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Chapter 1  

Introduction 
 
1.1   Abstract 
 
This thesis report mainly presents the behaviour level of the software system 
developed for the rUNSWift team to compete in the Four-legged League of the 
RoboCup Competition 2004. The whole team strategies and some of the skills used or 
attempted will be described in details, along with the problems that have been 
encountered. All the changes from previous years will also be discussed and the 
reasons for the changes are provided as well. 
 
1.2   Background 
 
The Four-Legged League is one of the five leagues in the RoboCup soccer 
competition. In this league a team has to use the Sony ERS robots to compete with 
other teams. Each game consists of two 10 minutes halves, with an additional penalty 
shootout if a tie happens. The team that scores the most goals in a match will win. 
Each team has four robots; three are forwards and the other is a goalie. 
 
The robots that comprise this year’s team are the new ERS-7 Sony Entertainment 
robots. No physical modifications on these robots are allowed, so the competition is 
purely based on software implementation. 
 
1.3   Changes to the Competition and Rules 
 
Beside the robot model change, there are a number of other changes to make the 
competition more challenging. The soccer field used in this year is shown in figure 
1.1. All the rules are specified in the rule book of this year [3]. 
 
1.3.1 Border Height 
 
The height of the white border surrounding the soccer field was reduced from 60 cm 
to 30 cm, which poses more challenges for the robot visual object recognition system 
because the robot cannot recognize any false objects in the space above the border. 
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Fig 1.1 The competition field of this year competition. 

 

 
1.3.2 Beacons 
 
The two beacons located at the middle of the field were removed. The remaining four 
beacons at the corners of the field remained. It is intended to advance the localization 
technique. 
 
1.3.3 Obstruction 
 
In this year the definition of obstruction is redefined. Obstruction is called only when 
a robot is actively and intentionally blocking another robot from moving. So if a robot 
is being pushed, it is not called for an obstruction but the other robot is more likely 
called pushing. 
 
1.3.4 Pushing 
 
The pushing rule is called when any robot pushes another robot for more than 3 
seconds, it will be penalized for 30 seconds field removal and then replaced at the 
halfway line. If two robots are charging into each other, both are called for pushing. 
However there a few exceptions to the pushing rule: 

 The closest robot to the ball on each team, if it is within 2 dog-lengths of the ball. 
 A robot standing still. 
 If the goalie is within its goal box with least two legs. 

The pushing rule cannot apply to the above three cases. 
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1.3.5 Automatic Start-up Position 
 
During the ready state, all the robots are required to return to its start-up positions. If 
the robots cannot return to their start-up positions, manual placement is allowed but 
penalty is imposed by moving the robots further back. For implementation of this 
please consult [13]. 
 
1.4   System Architecture and Development 
 

 
 
Fig 1.2: Software system architecture for the rUNSWift robot 

 
 
The above figure demonstrates the overall architecture of the software system 
executed on the robots. This thesis report will concentrate on the top levels in the 
diagram, namely the behaviour. Before the Australian Open, the behaviour only exists 
in C++. Afterwards, due to the need to speedily and efficiently developing the 
behaviour and strategy, most of the behaviour code was ported to Python with a 
C++/Python interface. 
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1.5   Behaviour Architecture 
 
The behaviour architecture is primarily a huge decision tree that has numerous 
branches. It accepts information from all different modules and then determines the 
next set of actions that a robot should perform. The tree is hierarchical in nature, 
which can be distinguished into several different layers. 

 
Fig 1.3 Behavioural architecture can be visualized as a huge decision tree. 

 
 
The first layer handles some fundamental decisions such as accepting the game 
controller data, interfacing between C++ and Python, choosing different players, and 
forwarding messages to the actuator module. This layer exists in both Python and 
C++. 
 
The next layer begins the overall strategy of game playing, in which the robot will 
dynamically decide what role it should take depending on the information it perceives 
from the environment. The roles that a robot can take include the defender, striker, 
back-off player, supporter and attacker, in the descending order of priority. The goalie 
is a fixed role for the whole duration of the game. The local and global team 
interactions are carried out by all these roles. 
 
One layer further below the team tactics are concerned with skills and techniques that 
each role uses in fulfilling its responsibilities. Some complex skills can incorporate 
other smaller and simpler skills. Most of them are some computations that determine 



  9 

simple movement which in turn specifies the actuator parameters such as going 
forward and turning left, head panning and tilting, kicking, as well as the pose 
parameters, such as the back height. These movement and pose parameters are sent to 
the actuator control module at the end of the behaviour tree. This process of running 
through the decision tree is continually repeated at a rate of 30 times per second, also 
known as the vision frame rate. 
 
In this year it is seen that the development of the robot’s behaviour totally in C++ is 
not manageable and extensible, because the process of compilation, copying the 
executables onto the memory stick and re booting the robot consumes a significant 
amount of time, if not tedious, thus it is not suitable for rapid development. Although 
the use of simulation as in [4] could speed up the development, the simulated 
environment could be so much different from an actual game play and the computed 
result would be useless. 
 
The introduction of Python in defining the robot’s behaviour is very effective. One 
can modify the behaviour, upload the file to the robot through wireless network and 
reload the code to test and verify the behaviour. It has simple and highly readable 
syntax. Given that there are interpreter and a number of development environments 
widely available and the compatibility with C++, it is ready to use in our case. Yet 
long execution time is an identified problem. [11] details the Python introduction in 
this year’s system. In the future the whole behaviour should be ported to Python so 
that there would not exist the confusion whether a decision is made in Python or C++. 
 
1.6   Literature Survey  
 
Most of the researches done are based on the thesis reports from the previous two 
years [1, 2]. They are the good sources for team strategies analysis and skill 
description. For PID control theory used in the directional paw kick, the CMU and 
University of Michigan have a joint online tutorial even including a number of 
MATLAB examples [5]. Other sources team strategies and skills that have been used 
in the research can be found in University of Pennsylvania [6], University of 
Newcastle [7] and the German Team [4]. A lot of data and programming manuals of 
the ERS-7 are required as well, which can be found in OPEN-R [8]. 
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Section 1 
Skills and Elementary Decision 
 
In the following few chapters, the skills and the elementary decisions of the 
rUNSWift robots are explained and elaborated. At the end of each chapter there are 
also discussions of the current implementation and the possible future improvements.
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Chapter 2 

Desired Kick Direction (DKD) and Range 
 
The desired kick direction (DKD) is a global heading originated from the ball that 
specifies which direction the ball should travel to maximize the chance of scoring a 
goal at any position on the field. It is calculated every frame to reflect the latest 
update from the vision and gps module. The DKD is used in a lot of techniques, like 
the visual back off decision and the directional paw kick. 
 
There are a number of changes to this year’s DKD calculation. First of all the DKD 
does not only specify a direction, but also two ranges, a narrow one and a broad one. 
The motivation of the narrow DKD range is to indicate the correct range of directions 
for moving the ball forward, rather than having the robot try to line up to the exact 
DKD. It is especially useful when the ball is in front of the target goal, where the 
robot is already facing the goal with the ball in front. In this case the robot should not 
try to waste time and line up to the DKD, but kick as long as its heading lies inside the 
narrow DKD range. 
 
However, the idea of narrow DKD range does not mean the DKD itself is not 
applicable. The DKD is still very important in defining the DKD ranges, and in 
defining the back off regions and generating the vector filed for the directional paw 
kick, for example. 
  
The broad DKD range, however, is less often used. It is used basically to warn the 
robot that outside the broad DKD range it is heading in the wrong direction, that is the 
robot should never kick the ball outside the broad DKD range. 
 
There are several sections of the field in which the DKD and its ranges are found: 

 For the left side region, the DKD is 90o, the narrow range is (70o, 100o) and the 
broad range is (10o, 110o). 

 For the right side region, the DKD is 90o, the narrow range is (80o, 110o) and the 
broad range is (70o, 170o). 

 For the lower 40% of the field, the DKD radiates out from the centre of the own 
goal, such that the ball will travel out of the own goal, the narrow range is (20o, 
160o) and the broad range is (10o, 170o). 

 For the upper 40% of the field, if the robot can see the target goal with no more 
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than 3 obstructing robots, it will use the “visual opponent avoidance kick” 
(VOAK) calculation [2] to find the global left and right headings of the largest 
gap for the target goal, which becomes the narrow DKD range. The DKD is the 
average of these two headings. Otherwise if it does not use the VOAK 
calculation, the DKD is directed into the centre of the target goal, with the 
narrow range being the headings to the left and right goal posts. The broad range 
is (10o, 170o). 

 For the middle 20% of the field, the DKD is the linear interpolation of the above 
2 calculations (combining the upper and lower 40%), such that it produces a 
more gradual change in the middle region. The narrow range is (20o, 160o) and 
the broad range is (10o, 170o). 

 

distance estimates, please consult [12].

Fig 2.1 The vector field 

of the DKD. Notice the 

upper region shown is 

VOAK calculation. 

 

Future Improvement 
 
One aspect that the DKD has ignored is the opponent avoidance in a general play. 
VOAK calculation near the target goal merely maximizes the chance of scoring but to 
avoid ball captured by opponents and entanglement with other robots in the whole 
field the DKD calculation should take into account of other visual robots. This relies 
on good estimates of robot distance in mid range. For details of robot recognition and 
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Chapter 3 

Dynamic Motor Gain 
 
Before the Australian Open, the ERS-7 robot was still suffering from a frequent 
hardware safety crash, battery over current, that caused the major difficulty for the 
development. Even when the normal walk is optimized, the robot was not likely to 
sustain for more than 3 minutes in a practice match. 
 
In fact, out of the three kinds of movement (forward, side walk, turn), for a 
monotonous movement without obstacle stuck and collision for a 12 minute duration, 
experiments showed that side walk with turning was the only movement that 
produced the battery over current within the 12 minutes period. 

Crash Analysis

0

1

2

3

4

5

6

7

8

9

10

-30 -25 -20 -15 -10 10 15 20 25 30 35

Turn

L
ef
t

 
Fig 3.1: given a fixed turn, find the highest side walk value that will crash the robot. 

 
The relationship shown above is approximately linear, hence a simple way to avoid a 
crash is to cap the turn and side walk according to a linear equation. 
 
Another way to combat these adverse effects is a simple hysteresis motor gain control 
used to avoid these sudden crashes. When the battery current is above a certain upper 
limit and the current gain is high, the robot will switch to a set of low motor gains. 
Conversely, when the battery current is below a certain lower limit and the current 
gain is low, the robot will switch to a high set of motor gains. Also when the robot is 
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about to perform
such that the kic

 any kick, such as the “Upenn” kick, the gains are switched to high 
k is powerful and effective. The motors involved in this mechanism 

e only ones that draw the majority of the 
tors are always high because it needs to 

erform various motions in a short response time. 

e robot movement, which is not 
oticeable under usual game condition but can be clearly observable if the change is 

ains differ 

ces 
re, the idea of 

introducing a continual gain control, that is varying the gains every actuator frame in 
a continuous fashion according to the battery current and/or the PWM duties of the 
motor joints, is not attempted. The turn/side walk cap is also not used after the 
Australian Open as the new and stable version OPEN-R is released and optimized gait 
is available. 
 
Future Improvement 
 
One future improvement is rather varying the gains straightly based on battery current, 
the strategy should be taken for consideration as well, such as forcing the high gain 
for ball chasing when opponent robots are observable and close by, forcing a weak 
gain when involved in scrum and “corner game”. This let the robot to decide when to 
exert the maximum power for certain behaviour. 
 

are the twelve leg motors, as they are th
robot’s power. The gains of the head mo
p
 
Conclusion 
 
Changing the motor gains will introduce a glitch to th
n
intentionally controlled through the commander. This is because the set of g
by significant amount. In the actual game play dynamic motor gain is effective and 
most of the times the robot is actually using high gains and there are no instan
continuous glitches due to fluctuation between the gains. Therefo
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Chapter 4 

Stuck Detection and Resolution 
 
The motivation of implementing a stuck detection is to: 

the robot crashing and leg entangled (also known as “leg lock”) into 
other robots that could lead it being called for pushing and penalized by field 

 Prevent 

removal for 30 seconds. Crashing into own robots effectively destroys its own 
team tactics. 

 Avoid getting lost of direction and position. Once the robot is stuck, the robot 
odometry update does not reflect the stuck situation and the position and 
direction estimates will be incorrect. 

 Avoid hardware crash. 
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Fig 4.1 Stuck detection by PWM duty value. The red line is the gradient threshold 

which indicates a possible stuck. 

 
When a robot is involved in collision and stuck, there will be a number of changes 
occurring that could serve as indicators. First of all, the PWM duty of motors 
belonging to the stuck leg will be high due to mechanical resistance. But in a fierce 
game the PWM duty is building up constantly to a high level even without any stuck 
situation. Thus, a better scheme is to detect if there is a significant increase in the 
differential in the PWM duty. This is done by comparing the highest PWM duty of the 
present frame against the highest PWM duty 60 frames earlier, see figure 4.1. To 
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improve the alar
order words, if t

m accuracy, the same check is repeated for 5 consecutive frames. In 
he present frame number is x, then the comparisons are between the 

 x-64. It concludes a 
han a certain threshold. 

bot is moving forward in a 
ive 

fram ce 
in ba
concludes another possible stuck situation. This “sanity check” is only carried out if 

 
If both checks suggest a possible stuck, then the robot will start its actual detection 

 scanning of its surrounding space with a low tilt and low 
crane as well as uses the close range infrared sensor. If it can see any robot while the 
IR reading reflects a close obstacle, it will walk backward and concurrently side walk 
in the direction opposite to the current head pan, and effectively getting out from the 
scrum. 
 
Conclusion 
 
The performance of the stuck detection was initially perceiv actory when the 
first version was completed. However, due to the lack of fine-tuning during it was not 
accurate and too sensitive. It often incorrectly triggers the head scan which is costly in 
a competition and was therefore abandoned in the competition. 
 
Future Improvement 
 

 check could be error prone since the ball distance 
 distorted by motion blur in the image and the ball is not necessarily available in 

ator of 

e 

frames x and x-60, x-1 and x-61, and finally up to x-4 and
possible stuck situation if all the 5 differences are larger t
 
A second sign is the change of the ball distance. If the ro
constant speed, the ball distance is expected to decrease over a number of consecut

es. Thus over the last 10 frames in which the ball has been seen, if the differen
ll distance is less than zero, than the ball has not been closing in at all and it 

the above PWM duty differential check is passed. 

process. It will begin a quick

ed satisf

Although PWM duty is sensitive to stuck yet its inconsistency is a major problem. 
Using ball distance as an additional
is
every image. A more reliable way is to compare the sensor joint readings with the 
intended joint angle sent by the actuator control because this is the direct indic
an entangled joint. [9] details this implementation and indicated the result is indeed 
accurate. This is an important area because it not only helps the robot to resolve the 
stuck and prevent leg entanglement but also reflects the correct motion update to th
localisation system [14]. Another source of stuck detection algorithm is by the traction 
monitoring as explained in [15]. 
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Chapter 5 

Special Motions 
 
5.1  Ball Grabbing 
 
Grabbing the ball is an essential skill, as it is the basic building block for a number of 
kicking skills and aggressive dribbling. To grab the ball, the robot starts with slow
down and using the head to fetch the ball when the ball is close in front, and open the
mouth to lock the ball directly underneath its chin a

ing 
 

nd up against it chest. In the mean 
me it will bring the front paws forward to stop the ball from straying to the sides. 

 down. Slowing down 

 a way to prevent the robot’s chest from knocking the ball out, although it gives the 

catch up and interfere with the robot’s attack. 

 will stop and extend its neck and lift it up for 

ti
The mouth and chin sensors will indicate whether the ball is trapped or not. 
 
The details of the ball grabbing can be illustrated in the following diagrams. 

 

Fig 5.1: As the robot is approaching close to the ball, it slows

is

opponents chances to 

 

 

Fig 5.2: At the right position, the robot
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a short period o

next step. Withou

f time, that is, increase the tilt and crane, in order to prepare for the 

t this step, when the crane increases at a low tilt angle, the snout 

ver the front paws are brought forward. 

 

e stance. 

 

Fig 5.4: The robot opens its mouth to trap and the ball. During this time it checks 

Future Improvement 
 
The current ball grabbing routine needs an improvement in speed. One possible 
improvement that should be tried is when the robot is walking towards the ball from 2 
dog-lengths, it should already extend its neck while looking at the ball. So when it 
arrives at the right position, it just needs to open the mouth and lowers the tilt further. 
In other words, the robot is already in the pose demonstrated in Fig 5.3 before the ball 
is close in front. 
 

will knock the ball out. Moreo

 

Fig 5.3: In this step the robot only lowers its tilt, maintains its crane and th

 
 

whether it can see the ball, if so it means it has not got the ball underneath its chin 

yet, and aborts the operation. At the end, it also check the chin and mouth sensors 

whether the ball is sensed and if not the operation is aborted. 
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5.2  Upenn Kick 
 
The Upenn kick was developed by the University of Pennsylvania [6] in 2003. It is a 

de kick that propels the ball in the heading of 60o to 70o. The attractive point is that 
it does not require any set up time, takes a small recovery time and consists of one 
step only. The following diagram portrays the left upenn kick. 
 

 

Fig 5.5: Start of an Upenn kick is an ordinary standing pose. 

 

 

ig 5.6: (Left) shows the left side view. The front leg is extended forward and swings 

e body, the right rear leg gives a thrust by extending and 

ushing. (Right) shows the right side view. The 2 right legs are contracted to allow 

 ball 

o steps is a linear interpolation of the joint angles which allows the 
hanges to be smooth and the whole movement is recorded in the .pos file. 

si

F

toward the centre of th

p

the body to fall lower, such that momentum is built up and helps pushing the

further. The head is fixed to look in the direction of where the ball travels. The 2 rear 

leg are also spread out from the body to stably support itself. 

 
 
Between these tw
c
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Conclusion and Future Improvement 
lthough the upenn kick is powerful, it is quite hard to set up. The ball must be close 

y 

 
5.3  Dive Kick and One Handed Kick 
 
Dive kick is a forward kick that is fast and very consistent in shooting the ball straight 
ahead. The only set up requirement is that the robot has to define the right stopping 
point to trigger the kick which requires the robot to slow down. On the other hand the 
one handed kick needs ball grabbing and takes a significant set up and recovery time. 
Their actuator details and implementations can be found in [11].

A
to the chest and the hitting arm in order to produce a consistent result. Grabbing the 
ball before the kick increases the consistency. In the competition it was observed that 
a better kick could replace the upenn kick, which is the head swipe and were used b
several strong teams. [13] details his experiment with it. 
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Chapter 6 

Spin Dribble 
 
The spin dribble was an important skill widely used in last year’s strategy to 
ggressively drive the ball towards the goal with the maximum speed. Since the robot 
eeds to keep the head down to maintain the possession of the ball, the robot is not 

 vi us this heavily relies on having a 
recise heading before spinning to a right dribbling direction. So the robot has to 

2. Change the stance such that it is not the head that holds the ball but instead 
only the front legs that grasp it. If this step is skipped, that is the robot 
proceeds straight to active localisation after the grab, the ball will usually 
roll away from the robot because it is not a perfect sphere. 

3. Once the ball is held by the front legs, the robot active localizes. 
4. After the localisation, it moves the head back to the normal grab ball pose 
5. It starts spinning until it gps heading is between the two goal posts. 
6. It looks up and sees if the target goal is in the view. 
7. If the target is in the view, it will dribble the ball forward. If the target goal is 

not in the view, it will abort the dribble by performing a chest push, such 
that the ball leaves the robot. 

 
Conclusion 
 
The dribble performs reliably and consistently on this new robot. Nonetheless by the 
time the robot has finished step 6, it has already consumed approximately 80 vision 
frames or almost 3 seconds. During a game ball holding less than 3 seconds does not 
incur removal penalty but it offers enough time for opponents to arrive and resists the 
attack, by blocking the robot’s view and even pushing. The most problematic aspect is 
the grabbing state in which the robot spends too much time in tightly grasping the ball. 
In step 2 the need of changing to a ball grapping stance for active localisation also 
decreases the desirable swiftness. As a result it is not used in the current forward 
strategy. 

a
n
able to sually determine when to stop spinning. Th
p
perform active localisation after it has grabbed the ball, in order to obtain a precise 
heading estimate. 
 
The following are the detailed steps in the spin dribbling: 

1. Grab the ball as described in the last chapter. 
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Future Improve
 

ment 

the UTS team was capable to demonstrate how the robot 
lk, forward and turn) with the ball underneath its chin, while 

t the same time it could still see the goal. This would be a vital step in the current 
red 

ccurately regardless of the heading estimate, but also capable of 
voiding opponents and even catching glimpses of beacons. 

During the competition, 
could move fast (side wa
a
spin dribble because the robot could omit the active localisation and the incur
overhead before the spin (i.e. steps 2 to 4). It means that once the robot has grabbed 
the ball it only needs a rough heading estimate to determine which direction to turn 
and then it can visually line up the goal and force the ball forward. 
 
In addition being able to view the front can let the robot not only line up with the 
visual goal more a
a
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Chapter 7 

Variable Turn Kick 
 
The variable turn kick this year has incorporated the Upenn kick. While the turn k
propels the ball at 45

ick 

n 
e can adjust the 

ick angle by changing the amount of turn needed. 

or a sufficient number of 
frames to be certain that the ball will not roll out. It also finds out at what global 
heading it should cease turning and does the Upenn kick. 

2. The robot starts turning with the ball underneath its chin. 
3. When the robot gps heading matches the pre-computed one, it forces the gait to 

complete and does the Upenn kick. 
 
Conclusion and Future Improvement 
 
Rather than Upenn kick, the one handed kick was also tried in the turn kick. 
Nonetheless it was found to be slow since it took considerable time to both set up and 
recover from the kick. While the Upenn kicks are not very consistent in shooting in 
terms of angle accuracy, it shoots the ball every time if the ball is grabbed. On the 
other hand for the one handed kick, sometimes the ball could get stuck by its chin and 
the paws yet it is shoots the ball in a more consistent range. But the one handed kick 
was not used in competition due to speed (close to ball holding time limit) and 
reliability (if the ball is stuck when it shoots, it is very likely to be called for ball 
holding). 
 
Dive kick was attempted as well, but once the robot turned to a desired heading the 
robot has to release the ball and stand up before the dive kick is executed. This is 
risky and time consuming. 
 
As mentioned before a necessary improvement is to develop a ball grabbing that is 
fast to possess the ball and allows the robot to move quickly with the ball under its 
chin and still be able to visually see the front.  

o, 90o or 180o, the Upenn kick itself usually propels the ball at 
60o. Unlike last year where the robot will walk up to the ball, grab it and turn kick, o
this new robot it will grab the ball, turn and do the Upenn kick. So w
k
 
The steps in executing the turn kick by ball grabbing are as follows: 
1. The robot grabs the ball as fore mentioned and holds it f
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Chapter 8 

Get Behind Ball 
 
The get behind ball is one type of approach that aims to play defensively and safely. 
As the name suggests, its action is to circle around the ball in side walk fashion with
the robot’s body always facing the ball. Inside the attacker its main aim it to approach 
the ball without accidentally knocking it towards the robot’s own goal, for example, 
the robot is running downfield to possess the ball. It

 

 is also used in the back off 
trategy for two robots to beak the symmetry. 

 The attack position is 

in the attack angle. 

circling position, which is 70o offset 

from the angle a, the absolute angle 

from the ball to the robot. Since the 

robot needs to face the ball constantly, 

 

s (see Fig 8.1) of how the get behind ball works as follows: 
. Given the attack angle, direction of turn and the safety distance (or radius), it finds 

ll 

hich is dynamic, is 70o offset from the angle originated 
from the ball to the robot. As the robot is moving, the circling position is also 

 initially getting behind the ball, the 

s
 
 
Fig 8.1: 

Get behind ball.

behind the ball 

The figure shows the target is the 

the turn is proportional to the

difference between robot heading and 

heading to ball. 

 
 
 
 
 

The detail
1

the attack position which is the point lined up with the attack angle behind the ba
by the length of the safety distance. This is static relative to the ball. 

2. The circling position, w

moving towards and eventually past the attack position. 
3. If the distance to the circling position is shorter than the distance to the attack 

position, which is the case when the robot is
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robot will m
4. On the other

ove to the circling position. 
 hand if the distance to the attack position is shorter than the distance 

ich is the case in the final phase of the get behind ball, 
attack position. 

. Once the point that the robot moves to is found (either the attack or circling 

stant 

.

 

The r o 

targe  

vecto

walkin

spiral

 
 

However as the robot is rotated and is below th
component is still positive, which means the forward is positive, the robot walks up to 
the ball and results in a spiral path instead of a circular locus (see Fig 8.2). The robot 
is drawing closer and closer to the ball where it should keep a constant safety distance 
from the ball. Depending when the get behind ball is used, if the attacker uses it to get 
around the ball, it is beneficial because it provides maximum protection. But it causes 
a problem for a back off player because it effectively does not back off.  

wit
pos 1, so that the 

neg  
onl ain the same 

n 
spir

to the circling position, wh
the robot will move to the 

5
position), which is called the target, we can assign its horizontal component as the 
left vector, its vertical component as the forward vector and the turn is 
proportional to the absolute heading to ball relative to the robot. So: 

Forward = distance to target * cos (heading to target) 
Left  = distance to target * sin (heading to target) 
Turn  = heading to the ball * con

 
 
Fig 8 2: 

obot is rotated, and since the angle t

t is between 0o and 90o the forward

r is positive, so the robot keeps 

g closer to the ball and the result is a 

 path, as shown by the blue path. 

e target position the vertical 

 
In previous years for the back off forward the forward and left vectors are hard-coded 

h constant values to avoid this approach. One way to stop the forward being 
itive is to multiply the heading to target by some constant larger than 

heading to the target is larger than 90o. Thus the forward vector is either small or 
ative. This does indeed allow a circular locus for get behind ball. This “tweak”
y applies to the forward parameter, the other two parameters rem

calculation and by adjusting this multiplication constant the robot can vary betwee
al and circular path. 
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Chapter 9 

ectional Paw Kick Dir

The
con e 
mo
the ball w n hitting the ball up 
field but l o ot f the field to follow 
the attack avi o allow the paw kick to be 

irectional, the robot has to line up in the desired direction before it executes every 

originated from the effective strategy 

wrong side of the field relative to all team
please consult [2]. In fact, the directional  
that it can be used as a general approach 
how the robot approaches to the ball. 
 
The skill essentially consists of two components, a vector generator and a PID 

d position 

ector generator 

e 

 

 it 

 
 directional paw kick, also known as run behind ball, is developed for a 
tinuous dribbling of the ball using a series of short range paw kicks. Th
tivation of using a series of paw kicks is that ideally the robot has more control of 

hile it can still drive the ball up field quickly, rather tha
eave n her teammates being present around the top o
 and le ng opponents to regain the ball. T

d
paw kick. 
 
The idea of the directional paw kick is 
developed in last year, the bird, which is a defensive move to intercept any ball on the 

mates’ positions. For the details of bird 
 paw kick is designed generically enough
tactic since it only specifies a locus about 

controller. The vector generator takes the position of the ball, the heading an
of the robot, the angle that the robot wants to line up with (this is the DKD) and other 
auxiliary set up parameters (tangential offset, radial offset, radius) and returns the 
vector the robot should follow. The vector field is generated according to two circles 
situated next to the leaving point (see Fig 9.1). The PID controller will accept the 
computed vector and the PID gains and returns the corrected turning for robot. 
 
V
 
The steps in finding a vector, which is simply a global heading, is explained in th
following: 

A. Given the current ball position, desired attack angle, offsets and radius, the
coordinates of the leaving point is found. 

B. Depending on which side the robot lies on relative to the tangential offset,
determines the direction (clockwise and anticlockwise) that the robot should 
travel.  
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Fig 9.1: 

The robot is outside the circle. 

Positive radial offset means the 

leaving point is outside of the 

tial 

 

 

 
 

 In 

this case correction must be added 

so the robot path converges to the 

Blue arrows show necessary 

modifications to prevent 

undesirable behaviour. Otherwise 

 

going around the circle. In regions 

 

will cross the boundary and turn 

 

circle, and negative means inside 

the circle. Positive tangen

offset means the leaving point is 

behind the ball in the direction of

the attack angle, negative means

in front. 

 

 
 

 
Fig 9.2:  

The robot lies inside of the circle.

circle. 

 
 
 

 
 
Fig 9.3: 

in regions A the robot will keep

B, the robot will zigzag because it

left and right intermittently. 
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From the direction it deduces the centre 
C. The vector is then determined by the di

the robot and directed to the circle. 
D. However if the robot is inside the circular 

of the circle and the entering point. 
rection of the tangent originated from 

lo a 
corrective heading proportional to the radia e 
to the centre. Hence the correction is:  

correction heading = 45o * (radius – c2m
and it is added to the tangent and the result 

E. But on certain regions the vector should hea
that the robot will not keep running in a circ
trace a zigzag path (region B) due to oscillation (see Fig 9.3). 

cus (see Fig 9.2), then it will add 
l distance from the circumferenc

y) / radius,  
is the required vector. 
d the same as the attack angle such 
le (region A) or the robot will 

Fig 9.4: The resultant vector field 



  29 

PID co
 
The PID n the robot to travel on a more stable path. 
The
 ad

Kp
Kd * st frame) +  
Ki

 
where t tor 
generat
 

 

carr

P
ma

it giv

 

 

 
 
 
 
 
 

ntroller 

 controller is responsible to maintai
 equation for the PID controller is: 

justed turn of this frame =  
 * unadjusted turn of this frame +  

 (unadjusted turn of this frame – adjusted turn of the la
 * running sum of adjusted turn  

he unadjusted turn simply equals the heading of the vector found by the vec
or minus the current robot’s heading. 

Conclusion 

Initially the directional paw kick was much simpler but continuous improvement was 
ied out to refine the skill. Two aspects that need tuning effort are the PID gains 

and the radius, tangential, radial offsets combination. For the elliptical walk, only the 
 part is necessary because the effective turn is not very strong compared to the 

ximum forward speed. In contrast, the normal walk requires all P, I and D parts to 
control the robot. Although it is harder to tune the values when using the normal walk, 

es a better approach path (in terms of accuracy) than the path using the elliptical 
walk. But the elliptical walk is preferred because of its higher speed. 

The offsets and radius are also carefully experimented to reduce the number of 
instances that the robot walks straight pass the ball, though this phenomenon could 
not be totally eliminated. This was once tackled by reversing the robot when it started 
to walk pass the ball, but it was inefficient in terms of speed. 

Another interesting point is that the directional paw kick, as mentioned before, is 
quite generic. It is used as one type of approach technique, like get behind and hover 
to ball, and is be combined with other close ball contact skills such as paw kick and 
dive kicks. 
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Future Improvement 

offset of 2a from 

e attack angle, where a is the angle subtended by point A and where the robot is. 

 on this new circle, and 
en the new vector is always tangential to this new circle, see Fig 9.5. When the 

er 

ion of the vector correction demonstrated in Fig 9.2 and 9.3.

 

Fig 9.5: 

(Left) Improvement model for the vector generation, by dynamically varying radius 

if it is above the minimum radius. This could line up the robot earlier. 

(Right) The implementation is equally simple. The new vector is an 

th

 

One experiment that should be tried in future is to change the vector field. A 
suggestion that is easy to implement is dynamic radius where a new circle is formed 
every frame such that the robot is always on the circumference
th
robot is moving towards the ball, the circle will diminish in size in a gradual mann
and this could line up the robot earlier than the current implementation. Once the 
circle is smaller than the predefined radius, it then switches back to the current 
implementat
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Chapter 10 

Locate Ball 
 
The locate ball is a strategy that dictates what the robot must do once the robot loses 
sight of it. The locate ball routine consists of four phases; it proceeds to the next stage 
if the ball is still not found at the end of the present stage. 
 
First Stage: 
 
The robot stands still on the spot and the head makes two revolutions starting from 
straight below and in the direction that it last saw the ball. A head revolution means 
the head is circling in a rectangular loop. Since it is quite common the robot loses the 
ball when the ball is very close to the chin, looking straight down when first starting 
the routine will maximize the chance of finding it. But during the competition it was 
found that the robot had to take a whole revolution to find a ball situated under the 
chin. It was because it did not look down for the first two frames when the locate ball 
began, instead it looked up. But after the rectification this incorrect behaviour has not 

 this stage the robot is spinning slowly on the spot while the head is making two 
 on 

his 

1. In most instances of ball loss the ball is actually quite close to the left or right 
side of the robot, and the time it takes for the robot to reverse one-dog length 
is less than making a whole body spin. So the duration for the robot to catch 
sight of the ball is shorter for the reverse search than the turn search. 

2. Whether the ball is on the right or left it makes no difference for the reverse 
search. But turning the wrong way for spin search can take a lot more time. 

occurred again. 
 
Second Stage: 
 
In
revolutions in the same direction as the spin. The spin direction is determined
which side of the field the robot is on such that any contact with a nearby ball will 
more likely hit the ball towards the target goal. So if the robot is on the left it will turn 
clockwise and is if the ball is on the right side it will turn anticlockwise. 
 
During the competition the second phase was changed. Rather than turning on the 
spot the robot simply reverses while the robot head does the same circling, and t
turned out to be more effective. The reasons are as follows: 
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3. Unless th
ball in the

e ball is at the back, which is not the usual case, it will not hit the 
 wrong way, that is towards its own half. 

n the ball is suddenly in its 
iew, and it does not spin past the ball but has enough time for the body to line up and 

ns to the normal tracking position. 

e 

ut 

le performing a standard head cycling search. 

 
Third Stage: 
 
In this phase the robot makes a fast spin on the spot for one revolution and it keeps 
looking in the direction that it is turning. Because the head is turned on its side, so the 
robot head is pointing at the ball before the body does whe
v
the head retur
 
Fourth Stage: 
 
Finally, the robot will start the final phase and stays in that state until it can find the 
ball. In this phase the robot spins slowly towards a predefined point close to the centr
of the field and circles its head. The reason it does not stay on the same spot is that it 
cannot see a ball too far away, so spinning to the half field area would be sensible. B
in a game this is not likely to happen because its teammates will indicate the ball’s 
position through wireless communication so that the robot will walk to that wireless 
ball position whi
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Chapter 1

n 

 

ot’s neck base. Finally, the projected 
oint then forms the input to the head motion control. 

ut since there are two transformations (one form the image to a 3d coordinate, and 

 
 
Fig 11.1: Adjustment for fast approaching ball (using velocity prediction) and close 

fireball. The black dot shows the original projected point. The red arrows are the 

corrections. The red dot shows the new projected point. 

 
 
To solve this problem a simple adjustment is added to the projected point coordinate. 

1 

Track Ball 
 
To track the visual ball, the robot will project the centre of the top edge of the ball o
the image plane onto a plane parallel to the ground but raised up to the height equal to 
the radius of the ball, the so called “ball plane”. Once the projected point is found, it is
in terms of a three dimension coordinate relative to the robot’s origin. The robot’s 
origin is a point on the ground underneath the rob
p
 
B
from the 3d coordinate to the actual head angles) in the case of a close fireball, 
(especially when the robot is ready for a grab) the errors become large leading the 
occluded image of the ball occupies a minor lower portion of the image plane. This 
causes the recognized ball easily fall out of the robot’s image plane due to significant 
oscillation at the camera. 
 

y

Ball Plane 

x

z

origin
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If the ball distance
would be closer to

 is less than a certain distance (25 cm), the projected coordinate 
 the robot and closer to the ground. The projected x is also set to 

 close in front such that the head is forced to look straight, 
ill swing in oscillation. 

zero when the ball is
otherwise the head w
 
Another problem that arises with the ball tracking is that when the ball is approaching 
fast relative to the robot (for example the robot is walking with maximum speed 
towards the ball), it could lose the ball quite easily. As a result, the tracking makes a 
small adjustment which is linearly interpolated by the ball velocity relative to the 
robot. This effectively points the robot head to track the next ball position. 
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Section 2 
Strategy 
 
In the rUNSWift team, a major consideration in the behaviour level of the robot is the 
team interactions. There are two main levels of team interaction. The first is a loc
level which defines the strategy and positioning between the two forwards that are 
attacking after the ball. The other is a global level which considers the two attackin
forwards as one single tier and the third robot as a striker across the field (se

al 

g 
e figure 

below). Therefore our strategy is to always allow two forwards closely charging the 
ball and the striker is staying further away ready to attack. The strategy does not have 
any ball passing; each robot determines whether it should charge in or not based on its 
own position, its teammates location, the ball position and the teammate wireless 
broadcast information. 
 

 
Fig: Two levels of strategies exist. 
The red is the attacker. The blue 
is the supporter. The white is the 
striker. 
The global tactic considers the 
interaction of the striker and the 
two attacking forwards acts as a 
single entity. The local one 
considers the interactions of the 
attacker and the close supporter. 
Their roles often switch in a 
game. 
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Although the strategy is
located in the lower half

 aggressive, there exists no explicit defender permanently 
 of the field to protect its own goal. To compensate this 

 was devised in last year strategy to take the role of a rapid 
o intercept the ball. 

of a 

forward player.

disadvantage the bird
defender which runs t
 
The following subsections will describe the strategy of the three forwards. For the 
goal keeper and bird strategies, please consult [2, 13]. 
 
The forward strategy 
 
The forward strategy defines what role is assigned for a general forward player. The 
figure below is the general description of the decision flow. 
 

Fig: The decision flow 
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Chapter 12 

Main Attacker Strategy 
 
The following sections are details on the implementation of the main attacker strate
All sections, beside 12.1, are shown in the logical order

gy. 
 of the decision tree in which 

e attacker follows precisely. 

During the Python re-development, the implementation of the so called lockmode was 
e 

tries to perform the same set of actions over a period of tim s when the 
action is finished, for instance ball grabbing. This type of action is called an atomic 
action. Symbolically the robot tries to go to the same node of the decision tree over a 
number of consecutive frames. The idea of a lockmode can be visualized through the 
following diagram. 
 

 
Fig 12.1: 

Lockmode visualization. 

It bypasses other parts of 

the tree and repeats the 

same node until the 

action is ended. 

 
 
 
 
 
 
 

 
As illustrated from the diagram, the first stage in the decision that the attacker makes 
is whether it has been involved in a lockmode. If so the next decision will go to the 
specified node and it will perform the last atomic action. If the robot is not “locked” 

th
 
 
12.1 Hysteresis and Lockmode 
 

abandoned. Lockmode was an idea to model a state in th behaviour where the robot 
e until it decide
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into any action, th
suffice the purpos

en it will continue to traverse the decision tree. Although this can 
e of modeling a state it is not flexible in a sense that the lockmode is 

s are allowed besides the atomic action. always the first priority and no other action
 

 

 
Fig 12.2: Hysteresis checks are located along the tree to replace the lockmode 

implementation. 

 
Thus rather than forcing a lockmode check in the very top of the tree, the current 

rategy is to arrange the hysteresis checks at the appropriate places along the decision 
 is that careful management 
n to use state 

machine, in which the programmer defines actions for each 
state transitions. For details of behavioural implementation 
please consult [4, 10, and 11]. 
 
 
12.2 Decision on Ball Tracking, Active Localisation, Scanning 

Localisation and Ball Search 
 
Before the attacker decides how to approach and attack the b ll, the most important 
decision is that it must draw up a plan of when it should track the ball, perform active 
and stationary localisation and search the ball. A wrong judgment could render the 
attack futile. This decision is explained in the following. 

 
 

st
tree such that it is more flexible and dynamic. The tradeoff
of these hysteresis checks is necessary. Another way to ma age state is 

state and conditions for 
using state machine, 

a

 
1. The robot will first check whether it should do a scanning localisation, in which

the head keeps panning from left to right and vice versa for a number of frames
such that it can see bacons and field lines. The robot keeps walking towards the 
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ball using any available ball source (wireless or gps), which is better than 
standing still. Though this kind of localisation is slow, this is given the highest 
priority because possessing a ball without any idea of position or direction can be 
very dangerous. Hence the conditions are very carefully defined as follows. 

 The robot is very lost about its own direction or position. 
 It has not seen an opponent nearby recently, told by gps opponent tracking. 
 It can clearly see the ball. 
 It is not doing active localisation at the moment nor locating the ball. 

 
After the scanning localisation, the robot cannot perform active localisation for 
the next 3 seconds. 
 

2. The robot then checks whether it should locate the wireless ball, in which it will 
cycle its head and walks towards the wireless ball position. It is triggered when: 

 The visual ball has been lost for at least 14 frames. 
 

obot is not able to see it during the locate ball routine. 
 It is not active localizing. 

 active localisation, in which 
the head will look in the direction of the closest beacon reachable by its head 
while it will let the behaviour to decide what the body should do. The conditions 
re: 
 . 
 It has not seen any opponent very close by recently. 

tion is that when using the 
normal walk modified for faster side step, the odometry does not often reflect the 

 
5.  

 The distance to the wireless ball is more than 80 cm, because for far away
ball the r

 
3. The robot then checks whether it should perform locate ball as described in 

chapter 10 when it has lost the ball for more than 14 frames. The condition are: 
 The visual ball bas been lost for 14 frames. 
 It is not active localizing. 

 
4. The robot then checks whether it should perform

a
It can see the visual ball and it is more than 30 cm away

 It is not sure of its position and heading. 
OR 

 It is doing get behind ball for more than 3 seconds. 
The reason why get behind ball needs active localisa

correct motion update and its believed heading can be quite inaccurate. 

Finally, if all the above is not satisfied, then the robot will simply track the ball if
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the visual ball is available. If it is not available for the first 4 frames of ball
the robot will still keep its head in the last ball seen position since the ball is 
likely to re-appear. For the next 9 frames if the gps ball is in front of the robot it 
will track the gps ball since it contains velocity information, otherwise it will

 loss, 

 
 loss will fall into 

 
A summa that 

r scanning localize, locating wireless ball and locating visual ball, they are the end 
of th
head sions only control the head so the decision tree traversal is 
still continued. 

 

fore it 

attacks the ball. This is 

the head control 

 is 

visualization of the code 

because it does not 

show all detailed 

 

 
 

keep the head in the last ball seen position. More frames of ball
cases 2 or 3 above, that is searching for the ball. 

ry of these decisions is visualized from the following flow chart. Note 
fo

e behavioral decision because they have already controlled both the body and 
. The remaining deci

 
 
Fig 12.3: 

Fundamental decisions

of a robot be

algorithm. Note this

only the general 

conditions. 
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12.3
 
The 

 

 

 

 Hover to ball 

s using the straight paw kick on all the edges of the field. Although it 
annot provide any control of direction of where the ball will head, on the edges the 

aximum speed. It is 
d Upenn kicks. 

Moreover using paw kick will allow the robot to kick the ball
to the edge being caught by the edge, which is the case if the ll 
along the edge. There are different cases of edge paw kicks e
paragraphs. 
 

 
 
Fig 12.4: 

Paw kick along t

with the triggering conditions. Top and 

bottom edges ha  similar conditions as 

well. 

The dashed lines show the border region 

where paw kicks are used. The red 

arrows show the direction of the paw 

kick. 

 
 
 
 
 
 
 

 The Approach Strategy 

four main approaches that the attacker uses are: 
Edge paw kick 
Get behind ball 
Directional paw kick 

 
 
12.3.1 Edge Paw Kick 
 
Edge paw kick i
c
ball is usually best and securely driven along the field edge at m
fast and does not involve any set up or recovery time, such as in dive an

 without the paw closer 
robot hovers to the ba
xplained in the following 

he side edges, together 

ve
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A. Side Edges. 
Paw kick on side edges can drive the ball up field effectively. It is triggered when: 

ge. 
lobal heading is between 60o and 120o, that is, makes sure the 
ng up field. 

within 30o of the robot’s own heading, or in other words, 
 directly in front of the robot reachable by its paw. 

. Top Edges. 
an drive the ball past the goalie. It is triggered when: 

 The ball and the robot are on the top left or top right edge. 

 
s 

he aim is to use paw on bottom edge is to fast defend, that is, to clear the ball safely. 

 left or right edge. 
e n heading. 

 If the robot and ball is on the botto
heading is between -30o and 30o, t
away from its own goal. 

 Similarly for the left edge, the rob bal heading is between 150o and 
210o, that is, is facing left away fro

 
12.3.2 Get Behind Ball 
 
Get behind ball is used for the robot to defen ively retrieve a ball when it is not within 
the correct heading, such that it would not accidentally knock the ball towards the 
undesired direction. And when opponents in scrums are attacking the ball, it is better 
for the robot to get behind the ball to physically block the attack. One major 
disadvantage is that the get behind ball routine is slow. It is used in several occasions 
as demonstrated in the following. 
 

 The ball and the robot are on right or left ed
 The robot g

robot is faci
 The ball must be 

the ball is
 
B
Paw kick on top edges c

 The ball must be within 30o of the robot’s own heading. 
 If the robot and ball is on the top right edge, then the robot’s global heading

is between 150o and 210o, that is, makes sure the robot is facing left toward
the target goal. 

 Similarly for the left edge, the robot’s global heading is between -30o and 
30o, that is, is facing right towards the target goal. 

 
C. Bottom Edges. 
T
It is triggered when: 

 The ball and the robot are on the bottom
 The ball must be within 30o of th  robot’s ow

m right edge, then the robot’s global 
hat is, makes sure the robot is facing right 

ot’s glo
m its own goal. 

s
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A. Side Edges. 
Along the side edges, the robot will attempt to line up to the global heading of 90o, 
whic s e

  is between 195o and 345o, that is, makes sure the 

 
. Top Edges 

e  heading away front the target goal, it needs to get behind the ball to 
ther 

than ly ent goalie could 
easil le

f 100o. 

en it will try to line up at 
a heading of 80o. 

 is between 
 Then it will try to 

 

e robot is facing right). Then it will try to line up 

 
. Defensive half of the field 

atisfied, the final case is when the get behind ball is used for 
e defensive half of the field, it will try to line up for the Upenn kick. The get behind 

nd 

direction, and if it is on the right side the robot get 
ehind in anti-clockwise direction. This is desirable because the robot acts as an 

h i xactly facing up field. It is called when: 
 When the ball is on right or left side edge. 

The robot global heading
robot is facing down field.  

B
Wh n the robot is
start the attack. It finishes the routine when the robot is facing the top edges ra

ful  towards the target goal, because in the latter case the oppon
y c ar the ball away. It is called when: 

 If the ball is on the top right edge, the robot global heading is between -30o 
and 80o, that is, makes sure the robot is facing right. Then it will try to line 
up at a heading o

 Similarly if the ball is on the top left edge, the robot global heading is 
between 100o and 210o (the robot is facing left). Th

 
C. Top Corners 
It is called when: 

 If the ball is on the top right corner, the robot global heading
-30o and 70o, that is, makes sure the robot is facing right.
line up at a heading of 100o. 
Similarly if the ball is on the top left corner, the robot global heading is 
between 110o and 210o (th
at a heading of 80o. 

D
If none of the above are s
th
ball is called when the ball is in its own half and the robot global heading is between 
200o and 340o, that is, makes sure the robot is facing down. 
 
For all the get behind ball cases, the direction in which the robot will get behi
depends on which side of the field the ball lies on. If it is on the left side of the field, 
the robot gets behind in clockwise 
b
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obstacle in between the ball and its own goal and it is also the only way to get behind 

Get behind ball is used on the border 

regions and the defensive half of the field. 

Note that for the defensive half, an 

 

 
 
 
 

 
12.3.3 Di
 
As d us s, 
fast yet sa
and in fro st of the time. To powerfully hit the ball and leave no 

ther teammates to follow the attack is not beneficial for the attack. 

 The ball is within 70o of the robot heading. 

l 

ball along the field borders. 
 

 
Fig 12.5: 

Upenn kick is executed to propel the ball 

up the field to quickly save the ball. 

Upenn is not executed along the border. 

 
 
 

 
 

rectional Paw Kick 

isc sed in chapter 6, the aim of the directional paw kick is to allow continuou
fe dribbling of the ball towards the target goal such that the ball is close to 
nt of the attacker mo

o
 
The directional paw kick is a type of approach triggered by the following conditions: 

 The robot is in the heading of 0o and 180o, that is the robot is not heading down 
field. 

 Both the ball and the robot are not along any edges. 

 The robot heading is within 60o of the DKD heading. 
 
When the conditions that indicates the robot has indeed lined up it then uses the 
straight paw kick to actually fulfill the task. The conditions for triggering the fina
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straight paw kick are: 
 the robot’s heading is within 20o of the DKD heading, or 
 the robot is in the upper 60% of the field, and it is within the narrow DKD range. 

 

an 

g 

to the target goal, it will execute a 

straight paw kick. 

 
 
 
 
 
 
 
 
 
 

aximum speed 
irectly to the ball. It uses stealth dog to avoid any opponents on its path. When 

 

Fig 12.6: 

Directional paw kick. The conditions for 

triggering it makes sure the robot c

line up for DKD. Note also that once the 

robot is almost lined up or its headin

inside the narrow DKD range when close 

 
12.3.4 Hover To Ball 
 
When none of the above approach strategy is chosen, the main attacker hovers 
towards the ball by default, which is simply approaching the ball in m
d
hovering to the ball, the robot intends to slow down and shoots the ball. This will be 
described in the next section. [2, 13] describe the stealth dog in details. 
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12.4 The Shoot Strategy 

kick once it possesses the ball but based on the information about its environment, the 

its shoot strategy in its approach, thus the sep  between the shoot and 
approach strategies becomes less distinct. Th
which kick it is using, the robot may not nee
are a number of selections for what kicks are
 

 Edge Turn Kick 
 Variable Turn Kick 
 Upenn kick 
 Dive kicks 

 
12.4.1 Edge Turn Kick 
 
Edge turn kick is simply a modified normal walk with its front paws brought forward 
to hit the ball sideways. It is not a particular powerful and accurate kick as last year 
turn kick, however, when the robot is facing the edges with the ball in between, an 
Upenn kick is not going to help since the robot arm can hit the edges. Hitting edges 
with the arm cannot propel the ball at all and even worse damage the robot. So the  
 

 
 
 

 in heading 

that is not suitable for paw kick nor get 

behind, then it executes edge turn kick. 

 
 
 
 
 

 
One difference in the shoot strategy in this year is that the robot does not choose a 

rategies. In other words the robot plans robot decides both the approach and shoot st
arating line
e major reason is that depending on 
d to grab the ball to execute a kick. There 
 used: 

 
 
Fig 12.7 Edge turn kick 

When the ball is along the side and top 

edges and the robot aligned
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edge s  kick is used to nudge thepin  ball sideway. After the execution of spin kick, the 
bot can then follow the attack with the edge paw kicks. 

g is between -15o and 60o. 
 Or if the ball is on the left edge, the robot’s heading is between 120o and 

 
is  

 If the ball is on the top right edge, the robot heading is between 70o and 

 Or if the ball is on the top left edge, the robot heading is between 30o and 

d 

The problem of this edge turn kick is its front paws could be caught on the edges and 
rn especially when it is being pushed. One possible 

 f r the edge turn kick is a head swipe, 
which is very strong and consistent as shown by a number of teams in the competition. 
The final game video is a good visual source of this head swipe and also [13] 
experiments with the head swipe. 
 
12.4.2 Variable Turn Kick 
 
Variable turn kicks, as mentioned in chapte
ball, turn, and followed by an Upenn kick.  
fumble the ball down the field, it is used conservatively, as defined by the following 
conditions: 

 the ball is in the target half and not along any edges,  
 the robot is facing down field, that is not in the heading from 20o to 160o. 

The robot will then slow down, grab the ba  and starts the turn kick routine. 

ro
 
When the edge turn kick is going to be used, the robot decelerates upon approaching 
the ball. The conditions for the edge spin kicks are as follows: 
 
A. Side Edges. 
Along the side edges, the triggers are: 

 If the ball is on the right edge, the robot’s headin

195o. 
 
B. Top Edges 
It called when:

150o. 

100o. 
 
Along the bottom edges, the edge spin kick is not as defensive as get behind ball an
paw kick. So it is not used on the two bottom edges. 
 

the robot could not even tu
improvement, or replacement to be exact, o

r 7, is implemented by first grabbing the 
Since it involves ball grabbing which could

ll
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difference is that the 

first one is used in the target half for fast 

attack and latter in the own half for 

conservative play. 

 
 
 
 

 

 
2.4.3 Upenn Kick 

Upenn kick is used is that if the 
all is in the own half and with similar conditions as the variable turn kick (the robot 

 scrum 

hen 
ers to ball and executes an Upenn or dive kick (see 

ter). The default Upenn kick is called when: 
n front of the robot, 

 the ball is not along the edges, 

Fig 12.8 Variable turn kick and get behind

ball turn kick. The 

 
 

 

 

1
 
As already mentioned in section 12.3.2, another way 
b
is heading down the field) then the robot gets behind the ball and does an Upenn kick 
rather than the variable turn kick which could fumble towards the own goal in a
situation, see Fig 12.8 above. 
 
However there are times when none of the above decisions are chosen at all. W
this is true by default the robot hov
la

 the ball is close to and i

 if the robot’s heading is between -45o and 45o for a right Upenn kick and if the 
robot’s heading is between 135o and 225o for a left Upenn kick. 
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s 

hen none of the above decision criteria are satisfied the robot will does these 

rd fast and in precise direction, and it 
d as a default action and when: 

he robot, 

 

 the robot is not in the top corners. 

Then the robot then slows down, stops in front of the ball and dive kicks the ball 
forwards. 
 

Fig 12.9 Default kick

W

default kicks when it is close in front of the ball. 

For -45o to 45o, it is Upenn right. 

For 45o to 135o, it is dive kick. 

For 135o to 225o, it is Upenn left. 

 
 
12.4.4 Dive kick 
 
The aim of dive kick is to propel the ball forwa
does achieve this effectively. The dive kick is use

 the ball is close and in front of t
 the ball is not along any edges, 

the robot’s heading is between 45o and 135o, 
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Chapter 13 

Local Robot Interactions 
 
Local robot interactions refer to the activities of the close attacker for backing off 
from and assisting the current main attacker. These decisions are primarily based on 
the information provided by the vision and gps systems as they are the most up to date 
information about the current environment. The attacking robot makes decisions from 
the wireless team strategy information as well, though to a less extensive degree since 
the information source can be intermittent due to inconsistent wireless connectivity 
and the delay is significant. There are five specific results from the local level tactic, 
which are: 
 
1. to immediate back off because a visual teammate is extremely close in front. 
2. to back off from the main attacker and move to the supportive position, 
3. to break the symmetry using get behind ball, 
. to side back off by slowing down, 

 normal. 

al robot interactions will be 

Fig 13.1 

Immediate backoff is used in the case of 

extreme close teammate in front of the 

 

 
 

 

4
5. to attack the ball as
 
The details and discussions of these five types of loc
expanded in the following sections. 
 
13.1 Immediate Back Off 
 

robot, it immediately takes several steps 

back to prevent any contacts. 
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When the robot de
the robot reverses 

tects that there is a visual teammate in front in a very short distance, 
instantly to avoid any unnecessary contacts with the teammate. This 

is that these contacts could quickly 
 effectiveness of the local strategy and 

e attack. So this is an emergency response that should not always be triggered. 

3.2 DKD Related Tactics 

ssed in 
 is a ray originated from the ball, 

 c stem with the DKD as the reference angle and 
ion behind it is to examine the robots’ positions 

lative to the DKD and ball such that the players can determine among themselves 
ing 

ighest magnitude of the angular offset (assume 
e coordinate system is from 180o to -180o) from the DKD, because intuitively it is 

y to attack. 

3.2 

 

 

 who is the 

backoff player or attacker based on 

where the robots are. 

 

In this figure, A in the bottom region 

is the attacker and B in the mid 

region is backoff player, because A 

has the largest angular  

offset and best lined up. 

check is given the highest priority; the reason 
build up into a scrum and affects adversely the
th
 
During a game it turned out that it could indeed prevent a scrum buildup and there 
was no observations of two teammates simultaneously backing off from one another, 
because most of the times the close supporter was behind the main attacker who was 
constantly tracking the ball. Unless both robots are facing each other very close, in 
which case it is logically and tactically the best solution for both robots to back off 
from each other by reversing and clearing up the scrum. 
 
1
 
The close interaction strategy heavily relies on the DKD which has been discu
chapter 2 in the start of this report. Since the DKD
one ould consider a polar coordinate sy
the ball as the origin. The motivat
re
who would be the best attacker. The strategy defines the attacker at the best attack
position is always the one with the h
th
lined up the best and hence the most read
 

Fig 1

The principle of DKD related backoff.

The surrounding space around the 

ball is divided into 3 types of regions.

The strategy then decides
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Given the DKD coordinate system the robot then divides its surrounding space into 
different regions, as demonstrated in the above diagram. 
 
Then the decisions are made by the following criteria in the descending order of 
precedence: 

 If the robot is in the bottom region, but its teammate is not, then it would 
 in 

 
Fig 13.3 

m 

 

e supportive position. 

 

 are in the bottom region, then: 
 i

broadcast), it is possibly an attacker. On the other hand, if the robot cannot 
see the ball but its teammate can, it be

 If the robot is closer to the ball than it ossible 
attacker. Otherwise if the teammate is closer then it is a supporter. 

possibly consider being an attacker. The reason why it is only possible because
the local cooperation strategy, when the robot decides to be an attacker there is 
another additional check, which will be discussed soon, to make sure that its 
teammate is not attacking the ball as well. 

 Conversely if the teammate is in the bottom region, but the robot itself is not, 
then it would become a supporter. 

 

The upper pairs of robots represent the 

first point where the robot is in the botto

region but the teammate is not. Then it 

will attack (probably). 

 

The lower pairs present the second point 

where the robot is not in the bottom region

but its teammate is. In this case it will 

move to th

 
 
 
 
 
 

 
 If both the robot and its teammate

 If the robot itself can see the ball but ts teammate cannot (from wireless 

comes a supporter. 
s teammate is, then it is a p
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 If the robot’s angular offset is larger than its teammate’s ones, then it is a 
possible attacker, otherwise it is a supporter. 

 If the robot’s player number is smaller than its teammate’s ones, then it is a 

f the above cases is true, that is, none of the robots are in the bottom 
fense. 

 

 13.4 Symmetry breaking by getting 

robots are in the bottom region, they 

solve the ambiguity and break the 

symmetry.  

per pair show one possible case 

d 

. 

 

 
 

e  real attacker, the robot must check 
whether a wireless message from its teamm te is available. If it is available and  

 the robot finds that its teammate in the bottom region, 
than 18 cm), 

d 
 its te

then the r wise it will still 
conti e i  
that the up o such 

possible attacker, otherwise it is a supporter. 
 If none o

region it gets behind the ball to break the symmetry and to maintain the de

 
 
Fig

behind the ball. When none of the 

The up

where one robot is in the top region an

one in the middle region. The lower pair 

show both robots are in the top region

 

 
 
 
 

 
Possible Attacker 
 
Note that for a possible attacker to becom  a

a

 its teammate broadcasts that it is very close to the visual ball (less 
an

ammate broadcasts that it is not backing off, 
obot will become a supporter rather than an attacker. Other

nu ts attack. This sanity check serves as a final warning sign to make certain
 coming attack would not cause any contacts with the teammate. N
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test exists
 
Whe he
during wh to take over the attack. This 

ll, 
altho

hich robot should attack. 

m  
decide which teammates it should take into co
need to be concerned with. 

 The visual teammate with the shortest di obot and is within 1 meter 
from the robot, or if both teammates hav
robot, 

 The visual teammate with the largest ang
1 meter from the robot. 

If neither of this is the case, then the robot wi n carry out the region division 
and the list of checks stated above. 
 
13.3 Wireless Support 
 
Another type of local strategy comes from the teammate wireless strategy information. 
The aim of relying on wireless information as opposed to visual information is that 
either robot might not be able to see each othe , or even the robot has temporarily lost 
the visual ball. In such cases if the teammate signals that it has the ball and the 

ammate is closer to the ball, then it should support its teammate. But this kind of 
ision occurs less often than the visual back off. 

stimates are more 

contain a significant amount of noise and can vary a lot from frame to frame. On the 
and accurate which is suitable 

 for the other forms of local interaction. 

n t  robot determines to be a supporter it moves to the supportive position 
ich it is constantly facing the ball to be ready 

support position depends on where the ball is. The same applies to the get behind ba
ugh the aim also includes breaking the symmetry so there is no ambiguity on 

w
 
Which Teammate to Back Off From 
 
But before the robot can determine the outco es from this region division, it has to

nsideration. There are two cases that 

stance to the r
e roughly the same distances from the 

ular offset from the DKD and is within 

ll not eve

r

te
wireless support dec
 
13.4 Matching a Visual Teammate to Its World Model 
 
There are a number of reasons that world model teammate e
preferable than visual information. Although visual information is up to date it can 

other hand the world model information is more stable 
for strategic purpose due to fewer fluctuations. Besides, the wireless strategy 
information is also contained in the world model information but it is not part of the 
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visual information. Examples of these wireless data are the teammate distance to the 
visual ball, whether the teammate can see the ball and its behavioural role. Hence if 

e robot tries to extract the wireless strategy information from a visual robot, it is 

y 
mate is closest to the visual one, and they must differ by 

ss than a certain distance threshold and within a specific variance. But if it is not 
her continues the tactic based on the visual 

formation. 

illust
 

 

Support Positioning. The 2 red dots 

show the 2 possible points that the 

supporter can place itself. Generally 

the support positions are relative to the 

he 

 

 

pending 

th
necessary to find the corresponding gps teammate first. 
 
Whenever the robot considers the positions of the visual teammate and furthermore 
needs any wireless strategy data, it first attempts to map the correct gps teammate b
considering which gps team
le
satisfied, the robot has no choice but rat
in
 
13.5 Support Positioning 
 
The implementation of the support position has not changed from last year, as 

rated by the diagram below. 

 

Fig 13.5 

ball. But in the case of a lost ball it is 

relative to the teammate position if t

teammate is close by. 

 
 
 

 

 
 

 
The L shape is designed to allow the supporter to sustain the attack if the chief 
attacker loses the ball by quickly jump into the front and intercept the ball. De
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on which side the robot is on relative to the DKD line, it has two choices on the 
support position for each ball location. On the edges it is overridden such that it does 
not crash into the wall. Furthermore on the bottom quarter of the field the shape is 
inverted. If it were below the ball the robot would have no space to support as well 
obstruct the goalie’s view. The wider shape in the middle

as 
 half is designed to allow the 

pporter to cover up wider area to intercept any ball propelled down to its own half 

el 
hin certain variance, then it uses the teammate gps position to determine 

e supportive position rather than using the ball since the gps ball can be quite 

he final type of local interaction is the side back off. The situation of where the side 
ng for the ball side by side, they cannot see 
e ball. Their paths converge and the two 

situation one of the robot should slow down 
 

perform the visual back off. 
 
The detection for this situation needs careful j  
world model and wireless information only. It

 Recent wireless information is available. 
 World model information has low varian
 Both the robots and its teammate are close to each other.  
 Both the robots and its teammates can see the ball in front. 

 
Then if the robot finds that it is further then the ball than its teammate is, it starts the 
side back off. If there is no distinguishable dif istances but the robot 
has a higher player number it also starts the side back off. The side back off simply 
reduces the forward speed by 40%, such that t e other attacker is clearly in the front 
and the robot can then back off visually to the support position. During the side back 
off, the robot is still in the normal attacker mode, the only difference is at the end its 

su
by opponents. 
 
13.6 Position Based on Teammate Rather Than Ball 
 
Additionally if the ball source is the gps ball and the robot is close to the world mod
teammate wit
th
inaccurate after a period of ball loss. 
 
13.7 Side Back Off 
 
T
back off is useful is when two robots runni
each other at all but only concentrate on th
robots can easily leg lock. To avoid such 
and let the other teammate to attack as well as be able to see its teammate in order to

ustification though, because it relies on
 is only activated if: 

ces. 

ference in the d

h

forward speed is forced to decrease. 
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Fig 13.6 

When both robots are focusing on the ball, they cannot see each other and can 

easily leg locked. Side backoff is useful in this case to slow down one of the robot.
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Chapter 14 

Global Robot Interactions 
 
Global robot interactions refer to the tactics of the long distance support role, which is 
better known as the striker. The striker provides a long range support to the two 
attacking forwards, in a similar manner as the close supporter provides assistance to 
the main attacker. It usually stays on the side of the field opposite to where the ball 
and the other teammates are. 
 
14.1 Trigger for the Striker Role 
 

 
Fig 14.1  

Striker role determination. For the upper 

team, the red robot is obviously furthest 

away from the ball and hence it is a striker. 

Fo the lower team the bottom 2 robots have 

roughly the same distance to the ball. But 

striker. 

 
 
 
 
 
 
 
 
 

 
The assignment of the striker role is generally the robot that is furthest away from the 
ball (obviously if the robot can find a teammate which is furthest away from the ball it 
does not turn itself into striker because it assumes its teammate will). Each robot 
determines its distance to the visual ball and broadcasts this among its teammates. But 
if the teammates cannot see the visual ball, the robot will use its world model 

r 

the red robot is much closer to the striker 

point, marked with a triangle, so it is the 
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information about
  

 its teammates to estimate their distances to the ball. 

 can lead to inaccurate distance 
nt. This is especially true when the 

bots are close to each other, in which case they cannot easily distinguish who is the 

ich is relative to the ball position, and finds which robot 
 closet to this point. If the robot is the closest, it becomes the striker otherwise it 

robust way, there could still be seldom 
o  simultaneously due to various 

errors. To prevent such situation the strik
strategy to explicitly inform the teamma e 
robot with the highest player number wi
 
14.2 Positioning of the Striker
 
Once the robot is assigned a striker role, y. 
The positioning system remains the sam ast year X positioning. In this 
scheme four points are fixed on the field close to the corners of the goal boxes. These 
four vantage points are connected to the centre point to form a skewed X shape, as 
shown in Fig 14.2. 
 
The striker desired position is on any poi ts along these four lines, depending on 
where the ball is. It uses the left part of t AX and CX if the ball is on the 
right side of the field and uses the right part of the X (BX and DX) if the ball is on the 
left side, such that it can cover the field as large as possible. 
 
To determine where on the lines the striker point is, the robot varies its y coordinate 

 at a 

However noises and distortions in the vision system
estimates and as a result incorrect role assignme
ro
furthest away from the ball and small errors could lead to frequent role fluctuation. 
 
If the robot cannot tell which robot (whether itself or its teammates) is obviously 
furthest away from the ball, it proceeds to a more careful judgment process. It 
calculates the striker point, wh
is
leaves its teammate to take this role. 
 
Although the checks above work together in a 
occasions in which two robots declare t  be strikers

er will broadcast in the wireless team 
tes that it has become the striker, and only th
ll take this role if there are 2 strikers detected. 

 

 it approaches to the striker point immediatel
e as the l

n
he X, that is 

according to the ball’s y coordinate. When the striker point is below point X, the robot 
is always 140 cm behind the ball in the y direction along the lines DX and EX and the 
striker point is limited to the vantage points C and D as the lowest points. 
 
Once the striker point is above point X, the robot is not staying behind the ball
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constant distance but decreases linearly as the ball is moving to the top of the field. So 
 striker is closer to the ball and thus more aggressive when close to the target goal. 

The X positioning finding the striker 

ked 

oint. A, 

an 

be. When the striker point is below X 

the robot is staying behind the ball in 

 
 
 

 

l 

t towards the striker 
oint and turns towards the ball right on the spot. This speeds up the striker movement 

the
 

 
 
Fig 14.2 

point. The point on the lines mar

with a triangle is the striker p

B, C and D are the maximum and 

minimum points that the striker c

a constant distance. While above X, 

this distance starts to decrease 

linearly. 

Note the striker point is on the side of 

the field opposite to the ball. 

 
 
 
 

 
When the striker is moving towards the striker point, it is constantly facing the bal
such that it is always ready for attacking, although it is slow since the robot is side 
walking most of the time. To solve this problem the new implementation is that if the 
striker point is more than 80 cm away the robot walks straigh
p
a lot. 
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Fig 14.3 

On the left the striker side walks a lot, and it is ow to move to a new striker position. 

But if the striker turns before and after the m ve, then it can run on a straighter 

path and it is faster, as illustrated on the righ  

 
 
However, it can introduce another problem whe  the 

all during the time it is running to the far away striker point. Hence another condition 

 within 10 cm of the striker point it stays there until the striker point has shifted 
ore than 20 cm away from its current position. 

 

sl

o

t.

re the robot is facing away from
b
is to check whether the ball is within 60o of the robot’s heading, if it is not, it will 
switch back into the normal side walking fashion. 
 
Since the striker point is calculated every frame, the new striker point tends to 
oscillate from frame to frame. Therefore a hysteresis is used in the striker. When it 
arrives
m
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