
1

saBallTracking: A Comprehensive Description

By JingJing Xu

Contents

Abstract ... 2
Introduction .. 2
Jargons and parameters... 2
Coordinate system relative to the camera.. 3
Coordinate system relative to the neck of the robot............................ 4
Account for original pan and tilt ... 5
Account for turn ... 6
Calculate elevation of ball.. 7
Future Improvements... 8

Removals ... 8
Modifications .. 8
Other Comments ... 8

Conclusion .. 8
Bibliography ... 8
Appendix A – ballTracking.cc ... 9
Appendix B – Proof for tilty... 10

Proof 1... 10
Proof 2... 11

2

Abstract
This report is a comprehensive description of the ball tracking behaviour, saBallTracking,

found in the Robocup 2003 rUNSWift code repository (version 2134). The function first calculates
the position of the ball in a camera relative coordinate system, then transforms it into a coordinate
system relative to the base of the neck of the robot, accounting for the original heading, tilt and turn.
This results in a somewhat slow but rather accurate estimation of the heading and tilt of the top
centre of the ball.

Introduction
saBallTracking is a behaviour found in the Robocup 2003 rUNSWift code repository (version

2134), to make a robot dog visually follow the ball by moving its head. Since the code itself lacks
documentation, and previous theses lack details and references to the code, this document is an
attempt to thoroughly explain the purpose of each significant line of code, the mathematics behind
it, parameters used, and to assist readers’ understanding with diagrams.

Jargons and parameters
 vision->vob[vobBall].cf (line 10) is the confidence factor of the visual object, ball, in the

robot’s vision module. It is a value from 0 to 1000 (where 0 = not confident and 1000 = very
confident), and in this case, if the confidence factor is greater than 0, then the robot can see the
ball.

 Panning is the act of rotating the head in the XZ plane (ie. looking left and right).

 Heading is the angle between an object and the z-axis in the XZ plane, where left of the axis is
positive and right is negative.

 panx (line 12) is the parameter a programmer can control to change the heading (in degrees) of
the robot’s head, relative to the top of the neck of the robot (aka back of the head, pan pivot
point), ie. to pan the head. The robot may not end up with the exact heading of panx because of
calibration and offsets, but it will be close. hPan (lines 17-19, 33, 35) is the exact angle (in
degrees) of the robot’s current heading, but it can only be read and not written to.

 vBall.imgHead (line 24) is the heading of the centre of the ball relative to the camera.

 Tilting is the act of rotating the head in the YZ plane (ie. looking up and down)

 Elevation is the angle between an object and the z-axis in the YZ plane, where up is positive
and down is negative.

 tilty (line 50) is the parameter a programmer can control to change the elevation (in degrees) of
the robot’s head, relative to the base of the neck of the robot, ie. to tilt the head. As with panx,
tilty is not exact, and hTilt (lines 38-39) is the exact current elevation of the robot’s head.

 vBall.imgElev (line 25) is the elevation of the centre of the ball relative to the camera.

 vision->vob[0].misc (line 25) is the elevation of the top of the ball relative to the camera.

 vBall.d is the distance between the camera and the ball which is parallel to the field.

 turnCCW is the parameter a programmer can control to make the robot turn counter clockwise
turnCCW degrees per half-step.

3

Coordinate system relative to the camera

Let XYZ1 be the coordinate system where:

x-axis is perpendicular to the robot’s field of vision
y-axis is the up vector
z-axis is parallel to the robot’s field of vision (ie. the direction along the nose)
origin is the camera

Calculate the position (ie. the x,y,z coordinates) of the ball relative to the camera.

24 x1 = vBall.d * tan(radians(vBall.imgHead));

25 //y1 = vBall.d * tan(radians(vBall.imgElev));

26 y1 = vBall.d * tan (radians (PointToElevation (vision-
>vob[0].misc)));

27 z1 = vBall.d;

ball (x1,z1)x1

z1

camera x

z

imgHead

x1

y1

ball (x1,y1)

camera
x

y image

image

imgElev

image

y

ball (z1,y1)

z1

y1

camera
z

misc

4

Coordinate system relative to the neck of the robot

Let XYZ2 be the coordinate system where:

axes are the same as above
origin is the base of the neck

Calculate the position of the ball relative to the base of the neck of the robot.

29 x2 = x1;

30 y2 = y1 + NECK_LENGTH;

31 z2 = z1 + FACE_LENGTH;

image

neckfacez1

y

ball (z2,y2)

y1

z
z2

y2

base of neck

head

head

face

ball (x2,z2)x2

z2

x

z

z1

image

5

Account for original pan and tilt

Let XYZ3 be the coordinate system where:

z-axis is the direction the robot’s body is facing
origin is the base of the neck

Negate hPan because it is opposite to mathematical conventions (hence rotate by –hPan
degrees instead)

Rotate the position of the ball by -hPan degrees around the y-axis

33 x3 = x2*cos(radians(-hPan))-z2*sin(radians(-hPan));

34 y3 = y2;

35 z3 = x2*sin(radians(-hPan))+z2*cos(radians(-hPan));

















−×+−×

−×−−×
=



































−−−

−−

=
















)cos(2)sin(2
2

)sin(2)cos(2

2
2
2

1000
0)cos(0)sin(
0010
0)sin(0)cos(

3
3
3

hPanzhPanx
y

hPanzhPanx

z
y
x

hPanhPan

hPanhPan

z
y
x

base of neck

ball (x3,z3)

x3

z3

x

z

z2

image

hPan

6

Rotate the position of the ball by hTilt degrees around the x-axis

37 x4 = x3;

38 y4 = z3*sin(radians(hTilt))+y3*cos(radians(hTilt));

39 z4 = z3*cos(radians(hTilt))-y3*sin(radians(hTilt));

Account for turn

Rotate the position of the ball by turnCCW/8 degrees around the y-axis in case the robot
is turning

41 double turn = radians(turnCCW/8);

42 x5 = x4*cos(turn) - z4*sin(turn);

43 y5 = y4;

44 z5 = x4*sin(turn) + z4*cos(turn);

image
neck

z3

y

ball (z4,y4)

z
z4

y4

base of neck

hTilt

















×−×
×+×=


































−

=
















)sin(3)cos(3
)cos(3)sin(3

3

3
3
3

1000
0)cos()sin(0
0)sin()cos(0
0001

4
4
4

hTiltyhTiltz
hTiltyhTiltz

x

z
y
x

hTilthTilt
hTilthTilt

z
y
x

7

Calculate elevation of ball

Clip the z value in case it is shorter than the neck length.

46 if (z5 < NECK_LENGTH) z5 = NECK_LENGTH;

Calculate the elevation of the ball from its position relative to the base of the neck of the
robot.

48 headtype = ABS_H;

49 double dist = sqrt(z5*z5 + y5*y5);

50 tilty = degrees(atan(y5/z5)-asin(NECK_LENGTH/dist));







−






=







−






=







−






=

dist
y

dist
neck

dist
z

dist
neck

dist
neck

z
y

5arccosarccos

5arcsinarccos

arcsin
5
5arctantilty (For proof see Appendix B)

base of neck

image
neck

y

ball (z5,y5)

z

z5

y5

tilty

dist

8

Future Improvements

Removals
11 lastTrackHead = vision->vob[vobBall].head;
This is the only place where lastTrackHead is used.
13 VisualObject &ball = vision->vob[vobBall];
ball is not referred to again.
17 if (abs(panx - hPan) > FOV) {
18 double factor = 1.0 + ABS(panx-hPan)/60;
19 panx = hPan+(panx - hPan)*factor;
20 }
When the ball rolls by too fast, the robot tends to lose sight of the ball instead of turning its head too
fast. Therefore the differece between panx & hPan is rarely (if ever) greater than 10 when it can
see the ball.
46 if (z5 < NECK_LENGTH) z5 = NECK_LENGTH;
Sanity checks are done elsewhere to prevent this from doing any harm.
51 old_tilt = tilty;
52 old_pan = panx;
53 } else {
54 tilty = old_tilt;
55 panx = old_pan;
These lines do absolutely nothing since panx and tilty are not reset each time saBallTracking is
called.

Modifications
41 double turn = radians(turnCCW/8);
Currently this causes the robot to lose sight of the ball when turning at a large angle. Should change
turnCCW/8 to a more accurate estimation of angle turned per camera frame (or angle turned per
half step / number of camera frames per half-step).

Other Comments
25 //y1 = vBall.d * tan(radians(vBall.imgElev));
Tracks the centre of the ball, can cause the robot to jerk its head when the ball is too close to its face
(fireball).

If one wants to calculate panx using the same way tilty is calculated, just add:
36 panx = atan(x3/z3);
Note: panx should be calculated relative to the head pivot point and not the base of the neck, hence
use z3 instead of z4.

Conclusion
saBallTracking tracks the ball by converting the pan and tilt angles relative to each image the

camera takes into and tilt angles relative to the base of the neck. First it calculates the position of the
ball relative to the camera, then the base of the neck, then take in account of the pan and tilt angles
it already faces, and finally converts this position back into angles.

Bibliography
Z. Wang, J. Wong, et al. Ball Tracking, rUNSWift RoboCup2002 Sony Legged League Team Thesis,
UNSW, 2002

9

Appendix A – ballTracking.cc
01 #include "Behaviours.h"
02 #define FOV 10
03
04 // HACK
05 static double old_tilt = 0;
06 static double old_pan = 0;
07
08 void Behaviours::saBallTracking(bool trackWM) {
09
10 if(vision->vob[vobBall].cf > 0) {
11 lastTrackHead = vision->vob[vobBall].head;
12 panx = vision->vob[vobBall].head;
13 VisualObject &ball = vision->vob[vobBall];
14 //cout << "ball d:" << ball.d << " dist:" << ball.dist << " camdist:" <<
ball.cam_dist << " h:" << ball.h << endl;
15
16
17 if (abs(panx - hPan) > FOV) {
18 double factor = 1.0 + ABS(panx-hPan)/60;
19 panx = hPan+(panx - hPan)*factor;
20 }
21
22 double x1,y1,z1,x2,y2,z2,x3,y3,z3,x4,y4,z4,x5,y5,z5,x6,z6;
23
24 x1 = vBall.d * tan(radians(vBall.imgHead));
25 //y1 = vBall.d * tan(radians(vBall.imgElev));
26 y1 = vBall.d * tan (radians (PointToElevation (vision->vob[0].misc)));
27 z1 = vBall.d;
28
29 x2 = x1;
30 y2 = y1 + NECK_LENGTH;
31 z2 = z1 + FACE_LENGTH;
32
33 x3 = x2*cos(radians(-hPan))-z2*sin(radians(-hPan));
34 y3 = y2;
35 z3 = x2*sin(radians(-hPan))+z2*cos(radians(-hPan));
36
37 x4 = x3;
38 y4 = z3*sin(radians(hTilt))+y3*cos(radians(hTilt));
39 z4 = z3*cos(radians(hTilt))-y3*sin(radians(hTilt));
40
41 double turn = radians(turnCCW/8);
42 x5 = x4*cos(turn) - z4*sin(turn);
43 y5 = y4;
44 z5 = x4*sin(turn) + z4*cos(turn);
45
46 if (z5 < NECK_LENGTH) z5 = NECK_LENGTH;
47
48 headtype = ABS_H;
49 double dist = sqrt(z5*z5 + y5*y5);
50 tilty = degrees(atan(y5/z5)-asin(NECK_LENGTH/dist));
51 old_tilt = tilty;
52 old_pan = panx;
53 } else {
54 tilty = old_tilt;
55 panx = old_pan;
56 }

10

Appendix B – Proof for tilty

Proof 1

Let neck = CD
y5 = AC
z5 = AB

dist = BC

tilty
α

CBD
ABC
ACD

∠=
∠=
∠=

β

z

z5

neck

y

y5

dist tilty

AB

C

D

α
β

5
5tan

z
y

=α

dist
neck

=βsin







=

dist
neckarcsinβ

°=∠=∠ 90BDCBAC

ABDtilty ∠=







−






=

−=

dist
neck

z
y arcsin
5
5arctan

βα







=

5
5arctan

z
y

α

ABCD∴ forms a circle (BAC∠ & BDC∠ are angles on the circumference

(angles on the circumference of circle ABCD

11

Proof 2

Let neck = CD
y5 = AC
z5 = AB

dist = BC

βα −=tilty







=

dist
neckarccosα

dist
z5sin =β







=

dist
z5arcsinβ

dist
y5cos =β







=

dist
y5arccosβ







−






=







−






=

dist
y

dist
neck

dist
z

dist
neck

5arccosarccos

5arcsinarccos

dist
neck

=αcos

z

z5

neck

y

y5

dist
tilty

α
β

AB

C

D

tilty
α

ACB
BCD
ACD

∠=
∠=
∠=

β

	By JingJing Xu
	Contents
	Abstract
	Introduction
	Jargons and parameters
	Coordinate system relative to the camera
	Coordinate system relative to the neck of the robot
	Account for original pan and tilt
	Account for turn
	Calculate elevation of ball
	Future Improvements
	Removals
	Modifications
	Other Comments

	Conclusion
	Bibliography
	Appendix A – ballTracking.cc
	Appendix B – Proof for tilty
	Proof 1
	Proof 2

