
Correct high level synthesis of triple modular

redundant user circuits for FPGAs

Michael Bernardi1 Ediz Cetin2 Oliver Diessel3

1University of New South Wales, Australia
mrmbernardi@gmail.com
2Macquarie University
ediz.cetin@mq.edu.au

3University of New South Wales, Australia
o.diessel@unsw.edu.au

Technical Report
UNSW-CSE-TR-201804

October 2018

School of Computer Science and Engineering
The University of New South Wales

Sydney 2052, Australia



Abstract

This report outlines the HLS tool TLegUp, an extension of LegUp that produces
circuits with TMR for use in space-based applications. We cover the background
and motivation behind the project and the need to show that the software pro-
duces correct output in order to verify the current implementation and provide
a framework for future development. A three-tiered approach for validating cor-
rectness is described and the top two tiers are applied to TLegUp. Finally, this
report explores results of the validation and future goals and considerations for
the project.

This work is substantially based on the 4th year Bachelor of Engineering
thesis by Michael Bernardi.

1



Acknowledgements

The authors acknowledge and thank the contributions of Ganghee Lee, Dimitris
Agiakatsikas and Tong Wu for advice in carrying out this study.

2



Abbreviations

DFG Data Flow Graph

DFS Depth First Search

FPGA Field Programmable Gate Array

HLS High Level Synthesis

LLVM Low Level Virtual Machine (an open-source compiler framework)

LLVM IR LLVM Intermediate Representation

MER Module-based Error Recovery

RTL Register-Transfer Level

SEU Single Event Upset

SRAM Static Random Access Memory

TMR Triple Modular Redundancy

3



1 Introduction

SRAM-based Field-Programmable Gate Arrays (FPGAs) are attractive com-
ponents for space-based applications since they are inexpensive, easily recon-
figured, and have low power usage coupled with high performance. In space,
however, SRAM FPGAs are vulnerable to errors known as single-event upsets
(SEUs) [OCG+09]. SEUs are the result of charged particles interfering with
the circuit hardware. They have the capacity to change the output of a circuit
by flipping bits in internal memory or by creating voltage transients that then
propagate as errors through the logic.

SEUs can affect FPGAs in two different ways depending on whether they
cause errors in user-defined circuitry or in configuration memory. SEUs have
temporary effects on cycle-free user-defined ciruitry. After an upset, the circuit
will again produce correct output if provided with fresh error-free input. If
the upset affects configuration memory it alters the function of the circuit.
An altered circuit will continue to produce erroneous output until the correct
configuration is restored.

A preferred method of mitigating the risk of SEUs is implementing circuits
with triple modular redundancy (TMR), and then periodically rewriting their
configuration memory [Car00]. TMR involves triplicating the logic into three
identical modules and then selecting the output using a majority vote. This
allows an error occurring in user-defined logic to be masked provided that there
are no simultaneous errors in the other two modules. Rewriting configuration
memory is then necessary to correct any errors resulting from altered configu-
ration memory.

TLegUp is a program that generates circuit designs with TMR from high
level C code using a technique called high-level synthesis (HLS) [LAW+17].
The circuits generated are represented by Verilog register-transfer level (RTL)
code. While there are other tools that use HLS to generate RTL code, and tools
that add TMR to circuits described in RTL code, there are no tools that can do
both at the same time, and this is the basis for TLegUp. It is intended to be a
productivity tool that allows users to generate reliable circuit designs for space
applications directly from C code with no intermediate steps.

Although this report is focused primarily on the verification of TLegUp, we
also cover relevant information on the motivations and design of the software.
Section 2 explains background concepts such as SEUs and HLS in further detail.
Section 3 elaborates on the internal design of TLegUp. Sections 5 through
7 cover the verification process. Finally, section 8 outlines further work and
considerations for the project and concludes the report.

4



2 Background

2.1 The Effects of SEUs

SEUs are the result of physical interactions with charged particles changing
the state of circuit hardware. These particles can flip memory bits directly or
create transients in user logic, both of which affect the output. New input to
the circuit naturally overwrites existing errors, but only after they have already
been propagated.

Figure 2.1: Diagram depicting a charged particle affecting a register and altering
the output of subsequent logic.

Figure 2.2: Diagram depicting a charged particle creating a voltage transient in
a signal in the user logic and thus affecting the output of the logic.

The third way that an SEU can affect an SRAM-based FPGA is by cor-
rupting memory which the FPGA uses to store configuration data. This results
in the logic of the user circuit itself being modified. The function of the logic
gates, the routing of signals, or any other property of the user-defined logic could
be altered. Changes to the configuration bits persist until they are overwritten,
and, unlike in the case of registers, configuration bits are not overwritten during
normal operation of the FPGA.

2.2 Triple Modular Redundancy

TMR refers to the triplication of circuits into three discrete units, with redun-
dancy added by having the three circuits vote on the output with a majority

5



vote. For each bit of output from three modules x, y and z, the voting circuit
evaluates (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z).

Figure 2.3: Diagram depicting a TMR system. In this case, ModuleX has been
affected by an SEU and the voters will set all three outputs to that of Modules
Y and Z.

In our case, we increase the reliability further by partitioning the circuit
into a number of discrete partitions. Triplicating these partitions individually
and voting on the output before it is passed on to another partition means
that a failure requires errors in at least two of the three modules of the same
partition. With many smaller partitions, the likelihood of this occurring is
reduced [LAW+17].

This technique alone is sufficient to handle SEUs that flip user registers
or create transients in user logic, as it masks the errors before they reach the
output while new input clears the original errors. However, this technique is
not sufficient to deal with SEUs that affect configuration memory, nor will it
correct errors that occur within feedback cycles in the circuitry.

To handle errors in configuration memory, the configuration bits may be
periodically rewritten from a more robust memory source. This is known as
scrubbing. Alternatively, the majority voters can include circuitry to detect re-
peat errors coming from one module and signal that it needs to be reconfigured.
This is known as Module-based Error Recovery (MER) [THNCD17].

To handle errors in feedback cycles, a voter must be inserted somewhere
in the cycle. Without such a voter, an error in a feedback cycle can persist
in the state of the cycle and propagate from the cycle. We call these voters
synchronisation voters as they serve to synchronise the state of a feedback cycle
with that of its neighbouring modules.

Figure 2.4: Diagram depicting a feedback cycle. The synchronisation voter
depicted at the top centre of the cycle is required to prevent errors from prop-
agating around the cycle indefinitely.

6



2.3 High Level Synthesis

HLS refers to the generation of circuit designs from high-level programming
languages, such as C. It is typically accomplished by compiling code into a
‘formal model’, then running scheduling, and binding algorithms on that model
[CGMT09]. Scheduling determines when each operation should take place in
hardware, while binding assigns hardware resources to the operations. After
these processes occur, the output is usually emitted as RTL code. RTL code
describes circuits as registers and the combinational logic between them, which
is a useful intermediate level of abstraction for FPGA circuit design.

2.4 Previous work

TLegUp [LAW+17] is a modified version of the open source HLS tool LegUp [CCA+11].
LegUp takes C code as input and outputs Verilog RTL code. The formal model
used in LegUp is provided by LLVM [LLV], an open-source compiler framework.
LLVM was chosen because the compiler architecture is easily extendible and
mirrors the traditional steps of HLS. Our modifications to LegUp add processes
that partition the circuit and determine where to add voters. The generation
phase is modified to triplicate the design and add the voting circuits in the
previously identified locations.

2.5 Motivation

The motivation behind TLegUp is to create a tool that uses HLS to generate
TMR circuits. This will increase the productivity of users who otherwise would
have to use multiple tools and be skilled at hardware design to accomplish
this. Using HLS to create TMR circuits also holds the promise of producing
such circuits more reliably and quickly, as well as producing more efficient or
faster circuits than those produced by running a TMR tool after an HLS tool.
By combining both processes, the voter insertion process is more flexible and
informed, and operations can be scheduled more optimally to better suit the
addition of voters.

7



3 TLegUp Design Flow

This section summarises each of the steps TLegUp takes to produce circuit
design. We deal with version 1.0 of the software, which partitions a circuit
at the LLVM instruction level. Later versions differ in that they are able to
partition the algorithms at the function level rather than the instruction level.
We provide a basic overview of the steps in the order they are executed. Refer
to the TLegUp design flow document [Lee17] for further detail.

Figure 3.1: TLegUp design flow diagram. Grey blocks represent original LegUp
processes. [Lee17]

3.1 Compilation to LLVM

Firstly, the C code is compiled to an LLVM instruction listing using the clang
compiler. This is an original LegUp step. This is done because LLVM operations
are simple enough to directly correspond to hardware operations [CCA+11].

3.2 Data Flow Graph Generation

Next, a data flow graph is created from the LLVM IR. This is a step added
in TLegUp. A data flow graph represents the LLVM IR in a graph form, in
which individual nodes are operations and directed edges represent the transfer
of inputs and outputs between operations. This is done because a data flow
graph is a more useful representation of the code for partitioning and finding
feedback cycles.

3.3 Partitioning

The graph is then partitioned into roughly equally-sized partitions, using num-
ber of operations as a metric. This is a TLegUp step. The number of partitions
is specified by the user. In order to accomplish this, a network flow algorithm
is used to find the minimum cut between partitions [LW98]. The parameter for
cut size is the number of data bits, so the algorithm minimizes the size of the
data connections between partitions. Operations that output from a partition

8



are flagged for partition voter insertion, and the delay of these operations is
increased to be consistent with the added delay of a voter.

3.4 HLS

With the delays of partition outputs updated, HLS algorithms are run. The
original LegUp scheduling and binding algorithms are used. Scheduling is done
with a simple ‘as soon as possible’ algorithm that schedules operations as soon
as their dependencies are available. The binding algorithm then looks for large
components, such as hardware dividers, to share between operations.

3.5 Feedback Cycle Identification

TLegUp must identify feedback cycles because there is a possibility for errors
to persist in and propagate from these cycles if they do not contain a voter
somewhere in the cycle (see Figure 2.4). A depth first search is run on the data
flow graph to identify strongly-connected components, which are sub-graphs
that contain a path from any node to any other node.

3.6 Synchronisation Voter Insertion

After the cycles have been identified, TLegUp must decide where best to insert
a synchronisation voter in the cycle. This is a complex problem as cycles can
share edges with other cycles, and the best edge to insert a voter on in order to
minimize circuit delay and hardware resources may not be obvious. The current
algorithm inserts the voter so as to minimise the increase to the critical path
length.

3.7 RTL Generation

With all the HLS processes complete and the locations to insert voters deter-
mined, the Verilog output can be generated. This step relies on the original
LegUp algorithm, but with some modifications. The modifications write the
resultant RTL code block for each LLVM operation three times and insert a
predefined voter circuit for instructions that have previously been flagged as
requiring a voter. Voters are also inserted automatically in key locations, such
as at the outputs of the top module and outputs from the memory bus.

9



4 Report Scope

This section describes the overall scope of this document.

4.1 Problem Statement

While TLegUp has performed well in preliminary runtime testing, little work
has been done to verify that the processes and algorithms it uses are correct and
will produce correct output in all cases. Undertaking such work would aid in
finding limitations of the current implementation and correcting any mistakes
in it. It would also aid in developing robust documentation and providing a
framework for future development. Additionally, after this verification is com-
plete, more work can be directed to various improvements in partitioning and
other optimisations.

4.2 Verification of Correctness

A formal proof of each and every detail of the program would be too large an
undertaking to be reasonable. Instead, we have opted to argue for correctness
using a three-tiered approach, where each tier represents an argument at a
certain level of abstraction. The top tier presents a case for the overall design
flow of the program to be correct. It argues that each of the overarching abstract
steps taken by TLegUp are necessary and sufficient for generating a correct
circuit with TMR. The middle tier shows that the algorithms used to implement
these steps satisfy the requirements of the steps outlined in the top tier, and that
they are able to execute properly given input from previous steps and produce
the correct output for subsequent steps. The bottom tier is required to conclude
that the code implements the algorithms presented at the middle level correctly.

Figure 4.1: Three-tiered verification approach, with lower tiers expanding on
the tiers above.

10



5 Top Tier - High-level Argument for Correct-
ness

This section presents the argument for the top tier of the correctness proof for
TLegUp.

5.1 TLegUp Goal

TLegUp is an extension of LegUp, a high-level synthesis (HLS) tool. The goal
of TLegUp is to use LegUp to generate circuits with triple modular redundancy
(TMR) from C programs. This process will produce better output compared
to existing techniques where synthesis and triplication are isolated processes.

5.2 Definition of an Argument of Correctness

This section provides an argument of correctness for the processes used in
TLegUp. It is different from a formal proof of correctness in that it does not seek
to rigorously and formally prove all the details of the implementation. Rather,
it seeks to provide an argument, from an abstract level, that the steps TLegUp
takes produce a correct TMR circuit. To accomplish this, we explore what the
necessary and sufficient requirements of TMR and HLS are, show that the steps
TLegUp takes meet those requirements, and finally, show that these steps are
consistent and do not conflict with each other.

5.3 Triple Modular Redundancy

Triple modular redundancy requires circuits to be triplicated and majority vot-
ers to be inserted at the outputs to mask errors in at most one of the copies.
Starting with an existing circuit, simple triplication is trivial and is achieved
through a process of copying the original circuit and inserting a majority voter
at each output. This is sufficient for basic TMR. However, to increase reliabil-
ity, we partition the circuit and apply TMR to each partition individually. This
requires implementing a partitioning process. We must also consider feedback
loops within the circuit. Each such cycle needs to contain at least one synchro-
nisation voter to ensure that errors will not persist within and propagate from
them. Further, these voters serve to synchronise the state of cycles in a module
that has had its configuration rewritten to correct a configuration error. In
order to insert voters into these cycles, another process must therefore identify
where they occur.

Thus, we outline three necessary and sufficient processes to perform on a
circuit to satisfy our partitioned implementation of TMR: partitioning, feedback
cycle identification, and triplication with voter insertion. The final step relies
on the completion of the first two.

5.4 High Level Synthesis

The goal of high-level synthesis is to create a circuit from a high-level language.
In the case of LegUp, the high-level language is C and the circuit representation
is Register Transfer Level (RTL) Verilog. The high level language is translated
into a RISC-like instruction listing, and then the HLS is divided into three steps:

11



allocation, scheduling and binding. Allocation quantifies the hardware resources
available on the target device. Scheduling determines when instructions should
take place in hardware. Binding assigns the available registers and hardware
resources to specific instructions. After these three steps are complete, a gener-
ation process builds the circuit representation from the information generated
from the previous steps.

In our case, LegUp uses clang to generate LLVM IR, which is a low level
intermediate representation. After allocation, LegUp then adds scheduling and
binding information to the generated LLVM instruction listing. Finally, it uses
the LLVM listing and the added information to generate Verilog.

Thus we identify five necessary processes to perform on the high-level code to
generate a circuit representation: compilation, allocation, scheduling, binding,
and generation. Each of these steps depends on the previous ones and must be
completed in this order. As we know that LegUp and other HLS solutions work
with these processes, we can conclude that they are sufficient.

5.5 Using HLS with TMR

We modify LegUp to produce TMR circuits by performing the TMR steps during
the existing HLS process. The partitioning and feedback cycle identification
steps are performed on a graph that is derived from the LLVM instruction listing
rather than on a circuit representation, and they are done after the initial clang
compilation. This is achieved by creating a data flow graph (DFG) from the
instruction listing in order to partition it into roughly equally sized partitions,
using a minimum cut algorithm on the graph. Following that, feedback cycles
are identified as strongly connected components (SCCs) in the DFG using a
depth first search originating at each node. The LLVM instructions at the
locations where voters will be inserted are flagged. The information generated
from these processes is independent from the existing allocation, scheduling, and
binding steps. This means LegUp has been modified to perform them without
affecting the correctness of its original HLS steps.

The final required step is triplication and voter insertion. This is done during
the generation phase after all the prerequisite steps for both TMR and HLS have
been completed. Triplication is performed by copying the existing output from
LegUp while voter insertion is performed by adding predefined Verilog code
representing a voting circuit at the output of the flagged LLVM instructions.
Triplication itself has no effect on the functioning of the circuit, as each one
of the three modules has the same components as the original circuit without
TMR. On the other hand, voter insertion intends to modify the functioning of
the circuit, and for it to be correct it must be shown that it does not result in
a different output of the circuit compared to the original circuit without TMR.
A voting circuit evaluates xy ∨ yz ∨ xz, where x, y, and z are its three inputs.
Provided the overall circuit is error-free, a voting circuit’s inputs are all equal,
and its output takes the value of the inputs. This results in no change to the
output. In the case where inputs are not equal, the voting circuit outputs the
majority input.

12



5.6 Conclusion

This section shows that the steps added to TLegUp satisfy the requirements
needed to generate a correct TMR circuit. They also do not conflict with the
existing LegUp processes. Therefore, it is shown that the processes used by
TLegUp correctly produce a TMR circuit from high-level code that is function-
ally similar to the non-TMR circuit produced by LegUp.

13



6 Middle Tier - Algorithmic Verification

This section describes and applies a verification method to the algorithms de-
scribed in the high level argument.

6.1 Background

To complete the verification at this level, various existing verification techniques
were examined. Many involved unit testing or other automated tools for dy-
namic analysis. Interest in these techniques was low as TLegUp had already
undergone dynamic tests. On top of this, because these tests rely on running
code, when a test is failed it is not possible to determine if the failure is due to a
problem in the design of the algorithms, or a problem in their implementation.
Further still, dynamic testing only catches errors which are handled by the tests,
it does not uncover error conditions that have not been previously thought of.
Reasoning about all possible error conditions and creating tests to catch them
is too labour intensive for our needs. For these reasons, we restricted ourselves
to static analysis.

Static analysis techniques were suggested in communications with Prof.
Fethi Rabhi and A/Prof. Gerwin Klein of UNSW. These techniques generally
involve rigorous mathematical formalisation of all components into a model,
followed by a formal logical verification of the model based on some specified
conditions, either by hand or with automated tools. Again, these techniques
were considered to be far too labour intensive. There is also difficulty in being
sure that the model and the specified conditions are congruent with the soft-
ware being verified. For these reasons, we again restricted ourselves to informal
techniques.

There are a number of techniques described in the literature that meet our
restrictions, yet they often describe processes to be applied during construction
rather than techniques to verify software that already exists. Therefore we
describe a new method based on the existing ones that is suitable for application
to our project.

6.2 Verification Method

We used the following method to verify that the algorithms implemented in the
TLegUp design flow are correct. The method takes influence from Fagan in-
spections [Fag76] and a software design technique known as ‘design by contract’
[Mey92]. Both these methods are intended to be applied during the creation
of software, but our method is applied to software after it has been written.
Fagan’s methods influence the process we use to review, including the roles of
each person involved in the review. Design by contract gives us the idea of
modularising the code and specifying requirements for those modules.

Firstly, formal requirements are described for each algorithm. These take the
form of preconditions (input conditions) and postconditions (output conditions).
These conditions are defined in terms of the data processed by an algorithm and
must cover all assumptions made by it. The conditions describe the data at a
reasonably high level. The requirements are decided upon collaboratively by all
people involved in the review.

14



Secondly, pseudo-code is generated for each algorithm. The pseudo-code
is generated by the author of the software. It should be a representation of
the implementation code. It’s the author’s task to educate the other review
members on how the pseudo-code works, and the purpose of its statements.

Thirdly, the pseudo-code is verified by ensuring that each algorithm meets
each of its output requirements, and that the output requirements are congruent
with the input requirements of the next algorithm. In our case, TLegUp uses
some standard algorithms (e.g. network flow) that have already been reasoned
about, so we can use some of the properties of those to simplify this phase of the
procedure. This stage of the review is performed by an independent reviewer.
In order to minimise bias, the author has no input. Any errors brought to
light by this stage should be resolved by a moderator, independent again from
the reviewer and author. Resolution requires changes to the pseudo-code and
therefore it must be verified again.

The now verified pseudo-code can form the basis of the final verification
phase, which will consist of verifying that the implemented code matches the
pseudo-code. The reliability of our verification method depends on how robust
the set of requirements are. It is necessary to make sure requirements cover all
assumptions made by an algorithm.

In our specific case, the algorithms we intend to apply this method to are
those described in the TLegUp design flow. Namely, they are: DFG generation,
DFG partitioning, cycle finding, synchronisation voter insertion, and triplica-
tion.

6.3 Verification

DFG Generation

The purpose of this step is to generate a network flow graph compatible for
use in the network flow algorithm described by Yang and Wong [YW96]. In
our case, the graph represents the data flow of the compiled LLVM code, with
nodes representing instructions and directed edges representing data dependen-
cies. Nodes weights are proportional to the amount of logic assigned to each
instruction whilst edge weights are proportional to the bit width of the data
represented by the edge.

Requirements

Input

1. The input is a weighted and directed graph.
2. Every node represents an LLVM instruction.
3. Edges represent data dependencies between nodes.

Output
In the following section, ‘X is connected to Y ’ means that X has an edge
directed towards Y .

1. The output must be a weighted and directed graph.
2. For every node Vi in the input graph, there is a node Vo in the output

graph.

15



3. For every node Vo, there are two additional bridging nodes N1 and N2 in
the output graph.

4. Vo is connected to N1 with an edge weight of infinity.
5. N1 is connected to N2 with an edge weight proportional to the bit-width

of the data leaving Vo.
6. N2 is connected with edge weights of infinity to all nodes in the output

graph that correspond to children of Vi.
7. All nodes in the output graph that correspond to children of Vi are con-

nected to N1 with edge weights of infinity.
8. N2 is connected to Vo with an edge weight of infinity.
9. No other edges are present.

Figure 6.1: An example of the form of the input.

Figure 6.2: Given the input example, the output is of this form.

16



Pseudo-code

1: Initialise a weighted and directed graph with three times as many nodes
as the input graph such that each input node corresponds to three nodes in
the output graph; Vi in the input has Vo, N1, and N2 in the output graph.

2: Set all edge weights to 0 (representing no edge)
3: for each Vi and corresponding Vo, N1 and N2 do
4: Set the edge weight from Vo to N1 to INF
5: Set the edge weight from N1 to N2 to the output data width in bits of

Vi

6: for each child of Vi called Vic do
7: Get the corresponding node of Vic called Voc

8: Set the edge weight from N2 to Voc to INF
9: Set the edge weight from Voc to N1 to INF

10: end for
11: Set the edge weight from N2 to Vo to INF
12: end for

Validation This is the first algorithm encountered in TLegUp that is not in
the standard LegUp flow, and therefore all its input is sourced from LegUp
algorithms. As LegUp algorithms are not in the scope of this validation, it is
assumed that the input requirements are met.

Output requirement 1 is a requirement on the data type of the graph. As
the graph data structure is explicitly weighted and directed, this requirement is
satisfied.

Output requirements 2 to 8 regard the structure of the graph, specifically
where the edges are and what their weights are. Each of these requirements
is matched by a statement in the pseudo-code that creates the edge according
to the requirements. However, it must be shown that once a requirement is
satisfied by a statement it is not unsatisfied by subsequent statements before
the algorithm terminates. Since each statement creates a unique edge that is not
created before or after, and since no edges are ever removed, this requirement
is met.

Output requirement 9 is met because there is no statement that creates an
edge not mentioned by a requirement.

DFG Partitioning

This algorithm partitions the graph into n balanced partitions, and in doing
so attempts to minimise the width of the data connections between partitions.
The method behind it is explained by Yang and Wong [YW96]. They describe
an algorithm which takes an input graph, a ratio, and an error value, and
produces two partitions of the input graph, with the weight of one to the other
being approximately equal to the ratio. The error value specifies a tolerance
by which the weight of each partition can differ from the desired weight. We
can apply their algorithm repeatedly to create n partitions. In our case, edge
weight is proportional to the data width of the connection while node weight
is proportional to the amount of logic used by the instruction at a node. The
weight of a cut is the sum of the weights of all edges cut.

We strictly require that the algorithm produces the desired number of par-
titions. However, we place no strict requirements on balancing or minimising

17



the width of the data connections because these results are dependent on the
properties of the input graph. Some input graphs are naturally impossible to
balance. Consequently, we only require that the algorithm aims to balance par-
titions and minimise the width of data connections. Although not strict, these
requirements are important for producing good results with input graphs that
can be well balanced with minimal data connections between partitions.

Requirements

Input
This algorithm only requires the output generated in the previous step with
one additional requirement:

1. There are enough nodes in order to create the desired number of partitions.

Output

1. Graph must be partitioned into n partitions that balance the amount of
logic allocated to each partition as well as the total bit-width of wires
connecting the partitions.

Pseudo-code

1: Choose any two nodes, s and t, in the flow graph
2: Find the minimum cut between s and t
3: Mark all nodes that can be reached from s without crossing the cut as

belonging to p1 (partition one), and all other nodes as p2 (partition two)
4: if p1 is larger than the total graph weight divided by n plus some margin

then
5: Move one node with an edge on the cut from p1 to p2 such that the

weight of the cut is increased by as little as possible

6: Collapse all nodes in p2 down to t
7: go to line 2
8: else if p1 is smaller than the total graph weight divided by n minus some

margin then
9: Move one node with an edge on the cut from p2 to p1 such that the

weight of the cut is increased by as little as possible

10: Collapse all nodes in p1 to s
11: go to line 2
12: else . p1 is a partition with the target weight
13: Push p1 to a list of output partitions
14: if n > 2 then
15: Modify the flow graph to exclude p1
16: n← n− 1
17: go to line 1
18: else
19: Push p2 to the list of output partitions
20: return
21: end if
22: end if

18



Validation We make the assumption that the margin used in line 4 is suffi-
ciently large such that the operation at line 5 never makes p1 smaller than the
target weight minus the margin, and that the operation at line 9 never makes
p1 larger than the target weight plus the margin. This is always possible when
the margin is larger than the weight of the largest node moved by those oper-
ations. In the case where the margin is too small, the algorithm would not be
able to complete as the subsequent merge operation would result in a partition
that is either too large or too small but cannot be reduced or increased in size
respectively. We must assume that the margin is appropriate because it is a
user-defined value that our algorithm has no control over. Larger margins have
implications for how well balanced the resulting partition is, but do not affect
the validity. On the contrary, values that are too small invalidate the algorithm.

Similarly, we can only assume that input requirement 1 is met because it
is a function of n, the number of nodes in the graph (a function of the circuit
design), and the margin. Again, these are user-defined parameters that our
algorithm has no control over.

With the aforementioned assumptions, the algorithm will satisfy output re-
quirement 1 because each iteration will successfully create a partition of the
target weight until n partitions have been created.

The algorithm balances the weight of partitions because the algorithm only
outputs partitions that satisfy the weight requirement, and all partitions are
subject to the same weight requirement.

The algorithm minimises the data bits connecting partitions because the
partition boundaries are defined by a minimum cut algorithm. The algorithm
first starts with the minimum possible cut, and if a satisfactory partition isn’t
found, it merges a node and finds the next minimum cut. By merging in such
a way as to increase the minimum cut the least, the algorithm sorts through
possible partitions in order of increasing cut size thus finding partitions with
smaller cut weights first. Since cut weights are proportional to data bits, the
algorithm aims to minimise the amount of interconnected data bits between
partitions.

Cycle Finding

LegUp provides us with information on the location of cycles in the program
flow using a concept known as ‘basic blocks’ [BAS]. It creates two lists, a list of
cycles of basic blocks and a list of every location where a basic block jumps back
to itself or a previous basic block, known as the back edge list. This information
alone is insufficient for us as we are interested in cycles in the data flow graph,
not the program flow. The distinction is important as it is possible for a basic
block in a cycle to be comprised of instructions with no data dependencies, and
therefore be part of a program flow cycle whilst not being part of a data flow
cycle. To find data flow cycles we use a depth first search [Tar72] to find a
path from an instruction to itself in the data flow graph. Depth first is chosen
over breadth first because we are interested in all paths and must search all
instructions in the design anyway, and in this capacity, depth first is far more
memory efficient.

The DFS algorithm has a run time of M × O(N + E) where M is the
number of instructions we search from, N is the number of instructions in the
entire circuit design, and E is the number of edges between instructions in the

19



Figure 6.3: This diagram represents a program with 4 basic blocks (A, B, C,
and D) and the edges between them (numbered 1, 2, 3, and 4). The list of cycles
of basic blocks would contain {A, B, C} and {D} as two distinct elements. The
back edge list would contain edge 3.

entire circuit design. Simply running the DFS from all instructions will generate
many duplicate cycles and take a length of time on the order of hours on typical
hardware. Therefore we choose to reduce the number of instructions we start the
search from, thus reducing the value of M . We do this through two techniques.

The first technique is to use the program cycle information to restrict the
basic blocks that we start searches from. Instructions in basic blocks that are
not in cycles will never contain data flow cycles as they are only traversed once.
Therefore we can restrict starting points for the DFS to instructions in basic
blocks in the cycle list that aren’t singletons and all blocks that have a back
edge pointing to themselves. It is important to exclude singletons as they are
present in the cycle list even if they don’t form a cycle (see figure 6.3). We must
also include blocks that have a back edge pointing to themselves in order to find
the singletons which form cycles with themselves.

The second technique is only initiating searches from phi instructions [PHI].
The reasoning is that phi instructions are closely related to the concept of
branching, so we assume that we find a phi instruction somewhere in every
cycle.

Requirements

Input

1. Input is a list of all cycles of basic blocks

Output

20



1. The output is a list of lists of instructions that form cycles.

Pseudo-code

1: for each cycle of basic blocks do
2: if the current cycle has more than one basic block then
3: for each basic block in the current cycle do
4: run FindSCC with the current block as the argument
5: end for
6: end if
7: end for
8: for each back edge do
9: if the edge is a loop then

10: run FindSCC with the node as the argument
11: end if
12: end for
13: procedure FindSCC(basic block)
14: for each phi instruction in the block do
15: DFS for a path to the current phi instruction
16: if DFS has found one or more cycles then
17: Add the found cycles to the list of cycles if they are not already

present
18: end if
19: end for
20: end procedure

Validation For this step, the input data is constructed entirely by the LLVM
library, and therefore is not subject to our validation. However, we must still
show that the input data is congruent with a list of all basic blocks that contain
instructions that belong to a cycle, as per the input requirement. We can show
that filtering the basic block cycle list and the back edge list satisfies this. We
filter the basic block cycle list by excluding all singleton cycles on line 2. This
is because such elements do not represent true cycles; LLVM includes single
basic blocks which don’t contain any cycles in the list in this manner. So far,
this covers all blocks which contain instructions that form a cycle with other
blocks, but we’re still missing blocks that contain an internal cycle. To find
those blocks, we filter the back edge list on line 9 to only inspect blocks which
have an internal back edge. With these two filters, the two data sets satisfy our
input requirement.

To find all cycles and satisfy the output requirement, the algorithm must
run FindSCC on at least one instruction in each cycle in each basic block it
considers. We find that the assumption about phi instructions is problematic.
The LLVM compiler need not emit a phi instruction for every looping structure.
In fact, a simple for loop doesn’t contain a phi instruction by default when
compiled by the clang compiler [ben15]. We have verified this to be the case
with LLVM version 6.0.0; the latest version at the time of writing. This means
that if we were to have a similar for loop alone in a basic block, TLegUp would
never find the cycle. Even though the back edge list would indicate that there is
a loop in the block, the block wouldn’t be searched if it doesn’t contain any phi
instructions. Ultimately, this algorithm does not satisfy the output requirement.

21



There are better algorithms for cycle finding, such as that described by Johnson
[BJ75].

It is recommended to switch to Johnson’s algorithm for a number of reasons.
Its primary purpose is cycle finding in directed graphs, so it is designed for
this application and has been tested and validated before. It is also far more
efficient, and is able to find every cycle in a graph with one traversal of the graph
without generating any duplicates. For this reason there is no need for dangerous
optimisations like restricting the amount of instructions searched from.

Synchronisation Voter Insertion

This algorithm decides where to insert voters in each cycle found. The choice
is non-trivial, as it has implications on circuit area and performance.

In our chosen implementation, we use a simple heuristic that finds the com-
binatorial path with the lowest latency and sets a flag to insert a voter after the
final instruction of the path. A combinatorial path is a sequence of instructions
without any registers in between them. This allows the circuit to keep clock
periods as low as possible.

Requirements

Input
This algorithm relies only on the cycle list produced by the previous algo-
rithm.

Output

1. Each cycle specified in the input contains a synchronisation voter.

Pseudo-code

1: for each cycle do
2: Mark the instruction at the end of the path with the lowest latency
3: end for

Validation The validation of the output is trivial as the algorithm always
inserts a voter when given a cycle.

Triplication

The purpose of this algorithm is to create a Verilog RTL file that properly
represents the triplicated circuit. We use the usual HLS methods, but when-
ever we encounter an instruction that is flagged for voter insertion, we insert
a predefined voter circuit. The main circuit design is defined to reside within
a module we instantiate three copies of. In order to connect each voter to its
equivalents in the neighbouring two modules (its sibling voters), we add input
and output ports to each module; two inputs and one output for each voter.
Connecting the voters is a matter of iterating through each voter in the circuit
and assigning wires from its input and output ports within its module to the
input and output ports of its corresponding sibling voters. This is handled at
the global ‘top module’ in the Verilog code.

22



Requirements

Input
The input to this algorithm is the usual list of LLVM instructions in the
circuit that is usually handled by LegUp, but with one additional requirement
for TLegUp.

1. Each instruction has a flag denoting whether or not a voter should be
inserted on its output.

Output

1. There are three identical modules of the main circuit created, each con-
sisting of n partitions.

2. Every instruction with a voter flag is followed by a voter circuit.
3. Every voter is connected to the corresponding voters in its sibling modules.

Pseudo-code

1: procedure WriteMainModule
2: for each instruction do
3: Normal LegUp Code
4: if current instruction is flagged for voter insertion then
5: Write a voter circuit after the current instruction
6: Write unique input and output ports for the voter
7: end if
8: end for
9: end procedure

10: procedure WriteTopModule
11: Normal LegUp Code
12: Instantiate 3 main modules
13: for each voter in all three modules do
14: Connect the output of the current voter to its two sibling voters
15: Connect the inputs of the current voter to its two sibling voters
16: end for
17: end procedure

Validation The input requirement is met by the partitioning and synchroni-
sation voter insertion algorithms, which set flags on instructions that should be
followed by a voter.

Output requirement 1 is met by line 12 of the pseudo-code, which creates
exactly three instances of the main module.

Output requirement 2 is met by line 6 of the pseudo-code, which creates a
voter circuit on the outputs of each flagged instruction.

Output requirement 3 is met by lines 14 and 15, which handle each and
every voter in all three modules.

6.4 Conclusion

In conclusion, this tier of the verification has investigated TLegUp at the algo-
rithm level. While not using a formal method, we have synthesised an appropri-

23



ate informal method which provides a useful level of insight with an acceptable
level of labour. By this method we have verified that many of the algorithms
correctly implement the design steps, although we have uncovered an issue in
the cycle finding algorithm.

24



7 Bottom Tier - Implementation Verification

This level of verification has not been completed, and so this section describes
considerations for this level rather than presenting a method and implementa-
tion of it.

7.1 Considerations

This level deals with many implementation-specific issues regarding the use of
the clang compiler and LegUp software. For example, changes must be made
to LegUp data types in order to support voter flags. Retrieving the required
information for the aforementioned algorithms may require calling LLVM func-
tions that require specially constructed arguments. These issues necessitate a
further set of requirements which apply only to this level. The relevant software
components should be given a closer look to determine what the requirements
are, and whether they conflict with the previously verified algorithms. Care
must be taken when modifying existing LegUp code such that verification of
those modifications can be constrained. Otherwise there is the issue of the task
of verifying the modifications becoming the task of verifying the original LegUp
code at large.

7.2 Possible Method

The first step should involve identifying all the implementation-specific details
that the code must handle and verifying that they are congruent with the pre-
vious levels. Then the modifications to the LegUp code that handle such issues
should be inspected to make sure they meet the requirements.

With all the implementation-specific parts of the code verified, we can focus
on verifying code that implements the algorithms from the middle tier. The
written code should be plainly analogous to the pseudo-code. In places where
it is not, a short justification can be written, or the code could be found to be
unverified. We can also employ the use of specific dynamic tests to once again
verify that our implementation meets the requirements specified in the previous
stage.

25



8 Conclusion

This section documents the future work still required on this project, as well as
final comments on this report.

8.1 Future Work

Verification

At this stage, only the upper two tiers of verification have been completed.
To completely verify TLegUp, the verification of the bottom tier needs to be
completed along with a verification of LegUp itself. Such a task would be con-
siderably labour intensive. In addition, since beginning this report a new version
of TLegUp has been developed. This requires new verification for all parts where
the verification in this report no longer applies.

Documentation

Currently, documentation for TLegUp is quite sparse. This presents a difficulty
for new developers learning the architecture of the software. The work in this
report has documented many concepts of the code that were previously un-
documented. However, further work is required to produce comprehensive and
clearly written documentation in a more suitable format.

Optimization and Improvements

There are a number of areas of improvement for this TLegUp version:

• The cycle finding method has a large potential for optimisation via use of
Johnson’s algorithm.

• Partitioning could be improved to produce a more balanced result. Cur-
rently partitioning is balanced by number of operations. Operations can
have different area, so this results in unbalanced partitioning.

• Currently, all functions are inlined, which uses a lot of circuit area. It
should be possible for multiple calls of the same function to share circuit
hardware.

• Circuit area estimation could be improved by taking into account routing
area.

• The algorithm that places voters inside feedback cycles could be improved
to take into account other feedback cycles to make a better placement.
For example it could decide to place one voter to serve two cycles if those
cycles share a data path.

Many of these issues are dealt with in the subsequent FLP (function-level
partitioning) version of the software which is able to partition at the function
level rather than at the instruction level. This allows more balanced partitioning
and addresses the circuit area concerns. Johnson’s algorithm has also been
implemented in this version as well. The issue regarding voter placement in
feedback cycles remains outstanding.

26



8.2 Final Comments

The verification of TLegUp has been quite useful in documenting and verifying
the assumptions in the design, as well as proving that some parts of the code
do not meet our requirements. It has also highlighted numerous areas for im-
provement. It is anticipated that continuing to verify this project will be greatly
valuable in identifying further areas for improvement.

27



Bibliography

[BAS] LLVM: Basic block. http://llvm.org/doxygen/group_

_LLVMCCoreValueBasicBlock.html. Accessed: 2018-05-06.

[ben15] benstopics. How to create loop object on the llvm? https://

stackoverflow.com/a/34517113, 2015.

[BJ75] Donald B. Johnson. Finding all the elementary circuits of a di-
rected graph. SIAM Journal on Computing, 4:77–84, March 1975.

[Car00] Carl Carmichael. Correcting Single-Event Upsets Through Virtex
Partial Configuration. Xilinx Application Note, June 2000.

[CCA+11] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang,
Ahmed Kammoona, Jason H. Anderson, Stephen Brown, and
Tomasz Czajkowski. LegUp: High-level synthesis for FPGA-
based processor/accelerator systems. In Proceedings of the 19th
ACM/SIGDA International Symposium on Field Programmable
Gate Arrays, FPGA ’11, pages 33–36, New York, NY, USA, 2011.
ACM.

[CGMT09] Philippe Coussy, Daniel D Gajski, Michael Meredith, and Andres
Takach. An introduction to high-level synthesis. IEEE Design &
Test of Computers, 26(4):8–17, 2009.

[Fag76] M. E. Fagan. Design and code inspections to reduce errors in
program development. IBM Syst. J., 15(3):182–211, September
1976.

[LAW+17] Ganghee Lee, Dimitris Agiakatsikas, Tong Wu, Ediz Cetin, and
Oliver Diessel. TLegUp: A TMR code generation tool for SRAM-
based FPGA applications using HLS. In Proc. of IEEE Symposium
of Field-Programmable Custom Computing Machines (FCCM),
2017.

[Lee17] Ganghee Lee. TLegUp design flow. http://lp14partition.

unsw.wikispaces.net/file/view/TLegUp_ILP_designflow.

pdf/620788125/TLegUp_ILP_designflow.pdf, 2017.

[LLV] The LLVM compiler infrastructure project. https://llvm.org.
Accessed: 2017-10-17.

[LW98] Huiqun Liu and DF Wong. Network-flow-based multiway par-
titioning with area and pin constraints. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems,
17(1):50–59, 1998.

[Mey92] Bertrand Meyer. Applying “design by contract”. Computer,
25(10):40–51, October 1992.

[OCG+09] Patrick S Ostler, Michael P Caffrey, Derrick S Gibelyou, Paul S
Graham, Keith S Morgan, Brian H Pratt, Heather M Quinn, and
Michael J Wirthlin. SRAM FPGA reliability analysis for harsh
radiation environments. IEEE Transactions on Nuclear Science,
56(6):3519–3526, 2009.

28

http://llvm.org/doxygen/group__LLVMCCoreValueBasicBlock.html
http://llvm.org/doxygen/group__LLVMCCoreValueBasicBlock.html
https://stackoverflow.com/a/34517113
https://stackoverflow.com/a/34517113
http://lp14partition.unsw.wikispaces.net/file/view/TLegUp_ILP_designflow.pdf/620788125/TLegUp_ILP_designflow.pdf
http://lp14partition.unsw.wikispaces.net/file/view/TLegUp_ILP_designflow.pdf/620788125/TLegUp_ILP_designflow.pdf
http://lp14partition.unsw.wikispaces.net/file/view/TLegUp_ILP_designflow.pdf/620788125/TLegUp_ILP_designflow.pdf
https://llvm.org


[PHI] LLVM language reference manual LLVM 7 documentation.
https://llvm.org/docs/LangRef.html#phi-instruction. Ac-
cessed: 2018-05-09.

[Tar72] Robert Tarjan. Depth-first search and linear graph algorithms.
SIAM Journal on Computing, 1(2):146–160, 1972.

[THNCD17] Nguyen T. H. Nguyen, Ediz Cetin, and Oliver Diessel. Improv-
ing reliability of FPGA-based systems by scheduling checks for
configuration memory errors. Submitted to IEEE Transactions on
Aerospace and Electronic Systems, 2017.

[YW96] Hannah Honghua Yang and D. F. Wong. Balanced partitioning.
IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 15(12):1533–1540, Dec 1996.

29

https://llvm.org/docs/LangRef.html#phi-instruction

	Introduction
	Background
	The Effects of SEUs
	Triple Modular Redundancy
	High Level Synthesis
	Previous work
	Motivation

	TLegUp Design Flow
	Compilation to LLVM
	Data Flow Graph Generation
	Partitioning
	HLS
	Feedback Cycle Identification
	Synchronisation Voter Insertion
	RTL Generation

	Report Scope
	Problem Statement
	Verification of Correctness

	Top Tier - High-level Argument for Correctness
	TLegUp Goal
	Definition of an Argument of Correctness
	Triple Modular Redundancy
	High Level Synthesis
	Using HLS with TMR
	Conclusion

	Middle Tier - Algorithmic Verification
	Background
	Verification Method
	Verification
	Conclusion

	Bottom Tier - Implementation Verification
	Considerations
	Possible Method

	Conclusion
	Future Work
	Final Comments


