

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

/*
 Copyright 2004 The University of New South Wales (UNSW) and
 National ICT Australia (NICTA). This file is part of the 2004
 team rUNSWift RoboCup entry. You may redistribute it and/or
 modify it under the terms of the GNU General Public License as
 published by the Free Software Foundation; either version 2 of
 the License, or (at your option) any later version as modified
 below. As the original licensors, we add the followin
 conditions to that license: In paragraph 2.b), the phrase
 "distribute or publish" should be interpreted to include entry
 into a competition, and hence the source of any derived work
 entered into a competition must be made available to all parties
 involved in that competition under the terms of this license.
 In addition, if the authors of a derived work publish any
 conference proceedings, journal articles or other academic
 papers describing that derived work, then appropriate academic
 citations to the original work must be included in that
 publication. This rUNSWift source is distributed in the hope
 that it will be useful, but WITHOUT ANY WARRANTY; without even
 the implied warranty of MERCHANTABILITY or FITNESS FOR A
 PARTICULAR PURPOSE. See the GNU General Public License for more
 details. You should have received a copy of the GNU General
 Public License along with this source code; if not, write to the
 Free Software Foundation, Inc., 59 Temple Place, Suite 330,
 Boston, MA 02111-1307 USA
*/

•

•

•

/*
 Copyright 2004 The University of New South Wales (UNSW) and
 National ICT Australia (NICTA). This file is part of the 2004
 team rUNSWift RoboCup entry. You may redistribute it and/or
 modify it under the terms of the GNU General Public License as
 published by the Free Software Foundation; either version 2 of
 the License, or (at your option) any later version as modified
 below. As the original licensors, we add the followin
 conditions to that license: In paragraph 2.b), the phrase
 "distribute or publish" should be interpreted to include entry
 into a competition, and hence the source of any derived work
 entered into a competition must be made available to all parties
 involved in that competition under the terms of this license.
 In addition, if the authors of a derived work publish any
 conference proceedings, journal articles or other academic
 papers describing that derived work, then appropriate academic
 citations to the original work must be included in that
 publication. This rUNSWift source is distributed in the hope
 that it will be useful, but WITHOUT ANY WARRANTY; without even
 the implied warranty of MERCHANTABILITY or FITNESS FOR A
 PARTICULAR PURPOSE. See the GNU General Public License for more
 details. You should have received a copy of the GNU General
 Public License along with this source code; if not, write to the
 Free Software Foundation, Inc., 59 Temple Place, Suite 330,
 Boston, MA 02111-1307 USA
*/

 inline void Merge(RunLengthInfo *x, RunLengthInfo *y) {
 Link(Find_Set(x), Find_Set(y));
 }

 // Link set x and set y based on union by rank.
 inline void Link(RunLengthInfo *x, RunLengthInfo *y) {
 if (x->rank > y->rank) {
 y->nextSeg = x;
 }
 else {
 x->nextSeg = y;
 if (x->rank == y->rank)
 y->rank++;
 }

 }

 // Find the root given a node in the set. Path compression
 // applies.
 RunLengthInfo *Find_Set(RunLengthInfo *node) {
 RunLengthInfo *root = cs;
 while (root != root->nextSeg){
 root = root->nextSeg;
 }

 while (cs != root){
 RunLengthInfo *temp = cs->nextSeg;
 cs ->nextSeg = root;
 cs = temp;
 }

 return root;
 }

void jointSegments() {

 // Get the root of the current and previous segment.
 // cs is the current segment.
 // ps is the previous segment.
 RunLengthInfo *csRoot = Find_Set(cs);
 RunLengthInfo *psRoot = Find_Set(ps);

 // Overlap occurs if the roots have same color and the
 // segments are connected. If the roots are identical then
 // they have at least one pixel overlap.
 if (csRoot->color == psRoot->color && csRoot != psRoot &&
 ps->overlaps(cs)) {

 // If the current segment is not joined previously.
 // First overlap case.
 if (csRoot->blob_number == -1) {

 // Copy the blob number from the previous segment.
 csRoot->blob_number = psRoot->blob_number;

 // Merge both segments in a single disjoint set.
 Link(csRoot, psRoot);

 // Update information.
 blobinfo[psRoot->color][psRoot->blob_number].
 Update
 (cs->rawColor, cs->startIndex, cs->endIndex, row,
 cs->length, cs->xsum, cs->ysum);

 // Second overlap case.
 } else {

 // Merge the disjoint sets.
 Link(csRoot, psRoot);

 // Find the root of the new disjoint set.
 RunLengthInfo *root = Find_Set(ps);

 // This new root is assigned the blob number from
 // the previous segment.
 root->blob_number = psRoot->blob_number;
 }
 }

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•
•

•

•
•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

/*
 Copyright 2004 The University of New South Wales (UNSW) and
 National ICT Australia (NICTA). This file is part of the 2004
 team rUNSWift RoboCup entry. You may redistribute it and/or
 modify it under the terms of the GNU General Public License as
 published by the Free Software Foundation; either version 2 of
 the License, or (at your option) any later version as modified
 below. As the original licensors, we add the followin
 conditions to that license: In paragraph 2.b), the phrase
 "distribute or publish" should be interpreted to include entry
 into a competition, and hence the source of any derived work
 entered into a competition must be made available to all parties
 involved in that competition under the terms of this license.
 In addition, if the authors of a derived work publish any
 conference proceedings, journal articles or other academic
 papers describing that derived work, then appropriate academic
 citations to the original work must be included in that
 publication. This rUNSWift source is distributed in the hope
 that it will be useful, but WITHOUT ANY WARRANTY; without even
 the implied warranty of MERCHANTABILITY or FITNESS FOR A
 PARTICULAR PURPOSE. See the GNU General Public License for more
 details. You should have received a copy of the GNU General
 Public License along with this source code; if not, write to the
 Free Software Foundation, Inc., 59 Temple Place, Suite 330,
 Boston, MA 02111-1307 USA
*/

/*
 Copyright 2004 The University of New South Wales (UNSW) and
 National ICT Australia (NICTA). This file is part of the 2004
 team rUNSWift RoboCup entry. You may redistribute it and/or
 modify it under the terms of the GNU General Public License as
 published by the Free Software Foundation; either version 2 of
 the License, or (at your option) any later version as modified
 below. As the original licensors, we add the followin
 conditions to that license: In paragraph 2.b), the phrase
 "distribute or publish" should be interpreted to include entry
 into a competition, and hence the source of any derived work
 entered into a competition must be made available to all parties
 involved in that competition under the terms of this license.
 In addition, if the authors of a derived work publish any
 conference proceedings, journal articles or other academic
 papers describing that derived work, then appropriate academic
 citations to the original work must be included in that
 publication. This rUNSWift source is distributed in the hope
 that it will be useful, but WITHOUT ANY WARRANTY; without even
 the implied warranty of MERCHANTABILITY or FITNESS FOR A
 PARTICULAR PURPOSE. See the GNU General Public License for more
 details. You should have received a copy of the GNU General
 Public License along with this source code; if not, write to the
 Free Software Foundation, Inc., 59 Temple Place, Suite 330,
 Boston, MA 02111-1307 USA
*/

 def obstacleScanning():

 global stuckDetectTimer

 irdist = VisionLink.getAnySensor(Constant.
 ssINFRARED_NEAR)

 # Pan the robot's head.
 scanForObstacle()

 stuckDetectTimer += 1

 if stuckDetectTimer == 30:
 stuckDetectTimer = 0

 # If the distance is small and an opponent is seen, then
 # there must be an opponent in front.
 if irdist < 200000 and HelpLong.canSeeOpponentWithinDist
 (50):

 # Pan the robot's head from left to right or right to left.
 def scanForObstacle(speed = 10, tilt = -10, crane
 = -10):

 global panDirection, panx

 if panx >= 80 and panDirection == Constant.
 dANTICLOCKWISE:
 panDirection = Constant.dCLOCKWISE

 elif panx <= -80 and panDirection == Constant.
 dCLOCKWISE:
 panDirection = Constant.dANTICLOCKWISE

 if panDirection == Constant.dCLOCKWISE:
 panx -= speed
 else:
 panx += speed

 FWHead.compulsoryAction = FWHead.fixHead

/*
 Copyright 2004 The University of New South Wales (UNSW) and
 National ICT Australia (NICTA). This file is part of the 2004
 team rUNSWift RoboCup entry. You may redistribute it and/or
 modify it under the terms of the GNU General Public License as
 published by the Free Software Foundation; either version 2 of
 the License, or (at your option) any later version as modified
 below. As the original licensors, we add the followin
 conditions to that license: In paragraph 2.b), the phrase
 "distribute or publish" should be interpreted to include entry
 into a competition, and hence the source of any derived work
 entered into a competition must be made available to all parties
 involved in that competition under the terms of this license.
 In addition, if the authors of a derived work publish any
 conference proceedings, journal articles or other academic
 papers describing that derived work, then appropriate academic
 citations to the original work must be included in that
 publication. This rUNSWift source is distributed in the hope
 that it will be useful, but WITHOUT ANY WARRANTY; without even
 the implied warranty of MERCHANTABILITY or FITNESS FOR A
 PARTICULAR PURPOSE. See the GNU General Public License for more
 details. You should have received a copy of the GNU General
 Public License along with this source code; if not, write to the
 Free Software Foundation, Inc., 59 Temple Place, Suite 330,
 Boston, MA 02111-1307 USA
*/

 # Set the motor join gain by battery current.
 def dynamic_gain ():

 current = VisionLink.getBatteryCurrent()

 # Force to high gain if the robot is performing a kick.
 wt = Global.finalAction[Constant.AAWalktype]
 if wt in [Constant.ChestPushWT, Constant.
 FwdKickWT, Constant.FastKickWT, Constant.
 UpennRightWT, Constant.UpennLeftWT,
 Constant.DiveKickWT, Constant.
 HandKickRightWT, Constant.HandKickLeftWT]:

 Global.forceHighGain = True

 # If not forced to switch into high gain, execute the
 # dynamic gain algorithm.
 if Global.forceHighGain is None:
 if current < 2300 and not Global.isHighGain:
 setHighGain()
 elif current > 3000 and Global.isHighGain:
 setLowGain()
 else:

 if Global.forceHighGain :
 setHighGain()
 else:
 setLowGain()

•

•

•

•

•

•

•

•

/*
 Copyright 2004 The University of New South Wales (UNSW) and
 National ICT Australia (NICTA). This file is part of the 2004
 team rUNSWift RoboCup entry. You may redistribute it and/or
 modify it under the terms of the GNU General Public License as
 published by the Free Software Foundation; either version 2 of
 the License, or (at your option) any later version as modified
 below. As the original licensors, we add the followin
 conditions to that license: In paragraph 2.b), the phrase
 "distribute or publish" should be interpreted to include entry
 into a competition, and hence the source of any derived work
 entered into a competition must be made available to all parties
 involved in that competition under the terms of this license.
 In addition, if the authors of a derived work publish any
 conference proceedings, journal articles or other academic
 papers describing that derived work, then appropriate academic
 citations to the original work must be included in that
 publication. This rUNSWift source is distributed in the hope
 that it will be useful, but WITHOUT ANY WARRANTY; without even
 the implied warranty of MERCHANTABILITY or FITNESS FOR A
 PARTICULAR PURPOSE. See the GNU General Public License for more
 details. You should have received a copy of the GNU General
 Public License along with this source code; if not, write to the
 Free Software Foundation, Inc., 59 Temple Place, Suite 330,
 Boston, MA 02111-1307 USA
*/

Move to specified position given the global coordinative.
def saGoToTargetFacingHeading(targetX, targetY, targetH, maxSpeed =
 7, maxTurn = 30):

 # ariables relative to self localisation.
 selfX = Global.selfLoc.getX()
 selfY = Global.selfLoc.getY()
 selfH = Global.selfLoc.getHeading()
 relX = targetX - selfX
 relY = targetY - selfY
 relH = HelpShort.normalizeAngle_180(targetH - selfH)
 relX += Constant.DOG_LENGTH/2.0/10.0*(math.cos(math.radians
 (selfH)) - math.cos(math.radians(targetH)))
 relY += Constant.DOG_LENGTH/2.0/10.0*(math.sin(math.radians
 (selfH)) - math.sin(math.radians(targetH)))
 relD = HelpShort.getLength((relX, relY))
 distance = HelpShort.getDistanceBetween(targetX, targetY,
 selfX, selfY)
 inCircle = distance <= 40
 faceH = HelpShort.getHeadingToFaceAt(targetX, targetY)

 # Inside the circle?
 if not inCircle:
 if abs(faceH) >= 30:
 HelpLong.setNormalWalk(0, 0, HelpShort.CLIP(faceH,
 maxTurn))
 else:
 HelpLong.setEllipticalWalk(7, 0, HelpShort.CLIP
 (faceH/1.5, maxTurn))
 else:
 relTheta = HelpShort.normalizeAngle_180(HelpShort.
 RAD2DEG(math.atan2(relY, relX)) - selfH)

 forward = HelpShort.CLIP(relD, maxSpeed) * math.cos
 (HelpShort.DEG2RAD(relTheta))

 left = HelpShort.CLIP(relD, maxSpeed) * math.sin

 (HelpShort.DEG2RAD(relTheta))

 turnCCW = HelpShort.CLIP(relH, maxTurn)
 HelpLong.setNormalWalk(forward, left, turnCCW)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

/*
 Copyright 2004 The University of New South Wales (UNSW) and
 National ICT Australia (NICTA). This file is part of the 2004
 team rUNSWift RoboCup entry. You may redistribute it and/or
 modify it under the terms of the GNU General Public License as
 published by the Free Software Foundation; either version 2 of
 the License, or (at your option) any later version as modified
 below. As the original licensors, we add the followin
 conditions to that license: In paragraph 2.b), the phrase
 "distribute or publish" should be interpreted to include entry
 into a competition, and hence the source of any derived work
 entered into a competition must be made available to all parties
 involved in that competition under the terms of this license.
 In addition, if the authors of a derived work publish any
 conference proceedings, journal articles or other academic
 papers describing that derived work, then appropriate academic
 citations to the original work must be included in that
 publication. This rUNSWift source is distributed in the hope
 that it will be useful, but WITHOUT ANY WARRANTY; without even
 the implied warranty of MERCHANTABILITY or FITNESS FOR A
 PARTICULAR PURPOSE. See the GNU General Public License for more
 details. You should have received a copy of the GNU General
 Public License along with this source code; if not, write to the
 Free Software Foundation, Inc., 59 Temple Place, Suite 330,
 Boston, MA 02111-1307 USA
*/

•

•

•

•

•

•

•

•

•

•

•

•

•

•

toward the gap instead of kicking
toward the center of the target goal and block by the opponent
goalie.

•

•

• This
condition ensures that the robot has enough room to shoot through
gaps.

•

•

•

•

•

•

•

http://www.cit.gu.edu.au/~s2130677/Mi-Pal/

