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Abstract

Object recognition is an important ability for autonomous robotics agents.
This report describes the objects recognition tasks implemented in the rUNSWift
2004 software system, in terms of its background, software architecture, im-
plementation, and problems encountered during development.

This research and development was undertaken as a member of the
rUNSWift 2004 team, which represented The University of New South Wales
to participate in the Four-Legged League of RoboCup Competition 2004.
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Chapter 1

Introduction

1.1 Overview of This Thesis

Sometime in the future, we have the following scene happening in an average
household,

“Cleo!, go to the kitchen and hand me the fruit-plate please!”

“Yes, sir.” Cleo goes to the kitchen, and then hand to its master a
plate.

“Cleo, this is not the fruit-plate. This is for the bread! Go to get the
fruit-plate again.”

“Yes, sir.” Cleo goes to the kitchen, and then hand to its master an-
other plate.

“Cleo, this is for seasoning! Enough. Now go to charge yourself up.”

Cleo, our advanced autonomous robot for domestic use, is sent back
to its manufacturer in the next day for refund.

Object recognition has been one of the active research areas in AI (Ar-
tificial Intelligence) community, especially among Al robotics researchers.
For mobile robots to perform useful tasks, it is generally beneficial to have
some form of exploration of the environments using vision devices. Some
applications are already developed, such as the AIBO entertainment robots
produced by Sony which can recognise the face of its owner using its camera,
go to the recharge station to recharge itself by recognising the charge-station

!The inspiration came from Sony’s entertainment robot Qrio, but the scenario does
not have any implication on the actual robot.
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landmark, and perform different tasks base on which command cards are
shown to its camera. Some applications are yet to come, the prescribed
scenario being one of them.

In this research, we are looking at recognition and distance estima-
tion of specific objects encountered by robots in the Four Legged League of
RoboCup competition. They are the beacons, goals, robots and balls on the
soccer field. In the rest of this chapter, the background of the competition
and the robot soccer team are introduced. In chapter 2, we will look at how
this work was previously handled by other teams and by previous rUNSWift
teams. In chapter 3 concepts that drive the implementation are explained,
followed by the details of implementation in chapter 4 and some problems
encountered during the research in chapter 5. And finally, conclusion is
drawn in chapter 6.

Because the performance of vision recognition highly depends on many
factors like lighting condition and amount of noises in the background, which
changes from time to time and vary in different occasions, there is no ex-
perimental data presented in this paper, but the problems and suggested
solutions are presented instead, to give an idea of the results of the research.

1.2 The RoboCup Competition

1.2.1 Overview

The RoboCup Competition is an international project to promote research
in Al robotics and related areas. Its ultimate goal is “By 2050, develop a
team of fully autonomous humanoid robots that can win against the human
world champion team in soccer.”

The first RoboCup Competition was held in 1997 in Nagoya, and from
then on the number of participating teams has grown from around 40 to over
200 in 20042. The competition is held in around June-July every year in dif-
ferent cities in different countries. In RoboCup 2004 there are five different
leagues,

Simulation League
In this league participating teams will write software system that will
be loaded into the RoboCup Soccer Simulator, which enable two teams
of 11 simulated autonomous soccer players to compete.

2Counting teams from all leagues.
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Small Size League
In Small Size League, robots are built by participating teams to be
put in a carpeted soccer field, which is 2.8m long by 2.3m wide. An
overhead camera is installed 3m above the soccer field so that global
vision is retrieved and fed into an off-field PC for processing. There
are five robots in one team and they can connect to the off-field PC
to get or transmit required data.

Middle Size League
In Middle Size League, robots are built by participating teams but
there is no off-board PC available for data computation during the
game and robots need to use their on-board vision.

Four-Legged League
This is very similar to the Middle Size League, except that the robots
are not built by participating teams, but specified by the organising
committee. In 2004 Sony AIBO ERS-7 and ERS-210/A are allowed.

Humanoid League
In this league, a variety of humanoid bipedal robots are built by partic-
ipating teams to demonstrate skills that are related to soccer playing.
In 2004, four challenges are set for participation — stand on one leg,
walk, do a soccer penalty kick, and the free-style event.

The University of New South Wales has participated in the Four-
Legged League since 1999 and the name of the team is rUNSWift. It is
where this research has come from and base on. The Four-Legged League
will be discussed further in the next session.

1.2.2 The Four-Legged League

In The Four-Legged League, participating teams have to use robots specified
by the Competition Committee without any modification on its hardware.
In 2004 there are choices of either using

1. Sony Entertainment Robot AIBO ERS-210/210A, or
2. Sony Entertainment Robot AIBO ERS-7, or

3. A combination of both in the team

Our team went for choice 2 because of the advanced hardware of the
later model. ERS-7 has higher camera resolution, processing power and mo-
tor power compare to ERS-210/210A.
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Figure 1.1: Image of Sony AIBO ERS-7

During the game, each robot is fully autonomous with its own sen-
sors, actuators and processors. Wireless cards are equipped with the robots,
but they are strictly only used for message passing between teammates,
and receiving signals from Robo-GameController to react to penalties and
start /finish of the games. Once the game is started, the software has to
make use of data provided by the sensors to figure out where it is on the
field, where the ball and opponent are, and decide a series of action that
maximise the chance of kicking the ball into the opposite goal.

1.2.3 Sony AIBO Robot - Model ERS7

Costing at about the price of an high-end laptop?, the AIBO ERS-7 has an
equivalent amount of delicate computing devices in it. It has 18 joints alto-
gether - 3 joints in the neck, 2 joints in each ”shoulder” and 1 joint in the
leg, 1 joint to open and close the mouth and 2 degrees of freedom in the tail.
With its original design of domestic entertainment, it is also equiped with
varying-brightness illuminous face with 28 leds, flipping ears and speaker
phone on the chest for interaction with human. Sensors of the robot include

- a 416x320 pixels colour camera?,

3Costing $1799 US dollars in August 2004 as shown in Sony US website.

4This is the description of the ERS-7 model specification from Sony’s OPEN-R website.
However, that is only for the Y component in the YUV colour scheme. For U and V, only
dimension of 208x160 is available.
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Figure 1.2: Physical Specification of Sony AIBO ERS-7 (Front View, mea-
surements in mm)
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Figure 1.3: Physical Specification of Sony AIBO ERS-7 (Side View, mea-
surements in mm)
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a stereo microphone,

- touch sensors in head and back using electrostaic method,
- touch sensor paw and chin returning on/off values,

- infrared distance sensors with near (5-50cm) and far range (20-150cm)
in the head,

- infrared distance sensors on the chest, ranging 10-90cm
- acceleration sensor in 3 axis, and

- vibration sensor

The colour camera is the main source for observing the environment.
Touch sensors are used for game controlling and change of states when wire-
less control is not available. Infrared distance sensors are used in some
occasions as an aid to distance estimation.

There are also “hidden” sensors of joint-angle readings and the amount
of electric current in all motor joints. For the first time in UNSW rUNSWift
team, the joint angle readings are used to calculate the current posture of
the robot so that a body-tilt can be added to the head tilt. The amount of
electric current in motor joints can be monitored to prevent the disastrous
crashing of system current-overloading®.

1.2.4 The Soccer Field

A soccer field that is used by the Four-Legged League is shown in Figure
1.4. As shown in the diagram, the soccer field has four distinct poles on
the corners that help robots to find out where they are on the field. These
poles are commonly known as beacons. Something that is not shown in
the picture is that the soccer field also has a white barrier surrounding it,
to block the views of robots from seeing confusing obstacles lying on the
ground outside the soccer field. This barrier has a height of 30cm.

In rUNSWift system and the rest of this paper, the side of the field
with blue goal and beacons is known as the “top” side, and therefore the

SCurrent-Overloading: This is one of the most difficult stumbling-block encountered
by the team in 2004. The robot shuts down itself in a short period of time after game
starts, and is originally a safety measure to prevent any human harm caused by motor
jam. Up until 2 months before the final RobotCup Competition, the team has to continue
development of ERS-7 while robots keep crashing in a few minutes. Even with monitoring
the current in motor joints, the problem is only lightly reduced. This problem came to an
end when Sony announced a method to ”make the jam detection less strict” in the open-r
sdk website.
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beacons with pink blob in the bottom are known as “left” beacons and those
with pink blob on top are known as “right” beacons. This allows the geog-
raphy in the discussions during development to be easily understood.

Figure 1.4: The soccer field with robots in kick-off position

All components of the soccer field are colour coded for the robots to
recognise, and their size and position are also specified in the Rules of Four-
Legged League, to ensure teams from around the world can practice on a
very similar soccer field. There are still many calibrations for all teams to
work on during the competition, however, because of the varying lighting
conditions, slightly different colour coding and having carpets with different
thickness.

1.3 System Architecture of rUNSWift 2004

The AIBO robot is a mobile robotics agent that acts on the environment.
On the highest level, we have rUNSWift system working through the OPEN-
R operating system to receive sensor information and act through actuators
to the environment, as shown in Figure 1.5.



CHAPTER 1. INTRODUCTION 15
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Figure 1.5: How rUNSWift system interacts with the environment

Internally inside rUNSWift, there are behaviour, localisation and vi-
sion modules bundled in an operating system specific object called an APE-
RIOS object. There are also locomotion module locating inside actuator
control object and wireless module locating inside wireless object, as shown
in Figure 1.6.

In 2004 the infrastructure of rUNSWift has not been modified, except
for the behaviour module where most implementations have been ported
from C++ codes to Python codes. This helps to shorten development time
spent in fine-tuning behaviours.

1.4 Changes from 2003 to 2004

1.4.1 Changes of Rules

In 2004, new rules are introduced to penalise robots that run into one an-
other in unnecessary conditions. In particular, the most significant one
relating to robot recognition being the Field Player Pushing Rule?,

“Any robot pushing another robot for more than 3 seconds will be
removed from play for 30 seconds as per the standard removal penalty. The
closest robot (including the goal keeper) to the ball on each team, if it is
within 2 dog-lengths of the ball, cannot be called for pushing.”

This rule demands a higher requirement of accuracy in recognising
robots and knowing how far they are from the observing robots.

5Tn section 4.7 of Sony Four Legged Robot Football League Rule Book 2004.
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Figure 1.6: Internal Architecture of rUNSWift 2004

1.4.2 Changes of Field

The soccer field remains unchanged compared to 2003 except for two mod-
ifications.

Firstly, the middle 2 beacons are removed from the field. This poses
great challenge for better vision and localisation systems, as the robot will
have less chance of seeing a landmark, and it needs to recognise and estimate
the distances of far-away beacons more than before to compensate the loss
of landmarks.

Secondly, the height of barrier surrounding the soccer field was cut
down by half. In 2003 this barrier had a height of 60cm and in 2004 it was
cut to 30cm. The effect of this change is two fold. First of all, the removed
white barrier will introduce more area that contains different colour of small
blobs, and this consumes extra computation power because these noises will
be segmented and formed as a blob. Also, more noises mean that the chance
of getting false-positive” is increased - new filtering conditions need to be
introduced. In particular, the beacons will no longer be fully covered by the
barrier and they may be merged with the background if there is a similar
colour beside it.

"False-positive means classifying an image to be an object while the object is not there.



Chapter 2

Previous Work of High-Level
Vision Recognition

Object recognitions done by rUNSWift in previous years have been very sim-
ilar what the current system is having, i.e. building sanity checks to filter
out undesired blobs. There have been some attempts on object recognition
using the edges of the object, done by Raymond Sheh in 2003 to recognise
the round shape of soccer ball, but the algorithm was too slow to be applied
in competition condition.

German team, who won the World Championship of Four-Legged
League in 2004, used line scanning to determine features of objects. Their
way of object recognition tends to have more low-level processing operations,
and concentrates on different objects using different techniques.

Some other teams participating in RoboCup use contour detection,
but no team did this work well enough to gain advantages from it.

17



Chapter 3

Principles and Concepts

Before the details of implementation are discussed in this paper, this chapter
will first go through the infrastructure of the vision module in rUNSWift
system. Also, the concepts of sanity checks and visual objects are central to
object recognition, and will therefore be explained in this chapter as well.

3.1 Vision Module Overview

To some extent, the vision module is very isolated from the rest of the
RoboCup system because all that the other modules of the system want
to ask from vision are “Which objects are recognised?”, “Where are these
objects on the soccer field?”, and in case of recognising robots, “Which way
are they facing?”. Therefore, one can consider the Vision Module as a black
box of which the input is an array of YUV values coming from the camera
at a rate of 30 frames/s, and the output is the details of any recognised
objects. This section will briefly explain the processes that occur inside this
black box (fig. 3.1)!.

3.1.1 Colour Classification

The first input that is fed into the Vision Module is an array of values that
represents the colour of pixels of the current image grabbed by the video
camera. This array of values specifies the colour of the image using YUV
colour scheme, a colour scheme that is commonly used in television, in which
colour can be specified by combining the luminance component Y and the

!The readers should be reminded of the fact that although the whole vision module
is briefly gone through here, the author actually implemented only the object recogni-
tions. The vision module is explained in this section for the readers to easily understand
subsequent chapters.

18
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Figure 3.1: The Internal Components of the Vision Module

chrominance (colour) components U and V2. To be exact, each image has
a dimension of 416 x 320 pixels if we consider only the Y component, and
the “real” dimension is 208 x 160 pixels. Why is there a difference? This is
because the camera provides more information on Y values compared to U
and V values. A graphical explanation of this configuration is given in fig.
3.2,

The array is fed into the RoboCup system at a rate of 30 frames per
second. This constrains the system to process the input within 1/30 = 0.25
second per frame. Because of this efficiency requirement, the team decided
to process the image with the lower dimension of 208x160 where each pixel
has all Y, U and V components, while the extra 3 Y components in each
pixel is ignored. The other reason of this decision is that the Y component
is responsible for brightness of the colour, if this Y component is changed
but the U and V components remain unchanged, the colour classification is

2In case of this particular YUV scheme provided by ERS-7, each component can have a
value of [0, 255], so the maximum number of colour that can be represented is 256x256x256
= 16,777,216 colours
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Figure 3.2: YUV Information provided by ERS-7

not expected to change a lot.

To classify this array of values into colour labels that are useful to
the rest of the RoboCup system, a three dimensional colour look-up table is
built using machine learning technique, so that given any raw values from
each of the Y, U and V component, a corresponding colour can be decided.
A full colour look-up table that can map every colour in the ERS-7 YUV
scheme would require 256x256x256 = 16,777,216 bytes = 16 megabytes® if
we use 1 byte to store each colour label. However, because of storage limi-
tation, a smaller table that simplify each colour component from 256 values
to 128 values is used instead, so that only 128x128x128= 2,097,152 bytes =
2 megabytes is required.

After consulting the colour look-up table for each pixel, 208x160 colour
labels would be stored in an array for other parts of the rUNSWift system to
use. This array is commonly known as CPlane (Colour Plane) in rUNSWift
system and in the rest of this paper.

3.1.2 Segmentation

A segment is a group of pixels that have the same colour and are joined
together side by side. Therefore, for each line of the image there is at least

3The value 256 comes from the fact that each Y, U, V component has 256 values ([0,
255]).
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one segment, and there is at least 160 segments in one image. An example
is shown in fig. 3.3, in which a small part of CPlane with only 2 colour is
shown, and the segments of the darker colour are labelled.

Segment 1

Fegment 2

Segment 3

Figure 3.3: Sample Segments formed after Segmentation (only the darker
colour)

Although fig. 3.1 shows that the segmentation process occurs after the
colour classification, this presentation is actually for easier understanding of
the overall process. In the implementation segmentation and colour classi-
fication actually occur at the same time to save processing time, because
then there is no need to go through the whole CPlane a second time.

3.1.3 Blob Formation

After the segment information is collected, all segments that are connected
to each other and with the same colour are joined together to form a group,
commonly known as blobs in the rUNSWift system.

In 2004 rUNSWift has tried a new definition of “connected” segments.
In previous years, two segments are interpreted as connected whenever there
is at least one pair of pixels where one pixel is right on top of the other.
This is called 4-way joining because a blob can be extended if a new pixel
is located on top, left, right or bottom of the original blob.

A slightly different sense of connection is experimented in 2004, in
which a blob can be extended if a new pixel is located not only on the 4 di-
rections, but also the diagonal top-left, top-right, bottom-left, bottom-right
directions. This is called 8-way joining. If we look at fig. 3.3, segment 1, 2
and 3 will all be joined together and form a blob if 8-way joining is used,
while only segment 1 and 2 will be joined and form one blob, leaving seg-
ment 3 as another blob if 4-way joining is used. It was decided not to use
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the 8-way joining algorithm in the game condition, however, because exper-
imental results showed that 8-way joining often connect noises together and
created undesired large blobs.

Statistics about each blob are collected in this blob formation process.
The main attributes that are used by object recognition are listed in Table
3.1. Notice that there is no information about the shape of the blob, and
if object recognition is desperate to know about it, it needs to work it out
from the CPlane itself.

Attribute | Description
colour The colour of the blob
area The number of pixels in the blob
min/max x | The minimum/maximum x-coordinate reached
by the blob
min/max y | The minimum/maximum y-coordinate reached
by the blob
cX The x-coordinate of centroid of the blob
cy The y-coordinate of centroid of the blob

Table 3.1: Main Attributes of Blobs Used in Object Recognition

3.1.4 Object Recognition

With all the blob information collected, further investigation can be carried
out to determine whether each blob or a few blobs together is a particular
object on the field. These checks are called sanity checks and are what the
entire object recognition based on.

After different sanity checks are run, objects will be recognised to-
gether with their properties. This information will be available to other
modules in the system — Localisation module can update the current posi-
tion of the robot if any landmark is observed, behaviour module can produce
the most rational strategy base on where the ball, team mates, opponents
and the goal are, and the wireless module can send object information to
the wireless base station or team mates if it is needed.

3.2 Sanity Check

Sanity check is a termed used in rUNSWift system that refers to the filtering
conditions of blobs that are not real objects.
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For example, in order to recognise a ball on the field, the object recog-
nition process will go through all the blobs that are in orange colour and
ask questions like “Is this blob too thin (its height less than 3 pixels)?”, “Is
this blob too small (its area less than 5 pixels)?” to determine whether a
blob is a valid ball.

3.2.1 Threshold Values of Sanity Checks

From time to time, sanity checks are revised to make sure the threshold
values used in the checks are optimal in maintaining a fine balance between
accepting too many blobs that are not objects to be objects (called false-
positives) and failing to recognise blobs that belong to real objects as objects
(called false-negatives). This optimal fine-tuning of threshold values is not
independent inside object recognition, but also affected by implementation
of lower and higher level modules.

In higher-level modules, take localisation module as an example, it is
known that a false beacon will seriously tear apart the localisation of the
robot. Therefore it would be important to maintain a low level of false-
negatives, even though that might mean missing some real beacons. Similar
consideration applies for recognising goals, balls and robots, in which knowl-
edge from strategy module might favour seeing or not seeing objects under
some conditions.

In low-level vision processing, on the other hand, the colour calibra-
tion can favour the amount of a particular colour to be seen, which will then
affect the threshold values in sanity checks.

Therefore, it is important to have plenty of communication among the
team members to ensure such knowledge is shared.

3.2.2 The Ordering of Sanity Checks

The ordering of sanity checks is base on two factors.

1. If this sanity check can filter out most of the false objects

2. If this sanity check is quick to execute

If the answer to these questions are both positive, then a particular
sanity check should be run first. The motivation of this prioritising is that
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if a blob is not a real object, it is desirable to move on to the other blobs
quickly. Thus if there is a sanity check that can efficiently filter out most
blobs, then it should be put in front.

3.3 Visual Objects

For rtUNSWift 2004, there are four kinds of objects on the soccer field that
we want the robot to recognise, they are

Four distinct beacons

Yellow and blue goals

Other robots
- The soccer ball

After the object recognition process, the vision module should be able
to tell other modules about where these object are on the soccer field. To
meet this objective, the vision module has an array of 17 Visual Objects that
is readable by other modules. The indexing of the array and explanation of
the important attributes of each Visual Object are shown in Table 3.2 and
3.3 respectively.

Notice that there are six beacons instead of four beacons in the array.
This is only for backward-capability purpose since there were green beacons
in the middle of the field in 2003. In the implementation, there is no attempt
to recognise these beacons in the rUNSWift 2004 system.

Thus, the primary goal of object recognition process is to fill in nec-
essary contents in this array for each processed frame. Note that although
there are many attributes in the Visual Object class in VisualCortex.h, the
only important ones that matter from the perspective of other modules are
those that are listed in Table 3.3.

4Further details can be found in VisualObject class in VisualCortex.h
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Visual Object Array Index | Visual Object Name

Ball
Blue Goal
Yellow Goal
Blue Left Beacon
Blue Right Beacon
Green Left Beacon
Green Right Beacon
Yellow Left Beacon
Yellow Right Beacon
Red Dog 1
Red Dog 2
Red Dog 3
Red Dog 4
13 Blue Dog 1
14 Blue Dog 2
15 Blue Dog 3
16 Blue Dog 4
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Table 3.2: The Array of Visual Objects

Attribute | Description
d Distance of object from the observing robot
h Heading angle in degree indicating how deviated
the object is from the observing robot horizon-
tally
elev Elevation angle in degree indicating how high
the object is above ground
cf Confidence factor, a value to indicate how cer-
tain the vision module can say about the object
being observed
var Variance of location of object, functions like cf
angleVar | Variance of heading angle of object

Table 3.3: Important Attributes of a Visual Object
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Chapter 4

Details of Implementation

This chapter covers the details of implementation of object recognition in
rUNSWift 2004. The first section gives an overview of object recognition in
terms of which objects are recognised first and the reason behind that. The
second section describes some special features used in sanity checks that
would better be made clear in the beginning, before going into specifics of
recognitions of different objects in the following sections. The last section
provides an overview of debugging techniques used in the development of
object recognition.

4.1 Implementation Overview

After blobs information is collected, object recognition can proceed. At the
highest level, the algorithm looks like codes in Figure 4.1. Note that this
outline and other pseudo-codes listed in this paper are only shown here to
make the discussions easier to understand, thus some details from the real
implementation are omitted.

Landmarks are looked for first because any observed landmarks pro-
vide good geographic information that the sanity checks of other objects can
base on. For example, if a beacon is observed, it is not possible to have other
objects observed above it. Beacon check also needs to come before the goal
check. Imagine if goal check came first, and a blue blob is being assessed to
be goal or not. It is then necessary to check if there are surrounding blobs
that would make this blob a beacon. Therefore the beacons are checked first.

The aim of BeaconsSanities() and LandmarkSanities() functions are
to check if the observed beacons and goals are consistent with one another.
For example, it would not make sense to see a blue beacon and the yellow
goal at the same time. The false object needs to be removed before any
further recognition of other objects.

26
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1 FindVisualObjects() {

2

3 FindBeacons() ; // Find all the beacons.

4 BeaconsSanities();

5

6 FindGoal() ; // Find the blue and yellow goals.
7 LandmarkSanities();

8

9 FindBall(); // Find the ball.

10 FindRobot () ; // Find red and blue robots.
11 }

Figure 4.1: Pseudo Codes - FindVisualObject/()

After checking the landmarks, balls and robots search are carried out.
Traditionally, it is better to look for ball first, because when a ball is very
close to the camera of the robot, or when the ball is under dark shadow, it
will turn red and could be classified as robots. Therefore it is useful to check
the existence of the ball first, and then rule out the possibility of robots un-
der some conditions.

However, it was mention this arrangement is “traditional” because for
ERS-7 in 2004, not only does the system need to rule out possibilities of
seeing robots from seeing ball, but also the other way round. Because there
are often orange blobs on the red robots, the system needs to rule out the
possibilities of seeing ball given the red robots are seen under some condi-
tions. Thus the order of checking ball first or checking robots first is not so
important any more.

4.2 Special Features Used in Sanity Checks

Before looking at the details of recognition of different objects, this section
will first go through the details of some sanity checks that are used in dif-
ferent object recognitions.

4.2.1 Horizon Check

Horizon line is a line that can be drawn on the CPlane to indicate the height
level of the camera. It is developed in 2004 and calculated using the pan,
tilt, crane angles of the head and the length between the tilt-base of the neck
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to the ground. An example is shown in Figure 4.2, in which the horizon line
is drawn in black colour, and a pink line is drawn below it to indicate the
direction of the ground. The lines are drawn by the OffVision tool for de-
bugging purpose.
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Figure 4.2: The Horizon Line

Unfortunately, the accuracy of horizon is changing all the time due
to head movement and the body movement of the robot. When the robot
is walking fast, the tilt angle of its body is also changing quickly and this
adds noise to the horizon line calculation. Kim Cuong Pham later came up
with a way to calculate the tilt angle of the body of the robot using the
values of the motor joints, so that the horizon line calculation can take it
into account.

4.3 Beacons

As shown in Section 4.1, the recognition of beacons consists of first finding
the beacons, then check if there is any inconsistency between them. These
two steps will be discussed in this section, followed by a discussion on how
beacon distance is estimated.
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4.3.1 Beacon Recognition

Because beacon is so important to the localisation of the robot, and locali-
sation is so important to building a reliable strategy — it is very important
to get the beacons recognised correctly. In addition to this, the beacon is
also the only object that is composed of multiple blobs in multiple colours.
This has made beacon recognition the most complex among all object recog-
nitions.

Details of FindBeacons()

The highest level of beacon recognition is implemented in the FindBeacons
function. An outline of this function is shown in Figure 4.3.

1 Go through each pink blob...

2

3 Use FormBeaconFromPink to find if any BLUE beacon can be formed.
4 Use FormBeaconFromPink to find if any YELLOW beacon can be formed.
5

6 Check if 2 beacons are formed on 1 pink blob

7 Y -> Choose only 1 beacon, ignore the other one

8

9 Use elevation to see if pimnk blob is on top or bottom,

10 thus deduce if it is a left or right beacon

11

12 If this beacon has already been observed,

13 Ignore the later beacon

14 Else

15 Store this beacon

Figure 4.3: Pseudo Codes - FindBeacons()

This function is not very complex, because most complicated sanity
checks are implemented in the FormBeaconFromPink function. This Form-
BeaconFromPink function will try to match all the blue blobs or all the
yellow blobs with the current pink blob of the loop to see if a potential bea-
con can be formed. It will be discussed in detail below.

Sometimes it happens that FormBeaconFromPink will generate 2 bea-
cons that share the same pink blob. This is certainly impossible. Therefore
one must be false and needs to be eliminated. To decide which of the beacon
is to be thrown out, two methods were experimented during development.
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Method 1 The first method compare the ratio of pink blob area to other
colour blob area of the two beacons, and keeps the beacon that that
has a ratio closer to 1.The motivation here is to hope that a correct
beacon would have an equal amount of blob area for both colour, while
the false beacon would not.

Method 2 The second method compares the elevation of the two beacons,
and simply keep the one that has a lower elevation. The motivation
here is that most false beacons are formed by noises in the background,
but rarely are false beacons formed on the soccer field. So the correct
real beacon must be the one that is closer to the ground, assuming the
false one is flying in the air.

Both methods have their advantages and downsides. For method 1,
there are times when the real beacon does not have a good proportion be-
tween the areas of its two blobs, e.g. when the robot is under poor lighting
condition. In particular, beacons are only partly observable when it is in
the corner of the image. For method 2, the assumption that there are no
false beacons formed on the soccer field could be wrong too. Considering
the pros and cons of these two methods, method 2 was chosen at the end
because beacons are often seen in corners, which breaks method 1 too often.

The beacons found from FormBeaconFromPink function have no dis-
tinction between left and right beacons. Since the only difference between
left and right beacons is the left one has the pink blob on top while the other
has pink blob in the bottom, therefore in line 9, the codes check whether the
pink blob of the beacon is closer to the ground or the other blob is closer to
the ground to determine this.

Sometimes the same beacon is observed twice. Again, one would be
false and needs to be thrown away. This is done in line 12 in the pseudo-
codes in Figure 4.3. However, there is no special method here to determine
which one to throw away. The codes will simply throw away the ones that
come later. This is because our limited time is limited, and it is not pos-
sible to implement everything we want, but to choose to tackle problems
that would really make a difference if they were solved. A good indication
of importance of a problem is the number of samples that are misclassified
because of it. In this case, not much harm could be observed even though
there is no special method is implemented in line 12. Therefore development
effort is put into other areas instead.

After the above checks, beacons would be confirmed and saved in the
Visual Object array.
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Details of FormBeaconFromPink()

An outline of FormBeaconFromPink is shown in figure 4.4. This function is
called for each of the pink blob in the image and for each of blue and yellow
colour. Some details of this function are taken out from it because otherwise
the figure would become too big to be displayed.

1 FormBeaconFromPink(Pink Blob, Match Blue/Yellow) {

2

3 Is the whole CPlane below horizon?

4

5 // Sanity checks for the pink blob.

6 Is pink blob too high above horizon?

7

8

9 Go through each blob of blue/yellow {

10

11 // Sanity checks for the other blob.

12 Is this blob already formed as another beacon?

13

14

15 // Sanity checks for the relationships between two blobs.
16 Are the two blobs close to each other?

17

18

19 // Adjustments for centroids of blobs.

20 Adjust the centroid of the pink blob (disabled)

21

22 If the beacon is partially seen,

23 Re-calculate the centroid of the partially seen blob
24

25 If the beacon is merged with background, (disabled)
26 Re-calculate the centroid of the merged blob
27

28 // Final sanity checks.

29 Is the aspect ratio of bounding box not acceptable?
30 Is the colour below the lower blob correct?

31

32 Estimate the distance to the beacon,

33 Is the calculated height too big/small?

34

35 Save this beacon

36 }

37 }

Figure 4.4: Pseudo Codes - FormBeaconFromPink()
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The first thing to check is whether the whole CPlane is below the
horizon line (details on horizon line can be found in Section 4.2.1). If it is,
then the robot must be looking down and it is not possible to observe any
beacons, and the function can return straight away. Because it is such a
quick check that does not even require information on blobs, it is put on
the very beginning of the function. In fact, it could be put in the beginning
of FindBeacons function to save the time to run the pink-blob for-loop, al-
though the difference would not be much.

Then, the function will check if the input pink blob could possibly
form a beacon. The questions that are asked in line 6 and 7 are listed below
(in this order):

1. Is pink blob too high above or too low below horizon line?
While the very first sanity check checks if the whole CPlane is below
the horizon, this check will check how much the pink blob is deviated
to the horizon line on CPlane, if there is one.

2. Is the bounding box of pink blob too small?
The bounding box refers to a rectangular box that can fully contain
the blob. If this box is too flat or too thin, then it is likely to be a
background noise.

3. Is the solid ratio of the pink blob too small?
This maybe easier understood as density. It is simply the area of the
blob divided by the area of the bounding box. If this value is too small,
that means the blob is very scattered, or has a diagonal orientation.
In both cases the blob would not be part of a beacon.

4. Is the bounding box aspect ratio too big?
This is the longer side of the bounding box divided by its shorter side.
If it is much larger than 1, it means the shape of the blob is far from
a square, which would then not be part of a beacon.

A special case occurs for solid ratio check and bounding box aspect
ratio check when a pink blob is lying on the edge of an image, it would not
look like a square. This case is special checked for and catered in the code.

In line 9, after checking the properties of the pink blob, the function
will then go through every blob with blue or yellow colour (depending on
the input) to see if the pink blob and the other blob together compose a
beacon. Similar sanity checks for the blue or yellow blob like the ones above
are run, and they are shown in the list below:

1. Is this blob already formed as another beacon?
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2. Is the bounding box of the other blob too small?
3. Is the solid ratio too small?

4. Is the bounding box aspect ratio too big?

The first thing to check here is if this blob has already been formed
as another beacon. If it has, we would not like to overwrite the beacon
information. The rest of the sanity checks have already been discussed, thus
they will not be repeated here.

Next, in line 16, it comes to the more complicated checks that concern
the relationship between the two blobs.

1. Are the two blobs close to each other?
If two blobs are not joined together side by side, they cannot belong to
the same beacon. To determine this, a centroid-to-centroid distance is
first calculated using the centre of both blobs. Then the radii of both
blobs are calculated by counting the number of pixels between a blob
and its bounding box along the line that connects two radii.

2. Is the distance between two blobs too big?
This check looks at the centroid-to-centroid distance mentioned above.
If it is too big, it is not possible to be a beacon because a real beacon,
no matter how close it is to the camera, has an upper limit.

3. Is this beacon vertical to the ground?
A real beacon must be vertical to the ground. This check calculates
the angle between the line joined by the two blobs and the horizon
line to check if they are about 90 degrees apart.

4. Is the beacon elevation too small?
The elevation angle to a real beacon may be very large when the robot
is close to the beacon, but it has a lower bound because the robot is
below the beacon at all times.

5. Is the beacon above or below horizon line a lot?
This is similar to checking the blobs against horizon line mentioned
earlier in this section, except that this time the middle bottom point
of the beacon is used for checking. This will make noises of blobs
that are below the horizon easier to be catch. A CPlane that shows
the location of the mid-bottom point of the beacon using an arrow is
shown in Figure fig-mid-bot-point.

In 2004, it was noticed that the pink blob of a beacon often appear
orange or red. This problem seriously affected beacon recognition when an
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Figure 4.5: The Middle-Bottom point of Beacon

observed beacon is far away, in which a great proportion of the original pink
blob would turn red or orange. This problem is mainly due to a chromatic
distortion of the camera, which will be discussed in Section 5.2. Because it
takes time to develop solutions in low-level vision processing, an attempt is
made in higher-level recognition to help with this problem, which takes place
in line 20 in the listed codes of FormBeaconFromPink function. Basically
it tries to check if there are red or orange pixels around the pink blob, and
equivalent these pixels as pink in re-calculating the centroid of the blob. In
a later stage of the development, it is found that this centroid readjustment
is often over-correcting the good blobs as well. Therefore the re-adjustment
is cancelled.

In line 22, a correction to the centroid is made for any blob that is
on the edge of CPlane. This is necessary because otherwise the centroid-
to-centroid length would be incorrect and lead to a wrong estimation of
distance to beacon.

In line 25, an attempt was made to correct the centroid of a blob when
it is merged with the background. This could happen because the barrier of
the soccer field can no longer block the background noise from the beacon. If
a person is standing behind a beacon and wears blue jeans that is classified
as the beacon blue, then the blue blob of the blue beacon can merge with
the jeans to form a bigger blue blob. To correct this undesirable scenario,
the merged blob is simply ignored, and the information of the beacon is
reconstructed using only the smaller blob. In the beginning this attempt
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was quite successful, helping the robot to recognise beacons even when one
blob of the beacon is completely disrupted by the background. However,
this correction has to be disabled at the end, because the correction is too
easily triggered, and it often generates centroid-to-centroid length that is
not correct because the smaller blob that this method relies on is often noisy.

The final few sanity checks are now ready to be called. They are at
this very end of the function because they rely on the correct bounding box
and centroids.

1. Is the aspect ratio of bounding box not acceptable?
This is similar to the earlier bounding box aspect ratio check in this
section, except that this time a bounding box that contain both blobs
are constructed. If the aspect ratio of this combined bounding box is
not right, the blobs could not form a beacon.

2. Is the colour below the lower blob correct?
This is a good property of beacon to be used in sanity check. A
rectangular box is defined below the potential beacon, and the number
of white, grey, black, green, blue and red colour pixels inside the box
are counted. Different threshold values can then be checked on this
statistics. It is not likely to be a beacon if this area has no white at
all, or is full of green, for example.

3. Is the calculated height using distance too big/small?

Distance between the robot and the beacon is estimated using a linear
function. The details of this estimation will be discussed in Section
4.3.3. With the distance, the function can then calculate the height of
the beacon using the distance and the elevation angle. Since the bea-
con is static at all times, this sanity check can filter out false beacon
that has ridiculous center-to-center distance and therefore calculated
height.

After all these sanity checks, the pink blob and the other blob are
saved as a potential beacon and is subject to more sanity checks in Find-
Beacons and BeaconSanities functions.

4.3.2 Internal Checks Among Recognised Beacons

The FindBeacons function will find out all the beacons that are rational
by themselves. Then it comes to BeaconsSanities function in which their
relationship is examined and filter out those that do not make sense. An
outline of pseudo-codes of BeaconsSanities function is shown in Figure 4.6.
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1 BeaconsSanities() {

2

3 If only see one beacon,

4 Return

5

6 Else if there are three beacons

7 Throw out the one outside the pair in same colour
8

9 Else if there are four beacons

10 Choose the pair which better distance.

11

12 Else if there are two beacons

13

14 Is the right beacon in the left of left beacon
15 OR the left beacon in the right of right beacon?
16 Are beacons in opposite sides?

17 Is one much higher than the other?

18 Do their sizes differ a lot?

19

20 If Y any above,

21 Choose the one lower in elevation.

22 }

Figure 4.6: Pseudo Codes - BeaconsSanities()

When there is just one beacon, there is no other beacon to check
against and therefore the function can just return.

When there are three beacons, it is either one of these two combina-
tions:

1. One blue beacons and two yellow beacons, or

2. One yellow beacon and two blue beacons

It is impossible to see beacon in opposite sides at the same time, there-
fore the beacon that is not in the pair will be thrown away.

When there are four beacons, one of the pair of beacons must be false.
It is observed that whenever a robot on the soccer field observes two real
beacons, the distance between these two beacons is approximately a con-
stant. Therefore in this sanity check, the pair that has a distance closer to
the ideal distance will stay, while the other pair will be thrown away.

When there are only two beacons, there are still more checks to do. If
the right beacon is observed on the left hand side, or vice versa, one beacon
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must be false. If a blue beacon and yellow beacon are observed at the same
time, one must be wrong. Even when both beacons have the same colour,
and are arranged in the right order, it is still important to check if their
height and sizes are similar.

After these logical checks, the beacons are confirmed and they will not
be filtered out in other parts of the object recognition system.

4.3.3 Beacon Distance Estimation

The rUNSWift system estimates the distance between the robot and beacon
using the fact that beacon distance is inversely proportional to the centroid-
to-centroid distance of beacon blobs. Base on this relationship (4.1), con-
stants of the formula shown in (4.2) are found using experimental results. A
diagram in Figure 4.7 also shows what it meant by interCentroidDistance,
also known as the centroid-to-centroid distance.

1
o 4.1
cacont’istance X interCentroidDistance ( )

cl
b Dist = 2 4.2
CACONTASHANCE = GnterCentroidDistance te (42)

Centroid-to-Centroi
Distance

Figure 4.7: The Centroid-to-Centroid Distance of a Beacon
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To find the constant c1 and c2, the robot is placed in the soccer field
at recorded distance to the beacon and is set to look at the beacon so that
beacon centroid-to-centroid distance can be recorded as well. A linear regres-
sion line is then drawn on experimental data points, having beacon distance
against (1/centroid-to-centroid distance). The slope of this regression line
will then be our required cl and the y-axis offset is c2.

After a basic value is obtained, it is not necessary to run the experi-
ment again to get all the measurements for calibration of a new environment.
Instead, the robot can be placed on the field at specific beacon distance,
and a person can change the beacon constants of the robot through wireless
commands and check the resultant beacon distance without knowing the
centroid-to-centroid distance.

4.4 Goals

Similar to beacon recognition, goal recognition is also composed of looking
for goals in the image, then check if there are inconsistencies between the
recognised objects. The algorithms used will be discussed in detail below.

4.4.1 Goal Recognition

The goal recognition is simpler compare to beacon recognition because only
one colour is needed for consideration. One the other hand it is also more
difficult because robots on the soccer field can be blocking the view to a
goal, then the goal would be broken down to several blobs.

In 2004 a difficult problem faced by goal recognition arouse because of
the reflexive texture of the “white skin” of ERS-7. This shinny outer layer of
the robot often reflects colour of its surrounding object. Therefore yellowish
colour often appears on robot body when a robot is holding a ball. Lots
of fine-tuning effort was made to filter out these undesirable yellow blobs,
while still recognising yellow goals correctly.

Details of FindGoal()

The FindGoal() function is called by FindVisualObject() to collect informa-
tion of all observable goals. It is a short function that delegates the task
to the “real” function that performs sanity checks and practices code reuse
by specifying which colour of goal to look for. An outline of the function is
shown in Figure 4.8.
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Beside the colour of goal to look for, the input also contains the bea-
cons that are expected to appear in the left hand side and right hand side of
the goal. This is provided for the sanity checks to use. Note that the order
of input beacons to LookForColourGoal() function is different for blue goal
and yellow goal. This is not a mistake — it is because of our notion of left
and right is different from the view point of the robot in the soccer field.

1 FindGoal() {

2

3 LookForColourGoal(Blue, Blue Left Beacon, Blue Right Beacon)

4 LookForColourGoal(Yellow, Yellow Right Beacon, Yellow Left Beacon)
5

6 }

Figure 4.8: Pseudo Codes - FindGoal()

Details of LookForColourGoal()

The LookForColourGoal() function is outlined in Figure 4.9.

The first thing to ask, again, is whether the whole CPlane is below
the horizon. If it is, then the function can return immediately. This is par-
ticularly useful for filtering out little yellow patches on the red robot body.

The function will then initialise a dummy goal, which contains no
bounding box or blobs information. So that from line 7 to line 20, all the
blobs of the interested colour can be gone through and added to the dummy
goal if they pass all the sanity checks.

In line 9, 10 and 11, simple checks are applied to the current blob in
the loop. If the blob is already part of a recognised beacon, then it cannot
be a goal. If its area is too small, or it is too high above or too low below
the horizon, it will also be thrown away.

From line 14-16, information provided by recognised beacon is used to
justify whether the blob can be a goal or not. Here the importance of beacon
recognition is shown again — these checks compose a large proportion of
goal sanity checks. These sanity checks are gone through in detail below
according to their execution order. Note that the potential goal blob that
the for- loop currently points to is called “the blob” in the sanity checks
below, to save lengthy wordings.

1. Is the blob higher than the beacon? (line 14)
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1 LookForColourGoal (Blue/Yellow, Left beacon, Right beacon) {
2

3 Is whole CPlane below horizon?

4

5 Initialise an empty goal

6

7 Go through each blue/yellow blob to try to add to the goal
8

9 Is blob already matched as a beacon?

10 Is blob size too small?

11 Is the blob too high or too low compare to horizon?
12

13 Go through each recognised beacon

14 Is the blob higher than the beacon?

15 Is beacon a lot higher than the blob?

16 Is the heading angle between the blob and beacon is too small?
17

18 Is the blob dimension too small?

19 Is the blob in the left of left beacon?

20 Is the blob in the right of right beacon?

21 Is the blob too far apart from current goal?

22

23 If a goal is formed now,

24

25 Is goal area too small?

26 Is goal density too low?

27 Is the width/height ratio far from normal?

28 Is there enough green pixels nearby?

29 Are the width and height in reasonable length?

30

31 Otherwise,

32 Return

33

34 If width/height is not right,

35 Apply correction

36

37 Assign all the details to the goal visual object.

38 }

Figure 4.9: Pseudo Codes - LookForColourGoal()

Since the goal is always lower than any beacon, this check is very useful
in eliminating noises that come from the background.

2. Is beacon a lot higher than the blob? (line 15)
On the other hand, a goal blob cannot be too low below a beacon
either because they are all fixed. This is helpful in eliminating yellow
reflections in the barrier of the soccer field or edges of red robots that
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turned yellow occasionally.

3. Is the heading angle between the blob and beacon is too small? (line 16)

Under the limited size of the soccer field, it is found that the hori-
zontal angle between the goal and its neighboring beacons has a lower
bound. A diagram in Figure 4.10. Therefore a yellow blob that is ob-
served close to a beacon cannot possibly be a yellow goal. An exception
is the viewpoint of a goalie, which maybe looking at the beacon on the
side while seeing part of a goal. This exception is specially handled.

Figure 4.10: Constant Angle between Goal and Beacon from Different View-
point

From line 18-21, further checks are used to ensure the blob is part of
a goal. If sanity checks are all passed, the blob will be added to the dummy
goal object. These checks are explained below.

1. Is the blob dimension too small? (line 18)
A standard check to eliminate background noise.

2. Is the blob in the left of left beacon? (line 19)
This is the place where the information of input beacons is used. For
example, if a blue blob is observed in the left hand side of the Blue
Left beacon, it is impossible to be part of a goal.

3. Is the blob in the right of right beacon? (line 20)
This is the opposite of the above check.

4. Is the blob too far apart from current goal? (line 21)
This is the last check for the blob. If this is the first blob that come
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across this check, it will be added to the dummy goal straight away to
enlarge its bounding box. Otherwise, it will be compared with the in-
formation of the current dummy goal, to judge whether it is also part
of the goal. Factors in consideration include how far this blob is from
the current goal box, and also what colour of pixels are in between
them.

In line 23, any blob that belongs to the goal would have been saved
in the dummy goal object. If the dummy goal object is still empty at this
point, no goal can be observed and the function can return straight away.
If the dummy goal object is not empty, further sanity checks shown below
are applied.

1. Is goal area too small? (line 25)
Although there were already sanity checks about areas of blobs above,
but they were using small threshold values because blobs from a scat-
tered goal are expected to be small. Now that the goal is formed, size
check will be applied again using greater threshold values.

2. Is goal density too low? (line 26)
Density is ratio of area of blobs that belong to the goal divided by the
area of the bounding box of the goal. If this value is too small, that
means the blobs are too scattered and the goal will be ignored.

3. Is the width/height ratio far from normal? (line 27)
This checks if the goal has an extreme shape. For example if a potential
goal is 100 pixels wide but 2 pixels high, then this sanity check will
filter it out because it is too extreme.

4. Is there enough green pixels nearby? (line 28)
A real goal is always placed on the soccer field and therefore there
should be some green pixels below the potential goal in the image.
This property is used in this sanity check.

5. Are the width and height in reasonable length? (line 29)
Finally the absolute width and height of the goal will also be checked
separately. If it is too narrow, too wide, too tall or too flat, it will be
ignored.

After these sanity checks, the goal is confirmed to be in place and
details will be copied to the goal visual object. In line 34, the width/height
ratio of the bounding box of the goal will be checked again, not as a sanity
check but a condition to modify the height. This is needed because the
height could be very inaccurate due to obstruction of other objects like ball
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or robots, and it is the only factor that determines the distance between
the robot and the goal. Distance estimation will be discussed in detail in
Section 4.4.3.

4.4.2 Logical Checks Among Recognised Goals and Beacons

After the recognition of beacon and goal objects, LandmarkSanities() func-
tion will then ask the following questions:

1. Are yellow beacons and blue goal seen at the same time?
If any of the yellow beacons and the blue goal are recognised at the
same time, one of them must be wrong. A simple decision is made
in this case — throw away the goal. This is base on the fact that
beacon is composed of two blobs and have many more sanity checks,
thus the chance of getting false-positive beacons is lower than that of
false-positive goals.

2. Are blue beacons and yellow goal seen at the same time?
This is same as the above question.

3. Are yellow and blue goals seen at the same time?
When goals of opposite colour are observed at the same time, one of
them must be false. In this case, the variances of both goals are com-
pared and one with lower variance will be kept.

Variance is a value given to recognised object in the vision module, to
indicate how certain the system think that the object is in the esti-
mated location. The formula that calculates the variance for goal is
given in (4.3), which is left unmodified from previous year of rUNSWift
because this value is functioning well with the new model of ERS-7.

400
WVari = 4.3
goalVariance goalHeight (4.3)

4.4.3 Goal Distance Estimation

The distance estimation used for goal is very similar to that for the beacons.
In goal, however, there is no distinct feature like the centroid-to-centroid
distance in beacons. Therefore the height of the bounding box of the goal is
used instead to indicate the distance between the observing robot and the
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goal.

The formula that relates the distance and height is shown in (4.4),
where ¢l = 5818.6 and c¢2 = -0.2054. This formula was from rUNSWift
2003 and Derrick Whaite from rUNSWift 2004 has modified its constants in
2004 using experimental results with the new model of ERS-7.

cl

_ 4.4
height + c2 (44)

goalDistance =

4.5 Balls

The soccer ball is the drive of the game. It is very important to keep track
of the ball so that the robot can position itself in the best position to kick
it into the right direction. On the other hand it is just equally important, if
not more, not to see any false ball because that will turn the behaviour of
the dog upside down.

4.5.1 Ball Recognition

After the landmarks are recognised, ball recognition starts. In many ways
it is simpler than goal and beacon recognition because we assume that for
any ball it only has one blob shown in the CPlane. Therefore there is no
need to check the neighbouring orange blobs and try to join them together.

The distance estimation of the ball, however, is much more compli-
cated than those of beacon and goal. Depending on different sizes of the ball
blob and orientations on the CPlane, different methods were used to estimate
the distance between the observing camera and the ball. These distance es-
timation methods will not be discussed in this paper, however, because they
have been discussed in details in the rtUNSWift 2003 report (Section 2.3.4
Ball Recognition, p.37) in the Bibliography list, and these methods have
largely remain unchanged in 2004 except for small modification of constants
by Kim Cuong Pham during his porting work from ERS-210 to ERS-7 in
the summer of 2003,/2004.

The main problem in 2004 faced by ball recognition is to filter out
the orange patches that appear on the edges of red robot uniforms. This
is a combinatory effect due to the poorer vision of ERS-7, a more serious
chromatic distortion and the unstable lighting condition.



CHAPTER 4. DETAILS OF IMPLEMENTATION 45

Details of FindBall()

The FindBall() function is relatively simpler than the recognition of goals
and beacons: Go through each orange blob, stop and return if any one in
the list is found to be ball. An option for future development may be not to
stop when the first potential ball is found, but go ahead to see if there are
orange blobs that are more likely to be ball compare to the first one. An
outline of FindBall() is shown in Figure 4.11.

1 FindBall() {

2

3 Go through each orange blob

4

5 Is this blob too flat or too thin?

6 Is the density too low?

7 Is any corner of the ball higher than the horizon?

8

9 If this ball has a big area

10 Calculate the details of the ball using "fireball" method.
11

12 Calculate the details of the ball using normal method
13

14 If the whole screen is covered

15 OR ball passes checks in BallSanities(),

16

17 Is the ball small but calculation gave small distance?
18 Is the ball distance too large?

19 Is ball too high up on ground?

20

21 If ball has large area,

22 Remove beacons in edges

23

24 Calculate further details of ball

25 Return from function because a ball is found.

26

27 Otherwise,

28 This blob cannot be a ball,

29 skip to next blob

30 }

Figure 4.11: Pseudo Codes - FindBall()

The function first checks the size and density of the blob (density is
the blob area divided by bounding box area, just like those for beacons and
goals), to eliminate small noises of orange pixels in the background or on
the red robot. It then check if any corner of the ball is higher than the
horizon, and throw it away if it does. Corners of the blob are checked in-
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stead of the centroid of the blob, because sometimes noises may happen to
have their centroids close to the threshold values, but not all of their corners.

In line 9-12, the details of the potential ball including its distance
are estimated in different ways depending on its size and orientation in the
CPlane. The term “fireball” is used to describe large orange blob that hap-
pens when the ball is very close to the observing camera.

In line 14-15, a group of sanity checks are implemented in BallSani-
ties() function, which will be looked at in detail below. If the ball blob can
pass all these sanity checks, then more checks will be applied and eventually
get this blob accepted as the blob. If this condition in line 14 failed, then
it would be concluded that this blob is not a ball, and the next orange blob
will be looked at.

Line 17-19 performed more checks after the condition above is satisfied.
The reason why they are not grouped in BallSanities() function is because
they require distance or other information that cannot be carried along by
passing the potential blob. These checks will be looked at in more detail
below:

1. Is the ball small but calculation gave small distance? (line 17)

If this happens, this means something is wrong with the shape of
the ball, which has led to a large distance while the ball is actually
quite small in the CPlane. In this case the blob is no longer trusted
and thrown away.

2. Is the ball distance too large? (line 18)

This is a “desperate” sanity check added approaching the final stage
of development. It was found that other sanity checks, even after fine-
tuning, still could not eliminate some of the small orange blobs that
appeared on the red robot uniform. Because this kind of orange blob
often appears as a ball far away, a quick solution here is to ignore ball
with great distance. The downside is that this threshold is a bit low,
at about 3 to 3.5 metres, for it to be usefully eliminating noisy orange
blobs.

3. Is ball too high up on ground? (line 19)
The elevation angle and the distance estimation to the ball is com-
bined here to estimate the height of the ball. If it appears to be too
high up from the ground, this ball will be ignored.

After the above tests, in line 21, the ball is confirmed to be seen. A
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special check is added here to eliminate recognised beacons, if a beacon hap-
pens to be recognised in the edges of the CPlane and the ball is very large.
This check is in place because it is found that orange pixels of the ball often
turn yellow and pink in the corners and edges of the CPlane, as shown in
Figure 4.12.
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Figure 4.12: Close-up Ball that turns Pink andYellow

In line 25, all required checks are already made to the current blob
and they are passed, the function will then return without checking the rest
of the orange blobs.

Details of BallSanities()

BallSanities() function is called by FindBall() function to perform a list of
sanity checks on the potential ball blob. An outline of this function is shown
in Figure 4.13.

In line 3 and 4, the elevation of ball blob and that of goal and beacon
are compared. Make use of our knowledge that ball can never be flying
above ground; this check is handy and accurate most of the time.

The sanity checks in line 5 and 15 try to see if the ball is an effect of
the chromatic distortion, although they are using different attributes. San-
ity checks in line 6, 8 and 11 are all concerned with red colour, to see if the
orange blob is actually part of red robot uniform.
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BallSanities(Potential Ball blob) {

1

2

3 Is ball elevation higher than that of goal?
4 Is elevation higher than that of beacon?

5 Is ball on edges and scattered?

6 Are pixels around bounding box too red?

7
8

If area < 1000

9 Is the blob completely inside the largest red blob?
10

11 If area < 40

12 Is blob touching red blob?

13

14 If area < 150

15 Is the density of the ball too small?

16

17 If yellow goal is recognised inside the ball,
18 Reject goal

19 %}

Figure 4.13: Pseudo Codes - BallSanities()

The last check in this function at line 17, try to eliminate recognised
goal that is totally inside the ball. This is a good check, but it should actu-
ally be placed after line 20 in FindBall() function in Figure 4.11. Because
that is the place when the ball is really confirmed to be seen.

4.6 Robots

Robot recognition is necessary in producing intelligent co-operation between
robots. In particular, if teammate cannot be recognised by robot, they will
run into each other easily and be caught for penalty.

4.6.1 Robot Recognition

Codes in robot recognition is considerable harder to read, because there are
red and blue robots, and the recognition of them are not totally separated.
The other complication comes from the fact that it is the only object with
multiple blobs and multiple instances. This will be explained further in
FindColorRobot().
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A hard problem in robot recognition faced by rUNSWift 2004 is to
recognise the blue robots. Recognising blue robots have always been more
difficult than recognising red robots because solid blue is extremely hard
to achieve in low-level vision. It is hard to achieve because the camera of
the robot does not receive much light, and thus making the black and blue
colour very similar. In 2004, however, the hard problem just got harder
because of the poorer quality of camera.

Details of FindRobots()

The highest level of robot recognition starts with FindRobots() function.
An outline of this function is shown in Figure 4.14.

First of all, RobotNoiseFilter() function is called to throw away those
blobs with the robot red or robot blue colour as many as it can. Normal fil-
tering conditions are implemented like the ones used in recognition of other
objects that have been described, therefore RobotNoiseFilter() is not dis-
cussed in detail here. In line 5 the blobs are sorted from left to right, so
that FindColorRobot() function can easily group blobs into robot.

In line 7 and line 13, blobs are further filtered out using the location
of any recognised ball, before FindColorRobot() is called. Notice that red
robots are recognised before blue robots. This is important because there
are often blue or black colour pixels (which can easily turn to a blue dog)
among red patches of the red robots with ERS-210 model. Therefore it is
important to first recognise red robots present in the CPlane, then eliminate
blue or black blobs around it.

In line 18, both blue and red dogs are already classified. More sanity
checks are then applied and are discussed below:

1. BLUE dog inside RED dog or vice versa? (line 20)
Although similar checks have been done above, but that was only
applied to blobs when dog has not been recognised. Thus it is run
again.

2. Dog’s height too large? (line 21)
It is found that the blue robots are sometimes merged with blobs in
the background, which gave them large height and incorrect distances.
It is preferred to miss a robot, rather than seeing a close robot because
that could trigger a back-off action.

3. BLUE dog in corner? (line 22)
Under the chromatic effect, the edges and especially corners of CPlanes
often turns very dark, thus causing blue dogs to be recognised some-
times. A test is therefore implemented to prevent this.
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1 FindRobots() {

2

3 RobotNoiseFitler() to apply general sanity checks

4

5 Sort the red/blue blobs from left to right

6

7 Go through each RED blobs

8 Is it near/below ball?

9

10 FindColorRobot (ROBOT_RED) ;

11

12 Go through each BLUE blobs

13 Is it near/below ball?

14 Is it near/inside red dog?

15

16 FindColorRobot (cROBOT_BLUE) ;

17

18 Go through each recognised DOG

19

20 BLUE dog inside RED dog or vice versa?

21 Dog’s height too large?

22 BLUE dog in corner?

23 Dog very high above ball?

24 Is dog too far?

25 Dog has very large aspect ratio on bounding box?
26

27 Go through each beacon,

28 Dog’s distance further than the beacon’s distance?
29 Dog is above beacon?

30

31 Go through each goal,

32 Dog’s distance further than the goal’s distance?
33 Is the dog too high above goal?

34 If goal completely inside robot,

35 Reset goal

36

37 Is recognised ball small and inside/next to red dog?
38 Remove ball

39 }

Figure 4.14: Pseudo Codes - FindRobots()

4. Dog very high above ball? (line 23)
This test has been applied on individual blob, and is applied again on
recognised robot.

5. Is dog too far? (line 24)
Phantom robots that come from the background of the CPlane are
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often very hard to eliminate. This test therefore sacrifices the ability
to see far robots (about 3 metres) in exchange for removing phantom
robots. This is not doing harm, however, because robots so far are not
important for behaviour consideration in 2004 Behaviour module.

6. Dog has very large aspect ratio on bounding box? (line 25)
If the recognised robot is too thin or too flat, it will be thrown away.

In line 28-34, more sanity checks are applied using information of
recognised beacons and goals. In cases when the distance of the dog is
impossibly greater than that of beacon or goal, the recognised robot will
not be thrown away, but its variance will set to a very large value so that
the localisation can use only the angle to the robots, but not their distances.

After line 34, robots are confirmed to be recognised. Therefore in line
36 and 38, goals and ball are thrown away if they are observed in an im-
possible way. An example of when this happens is shown in Figure 4.15.
The danger is that there might be false robots that filter out real goals/ball!
However, experimental results showed that the opposite happen most of the
time.
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Figure 4.15: Red Robot Noise becoming Ball
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Details of FindColorRobot()

In FindColorRobot() blobs of robots are considered and distributed into
different robots. An outline of the function is shown in Figure 4.16.

1 FindColorRobot (blue/red) {

2

3 Initialise an empty robot

4

5 Go through blob of input colour from left to right
6

7 If this is the first blob

8 OR it is not far from the current robot

9

10 Add it to be part of current robot

11

12 Else

13

14 If 3 robots have been recognised

15 Break out of the loop

16

17 Is last dog’s bounding box very tiny? Y-> cancel it.
18

19 Start a new robot

20

21 Go through each recognised robot

22 Filter out blue robot with too much "MaybeBlue" colour
23 Calculate the details of robots

24 }

Figure 4.16: Pseudo Codes - FindColorRobot()

In line 3 an “empty robot” is initialised. This is like initialising an
empty set, then put blobs that belong to the first robot into it. Line 7 is
doing exactly that. Whether a new blob is to be put in the current robot
depends on their horizontal and vertical distances. In this loop, a limit on
number of observable robots is given in line 14. Also, sometimes a new robot
is started but it is then found out to be too small (having just one small
blob, for example), in that case line 17 will cancel it.

After the loop, all recognisable robots will be stored, and details of
robots like distance will be calculated. However, just before that, a special
sanity check on “MaybeBlue” colour for the blue robot is applied. This is
used to help distinguishing the “real blue” colour — the colour of blue robot
uniforms - from the black regions of the ERS-210 body. A special colour
called “MaybeBlue” is labelled on pixels that the low-level vision module
cannot tell for sure whether they are blue or black. So now in line 22, the
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ratio between the area of “MaybeBlue” pixels to the overall area can be
checked and see if this recognised blue dog should be thrown away.

4.6.2 Robot Distance Estimation

Robot distance estimation was last modified in 2002, in which a linear
relationship between the y-coordinate of lower edge of bounding box in
CPlane and the robot distance is used to predict robot distance given the
y-coordinate. The constants in this relationship were produced by running
linear regression line over experiment data. This was largely unmodified in
2003.

In 2004, a different method is used and is outlined in 4.17. Instead
of running linear regression line, a mathematical transformation developed
by Kim Cuong Pham during summer of 2003/2004 was used to project the
lower edge of the robot bounding box onto the ground to estimate how far
the robot is from the camera. This transformation is implemented in get-
PointProjection() function and have been described in detail in the Kim’s
2003/2004 summer report.

1 Project the bottom line of the robot bounding box to the ground.
2
3 If the projected distance < 2 metres

4 Keep this distance
5 Else
6 Distance from height.

Figure 4.17: Pseudo Codes - Determine Robot Distance

If the distance is more than 2 metres and it is likely that the paw
patches of the ERS-7 robot are too small to be included in the bounding
box. Therefore the height of the robot bounding box is used to predict the
distance instead, as shown in (4.5), where c1 = 1517.

cl

RobotDist = 4.5
ovoristance Robot BoundingBoxHeight (4.5)

This additional formula was produced by Kim Cuong Pham, in around
June nearing the end of development in 2004.
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4.6.3 Heading Estimation

In 2002, headings of robots were estimated using statistical heuristic meth-
ods base on the blobs distribution of the robot bounding box. This helps the
behaviour module to produce fine-tuned actions that take the behaviours of
opponents into consideration. This was largely unmodified in 2003.

In 2004, this task has not been tackled because both object recogni-
tion and behaviour modules have other work that kept the team busy.

4.7 Debugging Methods

For debugging work in vision module, it has the luxury of saving CPlanes
in game condition, then revise the details of the program by compiling and
running source codes offline using OffVision, or browse the CPlanes like
watching a movie and see the fired sanity errors offline using CPlaneDisplay.
In this section these tools will be introduced below, together with some
special ways of debugging used in object recognition.

4.7.1 Display Devices
CPlaneDisplay

CPlaneDisplay is a java program developed by rUNSWift in 2002, which can
be used to display logs of CPlanes online or offline. A screen shot is shown
in Figure 4.18.

When the program is running offline, logs of CPlanes saved in RoboWire-
lessBase can be displayed and browsed frame by frame. Because sanity errors
that are fired by sanity checks are also saved in the CPlanes, corresponding
sanity error message that are fired by the object recognition module while
the system was running can be re-displayed for each frame — offline.

The downside of using CPlaneDisplay as an offline debugging tool is
that the sanity error messages are often not detail enough to track down
the problem — it can only indicate what type of problems have occurred,
but it will not tell the user which blob has caused the problem, or other
information of the blob.

Off Vision

Because of the downside of the CPlaneDisplay, a more powerful tool was
developed by rUNSWift in 2002 as well to run the entire vision module of-
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BLUE_BLOB_ABOVE_BEACON(4)
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Sensor Panel

Sensord 34306 Sensorl -132734 Sensor2 11792

Play Back Panel

Log: |fhomefcklam/trunk/base7 fwork/RoboComma| | Choese File... Load
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Figure 4.18: A Screenshot of CPlaneDisplay

fline. This tool therefore allows full debugging in object recognition, as all
the blobs information will be available offline as well. A snap shot of this
tool together with the debugging messages are shown in Figure 4.19 and
Figure 4.20.

For even easier debugging, new features added to this tool in 2004
include grids and horizon line drawn on CPlane, radio box in the bottom
that allows showing of a particular colour, and more systematic debugging
messages.

CPlaneClient

CPlaneClient is a display tool developed by Kim Cuong Pham in 2004. It is
only for online display, but it has its advantage over the older CPlaneDisplay
that it can display CPlanes in higher speed. A screen shot is shown in Figure
4.21.

4.7.2 Debugging Techniques

Offline Debugging Messages

The offline debugging messages in 2003 were largely arbitrary and messages
are added to the OffVision output anytime in anywhere of the code, in any
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Figure 4.19: A Screenshot of OffVision

FobotMoizeFilter| Filtering Dog Red blobs, total = ©
FindColorRobot| Start finding robot, color Dog Red
FindColorRobot| Start finding robot, color Dog Blue

RobotMoizeFilter| Filtering Dog Blue blobs, total = 0
FobotMoizeFilter| Filtering Dog Red blobs, total =1
RobotMoizeFilter| ., .checking red blob#0, (xMin, =Max, dgiin
RobotMoizeFilter| ,,.Blob accepted!

FindColorRobot| Start finding robot, color Dog Red
FindColorRBobot! .. .blob #58 (xMin,Max, uyMin.Max, area, xRmi
FindColorRobot| Start finding robot, color Dog Blue
FindRobot| Checking FORMED dog (min x,y max x.y) 15 B8 39 3
FindRobot!| ..Finally dog {wob3) found! elew 2,5098% head 7

RobotMoizeFilter| Filtering Dog Blue blobs, total = 0
FobotMoizeFilter| Filtering Dog Red blobs, total = ©
FindColorRobot| Start finding robot, color Dog Red
FindColorRobot| Start finding robot, color Dog Blue

Figure 4.20: Debugging Messages from OffVision

56

form preferred by the programmer at the time. This made the messages
written in 2003 completely unreadable in 2004.

In 2004, variables are created for each function to be debugged, like
“debugFindBall”, “debugFindBeacon”, etc. These variables act as switches
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Figure 4.21: A Screenshot of CPlaneClient

to turn on or off offline debugging messages of their corresponding function.
Also, all offline debug messages are printed with prefixes like “FindBall— ",
“FindBeacon— ", so that messages can easily be traced back to where they
were fired.

Send CPlane with Conditions

Browsing and reviewing logs of CPlanes have been very useful debugging ac-
tivities — but sometimes a particular problem is interested only in a small
proportion of the CPlanes, then the browsing exercise in the thousands of
logs would become very boring.

Because of this, slight modifications were made on the codes running in
the robot so that not all the CPlanes will be sent to the RoboWirelessBase.
Instead, they are only sent when certain conditions are met. For example,
it can be specified to send CPlanes only when a ball is not recognised. With
this setting, and let the robot play with a soccer ball, it is then easy to check
if there is any ball unrecognised when we look at the CPlane logs sent by
the robot. It will not contain a lot of frames, and any ball showing on those
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frames would be the unrecognised missing balls.
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Chapter 5

Problems Encountered and
Possible Solutions

Throughout the object recognition development, there were some particular
problems that significantly affected our overall progress. In this chapter we
will discuss these particular stumbling blocks, together with our attempted
solutions and possible solutions that are still on paper.

5.1 Unstable Lighting Condition

In 2003, the lighting during a game condition is provided by four floodlights
and two studio lights. In the original rules of 2004 Four-Legged League
competition, it was suggested that the two studio lights should be removed
to make the lighting condition closer to natural settings. After some period
of experiments with the new model of ERS-7 and the new setting, however,
this change was cancelled because it poses challenges too big to the vision
module.

During the time that the rule has not been reversed back, the devel-
opment of object recognition was slowed down because of attempts to cope
with the different lighting condition, while still struggling with other prob-
lems of ERS-7 listed below.

5.2 Chromatic Distortion

Also known as the Ring Effect, the chromatic distortion of the colour camera
refers to how the colour of the pixels that lie near the edges of the image
appear differently from the pixels at the centre, while they are actually hav-
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ing the same real colour. An example is shown in Figure 5.1.

T

Figure 5.1: The Ring Effect (blue noises along the edge)

This chromatic distortion also existed in older models. However, this
problem becomes far worse in the new model of ERS-7 comparing to the
old model of ERS-210. With the old-model, the effect is confined to some
noise of few pixels in the corner of an image, while for the new model a
“ring” with a width of more than 10 pixels can be seen in most samples.
Under such effect yellow blobs in beacons often turn orange in edges, and red
blobs in robots turn yellow or orange. This has created a great burden for
higher vision object recognition, as the balancing between accepting more
false-objects classifications or missing real objects become much harder to
achieve. This in turn made the behaviour of the robots more difficult to
develop as the sensing of the environment is less reliable.

A lot of effort was put into eliminating this undesirable property of the
camera from the beginning of the development. In around April, after the
Australian Open of RoboCup 2004, Jing Jing Xu from our team developed
a technique that can counteract the distortion - what we called " The Ring
Offset”. It was not perfect, but this technique already greatly reduced the
effect compared to the original distortion.
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5.3 Different Robots, Different Cameras

Beside the serious chromatic distortion, it is also found that different cam-
eras in different robots produce quite different images in terms of their raw
values. Therefore, although two robots that are using the same colour cali-
bration file are looking at the same object under the same lighting condition,
the CPlanes produced by these robots are still different. These differences
are subtle among some robots but in some cases the difference is serious
enough to misclassify an object. For example, when a particular robot see a
lot of yellow in the white barriers while other robots would only see white,
this particular robot can then easily miss out yellow beacons and yellow goal
because the yellow blobs of these objects may merge with the yellow noises
in the white barrier.

This problem has created confusion when attempts were made to re-
produce errors in object recognition — misclassification occurred when tested
in robot A but could not be reproduced in robot B. The cause of this prob-
lem was discovered early in our development. However, because of other
important issues on our agenda, this problem was not tackled until a later
stage.

To ensure different robots will perceive the same optimised colour un-
der the same lighting condition in spite of this undesirable camera problem,
we can either

1. Create a colour calibration file for the required lighting condition for
each robot —i.e. take a full set of calibration photos using cameras of
every robot, or

2. For each robot, modify the way the default calibration file is used, so
that even though each robot has slightly different raw values in their
images, the produced classification is still the same.

The first option can achieve an ideal quality of colour classification for
each robot, but is infeasible in our case because creating a colour calibration
file takes a long time — usually more than 3 hours — while we only have a
very limited preparation time during the competition. Therefore the second
approach is used and in May 2004, a method was invented and applied to the
vision system by calculating and applying what we called ”camera offset”.
This will be explained in the following section.
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5.3.1 Calculating and Applying Camera Offset

Because we know that the same colour under the same lighting condition
would be classified differently in different robots, there must be some devia-
tion in the perception of YUV values of these robots to these colours. Thus
our mission here is to find a transformation that will change YUV values of
different dogs to be the same YUV values as the dog that is used for colour
calibration. This experiment thus goes like this:

1. The dog that make the calibration and each dog that requires correct-
ing will take photos of 8 paper with different colours. These 8 colours
can be arbitrary, as long as they cover enough proportion of the colour
spectrum. If we have 5 dogs (1 of them is the original photo taker for
the calibration), then 5x8 = 40 photos need to be taken.

2. Then, Y, U and V values are separated and a formula will be produced
for each component

3. To find the correction for U component for dog A, for example, we
will try to look for the m and c¢ variable in U[dogCalibration] = m *
UldogA] + c.

4. To find these variables, a table of average U values of different colour
for dogCalibration and dogA will be recorded, and regression run on
them. An example of such table is shown in Table 5.1. The resultant
gradient and offset of this regression are our desired m and ¢ required
above.

Dog A | Dog Calibration

Black 18 19
Dark blue 18 20
Dark red 19 22
Green 24 25
Yellow 86 91
Orange 62 68
Pink 42 42
Light blue 30 33

Table 5.1: An Example of Average Y values obtained by Dog A and Dog
“Calibration”

After getting formulae like U[dogCalibration] = m * U[dogA] + ¢ for
every robot that require adjustment, the remaining task is apply them au-
tomatically. This can be done using MAC Address detection, because each
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robot is equipped with a unique MAC Address. The constants for different
robots will be stored according to their MAC Address in the system, so that
no matter which robot is loaded, the correct variables would be used.

Applying the offset does not solve all the problems, but it does have
an effect of averaging the quality of the cameras.

5.4 Error-Prone Manual Adjustments

With problems illustrated in sections above, in addition to developments
and revision of sanity checks, the threshold values of sanity checks need to
be updated from time to time. The amount of change in threshold values
that should be applied each time is often hard to determine and entered by
intuition. This makes questions like, ”Where did this value come from”, or
”"How do you know this amount is correct”, often asked during the develop-
ment cycle, very hard to answer with convincing empirical results.

Until 2004, this mode of development is still used by rUNSWift and it
will continue unless we can come up with a more organised and systematic
way of modifying threshold values. One such method is suggested - Rule-
Base Learning.

5.4.1 Rule-Base Learning

The aim of rule-base learning is to accumulate a knowledge base so that
the values of thresholds in sanity checks can be explained by tracing back
relevant examples. It can also show the amount of true/false positives and
true/false negatives using the samples stored in its database. A simple al-
gorithm that has yet to be implemented is provided here (fig. 5.2).

In fig. 5.2, object T is one of the objects to be recognised, i.e. bea-
con, goal, robot or ball. KB stands for Knowledge Base, representing the
database that stores sanity check rules and sample images. Note that, for
illustration of rule-based learning, the outlined algorithm is simplified to
recognise only objects composed of one blob. To apply this algorithm to
recognition of objects with multiple blobs like beacons and robots, the rela-
tionship between current blob and surrounding blobs need to be considered
as well.

We may not always add a rule for false-positive because there may
be cases that are not so clear-cut — Sometimes part of the robot really look
like a ball, and the ball may appear like a robot. It could be caused by
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1 Given an image with blobs information

2

3 For each blob B in the image,

4 For each type of object T,

5

6 Consult the current sanity check rules of that object

7 If no rule is violated,

8 Classify blob B as object T

9

10 Consult human judgment,

11 If auto-classification for this blob is false

12 OR this blob is auto-classified as two objects,

13

14 Design a new rule to eliminate false classifications
15

16 If the new rule does not contradict many old classificationms,
17 Save this image, AND

18 Add a rule to the KB to make this sample a true-negative
19

20 Otherwise,

21 Cancel the rule, AND

22 Leave this example as a false-positive

23

24 Repeat again for any image

Figure 5.2: Sample Algorithm of Rule-Base Learning

problems in lighting or low-level vision processing. Therefore, the system
should check any new rule with the old samples in its knowledge base.

This is an idea discussed after finishing RoboCup 2004. The difficult
part of the implementation will likely to be the linking and merging between
the samples database, sanity checks in the robot software and the program
itself that generate the sanity checks.



Chapter 6

Conclusion

This paper described the development of an object recognition system that
was used to recognise beacons, goals, balls and robots in the Four-Legged
League of RoboCup Competition environment.

Currently, the system is far from being “autonomous” in the sense
that it cannot automatically cope with changes in lighting condition, spec-
ifications of objects, or any assumption implied by the gaming condition.
The system works because all required knowledge about the objects is al-
ready hard-coded as rules, entered by human hands before the system runs.
This research is yet another example that shows how a task that can be
performed by human beings easily is in fact so complicated.

Nevertheless, the system worked reasonably well in a game environ-
ment, and can cope with changes in lighting condition to some extent with-
out modifying the codes. To achieve more ambitious “meta-goals” like short-
ening development time, automatic learning of rules and minimising human
intuitive intervention, however, more research and development effort will
be required.
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