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Abstract

Reconfigurable computing involves adapting hardware resources to the specific needs
of applications in order to obtain performance benefits. This emerging architectural
paradigm holds some promise for delivering significant speedups to compute-bound
applications. However, many challenges need to be overcome before reconfigurable
computing becomes mainstream. Significantly, supporting applications design and
providing a convenient run—time environment create opportunities to propose and in-
vestigate new ways of managing chip resources. In examining the potential benefits of
providing operating systems support for reconfigurable processors, this paper identi-
fies opportunities for the development of policies for dynamic hardware management
and strategies for communicating design ideas to the run-time management system.

1 Introduction

Reconfigurable computers typically consist of a workstation host loosely coupled via a gen-
eral purpose bus to a reconfigurable logic processor, currently a Field Programmable Gate
Array (FPGA). Current design methods result in the production of one or more FPGA
configurations together with host software to access and control the FPGA. The host op-
erating system typically provides no more than device driver support for accessing the
reconfigurable logic processor. Although this approach allows raw access to the device for
maximum performance, the approach is unproductive since designers need to be intimately
familiar with low—level details of the reconfigurable device that, for lack of suitable abstrac-
tions, influence the design process at all levels. In addition, portability of the application
is severely limited.

Much of the work on the run—time management of reconfigurable systems considers the
problem of managing the time evolution of a single application. However, there is increas-
ing interest in using reconfigurable computers for horizontally and vertically integrated
application domains such as image and signal processing. With this shift, it is important
that run—time management of the resource be consistent, efficient, and fair. We therefore



believe it is timely to consider the possibility of providing operating systems support for
reconfigurable logic.

Operating systems support for reconfigurable logic becomes necessary when one desires
a higher level interface to the resource, as might occur when many different circuits are
to be instantiated over time or the users do not wish to deal with low—level architectural
details. Run—time support is also necessary when one requires a virtual or general model of
a FPGA that is to be independent of the circuits that are to be instantiated on it. When it
is necessary to share FPGA resources among multiple tasks that may be unrelated, owned
by different clients, and simultaneously active, the allocation and scheduling of resources
needs to be handled by an independent and fair agent. Support is also needed when the
resource a client wishes to use is not under its direct control, such as when it is remotely
networked.

There are several arguments against developing and implementing operating systems sup-
port for FPGAs. The first is that it would necessarily impact on performance. For a
technology whose present applications niche is relatively small, the cost of a more usable
and secure resource may be so high as to make use of FPGAs uneconomical. Second, there
may very well be a concomitant loss in flexibility, and designers who desire complete control
over the functionality of a device may loose out. Loss of some flexibility may also impact
upon the feasibility of implementing some applications on FPGAs. However, the loss in
performance and flexibility are compensated for in many ways.

The potential benefits of providing operating systems support for FPGAs include:

e greater convenience through abstraction, virtualization, and generalization (whether
the resource is embedded, attached, or integrated with microprocessors),

e support for multi-tasking,
e improved system performance and fault tolerance, and

e integration of reconfigurable devices into the global computational pool.

Obtaining such benefits may necessitate the redesign of traditional electronic design au-
tomation and synthesis tools, the development of scheduling systems that will allow re-
sources to be shared in space and time, and the development of new FPGA architectures

that will allow high level functions such as task placement, repartitioning and migration to
be handled by the chip itself.

We aim to clarify the role of operating systems as we see them impacting on reconfigurable
computing systems of today and the medium term future. To this end, we first provide an
overview of current reconfigurable computing technology before describing how operating
systems may affect and support the life-cycle of a single task on a single user system. This
section is also intended to familiarize the reader with the main challenges faced by the
FPGA applications designer. In many ways it is precisely these activities that an operating
system would ideally enhance. We then expand our view to include shared systems that
are intended to support multiple concurrently executing tasks. The presentation initially
focuses upon issues relating to the management of tasks and then shifts to the manage-
ment of the resource. We conclude by summarising what we believe to be interesting and
challenging areas for further research identified in the paper.



2 Reconfigurable Computing Architecture

A reconfigurable computer contains configurable logic resources, commonly field—program-
mable gate array (FPGA) chips, that may be adapted to process certain classes of compu-
tations at high speed. FPGAs are two—dimensional grids of configurable logic cells that are
capable of implementing limited logic functions and are interconnected by a programmable
routing matrix. High performance is achieved by embedding application specific digital
circuits in the logic cell matrix of the FPGA, thereby allowing parallel execution streams
and eliminating the need to fetch and decode instructions at run time. While not as fast
as application specific integrated circuits, FPGAs and reconfigurable computers have the
advantage of being reprogrammable, some within microseconds.

Several reconfigurable computing models have been proposed and reached various stages of
development. The earliest and most successful of these views the reconfigurable logic as a
coprocessor, and is often implemented as a board attached to the system bus of a sequential
host processor (see, for example, [21]). This approach has the advantage of simplicity,
but it suffers from low bandwidth between the host and coprocessor. It also introduces
the so—called co—design problem — deciding which part of the application to implement in
hardware (on the coprocessor), and which part to do in software (on the host). To overcome
these problems, there have been several efforts to integrate configurable logic arrays onto
conventional processor dies [22, 11]. There is also some interest in the development of
systems composed entirely of reconfigurable logic and memory [5, 17].

A variety of FPGA models have also been developed. One of the most significant recent
developments is the ability to partially configure a portion of an FPGA chip while allowing
the remainder of the chip to continue to operate without interruption [23]. Along with the
concept of reusing resources by swapping active portions of a circuit onto the device, this
development has spawned interest in sharing a single chip among multiple tasks at the same
time. An alternative approach with a similar goal is to provide the array with memory to
store multiple contexts that can be switched in and out on a cycle by cycle basis through
a context switching instruction [3].

A major stumbling block with reconfigurable computing is the difficulty of programming
reconfigurable computers. We lack consistent and easy to use abstractions for describing
reconfigurable computing applications, applications developers need to be highly skilled
in digital circuit and parallel algorithms design, and the few tools available were initially
developed for a much less dynamic design domain in which users were guaranteed exclusive
access to chip resources. To complicate matters, application designers are often also required
to manage their application’s execution because reconfigurable logic resources are poorly
integrated into host operating systems. Many coprocessing systems provide no more than
a device driver with which to communicate with the board controller.

3 Designing FPGA tasks

The designer of FPGA—based applications is faced with many decisions. These include,
but are not limited to, decisions about the method of specifying the application (design
capture), where to allocate the parts of a computation (partitioning and placement), how



to allow the parts to communicate (routing), how to reuse resources to compute the various
parts (swapping), and how to schedule the use of those resources (control).

3.1 Design capture

The FPGA designer must contend with considerably more degrees of freedom than the
conventional programmer. To begin with, designs (in this case circuits) may be specified
using schematic capture, hardware description languages such as VHDL or Verilog, or
a programming language. Each have their merits and their use is therefore commonly
combined, but unfortunately none of them are effective for mapping applications to the
limited hardware resource typical of current reconfigurable computers. Conventional design
capture tools are not able to partition an application into circuit components that will
fit onto the resource, or schedule the allocation and reconfiguration of resources so as to
minimize execution delays. The traditional approach is to perform these functions for a
given machine under the assumption that it will be dedicated to the application being
designed and that run—time conditions are known and static. However, if the machine is to
be shared among multiple tasks or users, or it is to be fault tolerant, then the application
will need to cope with changing run—time conditions. This need forces the operating system
to support activities that were traditionally handled off-line by the FPGA designer.

3.2 Partitioning

To illustrate this point, consider the partitioning problem. This arises in several ways. First,
a designer must decide which part of an application is best allocated to an FPGA and what
should sensibly be done in software. This is known as the hardware—software partitioning
problem. It is not always obvious how this should be done, and it is conceivable that
automatic techniques will do a better job than humans can when they are not fully informed
of the available hardware. Typically, the designer must specify precisely which part is to
be executed where, and then design the circuits for the hardware part in addition to the
programs for the software part. In a networked environment the designer may not know
what resources are available. Moreover they may change with time as network resources
and run—time parameters change. It thus becomes desirable to allow the system to decide
where to execute what and generate/execute the appropriate instructions.

A second type of partitioning that is often necessary is that of breaking a large task graph
down into components that can fit onto available FPGA resources at the same time. An-
other approach is to partition the circuit so as to minimize the reconfiguration time [20].
Automated techniques are typically static and employed early in the design phase — cer-
tainly not at run time when conditions may necessitate repartitioning or resizing to optimize
the use of available resources.

3.3 Placement

Operating systems may also have a role to play in task placement. Traditional FPGA
design involves the use of automatic place and route tools to find a static placement of logic
elements and routing of interconnections. In doing so, the designer fixes the location of the
design during the construction process. This approach has the advantage of allowing the



design to be loaded quickly, but it suffers from inflexibility should the region designated for
the task be faulty, or occupied, or otherwise unavailable.

The disadvantage of hard placement can be overcome by binding the circuit to the hardware
at run time. How much of the configuration data can be generated prior to load time, and
how much needs to be done to place the task at run time are open questions. For example, if
the FPGA chip is homogeneous and the task is not to be resized, a straightforward address
translation should suffice. But if re-routing is necessary, perhaps because some resources
are not available at the chosen location, the cost of run—time instantiation could increase
considerably. In any case, the FPGA designer should not need to worry about designing
the systems to support such flexibility. Moreover, when the FPGA is shared by multiple
users, such services need to be controlled by the resource manager in the common interest
of all users. This function must therefore be taken over by the operating system.

3.4 Routing

With arbitrary run—time task placement comes the problem of run—time routing. Run-time
routing may not be needed within the task, as noted above. However, I/O may need to
be routed to the border of the chip or to dependent tasks located elsewhere on the chip.
Dynamic routing algorithms that allow communications to be re-routed as tasks are placed
and removed can also provide fault tolerance. Such techniques are not needed while FPGA
systems are designed with static task placement into known environments.

3.5 Scheduling

The problems of partitioning, placing and routing the task components are closely related
to the problem of scheduling the task graph. After specifying the resource requirements and
interdependencies of task graph nodes, an FPGA designer or automated design system at-
tempts to allocate and partition the potentially large graph onto a limited physical resource.
The partitions then need to be scheduled in order to correctly complete the computation
in minimum time. If the FPGA is partially reconfigurable, the amount of commonality
between partition configurations may further influence the reconfiguration time and thus
the desirable order in which reconfigurations should be performed. The FPGA scheduling
of arbitrary computations is therefore very complex and should be supported as much as
possible by the tools and operating systems.

3.6 Swapping

The swapping of task components onto and off an FPGA chip is usually handled by the
designer who decides upon the conditions that give rise to reconfigurations. This is ac-
ceptable when designs are static, but if we have the operating system participating in the
dynamic partitioning, allocation, and scheduling of tasks then it is also desirable that it
provide a means for task components to inform it when they are done, and which other
components they would like to have loaded to complete their processing. These ideas fol-
low the principles of virtual memory handling, but new mechanisms are required to handle
circuit objects.



Many reasons exist for needing new mechanisms to handle circuit objects like pages in a
virtual memory system. First, there is a need to know which partitions to invoke and in
what order, depending upon run-time conditions. Second, it may be necessary to store
state if the current partition is to be reinvoked. How to do this efficiently needs to be
determined. Third, mechanisms may need to be provided to spool data between partition
invocations. Fourth, run time conditions may prevent partitions from being loaded into
suitable locations, so how should exceptions be handled? In addition, the operating system
must be able to swap tasks onto the FPGA without unduly affecting the other concurrently
executing tasks on the FPGA. The differing resource needs for each partition also need to
be allocated and scheduled before loading the design onto the FPGA surface.

4 Multi-tasking FPGAs

Many reconfigurable computing models include the possibility of having multiple tasks.
With FPGA chips becoming larger and with ever more resource potentially lying idle,
there is a need to maintain a high level of utilization of the chips by sharing the resource
in both space and time dimensions. These techniques are currently supported in hardware
by partial reconfigurability and context switching respectively.

In this section we first examine the additional operating system functions needed to support
the partitioning of FPGA resources among multiple tasks that are possibly unrelated and
owned by different users. Then we consider the role of the operating system from the
perspective of the FPGA resource when multiple tasks are concurrently active.

4.1 Task sizing

Before designs can be partitioned, a few issues relating to sizing need to be addressed. It is
necessary to decide whether to fix the size of the partitions as this will directly impact on
the partitioning and scheduling strategies. If the partition size is chosen to be fixed there
will be a tradeoff between the size and the performance of the partition. If the partition size
is too small, then the designs may not easily be partitioned into them. If variable partition
sizes are permitted, the operating system may be able to resize a task to fit into a region
of unallocated space or to allow other critical tasks the necessary resources to successfully
complete. This method will maximize the space utilization of the FPGA at the cost of
scheduling complexity and performance loss.

While some methods for parametric (based on aspect ratio) instantiation of FPGA tasks
are known (see, for example, [12, 15]), these are static and performed at load time at the
latest. Methods for dynamically resizing such tasks once they have begun have not been
investigated. A framework for resizing tasks should identify which tasks can be resized at
run time as well as the impact on their performance.

4.2 Task placement

In a multi—tasking system, task placement must be handled by the operating system since
only it knows the location of free cells.



Constraining partition sizes to be fixed simplifies the partitioning problem, provides location
independence, and improves the overall system throughput since any task partition can be
loaded wherever one is removed.

If task partitions are a fixed size the placement strategy is simplified since partitions can
be paged onto the FPGA surface. It suffices to provide a wiring harness for I/O to each
page and to maintain an allocation table for managing the free pages [2, 16]. Tasks may
need to communicate with each other, thereby making it desirable to co—locate them in
order to reduce communication delays, and the lengths of routes required. The wiring
harness provided to support I/O to fixed size partitions can be designed to support arbitrary
simultaneous task to task communications.

Allowing task partitions to vary in size allows the internal fragmentation that occurs in
fixed size partitions to be reduced at the cost of managing the free space, increasing the
scheduling complexity, and solving a less constrained dynamic routing problem. It would
be possible to adopt strategies employed in multiprocessors to reduce the fragmentation
experienced with fixed partition sizes.

4.3 Location independence

It is desirable to provide location independence so that tasks may be placed wherever free
space is available, and so that tasks can be moved, if necessary. Tasks might be moved
to collect free space, provide fault tolerance, improve communications, and support load
balancing in distributed, networked devices. With fixed partition sizes and a rigid task
harness it should be easier to support location independence and task movements. FPGA
architectures that support efficient task movements on chip are yet to be developed, however
some suggestions have been advanced [17]. Managing the movement of variable sized tasks
has been considered in [4].

4.4 Swapping, caching and pre—loading tasks

Multi-tasking may also be supported by time-sharing the FPGA resource. If so, it is
necessary to decide how context switches are to be supported from an architectural as well
as an operating systems perspective. Many FPGA devices support multiple contexts by
providing on—chip memory for storing inactive configurations and state (see, for example,
[3]) but time—sharing can also be managed in software by swapping contexts off—chip (see,
for example, [10]). When multiple contexts are supported in hardware, the active context
is usually selected by a globally broadcast context instruction. Overheads are small with
this method, and the potential exists to pass data in place between the configurations.
Pre-loading configurations into the area occupied by an executing task is also feasible.

4.5 Input and output

FPGAs supporting multiple tasks may need to handle multiple concurrent I/O streams.
Since FPGAs have limited pin and routing resources, multiple concurrent communications
may lead to contention that would need to be resolved by the operating system. In addition,
with the operating system responsible for the run-time placement of tasks, it also needs



to ensure I/O can be routed to the border and determine acceptable port locations for
interfacing signals to off—chip wires.

The Virtual Wires project at MIT has developed techniques for time multiplexing the use
of pins [1]. Internal wire resources are typically statically allocated and are at best space—
shared by segmenting their lengths. It may be desirable to allow these to be multiplexed
as well. One possibility is to provide redundant links and implement slightly more sophis-
ticated switches that would allow simple message routing on an as needs basis. See, for
example, the reconfigurable multiple bus (RMB) proposal [6].

System I/O resources need managing just as user I/O resources do. This need becomes
evident when several tasks request reconfigurations that overlap in time. The chip config-
uration bus then needs to be shared.

4.6 Intertask communications

Tasks needing to communicate with each other constrain the operating system to place
them favourably with respect to each other and find appropriate routes for signals to flow
between them. These problems are harder to deal with when task sizes are not fixed and
tasks are placed so as to achieve maximum packing density. The solution suggested by [17]
is to provide a separate cellular automaton—based routing plane for providing autonomous
operating systems functions such as intertask communications. With more coarse-grained
allocation units at fixed locations, it should be possible to support total interconnection
through the use of crossbar switches, or RMB networks.

4.7 Allocation and scheduling

The goals of the system need to be decided. Are they to maximize utilization subject to
task deadlines, or is the response time of tasks to be minimized? Presumably the scheduling
objectives will be determined by the applications area. However, the common thrust will
be to make best use of limited array hardware (cells, wires, pins and memory) in meeting
the computational objectives of multiple simultaneous tasks. The central question is: how
should the resources be shared? Present day systems are either shared in space or time,
whereas the optimum may involve a mixture of both approaches much like gang scheduling
schemes for multiprocessors [7]. We may wish to pack multiple tasks into the one time
slice (context) and pack different sets of tasks into subsequent time slices. The contexts
might then be alternated to allow the FPGA resource to be used efficiently. Tasks that
cannot co—exist within a slice because they would contend for resources can be separated
into different slices in order to satisfy their competing needs. Benefits similar to those of
multi—threading can be obtained when resources that are tied up by a task that is idle,
waiting for I/O say, are employed for some of the waiting period to execute other tasks in
different time slices [13].

Important issues to consider are: how to minimize the overheads, how to be fair, how to
ensure that deadlines can be met, and how to ensure that no task suffers too many delays?
The FPGA architecture will need to help the operating system support multiple simulta-
neous I/O streams. It may also have to support clocking individual tasks at different rates.
There should also be ways of detecting and recovering from faults. And the systems should



clean up discarded resources (provide garbage collection facilities). Effective abstractions
for modelling the hardware are also needed — how does the hardware appear to the user
and to the operating system?

4.8 Security

It is desirable that task configurations be safe, i.e., not impact on other tasks or compromise
the functioning of the system. There is also the need to restrict access to acceptable users.
These two requirements suggest operating a virtual machine environment similar to the
Java Virtual Machine, which is being investigated by several researchers (see, for example,
[14]). A user would submit hardware-independent configurations that could be checked
for safety. This approach might also provide location independence, because the virtual
machine would necessarily perform technology mapping.

5 Research Plans

In order to study and develop operating systems support for reconfigurable computing, we
believe it is of fundamental importance to decide whether the partitioning policy allows for
fixed or variably sized partitions. Not only does the answer to this question determine suit-
able abstractions for reconfigurable computing, it influences the formulation of partitioning
strategies, of scheduling and placement policies, effective tools design, and appropriate re-
configurable computing architectures. We would like to know under what conditions one
method is superior to the other; what are the factors that influence the outcome? Is there
a relationship between architecture or application domain and the partitioning policy? Is
it always possible to partition an application onto a given reconfigurable logic resource? Is
it feasible to do partitioning at run time?

To answer these questions, we are investigating the tradeoffs and intend performing a cost
benefit analysis on the SPACE.2 reconfigurable computing platform [8]. The relatively large
FPGA array available to us allows us to experiment with both policies. Initial experimen-
tation will focus on how to manage a shared FPGA array while a particular application’s
demand on contiguous area grows.

There are several directions in which future work may take us. The first direction attempts
to answer questions about scheduling reconfigurable computing tasks. If partitions are
fixed in size, we would like to know whether the problem of minimizing response time is
equivalent to multiprocessor scheduling, and if so, can we use similar scheduling techniques?
With respect to multitasking systems, we are interested in knowing how competition for
scarce resources influences the problem, and what the effect of deadlines is. We would also
be interested in knowing the impact of allowing partition sizes to vary.

To support configuration swapping, we are interested in how to inform the operating system
when swaps are required and which configurations to swap? We are interested to know
whether it is possible to eliminate the need for the application designer to specify a control
algorithm.

If variable partition sizes are to be allowed, we would need to know how to support location
independence. It would also be possible to investigate dynamic approaches to routing 10



to the border or between communicating tasks.

Of overall interest is an answer to the question of how much computation can be done at
compile time, and what can we afford to do at run time?

Acknowledgements

We thank David Kearney, Bernard Gunther, Jihan Zhu, and Hossam ElGindy for helpful
discussions and comments on this work.

References

[1]

Jonathan Babb, Russell Tessier, and Anant Agarwal. Virtual wires: Overcoming pin
limitations in FPGA-based logic emulators. In Duncan A Buell and Kenneth L Pocek,
editors, Proceedings IEEE Workshop on FPGAs for Custom Computing Machines,
pages 142 — 151, Los Alamitos, CA, April 1993. IEEE Computer Society Press.

Gordon Brebner. The swappable logic unit: a paradigm for virtual hardware. In Pocek
and Arnold [18], pages 77 — 86.

Andre DeHon. DPGA-—coupled microprocessors: Commodity ICs for the early 21st
Century. In Duncan A Buell and Kenneth L Pocek, editors, Proceedings IEEE Work-
shop on FPGAs for Custom Computing Machines (FCCM’94), pages 31 — 39, Los
Alamitos, CA, April 1994. IEEE Computer Society Press.

Oliver Diessel and Hossam ElGindy. On scheduling dynamic FPGA reconfigurations.
In Kenneth A Hawick and Heath A James, editors, Proceedings of the Fifth Aus-
tralasian Conference on Parallel and Real-Time Systems (PART’98), pages 191 — 200,
Singapore, 1998. Springer—Verlag.

Adam Donlin. Self modifying circuitry — A platform for tractable virtual circuitry.
In Hartenstein and Keevallik [9], pages 199 — 208.

Hossam ElGindy, Arun Somani, Heiko Schréder, Hartmut Schmeck, and Andrew Spray.
RMB — A reconfigurable multiple bus network. In Proceedings. Second International
Symposium on High—Performance Computer Architecture, pages 108 — 117, 1996. Avail-
able by anonymous ftp:

ftp.cs.newcastle.edu.au/pub/reconfig/papers/rmb.ps.

Dror G Feitelson. Packing schemes for gang scheduling. In IPPS’96 Workshop on
Job Scheduling Strategies for Parallel Processing, Los Alamitos, CA, April 1996. IEEE
Computer Society Press.

Bernard K Gunther. SPACE 2 as a reconfigurable stream processor. In Nalin Sharda
and Audrey Tam, editors, Proceedings of PART 97 the jth Australasian Conference
on Parallel and Real-Time Systems, pages 286 — 297, Singapore, September 1997.
Springer—Verlag.

10



[9]

[10]

[11]

[12]

[13]

[14]

[15]

18]

[19]

[20]

Reiner W Hartenstein and Andres Keevallik, editors. Field—Programmable Logic and
Applications, From FPGAs to Computing Paradigm, 8th International Workshop,
FPL’98 Proceedings, volume 1482 of Lecture Notes in Computer Science, Berlin, Ger-
many, 1998. Springer—Verlag.

Gunter Haug and Wolfgang Rosenstiel. Reconfigurable hardware as shared resource in
multipurpose computers. In Hartenstein and Keevallik [9], pages 149 — 158.

John R Hauser and John Wawrzynek. Garp: A MIPS processor with a reconfigurable
coprocessor. In Pocek and Arnold [18], pages 12 — 21.

Jonathan Hogg, Satnam Singh, and Mary Sheeran. New HDL research challenges
posed by dynamically reprogrammable hardware. In Proceedings, Third Asia Pacific
Conference on Hardware Description Languages (APCHDL96), 1996.

Jack Jean, Karen Tomko, Vikram Yavagal, Robert Cook, and Jignesh Shah. Dynamic
reconfiguration to support concurrent applications. In Pocek and Arnold [19], pages
302 — 303.

Eric Lechner and Steven Guccione. The Java environment for reconfigurable com-
puting. In Wayne Luk, Peter Y K Cheung, and Manfred Glesner, editors, Field—
Programmable Logic and Applications, 7th International Workshop, FPL’97 Proceed-
ings, volume 1304 of Lecture Notes in Computer Science, pages 284 — 293, Berlin,
Germany, September 1997. Springer—Verlag.

W Luk, S Guo, N Shirazi, and N Zhuang. A framework for developing parametrised
FPGA libraries. In Reiner W Hartenstein and Manfred Glesner, editors, Field—
Programmable Logic: Smart Applications, New Paradigms and Compilers, 6th Inter-
national Workshop, FPL’96 Proceedings, volume 1142 of Lecture Notes in Computer
Science, pages 24 — 33, Berlin, Germany, September 1996. Springer—Verlag.

Pedro Merino, Juan Carlos Lépez, and Margarida Jacome. A hardware operating
system for dynamic reconfiguration of FPGAs. In Hartenstein and Keevallik [9], pages
431 — 435.

Kouichi Nagami, Kiyoshi Oguri, Tsunemichi Shiozawa, Hideyuki Ito, and Ryusuke
Konishi. Plastic cell architecture: Towards reconfigurable computing for general—
purpose. In Pocek and Arnold [19], pages 68 — 77.

Kenneth L Pocek and Jeffrey M Arnold, editors. The 5th Annual IEEE Symposium on
FPGAs for Custom Computing Machines (FCCM’97), Los Alamitos, CA, April 1997.
IEEE Computer Society Press.

Kenneth L Pocek and Jeffrey M Arnold, editors. The 6th Annual IEEE Symposium on
FPGAs for Custom Computing Machines (FCCM’98), Los Alamitos, CA, April 1998.
[EEE Computer Society Press.

Nabeel Shirazi, Wayne Luk, and Peter Y K Cheung. Automating production of run—
time reconfigurable designs. In Pocek and Arnold [19], pages 147 — 156.

11



[21] Jean E Vuillemin, Patrice Bertin, Didier Roncin, Mark Shand, Herve H Touati, and
Philippe Boucard. Programmable active memories: Reconfigurable systems come of
age. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 4(1):56 —
69, March 1996.

[22] Ralph D Wittig and Paul Chow. OneChip: An FPGA processor with reconfigurable
logic. In Kenneth L. Pocek and Jeffrey M Arnold, editors, IEEE Symposium on FPGAs
for Custom Computing Machines (FCCM’96), pages 126 — 135, Los Alamitos, CA,
1996. IEEE Computer Society Press.

(23] Xilinx. XC6200 Field Programmable Gate Arrays. Xilinx, Inc., April 1997.

12



