
Opportunities for Operating Systems Research

in Recon�gurable Computing

Oliver Diessel and Grant Wigley

Advanced Computing Research Centre

School of Computer and Information Science

University of South Australia

Mawson Lakes SA ����

fo�diessel�g�wigleyg�unisa�edu�au

Abstract

Recon�gurable computing involves adapting hardware resources to the speci�c needs

of applications in order to obtain performance bene�ts� This emerging architectural

paradigm holds some promise for delivering signi�cant speedups to compute�bound

applications� However� many challenges need to be overcome before recon�gurable

computing becomes mainstream� Signi�cantly� supporting applications design and

providing a convenient run�time environment create opportunities to propose and in�

vestigate new ways of managing chip resources� In examining the potential bene�ts of

providing operating systems support for recon�gurable processors� this paper identi�

�es opportunities for the development of policies for dynamic hardware management

and strategies for communicating design ideas to the run�time management system�

� Introduction

Recon�gurable computers typically consist of a workstation host loosely coupled via a gen�
eral purpose bus to a recon�gurable logic processor� currently a Field Programmable Gate
Array �FPGA�� Current design methods result in the production of one or more FPGA
con�gurations together with host software to access and control the FPGA� The host op�
erating system typically provides no more than device driver support for accessing the
recon�gurable logic processor� Although this approach allows raw access to the device for
maximum performance� the approach is unproductive since designers need to be intimately
familiar with low�level details of the recon�gurable device that� for lack of suitable abstrac�
tions� in	uence the design process at all levels� In addition� portability of the application
is severely limited�

Much of the work on the run�time management of recon�gurable systems considers the
problem of managing the time evolution of a single application� However� there is increas�
ing interest in using recon�gurable computers for horizontally and vertically integrated
application domains such as image and signal processing� With this shift� it is important
that run�time management of the resource be consistent� e
cient� and fair� We therefore

�



believe it is timely to consider the possibility of providing operating systems support for
recon�gurable logic�

Operating systems support for recon�gurable logic becomes necessary when one desires
a higher level interface to the resource� as might occur when many di�erent circuits are
to be instantiated over time or the users do not wish to deal with low�level architectural
details� Run�time support is also necessary when one requires a virtual or general model of
a FPGA that is to be independent of the circuits that are to be instantiated on it� When it
is necessary to share FPGA resources among multiple tasks that may be unrelated� owned
by di�erent clients� and simultaneously active� the allocation and scheduling of resources
needs to be handled by an independent and fair agent� Support is also needed when the
resource a client wishes to use is not under its direct control� such as when it is remotely
networked�

There are several arguments against developing and implementing operating systems sup�
port for FPGAs� The �rst is that it would necessarily impact on performance� For a
technology whose present applications niche is relatively small� the cost of a more usable
and secure resource may be so high as to make use of FPGAs uneconomical� Second� there
may very well be a concomitant loss in 	exibility� and designers who desire complete control
over the functionality of a device may loose out� Loss of some 	exibility may also impact
upon the feasibility of implementing some applications on FPGAs� However� the loss in
performance and 	exibility are compensated for in many ways�

The potential bene�ts of providing operating systems support for FPGAs include


� greater convenience through abstraction� virtualization� and generalization �whether
the resource is embedded� attached� or integrated with microprocessors��

� support for multi�tasking�

� improved system performance and fault tolerance� and

� integration of recon�gurable devices into the global computational pool�

Obtaining such bene�ts may necessitate the redesign of traditional electronic design au�
tomation and synthesis tools� the development of scheduling systems that will allow re�
sources to be shared in space and time� and the development of new FPGA architectures
that will allow high level functions such as task placement� repartitioning and migration to
be handled by the chip itself�

We aim to clarify the role of operating systems as we see them impacting on recon�gurable
computing systems of today and the medium term future� To this end� we �rst provide an
overview of current recon�gurable computing technology before describing how operating
systems may a�ect and support the life�cycle of a single task on a single user system� This
section is also intended to familiarize the reader with the main challenges faced by the
FPGA applications designer� In many ways it is precisely these activities that an operating
system would ideally enhance� We then expand our view to include shared systems that
are intended to support multiple concurrently executing tasks� The presentation initially
focuses upon issues relating to the management of tasks and then shifts to the manage�
ment of the resource� We conclude by summarising what we believe to be interesting and
challenging areas for further research identi�ed in the paper�

�



� Recon�gurable Computing Architecture

A recon�gurable computer contains con�gurable logic resources� commonly �eld�program�
mable gate array �FPGA� chips� that may be adapted to process certain classes of compu�
tations at high speed� FPGAs are two�dimensional grids of con�gurable logic cells that are
capable of implementing limited logic functions and are interconnected by a programmable
routing matrix� High performance is achieved by embedding application speci�c digital
circuits in the logic cell matrix of the FPGA� thereby allowing parallel execution streams
and eliminating the need to fetch and decode instructions at run time� While not as fast
as application speci�c integrated circuits� FPGAs and recon�gurable computers have the
advantage of being reprogrammable� some within microseconds�

Several recon�gurable computing models have been proposed and reached various stages of
development� The earliest and most successful of these views the recon�gurable logic as a
coprocessor� and is often implemented as a board attached to the system bus of a sequential
host processor �see� for example� ������ This approach has the advantage of simplicity�
but it su�ers from low bandwidth between the host and coprocessor� It also introduces
the so�called co�design problem � deciding which part of the application to implement in
hardware �on the coprocessor�� and which part to do in software �on the host�� To overcome
these problems� there have been several e�orts to integrate con�gurable logic arrays onto
conventional processor dies ���� ���� There is also some interest in the development of
systems composed entirely of recon�gurable logic and memory ��� ����

A variety of FPGA models have also been developed� One of the most signi�cant recent
developments is the ability to partially con�gure a portion of an FPGA chip while allowing
the remainder of the chip to continue to operate without interruption ����� Along with the
concept of reusing resources by swapping active portions of a circuit onto the device� this
development has spawned interest in sharing a single chip among multiple tasks at the same
time� An alternative approach with a similar goal is to provide the array with memory to
store multiple contexts that can be switched in and out on a cycle by cycle basis through
a context switching instruction ����

A major stumbling block with recon�gurable computing is the di
culty of programming
recon�gurable computers� We lack consistent and easy to use abstractions for describing
recon�gurable computing applications� applications developers need to be highly skilled
in digital circuit and parallel algorithms design� and the few tools available were initially
developed for a much less dynamic design domain in which users were guaranteed exclusive
access to chip resources� To complicate matters� application designers are often also required
to manage their application�s execution because recon�gurable logic resources are poorly
integrated into host operating systems� Many coprocessing systems provide no more than
a device driver with which to communicate with the board controller�

� Designing FPGA tasks

The designer of FPGA�based applications is faced with many decisions� These include�
but are not limited to� decisions about the method of specifying the application �design
capture�� where to allocate the parts of a computation �partitioning and placement�� how

�



to allow the parts to communicate �routing�� how to reuse resources to compute the various
parts �swapping�� and how to schedule the use of those resources �control��

��� Design capture

The FPGA designer must contend with considerably more degrees of freedom than the
conventional programmer� To begin with� designs �in this case circuits� may be speci�ed
using schematic capture� hardware description languages such as VHDL or Verilog� or
a programming language� Each have their merits and their use is therefore commonly
combined� but unfortunately none of them are e�ective for mapping applications to the
limited hardware resource typical of current recon�gurable computers� Conventional design
capture tools are not able to partition an application into circuit components that will
�t onto the resource� or schedule the allocation and recon�guration of resources so as to
minimize execution delays� The traditional approach is to perform these functions for a
given machine under the assumption that it will be dedicated to the application being
designed and that run�time conditions are known and static� However� if the machine is to
be shared among multiple tasks or users� or it is to be fault tolerant� then the application
will need to cope with changing run�time conditions� This need forces the operating system
to support activities that were traditionally handled o��line by the FPGA designer�

��� Partitioning

To illustrate this point� consider the partitioning problem� This arises in several ways� First�
a designer must decide which part of an application is best allocated to an FPGA and what
should sensibly be done in software� This is known as the hardware�software partitioning
problem� It is not always obvious how this should be done� and it is conceivable that
automatic techniques will do a better job than humans can when they are not fully informed
of the available hardware� Typically� the designer must specify precisely which part is to
be executed where� and then design the circuits for the hardware part in addition to the
programs for the software part� In a networked environment the designer may not know
what resources are available� Moreover they may change with time as network resources
and run�time parameters change� It thus becomes desirable to allow the system to decide
where to execute what and generate�execute the appropriate instructions�

A second type of partitioning that is often necessary is that of breaking a large task graph
down into components that can �t onto available FPGA resources at the same time� An�
other approach is to partition the circuit so as to minimize the recon�guration time �����
Automated techniques are typically static and employed early in the design phase � cer�
tainly not at run time when conditions may necessitate repartitioning or resizing to optimize
the use of available resources�

��� Placement

Operating systems may also have a role to play in task placement� Traditional FPGA
design involves the use of automatic place and route tools to �nd a static placement of logic
elements and routing of interconnections� In doing so� the designer �xes the location of the
design during the construction process� This approach has the advantage of allowing the

�



design to be loaded quickly� but it su�ers from in	exibility should the region designated for
the task be faulty� or occupied� or otherwise unavailable�

The disadvantage of hard placement can be overcome by binding the circuit to the hardware
at run time� How much of the con�guration data can be generated prior to load time� and
how much needs to be done to place the task at run time are open questions� For example� if
the FPGA chip is homogeneous and the task is not to be resized� a straightforward address
translation should su
ce� But if re�routing is necessary� perhaps because some resources
are not available at the chosen location� the cost of run�time instantiation could increase
considerably� In any case� the FPGA designer should not need to worry about designing
the systems to support such 	exibility� Moreover� when the FPGA is shared by multiple
users� such services need to be controlled by the resource manager in the common interest
of all users� This function must therefore be taken over by the operating system�

��� Routing

With arbitrary run�time task placement comes the problem of run�time routing� Run�time
routing may not be needed within the task� as noted above� However� I�O may need to
be routed to the border of the chip or to dependent tasks located elsewhere on the chip�
Dynamic routing algorithms that allow communications to be re�routed as tasks are placed
and removed can also provide fault tolerance� Such techniques are not needed while FPGA
systems are designed with static task placement into known environments�

��� Scheduling

The problems of partitioning� placing and routing the task components are closely related
to the problem of scheduling the task graph� After specifying the resource requirements and
interdependencies of task graph nodes� an FPGA designer or automated design system at�
tempts to allocate and partition the potentially large graph onto a limited physical resource�
The partitions then need to be scheduled in order to correctly complete the computation
in minimum time� If the FPGA is partially recon�gurable� the amount of commonality
between partition con�gurations may further in	uence the recon�guration time and thus
the desirable order in which recon�gurations should be performed� The FPGA scheduling
of arbitrary computations is therefore very complex and should be supported as much as
possible by the tools and operating systems�

��� Swapping

The swapping of task components onto and o� an FPGA chip is usually handled by the
designer who decides upon the conditions that give rise to recon�gurations� This is ac�
ceptable when designs are static� but if we have the operating system participating in the
dynamic partitioning� allocation� and scheduling of tasks then it is also desirable that it
provide a means for task components to inform it when they are done� and which other
components they would like to have loaded to complete their processing� These ideas fol�
low the principles of virtual memory handling� but new mechanisms are required to handle
circuit objects�

�



Many reasons exist for needing new mechanisms to handle circuit objects like pages in a
virtual memory system� First� there is a need to know which partitions to invoke and in
what order� depending upon run�time conditions� Second� it may be necessary to store
state if the current partition is to be reinvoked� How to do this e
ciently needs to be
determined� Third� mechanisms may need to be provided to spool data between partition
invocations� Fourth� run time conditions may prevent partitions from being loaded into
suitable locations� so how should exceptions be handled� In addition� the operating system
must be able to swap tasks onto the FPGA without unduly a�ecting the other concurrently
executing tasks on the FPGA� The di�ering resource needs for each partition also need to
be allocated and scheduled before loading the design onto the FPGA surface�

� Multi�tasking FPGAs

Many recon�gurable computing models include the possibility of having multiple tasks�
With FPGA chips becoming larger and with ever more resource potentially lying idle�
there is a need to maintain a high level of utilization of the chips by sharing the resource
in both space and time dimensions� These techniques are currently supported in hardware
by partial recon�gurability and context switching respectively�

In this section we �rst examine the additional operating system functions needed to support
the partitioning of FPGA resources among multiple tasks that are possibly unrelated and
owned by di�erent users� Then we consider the role of the operating system from the
perspective of the FPGA resource when multiple tasks are concurrently active�

��� Task sizing

Before designs can be partitioned� a few issues relating to sizing need to be addressed� It is
necessary to decide whether to �x the size of the partitions as this will directly impact on
the partitioning and scheduling strategies� If the partition size is chosen to be �xed there
will be a tradeo� between the size and the performance of the partition� If the partition size
is too small� then the designs may not easily be partitioned into them� If variable partition
sizes are permitted� the operating system may be able to resize a task to �t into a region
of unallocated space or to allow other critical tasks the necessary resources to successfully
complete� This method will maximize the space utilization of the FPGA at the cost of
scheduling complexity and performance loss�

While some methods for parametric �based on aspect ratio� instantiation of FPGA tasks
are known �see� for example� ���� ����� these are static and performed at load time at the
latest� Methods for dynamically resizing such tasks once they have begun have not been
investigated� A framework for resizing tasks should identify which tasks can be resized at
run time as well as the impact on their performance�

��� Task placement

In a multi�tasking system� task placement must be handled by the operating system since
only it knows the location of free cells�

�



Constraining partition sizes to be �xed simpli�es the partitioning problem� provides location
independence� and improves the overall system throughput since any task partition can be
loaded wherever one is removed�

If task partitions are a �xed size the placement strategy is simpli�ed since partitions can
be paged onto the FPGA surface� It su
ces to provide a wiring harness for I�O to each
page and to maintain an allocation table for managing the free pages ��� ���� Tasks may
need to communicate with each other� thereby making it desirable to co�locate them in
order to reduce communication delays� and the lengths of routes required� The wiring
harness provided to support I�O to �xed size partitions can be designed to support arbitrary
simultaneous task to task communications�

Allowing task partitions to vary in size allows the internal fragmentation that occurs in
�xed size partitions to be reduced at the cost of managing the free space� increasing the
scheduling complexity� and solving a less constrained dynamic routing problem� It would
be possible to adopt strategies employed in multiprocessors to reduce the fragmentation
experienced with �xed partition sizes�

��� Location independence

It is desirable to provide location independence so that tasks may be placed wherever free
space is available� and so that tasks can be moved� if necessary� Tasks might be moved
to collect free space� provide fault tolerance� improve communications� and support load
balancing in distributed� networked devices� With �xed partition sizes and a rigid task
harness it should be easier to support location independence and task movements� FPGA
architectures that support e
cient task movements on chip are yet to be developed� however
some suggestions have been advanced ����� Managing the movement of variable sized tasks
has been considered in ����

��� Swapping� caching and pre	loading tasks

Multi�tasking may also be supported by time�sharing the FPGA resource� If so� it is
necessary to decide how context switches are to be supported from an architectural as well
as an operating systems perspective� Many FPGA devices support multiple contexts by
providing on�chip memory for storing inactive con�gurations and state �see� for example�
���� but time�sharing can also be managed in software by swapping contexts o��chip �see�
for example� ������ When multiple contexts are supported in hardware� the active context
is usually selected by a globally broadcast context instruction� Overheads are small with
this method� and the potential exists to pass data in place between the con�gurations�
Pre�loading con�gurations into the area occupied by an executing task is also feasible�

��� Input and output

FPGAs supporting multiple tasks may need to handle multiple concurrent I�O streams�
Since FPGAs have limited pin and routing resources� multiple concurrent communications
may lead to contention that would need to be resolved by the operating system� In addition�
with the operating system responsible for the run�time placement of tasks� it also needs

�



to ensure I�O can be routed to the border and determine acceptable port locations for
interfacing signals to o��chip wires�

The Virtual Wires project at MIT has developed techniques for time multiplexing the use
of pins ���� Internal wire resources are typically statically allocated and are at best space�
shared by segmenting their lengths� It may be desirable to allow these to be multiplexed
as well� One possibility is to provide redundant links and implement slightly more sophis�
ticated switches that would allow simple message routing on an as needs basis� See� for
example� the recon�gurable multiple bus �RMB� proposal ����

System I�O resources need managing just as user I�O resources do� This need becomes
evident when several tasks request recon�gurations that overlap in time� The chip con�g�
uration bus then needs to be shared�

��� Intertask communications

Tasks needing to communicate with each other constrain the operating system to place
them favourably with respect to each other and �nd appropriate routes for signals to 	ow
between them� These problems are harder to deal with when task sizes are not �xed and
tasks are placed so as to achieve maximum packing density� The solution suggested by ����
is to provide a separate cellular automaton�based routing plane for providing autonomous
operating systems functions such as intertask communications� With more coarse�grained
allocation units at �xed locations� it should be possible to support total interconnection
through the use of crossbar switches� or RMB networks�

��
 Allocation and scheduling

The goals of the system need to be decided� Are they to maximize utilization subject to
task deadlines� or is the response time of tasks to be minimized� Presumably the scheduling
objectives will be determined by the applications area� However� the common thrust will
be to make best use of limited array hardware �cells� wires� pins and memory� in meeting
the computational objectives of multiple simultaneous tasks� The central question is
 how
should the resources be shared� Present day systems are either shared in space or time�
whereas the optimum may involve a mixture of both approaches much like gang scheduling
schemes for multiprocessors ���� We may wish to pack multiple tasks into the one time
slice �context� and pack di�erent sets of tasks into subsequent time slices� The contexts
might then be alternated to allow the FPGA resource to be used e
ciently� Tasks that
cannot co�exist within a slice because they would contend for resources can be separated
into di�erent slices in order to satisfy their competing needs� Bene�ts similar to those of
multi�threading can be obtained when resources that are tied up by a task that is idle�
waiting for I�O say� are employed for some of the waiting period to execute other tasks in
di�erent time slices �����

Important issues to consider are
 how to minimize the overheads� how to be fair� how to
ensure that deadlines can be met� and how to ensure that no task su�ers too many delays�
The FPGA architecture will need to help the operating system support multiple simulta�
neous I�O streams� It may also have to support clocking individual tasks at di�erent rates�
There should also be ways of detecting and recovering from faults� And the systems should

�



clean up discarded resources �provide garbage collection facilities�� E�ective abstractions
for modelling the hardware are also needed � how does the hardware appear to the user
and to the operating system�

��� Security

It is desirable that task con�gurations be safe� i�e�� not impact on other tasks or compromise
the functioning of the system� There is also the need to restrict access to acceptable users�
These two requirements suggest operating a virtual machine environment similar to the
Java Virtual Machine� which is being investigated by several researchers �see� for example�
������ A user would submit hardware�independent con�gurations that could be checked
for safety� This approach might also provide location independence� because the virtual
machine would necessarily perform technology mapping�

� Research Plans

In order to study and develop operating systems support for recon�gurable computing� we
believe it is of fundamental importance to decide whether the partitioning policy allows for
�xed or variably sized partitions� Not only does the answer to this question determine suit�
able abstractions for recon�gurable computing� it in	uences the formulation of partitioning
strategies� of scheduling and placement policies� e�ective tools design� and appropriate re�
con�gurable computing architectures� We would like to know under what conditions one
method is superior to the other� what are the factors that in	uence the outcome� Is there
a relationship between architecture or application domain and the partitioning policy� Is
it always possible to partition an application onto a given recon�gurable logic resource� Is
it feasible to do partitioning at run time�

To answer these questions� we are investigating the tradeo�s and intend performing a cost
bene�t analysis on the SPACE�� recon�gurable computing platform ���� The relatively large
FPGA array available to us allows us to experiment with both policies� Initial experimen�
tation will focus on how to manage a shared FPGA array while a particular application�s
demand on contiguous area grows�

There are several directions in which future work may take us� The �rst direction attempts
to answer questions about scheduling recon�gurable computing tasks� If partitions are
�xed in size� we would like to know whether the problem of minimizing response time is
equivalent to multiprocessor scheduling� and if so� can we use similar scheduling techniques�
With respect to multitasking systems� we are interested in knowing how competition for
scarce resources in	uences the problem� and what the e�ect of deadlines is� We would also
be interested in knowing the impact of allowing partition sizes to vary�

To support con�guration swapping� we are interested in how to inform the operating system
when swaps are required and which con�gurations to swap� We are interested to know
whether it is possible to eliminate the need for the application designer to specify a control
algorithm�

If variable partition sizes are to be allowed� we would need to know how to support location
independence� It would also be possible to investigate dynamic approaches to routing IO

�



to the border or between communicating tasks�

Of overall interest is an answer to the question of how much computation can be done at
compile time� and what can we a�ord to do at run time�

Acknowledgements

We thank David Kearney� Bernard Gunther� Jihan Zhu� and Hossam ElGindy for helpful
discussions and comments on this work�

References

��� Jonathan Babb� Russell Tessier� and Anant Agarwal� Virtual wires
 Overcoming pin
limitations in FPGA�based logic emulators� In Duncan A Buell and Kenneth L Pocek�
editors� Proceedings IEEE Workshop on FPGAs for Custom Computing Machines�
pages ��� � ���� Los Alamitos� CA� April ����� IEEE Computer Society Press�

��� Gordon Brebner� The swappable logic unit
 a paradigm for virtual hardware� In Pocek
and Arnold ����� pages �� � ���

��� Andre DeHon� DPGA�coupled microprocessors
 Commodity ICs for the early ��st
Century� In Duncan A Buell and Kenneth L Pocek� editors� Proceedings IEEE Work�
shop on FPGAs for Custom Computing Machines �FCCM����� pages �� � ��� Los
Alamitos� CA� April ����� IEEE Computer Society Press�

��� Oliver Diessel and Hossam ElGindy� On scheduling dynamic FPGA recon�gurations�
In Kenneth A Hawick and Heath A James� editors� Proceedings of the Fifth Aus�
tralasian Conference on Parallel and Real�Time Systems �PART��	�� pages ��� � ����
Singapore� ����� Springer�Verlag�

��� Adam Donlin� Self modifying circuitry � A platform for tractable virtual circuitry�
In Hartenstein and Keevallik ���� pages ��� � ����

��� Hossam ElGindy� Arun Somani� Heiko Schr�oder� Hartmut Schmeck� and Andrew Spray�
RMB � A recon�gurable multiple bus network� In Proceedings
 Second International
Symposium on High�Performance Computer Architecture� pages ��� � ���� ����� Avail�
able by anonymous ftp

ftp�cs�newcastle�edu�au�pub�reconfig�papers�rmb�ps�

��� Dror G Feitelson� Packing schemes for gang scheduling� In IPPS��� Workshop on
Job Scheduling Strategies for Parallel Processing� Los Alamitos� CA� April ����� IEEE
Computer Society Press�

��� Bernard K Gunther� SPACE � as a recon�gurable stream processor� In Nalin Sharda
and Audrey Tam� editors� Proceedings of PART��� the �th Australasian Conference
on Parallel and Real�Time Systems� pages ��� � ���� Singapore� September �����
Springer�Verlag�

��



��� Reiner W Hartenstein and Andres Keevallik� editors� Field�Programmable Logic and
Applications
 From FPGAs to Computing Paradigm
 	th International Workshop

FPL��	 Proceedings� volume ���� of Lecture Notes in Computer Science� Berlin� Ger�
many� ����� Springer�Verlag�

���� Gunter Haug and Wolfgang Rosenstiel� Recon�gurable hardware as shared resource in
multipurpose computers� In Hartenstein and Keevallik ���� pages ��� � ����

���� John R Hauser and John Wawrzynek� Garp
 A MIPS processor with a recon�gurable
coprocessor� In Pocek and Arnold ����� pages �� � ���

���� Jonathan Hogg� Satnam Singh� and Mary Sheeran� New HDL research challenges
posed by dynamically reprogrammable hardware� In Proceedings
 Third Asia Paci�c
Conference on Hardware Description Languages �APCHDL���� �����

���� Jack Jean� Karen Tomko� Vikram Yavagal� Robert Cook� and Jignesh Shah� Dynamic
recon�guration to support concurrent applications� In Pocek and Arnold ����� pages
��� � ����

���� Eric Lechner and Steven Guccione� The Java environment for recon�gurable com�
puting� In Wayne Luk� Peter Y K Cheung� and Manfred Glesner� editors� Field�
Programmable Logic and Applications
 �th International Workshop
 FPL��� Proceed�
ings� volume ���� of Lecture Notes in Computer Science� pages ��� � ���� Berlin�
Germany� September ����� Springer�Verlag�

���� W Luk� S Guo� N Shirazi� and N Zhuang� A framework for developing parametrised
FPGA libraries� In Reiner W Hartenstein and Manfred Glesner� editors� Field�
Programmable Logic� Smart Applications
 New Paradigms and Compilers
 �th Inter�
national Workshop
 FPL��� Proceedings� volume ���� of Lecture Notes in Computer
Science� pages �� � ��� Berlin� Germany� September ����� Springer�Verlag�

���� Pedro Merino� Juan Carlos L�opez� and Margarida Jacome� A hardware operating
system for dynamic recon�guration of FPGAs� In Hartenstein and Keevallik ���� pages
��� � ����

���� Kouichi Nagami� Kiyoshi Oguri� Tsunemichi Shiozawa� Hideyuki Ito� and Ryusuke
Konishi� Plastic cell architecture
 Towards recon�gurable computing for general�
purpose� In Pocek and Arnold ����� pages �� � ���

���� Kenneth L Pocek and Je�rey M Arnold� editors� The �th Annual IEEE Symposium on
FPGAs for Custom Computing Machines �FCCM����� Los Alamitos� CA� April �����
IEEE Computer Society Press�

���� Kenneth L Pocek and Je�rey M Arnold� editors� The �th Annual IEEE Symposium on
FPGAs for Custom Computing Machines �FCCM��	�� Los Alamitos� CA� April �����
IEEE Computer Society Press�

���� Nabeel Shirazi� Wayne Luk� and Peter Y K Cheung� Automating production of run�
time recon�gurable designs� In Pocek and Arnold ����� pages ��� � ����

��



���� Jean E Vuillemin� Patrice Bertin� Didier Roncin� Mark Shand� Herve H Touati� and
Philippe Boucard� Programmable active memories
 Recon�gurable systems come of
age� IEEE Transactions on Very Large Scale Integration �VLSI� Systems� ����
�� �
��� March �����

���� Ralph D Wittig and Paul Chow� OneChip
 An FPGA processor with recon�gurable
logic� In Kenneth L Pocek and Je�rey M Arnold� editors� IEEE Symposium on FPGAs
for Custom Computing Machines �FCCM����� pages ��� � ���� Los Alamitos� CA�
����� IEEE Computer Society Press�

���� Xilinx� XC���� Field Programmable Gate Arrays� Xilinx� Inc�� April �����

��


