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1 Background Information 
 
1.1 Introduction 
  

Robocup is a competition that aims to produce a team of humanoid robots that can 
beat the world champion human team in soccer, by the year 2050. In an effort to fulfil this 
goal, universities, schools and independent entrants are encouraged to develop hardware and 
software to compete in a yearly tournament against each other. The tournament is comprised 
of many leagues, one of which is the four-legged league, where entrants have to program 
Sony AIBO entertainment robots to play soccer as a team. No hardware modifications are 
allowed in this league, and so the challenge is to develop software that is superior to the other 
teams. 

 
The University of NSW has participated in the four legged league for a number of 

years, and has a remarkable track record. Last year, the UNSW team “rUNSWift” were world 
champions of the four legged league. With many changes to this world-beating code base, the 
new members of the 2004 rUNSWift team were able to reach the quarter finals in this year’s 
competition held in Lisbon, Portugal. 

 
For a robot to be able to play the game of soccer, one of the fundamental pieces of 

information it needs to know is where it is on the field. For robots, the process of using 
information from lower-level senses, such as the “vision” supplied by the video camera inside 
the AIBO’s head, to form an estimation of the location and orientation of themselves on the 
field is called “localisation”. Localisation not only covers the robot working out where it is on 
the field, but also its teammates, the opposition team members and the ball. This report 
covers changes made to the localisation portion of team rUNSWift’s code. 

 
Although unrelated to localisation, a small section at the end of this report is devoted 

to the behaviour of the goalkeeper, which has been completely redone from last year. 
 

1.2 Related Information 
 
 The Robocup tournament is held annually, and many universities participate in its 
various leagues. Information on the tournament itself can be found at [1]. Arguably, one of 
the most action packed and popular leagues in the tournament is the four-legged league [2], 
which uses set hardware in the form of Sony’s AIBO entertainment robot. The AIBO is a 
versatile robotics platform that can be reprogrammed to perform many tasks, including the 
playing of soccer games. For AIBO specifications, documentation and tools for programming 
the robot, consult the AIBO SDE webpage [3]. 
 
 Although the league itself may seem limited by the fact that no hardware 
modifications are allowed, in actual fact the different strategies and sensor processing 
techniques implemented in software by the different teams have a massive impact on the 
quality of play, and the superior teams can thrash the weaker teams by scoring margins in the 
vicinity of 15 goals to 0. The soccer matches in the legged league are refereed, with rules, 
described in [4], to be adhered to. 
 

The main portion of the legged-league tournament is the soccer matches, however, 
there are also extra “challenges” that teams can participate in. This year, there were three 
challenges to participate in: an open challenge, a localisation challenge, and a variable 
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lighting challenge, which are described in more detail in [5]. The localisation challenge, 
which the rUNSWift 2004 team came first in, is described in this report. 
 

The rUNSWift 2004 team (See [6]) used the code from last year as a starting point. 
Many of the systems used from last year have been carried over, or extended. This is the case 
for the localisation system, where the basic self-localisation system has been greatly 
extended. For an overview of the system used by last year’s team, the “Localisation” chapter 
of the 2003 team’s report [7] should be consulted. 
 

This report is limited to only discussing the localisation system, however there are 
times when the other modules of the entire rUNSWift system are referred to. The rUNSWift 
software architecture is divided into modules, as described in sections 1.4.1 and 1.4.2 of [11], 
these being vision, localisation, locomotion, behaviours and wireless control. Generally, there 
is a reference for the different modules of the system: consult [10] for low level vision, [9] for 
the high level vision system (that the localisation module is highly dependent on), [11] and 
[12] for the high level behaviours that utilise the localisation information, and [13] for 
information on locomotion and many of the utilities used by the team. 
 
 The localisation system from last year relied on a method of filtering sensor 
information called a “kalman filter”. A good introduction to the workings of the kalman filter 
can be found in [14]. However, the kalman filter is by no means the only method of utilizing 
sensor information to form a consistent localisation estimate; another popular method of 
doing this is by “Monte-Carlo” methods, such as a particle filter. A description of 
implementing a particle filter for robot localisation is given in [16]. Although the rUNSWift 
team have never used a particle filter, it is useful to examine the technology that some of the 
other Robocup teams, such as the “German Team”, have used to good effect in the past. 

 
In extending the existing localisation system, the kalman filter was changed to handle 

more than one position hypothesis, with the implementation described in [15] acting as a 
guide for some of the mathematics. When implementing the field line localisation system, 
rUNSWift’s [8] and the German Team’s [17] implementation from last year had been 
studied, and some of the techniques used were based on these works. 

 
1.3 Conventions and Terminology 
 
 For Robocup matches, all objects are colour coded: there is an orange ball that is 
kicked or pushed around by the Sony AIBOs (which are simply termed robots in this report) 
on a green field with white lines marking out regions such as the goal box, goal line, centre 
line and centre circle. At the corner of the field are posts with two separate colours on them, 
these are beacons that the robots can use to navigate, or localise by. The goals themselves are 
also colour coded, blue for the blue team’s own goal, and yellow for the red team’s own goal. 
Teams consist of four robots each, one goalkeeper, and three forwards. At the edge of the 
field is a white, low, thick wall with sides angled at 45° to stop the ball rolling off the field; 
this is termed the field border. Outside the border is a white wall about 30cm in height that 
blocks out some of the background image, which includes all objects that are not defined 
inside the RoboCup environment, such as spectators, tables, and any other objects inside the 
room that houses the RoboCup field. 
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Figure 1.1: A RoboCup match in action. 

 
 The low-level vision portion of the vision module is responsible for taking the raw 
data from the robot’s video camera mounted in its head, and classifying every pixel in each 
frame according to its colour to produce a classification plane, or c-plane from the raw image 
data. Since each object on the Robocup field is colour coded, the colour classification of a 
pixel determines which object it is part of, eg. any objects that are classified “ball orange” are 
probably part of the ball. A particular pixel on the c-plane is specified by its c-plane 
coordinates, which have their origin in the top left, with x position increasing to the right, and 
y position increasing downwards. Regions on the c-plane that have the same classification are 
compiled into blobs. 
 

 
Figure 1.2: A camera frame, and its corresponding c-plane. Note the bounding boxes 

surrounding identified objects, such as the ball, beacon and goal. 
 
 The high-level vision in the vision module is responsible for recognizing defined 
RoboCup objects, such as the ball, beacons, goals and other robots, from the blobs provided 
by the low-level vision. Because there is noise in all c-plane data, plus an unknown 
background of possible colours, it cannot be concluded that every coloured blob corresponds 
to a specific RoboCup object, e.g. not every ball orange blob corresponds to the ball. The 
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high-level vision applies sanity checks to each coloured blob to ensure that any classified 
object is a sensible match to the physical properties of that object. Some of these sanity 
checks involve checking the object against the horizon, which is an estimation of where the 
top of the outer wall around the field would appear on the c-plane. Most RoboCup objects 
appear below the horizon, while above the horizon is usually just the background, which does 
not hold any useful information. Every identified object has a surrounding bounding box that 
determines the object’s dimensions in pixels on the c-plane, and each object gets a distance 
and heading estimate in robot-relative coordinates. 
 

 
Figure 1.3: The robot-relative coordinate system 

 
 The robot-relative coordinate system, shown in figure 1.3, has its origin on the 
ground, under the base of the neck of the robot. The y-direction points forward in the same 
direction as the robot’s body, the x-direction points left, and the z-direction points up from 
the field surface. Converting from c-plane coordinates to robot-local coordinates involves 
projection down to the ground plane, as explained in [18]. 
 
 The localisation, or GPS module, is responsible for taking the identified objects from 
the vision module and using the beacons to calculate the robot’s own position in global 
coordinates, or calculating the global coordinates of other robots or the ball if it identifies 
robot or ball objects. The global coordinate system, shown in figure 1.4, is dependent on 
which team the robot is on. The origin is defined as the goal to the left of the robot’s own 
goal when facing up field. The x-axis points across field to the right side beacon, while the y-
axis points up field. Measurements are in centimetres. For objects that have a definable 
orientation, such as the robot itself, a heading can also be defined. The heading is measured 
in degrees, and is zero when pointing in the direction of the x-axis, increasing counter-
clockwise (So the y-axis is at 90°). Converting between local and global coordinate systems 
is a simple matter of a rotation and a translation. 
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Figure 1.4: The global coordinate system. 

 
 In the diagrams in this report, a box with a line at the front will be used to indicate the 
physical location of a robot, while a dot with an arrow pointing from it will represent a 
position estimation made by the robot, optionally with an ellipse surrounding it that 
represents the variance of that estimation. 
 

 
Figure 1.5: Diagrammatic representation of a robot (on the left) 

and position / heading estimate with variance (on the right). 
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2 Modifications To The Kalman Filters 
 
 The localisation or GPS module of the rUNSWift code is responsible for taking 
recognized objects from the vision module, and using the robot-relative distances and angles 
associated with each object observation to build a global model of positions of the robot 
itself, its teammates, opposition robots and the ball. There are several different sections to the 
GPS module, dealing with the different objects. Much of the rUNSWift 2003 GPS code has 
been carried over from last year, but a significant extension has been made to the robot’s self 
localisation code. The sections of the module dealing with calculating the world ball model 
have undergone virtually no changes, while the section devoted to opposition tracking has 
had a small change to it. All changes made are documented in this chapter. 
 
2.1 Multiple Gaussian Mode Probability Distribution for Self Localisation 
 
2.1.1 Previous Localisation Method 
 

The self localisation system used by the rUNSWift 2003 team was based on an 
extended kalman filter. The extended kalman filter is a computationally efficient method for 
calculating an estimation of a state, which in this case is the robot’s field location and 
orientation, in the form of a Gaussian (or normal) probability distribution given observations 
that can have non-linear or non-Gaussian probability distributions. 
 

The state estimation was continually updated based on robot movement, and then 
corrected whenever one or more of the beacons or goals surrounding the field were seen. 
With uniquely identifiable landmarks, and little false readings due to the high background 
wall, the system was successful in providing accurate and robust information of the robot’s 
location and orientation, provided the robot regularly corrected its location by actively 
looking for the landmarks at time intervals. 

 
One of the limitations of the extended kalman filter is that it assumes the state 

probability distribution is Gaussian. With a Gaussian distribution, there is only a single 
maximum, or mode, i.e. it only works on a single hypothesis at once. This was adequate for 
the 2003 Robocup rules, however, the 2004 rules state the two central beacons were to be 
removed, which meant that there would be less information to localise from. To make up for 
this deficiency another source of localisation information would be needed, the prime 
candidate being the white lines marked on the field, and the white border surrounding the 
field. 

 
If the robot were to see a single line, then it cannot uniquely identify that line and 

hence deduce that it is in a particular field location, rather, seeing a single line constrains the 
robot to be in one of several locations on the field (as in figure 2.1), but there is no reason to 
favour one of these locations over another. 
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Figure 2.1: Seeing just a single straight line means the robot could be in a 

large number of possible positions (not all possibilities are shown). 
 
The only solution to this is to keep track of all the possible locations simultaneously, 

which the existing kalman filter is unable to do. 
 

  
Figure 2.2: A Gaussian distribution can make a poor match to 

distributions with more then one local maximum. 
 
Another limitation of the extended kalman filter is that its convergence can be 

affected if the measurement noise of observations has a non-Gaussian distribution. When a 
robot consistently views a particular beacon, and that beacon is correctly classified, then the 
observation noise is approximately Gaussian, and so this is not an issue. However, when a 
beacon is wrongly identified, or “phantom” beacons are seen (a phantom beacon is where the 
robot has classified a beacon where there isn’t one), the filter’s output is affected. The 
incidence of mis-classified beacons increased in 2004 due to reduction of the outer wall 
height, leading to increased background interference, and the decreased colour resolution of 
the camera in the Sony ERS-7 model compared to 2003’s ERS-210 model. 
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2.1.2 Modified Probability Distribution for Self Location 
 
To accommodate the non-unique observation information, a localisation system that 

could represent more than one hypothesis on the robot’s position was necessary. A multiple 
hypothesis system would also help the position estimation accuracy in case of mis-classified 
or phantom beacons, as two separate hypotheses could be kept of the robot’s location: one 
using the new (dramatically different) observation information, and one ignoring this 
information. 

 
One option was to implement a Monte-Carlo localisation scheme, or “particle filter”. 

In such a scheme, each particle represents a separate location & orientation hypothesis, while 
the relative density of the particles gives the probability of being in a certain location. Upon 
receiving observation information, each particle is individually evaluated to see how well it 
fits the given observation, and is assigned a weighting based on how well it fits. To update 
the distribution for robot movement, a particle is selected at random; where particle selection 
is weighted proportionally to the particle’s probability. The selected particle is moved 
according to the robot’s movement, and then some noise is added to the particle. This means 
that following the movement update, all particles are equally weighted again, until the next 
observation arrives. 

 
While the particle filter has the advantage of being able to represent any form of 

probability distribution, it was not used for a couple of reasons. One is that the detail with 
which the distribution is represented increases with the number of particles used, but 
increasing the number of particles increases the computational load. To get an accuracy 
similar to that of the existing kalman filter would require significantly more processing time. 
The other reason was that it would require a complete re-write of the entire localisation 
system, which would be quite a wasteful use of the time available, especially since the 
existing system developed in previous years worked well in many situations. Instead, the 
extended kalman filter was modified to handle more than one Gaussian distribution at a time, 
resulting in a “Multiple-mode” kalman filter. 

 
The existing kalman filter worked on the assumption that the state could be 

represented by a Gaussian distribution with a mean of µ, a 3-dimensional vector containing 
the x and y field coordinates and a heading angle h (this is the “global” coordinate system). 
The Gaussian distribution also has an associated covariance matrix C, which gives a measure 
of how certain the mean is in each of the 3 dimensions. Mathematically, the probability P of 
being in state x, where the vector x is again a triple of two field coordinates and a heading, is: 

 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ −−−= − )()(

2
1

det2

1 1
3 exp µµ

π
xCx

C
x TP   (Eq 2.1) 

  where: 
  det specifies the determinant of the following matrix. 
  exp specifies the exponential of the following expression. 
  T superscript specifies the transpose of the previous expression. 

 
The scalar expression in front of the exponential of equation 1.1 is the normalisation 

constant, which ensures that P is a valid probability distribution that integrates over all x 
values to 1. 
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The multi-modal extension to the kalman filter assumes a probability distribution to 
be the sum of n Gaussian distributions, each with a separate mean µi and covariance matrix 
Ci. A weighting scalar wi is also associated with each mode. Thus the new distribution is 
expressed as: 

 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ −−−= −∑ )()(

2
1

det2
1

3 exp
ii

T
i

n

i
i

i xCx
C

wxP µµ
π

 (Eq 2.2) 

  
 To ensure this expression is a valid probability distribution, the integral over all 
possible x values must be 1. Equation 2.1, which is contained in equation 2.2, already 
integrates to 1, so this constraint simplifies down to: 
 

         (Eq 2.3) 1=∑
n

i
iw

 
 The new probability distribution is implemented by storing an array of Gaussians, 
each with a weight, mean and covariance. Both stages of the kalman filter cycle are 
performed on each mode individually, so the new localization system can be thought of as n 
kalman filters working in parallel. In the prediction stage, i.e. updating for robot movement, 
the weighting of each Gaussian mode remains unchanged. However, in the correction stage, 
i.e. updating for the robot’s visual observations, the weights are scaled according to how well 
the observations seen match the current mode. Finally, the weights must be renormalized so 
that a valid probability distribution can be maintained. 

 
Figure 2.3: The multi-mode probability distribution is represented 

by an array of single modes. Kalman updates are performed on 
each mode independently. 
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 The observation update and renormalization stages are now explained in more detail. 
 
2.1.3 Weight Scaling for Observation Updates 
 
 When observation information is applied to each Gaussian mode, the weight of that 
mode needs to be altered to reflect how well the current state matches the given information. 
The modes that better match the observation data should receive greater weight than the non-
matching modes since they are the more consistent modes, and so (presumably) hold more 
accurate information. A weight scaling function is needed that takes into account the 
difference between each mode’s mean and what the observation implies the mean should be, 
as well as mode and observation variances. 
 
 A suitable scaling function was obtained by first considering a simpler one-
dimensional case, and extending it to the three needed. In the one-dimensional case, we 
consider the current state as having a Gaussian probability distribution with scalar mean µ 
and variance C: 
 

   ( ) ⎟⎟
⎠

⎞
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⎝

⎛ −
−=
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x

C
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2
1

2
1 exp µ
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   (Eq 2.4) 

 
 An observation arrives which claims the state probability has mean ν and variance D. 
This is represented by the distribution O: 
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   (Eq 2.5) 

 
 The probability M of both these conditions occurring simultaneously is the product of 
equations 2.4 and 2.5: 
 
   ( ) ( ) ( )xxx OPM =  
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   where: 
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 The result in equation 2.6 is the product of two Gaussian distributions; one dependent 
on x, while the other (represented by S in equation 2.7) is independent and hence is a constant 
scalar for any given state and observation. Integrating equation 2.6 over all x gives a result of 
S, indicating that the expression given in equation 2.7 could be a suitable scaling factor for a 
1 dimensional update. An examination of equation 2.7 shows that S decreases as the distance 
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between the means of P and O increase, while increasing the variances will generally increase 
S, as long as the variances don’t grow too large. 
 
 A logical 3 dimensional extension to the scale function given by equation 2.7 would 
be: 
 

  ⎟
⎠
⎞

⎜
⎝
⎛ −+−−

+
= − )()()(

2
1

)det(
1 1exp νµνµ DC

DC
TS  (Eq 2.8) 

 
 For 3D vector means µ and ν, and 3x3 covariance matrices C and D. Note that in this 
expression the constant scalar involving 2π has been removed, since it would be applied to all 
mode weights, and so would effectively be removed anyway when the distribution 
renormalisation is performed. Also note equation 2.8’s similarity to the “likelihood equation” 
(equation 15) in [15]. 
 
 For use in the kalman filter, the state mean has to be converted into observation space 
by applying the non-linear function h to each Gaussian’s mean µi, while an approximation to 
the state covariance in observation space can be made by multiplying the mode’s covariance 
Ci by the Jacobian matrix H of function h, evaluated at the mean µi. The final scaling function 
also did not use the inverse determinant term shown at the front of equation 2.8, as testing 
revealed that this term tended to give too small weightings to large variance modes. Finally, 
the weight scaler S for an observation z with covariance R, applied to a single Gaussian mode 
with mean µi and covariance Ci, is defined by: 
 

   ⎟
⎠
⎞

⎜
⎝
⎛ −−= − ))(())((

2
1 1exp zhEzh

i
T

i
S µµ   (Eq 2.9) 

   where: 
   HCHR

i

TE +=      (Eq 2.10) 
 
 Using the new scaling function given by equation 2.9, the amended kalman 
observation update system is shown in figure 2.4. 
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Figure 2.4: Kalman observation update for a single mode. 
 
2.1.4 Distribution Renormalisation 
 

Because of the weighting constraint given by equation 2.3, it is necessary to 
renormalise the weights after every observation update, where individual mode weights are 
scaled differently. This is a relatively simple process where the total weight of all Gaussian 
modes is calculated, and then each mode's weight is divided by this total. Following this 
procedure, the total weight will be 1, and the sum of Gaussians can be regarded as a valid 
probability distribution. 
 

After the normalisation is complete, similar Gaussian modes are merged together. The 
merging is performed to ensure that lower probability modes with a significantly different 
hypothesis from the highest probability mode don't get "starved out" of the fixed size 
Gaussian mode array. Consider the following example shown in figure 2.5. 
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Figure 2.5: The central directed point represents the applied update. The other four directed 
points represent Gaussian modes with covariances represented by their surrounding ellipses. 
If the same update is applied consistently, the four different modes will converge into one. 

Note the covariances will get progressively more circular, due to applying a correction 
update, but then growing the variance equally in all directions during the motion update. 

 
If the mode array is limited to storing 4 modes, and is initialised to have 4 random 

modes of equal weight, and then an observation that has sufficient dimension to specify a 
single field point & heading is repeatedly applied, all modes will eventually converge to that 
point and heading. Some modes may take longer than others to converge, and they may result 
in significantly different weights, however, after some time all 4 modes will have means in 
(almost) the same spot. At this time, the descriptive power of the mode array is being wasted, 
as there is no more room for other modes in the array, whereas if all 4 modes were merged 
into 1, it would be possible to store another 3 modes with different means and variances. 
 

The merging process works by comparing every pair of modes and applying two distance 
metrics to them. If both distances between the two modes are less than certain thresholds, 
then the two modes are merged by creating a new mode with the weighted average of their 
means and covariance matrices, and their total weight. The two merged modes are then 
removed. The two distance metrics used were: 

1. The sum of squares of elements in the difference between the two means, and then 
2. The sum of squares of elements in the difference between the two covariance 

matrices. 
If the first metric resulted in a distance greater than the set threshold, then the second metric 
is not applied. 
 

After all similar modes have been merged together, the mode array is sorted according 
to weight. In most cases the weight order will not have changed much, so an insertion sort is 
used since it is simple and efficient in this case. 

 
2.1.5 Global Maximum of the New Probability Distribution 
 
 In theory, the best estimate of the robot’s position and heading would come from the 
global maximum of the probability distribution in equation 2.2. To find the global maximum, 
the probability of each local maximum in the distribution would have to be evaluated, and the 
highest probability maximum recorded. Finding the local maximums of equation 2.2 is not 
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easy, as can be seen upon examination of the gradient of P, shown in equation 2.11. One 
condition for a local maximum is equation 2.12, i.e. the gradient equals the zero vector. 
 

 ( ) )()()(
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 (Eq 2.11) 

 
( ) 0=∇ xP      (Eq 2.12) 

 
 Solving equation 2.12 analytically would normally be an impossible task, unless an 
approximation is made. We can apply the approximation that close to each Gaussian’s mean, 
the only significant contributor to the gradient is the Gaussian that we are close to. This 
simplifies equation 2.11 down to: 
 

   ( ) )(
det2
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3 xC
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w
x

ii
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iP −= −∇ µ
π

   (Eq 2.13) 

   
when:  

i
x µ→  

 
 With the new approximation, solving equation 2.12 is a simple task, the solution 
being that the local maximums are located at the means of each of the Gaussian modes, 
which is an intuitive result. After calculating the probability values at each local maximum, 
the mean with the highest probability would be selected. In most cases, the mean selected is 
from the Gaussian mode with the highest weight. We can therefore simplify the task of 
finding the global maximum further by merely using the mean of the highest weight Gaussian 
as our position estimate. This is the method implemented in the 2004 rUNSWift code, as it 
was decided that the other more complex methods would not result in a useful increase in 
accuracy for the position / heading estimate of the robot. A comparison of the different results 
from each method can be seen in the 1 dimensional example below, in figure 2.6. This is an 
atypical case where the Gaussian mean with the highest probability is not the mean of the 
highest weight mode. 

 
 

Figure 2.6: The sum of a high weight, large variance mode and a low weight, 
small variance mode. Also shown is the distribution maximums calculated 

by the three different methods. 
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2.2 Filtering Updates of the Kalman Filter Used for Self Localisation 
 
2.2.1 Reasons for and Measurement of Noisy Updates 
 
 A number of circumstances have changed in the interval from the 2003 competition to 
the 2004 competition, which have worked to increase the amount of noisy or wrong 
observation readings being input into the kalman filter. These include: 
 
• Lowering of the white outer walls to 30cm in the 2004 Robocup rules. In 2003, the four 

beacon landmarks at the corners of the field had a clean white background from medium 
to far distances. At close distances, the beacons may not have had the white background, 
but at that range they where large enough to be easily recognizable. In 2004, the beacons 
are taller than the outer walls by almost 10cm, meaning that wherever the robot is on the 
field, some part of any beacon it looks at will have an unknown background. The 
unknown background could include colours that are used in the other beacons, which can 
result in incorrectly identifying a beacon, or it could be the same colour as the beacon, 
affecting the distance / heading measurement. Work done on the sanity checks in the high 
level vision of rUNSWift 2004’s robots [9] has helped to substantially reduce the 
incidence of this occurring, however it cannot stop all bad readings. 

 
• New model Sony AIBO ERS-7 having a reflective, white finish. In 2003, the older model 

Sony AIBO ERS-210 robot was used, which in the majority of cases had a grey, slightly 
matt finish that, together with the more angular surfaces, removed specular reflections 
and reduced diffuse reflections as well. Due to the new model’s reflectivity and its more 
curved shape, the surface of a robot seen by another robot will not be classified as 
completely white near the interface with the uniform or a joint. This is especially 
problematic when seeing a robot with a red uniform on, since at the edges of the uniform, 
the colours are classified as many small patches of yellow and pink, which the robot can 
mistake for a yellow and pink beacon. 

 
• Increased noise / poor colour resolution and chromatic distortion from the ERS-7’s 

camera. Extra noise around the pixels that make up the beacons on the robot’s c-plane can 
lead to more noise in the distance and heading estimates for those beacons, especially at 
long distances where one pixel’s difference can mean a change in distance of half a metre. 
As a result, the kalman filter will converge to its best estimate slower. This is partly offset 
by the higher resolution and frame rate of the new camera. While the chromatic distortion 
around the edges of the camera image had been removed by the rUNSWift 2004 team 
[10], there is still less colour resolution available near the edges of the image. While this 
doesn’t increase the noise significantly, it can mean that the robot will fail to see a beacon 
where there is one, which increases the robot’s susceptibility to noise by decreasing the 
amount of useful information input into the kalman filter. 

 
 In order to filter out noisy updates, a measurement of how unlikely an update is, given 
the current state, is needed. Fortunately, we already have a measurement function for this task 
in the form of equation 1.9. Given a mode’s mean and covariance, and an observation’s 
measurement and covariance, this equation will return a value in the range (0, 1], where 
lower measurements indicate less likely matches. If either the mode’s or observation’s 
covariance is large, then the equation will tend to give higher results, while if both 
covariances are small, the difference between the two means will have a large affect on the 
result, with large differences receiving very low likelihood. 
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 With the noise measurement equation, the robot can classify the observations that 
receive a low likelihood factor as noise, and take appropriate precautions. It should be noted 
that if the robot has no idea where it is, i.e. the highly weighted modes have large variance, 
then effective noise filtering is not possible, since all observation will receive a larger 
likelihood value. This is appropriate, since if the robot doesn’t know where it is, then it 
wouldn’t be able to tell if an observation is unlikely or not. 
 
2.2.2 Basic Filtering for Beacons and Goals 
 
 Before applying the dynamic noise filtering, it is appropriate to use some static filters 
on all observations beforehand, so that using measurements from situations that are known to 
produce inaccurate readings can be avoided. There are six fixed landmarks located around the 
field: four beacons at each corner of the field, and two goals opposite each other in the 
centres of the two shorter sides of the field. For each landmark the robot recognizes in any 
one camera frame, two pieces of information are provided: a distance estimate and its 
associated variance, and a heading estimate and its associated variance. Each piece of 
information provides an extra dimension to the observation update, so for example, seeing 
two beacons in one camera frame can provide up to four dimensions in the observation. 
 
 Whenever a landmark is recognized, in most cases at least the angle to it will be used. 
The distance estimate, however, can get quite inaccurate at longer ranges, due to the way the 
estimate is determined. In most cases, the distance is calculated by measuring the number of 
pixels along one of the sides or between the centroids of the two different coloured blobs that 
make up the object. The distance is then proportional to the inverse of that dimension 
measurement. The trouble is that the dimension measurement can only have an integer result, 
so that when the dimension measurement is small, a change of one pixel in the dimension 
will result in a large change in the distance. Also, because of the inverse relationship, a 
decrease in dimension of one pixel will generally result in a change of distance that is larger 
than the change of distance if the dimension was increased by one pixel (See figure 2.7). This 
effect is also more noticeable at larger distances. 
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Figure 2.7: The inverse size-distance relationship, and 
the non-Gaussian measurements it produces. Although 
the dimension in pixels of an object seen may exhibit 

Gaussian variance, the resultant distance does not. 
 

The result of this is that the distribution of distance measurements for long range 
objects is large in variance, but also non-Gaussian, tending to overestimate results. For this 
reason, the distance estimate is used only when the object is reported to be within a certain 
range, and within a certain variance limit. The allowed range for the goals is smaller (about 
2.5m) than the allowed range for the beacons (about 4.5m), even though the goal is larger and 
should theoretically produce more accurate distance measurements. This is partly due to the 
relatively undeveloped method for estimating goal distance, but also because of the goal’s 
irregular shape, where distance estimates can change depending on the angle it is viewed at 
and which side is being viewed. 

 
There are also situations where both the landmark’s distance and variance are not 

used, i.e. the landmark is disregarded completely. This only occurs for the goals at close 
range (< 70cm), where the goal will occupy a very large portion the robot’s camera frame or 
the edges of the goal will be off the edge of the frame, and so accurate distance information 
become nearly impossible to estimate. The distance estimate for goals given to the kalman 
filter by the lower level vision system starts getting less accurate within a range of about 
70cm, and within 50cm range the estimate is clamped to 50cm. The check is implemented in 
a simple manner; if the estimated distance is less than 70cm, the goal is not used for 
localizing at all. This check is very important for when the robot is inside the goal, e.g. for the 
goalkeeper, looking out towards the field, but still has some of the goal on the edge of its 
camera frame. In this case, the reported goal distance is 50cm, so the goal is skipped. If the 
goal was not skipped, then the estimated heading to it would be approximately the camera’s 
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horizontal field of view divided by two (which is about 28 degrees). This would make the 
robot think it is facing in towards the centre of the goal, rather than out towards the field, 
which is definitely not helpful (See figure 2.8). 

 

 
 

Figure 2.8: The robot begins with a correct estimation of its position, but then 
sees only the goal to the side of the c-plane, which is approximately in front 

of the robot. This throws the position estimation off by making it turn towards 
the inside of the goal. 

 
As extra protection against this circumstance, and also to prevent localisation off 

goals when the direction to the goal is almost parallel to the goal entrance, a final check is 
included: the current robot position estimate must be greater than 15% of the field length 
away from the side of the field that the goal is in (See figure 2.9). 

 
 

Figure 2.9: If the robot is within 15% of the field length from a 
goal, it will not localise off that goal. This region is shown above. 
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2.2.3 Filtering Unlikely Observation Updates 
 
 Once an observation has passed the static filters, its likelihood with respect to each 
Gaussian mode can be assessed using equation 1.9. If the likelihood value is below a certain 
threshold value, then it is classified as noise. A number of different responses to noise 
observations were implemented and tested, and these will now be explained. 
 
 The first and most simplistic approach was to throw the observation data out if the 
likelihood of it matching with the current mode was below a threshold, while also increasing 
the mode’s variance. This was found to be effective when the robot was only localising off 
the beacons and goals. However, when there was another mechanism for decreasing each 
mode’s variance, e.g. when localisation off field lines was implemented, this method tended 
to fail; leaving the robot mislocalised even after it had made several observations of the 
beacons around the field. This was caused by the fact that the two different localisation 
methods, i.e. beacon / goal localisation and field line localisation, were applied as two 
separate updates; so when the mislocalised robot saw beacons that weren’t likely considering 
its current location estimate, it would throw that observation data out and increase the mode 
variance, while the field line localisation system would find a nearby match for the lines seen 
and update the mode, decreasing its variance. Thus the two localisation systems would 
conflict with each other, leaving the robot’s position estimate static. 
 
 Other disadvantages of this method were that it did not make effective use of the new 
multi-modal kalman filter, and it would waste observation data that may be useful in a future 
time. 
 
 The second method involved splitting each mode into two whenever an observation is 
applied. One of the new modes would have the observation data applied to it in a kalman 
update, as normal. The other mode would not be updated with the new data, but its weight 
would be multiplied by a scaling factor given by an approximation of the probability of 
receiving noise information (the value used for this scalar was 10-2), called the “noise scalar”. 
This method is equivalent to considering each observation as the sum of two separate terms: 
the first being the actual observation measurement, a Gaussian distribution, and the second 
being a uniform distribution with a probability equal to that of receiving a noisy estimate. 
 
 Although this method makes better use of the new multi-modal implementation of the 
kalman filter and it doesn’t explicitly discard any observation information, it still was slow to 
re-orientate after the robot became mislocalised, often staying mislocalised for tens of 
seconds before it found a better estimate. 
 
 The final method implemented was an extension of the second method above. As well 
as splitting each mode before applying any observation update, an extra mode is added to the 
state distribution before the updates are performed. The mode added is a very low weight, 
very large variance mode that is centred on the field, i.e. it represents the robot having no 
confidence in its current position information. 
 
 Testing during games has shown that including this large variance mode in the 
distribution significantly reduces the amount of time taken for the robot to become re-
orientated after getting lost, or being transported to a completely different field position. 
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2.2.4 Additions to the Prediction Update 
 
 The prediction stage of the kalman filter, where the robot’s position estimate is 
updated according to the robots motion, has been slightly modified from last year’s code. 
There are two additions: one is an attempt to limit the inaccuracy caused by the robot getting 
stuck on a wall or in a scrum with another robot, the other is to improve the accuracy of the 
odometry information passed to the prediction update stage when different gain settings are 
used on the robot’s actuators. 
 
 As shown in section 3.2.6 of [7], the prediction update for the kalman filter has an 
input of three scalar values, representing the amounts the robot has been told to move 
forward, left, and turn. These values are obtained almost straight from the high level 
controlling code of the robot, i.e. the “behaviour” code, the only modification being clipping 
the values to within the robot’s movement capabilities, and scaling from odometry 
calibrations. Hence if the behaviour code tells the robot to move forward, the robot’s position 
estimate will move forward, regardless of whether the robot is blocked by an obstacle or not. 

 
A simple mechanism to detect if the robot is stuck on an obstacle, based on measuring 

the duty cycle of the leg effectors in the robot, has been implemented by the rUNSWift 2004 
team (Section 5.6.2 of [11]). This stuck detection code returns a scalar quantity, where 
increasing values indicate the robot’s motors are working harder, and therefore the robot’s 
limbs are being restricted by some form of impediment, usually another robot, but possibly 
also the barrier wall on the outside of the field. The new motion update for the kalman filter 
takes this extra scalar as an input, and if it is above a threshold value, then the update 
quantities for forward, left and turn are scaled to smaller values, and each mode’s variance is 
increased faster than normal. The amount which the update quantities are scaled and the rate 
at which the variance increases (above normal) is determined by applying two different 
empirical equations to the stuck quantity. 

 
Testing of the motion update in situations where the robot was stuck revealed that 

position estimate is improved some of the time, however, the stuck quantity input into the 
motion update is still quite erratic and unreliable, and so the new motion update is not always 
effective. 

 
 Distance Travelled (cm) Standard Deviation (cm) 

Stuck detection 75.1274375 45.95935976 
No stuck detection 97.0143375 20.51965826 

 
Figure 2.10: The results of a motion update with and without the stuck detection, 
when the robot is being held in place while it tries to walk forward. The motion 
update with stuck detection gives a better result, since it has a smaller distance 
travelled, and a larger standard deviation. When the robot was free to walk, the 

results with and without stuck detection are similar. 
 
The second change to the motion update of the robot’s position estimate is not a 

change to the prediction stage of the kalman update function, but rather to the inputs into that 
function. The ERS-7 model robot has a sensor that checks the current being drawn from the 
battery. The operating system running the robot’s code, called OPEN-R, integrates the battery 
current sensor’s recent readings and checks to see if these exceed a certain value, which 
would indicate that a motor has been working too hard (due to being jammed or obstructed). 
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If the threshold is exceeded, the robot is shut down to prevent any further damage to the 
hardware. This damage prevention mechanism tended to cause shutdowns of the robots 
during play of games, which obviously had disastrous consequences for the team. 

 
To prevent the shutdowns from occurring, the rUNSWift 2004 team implemented a 

“dynamic gain” system (Section 5.7 of [11]), which would continually monitor the battery 
current integration value, and if it approached the shutdown threshold the motors would be 
switched from their normal high gain mode to low gain mode. The current used by the motors 
in any of the joints in the robot is determined by the difference between the joint sensor’s 
reading of its current position and the desired position for that joint, multiplied by the joint 
gain. Switching to low gain values for all leg joints decreased the current used by the motors, 
which in turn made the battery current integration gradually decrease, reducing the risk of 
shutdown. 

 
While dynamic gain helped solve the problem of shutting down robots, it did cause 

another problem in the accuracy of the self localisation: giving the robot the same movement 
command would result in different movement speeds on the two different gain settings. This 
was especially evident when the robot was ordered to turn at a certain speed; the resulting 
physical turn rate of the robot at low gain was about half that of the turning speed at high 
gain. So when the robot was on a low gain setting, its position estimate would turn faster than 
the robot was actually turning. To counter this, two separate odometry calibrations for the 
robot were made, one for each gain setting. The robot would then select the correct odometry 
values to use based on which gain setting it was on. This was an improvement over the 
previous system, which always used the odometry calibration for the high gain settings. 
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2.3 Update to Opponent Tracking System 
 
2.3.1 Previous System 
 
 The method of opponent tracking used by the rUNSWift team in 2003 utilised the 
information form of the kalman filter (See section 3.5 of [7]), combined with an observation 
matching function that was a hybrid of two simple methods: updating only the most probable 
opponent, and updating all opponents with a weighting according to how probable that 
opponent is. 
 
 While the information form of the kalman filter was effective for distributing 
information among all robots on the team, the observation matching method did have some 
problems. Observation matching refers to deciding which opponent a visual observation of a 
robot on the other team should apply to, taking into consideration that all robots on the other 
team are indistinguishable from one another. The 2003 observation matching method applied 
the observation update to all robots, but with a varying weight determined by how closely the 
observation matched the current opponent state (Equation 3.130 of [7]). One of the problems 
with updating every opponent position given any opposition sighting is that continual 
viewing of just a single robot will make all four opponent position estimations converge to 
the same position. 
 
 Also problematic is the use of the opposition distance estimation when deciding 
which opposition filter to update. Currently the visually determined distance estimate for 
robots seen can fluctuate massively, while the angular measurement is reasonably stable and 
accurate. Use of the distance estimate can lead to updates on the wrong opposition team 
member. 
 
2.3.2 Limitations of the Current Visual Robot Detection 
 

For a detailed description of the visual robot detection system used by the rUNSWift 
2004 team, consult [9]. The system used, although modified from last year’s code, has some 
limitations that have to be taken into account when matching visual robot observation 
information to a particular opposition position estimate. The cause of these limitations is due 
to the appearance of the new model Sony AIBO ERS-7 model. 

 
In 2003, the latest AIBO model was the ERS-210 which in most cases had a dark grey 

plastic finish for most parts of its body, making it distinct from the other colours used on the 
Robocup playing field. This made it easier to decide if the separate blobs of colour that make 
up each robot’s uniform were all part of the same robot or not, as the coloured blobs of red 
and blue could (in many cases) be joined by the grey of the plastic on the robot. With the new 
model ERS-7, the majority of plastic on the robot is white, making it the same colour as the 
lines marked on the field, the outer border of the field, and the barrier walls surrounding the 
field. 

 
As a consequence, seeing the multiple patches that make up a single robot’s uniform 

may result in two or more distinct robots being reported, since the different patches may not 
be recognized as part of the same robot (See figure 2.11). Since each of these ‘sub-robots’ 
will be smaller and possibly higher in a frame than the actual robot, the distance estimates to 
the each of the observations can be significantly larger than their actual distance, because the 
distance estimation techniques are based on bounding box size and point projection. 
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Figure 2.11: A single robot is mistaken for several different robots 

 
It can also work the other way, with uniform patches from two separate robots being 

mistaken for a single robot. This is a common occurrence since it can happen anytime one 
robot is partially occluding another; an ongoing problem which is particularly difficult to 
solve and was present in all previous years’ teams. With the new model robots, it is also 
possible that two separate (non – occluding) robots could blend into the white background 
and be mistaken for one. The issue hasn’t been addressed by the 2004 team, mainly because it 
is too hard to fix, and the payoff for fixing it would be small, as neither the distance nor angle 
estimate is affected much when the robots are combined. 

 
 In all cases, the angular estimate is affected, however usually not by a large amount 

(< 10˚). This makes the angle estimate a much more reliable measurement than the distance. 
 

2.3.3 Revised Observation Matching 
 
A different algorithm for matching visual robot observations to opposition position 

estimates was devised, with the intention of avoiding the problems of the previous system, 
while taking into account the limitations of the current visual robot detection system. The 
new algorithm, shown in figure 2.12, is no more complex than the one used in previous years. 
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Figure 2.12: Robot matching algorithm flowchart. 
 
The new system no longer applies an update to all opposition position estimates for 

every observation received, i.e. only one opposition position is updated for each observation, 
and the method for deciding which opposition member is updated is now only based on the 
observation angle estimate, even though the distance estimate is still used in the actual 
update. Calculating the difference between the expected and observation angles ∆θ (shown in 
figure 2.13) is done using the formula: 

 

26 



⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−
=∆ −

obs
xx

yy s
so
so

θθ θ
1tannorm   (Eq 2.14) 

 
 where:  ox, oy is the current position estimate of an opposition player 
   sx, sy, sθ is the current estimate of robot’s own position, heading 
   θobs is the heading estimate from the visual observation 
   norm is a function that normalizes an angle to the range (-π, π] 
 

 
Figure 2.13: Angles involved in calculating ∆θ. 

 
The overall variance Coverall of the opposition position estimate is found using the formula: 
 
    2

1,1
2

0,0 CCCoverall +=     (Eq 2.15) 
 

where: C0,0 and C1,1 are the diagonal elements of the opposition member’s 
covariance matrix, i.e. the inverse of the information matrix. 

 
The idea behind the algorithm is quite simple; apply the update to the opponent that 

best matches the observation angle, or if none match well, apply it to an opponent that hasn’t 
been updated in a while. While the method isn’t very precise, e.g. It doesn’t take into account 
opponent variance in considering the angular match, and the estimator for the overall 
variance is not strictly correct, it does work. It is difficult to determine whether performance 
is better than the 2003 method or not, since the major precision bottleneck is not the 
observation matching method but the visual robot detection. Testing shows that opponent 
position tracking accuracy is similar to the old algorithm. 
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3 Field Line Localisation 
 
 The Robocup 2004 competition rules differ from the previous year’s rules in a 
number of areas, one of which is the removal of the two central beacons. The removal of 
these beacons mean that every robot has a lower probability of seeing a fixed landmark it can 
localise off, reducing the total localisation information available to the robot, and 
consequently reducing its localisation accuracy. To make up for the information deficiency, 
another source of information must be used, and the field line markings and edges are a good 
candidate. The following sections describe in detail the field line localisation system used by 
the rUNSWift 2004 team. 
 
 The idea of using field lines for localisation is by no means new to the team. In the 
past, some attempts to utilise this information have been made (See [8]), with varying levels 
of success, however these have been unreliable, computationally expensive, or only 
applicable to a limited number of situations. The method explained here is still 
computationally expensive, however the accuracy obtained for that expense is usually good, 
and it can be used in almost all game situations. It is loosely based on the “NightOwl” system 
described in [8], but the modifications are substantial. 
 
 Like NightOwl, the system detects points of interest, such as field lines and borders, 
on the c-plane from each frame of video. It then tries to find a field position and heading for 
the robot that would maximise the probability of seeing the points of interest in the 
configuration detected. It does this by projecting the video frame (c-plane) points onto the 
horizontal field plane, into a robot-relative coordinate space. It then transforms the local 
coordinates to certain global positions, and checks how well the interest points match the 
actual field lines in these global positions. The kalman filter is then updated with the global 
position where the best match occurs. 
 
3.1 Visual Field Line and Border Detection 
 
3.1.1 Locating Line and Border Points 
 
 The first stage of field line localisation is to detect the points of interest on the c-
plane. There are three different types of field surface that can supply localisation information: 
 

1) White lines marked on the field. Each line is required by the rules to be 25mm in 
width, and are completely flat on the surface of the field. 

2) The beginning of the white borders that surround the field. The borders are not flat, 
they have a height of 10cm, and are significantly wider than the field lines also. 
Consequently they appear much wider than the lines in the c-plane. 

3) Large areas of green. These are the “deep field points” (or just field points), 
corresponding to sections of field that are not near any white markings. 

 
Examples of these areas are shown in figure 3.1. The goal is to locate these areas on 

the c-plane, and remember their location by occasionally storing their screen coordinates and 
classification (line, border or field). 
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Figure 3.1: Examples of different point types 

 
Detection of the field points is described in the next section. Because of their 

similarity, the line and border point types are detected in the same procedure. This involves 
scanning across the c-plane in scan lines that a form a regular horizontal and vertical grid. 
The spacing between grid scan lines is 10 pixels; the lower resolution is used because 
scanning the whole c-plane would be very time consuming and would result in hundreds 
(possibly thousands) of points which would further reduce the speed of the field line 
localisation code. The lines only cover the area of the c-plane that is below the estimated 
horizon, so that the time taken scanning and processing the discovered points is not wasted by 
having to cull points that are part of the background. 

 

 
Figure 3.2: The scan grid for line and border points, shown as 

pink and yellow lines. Notice how they terminate at the horizon. 
The yellow lines indicate where field points are also checked for. 
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When the scan encounters a transition from green to white, the position of the 
transition is remembered. If there is a corresponding white to green transition within a certain 
distance further along the scan, then the total green, white, green transition is classified as a 
field line, and the average of the two transitions is recorded as the location of a “line point”. 
If the transition from white back to green doesn’t happen for a large distance, or doesn’t 
occur before reaching the edge of the screen, then the white region is classified as a border, 
which needs to be marked at its base with a point. Working out which side of the white 
region is the base is done using the following rules: 

 
• If the scan line is vertical, the lower of the two transition points must be the base, and 

so the point is recorded here. 
• If the scan line is horizontal, the side of the white area that is closest to the centre of 

the screen is the base, so this is marked with a point. 
 
The white section for a border has a minimum length that needs to be satisfied. This 

minimum is a value greater than that of the maximum length allowed for a line to be 
classified. Thus there is number of white region lengths that fall between the border 
minimum and line maximum, and these cases are regarded as ambiguous; since it cannot 
clearly identify the feature as either a line or a border, no point is recorded. 

 
Figure 3.3: Different feature lengths produce different point types 

 
The green / white transition detection is somewhat noise resistant. It allows for one 

pixel of noise (i.e. anything other than green or white) to occur between the green and white 
areas. This was added because examination of the c-plane shows that the white field lines can 
often be classified yellow, grey or even black near the sides. Another countermeasure against 
noise is the requirement that there be two consecutive green pixels as part of the green to 
white transition. This was introduced so that single green pixels followed by single white 
pixels, which can occur in a robot or in the background, don’t get classified as a line or 
border point. 

 
3.1.2 Deep Field Points 
 
 Detection of deep field points is slightly different to that of lines and borders. With 
field points, only vertical scan lines are used, and the spacing between consecutive scan lines 
is five times larger. Because the c-plane usually contains vast stretches of green, using less 
scan lines avoids an excess of field points. The field point detection doesn’t look for colour 
transitions, instead it detects green points that are surrounded (along the scan line) by green. 
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The detector uses a “field interval” value that defines the number of green pixels that 
any green pixel needs to be surrounded by in order to be classified as a field point. Also, 
consecutive field points cannot be within this field interval of each other (again, this is to 
avoid an excess number of points). The length of the field interval diminishes as the scan 
moves up towards the estimated horizon, or the top of the c-plane if the horizon is off screen. 
In most cases, areas near the top of the screen correspond to points that are further away on 
the field. Because the distance follows an inverse relationship, having constantly spaced field 
points would results in many field points being projected close to the robot while the density 
of points far away from the robot would be low. Decreasing the field interval near the horizon 
allows the field points to be closer together, and so the projected point density is evened out 
somewhat. 

 
The projection compensation is not infallible due its assumption that higher points on 

the c-plane correspond to further distance from the robot. This is not always the case, for 
example if the robot’s head is tilted down and panned fully to the left. In this case the points 
furthest from the robot are on the left side of the c-plane, and points the distance difference 
between points at the top and bottom of the c-plane is minimal. 
 
3.1.3 Sanity Checks for Points 
 
 There exists a pre-requisite for the point detection to be run at all. The ERS-7’s 
method of retrieving camera frame information has some side-effects that do not become 
apparent until the head is moving. The frame data is retrieved from the camera sequentially 
from left to right, meaning the pixel data from the left of the frame may represent an earlier 
time to that of the right side of the frame. This means that when the head is turning quickly, 
the camera image can become warped, making normally straight line appear curved, and 
perpendicular angles acute or obtuse. To avoid the inaccurate point positions that would be 
detected from such fast moving frames, the c-plane scanning for points is not run at all if the 
joint angle sensors in the head are changing quickly. 
 

After detection, the points must pass several tests, or “sanity checks”, before they are 
used in the localisation system. Some of the tests apply to all point types, while other tests are 
specific to the different point types (line, border or field). 

 
There are two tests that all point types must pass. The first test makes sure the point 

isn’t inside the bounding box of the ball or a robot. The ball is classified mainly orange in the 
c-plane, however, there can be white areas near the edges due to specular reflections from the 
field lighting. Other robots seen in the c-plane feature a lot of white, but also many other 
colours due to the large number of reflections and shadows present from the irregular shape 
of the robot. The face, in particular, has a highly reflective surface with a dark grey backing, 
and it can be classified all manner of colours, including field green and white. Due to the 
noise colours inside these objects, sometimes line points are mistakenly identified by the 
detector. This check aims to remove those points. It does a good job, as long as the object 
detection works well. In general, the rUNSWift 2004 ball detection is very good, and no 
mistaken line points turn up inside the ball. The robot detection, on the other hand, is not so 
good and can be very bad when close to another robot, i.e. when it fills most the robot’s view. 
Unfortunately, close-by robots also tend to have larger amounts of green on their surface, 
which means that a close encounter with another robot can throw off the field line 
localisation, due to a large number of false line points. It is hoped that improved robot 
detection in the future can limit this problem. 
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The second of the general checks is to make sure that the point is not in the corner of 

the c-plane. The camera in the ERS-7 tends to have very poor colour resolution at the frame’s 
corners, which can lead to misclassified pixels. In general, points detected in these areas 
cannot be trusted to be correct, and so all are thrown away. The test is simple in 
implementation: for each corner, the Manhattan distance from the point to the corners is 
calculated, and if it is less than a threshold, the point is discarded. That is, for any of the four 
corners, if 

 
Bcpcp yyxx <−+−    (Eq 3.1) 

 
  where:  (px, py) is point pixel position 
    (cx, cy) is corner pixel position 
    B is the corner buffer (set to 10 pixels) 
 
 is satisfied, then the point is discarded. 
 
 After passing the general tests, each point must then pass a final test which is tailored 
to individual point types. The test for line points involves checking the two pixels either side 
of the point that are perpendicular to the scan line direction, if either of the points are green, 
the point is discarded. The reasoning behind this test is that any green, white, green transition 
along the scan line will be classified as a line point, even a single noise pixel of white in a 
field of green. To avoid these noise pixels, it is sensible to ensure it is part of a line. Valid 
line points occur at the intersection of the scan lines and the field lines, and the majority of 
intersections occur when the scan line and field line are nearly perpendicular, so checking the 
two pixels perpendicular to the scan direction is an approximation of checking along the 
length of the field line. This test is effective at removing any single pixel noise. It introduces 
the possibility of discarding valid line points when the field line appears diagonally on the c-
plane of the robot. However, this is rare because the robot is really only able to see diagonal 
field lines at close ranges, and in these cases the line will appear a few pixels thick, enough 
for the point to pass the test. 
 

 
Figure 3.4: This c-plane features many single white noise pixels 
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amongst the green field areas. Some of these would be wrongly 
classed as line points if the line sanity check was not present.  

Line and border points are marked by single grey pixels. 
 
 Border points must pass a more stringent test. If the borders are examined from above, 
as in figure 3.5, it can be seen that most of the border subtends an angle of at least 180˚, e.g. 
the straight edges of the border occupy 180˚, while in the corners, the border can occupy an 
angle of 225˚. When viewed from the robot’s perspective, this means that the border will 
generally occupy an angle of at least 180˚, when considering the base of the border (which 
the detected border points are located at). This allows for a strict sanity check: since the 
border occupies at least 180˚ at the border points, both the horizontal and vertical directions 
should contain large amounts of white in one direction (See figure 3.6). 
 

  
Figure 3.5: Overhead border angle.  Figure 3.6: Border angle from the robot’s view. 
 
 The test for each border point involves checking two lines of 15 pixels perpendicular 
to the scan direction, and either side of the proposed border point. One of these lines must 
contain no green for the point to be allowed. A check along the lines parallel to the scan 
direction is also done, however this is largely redundant, since to be detected there must a 
minimum amount of white along the scan direction anyway (See section 3.1.1). The main 
purpose of this sanity check is to avoid misclassification error. If a corner of a field line is 
seen at the edge of the c-plane, then the detector will wrongly classify it as a field border. 
This check will reject any points that are found in this way, as in figure 3.7. 
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Figure 3.7: The corner of the goal box, visible in the bottom 
right of this c-plane, would have had incorrect border points 

marked on it if not for the border sanity check. 
 
 The check for field points is relatively simple, it checks in a line perpendicular to the 
scan direction (i.e. horizontally, since scanning is only done vertically for the field points) to 
make sure the field point really is surrounded by a lot of green. If there are more than two 
non-green pixels in the 15 pixels to the left and right of the field point, it is rejected. 
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3.2 Evaluating Field Line Information 
 
3.2.1 Projection and Point Weighting 
 
 After the points of interest have been detected on the c-plane, the next stage to using 
the field information is to project those points from screen coordinates down onto the 
horizontal plane representing the field, so that they are in “robot local” coordinates. The robot 
has sensors in all of its joints, so by taking into account the physical dimensions of the robot, 
the angular position at which every joint is at, as well as the mounting location of the camera, 
the camera position (relative to the base of the robot’s neck) and the direction the camera is 
facing can be calculated. Knowing the vertical and horizontal field of view and resolution of 
the camera allows us to project each point onto the ground plane (see page 10 of [18] for 
details). 
 
 The projection process is not entirely accurate, it can suffer noise from two different 
sources. One source is noise in the c-plane. This can cause otherwise straight edges to have 
pixel sized bumps in them occasionally. This can cause a line or border point to be moved 
from its “real” position one or two pixels. If the point is moved across, it is not so bad, but if 
the point is closer to the horizon and is moved up or down, it can make a large difference to 
where the point gets projected in robot local coordinates. The further away the projected 
point is from the robot, the more difference a movement of one pixel will make. In practice, 
this is not such a big problem, as it only affects one of the points, while the line localisation 
considers the contribution from all points. Also, pixel deviations aren’t that common, and so 
most are avoided by the coarse scan grid used by the point detector. 
 
 Another source of error in the point projection is wrong joint sensor readings. This 
can lead to a wrong approximation of the camera’s position or direction. These errors are 
more serious than the c-plane pixel errors since they affect the projection of all the points of 
interest, and so can make a bigger difference to the accuracy of the line localisation. The 
camera angle estimation especially will tend to make the largest difference in the projection 
of the points. Again, it is the points that get projected furthest away (the points on the c-plane 
that appear closest to the horizon) that will be affected the most by errors here. A wrong 
camera angle estimation will tend to affect the point projection distance the most, and this in 
turn will affect the angles between points that make up the field lines, skewing parallel lines, 
and make perpendicular intersections acute or obtuse. 
 
 To reduce the influence these wrong joint readings can have, each point is weighted 
after it has been projected. The weight reflects how much influence a point will have on the 
overall localisation. Since points that are projected to large distances are more affected by the 
angular changes, they are weighted less than the closer by points, which are more accurate. 
The weighting given to a point is a piecewise linear function of distance only, and takes the 
form shown in figure 3.8. The weighting is constant up to a distance of 70cm. From there it 
reduces down to zero at a distance of 350cm. Note that only the line and border points are 
weighted in this fashion. The field points don’t have to be as accurate as the other two, since 
they indicate a large area of green. They are weighted constantly up to 350cm, and from then 
on receive no weight. 
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Figure 3.8: Graph of point weightings for line, border and field. 

 
Points that are projected to very large distances receive no weight at all, and are culled 

from the point set so no further processing is done on them. The culling for far distance 
points is done not just because these points are more susceptible to angular errors, but 
because many of the very far points shouldn’t actually have been found by the detector in the 
first place, e.g. they are mistaken line classifications from the background or the surface of a 
robot. 
 
 As a final check for this stage, the number of points in each classification group is 
counted. If there are under a certain number (in this case 4) of points of the same type, then 
none of the points of that type are used. This is done to prevent use of misclassified or false 
points. For example, if the robot is observing only the border of the field, but some noise in c-
plane makes it mistakenly misclassify one of the border points as a line point, then that point 
will not be used. 
 
3.2.2 Calculating Point Match Values 
 

 To make use of the projected point information, first we need a measure of 
how likely it is for each point type to lie at a particular location on the field. The field 
dimensions and line configuration are set by the Robocup rules and do not change during the 
course of the match; this means a look-up table of how likely it is to find the three different 
point types at any global field position can be pre-calculated when the robot first boots up. 
There are three look up tables, one for each point type, and each table is a two dimensional 
array (corresponding to the two global coordinates x, y) of floating point numbers, with 
values close to zero indicating low probability of finding a point there, and values close to 
one indicating high probability. The size of the look-up table determines the spatial accuracy 
of the given results. It was determined that an accuracy of 2 cm per array element gave a 
good accuracy / memory use compromise. The look-up tables are also called “match” tables, 
since they indicate how well a point matches its position. 
 

The tables hold the probability of seeing a particular point type at a certain field 
position, with the two indices into each table corresponding directly to global field x, y 
coordinates divided by two, since the global coordinates are measured in centimetres, and an 
offset added, since we want to be able to evaluate the probability of points that lie off the 
field as well. An offset of 200cm (or 100 array elements) is used to create a buffer all around 
the field, hence an extra 200 array indices were added to each of the array dimensions, on top 
of the indices required to represent the entire field area.  
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 To calculate the values contained in the match tables, the Euclidean distance to the 
nearest type feature is used. A “type feature” refers to the nearest field line for the line look-
up table, the nearest border for the border look-up, and the entire green field area for the field 
table. To get the distance, the smallest distance to every type feature is calculated, then the 
smallest distance value is taken. The distance dmin, which is measured in centimetres, is then 
substituted into equation 2.2: 
 

     ( ) 2
min

min 1
1
Sd

dP
+

=    (Eq 3.2) 

   where:  S is a spread constant (Set to 0.004) 
 
 This function was used because it has the correct range of (0, 1], is continuous, and 
doesn’t decay as quickly as the other function that was originally used, based on the normal 
distribution: 
 
     ( ) ( )2

minmin exp SddP −=   (Eq 3.3) 
 
where:  S is again a spread constant (Set to 0.001) 
 

 The P value from equation 3.2 is recalculated and assigned for every look-up table 
element. Obviously this is a computationally expensive process, having to calculate a 
distance to every type feature for every position in the look-up tables, but this is acceptable 
since the table only has to be setup once. 
 
 The resulting match tables are shown in figure 3.9. These tables were sufficient for 
use on UNSW’s home field, where it is not possible for the robot to see any of the floor 
between the field border and the outer walls. In the Robocup tournament in Lisbon, the fields 
were constructed differently, with a large amount of ground between the field borders and 
outer walls visible by the robots. This ground was covered with same green material as the 
inner field. This meant that whenever a robot was near the normal field border, they would 
see and classify an extra set of field and border points. To stop this causing localisation 
problems, and to make use of the extra available information, the match look-up tables were 
modified, with an extra outer border, and more field between the outer and inner borders. 
These new look-up tables are shown in figure 3.10. 
 

 
Figure 3.9: Original match lookup tables for field, border and line points. 
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Figure 3.10: Altered field, border and line match lookup 

tables for Robocup tournament in Lisbon. 
 
 To retrieve the match value for a particular field position, we first convert the global 
field coordinates to the index space of the look-up tables: 
 

    ( ) ( ) ),(,
2
1, offsetoffsetii yxyxyx +=   (Eq 3.4) 

   
where:  (xi , yi) are the index space coordinates 

    (x , y) are the global field coordinates (in centimetres) 
    (xoffset , yoffset) are the look-up table offsets ( = (100, 100)) 
 
 The index space coordinates need to be rounded off to the nearest integer, so that we 
may access a particular array element: 
 
    ( ) ( ))round(),round(, iiindind yxyx =   (Eq 3.5) 
 
  where:  (xind , yind) are the rounded off indices 
    round is a function equivalent to: ( ) ⎣ ⎦5.0+= vvround  
 
 Two “bias” values are now defined, which indicate how close the index coordinates 
are to table elements neighbouring the element indicated by (xind , yind): 
 
    ( ) ( ) ),(,, indindiibb yxyxyx −=    (Eq 3.6) 
 
  where:  (xb , yb) are the bias values, both in the range [-½, ½) 
 
 It is assumed that the match values in the vicinity of the element indicated by (xind , 
yind) are approximated by a quadratic function of the bias values: 
 
     (Eq 3.7) ( ) edycxbyaxyxM bbbbbb ++++= 22,
 
  where:  M is the match function. 
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    a, b, c, d and e are unknown coefficients. 
 
 Notice that in equation 3.7, there is no term in xy. Not including the xy term means 
there are only have 5 unknown coefficients, which can be found by taking the match values 
from the look-up table element at (xind , yind) and its four vertical and horizontal neighbours, 
as shown in figure 3.11. It would be possible to include an xy term, where the extra 
coefficient could be found by taking the diagonal neighbour closest to the index space 
coordinates (xi , yi), however it was not included to keep the look-up process simple. 

 
Figure 3.11: The table element and its four neighbours. 

 
 The table element at (xind , yind) corresponds to bias values of (0, 0), while the bias 
values of its neighbours are (0, -1), (-1, 0), (1, 0), (0, 1). Since the look-up table gives us the 
match values at these bias points, we can solve for a, b, c, d and e, giving: 
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 (Eq 3.8) 

0,0me =  
  where:  mi, j corresponds to the match table value at bias (i, j) 
 
 Using the above coefficients, it is then possible to substitute the bias values for the 
point’s global coordinates into equation 3.7 to get a resulting match value, however, this 
method is not used because it results in more discontinuities in the match value than a linear 
function, as in figure 3.12. 

 
 

Figure 3.12: If equation 3.7 were used, the match value in one direction would be a 
quadratic function of the nearest three match table values. If match values were evaluated 
along one axis, there would be discontinuities half way between points, since one of the 

old neighbours would be dropped, and a new neighbour would come into use. 
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Instead, a simple linear interpolation method gives us the match value: 
 

( ) )()(, 0,00,00,0 mmymmxmyxM ybxbbb −+−+=  (Eq 3.9) 
 
  where:  mx =  m1, 0 if xb > 0 

m-1, 0 otherwise 
    my = m0, 1 if yb > 0 
     m0, -1 otherwise 
 
While equation 3.7 is used to supply information on the match derivative with respect to x 
and y: 
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 Currently, the second derivatives are not used, but they are stated here in case the 
field localisation is extended in the future and needs to make use of them. In summary, the 
look-up process for a single point is as follows: 
 

1. Calculate look-up table index and bias values for the given point’s global field 
coordinates, using equations 3.4, 3.5, 3.6. 

2. Calculate the match value using equation 3.9. 
3. Calculate the first derivative of the match value using equation 3.10. 

 
3.2.3 Calculating Overall Match 
 
 A process is required that evaluates how well a given robot position and heading (in 
global coordinates) matches the field configuration seen on the c-plane. Section 3.2.1 
supplies the robot local coordinates of the detected points from the c-plane, and a weighting 
factor for each point. Section 3.2.2 supplies a process for computing the match of an 
individual point, given its global coordinates. The remaining task is to transform all point 
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coordinates from robot-local to global coordinates, and to evaluate the match of all points to 
obtain an overall match value. 
 
 Transforming from robot-local to global coordinates is a simple task of a rotation by 
the robot heading followed by a translation by the robot field position. If a point in robot local 
coordinates is denoted by the 2D vector l, its position in global coordinates by g, and the 
robot global coordinates and heading by xr, yr and hr, then this can be represented by the 
formula: 
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 where:  ( ) ( ) ( )
( ) ( ) ⎟⎟⎠
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⎛ −
=

θθ
θθ

θ
cossin
sincos

R  is the matrix of a rotation of θ radians. 

 
 Once all points have been converted to global coordinates, an overall match value can 
be calculated. The overall match is defined as the product of the weighted average of match 
values for line and border points, and the weighted average of match values for field points. 
Since the points detected from the c-plane are stored as an array, each point will be referred 
to individually by using an integer subscript, such as i. That is: 
 
     ( ) FL AArO =     (Eq 3.13) 
 
 where:  O is the overall match value. 
   r = (xr , yr , hr)T is a 3-vector of the robot’s global position and heading. 
   AL is the weighted average of match values for line and border points. 
   AF is the weighted average of match values for field points. 
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 where:  M is the match for a global position, as calculated in section 3.2.2. 
   line is the set of point indices that are either line or border points. 
   field is the set of point indices that are field points. 
   wi is the weight of the point with index i. 
   gi is the global position of the point with index i. It is a function of r. 
   WL and WF are the total weights of line & border points, and field 
points. 
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 For localisation purposes, the gradient of the overall match is also required. First, the 
chain rule is applied to equations 3.14: 
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    (Similarly for AF) 
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 is a hr radian rotation. 

   li is the local coordinates of the point with index i. 
   ● is the dot product operator. 
   Pli is the vector corresponding to the direction and speed 

that each point would move at, if the robot rotated. 
 

 
 

Figure 3.13: The movement of any point when the robot rotates is perpendicular 
to the displacement of the point from the robot, and proportional in length. Hence 
we can obtain the movement vector by rotating the local point coordinates by an 
extra 90 degrees. Moving the robot in either the x or y directions simply moves 

every point by the same vector. 
 

Figure 3.13 shows how the above equations were derived. The overall match gradient 
is then found by using the product rule on equation 3.13: 
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It should be noted that if there were no detected field points then AF is set to 1 (for all 

r). Similarly, if there were no detected line or border points, AL is set to 1. Doing this allows 
match values to still be obtained if only one point type is seen on the c-plane. In summary, to 
calculate the overall match at a particular robot position and heading: 

 
1. Transform all points from local to global coordinates using equation 3.12. 
2. Calculate the overall match value using equation 3.13. 
3. Calculate the overall match gradient using equation 3.17. 

 
It can be simpler to study the implementation of this process rather than the 

mathematics behind it, since the algorithm is less cluttered than the formulas. The process is 
implemented in the “calcRobotMatch” function in the file “VisualCortex.cc”. 
 
3.2.4 Stationary Mapping 
 
 If the robot is standing still then the field is not moving relative to the robot. Hence 
the configuration of lines, borders and field green around the robot also does not change with 
respect to the robot. It is possible to take advantage of this fact, so as to better utilise the field 
information and localise off it more accurately. As the name suggests, “stationary mapping” 
involves building up a map of the surrounding field features when the dog is standing still. 
Normally, when the robot is moving, the field localisation will only use the detected points in 
the current c-plane to help localise off; when a new c-plane arrives the points from the 
previous plane are thrown away. With stationary mapping, the old points are not thrown away 
(as long as the robot is standing still), instead, all newly detected points are compared to a 
“map”, and the are incorporated into the map. 
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Figure 3.14: Field localisation pipeline and stationary mapper 
 
The map is very similar to the array used to store the detected points from the c-plane, 

once they have been projected down into robot-local coordinates. It is an array of points that 
holds information on the x, y position, type and weight (or confidence) value for each of the 
points. Figure 3.14 shows how stationary mapping fits into the field localisation process. 

 
 The localisation process uses the stationary map data if the robot isn’t moving, and if 
it is moving, it reverts back to the local point list for the current c-plane only. Also, if the 
robot starts moving, then the map is reset, as it is no longer valid. The merging process is the 
most complex portion of the stationary mapper. 
 
 Since the robot local point list from the current c-plane and the stationary map are 
essentially of the same form, a naive approach to merging would be to add all points from the 
current c-plane to the end of the map’s point list. This would get the job done, however, with 
around 50 c-plane points detected per frame and 30 frames per second, the stationary map 
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would quickly grow to a list of thousands of points, which would cause a dramatic increase in 
processor usage by the field localisation, such that the robot would not be able to do any other 
processing. Clearly, this is not useful. A merging process is needed that generalizes the 
surrounding field information into a list of about 100 points (the array size for the map is 128 
points, the same size as the array that stores the detected points from the current c-plane), i.e. 
the merging process needs to minimize redundant information by not storing duplicate or 
near-duplicate points. 
 

Two points are considered equivalent if they are the same type (both are line, border 
or field type), and if they have approximately the same x and y coordinates. Hence for every 
point in the map array we define a “merge region” around it. If any of the newly detected 
points from the current c-plane happen to be projected into one of the merge regions, that 
point is merged with the map point by taking a weighted average of the positions of the new 
point and the map point. The merged point then gains the weight of the newly added point. 
The weights of the points that have just been detected are all 1, i.e. the point weighting 
functions described in section 3.2.1 are not applied when the stationary mapping is in use. 
Another way of perceiving this process is that any newly detected point falling inside a merge 
region is a new estimate of that map point’s position. When the new point is merged with the 
map point, the map point’s weight is increased, and this equivalent to the confidence of that 
map point’s position increasing. 

 
If a newly detected point does not fall within the merge region of an existing map 

point, then it is added to the map. If the map array is already full, then the point is discarded. 
Periodically, the weight of all points in the map array is reduced by 1, and any points 
dropping to zero weight are removed from the map allowing for further points to be added. 

 
Note that merging a newly detected point with a map point will alter the map point’s 

position, and so it is possible that over time, one of the map points may move into the merge 
region of another map point of the same type. This would be a waste of map space, since both 
map points are describing nearly the same thing. To stop this from happening, all merged 
map points are treated the same as the newly detected points, albeit with a larger weighting. 
They are re-inserted into the map and merged again if they lie within an existing map point’s 
merge-region. Obviously they have to be removed from the map array before inserting again, 
otherwise the process would go into an infinite loop, as the existing map point is continually 
merged with itself. 

 
The merge regions for line and border points are the intersection of two simple area 

types. For a newly detected point to be merged with one of these map points, it has to lie 
within a certain distance of the map point, but also has to be within a certain angle of the map 
point, with respect to the origin (which represents the robot’s position in robot local 
coordinates), as in figure 3.15. So the merge region consists of a “merge radius” which 
defines a circle around the map point, and a “merge angle” which defines a pie slice coming 
out from the origin, and has the map point in the centre of the slice. The merge angle stays 
fixed for all map points, but the merge radius increases as the map point’s distance from the 
origin increases. 
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Figure 3.15: The merge regions of border (the small square), 

line (the two triangles) and field points (the small circle), in robot-relative 
coordinates. The merge radius for field points is bigger than for line/border 

points, and increases as the point distance increases. The merge angle is 
fixed to the same value for all line/border points. 

 
This region type was chosen for two reasons: 

• It is easy to check quickly. To check whether the test point lies within the map point’s 
merge radius, simply check: 

 
( ) ( ) 222

Myyxx Rmpmp ≤−+−   (Eq 3.18) 
 
  where:  p = (px , py) is the test point position in local coordinates. 
    m = (mx , my) is the map point position in local coordinates. 
    RM is the merge radius. 
  

To check if the test point is within the map point’s merge angle, check: 
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•

)    (Eq 3.19) 

  
  where:  θM is the merge angle. 
 

Many values for the test can be pre-computed, while the rest involve multiplications 
and additions (and one division), which are quite fast operations. Speed is important 
for the tests, since O(n) map points need to be checked (where n is the number of map 
points) for every newly detected point when they are merged into the map. 
 

• It corresponds to the error region associated with each point. Errors in a point’s pixel 
position are equivalent to angular errors, because the camera has a fixed resolution 
and a fixed field of view angle, while errors in the joint sensors are angular errors as 
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well. An angular error that is parallel to the ground plane will be projected into the 
region somewhere inside the pie slice. An angular error that is perpendicular to the 
ground plane, i.e. vertical, will be projected to a donut shaped region about the origin. 
For a fixed error amount, as the projection distance increases, this donut will become 
thicker. For the merge region, the donut is approximated by the merge radius circle, 
which increases in radius as the map point distance increases. 
 
The field points’ merge regions are different to the regions for the other two point 

types; lines and borders. There are usually many field points detected per c-plane, and the 
field points only describe a general area of the green part of the field (so they do not need to 
be particularly accurate in there position), and so their merge regions consists of only the 
merge radius circle, but not the pie slice. 
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Figure 3.16: A map built by the stationary mapper when the robot was 
standing outside the new a goal box corner, facing towards the goal. This 

figure is in robot-relative coordinates, with units in centimetres. Note 
how projection accuracy decreases with distance, making the far border 

into two separate lines. 
 
Although it is limited to use when the robot is not moving, when it is running the 

stationary mapper is very effective at localizing the robot to the correct field position. If the 
robot performs some head pans while not moving, it gains field data on a large angular range 
in front and to the sides of the robot. This is usually enough information to localise it to 
within a single point on the field, or perhaps its 180˚ rotational equivalent. In a Robocup 
match, there are not many times when it can be used by the forwards since they move too 
much. The goalie, however, is not moving all the time and it can make good use of it, 
especially when facing the nearby field corners. The stationary mapping was also very useful 
for the global localisation problem for the localisation challenge. 
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3.3 Field Line Updates 
 
3.3.1 Match Gradient Ascent 
  
 The final stage of field localisation is to find a robot position and orientation that 
maximises the match between what is expected to be seen by the robot, calculated from 
knowledge of the field layout, and what field configuration is seen on the c-plane. The match 
value and gradient can be calculated for any robot position & orientation on the field, so the 
goal is to find the best of these with as few match evaluations as possible; since each 
evaluation requires the sum up to 128 separate point match calculations, it can be quite a 
computationally expensive operation. 
 
 The match gradient vector indicates the direction of greatest increase of the match 
value, so following the gradient vector will take us to the nearest local maximum of the 
match value. This “gradient ascent” method used in the rUNSWift 2004 code. It is assumed 
that the current highest probability position and orientation are somewhere in the vicinity of 
the actual values, and so hopefully the nearest maximum corresponds to the global maximum. 
 
 The implementation of the gradient ascent is quite simple. Moving in the gradient 
direction will always increase the match value, however, the gradient value changes as 
position and orientation changes. Since it is impossible for a computer to continuously check 
the gradient while updating the position, the movement has to be divided into discrete 
intervals. Starting at the current best estimation of the robot’s position, the match value and 
match gradient are calculated. The gradient is multiplied by a movement rate scalar and 
added onto the current position and heading vector. The match value and gradient are then 
calculated at the new position. If the match value has improved, the new position is kept and 
the movement rate is increased slightly. If the new match value is worse, then the current 
position is reverted back to the old one and the movement rate is decreased. The process is 
then repeated at the current position. 
 

The main problem here is that any one movement may have been too large, passing 
over a maximum, and then decreasing to a lower match value. To solve this, the movement 
rate is decreased whenever the match rate decreases. If the movement rate is too slow, it will 
take many steps to reach the maximum, but the number of steps needs to be limited to a 
certain number (50, in this implementation) so that performance is acceptable. Hence it is 
possible that the gradient ascent never reaches its maximum. To help prevent this happening, 
the movement rate is accelerated if the match value is increasing. 
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Figure 3.17: The movement rate usually drops quite quickly at the start of the 
ascent, levelling off for a period, then dropping again to zero once a 

local maximum has been reached. 
 

The gradient ascent has an early exit mechanism. If the movement rate is very small, 
it shows that many past attempts at movement have resulted in a smaller match value, 
indicating a local maximum is nearby, and it is a waste of time to continue searching. Hence 
if the movement rate drops below a threshold value, the algorithm quits before its normal 50 
steps are completed. 

 
Because of processing time constraints, it is only possible to perform the gradient 

ascent for one of the modes (the mode with highest weight value) in the multi-modal 
Gaussian self location distribution. This is one of the disadvantages of using this method. 
Despite this, the method has proved to be effective at finding high match values, thus 
providing useful localisation information. 

 
3.3.2 Symmetry Generation 
 
 After the gradient ascent has finished running, it returns an updated position with a 
match value that is greater than, or equal to in very rare cases, the match value at the starting 
position. This updated position and orientation tends to be located at a local maximum of the 
match value, but there is no guarantee that it is the global maximum, since there could be 
many local maximums for any given point configuration. As a precaution, some code was 
added, before the final field line update, that generates a list of field positions and 
orientations that are similar to the update position output by the gradient ascent. This code is 
called the “symmetry generator”. 
 
 The symmetry generator works by defining “windows” around the some of the line 
features on the field, e.g. the centre circle, the 45˚ corners of the field border, the corners of 
the goal box. Windows are considered equivalent if the line features inside them are a 
rotation of each other; see figure 3.18 for examples of equivalent windows used by the 
symmetry generator. It then takes the median of the final global position of all line and border 
points after the gradient descent has been performed (here, the median is defined as the 
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closest line / border point to the mean of those points). If the median lies inside one of the 
windows, then alternate update positions are generated from all the other equivalent windows 
around the field. The update positions and orientations are rotated and translated accordingly 
so that the features inside each equivalent window appear the same. 
 

 
Figure 3.18: Examples of equivalent windows. 

 
If the median does not lie inside a defined window, a simple 180˚ rotation about the 

field centre will generate an update position and orientation equivalent to the original, since 
the playing field is rotationally symmetric about the centre, when the resolving beacons and 
goals are ignored (which they are for the field localisation). 

 

 
Figure 3.19: An example of the generated symmetries. The 

triangle represents the median line / border point. 
 
The symmetry generator also generates position and heading variances which are used 

by the kalman filter for the final field update. It does this by supplying variance fixed values 
depending on the line feature present in the window used to generate the symmetries. If the 
line features inside the window are not resolvable in one direction, e.g. the window contains 
only a straight section of line or border, then the variance in the irresolvable direction is set to 
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infinity. In all other situations, all variance values are set to a constant. Similarly, if the 
median point did not lie inside any of the windows, all variance values are to the 
aforementioned constant. 

 
Another, possibly more mathematically correct, method of determining the update 

variances would be to evaluate the second derivative of the match value at each update 
location and estimate a variance based on that. However, the previous simple method has 
proved easy to implement while still being effective, so other methods were not tried. 
 
3.3.3 Kalman Update Conditions 
 
 After passing through the symmetry generator, the single update position and 
orientation gained from the gradient ascent becomes a list of update positions and 
orientations, each with an associated variance for the x and y position coordinates, and the 
heading h. The match value of each of these positions is calculated, and only those positions 
that pass the following threshold are put into the kalman filter: 
 

vmo ≥    (Eq 3.20) 
 
  where:  m is the match value for the update position and heading. 
    o is an off-field penalty. 
    v is the minimum match value. 
 
 Occasionally, some of the generated symmetries are positions that are not actually on 
the field. These positions can still receive good match values despite there off-field positions 
if the global coordinates of the line / border / field points still lie in high match regions. Since 
they do not improve the robot’s self localisation accuracy, it is better to avoid using them. 
This is done by multiplying the match value by an off-field penalty o, where: 
 

( )202.0exp do ×−=    (Eq 3.21) 
 
  where:  d is distance from update position to the nearest on-field point. 
 
 The minimum match value v is calculated so that when the head is moving more 
quickly, the required match is less. This is because the image distortion caused by head 
movement would likely result in lower overall match values, while also supplying less 
accuracy. 

h
v

×+
+=

501
3.05.0    (Eq 3.22) 

 
  where:  h is the head movement speed in µrad / frame. 
 
 To account for the lower accuracy as a result of head movement, all update variances 
are multiplied by a factor s: 

( )2501 hs ×+=    (Eq 3.23) 
 
 So increased head movement increases the update variances, meaning the 
measurements are less trusted. Recall from section 3.1.3 that scanning for field points doesn’t 
occur if the head is moving too fast, and so no updates are performed in this situation. 
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 The update positions that pass the threshold in equation 3.20 are input into the kalman 
filter as a “direct” position update. Here the “direct” refers to the fact that the update, or 
observation, values are in the same space as the state values, and so the jacobian matrix used 
in the extended kalman filter correction is the identity matrix. 
 
 The new multi-modal kalman filter described in section 2.1 now comes into use. As a 
result of the symmetry generation, there are several update positions and orientations, and 
these correspond to a multi-modal observation distribution. To perform a multi-modal kalman 
correction update, each of the observation modes are treated separately from each other. The 
observation modes are applied to every original state mode individually, and a copy of the 
original modes is also kept and scaled by the noise scalar mentioned is section 2.2.3, so that if 
there are m state modes and n observation modes, the resulting number of state modes is 
m(n+1). The resulting modes are kept in order of mode weight, so once the kalman state’s 
mode array is full only the most likely modes will survive, the lower weight modes are 
discarded. This is the final step of the field line localisation using the gradient ascent method. 
  
3.3.4 Gaussian Mode Sampling 
 
 An alternate method of field line self localisation, named the “mode sampling” 
method, was developed prior to completion of the gradient ascent method. This other method 
made use of the same point detection and match calculation functions described in sections 
3.1 and 3.2, but applied the update in a completely different way. 
 

Mode sampling examines each Gaussian mode of the kalman state and generates a set 
of 27 sample points arranged in a 3×3×3 regular grid around the mean of the original mode, 
i.e. the point at the centre of the grid is located at the mode’s mean. The sample points in the 
grid are arranged to be one standard deviation away from each other along each of the 3 axes, 
and are aligned along the 3 basis directions for the global coordinate space, such as in figure 
3.20. The sample point arrangement is an approximate representation of the one-variance 
volume of the Gaussian mode. Note that it does not approximate the Gaussian well if there 
are two or three highly correlated variances, i.e. if the mode is elongated on an axis diagonal 
to all basis vectors. A better approximation to the mode volume could be made by positioning 
the sample points along the mode’s major and minor axes, however, calculating the 
coordinates of the sample points would then involve having to solve a third order eigenvalue 
problem, which would be too computationally expensive to perform for each mode. 

 

52 



 
 

Figure 3.20: The arrangement of sample points. The lines joining the points 
are merely to make the diagram more clear, and hold no significance. 

 
It is more convenient here to use a different coordinate system. Instead of the global 

coordinate system, sampling space coordinates are used, which have the origin at the mean of 
the current mode, and axes aligned with the global coordinate system, but scaled so that 1 
unit length in sampling space corresponds to one standard deviation of the mode in that 
direction. Hence the coordinates of the sample points in sample space will be: 
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The match values at each of the sample points are then calculated. The actual update 

of each mode involves “reforming” it according to the match values at the sample points; the 
mean can be shifted, the variances altered, and the mode can even be split into new modes. 
The first step of reforming is to find the local maximums in the sampling grid. Here we 
define a sample point as being a local maximum if it has a higher match value than all the 
neighbouring sample points along the basis directions (i.e. not diagonal neighbours). 

 
Each local maximum becomes a new mode, with the maximum point and its basis 

aligned neighbours determining the mean and variance of the mode. The new mode’s mean 
and variance are calculated by treating the sample points along each basis axis separately as a 
one dimensional case. So along each basis direction, there will be either two or three match 
values from which to calculate a new one dimensional Gaussian distribution. 

 
Consider the case of a one dimensional Gaussian distribution calculated from three 

equally spaced points with known function values: 
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Figure 3.21: A One dimensional Gaussian with three known points. 

 
The Gaussian distribution of unknown amplitude A, mean x0, and variance α needs to 

be fitted to these three points: 
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This can be solved to get values for α and x0, while A is not important: 
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Now consider the case where only two points are used to fit a one dimensional 

Gaussian. This would occur when the local maximum is not in the centre of the sampling 
grid, but on one of the edge points. Here, the fitting is solved for the case where the +1 
sample point is the maximum, but the -1 case is very similar to derive: 
 

 
Figure 3.22: One dimensional Gaussian with two known points. 
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The equation is simplified by assuming the Gaussian’s mean is at the point of the 

maximum, so only a value for α is required. Solving for α gives: 
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 The mean and variance for each basis direction are calculated, and then converted 
from the sample space to the global space coordinates to get a newly formed Gaussian mode. 
This process is repeated for all the local maximums in the sampling grid. When all new 
Gaussians have been formed, they are applied as a direct kalman update to the single state 
mode that was reformed. The reforming and direct kalman update is then done for all other 
modes in the original state array. 
 
 The mode sampling localisation method has a few nice properties: 

• It is applied to all modes in the self position mode array, unlike the gradient ascent 
which only gets applied to the most probable mode.  

• It will automatically calculate appropriate variances for line information. So if the 
robot can only see a straight field line, its variance will spread out along that line. 

• It will automatically split into separate modes if there is more than one possible 
location within the variance volume. 

• Although accuracy is limited to the separation of the sampling grid, as more updates 
are applied, each mode’s variance will shrink, and so the sampling grid will also 
shrink, increasing the accuracy when it is needed. 

 
Despite all these positive aspects, the mode sampling method just didn’t seem to work 

as expected. The robot’s self localisation would jump almost randomly around the field, even 
with localisation help from the beacons and goals. It might be that the method’s lack of 
support for non-axis aligned variances was causing problems. It might also be possible that 
the variances calculated for the update modes were far too small or too unstable. There could 
be a bug / bugs in the code. Whatever the reason, the mode sampling method failed to work, 
and so was abandoned when the gradient ascent method was found to work much better. 
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4 Behaviours 
 
 For the rUNSWift 2004 code, the Python interpreted programming language replaced 
C++ as the language used to control the top level “behaviour” of the robot (See [13]). As part 
of the change, all the existing behaviours had to be ported to the new language. Many of the 
fundamental skills were ported directly, i.e. a direct translation of the code from C to Python, 
while other skills and behaviours were redesigned and re-written as part of the porting. Two 
of the behaviours that were redesigned were the localisation challenger and the goalkeeper, 
not because they were bad, but because of the changed field environment and quality of 
sensor information available to them. 
 
 The localisation challenger, in particular, had more effective field line localisation 
available to it, while goal information which was available the year before would not be 
available now, as the goals were covered up during the challenge. For a full description of the 
challenge, consult “The Almost SLAM challenge” (Part 4) of [5]. Basically, the challenge 
involves making the robot move to five points on the field without help from normal beacons 
and goals, but with a new set of coloured landmarks posted at random positions around the 
field at the start of the challenge. The robot gets one minute at the start of the challenge with 
both the normal beacons and the new unknown beacons, to localise itself and memorise the 
positions of the new landmarks, then the regular beacons are taken away and the robot is 
transported to a different section of the field. It then gets two minutes to travel to the 5 points 
given to it in a file stored on its memory stick, and the robot that does this the fastest and 
most accurately wins the challenge (there is a scoring system for ranking purposes). 
 
 The goal keeper was also redesigned from last year’s keeper. A couple of reasons for 
this were that the rUNSWift 2003 goalkeeper’s localisation relied heavily on looking at the 
two central beacons, which were removed for the 2004 competition, and the kicks and special 
actions available to the robot had changed completely. This report will describe the initial 
simple implementation of the goalkeeper, but it should be noted that the system described 
here is only the base of the final code used in the 2004 Robocup tournament in Lisbon. Some 
code removal and many modifications were made by the team to this base code before 
competing. 
 
4.1 Localisation Challenger 
 
4.1.1 Detection of New Landmarks 
  
 The new unknown landmarks for the localisation challenge consisted of blank white 
A4 sheets of paper with other pieces of coloured paper stuck to them in various 
configurations. These A4 sheets were then attached to the outer barrier wall that was all 
around the field, with each sheet representing one landmark. As part of the rules, at least 
three of the landmarks had to contain a patch of pink at least 10cm across. Apart from this 
constraint there were few other limitations on the appearance of the landmarks; they could be 
of any colour other than black or white, including compositions of multiple colours, they 
could range in size from 10 to 50 centimetres, there would be at least six of them. It was 
decided that the localisation challenger would use only the pink patches from the new 
landmarks for two reasons: 
 

• Pink was the only colour certain to be in the new landmarks. 
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• As part of the existing beacon localisation process, detection of pink blobs on the c-
plane was already performed in the vision module, so this code could be used in the 
implementation. 
 
In the vision module, a list of pink “half-beacons” is available. These half beacons are 

a list of areas that are formed by joining close-by solid pink blobs on the c-plane. The pink 
half-beacons that are close to blue or yellow half-beacons and pass certain sanity checks are 
used to form the beacon recognition in the vision module, but not all the pink half-beacons 
get joined into a full beacon. The landmark detector is basically a “pink detector” that takes 
these pink half-beacons, or pink areas, and makes sure they pass the following tests: 
 

• Both dimensions (width & height) of the pink areas have to be greater than 4 pixels. 
• The number of pink pixels in the area needs to be greater than 30. 
• The density of pink, i.e. number of pink pixels divided by the size of the whole area, 

needs to be greater than 85%. 
• The pink half-beacon must not be part of a regular beacon. 

 
The first three tests are designed to eliminate unwanted noise caused by very small 

patches of pink in the background or on the field. The density check in particular is highly 
effective at removing most noise from the background, whilst the legitimate pink from the 
landmarks, which have very high density values, are left there. The final check is to stop the 
pink sections of the normal field beacons from being mapped as “new” pink landmarks. 

 
The pink detector compiles a list of all the pink areas that pass these tests and 

calculates a robot relative heading to each of them, taking into account the area’s c-plane 
position, and the robot’s head angles. A distance to the pink areas cannot be calculated since 
the rules state that the pink patches will be at least 10cm across, not exactly 10cm across, so 
the size of each pink patch is unknown. This list of pink patches is passed to the localisation, 
or “gps”, module. 
 
4.1.2 Pink Mapping 
 
 The first part of the SLAM challenge is a period of one minute to calculate and 
remember the positions of the new landmarks around the field. The rUNSWift localisation 
challenger completed this first stage by following the schedule shown in figure 4.1, which has 
a duration of around 50 seconds. 
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Figure 4.1: The mapping schedule. 
 
 All of the actual mapping is done in the four slow head pans when the dog is located 
in the centre of the field. When the pink mapping is enabled during these head pans, the 
localisation module takes the list of pink areas detected by the vision module, and using the 
robot-relative angle of each pink area, finds the intersection of the line cast out from the 
robot’s current global position and heading estimate with the quadrilateral representing the 
outer wall of the Robocup field, as in figure 4.2. The outer wall quadrilateral needs to be 
defined by its corners’ global positions, which were measured before the challenge took 
place, and entered into the code. 
 

Doing this gives a global coordinate location and a distance to each of the pink areas, 
but also allows some extra checks to be performed on the pink areas: 
 

• The elevation angle of the pink region is checked to make sure it is not too high or too 
low. The minimum allowed elevation is constant, but the maximum is inversely 
proportional to the distance, so that closer pink blobs are allowed to have a greater 
elevation angle, while further away blobs need to be closer to the horizon. 

• The line cast in the pink blob’s direction must not pass too close to the known global 
positions of any of the regular beacons. This is easily done by calculating the 
perpendicular distance from each beacon position to the line, and making sure it is 
more than 25cm. 

 
The first check here makes sure that any unwanted background information that 

managed to pass the checks in the vision module will not be mapped. The second is a back-up 
check in case the pink from a regular beacon was not eliminated from the list obtained from 
the vision module (This can happen if the vision module failed to classify the regular 
beacon). 

 
Once the global coordinates of each blob are found, the pink positions can be 

recorded. The recording process is actually quite similar to the “stationary mapping” 
described in 3.2.4, with a list of pink locations kept (this time in global coordinates), and a 
confidence value for each. This list is called the “pink map”. Each pink location in the map 
gets a circular “merge region” of radius 25cm around it, and if any following pink locations 
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fall within the merge region, a weighted average (weighted by confidence, where any newly 
detected pink area has a confidence of 1) is performed, and the confidence value is increased 
by 1. Any newly detected pink areas that do not fall within a merge region are added to the 
map list, with a confidence of 1. An example of this process is shown in figure 4.3. Every 4 
seconds, the confidence values of all locations in the pink map are decreased by one. This 
discourages any noise regions from entering the map.  

 

 
Figure 4.2: The robot has seen two pink blobs at angles shown by the dashed lines. 

The mapper calculates the intercept (shown by black dots) of these lines with the 
outer wall, which is defined by any four vertices (i.e. the outer wall doesn’t have to 

be rectangular). One of the intercepts lies within the merge radius of an existing pink 
region (shown by the larger circles), and so is merged with it by taking a weighted 
average of their positions. The other intercept doesn’t lie within a merge region, so 

will create a new region. 
 

 The pink mapping process proved to be quite accurate. It could detect the location of 
any pink in the extra landmarks to an accuracy usually within 15cm of the actual position. It 
did not suffer from any noise in the map, i.e. there were never extra pink regions in the map 
that didn’t exist, or existed only in the background behind the barrier wall. If anything, the 
noise checks were a little too strict, since sometimes small, far away pink areas would not be 
present in the final map. Also, sometimes the pink map would contain two separate pink 
regions for the one landmark (but these were still close to the actual landmark position). This 
is thought to be caused by seeing the same landmark during two different head pans. 
 
4.1.3 Localisation Using the Map 
 
 Near the end of the minute in the first stage of the SLAM challenge, the robot pauses 
itself and switches from “pink mapping” mode, to “pink localizing” mode. While the robot is 
paused, the regular beacons are removed from the field, and the goals are covered in white so 
they are indistinguishable. The robot is then moved to a random spot on the field, and the 
second stage of the challenge is begun when the robot is unpaused. While in the second stage 
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of the challenge, all localisation is done using the field lines and the pink map recorded in the 
first stage. 
 
 Localisation off the pink blobs seen is a similar process to localizing off the normal 
beacons. When localizing off beacons, a kalman correction update can be performed by using 
the global position of the beacon to calculate an expected angle and distance, which is 
compared to the angle and distance given in the visual observation (see section 3.2.7 of [7]). 
The pink updates are similar, but there is less information available. The global positions of 
all the pink landmarks are still available from the pink map. However, the pink blobs are 
indistinguishable from one another, so seeing a pink blob means that the blob could 
correspond to any of the recorded pink landmarks in the map. Fortunately, this is not a 
problem for the new multi-modal localisation system, which was constructed to handle these 
situations. Secondly, the observation of a pink area provides no distance information, so any 
updates using the pink are restricted to angle space only. This is also not an issue, as the 
beacon localisation already has code that implements a kalman update using only angle 
information. 
 
 The exact pink localisation process is as follows. Given the list of pink blobs from the 
vision module, the pink localiser checks all blobs and extracts the largest one (i.e. the blob 
with the greatest number of pink pixels). This will be the only pink blob used for localisation 
for that frame. It is unknown which pink landmark in the map that this blob refers to, so all 
landmarks in the map are used. Each mode in the self localisation state array is then split into 
N identical modes, where N is the number of pink landmarks in the map, and each of these 
modes are kalman updated separately under the assumption that the pink blob detected is 
actually a different one of the landmarks from the pink map. A copy of the old state mode is 
also kept, but scaled by the noise probability scalar from section 2.2.3, so any pink noise used 
for localisation wouldn’t make a serious impact on the robot’s position information. If the 
initial self location mode array contained M modes, and there were N pink landmarks in the 
map, the number of modes after updating would be M(1 + N). 
 
4.1.4 Global Reorientation 
 
 The most critical stage of the SLAM challenge is for the robot to be able to reorientate 
after it has been moved in the pause between the first and second stages of the challenge. This 
is the global localisation problem, where the robot must determine its position with no prior 
knowledge of where it is, which is significantly more difficult to solve than the local 
localisation problem, where the robot only needs to ensure that its localisation estimate is 
kept accurate by observation information. 
 

At the beginning of the second stage of the slam challenge, the rUNSWift 2004 
challenger attempted to re-orientate itself simply by spending 5 seconds standing still and 
performing several full left to right head pans, at two different tilt angles. This was enough 
for the robot to completely relocalise itself. It is important to understand what was happening 
in the localisation system during that period of apparent inactivity on the part of the robot. 

 
By standing still while head panning, the robot activates the stationary mapping 

feature of the field line localisation. By doing full 180° head pans, the stationary mapper is 
able to build up a point map of a significant area in front, and to the sides, of the robot. The 
field localisation is then able to more precisely relocalise the robot than it normally would if 
it were moving. During the initial standing still period, the pink landmark localisation system 
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is also working, and this performs the duty of resolving any symmetries that are inherent in 
using only the field line information. 

 
Before the challenge was run at the Robocup tournament, it was unclear whether this 

simple method would be sufficient for reliable global localisation, and so another method was 
developed, called the “One time edge localise”. The method obtained its name from the fact it 
is very computationally expensive and so should only be called once, since it will cause the 
robot to “drop frames” (this is where the processor is spending all its time doing a particular 
task, and so doesn’t have time to retrieve the frame data from the camera, leading to the robot 
missing video frame information). The idea behind the one time localise method is to perform 
the match gradient ascent (described in section 3.3.1) for many different starting positions 
and headings distributed across the field, in the hope of finding the maximum overall match 
value. After running all the gradient ascents, the one time localiser puts the highest match 
positions and orientations into the self location mode array, with each mode weighted 
according to its final match value after the ascent (overwriting any old modes that were 
present in the array). 

 
For a method such as this to be effective, sufficient field information needs to be 

available, otherwise the match function in global coordinate space will feature many local 
maximums of similar weight, e.g. consider 10 border points arranged in a line segment 15cm 
long in front of the robot: there are many field positions where this would produce a 
maximum match value, and all the maximums would have about the same match value. This 
is where the stationary mapping facility is useful, it drastically cuts down the number of 
match maximums inside the global coordinate (position and heading) space, if the robot 
collects a wide variety of data (i.e. if the robot takes a good look around while standing still). 

 
The strategy was, like before, to have the robot stand still and perform head pans after 

the second stage had just begun. After allowing some time (5 seconds) for the stationary 
mapper to build up a map, the one time localise would be executed, and the robot would 
continue from there. Unfortunately, this code was never used by the localisation challenger 
because it wasn’t tested enough before the SLAM challenge was run at the Robocup 
tournament (the code was completed minutes before the deadline for submission of memory 
sticks for the challenge). It effectively has not been tested, and so it is unknown whether it 
works or not. 
 
4.1.5 Movement Between Points 
 
 Once reorientated at the start of the second stage, the robot must move to the five pre-
determined points as quickly and accurately as possible. The five points can be visited in any 
order, and so it is sensible to calculate the shortest path between them. There are heuristic 
searches, such as A*, which can supply a relatively short path quickly, however, considering 
there are only 5 points, it was decided to spend some extra time calculating and obtain the 
optimal path by an exhaustive search. This extra time is unnoticeable to any human observer 
of the challenger, since it is significantly less than one second. 
 
 It is assumed that the time taken to traverse a particular path is proportional to the 
total length of the path. This assumption is not always valid because the robot has to take 
time turning around to head for the next point, however it reasonably accurate in most cases. 
Once the distance of all possible paths have been calculated, and the shortest one chosen, the 
robot is free to move towards the first point on the path. 
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 The method of movement used by the robot is significant. The prediction update of 
the kalman filter used for self localisation uses forward, left and turn values supplied from the 
actuator control module, as explained in section 3.2.6 of [7]. These values have been 
calibrated to match the walking speed of the robot, but the calibration is done so that the 
values only match the actual walking speed when only one of the forward, left or turn 
amounts is dominant, and the others are zero. When combinations of forward, left and turn 
are used at the same time by the robot’s high level behaviour code, the actuator control 
assumes that the actual walking speed must then be a linear function of the 3 values, when in 
reality it is not. Hence, the odometry values sent to the prediction update can be wrong when 
a combination of forward, left and turn are used at the same time by the behaviour. Bad 
odometry can throw off the localisation of the robot, and because it is desirable to keep the 
self localisation accuracy as large as possible, the localisation challenger only tends to use 
one of the possible walk parameters (forward, left and turn) at any one time. 
 
 Hence, when the SLAM challenger needs to travel to a point, it will rotate on the spot 
till it is facing its destination, and then walk forward at maximum speed. If the robot needs to 
make small angular corrections while it is walking, then these are performed while walking 
forward, however if a large angular correction is needed, the robot will stop and rotate on the 
spot again till facing its destination. 
 
4.1.6 Active Localisation 
 
 In order to keep the robot’s position estimation as accurate as possible, the amount of 
useful information input into the localisation system must be maximised. To do this, the robot 
must actively move its head to observe field line features and landmarks on the barrier walls 
that will help resolve its position. It is not helpful for the robot to simply look down at the 
ground and hope that a line or border that it may localise off will appear in its view. Instead, 
the localisation challenger is programmed to keep watch on certain field features, shown in 
figure 4.3. These features are separated into two types, primary features and secondary 
features. 
 

 
Figure 4.3: Field features. Features marked with P are primary,  

those marked with S are secondary. 
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 The primary and secondary features are distributed evenly over the field, so that it 
almost all locations and orientations it will have at least one, and preferably two, features 
within its possible field of view. The primary feature locations correspond to points on the 
field that contain complex line markings such as corners or intersections. The robot will 
calculate, using its current position estimate, which field features (primary or secondary) are 
within its possible field of view by taking all features within 80° of its heading, greater than a 
distance of 15cm and less than a distance of 200cm. It will then set the head angles to observe 
each of the features by alternating between them every 40 frames (about 1.3 seconds). 
Periodically it will also look up to the horizon, so that it may see a pink landmark on the wall. 
 
 For each goal point the challenger has to move to, it chooses a primary field feature to 
face towards when near to the goal point, so that it is guaranteed to have a nearby feature to 
localise of for final positioning accuracy. The primary feature chosen is the closest one to the 
goal point that is more than 15cm away from it. When heading to a goal point, the robot does 
not actually head straight for the goal point, instead it aims for a point slightly behind it, 
along the line that passes through the goal point and the chosen field feature, such that the 
destination is on the opposite side of the goal point to the field feature, as in figure 4.4. This 
ensures that when it reaches that destination and turns towards the actual goal point, it is 
facing the chose field feature. This feature also helps avoid cases where the challenger 
performs wild rotations to keep it facing the chosen field feature as it approaches the goal 
point (for example, if it passes nearby the chosen field feature on its way to the goal point). 
 

 
 

Figure 4.4: Destination point vs. the point the robot 
will actually move to. 
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4.2 Goalkeeper 
 
4.2.1 Positioning 
 
 The aim for a goalkeeper is to form a barrier between the ball and the goal. Since it is 
the quickest route, most attacks at goal from the opposition will be in a straight line from the 
ball to the goal, so it would be sensible to position the goalie along the line from the ball to 
the goal. Although the goal is not a single field point but an area, we consider the goal 
position to be at the centre of the goal mouth. Positioning the goalie at the two extremes of 
this line, would have it sitting in the centre of the goalmouth all the time, or chasing after the 
ball, way out of the goal area. Neither of these possibilities would make an effective 
goalkeeper, so a compromise was chosen. The goalkeeper needs to stay quite near the goal 
mouth, so that it doesn’t have to move too far if the ball is hit across-field, but it should move 
itself to a position in the goalmouth that is nearer to the ball. 
 

 
Figure 4.5: Goalkeeper position point. 

 
 The solution implemented in the original goalkeeper was to position the keeper at a 
point that is the intersection of the ball-goal line, and an ellipse that just surrounds the goal 
mouth, as shown in figure 4.5. The global ball position is obtained from the gps module, so 
the intersection point can be calculated in global coordinates. If the ball has not been seen for 
a while, the goalkeeper defaults to a position centred in the goal. 
 

The robot’s own position, taken from the gps module, is then compared to the 
intersection point, and if the Euclidean distance between the two points greater than a 
threshold, the robot will move towards the intersection point. This movement threshold, or 
“laziness” factor was added so that the goalkeeper would stand still when movement was 
unnecessary, since stopping occasionally provides better detection and distance estimates of 
field objects such as beacons and the ball, as well as conserving battery life and reducing heat 
build-up. Once the robot starts moving towards the intersection point, it stops once the 
Euclidean distance drops below another threshold, the “accuracy” factor, which is smaller 
than the laziness distance. This hysteresis is to stop the robot continually switching between 
moving and not-moving states. 
 
 As implemented, the goalie positioning was adequate, but not perfect. When 
defending from front on attacks, if the ball was hit hard enough at a gap to the side of the 
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goalie, the robot would not react fast enough to the changing intersection point, and would 
sometimes stand around while watching the ball roll past it into the goal. This situation 
wouldn’t arise in a game very often however, since situations where an opposition robot has 
the time to set up a fast kick accurately directed towards the gap either side of the goalie are 
exceedingly rare. Most teams wouldn’t even have a kick at their disposal that is fast and 
accurate enough for this. 
 
 Another problem was that when the ball was off to the side of the goal, the 
intersection point would not be in the ideal position, i.e. the goalie would be out of the goal, 
aligning itself along the barrier wall, when a better position is to be placed diagonally across 
the corner of the barrier wall, as shown in figure 4.6. Since the barrier wall is diagonally 
sloped it is possible that the opposition team can force the ball around the goalie by pushing it 
up the side of the barrier wall, while the diagonal positioning across the corner would not 
allow this. 
 

 
Figure 4.6: Ideal defensive position for balls off to the side. 

 
4.2.2 Attacking 
 
 As well as forming a barrier for the goal from the ball, the goal keeper should also try 
to move the ball away from the goal area (“clear” the ball) whenever it gets the chance. So as 
to not compromise its role as a barrier, the goal keeper should only attack when it is sure that 
it can get to the ball first, or when clearing the ball doesn’t require it to move substantially 
from the defence position. Because the original goal keeper was only a basic implementation, 
only the second of these conditions were used, i.e. when deciding whether to attack the ball 
the original goalie would not consider the positions or intentions of opponents or its 
teammates, it would only check whether the ball was in the immediate vicinity of the goal. 
 
 The attack mode would be triggered if the “gps ball”, which is the global coordinates 
of the ball supplied by the localisation (gps) module, was found to be within the goal box, or 
if the visual ball, which is the ball information such as robot-relative distance and heading 
supplied by the vision module, was within 15cm. The two different triggers were used 
because the gps ball position is the result of a kalman filter process, and so can take some 
time to adjust to the ball’s position if it is moving quickly. The visual ball, on the other hand, 
represents the most recent information of the ball from the current video frame, and so is 
better suited to reacting to fast moving balls. 
 
 Upon activation of the attack, the goalie would perform a “paw-kick”, which involves 
running towards the side of the ball, such that one of the robot’s front legs aligns with the 
centre of the ball. As part of its running action, the aligned leg will take a step forward, and 
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the ball will be kicked as part of that forward step. To break off the attack, one of two 
conditions must be satisfied. One trigger is that the ball is more than 15cm away from the 
nearest point inside the goal box, which would signify the goalie has successfully cleared the 
ball, and so can return to ordinary defending. The other trigger activates if the visual ball is at 
an angle of greater than 40° from the straight ahead direction of the robot, which would mean 
that the ball is no longer in a suitable position for the robot to perform a paw-kick, so the 
attack has failed and the goalie should retreat. 
 
 In the game situation, the goalie attacks were not successful mainly due to the type of 
kick used. If the ball was approaching head on, with no opposition robots behind it, then the 
clearance kick would work, however most goal attacks come from the sides with an 
opposition robot directly behind the ball, pushing it towards goal. In this case the goalie 
would attack with the paw kick, basically running continuously at the ball, try to push it, and 
the opposition robot behind it away from the goal. This scrum situation, together with the fact 
that not much localisation information would be available since the goalie would be focusing 
on the nearby ball, would usually cause the goalie to become mis-localised, and it would 
continue chasing the ball even if it were cleared from the goal box area, eventually leaving 
the goalkeeper well out of position. 
 
 The attacking was later improved with the use of a different kick, the side-swipe or 
“U-Penn” kick, which allowed the goalie to avoid many scrums with the opposition, however 
this was not part of the simple original goalkeeper implementation. 
 
4.2.3 Head Control 
 
 The goalkeeper’s head really only has two tasks. One is to track the ball, the other is 
to look at objects that will help its self localisation. Head control in the original goalkeeper 
involved tracking the ball, and occasionally looking up to the field beacons (active 
localisation). The trigger to active localise was time based, and would only fire if the ball was 
greater than 25cm away. Once done active localizing, the head would return to the angular 
position of where it had last seen the ball. If the ball is not seen in this position, the robot 
would look at the field position where the gps ball was located. If the ball is still not seen 
after this, then a ball search is initiated, which involves panning the head from full left to full 
right positions at a head tilt that enables the horizon to just be seen at the top of the c-plane, 
and then a quick pan at a tilt angle such that the goalkeeper can see any balls at its feet, or 
below the head. 
 
 The active localisation method used by the goalkeeper is slightly modified from the 
one used by the forwards. The active localisation skill will choose a beacon to localise off 
based on the robot’s self position covariance, i.e. if the robot is unsure of its position in a 
certain direction, the active localise will choose a beacon in that direction to give it the most 
useful information. Normally, the beacons considered for selection by the active localiser are 
only the ones in front of the robot, as in figure 4.7; this is to ensure that the robot does not try 
to view a beacon that may be behind it, which is impossible. However, this is not always 
good for the goalkeeper’s localisation, since when it is facing forward it can mean that the 
two closest beacons to it are always excluded from selection, and so the goalie only localises 
off the two far beacons, which is less accurate. To make sure the close-by beacons are used, 
every second active localisation will consider beacons in a wider angular range about the 
robot, as shown in figure 4.7. 
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Figure 4.7: Beacons considered when active localizing. 

 
 This simple head control method proved effective at keeping track of the ball and 
keeping the goalkeeper localised whenever defending. When the goalkeeper decided to attack 
however, the goalkeeper sometimes didn’t active localise for long periods of time, due to the 
localise trigger’s conditions, causing it to get lost during the attack. This was more of a 
problem in the attack method than the head control, though. 
 
4.2.4 Rear Wall Avoidance 
 
 Due to the large amount of time the goalkeeper spends near the edge of its own goal, 
there are often times when it tries to move somewhere, but gets stuck on the edge of the rear 
barrier wall to either side of the goal. For example, after the goalie has moved out of goal to 
clear a ball and is returning to its defence position is a usual case for this to occur. Getting 
stuck on the rear barrier wall usually involves the robot trying to turn in the direction of its 
destination and moving backwards at the same time, but unable to because one of its legs is 
being blocked by the wall. To help avoid this happening, a movement method was devised 
that cancelled all movement in a direction towards the rear of the field if it was likely that one 
of the legs would hit the rear wall. 
 
 To determine if a leg is going to hit the rear wall, a simple model of the leg positions, 
as shown in figure 4.8a), is used. This model assumes the legs are placed at the corners of a 
rectangle, with the centre of the top edge of the rectangle assumed to be the position of the 
robot’s neck, i.e. this point is the local coordinate system origin. The rectangle corners are 
then transformed to global coordinate space by rotation and translation, and if any of the 
transformed legs lie inside an area that is 2cm out from the rear wall, as shown in figure 
4.8b), then any movement in the global y direction is cancelled, by only taking the x 
component of the movement. 
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Figure 4.8: a) Local and b) Global collision model of the rear wall avoidance system. 
The four leg points from the local model are rotated and translated to their global 
Positions. If any of the points lie within the “wall hit zones” on either side of the 

Goal, the robot’s movement in the global y-direction is clipped. 
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5 Conclusion 
 
5.1 Results and Future Work 
 
 Overall, the self localisation system used by the rUNSWift 2004 team was very 
accurate, and made good use of all localisation information available. For a robot on its own 
in the field, the system has proved itself to be reliable and not too computationally expensive, 
as proven in the localisation challenge, where it easily claimed first place, reaching four of 
the five destination points, when the closest other team only reached two. It was the only 
localisation challenger that gave the impression of actually knowing where it was. This is not 
to say that the system is flawless. 
 

The single biggest problem with the system at the moment is its reaction to scrum or 
restricted movement situations for the robot, i.e. when the robot is hitting another robot or a 
wall while trying to walk somewhere. After this occurs, the field line localisation can 
sometimes work against the system, keeping the robot’s self variance small by localizing on 
some local maximum that doesn’t represent the robot’s actual position. Since the variance is 
kept small, the robot’s higher level behaviour never knows to perform an active localise, and 
the robot will continue dribbling the ball, sometimes in completely the wrong direction, 
towards its own goal. 

 
Another lesser problem with the system is the computational time it takes to perform 

the gradient ascent. This is of lesser importance because it doesn’t make a critical difference 
to the localisation accuracy, and because the single step gradient ascent method used at the 
moment is very crude and simple, its speed can be readily increased by using more efficient 
methods. At the present, the computational time consumed is not enough to make the robot 
“drop frames”. 

 
Possible improvements that should be considered are: 
• Improvement of the stuck detection. Currently the stuck detection is in a very primitive 

and unreliable state. With a proper analysis and testing, it is probable that the stuck 
detection could be significantly improved, thus providing better motion updates in scrum 
situations. If the stuck detection were sufficiently reliable, the field line localisation 
system could be disabled for a short time after the stuck condition, this way the self 
variance could grow for some time, and the behaviours would know to perform an active 
localisation. The field position could be repaired using beacon information alone, then the 
line localisation could be re-enabled. 

• Combining field line localisation and beacon / goal localisation into a single kalman 
update. Currently the two systems run separately, and apply two different observation 
updates to the kalman filter. Combining them into one update may help stop the two 
systems conflicting with one another. 

• Implementing a more efficient match maximization method than the current gradient 
ascent. The conjugate gradient method, for example, could be more efficient than the 
current method. If the efficiency were improved enough, it might be possible to perform 
the match maximization on several of the Gaussian modes in the distribution, not just the 
highest probability one. 
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