Towards a Web Operating System (WOS)

Peter Kropf John Plaice Herwig Unger

1997

Abstract

We discuss the concept of computing on the Internet or the Web based on a demand-driven technique called eduction. Because it is impossible to define fixed sets of operating system functions for all services and to keep a complete catalogue of all available resources, incrementally built versions of a Web Operating System (WOSTM) are proposed to offer an exhaustive variety of services available on a network. The WOS basically consists in a collection of eductive engines and warehouses all available from the Web.

1 Introduction

With the rapid development of new forms and concepts of networked and mobile computing, it is increasingly clear that operating systems must evolve so that all machines in a given network, even the Internet, can appear to be controlled by the same operating system. As a result, the world-wide interconnected networks, commonly called the Internet or the Web, could potentially be supported and managed by a giant virtual operating system [8]. For example, initially the World Wide Web was created to allow one to view remote hypertext pages on one’s own machine, thereby facilitating collective work among geographically removed collaborators. Soon after, virtual pages, generated on the fly using tools such as cgi-bin [2], allowed the widespread remote execution of programs. More recently, with languages such as Java [1], it has become possible to download fully executable programs to one’s own machine, and then to make them run on that machine. However, there is no general means for taking an arbitrary program and having it run somewhere on the network. There are several reasons that this last possibility is actually essential. First, with the development of network-centric computing, there will be more and more limited-capacity machines (slower processors, limited memory or storage space, etc.), such as the NC computers [6], that will be forced to use more powerful computers on the network to effect any non-trivial tasks. Second, an arbitrary program on the network might just be incapable of running on the local machine, simply because it is the wrong platform (hardware, local operating system, running applications, etc.) Implicit in the above discussion is the heterogeneous nature of most networks. The transparent use of such heterogeneous networks of computers has been partially addressed in work on metacomputing, whose objectives are to transform a network into one single computer system [3]. Recent developments in operating systems such as Inferno [9] or JavaOS [5] provide the user ubiquitous access to resources and information. However, the Web or the future global information infrastructure is more than just a metacomputer or a networked system of computers seen as a virtual machine run by a virtual (network) operating system, in that there is no complete catalog of all resources available. Moreover, such a catalog is infeasible, because of the highly dynamic and distributed nature of the Web or the Internet, continually integrating rapidly developing technologies.

2 Web Operating System: WOS

As a result, any attempt to design one single operating system offering a fixed set of resource-management functions will have difficulty adapting to technological innovation or to new demands.
Therefore, there is, as proposed in [4], a need for a Web Operating System (WOS), which would make available, to all sites on a network, the resources available on that network, or at least a reasonable subset thereof, to effect computations for which local resources are missing. These resources could be of many forms, including processor speed, available memory or storage space, available operating systems or applications, and so on. In order to deal with the dynamic changes in the system, the Web Operating System should be a versioned system, in which different versions of the operating system are running simultaneously on the network. What distinguishes the Internet from classical distributed systems is the fact that there is no complete catalog of all resources available and central decisions making for resource allocation is not acceptable or even impossible. Rather, the Web Operating System (WOS) [4] should be a versioned system, in which different versions not capable of dealing with a particular request for service, then pass it on to another version, as currently done for packet routing. Generalized software configuration techniques, based on a demand driven technique called eduction [7] are being developed, that can be used to define versions of a WOS to be built in an incremental manner. Software and hardware (description) repositories or warehouses will provide the necessary components for fulfilling a service requested. The kernel of a WOS would be a general eductive engine responding to requests from users or other eductive engines and fulfill these requests using its warehouses. The WOS would then work in the following manner. A request would be placed by a user to run a particular program or to initiate some service. The programs or services might be located at different sites of the network. The eductive engine would then decide whether it is capable of dealing with the request or whether it will pass it over to some other eductive engine until finally one engine accepts responsibility for the request. Once all the resources (programs, services, hardware) become available, then the program could be run and the requested service fulfilled.

3 Conclusions

The general aim of our approach is to develop a family of services for illustrating and studying the concept of a Web Operating System (WOS) based on one single underlying concept, the demand-driven computation using simple warehouses, which hold and provide all the necessary information a system may offer to a request. The WOS will thus take the form of an add-on service to existing operating systems, such as UNIX or NT. The ongoing work includes 1) production of sample resource managers and warehouses, together with the necessary automatic broadcast or ‘resource-mining’ mechanisms, 2) the implementation of a sample series of WOS-services (e.g., typesetting services, graphics processing, interactive simulations, etc.) and 3) implementation of a prototype user-interface based on browser-like forms to specify user (application) requests, which includes new ‘data-mining’ search engines.

References

