Zynq provides dual ARM Cortex-A9 application processors
and on-chip programmable logic. Communication between the ARM cores and the programmable
logic is achieved via a range of ARM AXI communication buses [2]:
• GP AXI3: The General Purpose (GP) AXI port offers 32-bit data transfers with bulk transfer
sizes up to 64 bytes. Zynq provides the GP port in both master and slave interface configura-
tions. The master is always responsible for initiating communication over the AXI bus and
additionally provides the address of the transaction.
• HPAXI3: The High Performance (HP) AXI port offers 64-bit data transfers with bulk transfer
sizes up to 128 bytes. Zynq provides the HP port as a slave interface only: the programmable
logic is themaster and is responsible for initiating all transfers. TheHP port provides improved
throughput over the GP slave equivalent due to the increased bus width.
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Fig. 4. Address mapping of GP accelerator peripheral.

• ACP AXI3: Like the HP port, the Accelerator Coherency Port provides a slave interface port
that offers 64-bit data transfers with bulk transfer sizes up to 128 bytes. Unlike the HP port,
transfers can optionally be cache-coherent with the CPU.

In our study, we considered only GP AXI3 master and ACP AXI3 slave interfaces. The GP master
port is the only port that provides direct communication between the CPU and the accelerator. The
ACP provides the best performing shared memory interface due to its coherency with the CPU
cache.

Communication between CPU and accelerator has three components:
(1) A command must be transferred to the accelerator to communicate the desired action. An

example of such a command is to push a thread to the head of a particular scheduling queue.
(2) Data must be transferred to or from the accelerator. In our case, this data represents a

reference to a thread in main memory.
(3) A signallingmechanism is needed to inform the accelerator that a new command is available

and that a response is expected.
If we connect the accelerator as a slave peripheral on the GP AXI bus, signalling is a bi-product of

the AXI handshaking protocol during a transfer. If we connect the accelerator as a master peripheral,
communication is via shared memory and we must provide some other method for signalling. We
can use a second GP master port for this purpose, or we can use the EVENT_EVENTO signalling
method. Software can assert a single wire in the CPU for exactly one CPU clock cycle by executing
the Send Event (SEV ) instruction. This signal is generally used to signal an event to other embedded
processor cores. However, the programmable logic can observe a toggled variant of this signal. The
processor toggles the EVENT_EVENTO signal for each execution of the SEV instruction.

The following subsections describe the connection of the accelerator to the GP AXI master port
and the ACP AXI slave port.

3.4 GP AXI accelerator
We designed the accelerator as a slave peripheral with the CPU communicating directly with the
accelerator through memory-mapped IO. The accelerator decodes the address that is provided by
the CPU to produce a command for the scheduler transaction as shown in Figure 4. Bits 0 and 1 of
the address are reserved for word alignment, bit 2 is mapped to the H signal, which selects between
the head or tail of the queue, and bits 3 through 10 are mapped to the SEL signal, which selects
the priority for the transaction. Additionally, bit 11 is mapped to the P signal, which instructs the
accelerator to ignore bits 3 through 10 and instead select the highest priority non-empty queue for
the transaction. We developed an AXI adapter component to translate the complex AXI handshake
protocol into a simple read enable (RE) and write enable (WE) signalling mechanism (Figure 5).
Software inserts a thread into the schedule at a specific priority by initiating a single write to

memory. A handle to the thread is transferred as the data portion of the transfer, while the desired
priority is encoded in the address portion of the transfer. Similarly, software removes a thread
from the schedule by initiating a single read request from a specific memory address. A single read
transaction can also be used to both identify and remove the highest priority runnable thread by
executing a read instruction with bit 11 of the source address set.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.



Efficient fine-grained interactions on Zynq 1:9

Address(32) Pr
io
rit
y
qu

eu
e

A
XI
3
ad
ap
te
r

AXI3

P
SEL(8)

Din(32)
Dout(32)
WE
RE
HGP

Fig. 5. Hardware architecture of GP AXI hardware scheduler communication.

Operation 31 30 29 28-10 9 - 8 7 - 0
Enqueue 0 0 H &Thread 0 SEL
Dequeue 1 0 H 0 0 SEL
Dequeue (highest priority) 1 0 0 0 0 0

Fig. 6. Command and data encoding for ACP-based scheduler accelerator operations.

We clocked the hardware implementation of the ksReadyQueues directly from the GP AXI bus
clock at 100MHz.

3.5 ACP AXI accelerator
Zynq provides the ACP only as a slave port. This means that the accelerator must be implemented
as a master peripheral and initiate all transfers to the slave device. The slave device in this case is
the Snoop Control Unit (SCU), which connects each ARM CPU to the system memory hierarchy
and maintains cache-coherence between the connected masters and ACP-connected peripherals
[3]. When the accelerator performs a read transaction, the SCU can retrieve the appropriate data
from the shared L2 cache or the L1 cache of any connected CPU. When the accelerator performs
a write transaction, the SCU writes the appropriate data into the L2 cache and invalidates any
corresponding L1 cache lines in all CPUs.
Since both CPU and accelerator operate in master mode when communicating with the slave

SCU, communication must be achieved indirectly through shared memory. The ACP bus is 64
bits wide: two words can be transferred per clock cycle. We assigned one word to represent the
handle to the thread and encoded the desired command into the unused bits. The constraints of
a seL4 thread object enforce an alignment of 10 bits and accessibility within the kernel window
(0xE0000000 to 0xFFFFFFFF). These constraints provided 12 bits for command encoding (Figure 6).

The sharedmemory approach prevented us from using the AXI handshaking protocol to signal the
accelerator when a new command was provided. Instead, we used the SEV processor instruction,
which the accelerator detects as a state toggle of the EVENT_EVENTO wire in programmable
logic. The transfer of the signal and data in this case was decoupled; we had to ensure that the
data was observable by the accelerator before the signal of its presence arrived. We used the Data
Synchronisation Barrier DSB processor instruction to ensure that any store operation had completed
before the SEV instruction was executed.
In hardware, we extended the priority queue implementation to include a trivial finite state

machine (Figure 7). After the processor signals the accelerator, the accelerator reads the provided
command and data from shared memory by issuing a 64-bit read transaction on the ACP AXI bus.
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The data portion of the transfer is mapped directly to the data input of the priority queue while
the command is decoded and routed to the relevant control wires. The priority queue operation is
completed by the next clock cycle. The accelerator then sets the priority queue control signals such
that the highest priority thread is reported. Finally, the accelerator issues a write transaction to
the ACP. This write clears the command that was provided by software and reports the highest
priority runnable thread through shared memory.
Once a scheduler transaction has completed any command, the first word in the 64-bit shared

memory region is cleared to signal completion and the second word is speculatively filled with
the highest priority thread in the schedule. In this way, the CPU can retrieve the highest priority
thread from the low-latency cache at any time and then issue the appropriate command to remove
this thread from the schedule. By always storing the highest priority runnable thread at a pre-
determined location, we make it possible for the CPU to retrieve this thread from the low-latency
cache as soon as it is required. The CPU thus continues program execution while the accelerator
processes the request and replaces the highest priority runnable thread in preparation for the next
scheduling event.

We connected the ACPAXI accelerator described above directly to the ACPAXI3 slave port within
the Zynq SoC. Each transaction requires both a read phase (to retrieve the provided command) and
a write phase (to signal completion and update the highest priority runnable thread). Although this
extends the time for the accelerator to complete a transaction, communication latency is reduced
since data can be transferred asynchronously through the low-latency cache.

When deploying the described method of communication for multiple accelerators, one may find
contention on the ACP as all ACP accelerators detect the EVENT_EVENTO signal at the same time.
It may be beneficial to reserve another location in memory for the use of a bitmap to extend the
resolution of the EVENT_EVENTO signal. Each bit of the bitmap would correspond to a signal for
each accelerator. The CPU should then set the appropriate bit before executing the SEV instruction.
A monitor, implemented in programmable logic, can then read the bitmap via the ACP and forward
the signal to only those accelerators for which the corresponding bit is set. Although this adds an
AXI transaction to the communication path, it reduces the total number of AXI transactions that
will be issued by limiting the number of accelerators that respond to the signal.

ACP sharing introduces completion time variance as the transactions of one accelerator may
delay the transactions of others. This variance can be controlled by assigning a high priority to
transactions that originate from timing-critical accelerators. Transaction priorities are supported by
the AXI bus specification and are enforced by the arbitration policy of the interconnects between
the accelerators and shared memory.
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3.6 Comparison of accelerator structures
The GP-connected accelerator is connected to the CPU via a single GP AXI3 port. In this arrange-
ment, the accelerator is unable to initiate transfer to either CPU or shared memory because it is
a slave peripheral on the connected bus. Each transaction from the CPU to the accelerator is a
self-contained query, insertion or removal operation to the priority queue.
The cache-coherent ACP-connected accelerator contains the same functional logic as the GP-

connected accelerator, but uses an alternative interfacing approach. This accelerator includes a
state machine to manage accelerator-mastered transactions to cache-coherent shared memory via
the ACP. Each transaction has two phases: The accelerator first uses a read transaction to pull the
request from shared memory. Once the priority queue operation has been processed, the accelerator
pushes the result back to shared memory.
Both the ACP and HP ports use the AXI3 communication protocol and provide a 64-bit wide

data bus. The difference between these interfaces is the point at which the accelerator is connected
to the memory hierarchy.
If cache-coherent communication is not required/desired, the ACP-connected accelerator can

be connected to the HP port without modification. However, software must then manage data
coherency with the accelerator. This is done by either configuring shared memory access to bypass
the CPU cache, or by executing fine-grained cache maintenance instructions on the CPU for each
transaction. In the latter case, the CPU must explicitly clean the appropriate cache line to ensure
that commands are visible to the accelerator and invalidate this cache line when reading the result.
While both methods increase the shared memory access latency of both CPU and accelerator,
the latter approach also requires additional CPU cycles to maintain data coherency. Due to these
additional overheads, neither method is further considered in this work.

4 EVALUATION
The seL4 kernel invokes the scheduler under four conditions:

(1) When a thread sends an IPC to a thread of lower priority;
(2) When an IRQ exception is received and the registered handler thread is of a higher priority

than the current thread;
(3) When a thread becomes blocked waiting for an IPC or IRQ event; and
(4) When the periodic timer tick arrives to signal that the current thread has exhausted its

execution time slice and another thread of the same priority should be scheduled. Threads
of lower priority must wait for higher priority threads to become blocked before they are
scheduled.

In the case of both sending an IPC and preemption timer tick, the scheduler issues both an insertion
and a removal transaction to the priority queue. Evaluating the performance improvement under
both of these cases is redundant and hence we evaluated only the IPC execution time and IRQ
latency.

4.1 Inter-Process Communication
We can invoke the kernel scheduler in a controlled way by performing an IPC from one thread to a
thread of lower priority. IPCs of other priorities are handled by the fastpath and do not invoke the
scheduler. When the fastpath is avoided and the scheduler is invoked, the priority of the sending
thread has no impact on scheduler execution time.

We used the ARM performance counters to count the number of CPU execution cycles required
to perform an IPC from a thread of the highest priority to threads of lower priorities. In our
benchmark, the IPC receiver thread was initially blocked, waiting for IPC. The sending thread
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first read the state of the CPU cycle counter and issued the IPC system call. Upon receiving the
system call exception, the kernel unblocked the receiver thread and issued a scheduler transaction
to insert it back into the schedule. The kernel then blocked the current thread as it waited on the
IPC reply and issued a second scheduler transaction to find the new highest runnable thread in the
system. By benchmark design, the highest priority runnable thread was always the IPC receiver
and hence it was removed and scheduled for execution. Finally, the receiver thread read the CPU
cycle counter. We took the resulting execution time of the IPC as the difference between the two
readings of the CPU cycle counter.
In our study, the IPC merely served as a synchronisation signal between two threads. The

IPC contained no data payload. Since transfer of data occurs in linear time across all scheduler
architectures under investigation, varying the payload size was not expected to yield interesting
information. Threads also shared the same virtual memory translations; a virtual address space
switch was not performed as part of the study.

We ran the benchmark with a hot cache by using 16 cache warming iterations before collecting
250 samples. We set the hardware scheduler AXI bus clock and logic clock to 100MHz while the
CPU operated at its maximum frequency of 667MHz. The software was compiled with arm-linux
gcc 4.7.4.
We initially ran the benchmark with each of the four scheduler architectures described in

Section 3. The legacy scheduler architecture was implemented entirely in software. The bitmap
scheduler architecture addresses the scalability issues of the legacy scheduler, but at the cost
of maintaining additional data structures. The GP scheduler architecture featured a hardware
accelerated priority queue that the CPU communicated with directly via the GP AXI port. The ACP
scheduler architecture used shared cache-coherent memory to communicate between CPU and
accelerator and used the SEV signalling mechanism for synchronisation.

We tested receiver priorities in the range of 250 to 0, however, we observed no change in trend
below priority 220; we have therefore excluded some of these measurements for clarity. The median
results of this benchmark are presented in Figure 8. Error bars indicate 1st and 3rd quartiles.
We found that the execution time of the legacy software scheduler implementation generally

increased linearly as the receiver thread priority decreased. This is because the scheduler traverses
the ksReadyQueues from the highest priority to the lowest priority until it finds a runnable thread.
The lower the priority of the receiver, the more entries the legacy scheduler must examine before
it finds the waiting receiver. This behaviour also increases the cache footprint of the scheduler:
when the receiver thread is priority 0, the scheduler reads from 256 queue heads. Because head
and tail pointers are interleaved, this results in 512 words (2 KB) being loaded into the cache.
Another way of looking at this is that the scheduling behaviour results in the eviction of 2 KB of
data from the cache in the worst case. This evicted data can be data that is frequently used by an
application; system performance will then be further degraded because that data must be reloaded
from high-latency main memory when the application is next scheduled.

We investigated the discontinuities in the legacy scheduler curve and found that they correlate
with an unusually high number of branch mispredictions (Figure 9). During execution, conditional
branch instructions prevent the instruction prefetcher from always maintaining a full instruction
pipeline. The prefetcher does not knowwhich branch of execution to load until the branch condition
is evaluated. In these cases, the branch predictor attempts to predict the path that execution will take.
If the branch predictor is correct, the CPU continues uninterrupted. If the prediction is incorrect,
the CPU must flush the instruction pipeline and wait for the prefetcher to fill the pipeline with the
correct instruction stream. Although this micro-architectural feature improves CPU utilisation and
application performance, it can add a significant amount of variance to execution time. Our results
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show that branch mispredictions on the ARM Cortex-A9 processor can, with high probability in
some cases, result in more CPU cycles to perform fewer iterations of a software loop.
seL4 developers introduced a bitmap scheduler to address the scalability issue of the legacy

scheduler implementation. This was done by extending the implementation to include a hierarchical
bitmap representation of the non-empty ksReadyQueues. This optimisation leads to some overheads,
but an O(1) lookup complexity was observed (Figure 8). The increased execution time of the bitmap
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scheduler for high-priority receiver threads reflects the additional operations required for the
traversal and maintenance of the bitmap. The bitmap scheduler requires 2 additional reads to
locate the highest priority thread: one for each level of the bitmap hierarchy. Once the scheduler
identifies the thread to be scheduled, the scheduler marks the thread as active and removes it from
the scheduling queue. Because this thread is the only runnable thread in the system, the bitmap
scheduler additionally marks the ksReadyQueue as empty in the second level and marks the priority
group as empty in the first level. For the sake of abstraction, the scheduler cannot simply write 0 to
these words: it must perform the correct bit operation to clear only the relevant bit at each level.
The result is that the bitmap scheduler performs another 2 reads and 2 writes to update the bitmap,
however, it is likely that these 4 memory accesses operate on memory in the cache rather than
suffering a penalty from loading data from main memory a second time.

We also see that the directly connected GP accelerator offered only marginal improvements over
the optimised bitmap scheduler (Figure 8). While the entire task of priority queue management is
offloaded to the accelerator, the performance gain is reduced due to the communication latency
between the CPU and accelerator. We can see that the legacy software implementation still outper-
forms the GP-connected accelerator when the IPC receiver priority is very high. This condition
provides the best case performance for the legacy scheduler because the iterative search only needs
to examine two priority levels before the highest priority runnable thread is located.

Surprisingly, when communication is achieved using low-latency, cache-coherent shared memory
rather than direct communication, we observed an increase in execution time relative to the GP
accelerator. This is because the signalling mechanism is decoupled from the data transfer. The CPU
must execute a data synchronisation barrier (DSB) in order to stall the CPU until data has reached
the L1 cache. Only then can the CPU signal the accelerator with the SEV processor instruction. If
the CPU executes the SEV instruction before this time, the accelerator may read a stale command
from shared memory.
The decision to accelerate a short running OS kernel task scheduler on a high performance

CPU was in part motivated by the challenges involved. We anticipated that accelerating the
scheduler would be difficult and that it would drive us to find a truly optimal method for fine-
grained interactions on an ARM-based CPU-FPGA heterogeneous platform. Our results show
that the legacy software scheduler architecture still performs better than both the GP- and ACP-
connected hardware scheduler for high-priority IPC receiver threads. We therefore took the best-
case performance of the legacy software implementation as a target for the execution time of our
hardware-accelerated task scheduler.
We constructed microbenchmarks to investigate why the direct communication of the GP

approach out-performs the low-latency shared memory approach of the ACP-connected accelerator.
We measured the median number of CPU cycles required to perform each scheduler operation
(Table 1) The execution time was measured at the API level of the scheduler, which includes the cost
of validating arguments and packing commands into the appropriate format for each accelerator
architecture. The overhead of reading the ARM performance counters was measured and subtracted
from the results. Note that such fine-grained benchmarking avoids some performance penalty
events, such as cache misses.
From the microbenchmark results we found that the GP-connected accelerator requires the

least number of CPU cycles to insert a thread into the schedule. These numbers do not reflect the
latency of the transaction; they represent the CPU execution time to issue the command. The CPU
can continue execution as soon as the transaction has reached the store buffers, well before it is
received by the accelerator.

We also found that the GP-connected accelerator requires the greatest number of CPU cycles to
retrieve the highest priority thread from the schedule. This is because of an immediate dependency
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Table 1. Median scheduler operation cost (CPU cycles).

System Enqueue Dequeue
highest
priority

Total

Legacy (priority 255) 22 49 71
Legacy (priority 0) 22 954 976
Bitmap 30 59 89
GP 12 94 106
ACP 47 74 121
ACP (polling) 30 40 70
Hybrid 10 31 41

on the result of the transfer; we must test the validity of the returned data in case the schedule is
empty. When the returned value is NULL, the kernel must activate the idle thread instead of the
highest priority runnable thread. The CPU must stall until this branch in execution is determined.

The ACP results reported a lower execution time for retrieving the highest priority thread than
the GP-connected accelerator. This is because the CPU can retrieve the result directly from the
low-latency cache instead of waiting for a response from hardware. However, the synchronisation
time adds significant overhead for insertions. The total time to perform both an insertion and
removal of the highest priority runnable thread is thus higher for the ACP scheduler than for the
GP scheduler.
To quantify the costs of data synchronisation and signalling, we modified the ACP-connected

scheduler to operate in polling mode. In this mode, the accelerator continuously polls shared
memory for a new command. We found that data synchronisation was still required when inserting
a thread into the schedule. This is because there was not enough time between thread insertion and
thread removal to allow the insertion transaction to complete. The barrier forces CPU store buffers
to write through to the cache sooner, which reduces the observation time (and therefore completion
time) of the accelerator. On the other hand, thread selection is performed as the last scheduler
transaction before returning control to the chosen thread. The time required to restore the thread
context and leave the kernel is large enough to avoid this memory barrier. The microbenchmark
results of the ACP scheduler in polling mode are included in Table 1. The polled ACP scheduler
requires the least number of CPU cycles to retrieve a thread across all systems that have been
discussed so far.
We investigated a hybrid implementation to take advantage of the best performing communi-

cation channel for each operation. In this implementation, the scheduler uses the GP port for all
priority queue commands. After processing any command, the accelerator provides the highest
priority runnable thread via ACP in low-latency, cache-coherent shared memory.
We repeated the IPC benchmarks that were detailed at the beginning of this section for both

the polling-mode ACP-connected accelerator and the hybrid accelerator. Our results focus on
comparing the execution time of each architecture with the best case performance of the legacy
software implementation (receiver thread priority 254). The distribution of collected samples is
presented as box and violin plots in Figure 10 while numerical results are presented in Table 2. The
violin plot shows the probability density of the collected samples: larger plot widths correspond to
values at which we observed more samples.

The results show that the polling-mode ACP-connected accelerator and the hybrid accelerator
perform better than both software approaches in all cases. The hybrid approach offers a 2.9%
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Fig. 10. Hot cache execution cycles with probability density for IPC from thread priority 255 to 254 for the
scheduler architectures studied.

Table 2. Median IPC execution time for priority 254 receiver

System Median IPC execution CPU cycles Speedup
Legacy 1029 2.6%
Bitmap 1057 0.0%
GP 1038 1.8%
ACP 1044 1.2%

ACP (polling) 994 6.0%
Hybrid 999 5.5%

reduction in median execution time when compared with the best-case performance of the legacy
software scheduler. We observed a 5.5% reduction compared with the bitmap scheduler.
A reduction in scheduler execution time allows more tasks to be scheduled in a given period

of time. The time that would otherwise be consumed by kernel execution can now be used by an
application to complete sooner, thereby allowing other tasks to begin sooner.

The results in Figure 10 also provide information about the execution time variance. The sched-
ulers that use hardware acceleration showed well-defined modes. The ARM event counters [1]
showed that these modes correlate with branch mispredictions (Figure 11). This pattern of mis-
predictions was also observed in the pure software implementations. However, noise from other
sources of non-deterministic execution masked the effect.
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Fig. 11. Branch mispredictions correlated with CPU execution cycles. Samples sorted by execution time.

Hardware acceleration improved the execution time variance in all cases. The hybrid approach,
in particular, showed improvements of 58% when compared to the legacy software implementation
and 56% when compared with the bitmap optimisation (Table 3).

All other things being equal, the reduction in variance allows more tasks to be scheduled safely in
a given period of time. Since the execution time is more deterministic, we can reduce the compute
power that is reserved for ensuring that a critical real-time task will complete on time. One can
then either schedule more tasks on the processor, or reduce the size of the compute resource to
conserve energy and manufacturing costs.

Although we have reduced the variance of the system, the branch predictor remains a dominant
source thereof. The branch predictor is an important micro-architectural feature for enhanced
performance. Although it can be disabled to further reduce variance, this causes a significant
reduction in CPU utilisation and an increase in program execution time.
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Table 3. IPC execution time variance for priority 254 receiver

System Variance Improvement
Legacy 120 0%
Bitmap 120 0%
GP 65 46%
ACP 110 8%

ACP (polling) 80 33%
Hybrid 51 58%

4.2 IRQ latency
The secondary goal of our work was to reduce the latency and jitter of IRQ handling operations. In
doing so, we aimed to improve the suitability of the high-performance ARM Cortex-A9 processor
for real-time applications.

We measured the IRQ latency for the scheduler architectures studied by programming a timer to
deliver an interrupt. Once the IRQ was received by the application thread to which it was bound,
the application stopped the timer. We recorded the IRQ latency as the difference in time between
when the IRQ was programmed to occur and the time at which the timer was stopped. As with the
IPC benchmark, we recorded 250 samples after 16 cache warming cycles.

We designed the benchmark so that the IRQ event caused the current thread to be inserted back
into the schedule while a higher priority IRQ handler thread was unblocked and activated. For each
system we investigated, the scheduler transaction only involved the insertion of the current thread
back into the schedule. The waiting thread thus bypassed the scheduler as it transitioned directly
from being blocked to being the highest priority runnable thread in the system.
The scheduler can insert a thread into the priority queue in constant time; it is not sensitive

to the priority at which it is to be inserted. However, the priority of the IRQ handler thread must
be greater than the priority of the current thread; otherwise, the IRQ event does not result in the
immediate scheduling of the IRQ handler thread. For our benchmark, we selected a priority of 255
for the IRQ handler thread and 254 for the thread that was to be inserted back into the schedule.

We expected that the GP and hybrid architectures would perform best in this case as the scheduler
can send a command to the priority queue with little CPU overhead. Both software approaches
require the manipulation of the linked list for the priority at which the thread is to be inserted. We
expected the bitmap approach to require more time than the legacy software scheduler due to the
overheads of updating the bitmap.
From the results shown in Figure 12, we see that the GP-connected accelerator consistently

outperformed the other architectures. However, other scheduler architectures performed unex-
pectedly. In particular, the bitmap scheduler outperformed the legacy scheduler, although more
operations must be performed for bitmap maintenance when inserting a thread into the schedule.
An explanation for this may be that the bitmap scheduler benefits from a friendlier layout of
memory in which the low-latency cache is used more effectively.

The code that is used to insert a thread into the schedule is shared between both GP and hybrid
approaches. Although there is overlap in the samples acquired, the jitter that the hybrid approach
experiences is larger than that of the GP approach.

4.3 Application case study
In this section we evaluate the impact of the improved hybrid scheduler using a hypothetical
real-world application. Suppose an autonomous vehicle that makes use of a decryption server

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2018.



Efficient fine-grained interactions on Zynq 1:19

 580

 600

 620

 640

 660

 680

 700

Legacy
Bitmap

GP ACP
ACP(polling)

Hybrid

C
P

U
 e

x
e

c
u

ti
o

n
 c

y
c
le

s
 @

 6
6

7
 M

H
z

Scheduler architecture

Fig. 12. Hot cache IRQ latency for the scheduler architectures studied.

for controlled access to sensitive data by N clients. One client may be responsible for processing
packets that arrive on a secure radio link, while others may request the decryption of a subset
of WiFi network packets. The dedicated decryption server is isolated from other tasks by using
the MMU of the CPU. In this way, we protect the decryption key and the decryption service from
would-be attackers and client programming errors.

With this experiment, we demonstrate that the throughput of the decryption server is increased
when hardware acceleration is used to reduce the seL4 kernel task scheduler execution time. We
evaluate only the best performing hardware (the hybrid scheduler) and software (the bitmap
scheduler) approaches in our evaluation. The decryption server throughput was measured over a 5
second period. The experiment was repeated for various decryption workload sizes. We expect
that, as the workload size increases, the scheduler overhead becomes small relative to decryption
processing time.

Our experiment setup consists of a benchmarking control task, an AES decryption server and 4
client tasks. Each task is isolated by the MMU of the CPU. The benchmarking control task was
set to the highest priority (255). After the control task had configured the system, it waited for
the arrival of an IRQ from a periodic 5 second timer. With the highest priority thread blocked,
the decryption service, at priority 254, was scheduled for execution. The decryption service then
blocked its execution until a decryption request arrived from one of the 4 clients. Finally, when a
client was scheduled for execution, it was programmed to continuously send decryption requests
of the nominated size to the server using synchronous IPC. Each client shared a page of memory
with the server such that the encrypted workload and decrypted result were transferred between
client and server via a pre-determined location in shared memory. The client sent only the packet
size to the server via synchronous IPC to begin packet decryption.
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Fig. 13. System configuration for decryption application.

In a real system, each client would operate at a difference priority. The clients would become
blocked as they perform IPC with other tasks or wait for external IRQ events. This would allow
other clients to execute and deliver decryption requests to the server. In our system, we simulated
this behaviour by programming each client to yield to another client of the same priority after the
completion of each decryption task. The clients were thereby scheduled in round-robin order.
We programmed the clients to count the number of decryption requests that were completed

by the server. When the timer IRQ was finally delivered to the control task, the control task
accumulated the number of completed decryption requests from each client and reported the server
throughput over the 5 second time interval.

For each client request, four scheduling operations were performed (Figure 13). The first pair of
operations occurred during synchronous IPC between client and server as described in Section 3.
The second pair of operations were for the round-robin scheduling of the next client thread. For
round-robin scheduling, the kernel first appended the current thread to the tail of the queue
associated with the current thread’s priority. The kernel then removed the next thread from the
head of this queue and scheduled it for execution.
For a packet size of 16 Bytes, the hybrid accelerator showed a 7% throughput improvement

when compared to the bitmap scheduler (Figure 14). As expected, the benefits of accelerating the
scheduler diminish as the workload size increases.

5 FUTUREWORK
In future work, we aim to evaluate how the “Intel® Xeon® with FPGA” platform compares with the
Zynq for such fine-grained interactions. Intel provides similar direct and cache-coherent shared
memory communication mechanisms between CPU and FPGA, however there is no low-latency
signalling mechanism. On the other hand, the Intel platform does inform the programmable logic
of cache line evictions from the FPGA-local cache (e.g. when the CPU invalidates the cache line by
writing to its corresponding address).

We also seek to extend our study to data structures other than priority queues. We see an
opportunity for HW/SW cooperation in memory management, sort and search algorithms that are
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Fig. 14. Decryption server throughput when serving 4 client tasks.

commonly used in data centers. By targeting shared libraries, we could allow unmodified binaries
to benefit from hardware acceleration.

6 CONCLUSION
We have evaluated the potential for tightly-coupled CPU-FPGA systems to improve the CPU
execution time and jitter of frequent, short-running operations. The target application, the seL4
kernel task scheduler, proved difficult to accelerate and required careful selection of hardware-
software communication strategies.
We evaluated communication via memory-mapped registers and also cache-coherent shared

memory. No single strategy on its own was able to provide a performance improvement over the
best case execution time of the legacy software. However, a carefully selected combination of
these strategies was able to achieve a 5.5% improvement in CPU execution time. In this case, all
communication from the CPU to the FPGA was made directly through memory-mapped registers
to take advantage of buffering. All communication from the FPGA to the CPU was made through
shared memory to prevent high-latency reads from stalling the CPU.

We improved the important real-time systems metric of execution time jitter by up to 58% with
respect to a software-only implementation. We were able to eliminate most sources of variance,
however, branch mispredictions remain as a dominant source of non-deterministic execution.
Disabling branch prediction would dramatically reduce the remaining jitter, but at a significant
cost in execution time.
Although the improvement in execution time is small, our results show that the use of FPGA-

based accelerators in tightly-coupled systems need not be limited to coarse-grained acceleration.
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They can also improve the execution time of very short-running tasks, such as appending to and
removing from a linked list.
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