
 1

Thesis B Report

rUNSWift 2004
The University of New South
Wales 2004 RoboCup team

Chi Kin CHAN

3019932

15th September 2004

 2

Table of Contents

1 Introduction 5
1.1 Abstract 5

1.2 Background 5

1.3 Changes to the Competition and Rules 5

1.3.1 Border Height 5
1.3.2 Beacons 6
1.3.3 Obstructions 6
1.3.4 Pushing 6
1.3.5 Automatic Start-up Position 7

1.4 System Architecture and Development 7

1.5 Behaviour Architecture 8

1.6 Literature Survey 9

Section 1 Skills and Elementary Decision 10

2 Desired Kick Direction (DKD) and Range 11

3 Dynamic Motor Gain 13

4 Stuck Detection and Resolution 15

5 Special Motion 17
5.1 Ball Grabbing 17

5.2 Upenn Kick 19

5.3 Dive Kick and One Handed Kick 20

6 Spin Dribble 21

7 Variable Turn Kick 23

8 Get Behind Ball 24

 3

9 Directional Paw Kick 26

10 Locate Ball 31

11 Track Ball 33

Section 2 Strategy 35

12 Main Attacker Strategy 37
12.1 Lockmode and Hysteresis 37

12.2 Decision on Ball Tracking, Active Localisation, Scanning

Localisation and Ball Search 38

12.3 The Approach Strategy 41

12.3.1 Edge Paw Kick 41
12.3.2 Get Behind Ball 42
12.3.3 Directional Paw Kick 44
12.3.4 Hover To Ball 45

12.4 The Shoot Strategy 46

12.4.1 Edge Turn Kick 46
12.4.2 Variable Turn Kick 47
12.4.3 Upenn Kick 48
12.4.4 Dive Kick 49

13 Local Robot Interactions 50
13.1 Immediate Back Off 50

13.2 DKD Related Tactics 51

13.3 Wireless Support 54

13.4 Matching a Visual Teammate to Its World Model 54

13.5 Support Positioning 55

13.6 Position Based on Teammate Rather Than Ball 56

13.7 Side Back Off 56

14 Global Robot Interactions 58

 4

14.1 Trigger for the Striker Role 58

14.2 Positioning of the Striker 59

15 Bibliography 62

 5

Chapter 1

Introduction

1.1 Abstract

This thesis report mainly presents the behaviour level of the software system
developed for the rUNSWift team to compete in the Four-legged League of the
RoboCup Competition 2004. The whole team strategies and some of the skills used or
attempted will be described in details, along with the problems that have been
encountered. All the changes from previous years will also be discussed and the
reasons for the changes are provided as well.

1.2 Background

The Four-Legged League is one of the five leagues in the RoboCup soccer
competition. In this league a team has to use the Sony ERS robots to compete with
other teams. Each game consists of two 10 minutes halves, with an additional penalty
shootout if a tie happens. The team that scores the most goals in a match will win.
Each team has four robots; three are forwards and the other is a goalie.

The robots that comprise this year’s team are the new ERS-7 Sony Entertainment
robots. No physical modifications on these robots are allowed, so the competition is
purely based on software implementation.

1.3 Changes to the Competition and Rules

Beside the robot model change, there are a number of other changes to make the
competition more challenging. The soccer field used in this year is shown in figure
1.1. All the rules are specified in the rule book of this year [3].

1.3.1 Border Height

The height of the white border surrounding the soccer field was reduced from 60 cm
to 30 cm, which poses more challenges for the robot visual object recognition system
because the robot cannot recognize any false objects in the space above the border.

 6

Fig 1.1 The competition field of this year competition.

1.3.2 Beacons

The two beacons located at the middle of the field were removed. The remaining four
beacons at the corners of the field remained. It is intended to advance the localization
technique.

1.3.3 Obstruction

In this year the definition of obstruction is redefined. Obstruction is called only when
a robot is actively and intentionally blocking another robot from moving. So if a robot
is being pushed, it is not called for an obstruction but the other robot is more likely
called pushing.

1.3.4 Pushing

The pushing rule is called when any robot pushes another robot for more than 3
seconds, it will be penalized for 30 seconds field removal and then replaced at the
halfway line. If two robots are charging into each other, both are called for pushing.
However there a few exceptions to the pushing rule:

 The closest robot to the ball on each team, if it is within 2 dog-lengths of the ball.
 A robot standing still.
 If the goalie is within its goal box with least two legs.

The pushing rule cannot apply to the above three cases.

 7

1.3.5 Automatic Start-up Position

During the ready state, all the robots are required to return to its start-up positions. If
the robots cannot return to their start-up positions, manual placement is allowed but
penalty is imposed by moving the robots further back. For implementation of this
please consult [13].

1.4 System Architecture and Development

Fig 1.2: Software system architecture for the rUNSWift robot

The above figure demonstrates the overall architecture of the software system
executed on the robots. This thesis report will concentrate on the top levels in the
diagram, namely the behaviour. Before the Australian Open, the behaviour only exists
in C++. Afterwards, due to the need to speedily and efficiently developing the
behaviour and strategy, most of the behaviour code was ported to Python with a
C++/Python interface.

 8

1.5 Behaviour Architecture

The behaviour architecture is primarily a huge decision tree that has numerous
branches. It accepts information from all different modules and then determines the
next set of actions that a robot should perform. The tree is hierarchical in nature,
which can be distinguished into several different layers.

Fig 1.3 Behavioural architecture can be visualized as a huge decision tree.

The first layer handles some fundamental decisions such as accepting the game
controller data, interfacing between C++ and Python, choosing different players, and
forwarding messages to the actuator module. This layer exists in both Python and
C++.

The next layer begins the overall strategy of game playing, in which the robot will
dynamically decide what role it should take depending on the information it perceives
from the environment. The roles that a robot can take include the defender, striker,
back-off player, supporter and attacker, in the descending order of priority. The goalie
is a fixed role for the whole duration of the game. The local and global team
interactions are carried out by all these roles.

One layer further below the team tactics are concerned with skills and techniques that
each role uses in fulfilling its responsibilities. Some complex skills can incorporate
other smaller and simpler skills. Most of them are some computations that determine

 9

simple movement which in turn specifies the actuator parameters such as going
forward and turning left, head panning and tilting, kicking, as well as the pose
parameters, such as the back height. These movement and pose parameters are sent to
the actuator control module at the end of the behaviour tree. This process of running
through the decision tree is continually repeated at a rate of 30 times per second, also
known as the vision frame rate.

In this year it is seen that the development of the robot’s behaviour totally in C++ is
not manageable and extensible, because the process of compilation, copying the
executables onto the memory stick and re booting the robot consumes a significant
amount of time, if not tedious, thus it is not suitable for rapid development. Although
the use of simulation as in [4] could speed up the development, the simulated
environment could be so much different from an actual game play and the computed
result would be useless.

The introduction of Python in defining the robot’s behaviour is very effective. One
can modify the behaviour, upload the file to the robot through wireless network and
reload the code to test and verify the behaviour. It has simple and highly readable
syntax. Given that there are interpreter and a number of development environments
widely available and the compatibility with C++, it is ready to use in our case. Yet
long execution time is an identified problem. [11] details the Python introduction in
this year’s system. In the future the whole behaviour should be ported to Python so
that there would not exist the confusion whether a decision is made in Python or C++.

1.6 Literature Survey

Most of the researches done are based on the thesis reports from the previous two
years [1, 2]. They are the good sources for team strategies analysis and skill
description. For PID control theory used in the directional paw kick, the CMU and
University of Michigan have a joint online tutorial even including a number of
MATLAB examples [5]. Other sources team strategies and skills that have been used
in the research can be found in University of Pennsylvania [6], University of
Newcastle [7] and the German Team [4]. A lot of data and programming manuals of
the ERS-7 are required as well, which can be found in OPEN-R [8].

 10

Section 1
Skills and Elementary Decision

In the following few chapters, the skills and the elementary decisions of the
rUNSWift robots are explained and elaborated. At the end of each chapter there are
also discussions of the current implementation and the possible future improvements.

 11

Chapter 2

Desired Kick Direction (DKD) and Range

The desired kick direction (DKD) is a global heading originated from the ball that
specifies which direction the ball should travel to maximize the chance of scoring a
goal at any position on the field. It is calculated every frame to reflect the latest
update from the vision and gps module. The DKD is used in a lot of techniques, like
the visual back off decision and the directional paw kick.

There are a number of changes to this year’s DKD calculation. First of all the DKD
does not only specify a direction, but also two ranges, a narrow one and a broad one.
The motivation of the narrow DKD range is to indicate the correct range of directions
for moving the ball forward, rather than having the robot try to line up to the exact
DKD. It is especially useful when the ball is in front of the target goal, where the
robot is already facing the goal with the ball in front. In this case the robot should not
try to waste time and line up to the DKD, but kick as long as its heading lies inside the
narrow DKD range.

However, the idea of narrow DKD range does not mean the DKD itself is not
applicable. The DKD is still very important in defining the DKD ranges, and in
defining the back off regions and generating the vector filed for the directional paw
kick, for example.

The broad DKD range, however, is less often used. It is used basically to warn the
robot that outside the broad DKD range it is heading in the wrong direction, that is the
robot should never kick the ball outside the broad DKD range.

There are several sections of the field in which the DKD and its ranges are found:

 For the left side region, the DKD is 90o, the narrow range is (70o, 100o) and the
broad range is (10o, 110o).

 For the right side region, the DKD is 90o, the narrow range is (80o, 110o) and the
broad range is (70o, 170o).

 For the lower 40% of the field, the DKD radiates out from the centre of the own
goal, such that the ball will travel out of the own goal, the narrow range is (20o,
160o) and the broad range is (10o, 170o).

 For the upper 40% of the field, if the robot can see the target goal with no more

 12

than 3 obstructing robots, it will use the “visual opponent avoidance kick”
(VOAK) calculation [2] to find the global left and right headings of the largest
gap for the target goal, which becomes the narrow DKD range. The DKD is the
average of these two headings. Otherwise if it does not use the VOAK
calculation, the DKD is directed into the centre of the target goal, with the
narrow range being the headings to the left and right goal posts. The broad range
is (10o, 170o).

 For the middle 20% of the field, the DKD is the linear interpolation of the above
2 calculations (combining the upper and lower 40%), such that it produces a
more gradual change in the middle region. The narrow range is (20o, 160o) and
the broad range is (10o, 170o).

distance estimates, please consult [12].

Fig 2.1 The vector field

of the DKD. Notice the

upper region shown is

VOAK calculation.

Future Improvement

One aspect that the DKD has ignored is the opponent avoidance in a general play.
VOAK calculation near the target goal merely maximizes the chance of scoring but to
avoid ball captured by opponents and entanglement with other robots in the whole
field the DKD calculation should take into account of other visual robots. This relies
on good estimates of robot distance in mid range. For details of robot recognition and

 13

Chapter 3

Dynamic Motor Gain

Before the Australian Open, the ERS-7 robot was still suffering from a frequent
hardware safety crash, battery over current, that caused the major difficulty for the
development. Even when the normal walk is optimized, the robot was not likely to
sustain for more than 3 minutes in a practice match.

In fact, out of the three kinds of movement (forward, side walk, turn), for a
monotonous movement without obstacle stuck and collision for a 12 minute duration,
experiments showed that side walk with turning was the only movement that
produced the battery over current within the 12 minutes period.

Crash Analysis

0

1

2

3

4

5

6

7

8

9

10

-30 -25 -20 -15 -10 10 15 20 25 30 35

Turn

L
ef
t

Fig 3.1: given a fixed turn, find the highest side walk value that will crash the robot.

The relationship shown above is approximately linear, hence a simple way to avoid a
crash is to cap the turn and side walk according to a linear equation.

Another way to combat these adverse effects is a simple hysteresis motor gain control
used to avoid these sudden crashes. When the battery current is above a certain upper
limit and the current gain is high, the robot will switch to a set of low motor gains.
Conversely, when the battery current is below a certain lower limit and the current
gain is low, the robot will switch to a high set of motor gains. Also when the robot is

 14

about to perform
such that the kic

 any kick, such as the “Upenn” kick, the gains are switched to high
k is powerful and effective. The motors involved in this mechanism

e only ones that draw the majority of the
tors are always high because it needs to

erform various motions in a short response time.

e robot movement, which is not
oticeable under usual game condition but can be clearly observable if the change is

ains differ

ces
re, the idea of

introducing a continual gain control, that is varying the gains every actuator frame in
a continuous fashion according to the battery current and/or the PWM duties of the
motor joints, is not attempted. The turn/side walk cap is also not used after the
Australian Open as the new and stable version OPEN-R is released and optimized gait
is available.

Future Improvement

One future improvement is rather varying the gains straightly based on battery current,
the strategy should be taken for consideration as well, such as forcing the high gain
for ball chasing when opponent robots are observable and close by, forcing a weak
gain when involved in scrum and “corner game”. This let the robot to decide when to
exert the maximum power for certain behaviour.

are the twelve leg motors, as they are th
robot’s power. The gains of the head mo
p

Conclusion

Changing the motor gains will introduce a glitch to th
n
intentionally controlled through the commander. This is because the set of g
by significant amount. In the actual game play dynamic motor gain is effective and
most of the times the robot is actually using high gains and there are no instan
continuous glitches due to fluctuation between the gains. Therefo

 15

Chapter 4

Stuck Detection and Resolution

The motivation of implementing a stuck detection is to:

the robot crashing and leg entangled (also known as “leg lock”) into
other robots that could lead it being called for pushing and penalized by field

 Prevent

removal for 30 seconds. Crashing into own robots effectively destroys its own
team tactics.

 Avoid getting lost of direction and position. Once the robot is stuck, the robot
odometry update does not reflect the stuck situation and the position and
direction estimates will be incorrect.

 Avoid hardware crash.

2600

2700

2800

ut
y

Max PWM Duty vs Time

2000

2100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Time

2200

2400

2500

M
ax

M
 D

2300

 P
W

Fig 4.1 Stuck detection by PWM duty value. The red line is the gradient threshold

which indicates a possible stuck.

When a robot is involved in collision and stuck, there will be a number of changes
occurring that could serve as indicators. First of all, the PWM duty of motors
belonging to the stuck leg will be high due to mechanical resistance. But in a fierce
game the PWM duty is building up constantly to a high level even without any stuck
situation. Thus, a better scheme is to detect if there is a significant increase in the
differential in the PWM duty. This is done by comparing the highest PWM duty of the
present frame against the highest PWM duty 60 frames earlier, see figure 4.1. To

 16

improve the alar
order words, if t

m accuracy, the same check is repeated for 5 consecutive frames. In
he present frame number is x, then the comparisons are between the

 x-64. It concludes a
han a certain threshold.

bot is moving forward in a
ive

fram ce
in ba
concludes another possible stuck situation. This “sanity check” is only carried out if

If both checks suggest a possible stuck, then the robot will start its actual detection

 scanning of its surrounding space with a low tilt and low
crane as well as uses the close range infrared sensor. If it can see any robot while the
IR reading reflects a close obstacle, it will walk backward and concurrently side walk
in the direction opposite to the current head pan, and effectively getting out from the
scrum.

Conclusion

The performance of the stuck detection was initially perceiv actory when the
first version was completed. However, due to the lack of fine-tuning during it was not
accurate and too sensitive. It often incorrectly triggers the head scan which is costly in
a competition and was therefore abandoned in the competition.

Future Improvement

 check could be error prone since the ball distance
 distorted by motion blur in the image and the ball is not necessarily available in

ator of

e

frames x and x-60, x-1 and x-61, and finally up to x-4 and
possible stuck situation if all the 5 differences are larger t

A second sign is the change of the ball distance. If the ro
constant speed, the ball distance is expected to decrease over a number of consecut

es. Thus over the last 10 frames in which the ball has been seen, if the differen
ll distance is less than zero, than the ball has not been closing in at all and it

the above PWM duty differential check is passed.

process. It will begin a quick

ed satisf

Although PWM duty is sensitive to stuck yet its inconsistency is a major problem.
Using ball distance as an additional
is
every image. A more reliable way is to compare the sensor joint readings with the
intended joint angle sent by the actuator control because this is the direct indic
an entangled joint. [9] details this implementation and indicated the result is indeed
accurate. This is an important area because it not only helps the robot to resolve the
stuck and prevent leg entanglement but also reflects the correct motion update to th
localisation system [14]. Another source of stuck detection algorithm is by the traction
monitoring as explained in [15].

 17

Chapter 5

Special Motions

5.1 Ball Grabbing

Grabbing the ball is an essential skill, as it is the basic building block for a number of
kicking skills and aggressive dribbling. To grab the ball, the robot starts with slow
down and using the head to fetch the ball when the ball is close in front, and open the
mouth to lock the ball directly underneath its chin a

ing

nd up against it chest. In the mean
me it will bring the front paws forward to stop the ball from straying to the sides.

 down. Slowing down

 a way to prevent the robot’s chest from knocking the ball out, although it gives the

catch up and interfere with the robot’s attack.

 will stop and extend its neck and lift it up for

ti
The mouth and chin sensors will indicate whether the ball is trapped or not.

The details of the ball grabbing can be illustrated in the following diagrams.

Fig 5.1: As the robot is approaching close to the ball, it slows

is

opponents chances to

Fig 5.2: At the right position, the robot

 18

a short period o

next step. Withou

f time, that is, increase the tilt and crane, in order to prepare for the

t this step, when the crane increases at a low tilt angle, the snout

ver the front paws are brought forward.

e stance.

Fig 5.4: The robot opens its mouth to trap and the ball. During this time it checks

Future Improvement

The current ball grabbing routine needs an improvement in speed. One possible
improvement that should be tried is when the robot is walking towards the ball from 2
dog-lengths, it should already extend its neck while looking at the ball. So when it
arrives at the right position, it just needs to open the mouth and lowers the tilt further.
In other words, the robot is already in the pose demonstrated in Fig 5.3 before the ball
is close in front.

will knock the ball out. Moreo

Fig 5.3: In this step the robot only lowers its tilt, maintains its crane and th

whether it can see the ball, if so it means it has not got the ball underneath its chin

yet, and aborts the operation. At the end, it also check the chin and mouth sensors

whether the ball is sensed and if not the operation is aborted.

 19

5.2 Upenn Kick

The Upenn kick was developed by the University of Pennsylvania [6] in 2003. It is a

de kick that propels the ball in the heading of 60o to 70o. The attractive point is that
it does not require any set up time, takes a small recovery time and consists of one
step only. The following diagram portrays the left upenn kick.

Fig 5.5: Start of an Upenn kick is an ordinary standing pose.

ig 5.6: (Left) shows the left side view. The front leg is extended forward and swings

e body, the right rear leg gives a thrust by extending and

ushing. (Right) shows the right side view. The 2 right legs are contracted to allow

 ball

o steps is a linear interpolation of the joint angles which allows the
hanges to be smooth and the whole movement is recorded in the .pos file.

si

F

toward the centre of th

p

the body to fall lower, such that momentum is built up and helps pushing the

further. The head is fixed to look in the direction of where the ball travels. The 2 rear

leg are also spread out from the body to stably support itself.

Between these tw
c

 20

Conclusion and Future Improvement
lthough the upenn kick is powerful, it is quite hard to set up. The ball must be close

y

5.3 Dive Kick and One Handed Kick

Dive kick is a forward kick that is fast and very consistent in shooting the ball straight
ahead. The only set up requirement is that the robot has to define the right stopping
point to trigger the kick which requires the robot to slow down. On the other hand the
one handed kick needs ball grabbing and takes a significant set up and recovery time.
Their actuator details and implementations can be found in [11].

A
to the chest and the hitting arm in order to produce a consistent result. Grabbing the
ball before the kick increases the consistency. In the competition it was observed that
a better kick could replace the upenn kick, which is the head swipe and were used b
several strong teams. [13] details his experiment with it.

 21

Chapter 6

Spin Dribble

The spin dribble was an important skill widely used in last year’s strategy to
ggressively drive the ball towards the goal with the maximum speed. Since the robot
eeds to keep the head down to maintain the possession of the ball, the robot is not

 vi us this heavily relies on having a
recise heading before spinning to a right dribbling direction. So the robot has to

2. Change the stance such that it is not the head that holds the ball but instead
only the front legs that grasp it. If this step is skipped, that is the robot
proceeds straight to active localisation after the grab, the ball will usually
roll away from the robot because it is not a perfect sphere.

3. Once the ball is held by the front legs, the robot active localizes.
4. After the localisation, it moves the head back to the normal grab ball pose
5. It starts spinning until it gps heading is between the two goal posts.
6. It looks up and sees if the target goal is in the view.
7. If the target is in the view, it will dribble the ball forward. If the target goal is

not in the view, it will abort the dribble by performing a chest push, such
that the ball leaves the robot.

Conclusion

The dribble performs reliably and consistently on this new robot. Nonetheless by the
time the robot has finished step 6, it has already consumed approximately 80 vision
frames or almost 3 seconds. During a game ball holding less than 3 seconds does not
incur removal penalty but it offers enough time for opponents to arrive and resists the
attack, by blocking the robot’s view and even pushing. The most problematic aspect is
the grabbing state in which the robot spends too much time in tightly grasping the ball.
In step 2 the need of changing to a ball grapping stance for active localisation also
decreases the desirable swiftness. As a result it is not used in the current forward
strategy.

a
n
able to sually determine when to stop spinning. Th
p
perform active localisation after it has grabbed the ball, in order to obtain a precise
heading estimate.

The following are the detailed steps in the spin dribbling:

1. Grab the ball as described in the last chapter.

 22

Future Improve

ment

the UTS team was capable to demonstrate how the robot
lk, forward and turn) with the ball underneath its chin, while

t the same time it could still see the goal. This would be a vital step in the current
red

ccurately regardless of the heading estimate, but also capable of
voiding opponents and even catching glimpses of beacons.

During the competition,
could move fast (side wa
a
spin dribble because the robot could omit the active localisation and the incur
overhead before the spin (i.e. steps 2 to 4). It means that once the robot has grabbed
the ball it only needs a rough heading estimate to determine which direction to turn
and then it can visually line up the goal and force the ball forward.

In addition being able to view the front can let the robot not only line up with the
visual goal more a
a

 23

Chapter 7

Variable Turn Kick

The variable turn kick this year has incorporated the Upenn kick. While the turn k
propels the ball at 45

ick

n
e can adjust the

ick angle by changing the amount of turn needed.

or a sufficient number of
frames to be certain that the ball will not roll out. It also finds out at what global
heading it should cease turning and does the Upenn kick.

2. The robot starts turning with the ball underneath its chin.
3. When the robot gps heading matches the pre-computed one, it forces the gait to

complete and does the Upenn kick.

Conclusion and Future Improvement

Rather than Upenn kick, the one handed kick was also tried in the turn kick.
Nonetheless it was found to be slow since it took considerable time to both set up and
recover from the kick. While the Upenn kicks are not very consistent in shooting in
terms of angle accuracy, it shoots the ball every time if the ball is grabbed. On the
other hand for the one handed kick, sometimes the ball could get stuck by its chin and
the paws yet it is shoots the ball in a more consistent range. But the one handed kick
was not used in competition due to speed (close to ball holding time limit) and
reliability (if the ball is stuck when it shoots, it is very likely to be called for ball
holding).

Dive kick was attempted as well, but once the robot turned to a desired heading the
robot has to release the ball and stand up before the dive kick is executed. This is
risky and time consuming.

As mentioned before a necessary improvement is to develop a ball grabbing that is
fast to possess the ball and allows the robot to move quickly with the ball under its
chin and still be able to visually see the front.

o, 90o or 180o, the Upenn kick itself usually propels the ball at
60o. Unlike last year where the robot will walk up to the ball, grab it and turn kick, o
this new robot it will grab the ball, turn and do the Upenn kick. So w
k

The steps in executing the turn kick by ball grabbing are as follows:
1. The robot grabs the ball as fore mentioned and holds it f

 24

Chapter 8

Get Behind Ball

The get behind ball is one type of approach that aims to play defensively and safely.
As the name suggests, its action is to circle around the ball in side walk fashion with
the robot’s body always facing the ball. Inside the attacker its main aim it to approach
the ball without accidentally knocking it towards the robot’s own goal, for example,
the robot is running downfield to possess the ball. It

 is also used in the back off
trategy for two robots to beak the symmetry.

 The attack position is

in the attack angle.

circling position, which is 70o offset

from the angle a, the absolute angle

from the ball to the robot. Since the

robot needs to face the ball constantly,

s (see Fig 8.1) of how the get behind ball works as follows:
. Given the attack angle, direction of turn and the safety distance (or radius), it finds

ll

hich is dynamic, is 70o offset from the angle originated
from the ball to the robot. As the robot is moving, the circling position is also

 initially getting behind the ball, the

s

Fig 8.1:

Get behind ball.

behind the ball

The figure shows the target is the

the turn is proportional to the

difference between robot heading and

heading to ball.

The detail
1

the attack position which is the point lined up with the attack angle behind the ba
by the length of the safety distance. This is static relative to the ball.

2. The circling position, w

moving towards and eventually past the attack position.
3. If the distance to the circling position is shorter than the distance to the attack

position, which is the case when the robot is

 25

robot will m
4. On the other

ove to the circling position.
 hand if the distance to the attack position is shorter than the distance

ich is the case in the final phase of the get behind ball,
attack position.

. Once the point that the robot moves to is found (either the attack or circling

stant

.

The r o

targe

vecto

walkin

spiral

However as the robot is rotated and is below th
component is still positive, which means the forward is positive, the robot walks up to
the ball and results in a spiral path instead of a circular locus (see Fig 8.2). The robot
is drawing closer and closer to the ball where it should keep a constant safety distance
from the ball. Depending when the get behind ball is used, if the attacker uses it to get
around the ball, it is beneficial because it provides maximum protection. But it causes
a problem for a back off player because it effectively does not back off.

wit
pos 1, so that the

neg
onl ain the same

n
spir

to the circling position, wh
the robot will move to the

5
position), which is called the target, we can assign its horizontal component as the
left vector, its vertical component as the forward vector and the turn is
proportional to the absolute heading to ball relative to the robot. So:

Forward = distance to target * cos (heading to target)
Left = distance to target * sin (heading to target)
Turn = heading to the ball * con

Fig 8 2:

obot is rotated, and since the angle t

t is between 0o and 90o the forward

r is positive, so the robot keeps

g closer to the ball and the result is a

 path, as shown by the blue path.

e target position the vertical

In previous years for the back off forward the forward and left vectors are hard-coded

h constant values to avoid this approach. One way to stop the forward being
itive is to multiply the heading to target by some constant larger than

heading to the target is larger than 90o. Thus the forward vector is either small or
ative. This does indeed allow a circular locus for get behind ball. This “tweak”
y applies to the forward parameter, the other two parameters rem

calculation and by adjusting this multiplication constant the robot can vary betwee
al and circular path.

 26

Chapter 9

ectional Paw Kick Dir

The
con e
mo
the ball w n hitting the ball up
field but l o ot f the field to follow
the attack avi o allow the paw kick to be

irectional, the robot has to line up in the desired direction before it executes every

originated from the effective strategy

wrong side of the field relative to all team
please consult [2]. In fact, the directional
that it can be used as a general approach
how the robot approaches to the ball.

The skill essentially consists of two components, a vector generator and a PID

d position

ector generator

e

 it

 directional paw kick, also known as run behind ball, is developed for a
tinuous dribbling of the ball using a series of short range paw kicks. Th
tivation of using a series of paw kicks is that ideally the robot has more control of

hile it can still drive the ball up field quickly, rather tha
eave n her teammates being present around the top o
 and le ng opponents to regain the ball. T

d
paw kick.

The idea of the directional paw kick is
developed in last year, the bird, which is a defensive move to intercept any ball on the

mates’ positions. For the details of bird
 paw kick is designed generically enough
tactic since it only specifies a locus about

controller. The vector generator takes the position of the ball, the heading an
of the robot, the angle that the robot wants to line up with (this is the DKD) and other
auxiliary set up parameters (tangential offset, radial offset, radius) and returns the
vector the robot should follow. The vector field is generated according to two circles
situated next to the leaving point (see Fig 9.1). The PID controller will accept the
computed vector and the PID gains and returns the corrected turning for robot.

V

The steps in finding a vector, which is simply a global heading, is explained in th
following:

A. Given the current ball position, desired attack angle, offsets and radius, the
coordinates of the leaving point is found.

B. Depending on which side the robot lies on relative to the tangential offset,
determines the direction (clockwise and anticlockwise) that the robot should
travel.

 27

Fig 9.1:

The robot is outside the circle.

Positive radial offset means the

leaving point is outside of the

tial

 In

this case correction must be added

so the robot path converges to the

Blue arrows show necessary

modifications to prevent

undesirable behaviour. Otherwise

going around the circle. In regions

will cross the boundary and turn

circle, and negative means inside

the circle. Positive tangen

offset means the leaving point is

behind the ball in the direction of

the attack angle, negative means

in front.

Fig 9.2:

The robot lies inside of the circle.

circle.

Fig 9.3:

in regions A the robot will keep

B, the robot will zigzag because it

left and right intermittently.

 28

From the direction it deduces the centre
C. The vector is then determined by the di

the robot and directed to the circle.
D. However if the robot is inside the circular

of the circle and the entering point.
rection of the tangent originated from

lo a
corrective heading proportional to the radia e
to the centre. Hence the correction is:

correction heading = 45o * (radius – c2m
and it is added to the tangent and the result

E. But on certain regions the vector should hea
that the robot will not keep running in a circ
trace a zigzag path (region B) due to oscillation (see Fig 9.3).

cus (see Fig 9.2), then it will add
l distance from the circumferenc

y) / radius,
is the required vector.
d the same as the attack angle such
le (region A) or the robot will

Fig 9.4: The resultant vector field

 29

PID co

The PID n the robot to travel on a more stable path.
The
 ad

Kp
Kd * st frame) +
Ki

where t tor
generat

carr

P
ma

it giv

ntroller

 controller is responsible to maintai
 equation for the PID controller is:

justed turn of this frame =
 * unadjusted turn of this frame +

 (unadjusted turn of this frame – adjusted turn of the la
 * running sum of adjusted turn

he unadjusted turn simply equals the heading of the vector found by the vec
or minus the current robot’s heading.

Conclusion

Initially the directional paw kick was much simpler but continuous improvement was
ied out to refine the skill. Two aspects that need tuning effort are the PID gains

and the radius, tangential, radial offsets combination. For the elliptical walk, only the
 part is necessary because the effective turn is not very strong compared to the

ximum forward speed. In contrast, the normal walk requires all P, I and D parts to
control the robot. Although it is harder to tune the values when using the normal walk,

es a better approach path (in terms of accuracy) than the path using the elliptical
walk. But the elliptical walk is preferred because of its higher speed.

The offsets and radius are also carefully experimented to reduce the number of
instances that the robot walks straight pass the ball, though this phenomenon could
not be totally eliminated. This was once tackled by reversing the robot when it started
to walk pass the ball, but it was inefficient in terms of speed.

Another interesting point is that the directional paw kick, as mentioned before, is
quite generic. It is used as one type of approach technique, like get behind and hover
to ball, and is be combined with other close ball contact skills such as paw kick and
dive kicks.

 30

Future Improvement

offset of 2a from

e attack angle, where a is the angle subtended by point A and where the robot is.

 on this new circle, and
en the new vector is always tangential to this new circle, see Fig 9.5. When the

er

ion of the vector correction demonstrated in Fig 9.2 and 9.3.

Fig 9.5:

(Left) Improvement model for the vector generation, by dynamically varying radius

if it is above the minimum radius. This could line up the robot earlier.

(Right) The implementation is equally simple. The new vector is an

th

One experiment that should be tried in future is to change the vector field. A
suggestion that is easy to implement is dynamic radius where a new circle is formed
every frame such that the robot is always on the circumference
th
robot is moving towards the ball, the circle will diminish in size in a gradual mann
and this could line up the robot earlier than the current implementation. Once the
circle is smaller than the predefined radius, it then switches back to the current
implementat

 31

Chapter 10

Locate Ball

The locate ball is a strategy that dictates what the robot must do once the robot loses
sight of it. The locate ball routine consists of four phases; it proceeds to the next stage
if the ball is still not found at the end of the present stage.

First Stage:

The robot stands still on the spot and the head makes two revolutions starting from
straight below and in the direction that it last saw the ball. A head revolution means
the head is circling in a rectangular loop. Since it is quite common the robot loses the
ball when the ball is very close to the chin, looking straight down when first starting
the routine will maximize the chance of finding it. But during the competition it was
found that the robot had to take a whole revolution to find a ball situated under the
chin. It was because it did not look down for the first two frames when the locate ball
began, instead it looked up. But after the rectification this incorrect behaviour has not

 this stage the robot is spinning slowly on the spot while the head is making two
 on

his

1. In most instances of ball loss the ball is actually quite close to the left or right
side of the robot, and the time it takes for the robot to reverse one-dog length
is less than making a whole body spin. So the duration for the robot to catch
sight of the ball is shorter for the reverse search than the turn search.

2. Whether the ball is on the right or left it makes no difference for the reverse
search. But turning the wrong way for spin search can take a lot more time.

occurred again.

Second Stage:

In
revolutions in the same direction as the spin. The spin direction is determined
which side of the field the robot is on such that any contact with a nearby ball will
more likely hit the ball towards the target goal. So if the robot is on the left it will turn
clockwise and is if the ball is on the right side it will turn anticlockwise.

During the competition the second phase was changed. Rather than turning on the
spot the robot simply reverses while the robot head does the same circling, and t
turned out to be more effective. The reasons are as follows:

 32

3. Unless th
ball in the

e ball is at the back, which is not the usual case, it will not hit the
 wrong way, that is towards its own half.

n the ball is suddenly in its
iew, and it does not spin past the ball but has enough time for the body to line up and

ns to the normal tracking position.

e

ut

le performing a standard head cycling search.

Third Stage:

In this phase the robot makes a fast spin on the spot for one revolution and it keeps
looking in the direction that it is turning. Because the head is turned on its side, so the
robot head is pointing at the ball before the body does whe
v
the head retur

Fourth Stage:

Finally, the robot will start the final phase and stays in that state until it can find the
ball. In this phase the robot spins slowly towards a predefined point close to the centr
of the field and circles its head. The reason it does not stay on the same spot is that it
cannot see a ball too far away, so spinning to the half field area would be sensible. B
in a game this is not likely to happen because its teammates will indicate the ball’s
position through wireless communication so that the robot will walk to that wireless
ball position whi

 33

Chapter 1

n

ot’s neck base. Finally, the projected
oint then forms the input to the head motion control.

ut since there are two transformations (one form the image to a 3d coordinate, and

Fig 11.1: Adjustment for fast approaching ball (using velocity prediction) and close

fireball. The black dot shows the original projected point. The red arrows are the

corrections. The red dot shows the new projected point.

To solve this problem a simple adjustment is added to the projected point coordinate.

1

Track Ball

To track the visual ball, the robot will project the centre of the top edge of the ball o
the image plane onto a plane parallel to the ground but raised up to the height equal to
the radius of the ball, the so called “ball plane”. Once the projected point is found, it is
in terms of a three dimension coordinate relative to the robot’s origin. The robot’s
origin is a point on the ground underneath the rob
p

B
from the 3d coordinate to the actual head angles) in the case of a close fireball,
(especially when the robot is ready for a grab) the errors become large leading the
occluded image of the ball occupies a minor lower portion of the image plane. This
causes the recognized ball easily fall out of the robot’s image plane due to significant
oscillation at the camera.

y

Ball Plane

x

z

origin

 34

If the ball distance
would be closer to

 is less than a certain distance (25 cm), the projected coordinate
 the robot and closer to the ground. The projected x is also set to

 close in front such that the head is forced to look straight,
ill swing in oscillation.

zero when the ball is
otherwise the head w

Another problem that arises with the ball tracking is that when the ball is approaching
fast relative to the robot (for example the robot is walking with maximum speed
towards the ball), it could lose the ball quite easily. As a result, the tracking makes a
small adjustment which is linearly interpolated by the ball velocity relative to the
robot. This effectively points the robot head to track the next ball position.

 35

Section 2
Strategy

In the rUNSWift team, a major consideration in the behaviour level of the robot is the
team interactions. There are two main levels of team interaction. The first is a loc
level which defines the strategy and positioning between the two forwards that are
attacking after the ball. The other is a global level which considers the two attackin
forwards as one single tier and the third robot as a striker across the field (se

al

g
e figure

below). Therefore our strategy is to always allow two forwards closely charging the
ball and the striker is staying further away ready to attack. The strategy does not have
any ball passing; each robot determines whether it should charge in or not based on its
own position, its teammates location, the ball position and the teammate wireless
broadcast information.

Fig: Two levels of strategies exist.
The red is the attacker. The blue
is the supporter. The white is the
striker.
The global tactic considers the
interaction of the striker and the
two attacking forwards acts as a
single entity. The local one
considers the interactions of the
attacker and the close supporter.
Their roles often switch in a
game.

 36

Although the strategy is
located in the lower half

 aggressive, there exists no explicit defender permanently
 of the field to protect its own goal. To compensate this

 was devised in last year strategy to take the role of a rapid
o intercept the ball.

of a

forward player.

disadvantage the bird
defender which runs t

The following subsections will describe the strategy of the three forwards. For the
goal keeper and bird strategies, please consult [2, 13].

The forward strategy

The forward strategy defines what role is assigned for a general forward player. The
figure below is the general description of the decision flow.

Fig: The decision flow

 37

Chapter 12

Main Attacker Strategy

The following sections are details on the implementation of the main attacker strate
All sections, beside 12.1, are shown in the logical order

gy.
 of the decision tree in which

e attacker follows precisely.

During the Python re-development, the implementation of the so called lockmode was
e

tries to perform the same set of actions over a period of tim s when the
action is finished, for instance ball grabbing. This type of action is called an atomic
action. Symbolically the robot tries to go to the same node of the decision tree over a
number of consecutive frames. The idea of a lockmode can be visualized through the
following diagram.

Fig 12.1:

Lockmode visualization.

It bypasses other parts of

the tree and repeats the

same node until the

action is ended.

As illustrated from the diagram, the first stage in the decision that the attacker makes
is whether it has been involved in a lockmode. If so the next decision will go to the
specified node and it will perform the last atomic action. If the robot is not “locked”

th

12.1 Hysteresis and Lockmode

abandoned. Lockmode was an idea to model a state in th behaviour where the robot
e until it decide

 38

into any action, th
suffice the purpos

en it will continue to traverse the decision tree. Although this can
e of modeling a state it is not flexible in a sense that the lockmode is

s are allowed besides the atomic action. always the first priority and no other action

Fig 12.2: Hysteresis checks are located along the tree to replace the lockmode

implementation.

Thus rather than forcing a lockmode check in the very top of the tree, the current

rategy is to arrange the hysteresis checks at the appropriate places along the decision
 is that careful management
n to use state

machine, in which the programmer defines actions for each
state transitions. For details of behavioural implementation
please consult [4, 10, and 11].

12.2 Decision on Ball Tracking, Active Localisation, Scanning

Localisation and Ball Search

Before the attacker decides how to approach and attack the b ll, the most important
decision is that it must draw up a plan of when it should track the ball, perform active
and stationary localisation and search the ball. A wrong judgment could render the
attack futile. This decision is explained in the following.

st
tree such that it is more flexible and dynamic. The tradeoff
of these hysteresis checks is necessary. Another way to ma age state is

state and conditions for
using state machine,

a

1. The robot will first check whether it should do a scanning localisation, in which

the head keeps panning from left to right and vice versa for a number of frames
such that it can see bacons and field lines. The robot keeps walking towards the

 39

ball using any available ball source (wireless or gps), which is better than
standing still. Though this kind of localisation is slow, this is given the highest
priority because possessing a ball without any idea of position or direction can be
very dangerous. Hence the conditions are very carefully defined as follows.

 The robot is very lost about its own direction or position.
 It has not seen an opponent nearby recently, told by gps opponent tracking.
 It can clearly see the ball.
 It is not doing active localisation at the moment nor locating the ball.

After the scanning localisation, the robot cannot perform active localisation for
the next 3 seconds.

2. The robot then checks whether it should locate the wireless ball, in which it will
cycle its head and walks towards the wireless ball position. It is triggered when:

 The visual ball has been lost for at least 14 frames.

obot is not able to see it during the locate ball routine.
 It is not active localizing.

 active localisation, in which
the head will look in the direction of the closest beacon reachable by its head
while it will let the behaviour to decide what the body should do. The conditions
re:
 .
 It has not seen any opponent very close by recently.

tion is that when using the
normal walk modified for faster side step, the odometry does not often reflect the

5.

 The distance to the wireless ball is more than 80 cm, because for far away
ball the r

3. The robot then checks whether it should perform locate ball as described in

chapter 10 when it has lost the ball for more than 14 frames. The condition are:
 The visual ball bas been lost for 14 frames.
 It is not active localizing.

4. The robot then checks whether it should perform

a
It can see the visual ball and it is more than 30 cm away

 It is not sure of its position and heading.
OR

 It is doing get behind ball for more than 3 seconds.
The reason why get behind ball needs active localisa

correct motion update and its believed heading can be quite inaccurate.

Finally, if all the above is not satisfied, then the robot will simply track the ball if

 40

the visual ball is available. If it is not available for the first 4 frames of ball
the robot will still keep its head in the last ball seen position since the ball is
likely to re-appear. For the next 9 frames if the gps ball is in front of the robot it
will track the gps ball since it contains velocity information, otherwise it will

 loss,

 loss will fall into

A summa that

r scanning localize, locating wireless ball and locating visual ball, they are the end
of th
head sions only control the head so the decision tree traversal is
still continued.

fore it

attacks the ball. This is

the head control

 is

visualization of the code

because it does not

show all detailed

keep the head in the last ball seen position. More frames of ball
cases 2 or 3 above, that is searching for the ball.

ry of these decisions is visualized from the following flow chart. Note
fo

e behavioral decision because they have already controlled both the body and
. The remaining deci

Fig 12.3:

Fundamental decisions

of a robot be

algorithm. Note this

only the general

conditions.

 41

12.3

The

 Hover to ball

s using the straight paw kick on all the edges of the field. Although it
annot provide any control of direction of where the ball will head, on the edges the

aximum speed. It is
d Upenn kicks.

Moreover using paw kick will allow the robot to kick the ball
to the edge being caught by the edge, which is the case if the ll
along the edge. There are different cases of edge paw kicks e
paragraphs.

Fig 12.4:

Paw kick along t

with the triggering conditions. Top and

bottom edges ha similar conditions as

well.

The dashed lines show the border region

where paw kicks are used. The red

arrows show the direction of the paw

kick.

 The Approach Strategy

four main approaches that the attacker uses are:
Edge paw kick
Get behind ball
Directional paw kick

12.3.1 Edge Paw Kick

Edge paw kick i
c
ball is usually best and securely driven along the field edge at m
fast and does not involve any set up or recovery time, such as in dive an

 without the paw closer
robot hovers to the ba
xplained in the following

he side edges, together

ve

 42

A. Side Edges.
Paw kick on side edges can drive the ball up field effectively. It is triggered when:

ge.
lobal heading is between 60o and 120o, that is, makes sure the
ng up field.

within 30o of the robot’s own heading, or in other words,
 directly in front of the robot reachable by its paw.

. Top Edges.
an drive the ball past the goalie. It is triggered when:

 The ball and the robot are on the top left or top right edge.

s

he aim is to use paw on bottom edge is to fast defend, that is, to clear the ball safely.

 left or right edge.
e n heading.

 If the robot and ball is on the botto
heading is between -30o and 30o, t
away from its own goal.

 Similarly for the left edge, the rob bal heading is between 150o and
210o, that is, is facing left away fro

12.3.2 Get Behind Ball

Get behind ball is used for the robot to defen ively retrieve a ball when it is not within
the correct heading, such that it would not accidentally knock the ball towards the
undesired direction. And when opponents in scrums are attacking the ball, it is better
for the robot to get behind the ball to physically block the attack. One major
disadvantage is that the get behind ball routine is slow. It is used in several occasions
as demonstrated in the following.

 The ball and the robot are on right or left ed
 The robot g

robot is faci
 The ball must be

the ball is

B
Paw kick on top edges c

 The ball must be within 30o of the robot’s own heading.
 If the robot and ball is on the top right edge, then the robot’s global heading

is between 150o and 210o, that is, makes sure the robot is facing left toward
the target goal.

 Similarly for the left edge, the robot’s global heading is between -30o and
30o, that is, is facing right towards the target goal.

C. Bottom Edges.
T
It is triggered when:

 The ball and the robot are on the bottom
 The ball must be within 30o of th robot’s ow

m right edge, then the robot’s global
hat is, makes sure the robot is facing right

ot’s glo
m its own goal.

s

 43

A. Side Edges.
Along the side edges, the robot will attempt to line up to the global heading of 90o,
whic s e

 is between 195o and 345o, that is, makes sure the

. Top Edges

e heading away front the target goal, it needs to get behind the ball to
ther

than ly ent goalie could
easil le

f 100o.

en it will try to line up at
a heading of 80o.

 is between
 Then it will try to

e robot is facing right). Then it will try to line up

. Defensive half of the field

atisfied, the final case is when the get behind ball is used for
e defensive half of the field, it will try to line up for the Upenn kick. The get behind

nd

direction, and if it is on the right side the robot get
ehind in anti-clockwise direction. This is desirable because the robot acts as an

h i xactly facing up field. It is called when:
 When the ball is on right or left side edge.

The robot global heading
robot is facing down field.

B
Wh n the robot is
start the attack. It finishes the routine when the robot is facing the top edges ra

ful towards the target goal, because in the latter case the oppon
y c ar the ball away. It is called when:

 If the ball is on the top right edge, the robot global heading is between -30o
and 80o, that is, makes sure the robot is facing right. Then it will try to line
up at a heading o

 Similarly if the ball is on the top left edge, the robot global heading is
between 100o and 210o (the robot is facing left). Th

C. Top Corners
It is called when:

 If the ball is on the top right corner, the robot global heading
-30o and 70o, that is, makes sure the robot is facing right.
line up at a heading of 100o.
Similarly if the ball is on the top left corner, the robot global heading is
between 110o and 210o (th
at a heading of 80o.

D
If none of the above are s
th
ball is called when the ball is in its own half and the robot global heading is between
200o and 340o, that is, makes sure the robot is facing down.

For all the get behind ball cases, the direction in which the robot will get behi
depends on which side of the field the ball lies on. If it is on the left side of the field,
the robot gets behind in clockwise
b

 44

obstacle in between the ball and its own goal and it is also the only way to get behind

Get behind ball is used on the border

regions and the defensive half of the field.

Note that for the defensive half, an

12.3.3 Di

As d us s,
fast yet sa
and in fro st of the time. To powerfully hit the ball and leave no

ther teammates to follow the attack is not beneficial for the attack.

 The ball is within 70o of the robot heading.

l

ball along the field borders.

Fig 12.5:

Upenn kick is executed to propel the ball

up the field to quickly save the ball.

Upenn is not executed along the border.

rectional Paw Kick

isc sed in chapter 6, the aim of the directional paw kick is to allow continuou
fe dribbling of the ball towards the target goal such that the ball is close to
nt of the attacker mo

o

The directional paw kick is a type of approach triggered by the following conditions:

 The robot is in the heading of 0o and 180o, that is the robot is not heading down
field.

 Both the ball and the robot are not along any edges.

 The robot heading is within 60o of the DKD heading.

When the conditions that indicates the robot has indeed lined up it then uses the
straight paw kick to actually fulfill the task. The conditions for triggering the fina

 45

straight paw kick are:
 the robot’s heading is within 20o of the DKD heading, or
 the robot is in the upper 60% of the field, and it is within the narrow DKD range.

an

g

to the target goal, it will execute a

straight paw kick.

aximum speed
irectly to the ball. It uses stealth dog to avoid any opponents on its path. When

Fig 12.6:

Directional paw kick. The conditions for

triggering it makes sure the robot c

line up for DKD. Note also that once the

robot is almost lined up or its headin

inside the narrow DKD range when close

12.3.4 Hover To Ball

When none of the above approach strategy is chosen, the main attacker hovers
towards the ball by default, which is simply approaching the ball in m
d
hovering to the ball, the robot intends to slow down and shoots the ball. This will be
described in the next section. [2, 13] describe the stealth dog in details.

 46

12.4 The Shoot Strategy

kick once it possesses the ball but based on the information about its environment, the

its shoot strategy in its approach, thus the sep between the shoot and
approach strategies becomes less distinct. Th
which kick it is using, the robot may not nee
are a number of selections for what kicks are

 Edge Turn Kick
 Variable Turn Kick
 Upenn kick
 Dive kicks

12.4.1 Edge Turn Kick

Edge turn kick is simply a modified normal walk with its front paws brought forward
to hit the ball sideways. It is not a particular powerful and accurate kick as last year
turn kick, however, when the robot is facing the edges with the ball in between, an
Upenn kick is not going to help since the robot arm can hit the edges. Hitting edges
with the arm cannot propel the ball at all and even worse damage the robot. So the

 in heading

that is not suitable for paw kick nor get

behind, then it executes edge turn kick.

One difference in the shoot strategy in this year is that the robot does not choose a

rategies. In other words the robot plans robot decides both the approach and shoot st
arating line
e major reason is that depending on
d to grab the ball to execute a kick. There
 used:

Fig 12.7 Edge turn kick

When the ball is along the side and top

edges and the robot aligned

 47

edge s kick is used to nudge thepin ball sideway. After the execution of spin kick, the
bot can then follow the attack with the edge paw kicks.

g is between -15o and 60o.
 Or if the ball is on the left edge, the robot’s heading is between 120o and

is

 If the ball is on the top right edge, the robot heading is between 70o and

 Or if the ball is on the top left edge, the robot heading is between 30o and

d

The problem of this edge turn kick is its front paws could be caught on the edges and
rn especially when it is being pushed. One possible

 f r the edge turn kick is a head swipe,
which is very strong and consistent as shown by a number of teams in the competition.
The final game video is a good visual source of this head swipe and also [13]
experiments with the head swipe.

12.4.2 Variable Turn Kick

Variable turn kicks, as mentioned in chapte
ball, turn, and followed by an Upenn kick.
fumble the ball down the field, it is used conservatively, as defined by the following
conditions:

 the ball is in the target half and not along any edges,
 the robot is facing down field, that is not in the heading from 20o to 160o.

The robot will then slow down, grab the ba and starts the turn kick routine.

ro

When the edge turn kick is going to be used, the robot decelerates upon approaching
the ball. The conditions for the edge spin kicks are as follows:

A. Side Edges.
Along the side edges, the triggers are:

 If the ball is on the right edge, the robot’s headin

195o.

B. Top Edges
It called when:

150o.

100o.

Along the bottom edges, the edge spin kick is not as defensive as get behind ball an
paw kick. So it is not used on the two bottom edges.

the robot could not even tu
improvement, or replacement to be exact, o

r 7, is implemented by first grabbing the
Since it involves ball grabbing which could

ll

 48

difference is that the

first one is used in the target half for fast

attack and latter in the own half for

conservative play.

2.4.3 Upenn Kick

Upenn kick is used is that if the
all is in the own half and with similar conditions as the variable turn kick (the robot

 scrum

hen
ers to ball and executes an Upenn or dive kick (see

ter). The default Upenn kick is called when:
n front of the robot,

 the ball is not along the edges,

Fig 12.8 Variable turn kick and get behind

ball turn kick. The

1

As already mentioned in section 12.3.2, another way
b
is heading down the field) then the robot gets behind the ball and does an Upenn kick
rather than the variable turn kick which could fumble towards the own goal in a
situation, see Fig 12.8 above.

However there are times when none of the above decisions are chosen at all. W
this is true by default the robot hov
la

 the ball is close to and i

 if the robot’s heading is between -45o and 45o for a right Upenn kick and if the
robot’s heading is between 135o and 225o for a left Upenn kick.

 49

s

hen none of the above decision criteria are satisfied the robot will does these

rd fast and in precise direction, and it
d as a default action and when:

he robot,

 the robot is not in the top corners.

Then the robot then slows down, stops in front of the ball and dive kicks the ball
forwards.

Fig 12.9 Default kick

W

default kicks when it is close in front of the ball.

For -45o to 45o, it is Upenn right.

For 45o to 135o, it is dive kick.

For 135o to 225o, it is Upenn left.

12.4.4 Dive kick

The aim of dive kick is to propel the ball forwa
does achieve this effectively. The dive kick is use

 the ball is close and in front of t
 the ball is not along any edges,

the robot’s heading is between 45o and 135o,

 50

Chapter 13

Local Robot Interactions

Local robot interactions refer to the activities of the close attacker for backing off
from and assisting the current main attacker. These decisions are primarily based on
the information provided by the vision and gps systems as they are the most up to date
information about the current environment. The attacking robot makes decisions from
the wireless team strategy information as well, though to a less extensive degree since
the information source can be intermittent due to inconsistent wireless connectivity
and the delay is significant. There are five specific results from the local level tactic,
which are:

1. to immediate back off because a visual teammate is extremely close in front.
2. to back off from the main attacker and move to the supportive position,
3. to break the symmetry using get behind ball,
. to side back off by slowing down,

 normal.

al robot interactions will be

Fig 13.1

Immediate backoff is used in the case of

extreme close teammate in front of the

4
5. to attack the ball as

The details and discussions of these five types of loc
expanded in the following sections.

13.1 Immediate Back Off

robot, it immediately takes several steps

back to prevent any contacts.

 51

When the robot de
the robot reverses

tects that there is a visual teammate in front in a very short distance,
instantly to avoid any unnecessary contacts with the teammate. This

is that these contacts could quickly
 effectiveness of the local strategy and

e attack. So this is an emergency response that should not always be triggered.

3.2 DKD Related Tactics

ssed in
 is a ray originated from the ball,

 c stem with the DKD as the reference angle and
ion behind it is to examine the robots’ positions

lative to the DKD and ball such that the players can determine among themselves
ing

ighest magnitude of the angular offset (assume
e coordinate system is from 180o to -180o) from the DKD, because intuitively it is

y to attack.

3.2

 who is the

backoff player or attacker based on

where the robots are.

In this figure, A in the bottom region

is the attacker and B in the mid

region is backoff player, because A

has the largest angular

offset and best lined up.

check is given the highest priority; the reason
build up into a scrum and affects adversely the
th

During a game it turned out that it could indeed prevent a scrum buildup and there
was no observations of two teammates simultaneously backing off from one another,
because most of the times the close supporter was behind the main attacker who was
constantly tracking the ball. Unless both robots are facing each other very close, in
which case it is logically and tactically the best solution for both robots to back off
from each other by reversing and clearing up the scrum.

1

The close interaction strategy heavily relies on the DKD which has been discu
chapter 2 in the start of this report. Since the DKD
one ould consider a polar coordinate sy
the ball as the origin. The motivat
re
who would be the best attacker. The strategy defines the attacker at the best attack
position is always the one with the h
th
lined up the best and hence the most read

Fig 1

The principle of DKD related backoff.

The surrounding space around the

ball is divided into 3 types of regions.

The strategy then decides

 52

Given the DKD coordinate system the robot then divides its surrounding space into
different regions, as demonstrated in the above diagram.

Then the decisions are made by the following criteria in the descending order of
precedence:

 If the robot is in the bottom region, but its teammate is not, then it would
 in

Fig 13.3

m

e supportive position.

 are in the bottom region, then:
 i

broadcast), it is possibly an attacker. On the other hand, if the robot cannot
see the ball but its teammate can, it be

 If the robot is closer to the ball than it ossible
attacker. Otherwise if the teammate is closer then it is a supporter.

possibly consider being an attacker. The reason why it is only possible because
the local cooperation strategy, when the robot decides to be an attacker there is
another additional check, which will be discussed soon, to make sure that its
teammate is not attacking the ball as well.

 Conversely if the teammate is in the bottom region, but the robot itself is not,
then it would become a supporter.

The upper pairs of robots represent the

first point where the robot is in the botto

region but the teammate is not. Then it

will attack (probably).

The lower pairs present the second point

where the robot is not in the bottom region

but its teammate is. In this case it will

move to th

 If both the robot and its teammate

 If the robot itself can see the ball but ts teammate cannot (from wireless

comes a supporter.
s teammate is, then it is a p

 53

 If the robot’s angular offset is larger than its teammate’s ones, then it is a
possible attacker, otherwise it is a supporter.

 If the robot’s player number is smaller than its teammate’s ones, then it is a

f the above cases is true, that is, none of the robots are in the bottom
fense.

 13.4 Symmetry breaking by getting

robots are in the bottom region, they

solve the ambiguity and break the

symmetry.

per pair show one possible case

d

.

e real attacker, the robot must check
whether a wireless message from its teamm te is available. If it is available and

 the robot finds that its teammate in the bottom region,
than 18 cm),

d
 its te

then the r wise it will still
conti e i
that the up o such

possible attacker, otherwise it is a supporter.
 If none o

region it gets behind the ball to break the symmetry and to maintain the de

Fig

behind the ball. When none of the

The up

where one robot is in the top region an

one in the middle region. The lower pair

show both robots are in the top region

Possible Attacker

Note that for a possible attacker to becom a

a

 its teammate broadcasts that it is very close to the visual ball (less
an

ammate broadcasts that it is not backing off,
obot will become a supporter rather than an attacker. Other

nu ts attack. This sanity check serves as a final warning sign to make certain
 coming attack would not cause any contacts with the teammate. N

 54

test exists

Whe he
during wh to take over the attack. This

ll,
altho

hich robot should attack.

m
decide which teammates it should take into co
need to be concerned with.

 The visual teammate with the shortest di obot and is within 1 meter
from the robot, or if both teammates hav
robot,

 The visual teammate with the largest ang
1 meter from the robot.

If neither of this is the case, then the robot wi n carry out the region division
and the list of checks stated above.

13.3 Wireless Support

Another type of local strategy comes from the teammate wireless strategy information.
The aim of relying on wireless information as opposed to visual information is that
either robot might not be able to see each othe , or even the robot has temporarily lost
the visual ball. In such cases if the teammate signals that it has the ball and the

ammate is closer to the ball, then it should support its teammate. But this kind of
ision occurs less often than the visual back off.

stimates are more

contain a significant amount of noise and can vary a lot from frame to frame. On the
and accurate which is suitable

 for the other forms of local interaction.

n t robot determines to be a supporter it moves to the supportive position
ich it is constantly facing the ball to be ready

support position depends on where the ball is. The same applies to the get behind ba
ugh the aim also includes breaking the symmetry so there is no ambiguity on

w

Which Teammate to Back Off From

But before the robot can determine the outco es from this region division, it has to

nsideration. There are two cases that

stance to the r
e roughly the same distances from the

ular offset from the DKD and is within

ll not eve

r

te
wireless support dec

13.4 Matching a Visual Teammate to Its World Model

There are a number of reasons that world model teammate e
preferable than visual information. Although visual information is up to date it can

other hand the world model information is more stable
for strategic purpose due to fewer fluctuations. Besides, the wireless strategy
information is also contained in the world model information but it is not part of the

 55

visual information. Examples of these wireless data are the teammate distance to the
visual ball, whether the teammate can see the ball and its behavioural role. Hence if

e robot tries to extract the wireless strategy information from a visual robot, it is

y
mate is closest to the visual one, and they must differ by

ss than a certain distance threshold and within a specific variance. But if it is not
her continues the tactic based on the visual

formation.

illust

Support Positioning. The 2 red dots

show the 2 possible points that the

supporter can place itself. Generally

the support positions are relative to the

he

pending

th
necessary to find the corresponding gps teammate first.

Whenever the robot considers the positions of the visual teammate and furthermore
needs any wireless strategy data, it first attempts to map the correct gps teammate b
considering which gps team
le
satisfied, the robot has no choice but rat
in

13.5 Support Positioning

The implementation of the support position has not changed from last year, as

rated by the diagram below.

Fig 13.5

ball. But in the case of a lost ball it is

relative to the teammate position if t

teammate is close by.

The L shape is designed to allow the supporter to sustain the attack if the chief
attacker loses the ball by quickly jump into the front and intercept the ball. De

 56

on which side the robot is on relative to the DKD line, it has two choices on the
support position for each ball location. On the edges it is overridden such that it does
not crash into the wall. Furthermore on the bottom quarter of the field the shape is
inverted. If it were below the ball the robot would have no space to support as well
obstruct the goalie’s view. The wider shape in the middle

as
 half is designed to allow the

pporter to cover up wider area to intercept any ball propelled down to its own half

el
hin certain variance, then it uses the teammate gps position to determine

e supportive position rather than using the ball since the gps ball can be quite

he final type of local interaction is the side back off. The situation of where the side
ng for the ball side by side, they cannot see
e ball. Their paths converge and the two

situation one of the robot should slow down

perform the visual back off.

The detection for this situation needs careful j
world model and wireless information only. It

 Recent wireless information is available.
 World model information has low varian
 Both the robots and its teammate are close to each other.
 Both the robots and its teammates can see the ball in front.

Then if the robot finds that it is further then the ball than its teammate is, it starts the
side back off. If there is no distinguishable dif istances but the robot
has a higher player number it also starts the side back off. The side back off simply
reduces the forward speed by 40%, such that t e other attacker is clearly in the front
and the robot can then back off visually to the support position. During the side back
off, the robot is still in the normal attacker mode, the only difference is at the end its

su
by opponents.

13.6 Position Based on Teammate Rather Than Ball

Additionally if the ball source is the gps ball and the robot is close to the world mod
teammate wit
th
inaccurate after a period of ball loss.

13.7 Side Back Off

T
back off is useful is when two robots runni
each other at all but only concentrate on th
robots can easily leg lock. To avoid such
and let the other teammate to attack as well as be able to see its teammate in order to

ustification though, because it relies on
 is only activated if:

ces.

ference in the d

h

forward speed is forced to decrease.

 57

Fig 13.6

When both robots are focusing on the ball, they cannot see each other and can

easily leg locked. Side backoff is useful in this case to slow down one of the robot.

 58

Chapter 14

Global Robot Interactions

Global robot interactions refer to the tactics of the long distance support role, which is
better known as the striker. The striker provides a long range support to the two
attacking forwards, in a similar manner as the close supporter provides assistance to
the main attacker. It usually stays on the side of the field opposite to where the ball
and the other teammates are.

14.1 Trigger for the Striker Role

Fig 14.1

Striker role determination. For the upper

team, the red robot is obviously furthest

away from the ball and hence it is a striker.

Fo the lower team the bottom 2 robots have

roughly the same distance to the ball. But

striker.

The assignment of the striker role is generally the robot that is furthest away from the
ball (obviously if the robot can find a teammate which is furthest away from the ball it
does not turn itself into striker because it assumes its teammate will). Each robot
determines its distance to the visual ball and broadcasts this among its teammates. But
if the teammates cannot see the visual ball, the robot will use its world model

r

the red robot is much closer to the striker

point, marked with a triangle, so it is the

 59

information about

 its teammates to estimate their distances to the ball.

 can lead to inaccurate distance
nt. This is especially true when the

bots are close to each other, in which case they cannot easily distinguish who is the

ich is relative to the ball position, and finds which robot
 closet to this point. If the robot is the closest, it becomes the striker otherwise it

robust way, there could still be seldom
o simultaneously due to various

errors. To prevent such situation the strik
strategy to explicitly inform the teamma e
robot with the highest player number wi

14.2 Positioning of the Striker

Once the robot is assigned a striker role, y.
The positioning system remains the sam ast year X positioning. In this
scheme four points are fixed on the field close to the corners of the goal boxes. These
four vantage points are connected to the centre point to form a skewed X shape, as
shown in Fig 14.2.

The striker desired position is on any poi ts along these four lines, depending on
where the ball is. It uses the left part of t AX and CX if the ball is on the
right side of the field and uses the right part of the X (BX and DX) if the ball is on the
left side, such that it can cover the field as large as possible.

To determine where on the lines the striker point is, the robot varies its y coordinate

 at a

However noises and distortions in the vision system
estimates and as a result incorrect role assignme
ro
furthest away from the ball and small errors could lead to frequent role fluctuation.

If the robot cannot tell which robot (whether itself or its teammates) is obviously
furthest away from the ball, it proceeds to a more careful judgment process. It
calculates the striker point, wh
is
leaves its teammate to take this role.

Although the checks above work together in a
occasions in which two robots declare t be strikers

er will broadcast in the wireless team
tes that it has become the striker, and only th
ll take this role if there are 2 strikers detected.

 it approaches to the striker point immediatel
e as the l

n
he X, that is

according to the ball’s y coordinate. When the striker point is below point X, the robot
is always 140 cm behind the ball in the y direction along the lines DX and EX and the
striker point is limited to the vantage points C and D as the lowest points.

Once the striker point is above point X, the robot is not staying behind the ball

 60

constant distance but decreases linearly as the ball is moving to the top of the field. So
 striker is closer to the ball and thus more aggressive when close to the target goal.

The X positioning finding the striker

ked

oint. A,

an

be. When the striker point is below X

the robot is staying behind the ball in

l

t towards the striker
oint and turns towards the ball right on the spot. This speeds up the striker movement

the

Fig 14.2

point. The point on the lines mar

with a triangle is the striker p

B, C and D are the maximum and

minimum points that the striker c

a constant distance. While above X,

this distance starts to decrease

linearly.

Note the striker point is on the side of

the field opposite to the ball.

When the striker is moving towards the striker point, it is constantly facing the bal
such that it is always ready for attacking, although it is slow since the robot is side
walking most of the time. To solve this problem the new implementation is that if the
striker point is more than 80 cm away the robot walks straigh
p
a lot.

 61

Fig 14.3

On the left the striker side walks a lot, and it is ow to move to a new striker position.

But if the striker turns before and after the m ve, then it can run on a straighter

path and it is faster, as illustrated on the righ

However, it can introduce another problem whe the

all during the time it is running to the far away striker point. Hence another condition

 within 10 cm of the striker point it stays there until the striker point has shifted
ore than 20 cm away from its current position.

sl

o

t.

re the robot is facing away from
b
is to check whether the ball is within 60o of the robot’s heading, if it is not, it will
switch back into the normal side walking fashion.

Since the striker point is calculated every frame, the new striker point tends to
oscillate from frame to frame. Therefore a hysteresis is used in the striker. When it
arrives
m

 62

Chapter 15

Bibliography

[1] Z. Wang, J. Wong, T. Tam, B Leung, M.S. Kim, J. Brooks, A. Chang, N.V. Huben,

rUNSWift Team Report 2002, http://www.cse.unsw.edu.au/~robocup/reports.phtml
[2] J. Chen, E. Chung, R. Edwards, N. Wong, Rise of the AIBOs – AIBO Revolutions

(2003 rUNSWift Team Report), http://www.cse.unsw.edu.au/~robocup/reports.phtml
[3] RoboCup Technical Committee, Sony Four Legged Football League Rule Book,

http://www.tzi.de/~roefer/Rules2004/Rules2004.pdf, May 20, 2004.
[4] T. Rofer, H.D. Burkhard, U. Duffert, J. Hoffmann, D. Gohring, M. Jungel, M. Lotzsch,

O.V. Stryk, R. Brunn, M Kallnik, M Kunz, S Petters, M Risler, M Stelzer, I Dahm, M

Wachter, K. Engel, A Osterhues, C Schumann, J. Ziegler, German Team RoboCup
2003 Report, http://www.robocup.de/germanteam/index-old.html

[5] University of Michigan and CMU, PID Control Theory,
www.engin.umich.edu/group/ctm/PID/PID.html.

[6] Homepage of the team UPennalizer, University of Pennsylvania,
/www.cis.upenn.edu/robocup/index.phphttp:/

[7] Homepage of the team NUBots, University of Newcastle,
http://robots.newcastle.edu.au/robocup.html

[8] Homepage of the OPEN-R SDK for the AIBO, Sony Corporation,
http://openr.aibo.com/openr/eng/index.php4

] J. Hoffmann, D. Gohring, Senor-Actuator-Comparison as a Basis for Collision [9
Detection for a Quadruped Robot,
http://www.robocup.de/aiboteamhumboldt/index.html, 2003.

[10] M. Lotzsch, J. Bach, H.D. Burkhard, M. Jungel, Designing Agent Behaviour with
XABSL, http://www.robocup.de/germanteam/index-old.html, 2003.

1] Kim Cuong Pham, rUNSWift Individual Report 2004, to appear.

 Traction Monitoring for Collision
Detection with Legged Robots, RoboCup 2003 Symposium, 2003.

[1
[12] Chi Kin Lam, Thesis Report on rUNSWift 2004, to appear.
[13] Ted Wong, Thesis Report on rUNSWift 2004, to appear.
[14] Derricks White, Thesis Report on rUNSWift 2004, to appear.
[15] M. Quinlan, C. Murch, R. Middleton, S. Chalup,

