
2004 rUNSWift Thesis – Low Level Vision Jing Xu 3020495

1

The University of New South Wales

School of Computer Science and Engineering

2004 rUNSWift Thesis – Low Level Vision

Jing Xu ID: 3020495

Bachelor of Computer Science (Honours)

Submission Date: September 2004
Supervisor: William Uther
Assessor: Claude Sammut

2004 rUNSWift Thesis – Low Level Vision Jing Xu 3020495

2

2004 rUNSWift Thesis – Low Level Vision Jing Xu 3020495

3

Contents
1 INTRODUCTION 5

2 RING CORRECTION 6

2.1 INTRODUCTION 6
2.2 CONCEPT 7
2.2.1 INITIAL INVESTIGATION INTO THE NATURE OF THE PROBLEM 8
2.2.2 GEOMETRIC DISTORTION 8
2.2.3 GEOMETRIC TRANSFORMATION 9
2.2.4 MODELLING 9
2.2.5 ELECTRIC FIELDS 12
2.3 IMPLEMENTATION 13
2.3.1 METHOD 1 – NAÏVE IMPLEMENTATION 13
2.3.2 METHOD 2 – ASSUME YUV INDEPENDENCE 14
2.3.3 METHOD 3 – ASSUME X,Y SYMMETRY 14
2.3.4 METHOD 4 – LUT 4 + REPLACEMENT FOR TRIGONOMETRY CALCULATIONS 15
2.3.5 GENERATE TABLES 16
2.3.6 TABLE ACCESS 17
2.4 RESULTS 17
2.4.1 EFFECTIVENESS 17
2.4.2 SPEED 18
2.4.3 ROBUSTNESS 18
2.5 DISCUSSION/CONCLUSION 18

3 COLOUR CLASSIFICATION 19

3.1 INTRODUCTION 19
3.2 CONCEPT 20
3.3 IMPLEMENTATION 21
3.3.1 COLOUR TEST 21
3.3.2 COLLECTING TRAINING DATA 22
3.3.3 LABELLING TRAINING DATA 23
3.3.4 LEARNING ALGORITHM 24
3.3.5 TEST 1 24
3.3.6 MANUAL CLASSIFICATION 25
3.3.7 TEST 2 25
3.4 DISCUSSION/CONCLUSION 26

4 HISTOGRAM EQUALISATION 27

4.1 INTRODUCTION 27
4.2 CONCEPT 28
4.3 IMPLEMENTATION 28
4.3.1 COLLECT HISTOGRAM 28
4.3.2 EQUALISE HISTOGRAM 29
4.3.3 APPLY TRANSFORMATIONS 30

2004 rUNSWift Thesis – Low Level Vision Jing Xu 3020495

4

4.3.4 ASSUME TEMPORAL LOCALITY 30
*4.4 RESULTS 32
4.5 DISCUSSION/CONCLUSION 32

5 EDGE DETECTION 33

5.1 INTRODUCTION 33
5.2 CONCEPT 34
5.3 IMPLEMENTATION 35
5.3.1 EDGE PIXELS 35
5.3.2 EDGE RUNS 35
5.3.3 EDGE BLOBS 36
5.4 RESULTS 36
5.5 DISCUSSION/CONCLUSION 37

6 DISCUSSION/CONCLUSION 38

7 REFERENCES 39

9 APPENDIX A – PROOF OF QUADRATIC EQUATION OF CHROMATIC
DISTORTION MODEL 41

10 APPENDIX B – COMPARISON BETWEEN UNPROCESSED IMAGES AND RING
CORRECTED IMAGES 45

2004 rUNSWift Thesis – Low Level Vision Jing Xu 3020495

5

1 Introduction

The Robocup four-legged league is an annual competition entered by the UNSW

rUNSWift team, where Sony AIBO robots are used to play four on four soccer. The

robots provide a standard platform, where only the software differ between each team.

One of the robot's main sensors is the camera in its nose, images are captured at 30

frames per second, from which, most of the information regarding its environment are

derived and acted upon. Due to the low position of the vision module on the data flow

hierarchy, its accuracy and speed is crucial to the functionality of all other modules, and

the performance of the robot in general.

The rUNSWift vision module is divided into three parts, low-level vision – colour

classification and segmentation, mid-level vision – clustering, and high-level vision –

object recognition. This paper deals primarily with low-level vision.

Section 2 explores an interesting problem introduced by the ERS-7 model are chromatic

distortions around the edge of images. Section 3 explores the current method of colour

classification and segmentation in the rUNSWift vision module. Section 4 explores the

effect of histogram equalisation on non-linear shifts in colourspace caused by lighting

changes. Finally Section 5 explorers extracting additional visual information through

edge detection.

2004 rUNSWift Thesis – Low Level Vision Jing Xu 3020495

6

 2 Ring Correction

 2.1 Introduction

A significant problem introduced by the Sony AIBO ERS-7 robots are chromatic

distortions near the edge of images. The distortions are roughly cyclic in shape and

usually add a blue tint to the affected area. The severity of the distortions is dependent

on the colour and position of the affected area. Since the rUNSWift vision system is

largely based on colour, these distortions lead to the misclassification of object colour,

which results in an increase of noise, false identification (false positives) and mis-

identification (true negatives) of objects.

Since this is the first time the ERS-7 model is adopted, although many other teams have

also noticed this problem [5], there has been no research conducted in previous years,

and no known solutions proposed. Although the ERS-210 also has some chromatic

distortions, it has not been severe enough to cause concern. A comparison between the

chromatic distortions of the ERS-7 and ERS-210 can be found on Roefer’s website [6].

2004 rUNSWift Thesis – Low Level Vision Jing Xu 3020495

7

 2.2 Concept

Fig 2.1 YUV plane of white border Fig 2.2 Y plane of white border

Fig 2.3 Y plane of uniform colours at Y=79 & Y=80 Fig 2.4 Y plane of uniform colours at Y=79 & Y=80
during daytime - unprocessed at night time - unprocessed

Fig 2.5 Using correction calibrated for daytime images on night time images

2004 rUNSWift Thesis – Low Level Vision Jing Xu 3020495

8

 2.2.1 Initial Investigation into the Nature of the Problem

Due to the chromatic nature of the distortions, images of uniform colour were taken

under controlled lighting conditions to investigate the nature of this phenomenon. YUV

values of this set of data were analysed separately and it can be observed that the

distortions are:

(a) symmetric about its centre, which is roughly, although not exactly, the centre of the

image (Fig 2.1)

(b) parabolic in terms of its relationship between chromaticity (z) and pixel position (x,

y) (Fig 2.2)

(c) different for each distinct colour (Fig 2.3)

(d) consistent for different colours with the same camera settings (Fig 2.3, Fig 2.4)

(e) independent of lighting conditions (Fig 2.5)

Due to the nature of uniform colours, without the distortions, the same colour should

have the same YUV intensity (z), despite its pixel position on the image (x, y). But the

images of uniform colours captured by the ERS-7 camera show consistently parabolic

planes (Fig 2.3) rather than perfectly straight horizontal planes. It seems that a

transformation which can straighten these planes would be the solution to this problem.

 2.2.2 Geometric Distortion

Geometric distortions are a common problem in cameras because of the parabolic

nature of lenses. Section 5.11 of Gonzalez [3] offers a good explanation of the theory

of geometric distortions and transformations.

Although geometric distortions are usually two dimensional, given the roughly

symmetric nature of the “blue ring”, a cross section through the centre would be a fair

representation in 2D which can be reconstructed into 3D when necessary. If a vertical

slice (x, z plane) at y=79 or y=80 is taken, the chromatic distortions can be modelled by

geometric distortions

2004 rUNSWift Thesis – Low Level Vision Jing Xu 3020495

9

 2.2.3 Geometric Transformation

The conventional procedure to correct geometric distortions is geometric

transformations in the form of tie-points and grey interpolation, which modify the

spatial relationships between pixels in an image [3].

Unfortunately, the spatial transformations described in [3] require sample points with

known solutions from the entire image. In the case of conventional geometric

distortions this is not a problem, but in this case it is difficult to acquire samples of

every colour in the visible spectrum and next to impossible to predict their chromaticity

under lighting conditions which are not sufficiently static. Therefore the transformed

solutions to tie points of certain chromaticity cannot be known, hence the general

equations of geometric transformations for those colours cannot be calculated, rendering

this method unusable.

 2.2.4 Modelling

Fig 2.5 U plane of uniform colours at Y=79 & Y=80

It seems that if the distortions can be modelled, then it can be solved. After the

application of regression analysis to vertical slices (in xz plane) of uniform colours,

assuming the distortions are quadratic, and forecast ±100 units on the x-axis, it can be

seen that the regression lines converge at roughly the same two points (p0, p1), one on

either side of the image. These two points remain constant for the same camera settings

independent of lighting.

2004 rUNSWift Thesis – Low Level Vision Jing Xu 3020495

10

Fig 2.6 A parabola which begins at p0, ends at p1, passing through points p2 and p3

To calculate the equation of the distortion for any point p2, so that given its position on

the image (x,y) and chromaticity (z), then the equivalent z for an area with no distortion,

ie. the centre of the image p3, can be predicted (Fig 2.6).The problem then becomes,

given 3 points, p0=(x0,z0), p1=(x1,z1), p2=(x2,z2) and x3, the x value of a fourth point p3 on

a parabola, find the z value (z3) of p3. Assuming the parabola is quadratic, the equation

of the parabola would be:

p3

p2

p1p0

2004 rUNSWift Thesis – Low Level Vision Jing Xu 3020495

11

Equation 1

(Proof see Appendix A)





















−

−











−−










−





















−

−











−−










−

+

























































































−

−











−−










−





















−

−











−−










−





















−

−

−





















−

−

+








































































−

−











−−










−





















−

−











−−










−

−










































































































−

−











−−










−





















−

−











−−










−





















−

−

−





















−

−

−=

0

2
1

1

2
0

2
1

0

2
2

22
0

2
2

0

2
1

1

2
0

0
2

1
1

0

2
2

22
0

0
2

2
2

0

2
1

1

2
0

2
1

0

2
2

22
0

2
2

0

2
1

1

2
0

0
2

1
1

0

2
2

22
0

0
2

2
2

0

2
1

1

2
0

2
1

0

2
1

1

2
0

0
2

1
1

2

0

2
1

1

2
0

2
1

0

2
2

22
0

2
2

0

2
1

1

2
0

0
2

1
1

0

2
2

22
0

0
2

2
2

2
0

0

2
1

1

2
0

2
1

0

2
2

22
0

2
2

0

2
1

1

2
0

0
2

1
1

0

2
2

22
0

0
2

2
2

0

2
1

1

2
0

2
1

0

2
1

1

2
0

0
2

1
1

0
2

0

0

1
1

1
1

1

1
1

1

1
1

1
1

x
x

x

x
x

x
x

x
x
x

x
x

x

x
zx

z

x
x

x
x

zx
z

x

x
x

x

x
x

x
x

x
x
x

x
x

x

x
zx

z

x
x

x
x

zx
z

x
x

x

x
x

x
x

x

x
zx

z

x

x
x

x

x
x

x
x

x
x
x

x
x

x

x
zx

z

x
x

x
x

zx
z

x

x
x

x

x
x

x
x

x
x
x

x
x

x

x
zx

z

x
x

x
x

zx
z

x
x

x

x
x

x
x

x

x
zx

z

xx
z

z

2004 rUNSWift Thesis – Low Level Vision Jing Xu 3020495

12

The complexity of the equation is high, which could easily introduce implementation

errors, and calculating the solution for every pixel many be too computational

expensive.

 2.2.5 Electric Fields

Fig 2.7 Electric Field Lines (a) Diagram (b) Iron fillings aligned by magnet

Another way to model the distortions is through the concept of electric fields. Between

two oppositely charged point objects, the lines of force are concentrated at each point

charge. A positive test charge would follow a curved path to the negative point charge,

these lines of force are much like the chromatic distortions experienced by the images

(compare Fig 2.5 with Fig 2.7).

Glenbrook [7] is good reference on the concept of electric fields, point charges and lines

of force, and also the quantisation of electric fields and electric potential. Where The

Electric Field Java Program[8] is an applet which simulates the electric field generated

between point charges.

The concept of electric fields is not only used to explain electromagnetic forces, but is

also used to model the shape of cells during mitosis (cell division) [9] and

electrophoresis, a sedimentation technique used in DNA analysis to determine the

molecular weight of proteins [10].

Assuming the two points on either end of the image, p0 and p1, are equal and opposite

point charges, then the distortions can be modelled by the electric field hence generated,

and the equation for each colour would be equivalent to the equation of the

corresponding electric field line.

2004 rUNSWift Thesis – Low Level Vision Jing Xu 3020495

13

Equation 2

However, given the magnitude and polarity of the point charges p0 and p1 (assume +1

and –1), and a third small positive test charge p2, Equation 1 only derives the immediate

direction of p2, and not the equation of its path. But this is still useful because we can

use numerical integration to find each point on the path.

Such methods may be computationally expensive to calculate dynamically, but given

the nature of the problem, where the distortions are static, and the interval is discrete

(integral) and finite (between 0 and 255), the corrections can be calculated offline in the

form of a look-up table. The electric field model was chosen for its simplicity.

 2.3 Implementation

A look-up table of acceptable size is usually preferred to dynamic calculations because

of speed.

 2.3.1 Method 1 – Naïve Implementation

Initially the concept is complex; there are 5 dimensions, x, y, Y, U, V, and 3 values to

be looked up, Yz, Uz, Vz. There are 208 possible values for x, 160 for y, and 256 for

each of Y, U and V.

The look-up table would contain:

12
1

1
02

0

0 ˆˆ r
r
kq

r
r
kq

E +=

cellsVUYyx 111052.5256256256160208 ×=××××=××××

E = Electric force

k = Constant of proportionality

ε0 = Absolute permittivity of free space

q0 = Charge 1

q1 = Charge 2

ri = Distance between test charge and qi

= Unit vector of ri

04
1
πε

=

121085.8 −×=

ir̂

2004 rUNSWift Thesis – Low Level Vision Jing Xu 3020495

14

If each of Yz, Uz and Vz require one byte of storage, then the look-up table would

require:

Look-up Table (LUT) 1

One memory stick can only contain a maximum of 16 MB, therefore Method 1 is not

feasible.

 2.3.2 Method 2 – Assume YUV independence

Knowing that YUV are independent of each other, LUT 1 can be broken down into 3

smaller tables, one for each of Y, U and V.

LUT 2 (3 tables)

LUT2 still does not fit onto one memory stick, therefore Method 2 is not feasible.

 2.3.3 Method 3 – Assume x,y Symmetry

Fig 2.8 Vertical slice in the xz plane Fig 2.9 Vertical slice in the xy plane

If we exploit the symmetry of the problem, then we can take one slice in the xz plane

along a diagonal of the rectangular image in the xy plane through the centre of distortion

c (Fig 2.8), and rotate between 0-180 degrees to recreate y (Fig 2.9).

This would require:

length of a diagonal*(Y+U+V)

LUT 3 (3 tables)

GBBytes 15601066.131052.5 1211 =×=××

MBVUYyx 38.243256160208)(=×××=++××

KByx 25.1973256263322 =××=×+=

z

y

x

slice

y

x

slice

180°

c

2004 rUNSWift Thesis – Low Level Vision Jing Xu 3020495

15

Or cut the above slice in half along the y axis and rotate 0-360 degrees to recreate y.

Fig 2.9 Vertical slice in the xy plane

This would require:

length of half a diagonal*(Y+U+V)

LUT 4 (3 tables)

Fig 2.10 Map slice in the xy plane to its equivalent on along the x axis

To map x,y values to x values, LUT 4 requires the uses of trigonometry functions for

each pixel, which reduces CPlanes processed per second down to approx. 11-12. Hence

although this table is small enough, the overhead produced by the extra trigonometry

transformations are too great to deem this method feasible.

 2.3.4 Method 4 – LUT 4 + Replacement for Trigonometry Calculations

One way to compensate is to implement another table which maps x,y values to a

corresponding x value in LUT 4.

This requires an extra:

x*y*(number of bytes per int) LUT 5

LUT 4 + LUT 5 require 98.63+130=228.63 KB

Method 4 is both fast enough and small enough to be feasible.

KByx 62.983256263
2
13

2
1 22 =×××=×+=

KB1304108160 =××=

y

x

slice

360°
c

y

x

slice

θc

2004 rUNSWift Thesis – Low Level Vision Jing Xu 3020495

16

 2.3.5 Generate Tables

LUT4 can be generated by the following code:

protected static void drawLine(int slice[][], Point q1,
Point q2, double k)

{

double rsq1, rsq2, x, y, sumX, sumY, dx1, dy1, dx2,
dy2, d;

int CX = avg(q1.x,q2.x);

for(int i=0; i<slice.length; i++) {

x=CX; y=i;

sumX=0; sumY=0;

do {

slice[(int) Math.round(y)][(int) Math.round(x)-
CX] = i;

dx1 = q1.x - x; dy1 = q1.y - y;

dx2 = q2.x - x; dy2 = q2.y - y;

rsq1 = dx1*dx1 + dy1*dy1;

rsq2 = dx2*dx2 + dy2*dy2;

sumX += dx2/rsq2 - dx1/rsq1;

sumY += dy2/rsq2 - dy1/rsq1;

d = Math.sqrt(sumX*sumX + sumY*sumY);

x += sumX/d;

y += k*sumY/d;

} while(y>=0 && Math.round(y)<slice.length &&
Math.round(x)-CX<slice[i].length);

}

}

2004 rUNSWift Thesis – Low Level Vision Jing Xu 3020495

17

 2.3.6 Table Access

The tables can be accessed via:

Yz = LUT4Y[Y][(LUT5[y][abs(x-cyx)])];

Uz = LUT4U[U][(LUT5[y][abs(x-cux)])];

Vz = LUT4V[V][(LUT5[y][abs(x-cvx)])];

Where cyx, cux, cvx are the x values of the centres of distortion in Y, U, V

respectively.

 2.4 Results
 2.4.1 Effectiveness

Fig 2.8 UnprocessedU plane of uniform colours Fig 2.9 Preliminarily Processed U plane of uniform

at Y=79 & Y=80 colours at Y=79 & Y=80

Fig 2.10 Processed U plane of uniform colours at Y=79 & Y=80 with concavity coefficient

2004 rUNSWift Thesis – Low Level Vision Jing Xu 3020495

18

Initial testing verifies that this method reduces distortions (Fig 2.9), but these lines are

not as straight as predicted. There are still consistent curvatures to be seen. To

compensate for this, the concavity of the curves was increased by a constant, which was

determined by trial and error. After this modification, there are no consistent curves to

be observed (Fig 2.10). For a more comprehensive comparison, see Appendix B.

However, there are certain abnormalities in the lines furthest away from the centre. It

can be seen that these areas do not conform to the same concavity as the rest of the

curves in the original images. These parts of the curve cannot be modelled by the

general equation.

There are also some level of noise, which is expected.

 2.4.2 Speed

Although ring correction introduces some overhead in speed, it outweighs the amount of

time the blobber spends processing the extra noise caused by the ring.

 2.4.3 Robustness

A ring correction file generated under one lighting condition is equally effective on

images captured under another lighting with the same camera setting (Fig 2.5).

Although, one calibration does not work for different camera settings, but after

recalibration using the same method, similar results were achieved.

 2.5 Discussion/Conclusion

Ring correction using the electric fields model has generally demonstrated to be a good

method in terms of speed and effectiveness. It can be seen that there is still noise, and

certain colours which are further away from the centre of distortion have segments

which are not uniform. These cannot be avoided since they are present in the original

data. If these inconsistencies in concavity can be modelled, then they can be corrected.

Currently the process is rather time consuming, a more methodical approach to the

approximation of end points and automation of the entire process is desirable.

2004 rUNSWift Thesis – Low Level Vision Jing Xu 3020495

19

 3 Colour Classification

 3.1 Introduction

The aim of the rUNSWift vision system is to extract and process as much visual

information as accurately as possible in real-time. Although inter-related, the priorities

can be roughly categorised into speed, accuracy and completeness of information, in

order of importance.

To aid in the development of such a system in its early stages, the Robocup field is set

up in such a way, where lighting conditions are controlled, and every object class of

interest (Table 2.1) can be characterised by a distinct colour.

Value Colour Objects

0 Orange Ball

1 Blue Blue beacon, blue goal

2 Green Green Beacon

3 Yellow Yellow beacon, yellow goal

4 Pink Pink beacon

5 Robot Blue Blue robot

6 Robot Red Red robot

8 Field Green Green field

7 Grey Grey robot

9 White Borders, field lines, white robot, light background

10 Black Referee pants, black robot, dark background
Table 3.1 Objects of interest

To take advantage of this situation, a fast method of colour image segmentation based

on a YUV colour look-up table was developed[11] and improved upon over the years

[14][15][17][1][2]. The 2002 thesis[1] contains a detailed and structured description of

the colour classification process, but not much of the concept was discussed, and many

details were amended in 2003 and 2004. The 2003 thesis[2] only emphasises the

changes made in that particular year (eg. learning algorithm and list of interesting

2004 rUNSWift Thesis – Low Level Vision Jing Xu 3020495

20

objects), whereas the overall description of the process itself is brief. Small changes

made in 2004 remain undocumented. This section aims to document a coherent

synthesis of concepts and 2002-2004 rUNSWift practices in colour classification adopted

by the 2004 team.

 3.2 Concept

In an ideal environment, where each object of interest belongs to a unique class in

colour space, each YUV coordinate is associated with only one symbolic colour. Such a

mapping is linear, and can be looked up in a static table which only needs to be

generated once.

It is near impossible to find samples of every possible colour in the environment, and

since there are 256*256*256 ~= 17 million combinations of YUV coordinates, it is

cumbersome to manually associate each coordinate with a colour. Hence it is much

more efficient in terms of time and effort to generate tables based on a smaller but

representative set of training data.

Since adjacent YUV coordinates usually represent the same colour, it is feasible to

generalise and compress groups of YUV coordinates into one class of symbolic colour

without losing too much information.

There have been two approaches to segment colour space, (a) divide the native camera

colour space (YUV)[11] or transformed colourspace (eg. HSV)[12] into rectangular

boxes whether it be done in hardware[13] or software[11]; (b) use a machine learning

algorithm to generate classes of arbitrary shape in colourspace[1]. The 1999[14] and

2000[15] rUNSWift teams used a combination of both, rectangular slices in Y plane,

and learnt polygons of best fit generated by a Polygon Growing Algorithm were used in

the UV plane.

Usually colour classes do not fit into rectangular boxes, so although method (a) is faster

offline and dynamically than (b) especially when done in hardware, (b) is preferred

because it models the concave nature of actual colour classes more closely, and

therefore is more accurate. The extra overhead in speed of (b) both in offline generation

and dynamic application is also acceptable.

2004 rUNSWift Thesis – Low Level Vision Jing Xu 3020495

21

Two machine learning algorithms were used by rUNSWift in 2004, C4.5 and LMT.

C4.5[16] has demonstrated in 2001[17] and 2003[2] to be more robust under lab

conditions than algorithms experimented with in previous years, such as polygon

growing and nearest neighbour, it is also very fast to run (usually 1-2 min). LMT

models the concavity of colour classes better than C4.5, it also allows a confidence

factor to be associated with each labelled colour class, but is computationally more

expensive (usually 20 min – 1 hour) and its effectiveness requires more rigorous testing.

Both algorithms are heavily dependent on the representativeness of the training data.

 3.3 Implementation

To generate a look-up table, the 2004 rUNSWift team has 7 steps:

 3.3.1 Colour Test

Fig 3.1 Colour Test – images of similar objects taken with different camera settings

(a) White balance: indoor, gain: mid, shutterspeed: high (b)White balace: outdoor, gain: mid, shutterspeed: slow

Several images of reference colour (eg. same segment of white border and beacon under

same lighting, Fig 3.1) are taken with different camera settings, ie. different

combinations of shutter speed, white balance and gain. The images are compared, and

the camera setting which yields the clearest distinction between colours is chosen.

Note: usually the shutter speed is set to fast to reduce motion blur, so there are only two

settings to be changed: white balance and gain.

2004 rUNSWift Thesis – Low Level Vision Jing Xu 3020495

22

 3.3.2 Collecting Training Data

Images of every interesting object are taken from different distances at different angles

on different parts of the field to product as many possible colours of the same object as

possible. This may potentially result in over 100 pictures which would be time

consuming to label. A set of pictures has been provided as a reference (Table 3.2), there

is no need to take every single picture in the table, a representative sample would

suffice.

Num Setup Purpose

0 One corner beacon + white border Colour test

1-4 Close-up of each beacon Large samples of beacon colours

5-8 Mid-range beacons, 1/3 of the field away
from beacons

Sample different reflectance of beacons

9-12 Close-up of shadowed beacons Simulate effect of crowd leaning over
beacons, variance in colour

13-14 Close-up ball on field white in the middle
and a corner of the field

Large samples of ball, border and field in
different parts of the field

15-16 Close-up and mid-range of ball in yellow
goal

Large samples of yellow goal and ball

17-18 Close-up and mid-range of ball in blue
goal

Large samples of blue goal and ball

19 15 with shadows Samples of shadowed yellow goal and ball

20 17 with shadows Samples of shadowed blue goal and ball

21-22 Front and side of red robot in yellow goal Samples of red goalie

23-24 Close-up and mid-range of red robot in
quadrant 1 of field from the front

25-26 Close-up and mid-range of red robot in
quadrant 1 of field from the side

27-28 Close-up and mid-range of red robot in
quadrant 4 of field from the front

29-30 Close-up and mid-range of red robot in
quadrant 4 of field from the side

Large samples of red robot in different
parts of the field

21-22 Front and side of blue robot in blue goal Samples of blue goalie

23-24 Close-up and mid-range of blue robot in
quadrant 2 of field from the front

Large samples of blue robot in different
parts of the field

2004 rUNSWift Thesis – Low Level Vision Jing Xu 3020495

23

25-26 Close-up and mid-range of blue robot in
quadrant 2 of field from the side

27-28 Close-up and mid-range of blue robot in
quadrant 3 of field from the front

29-30 Close-up and mid-range of blue robot in
quadrant 3 of field from the side

67-69 Scrums Samples of shadowed robots, balls and
field

70+ Freestyle – beacons and robots at different
angles

Large samples of beacons and robots in
different parts of the image (especially ring
area)

Table 3.2 List of images to take as training data

 3.3.3 Labelling Training Data

Fig 3.2 Labelling images using ic

2004 rUNSWift Thesis – Low Level Vision Jing Xu 3020495

24

Images of interesting objects are labelled with symbolic colours using a graphics editor,

ic. Sections of images can be “painted” in a symbolic colour using tools such as paint,

fill and wand (Fig 3.2). How much of which images to label is an art that can only be

mastered through experience.

 3.3.4 Learning Algorithm

The labelled images are then fed into a learning algorithm, where a decision tree is

generated and a look-up table derived.

 3.3.5 Test 1

Usually the look-up table yields reasonable colour when tested on the training data, so it

is important to test the table on novel images. To test a large quantity of images in as

little time as possible, a robot is loaded with the new colour table, and pointed towards

objects of interest, while the dynamic CPlanes are noted.

Only in the case where there are significant errors (eg. large areas of red robot is

consistently labelled orange) are additional images taken and relabelled, and the

learning algorithm re-run (repeat steps 2-4). This is because usually steps 2-4 are the

most time consuming.

2004 rUNSWift Thesis – Low Level Vision Jing Xu 3020495

25

 3.3.6 Manual Classification

Fig 3.3 Overriding the calibration file using mc

Small errors such as a few scattered pixels consistently being labelled the wrong colour

(eg. yellow in white border) can be corrected using mc. It lets the user edit values in the

look-up table directly (Fig 3.3), so it should be used only on a small scale and with

caution.

 3.3.7 Test 2

The new colour table is tested in the same way as Test 1. Take additional images and

redo step 6 until the colour table is acceptable.

2004 rUNSWift Thesis – Low Level Vision Jing Xu 3020495

26

 3.4 Discussion/Conclusion

The YUV look-up tables are an efficient way of segmenting images into objects, and is

currently the only way to process all image frames in real-time. Although it does not

allow distinct YUV values to be mapped to more than one colour, which is often the

case in nature, it has demonstrated to be reasonably accurate in the idealised Robocup

environment until 2004.

When compared to the ERS-210 model, the new ERS-7 model has a camera of

significantly poorer quality, where the images are noisier and the colours harder to

distinguish. Methods to reduce noise are explored in Section 4.

Local changes in lighting such as shadows and reflections have always been a problem

on the Robocup field, where there is a non-linear shift of colour classes in colourspace.

This results in more than one value for each YUV coordinate, which is unsupported by

the colour table. With the ERS-7 model, the mappings of symbolic colours are further

degraded such that the level of accuracy is no longer sufficient for progress in higher

leveled modules. It also defeats Robocup’s purpose of the eventual transition to a

natural environment with dynamic lighting.

There are two approaches to solving this problem, (a) correct the non-linear shift in

colour space, explored in Section 4, or (b) extract additional visual information such as

shape, explored in Section 5.

In conclusion, although the current method of colour classification is fast and

reasonably accurate for an ideal environment, the perceived environment is less than

ideal than previous years, hence colour is no longer reliable enough to be the only

source of information.

2004 rUNSWift Thesis – Low Level Vision Jing Xu 3020495

27

 4 Histogram Equalisation

 4.1 Introduction

The rUNSWift system is highly sensitive to changes in lighting, due to its dependency

on colour. Even though lighting conditions in the Robocup environment is currently

controlled, local changes in lighting such as shadows and reflections are unavoidable.

This introduces such inaccuracies in visual information that it is difficult for higher

leveled modules to function correctly.

The colour of surfaces is the result of a combination of components, such as the spectral

radiance of the illuminant, specular reflection, and the spectral reflectance of the

surface. Forsyth[4] Section 6.1 is a good reference on the physics of colour.

Changes in illumination cause a non-linear shift of colour classes in the otherwise linear

colourspaces. This creates more than one mappings of colour classes to colourspace

coordinates during certain intervals of time, which is unsupported by the static colour

look-up tables used the rUNSWift vision module.

A solution proposed by Cameron and Barnes[20], is to dynamically update the colour

table based on prior knowledge of the environment, such as the shape of objects. This

method is computationally feasible, and yields good results for object of known shapes

such as beacons and goals, but it is ineffective towards objects of unknown or

inconstant shape such as robots and partial balls. Since the landmarks are in positions

which are rarely affected by local changes in lighting, and the robots and balls are

affected most, this method is inappropriate for solving this problem.

This section presents Histogram Equalisation, a technique which compensates for

changes in lighting in an image, without prior knowledge of visual information other

than chromaticity, which is also computationally feasible to implement.

2004 rUNSWift Thesis – Low Level Vision Jing Xu 3020495

28

 4.2 Concept

Histogram equalisation seeks to automatically determine a transformation which

produces an image with a uniform histogram of intensity values. Basically, histogram

equalisation consists of three steps:

(a) collect an array of cumulative histograms ΣHi

(b) equalise histogram by multiplying ΣHi by the maximum intensity level/number of

pixels

(c) map original intensity level to equalised intensity level and reapply transformations

to image

Section 3.3.1 of Gonzalez[3] and the ImageJ Documentation[19] are good references on

the theory of histogram equalisation, whereas the ImageJ source code [19] shows a

good implementation.

 4.3 Implementation

 4.3.1 Collect histogram

An image is parsed where the frequency of intensities are added to an array of 256

levels of intensity.

for (i = 0; i < HEIGHT; i++) {

for (int j = 0; j < WIDTH; j++) {

histogramY[Y[i][j])]++;

histogramU[U[i][j]]++;

histogramV[V[i][j]]++;

}

}

2004 rUNSWift Thesis – Low Level Vision Jing Xu 3020495

29

 4.3.2 Equalise histogram

The histogram is then equalised, and a mapping between old intensity and equalised

intensity is formed. This is stored in a look-up table.

public void getLUT(int[] histogram, byte[] lut)

{

int levels = 256;

int max = 255;

range = 255;

double sum;

sum = getWeightedValue(histogram, 0);

for (int i=1; i<max; i++)

sum += 2 * getWeightedValue(histogram, i);

sum += getWeightedValue(histogram, max);

double scale = range/sum;

double delta;

lut[0] = icConstant.uInt2Byte(0);

sum = getWeightedValue(histogram, 0);

for (int i=1; i<max; i++) {

delta = getWeightedValue(histogram, i);

sum += delta;

lut[i] = icConstant.uInt2Byte((int)
Math.round(sum*scale));

sum += delta;

}

lut[max] = icConstant.uInt2Byte(max);

}

2004 rUNSWift Thesis – Low Level Vision Jing Xu 3020495

30

Notice that each value in the original histogram is weighted. It has been shown that

using the square root of histograms reduces the tendency for Histogram Equalisation to

enhance meaningless detail and hide important but small high-contrast features (Fig

4.1).

Fig 4.1 Comparison between classic equalisation and square root equalisation

 4.3.3 Apply transformations

The look-up table of mappings are then applied to the image.

for (i = 0; i < HEIGHT; i++) {

for (int j = 0; j < WIDTH; j++) {

Y[j] = lutY[Y[j]];

U[j] = lutU[U[j]];

V[j] = lutV[V[j]];

}

}

 4.3.4 Assume temporal locality

It would be time consuming to parse an image twice to reapply transformations to the

same image. If we assume temporal locality, that the difference between frames is

negligible, then histograms collected in the past can be applied to future images, and

this would make sure each image to only be parsed once.

2004 rUNSWift Thesis – Low Level Vision Jing Xu 3020495

31

Ten arrays are set up such that histograms over the past ten seconds are collected, and

equalised once per second.

static const int MAX_FRAME = 30;
static const int MAX_SEC = 10;
static const int NUM_VAL = 256;

int frameCount = 0;
int secCount = 0;

long histY[MAX_SEC][NUM_VAL];
long histU[MAX_SEC][NUM_VAL];
long histV[MAX_SEC][NUM_VAL];

long* curHistY = histY[0];
long* curHistU = histU[0];
long* curHistV = histV[0];

uchar lutY[NUM_VAL];
uchar lutU[NUM_VAL];
uchar lutV[NUM_VAL];

frameCount = (frameCount + 1) % MAX_FRAME;

//stats for this frame

if(frameCount == 0) {

secCount = (secCount + 1)%MAX_SEC;

getLUT(histY, lutY);

getLUT(histU, lutU);

getLUT(histV, lutV);

curHistY = histY[secCount];

curHistU = histU[secCount];

curHistV = histV[secCount];

//clear last histogram

clearHist(curHistY); clearHist(curHistU);
clearHist(curHistV);

2004 rUNSWift Thesis – Low Level Vision Jing Xu 3020495

32

 4.4 Results

Figure 4.2 Histogram Equalisation

(a)Original dark image of red robot in yellow goal (b) Equalised Y plane only (c) Equalised all YUV planes

(d)C plane of original image (e) C plane of equalised Y plane only (f) C plane of equalised all YUV planes

One way to combat problems associated with lighting changes, is to adjust the contrast

of each image. Histogram equalisation was tested, and reliable contrast could only be

generated for the Y plane. When histogram equalisation was only applied to the Y

plane of a dark image (Figures 4.2a & 4.2d), objects in that image would be more

recognisable to the human eye only (Figures 4.2b & 4.2e), they still lacked enough

colour (UV) information to be recognised correctly by a robot. However, when all three

YUV planes were equalised (Figures 4.2c & 4.2f), there was too much colour for a

robot to recognise objects correctly.

 4.5 Discussion/Conclusion
Although Histogram Equalisation is fast enough to be applied dynamically, and it can

enhance the relative appearance of images, the colour component is hard to control. It

is not enough to transform pixels under different lighting to the exact same colour.

However, it might prove useful in a hybrid vision system where other information such

as shape is used in conjunction with colour.

2004 rUNSWift Thesis – Low Level Vision Jing Xu 3020495

33

5 Edge Detection

 5.1 Introduction

Due to manual mis-classifications of the look-up table and local changes in lighting,

there is an increase in noise which makes colour no longer reliable enough to be the

only means of segmentation and clustering. This section explores a shape/colour hybrid

system, which uses shape as a basis for segmentation, and both shape and colour as

bases for clustering.

To determine the shape of an object, one must determine its edges first. There are three

approaches to edge detection.

(a) convolution based gradient operators, which use convolution matrices to detect

dramatic changes in intensity (otherwise known as edges)

(b) techniques such as the Canny Edge Detector[23] which build statistical models of

gradients to determine edges

(c) region-filling techniques such as Region Growing and Watershed Segmentation,

which extract boundaries of adjoining regions.

Statistical models and region filling techniques are usually too computationally

expensive to be applied dynamically, hence only convolution based edge detectors are

further explored in this section.

Chapter 10 of Gonzalez [23] is a good reference on gradient operators and region-filling

techniques.

2004 rUNSWift Thesis – Low Level Vision Jing Xu 3020495

34

 5.2 Concept

Edges can be detected by using gradient operators such as the Roberts operator or the

Sobel operator on an image. A pair of operators (a,b) are masked over sections of an

image such that:

gradient = |a| + |b|

Gonzalez[3] Section 10.1 is a good reference on edge detection using convolution based

operators.

Fig 6.1 Roberts Operator

Fig 6.2 Sobel Operator

If the gradient of the intensity of a pixel is higher than a certain threshold (determined

through trials and error using ic), then it is labelled as an edge pixel. Then regions

enclosed by edge pixels can be clustered and identified based on average colour. This

determines a more accurate boundary of objects, and compensates for minor noise

caused by misclassifications of the colour table.

01
10

10
01 −−

101
202
101

121
000
121

−
−
−−−−

2004 rUNSWift Thesis – Low Level Vision Jing Xu 3020495

35

 5.3 Implementation

 5.3.1 Edge pixels

Apply gradient operators to determine edge pixels:

Roberts:

If (abs(pixel[w][h] - (pixel[w+1][h+1]) +

 abs(pixel[w+1][h] - pixel[w][h+1])

 >= threshold)

pixel[w][h].isEdge = true

Sobel:

If (abs(pixel[w-1][h+1] + 2*pixel[w][h+1]) +
pixel[w+1][h+1] -

pixel[w-1][h-1] – 2*pixel[w][h-1] - pixel[w+1][h-
1])) +

 abs(pixel[w+1][h-1] + 2*pixel[w+1][h]) +
pixel[w+1][h+1] -

pixel[w-1][h-1] – 2*pixel[w-1][h] - pixel[w-
1][h+1]))

 >= threshold)

pixel[w][h].isEdge = true

 5.3.2 Edge runs

To find edge runs, edge pixels need to be run length encoded. The code below

demonstrates a simple implementation based on the state of the previous and current

pixel in a row.

for (y = 0; y < HEIGHT; y++) {

start = 0;

for (x = 0; x < WIDTH; x++) {

if(!prevEdge && (curEdge || x==end))

saveSegment(y, start, x-1)

else if(prevEdge && (!curEdge || x==end))

start = x //reset start

}

}

2004 rUNSWift Thesis – Low Level Vision Jing Xu 3020495

36

For actual implementation, see trunk/robot7/vision/BlobEdge.cc

 5.3.3 Edge blobs

Edge runs are clustered into edge blobs using the same disjoint blob algorithm used to

cluster colour blobs (for details see 2004 rUNSWift Thesis A Report[22] and

trunk/robot7/vision/Blob.cc), the only difference is in the overlap

condition.

bool overlaps(eRunLengthInfo *segment) {//segment is in
previous row

if(this->isEdge)

return this->color == segment->color &&

this->startIndex <= segment->endIndex &&

this->endIndex >= segment->startIndex;

else if(!segment->isEdge) //&& !this->isEdge

return this->startIndex <= segment->endIndex-
MIN_OVERLAP_PIXELS &&

this->endIndex >= segment-
>startIndex+MIN_OVERLAP_PIXELS;

else //!this->isEdge && segment->isEdge

return false;

}

 5.4 Results

Fig 5.3 (a) original image (b) applied Roberts operator in Y plane (c) applied Sobel operator in Y plane

2004 rUNSWift Thesis – Low Level Vision Jing Xu 3020495

37

Fig 5.4 image thresholded at Y>=75 after application of Sobel operator in Y plane

Due to time constraints, section 5.3.3 has not been fully tested. Intermediate results of

edge runs show that most of the edges of distinct objects of a certain size, which stand

out from the background, are classified correctly most of the time. But small

discontinuities in the boundaries of regions are frequent, which would cause the

blobbing algorithm to join two regions together incorrectly.

 5.5 Discussion/Conclusion

Edge detection using gradient operators are good for finding most edges around objects,

but small discontinuities cause regions to not be fully enclosed. Algorithms which join

broken lines can be expensive, and do not guarantee all gaps would be joined. The

current clustering algorithm would not leave clusters intact unless it is fully enclosed,

therefore this method is not fit for purpose.

2004 rUNSWift Thesis – Low Level Vision Jing Xu 3020495

38

 6 Discussion/Conclusion

rUNSWift’s current vision system is highly dependent on colour, its advantages are that

its fast, and it has been reasonably accurate in the past. Its disadvantages are that it is

sensitive to manual misclassifications, noise, and changes in lighting. These problems

are enhanced by the poor quality of the ERS-7 model.

Investigations into linear filters and histogram equalisation show that additional

information is required to compensate for the unreliability of colour. Investigations into

edge detection show that simple gradient edge detectors are not good enough to

determine the shape of an object when tested in non-ideal environments.

More effective methods such as region-filling techniques are too computationally

expensive to be implemented without loss of information. It might be worthwhile to

attempt partial region filling where the seeds can be based on colours of high

importance (eg. orange).

It might also be beneficial to profile all modules in detail to see exactly how much more

time can be spent on vision.

If the vision system can yield more accuracy, then perhaps not all information need to

be processed, which perhaps would leave enough time to use the more expensive but

accurate techniques occasionally. A fast method to determine the difference between

two consecutive frames may be useful in this case so that only new information

processed extensively.

The rUNSWift vision system still has a long way to go to fulfil its purpose of speed,

accuracy and completeness.

2004 rUNSWift Thesis – Low Level Vision Jing Xu 3020495

39

 7 References

[1] Olave A., Wang D., Wong J., Tam T., Leung B., Kim M.S., Brooks J., Chang A.,

Huben N.V., Sammut C. Hengst, B. The UNSW RoboCup 2002 Legged League

Team (UNSW 2002 RoboCup Team Thesis), University of New South Wales, 2002

[2] Chen J., Chung E., Edwards R., Wong N., Hengst B ,.Sammut C., Uther W. Rise of

the AIBOs III – AIBO Revolutions (UNSW 2003 RoboCup Team Thesis),

University of New South Wales, 2003.

[3] Gonzalez R.C., Woods R.E., Digital image processing 2nd ed, Prentice Hall, 2002.

[4] Forsyth D.A., Ponce J., Computer vision : a modern approach, Prentice Hall, 2003

[5] AIBO forum

http://openr.aibo.com/openr/end/index.php4

[6] Roefer, T., Quality of ERS-7 Camera Images

http://www.informatik.uni-bremen.de/~roefer/ers7/

[7] Electric Fields

http://www.glenbrook.k12.il.us/gbssci/phys/Class/estatics/u814c.html

[8] Robb, G.R.M., Electric Field Java Demo Program

http://local.phys.strath.ac.uk/12-157/lab8/Efield.java

[9] Koelher, Electric Potential

http://www.rwc.uc.edu/koehler/biophys/4b.html

[10] Study of the effect of electric fields on E. coli

http://chemcases.com/cisplat/cisplat01.htm

[11] Bruce J., Balch T., Veloso M., Fast and inexpensive color image segmentation for

interactive robots, Proceedings of the 2000 IEEE/RSJ International Conference on

Intelligent Robots and Systems, 2000.

[12] Dahm I., Deutsch S., Hebbel M., Osterhues A., Robust Color Classification for

Robot Soccer, University of Dortmund, 2003.

[13] Veloso, Uther, Fujita, Asada, Hitano, Playing soccer with legged robots,

Proceedings of the 1998 IEEE/RSJ International Conference on Intelligent Robots

and Systems, 1998.

2004 rUNSWift Thesis – Low Level Vision Jing Xu 3020495

40

[14] Dalgliesh J., Lawther M., Playing Soccer with Quadruped Robots, Computer

Engineering Thesis, University of New South Wales, 1999.

[15] Hengst B., Ibbotson D., Pham S.B., Sammut C., The UNSW United 2000 Sony

Legged Robot Software System, University of New South Wales, 2000.

[16] Quilan, J.R., C4.5: Programs for Machine Learning. Morgan Kaufmann, San

Mateo, CA, 1993.

[17] Chen S., Siu M., Vogelgesang T., Yik T.F., Hengst B., Pham S.B., Sammut C., The

UNSW RoboCup 2001 Sony Legged League Team, University of New South Wales,

2001.

[18] Hypermedia Image Processing Resources

http://homepages.inf.ed.ac.uk/rbf/HIPR2/

[19] ImageJ

http://rsb.info.nih.gov/ij/docs/menus/process.html

[20] Cameron D., Barnes N., Knowledge-based Autonomous Dynamic Colour

Calibration, University of Melbourne, 2003.

[21] Manduchi R., Learning Outdoor Color Classification from Just One Training

Image, University of California, Santa Cruz, 2004.

[22] Chan K., Lam D., Pham K., Whaite D., Wong T., Xu J., 2004 UNSW Robocup

Team Thesis A Report, University of New South Wales, 2004.

[23] Canny Edge Detector

http://www.cee.hw.ac.uk/hipr/html/canny.html

2004 rUNSWift Thesis – Low Level Vision Jing Xu 3020495

41

 8 Appendix A – Proof of Quadratic Equation of
Chromatic Distortion Model











−÷

































−−−

−

−

−

−

⇒

−
−



























−−−

−−−⇒

÷























⇒































+
















+

















=
















0

2
1

1

2
0

0
2

2
22

0

2
2

0

2
2

2

0

2
1

1

2
0

0
2

1
1

0

2
1

1

2
0

2
1

2
0

0
2

00

2
2

2
1

2
0

0
2

2
22

0

2
2

0

2
2

2

2
0

0
2

1
12

0

2
1

0

2
1

1

2
0

0
2

00

2
0

22
2

2

11
2

1

2
0

0
2

00

22
2

2

11
2

1

00
2

0

2

1

0

2
2

2
1

2
0

2

1

0

2

10

1
10

111

13
12

10

10

111

1

1
1

111

1
1
1

1
1
1

x
x

xR

x
zx

z
x
x

x
x

x

x
x

x

x
zx

z

x
x

x

x
x

x
z

xx

RxR
RxR

x
zx

z
x
x

x
x

x

x
zx

z
x
x

x
x

x

x
z

xx

xR

zxx
zxx

x
z

xx

zxx
zxx
zxx

c
x
x
x

b
x
x
x

a
z
z
z

z=ax2 + bx + c [1]

Subtitute (x0,z0), (x1,z1), and (x2,z2) into [1]:

z0=ax0
2 + bx0 + c [2]

z1=ax1
2 + bx1 + c [3]

z2=ax2
2 + bx2 + c [4]

Combine [2], [3] and [4]:

2004 rUNSWift Thesis – Low Level Vision Jing Xu 3020495

42

23

1
100

1
10

111

0

2
2

2

0

2
1

1

2
0

0
2

1
1

0

2
2

22
0

0
2

2
2

0

2
1

1

2
0

2
1

0

2
2

22
0

2
2

0

2
1

1

2
0

0
2

1
1

0

2
1

1

2
0

2
1

2
0

0
2

00

R
x
x

xR

x
x

x

x
zx

z

x
x

x
x

zx
z

x
x

x

x
x

x
x

x
x
x

x
x

x

x
zx

z

x
x

x

x
x

x
z

xx











−−



































































−

−











−−










−





















−

−











−−










−

−

−

−

−

⇒





















−

−











−−










−





















−

−











−−










−

=





















−

−











−−










−=





















−

−











−−










−

0

2
1

1

2
0

2
1

0

2
2

22
0

2
2

0

2
1

1

2
0

0
2

1
1

0

2
2

22
0

0
2

2
2

0

2
1

1

2
0

0
2

1
1

0

2
2

22
0

0
2

2
2

0

2
1

1

2
0

2
1

0

2
2

22
0

2
2

1
1

1
1

x
x

x

x
x

x
x

x
x
x

x
x

x

x
zx

z

x
x

x
x

zx
z

c

x
x

x

x
zx

z

x
x

x
x

yx
yz

x
x

x

x
x

x
x

x
x
x

c

2004 rUNSWift Thesis – Low Level Vision Jing Xu 3020495

43























































−

−











−−










−





















−

−











−−










−





















−

−

−





















−

−

=





















−

−

−





















−

−

=





















−

−

=





















−

−

+

0

2
1

1

2
0

2
1

0

2
2

22
0

2
2

0

2
1

1

2
0

0
2

1
1

0

2
2

22
0

0
2

2
2

0

2
1

1

2
0

2
1

0

2
1

1

2
0

0
2

1
1

0

2
1

1

2
0

2
1

0

2
1

1

2
0

0
2

1
1

0

2
1

1

2
0

0
2

1
1

0

2
1

1

2
0

2
1

1
1

1

1

1

x
xx

x
x

x
x

x
x
x

x
xx

x
zx

z

x
x

x
x

zx
z

x
x

x

x
x

x
x

x

x
zx

z
b

x
x

x

x
x

c

x
x

x

x
zx

z
b

x
xx

x
zx

z

x
xx

x
x

cb























































−

−











−−










−





















−

−











−−










−

−

























































































−

−











−−










−





















−

−











−−










−





















−

−

−





















−

−

−=

−−=

=++

0

2
1

1

2
0

2
1

0

2
2

22
0

2
2

0

2
1

1

2
0

0
2

1
1

0

2
2

22
0

0
2

2
2

2
0

0

2
1

1

2
0

2
1

0

2
2

22
0

2
2

0

2
1

1

2
0

0
2

1
1

0

2
2

22
0

0
2

2
2

0

2
1

1

2
0

2
1

0

2
1

1

2
0

0
2

1
1

0
2

0

0

2
00

2
0

0

2
0

0
2

00

1
1

1

1
1

1
1

x
x

x

x
x

x
x

x
x
x

x
x

x

x
zx

z

x
x

x
x

zx
z

x

x
x

x

x
x

x
x

x
x
x

x
x

x

x
zx

z

x
x

x
x

zx
z

x
x

x

x
x

x
x

x

x
zx

z

xx
z

a

x
c

x
b

x
z

a

x
z

x
c

x
ba

2004 rUNSWift Thesis – Low Level Vision Jing Xu 3020495

44

Substitute a, b, c into [1]:





















−

−











−−










−





















−

−











−−










−

+

























































































−

−











−−










−





















−

−











−−










−





















−

−

−





















−

−

+








































































−

−











−−










−





















−

−











−−










−

−










































































































−

−











−−










−





















−

−











−−










−





















−

−

−





















−

−

−=∴

0

2
1

1

2
0

2
1

0

2
2

22
0

2
2

0

2
1

1

2
0

0
2

1
1

0

2
2

22
0

0
2

2
2

0

2
1

1

2
0

2
1

0

2
2

22
0

2
2

0

2
1

1

2
0

0
2

1
1

0

2
2

22
0

0
2

2
2

0

2
1

1

2
0

2
1

0

2
1

1

2
0

0
2

1
1

2

0

2
1

1

2
0

2
1

0

2
2

22
0

2
2

0

2
1

1

2
0

0
2

1
1

0

2
2

22
0

0
2

2
2

2
0

0

2
1

1

2
0

2
1

0

2
2

22
0

2
2

0

2
1

1

2
0

0
2

1
1

0

2
2

22
0

0
2

2
2

0

2
1

1

2
0

2
1

0

2
1

1

2
0

0
2

1
1

0
2

0

0

1
1

1
1

1

1
1

1

1
1

1
1

x
x

x

x
x

x
x

x
x
x

x
x

x

x
zx

z

x
x

x
x

zx
z

x

x
x

x

x
x

x
x

x
x
x

x
x

x

x
zx

z

x
x

x
x

zx
z

x
x

x

x
x

x
x

x

x
zx

z

x

x
x

x

x
x

x
x

x
x
x

x
x

x

x
zx

z

x
x

x
x

zx
z

x

x
x

x

x
x

x
x

x
x
x

x
x

x

x
zx

z

x
x

x
x

zx
z

x
x

x

x
x

x
x

x

x
zx

z

xx
z

z

2004 rUNSWift Thesis – Low Level Vision Jing Xu 3020495

45

9 Appendix B – Comparison Between Unprocessed
Images and Ring Corrected Images

YUV plane of white border – unprocessed YUV plane of white border – processed

C plane of white border – unprocessed C plane of white border – processed

2004 rUNSWift Thesis – Low Level Vision Jing Xu 3020495

46

Y plane of white border – unprocessed Y plane of white border – processed

U plane of white border – unprocessed U plane of white border – processed

V plane of white border – unprocessed V plane of white border – processed

2004 rUNSWift Thesis – Low Level Vision Jing Xu 3020495

47

Y plane of uniform colours at Y=79 & Y=80 Y plane of uniform colours at Y=79 &
Y=80
– unprocessed – processed

U plane of uniform colours at Y=79 & Y=80 U plane of uniform colours at Y=79 &
Y=80
– unprocessed – processed

V plane of uniform colours at Y=79 & Y=80 V plane of uniform colours at Y=79 &
Y=80
– unprocessed – processed

	1 Introduction
	2 Ring Correction
	2.1 Introduction
	2.2 Concept
	2.2.1 Initial Investigation into the Nature of the Problem
	2.2.2 Geometric Distortion
	2.2.3 Geometric Transformation
	2.2.4 Modelling
	2.2.5 Electric Fields

	2.3 Implementation
	2.3.1 Method 1 – Naïve Implementation
	2.3.2 Method 2 – Assume YUV independence
	2.3.3 Method 3 – Assume x,y Symmetry
	2.3.4 Method 4 – LUT 4 + Replacement for Trigono
	2.3.5 Generate Tables
	2.3.6 Table Access

	2.4 Results
	2.4.1 Effectiveness
	2.4.2 Speed
	2.4.3 Robustness

	2.5 Discussion/Conclusion

	3 Colour Classification
	3.1 Introduction
	3.2 Concept
	3.3 Implementation
	3.3.1 Colour Test
	3.3.2 Collecting Training Data
	3.3.3 Labelling Training Data
	3.3.4 Learning Algorithm
	3.3.5 Test 1
	3.3.6 Manual Classification
	3.3.7 Test 2

	3.4 Discussion/Conclusion

	4 Histogram Equalisation
	4.1 Introduction
	4.2 Concept
	4.3 Implementation
	4.3.1 Collect histogram
	4.3.2 Equalise histogram
	4.3.3 Apply transformations
	4.3.4 Assume temporal locality

	4.4 Results
	4.5 Discussion/Conclusion

	5 Edge Detection
	5.1 Introduction
	5.2 Concept
	5.3 Implementation
	5.3.1 Edge pixels
	5.3.2 Edge runs
	5.3.3 Edge blobs

	5.4 Results
	5.5 Discussion/Conclusion

	6 Discussion/Conclusion
	7 References
	8 Appendix A – Proof of Quadratic Equation of Chr
	9 Appendix B – Comparison Between Unprocessed Ima

