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Chapter 1
Introduction

1.1: Overview

rUNSWift is a robotic soccer team established by UNSW.
In 2004, rUNSWift participated in the Sony Four—Legged Robot League
in Lisbon, Portugal and was one of the 1/4 finalists. This report
is a technical report of my RoboCup thesis. In this report, the
rUNSWift software system, theories, experimental results will be
described in details.

This report is divided into 5 chapters: /ntroduction,
Vision, Wireless and locomotion, Behavior before Australian Open,
Behavior After Australian Open. The first chapter is an overview of
this report. The second chapter describes the robot's vision. The
next chapter describes the robot's wireless and locomotion module.
The fourth chapter describes the behavior module before the 2004
RoboCup Australian Open competition. The final chapter describes
the behaviors after the competition.

1.2: Sony Four-Legged Robot League

Sony Four—Legged Robot League [1] is part of the RoboCup
competition. RoboCup is an international artificial intelligence
robotic soccer competition. The ultimate goal of RoboCup is “By
2050, develop a team of fully autonomous humanoid robots that can
win against the human world champion team in soccer. [2]” . The
technologies invented for RoboCup can be applied to our society.

In the Sony Four—Legged Robot League, robotic dogs are used to
play soccer matches. There are other leagues including: Middle Size
League, Small Size League, Humanoids League, Simulation League,
Rescue League, E-League and Junior League. Interested readers are
referred to [2].

Each Four—Legged League soccer match consists of two ten
minutes halve. Four robots in each team with one goalie. The winner



is the team who has scored the most goal. The soccer field is 4x2m
wide, it has one blue goal, one yellow goal and four beacons.
Wireless communication between the robots are allowed during the
match. All robots are autonomous, human interference is not
allowed. All the teams must use the Sony robots, physical
modifications are not allowed.

Figure 1.1: Sony Four—Legged Robot League soccer

field. (Image courtesy of Sony Four
Legged Robot Football League Rule
book) . [3]

Aiming to beat the FIFA world cup team by 2050, this year the
Sony Four—Legged League committee has modified the rules, making
the games more challenging than the previous years.

Rule modifications [4]:

e The border height has been reduced to 30cm. Cutting the border
height present vision challenges.

e This year any robot charging for another robot for over three
seconds would be taken off the field for 30 seconds, unless it is
the robot closest to the ball with no more than one robot length
apart.

e The two middle beacons have been removed. The robots have less



information about their position.

e This year all the robots are expected to reposition themselves.
Previously this was done manually.

1.3: Sony AIBO robots

In this year's competition, two Sony AIBO models — ERS—7 and
ERS—210 were participating. Previously rUNSWift used the ERS—210
robots, this year the team decided to switch to ERS—7. Refer to
[10] for more details on the ERS—210 model.

Figure 1.2: Sony ERS—210 robot (top)
and ERS—-7 robot (bottom)

The ERS—7 robot has four legs. It has a camera, its resolution
is 416 X 320 [11]. It processes 30 camera frames per second. The
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robot has three distance sensors — chest sensor, head near sensor

and head far sensor. Chest sensor allows the robot to detect
obstacles in front of the chest. The near sensor detects obstacles
with distance between 5cm to 50cm. The far sensor detects obstacles
with distance between 20cm to 150cm [11]. The robot's head has
three degrees of freedom — pan, tilt and crane.

T2 Ceasler

.

M"-:"‘ 1

=

P

Crane Tilt

Figure 1.3: Pan, tilt and crane. (Images courtesy of
Sony OPEN-R SDK Model Information for ERS—
7). [11]

rUNSWift decided to switch to the ERS—7 robots because:

ERS—=7 robots have a higher camera resolution. Hence the ERS-7

robots can see the far objects (eg: far beacons) better than the
old robots.

ERS—7 has stronger motors, they can move faster and hit the ball
further than the old model.
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ERS—7's head has three degrees of freedom, the old model has only
two degrees. Higher degrees of freedom allows smooth head
movement.

ERS—7 has a more powerful CPU than the old models. Its frame rate
is 30 frames per second while the ERS—210 can only process 25
frames per second. Faster frame rate allows the software to send

more commands to the hardware.

Major physical differences between the ERS—7 and ERS-210 are

discussed in chapter 4.

1.4: Software Architecture

1.4.1: 2003 software architecture

In 2003, rUNSWift software system was broken into five

modules, namely vision, localisation, locomotion, behavior and

wireless.

Vision

The vision module processes camera images and classify
them into color pixels. Neighbor pixels of the same color
are joined together to form a blob. Some of these blobs are
recognized as objects on the field. Recognized objects can be
used in the higher level modules — localisation and

behavior.
Localisation

The localisation module receives information from the
vision, wireless and locomotion module. The information is
analyzed and form a world model. A world model is an internal
representation of a soccer field, it contains the robot's and
other robot's current location and the ball location.

Camera images provide useful information about the robot's
self position, known as vision update. locomotion odometer
tells how far the robot has moved since the last update, known
as motion update. Information related to the teammates are
received from the wireless.

12



This year, a field edge detection algorithm allowing the
robots to localise with the field lines was invented by

[7].

Locomotion

The locomotion module receives action instructions from
the behavior module, interpret and forward them to the

hardware.
Behavior

This is the highest level module. The robot decides what
, when and where to do. The decision is depend on number of
factors such as the world model and joint values.

Wireless

The wireless module sends and receives wireless packets
from/to the teammates. It also receives wireless commands

1

from the basestation ! and the gamecontroller?®.

All the modules were written in C++.

Wireless, locomotion and vision module need to interact with
the hardware. This is done with OPEN-R [12]. OPEN-R is an
application programmer interface for the Sony robots. OPEN-R
provides a set of functions for the rUNSWift softwares to use and
interact with the hardware.

rUNSWift system was implemented by three OPEN-R objects. Each
object interacted with other objects and the environment through
the OPEN-R. The vision object included the behavior, localisation
and vision module. The actuatorcontrol object contained the
locomotion module. The wireless object contained the wireless
module. Information from the vision module passed to the
localisation and behavior module, information from the localisation
passed only to the behavior module. The behavior module
sent/received wireless teammate info through the wireless module.
It was the responsibility of the wireless module to convert the
wireless teammate info to wireless packets and also the other way

1A PC program communicate with the robots.
2A program allowing the robots to play a soccer match.
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around. The actions performed by the robot were sent from the
behavior to the locomotion. The locomotion module converted the
robot actions to motor positions.

The vision module received camera images from the camera
sensor. The wireless module sent/received wireless packets through
the OPEN-R TCP gateway. The locomotion module received odometer
update from the leg sensors. The robot performed its actions
through the leg effectors.

Vision Object ActuatorControl Object Wireless Object
Wireless Teammates
Behaviour hd
Adtions
rUNSWift Software
Vision Objects
World Madel
Vision Mation
; Objects ) update Wi
Vision ¥ Localisation  [* Locmotion Irlgss
Motar Mator Wireless
amera Image Infos Positions Commands
¥
Operating System Open-R TCP Gateway
Sensors Effectors
Hardware

Wireless Packets
Camera Image,

Matar movements
Mator Infos

Environment

Figure 1.4: 2003 rUNSWift software architecture.

1.4.2: 2004 software architecture

rUNSWift's current software architecture is similar as the
previous year. However the current system is composed of two
programming languages, C++ and Python. The low levels (wireless,
localisation, locomotion and vision) are still written in C++. The
high level (behavior) is now written both in C++ and Python. Python
offers a number of advantages over C++.

Most of the high level codes are now written in Python. Not

14



all the behavior codes are ported into Python due to limited
development time. rUNSWift started to port the behavior from C++ to
Python after the Australian Open, two months before the world open
begun.

Python behaviors receive vision, wireless, locomotion and
localisation information from the C++ modules. After it processes
the information, it sends the action instructions and wireless
commands back to the C++ modules. Refer to section 5.4 for more
details.

This year rUNSWift had decided to switch from TCP wireless to
UDP wireless, refer to section 3.4.1 for more details.

Vision Object ActuatorControl Object Wireless Object
Python - Wireless Teammates
Ct+ Adtions
rUNSWift
Software "
Vision Objects
World Mode|
Vision Mation
Objete . edate i Wirless
Ctt Vision * Locdlisation  [* Locmotion
Motor Mator Wireless
amera Image Infos Positions Commands
Operating System Open-R upP
Sensors Effectors
Hardware
Wireless Packets
Camard [mage; Motor movernents
Matar Infas
3
Environment

Figure 1.5: 2004 rUNSWift software architecture,
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1.5: rUNSWift software terminologies

This section describes rUNSWift's terminologies briefly. The
terminologies are used in the later chapters.

Far beacons

Target

(:) Goal (:)

180 degrees 0 degrees

()

) )

Own Goal

Close beacons

Figure 1.6: Global heading and beacons.

The direction a robot is facing is known as heading. Global
heading is relative to the soccer field, zero global heading is the
direction pointing toward the right hand side of the field as
depicted in figure 1.6. The two beacons closest to the own goal are
known as close beacons. The two beacons closest to the target goal
are known as far beacons.
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Chapter 2
Vision
2.1: Introduction

rUNSWift robots capture images known as cplane from their
camera. The images taken contain a number of pixels. Each pixel has
a YUV component. The YUV component is translated to a color by a
color table. Hence each pixel is associated with a color. There are
13 different colors:

e Orange

e Beacon blue
e Beacon green
e Beacon yellow
e Beacon pink
e Robot blue

e Robot red

e Field green
e Robot grey

e White

e Black

e Field line

e Field border

Vertically connected identical color pixels are Jjoined and
formed as a segment, this process is known as color segmentation.
The segments are then passed to the blob algorithm. The role of the
blob algorithm is to merge identical color segments horizontally,
known as blob. The output of the blob algorithm is a number of
blobs.

17



Pixel . Segment

Blob

Figure 2.1: Pixels, segments, blobs and CPlane.

The blobs are recognized as objects on the field by the object
recognition. Unfortunately sometimes the object recognition
recognizes fake objects, they must be discarded, this is done in
the sanity check module. Objects which have passed the sanity check
module can be used in the localisation and behavior.

The details of the color calibration, object recognition and

sanity check can be found in [5] and [8]. In the following
sections, the blob algorithm is described in details.

l Camera image

Lookup table

Colour pixels

Colour
Segmentation

Segments
-

Blob algorithm

Blobs

r

Object
recognition

Fake and
+ real objects

Sanity checks

l Feal objects

To localisation and behavicur module

Figure z.2: Block diagram of the vision module
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2.2: 2003 blob algorithm

In the 2003 rUNSWrift report the students stated that the blob
algorithm was buggy (page 26 of [13]). They believed the algorithm
was incorrect because sometimes not all the connected orange pixels
were recognized as a orange ball.

However this is a misunderstanding, the blob algorithm was
correct but some minor rounding off errors on the cplane made the
blob display on the cplane look incorrect. The bug has been fixed.
Furthermore a new blob algorithm has been written, replacing the
blob old algorithm.

The old blob algorithm scans segments from the top to bottom
row, left to right each row. During the scan the algorithm compares
each segment with all the segments on the previous row and merge
them if they overlap. Overlap occurs when two identical color
segments are connected vertically, see figure 2.3.

Segment 1: Colour A

Segment 2: Colour A

Segment 1 and 2 are overlapping. They are connected and they have the same colour,

Segment 1: Colour A

Segment 2; Colour &

Segment 1 and 2 are overlapping. They are connected and they have the same colour,

Segment 1: Colour A

Segment 2: Colour B

Segment 1 and 2 are not overlapping. They are connected but they don't have the same colour,

Figure 2.3: Overlap examples

If the segment being scanned has no overlap, no action is

taken. If it has an overlap, then:
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e Overlap case one: It is not Jjoined previously
e Overlap case two: It is Jjoined previously

Lets take an example, look at figure 2.4 for the first overlap
case. Three segments on row y — 1 are connected with segment A.
However only one segment — segment B has the same color as segment
A. Hence the blob algorithm merges segment A with blob BC. Segment

A is not joined with any other segments previously.

y-3 Colour C

y-2 Segment C: Colour A

y-1 Colour C Colour B | SegmentB: Eolour A Colour C
¥ Colour C | Segment A‘:*ColourA

The blob algorithm is processing segment & and comparing
it with segment B

Figure 2. 4: Case one. Segment A joins with segment B. Segment A hasn't joined with any other segment previously.

Lets take an example of the second overlap case. Assume we
have a segment plane like in figure 2.5. Since the blob algorithm
scans segments from left to right, the algorithm joins segment A

and C before it Jjoins segment A and B.

y-3 Segment F: Colour A

y-2 SE%Ei:tAG: Segment D: Colour &

y-1 SéggﬁpE&H: Colour C Seggrlwsgrtf: Colour C |Segment E: Colour A|Colour C S%gorroeur;tAE:
o [ e T s seamenca,cooura

The blob algorithm is processing segment A and comparing
it with segment B

Figure 2.5: Case two. Segment A joins with segment B, Before they are merged, segment A has
already mergd with segment C since the blob algorithm scans segments from left to right.

The merging process for the first overlap case is simple and
fast. The blob algorithm simply joins the two overlapped segments.
For example in figure 2.4, the algorithm joins segment A and B and
update their information such as the blob number. Only segment A

20



and B need to be processed.

However the merging process for the second overlap case is
more complicate and slow. The algorithm has to go through all the
segments on the previous row beginning with the overlapped previous
row segment. The algorithm also needs to go through all the
segments on the current scanning row starting from the first
segment to the segment before the segment being scanned. For
example in figure 2.5, before segment A and B are joined, segment B
is already Jjoined with segment D, E, F, G, H and I — blob BDEFGHI.
The blob algorithm firstly needs to scan all segments from segment
B to E, in the example three segments need to scan. Since segment B
and E are parts of the blob BDEFGHI, they are Jjoined with segment A
and their information is updated accordingly. Segment E must be
processed because there may be a color A segment such as segment J
which overlaps with segment E. Segment J must be able to merged
with segment A when the algorithm merges segment E and J. The next
step is scan all the segments from segment I to K, in the example
two segments (I and K) need to scan. Since segment I belongs to the
blob BDEFGHI, it is joined with segment A. Overall the merging

process takes five comparisons.

This algorithm always produce the correct result but it is
slow. The algorithm is slow because it needs to scan many segments
during the second overlap merging, some of those are scanned
multiple times. The worse running time occurs when the camera image
is noisy. The algorithm needs to scan many small and meaningless
pixels. The running time for the first overlap case is 0(1), the
second overlap case is O(w), and the overall algorithm running time
is hwO(w), where h is the height of the cplane and w is the width
of the cplane.
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/*

*/

Copyright 2004 The University of New South Wales (UNSW) and
National ICT Australia (NICTA). This file is part of the 2004
team rUNSWift RoboCup entry. You may redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version as modified
below. As the original licensors, we add the followin
conditions to that license: In paragraph 2.b), the phrase
"distribute or publish" should be interpreted to include entry
into a competition, and hence the source of any derived work
entered into a competition must be made available to all parties
involved in that competition under the terms of this license.

In addition, if the authors of a derived work publish any
conference proceedings, Jjournal articles or other academic
papers describing that derived work, then appropriate academic
citations to the original work must be included in that
publication. This rUNSWift source is distributed in the hope
that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more
details. You should have received a copy of the GNU General
Public License along with this source code; if not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA

void form2003BlobAlgorithm() {

// Scan all the segments from top to bottom. and left to right.
for (int y = 1: y < CPLANE HEIGHT : y++: prev_y) {

// w is the index of previous row segments.
int w = 0;

// x is the index of current row segments.
for (int x = 0: x < segmentCount[y]: x++) {

// cs is the current segment.
cs = splane.segment[y] [x]

for (i w< segmentCount[prevfy]; w++) {

// ps is previous segment.
ps = &splane.segment [prev_y] [w]:

// Overlap occurs if the segments have the same
// color and they are connected.
if (cs—>color == ps—>color && ps—>connect(cs)) {

// Overlap case one.

if (cs—>blob number == —1) {
cs—>blob _number = ps—>blob number :
blobinfo[ps—>color/ [ps—>blob _number].
Update (cs—>startiIndex, cs—>endIndex,

22



vy, cs—>length, cs—>xsum,

cs—>ysum) ;

/

// Overlap case two.
else {
updateBlob (splane.segment [prev_y/[, w
, segmentCount [prev_y] —

:

updateBlob (splane.segment/y]. 0. x):

Figure 2.6: A simplified code fragment of the 2003 blob algorithm.

2.3: Disjoint sets blob algorithm

Although the old blob algorithm is slow, its speed is still
acceptable for the ERS—210, unfortunately this is not the case for
ERS—7. ERS—7 has a higher camera resolution. Higher camera
resolution implies the blob algorithm need to process more segments
since the cplane contains more pixels. Also ERS—7 camera images are
usually noisy, these small noisy pixels have a significant impact
on the overall robot's processing power. Since blob algorithm is
the most time consuming process, if it runs slowly then the robot
may drops vision frames. Also the fact that ERS—-7 has a faster
frame rate (30 frames per second for ERS—7, 25 frames per second
for ERS—210) suggest that a new blob algorithm must be developed.
In fact rUNSWift ERS—7 robots encountered frame drops with the old
blob algorithm, usually one or two frames drop per second.

This year a new blob algorithm known as disjoint sets has been
written. The new algorithm receives the same inputs as the old
algorithm and they both generate exactly the same outputs. However
the disjoint sets blob algorithm runs much faster than the old
algorithm since the running time for the second overlap case
merging is minimised.

The idea of the disjoint sets algorithm comes from the

disjoint sets algorithm theory [14]. Disjoint set data structure
maintains a collection S = {S1,S2,...,Sk} of disjoint sets. Each
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set is represented by a representative (root), which is also a
member of the set. It doesn't matter which member is used as the
representative, but only one representative is allowed. Two common
disjoint sets implementation are link list and rooted trees. The
disjoint sets blob algorithm only uses the rooted trees. Sets are
represented by rooted trees with each node containing one member
and each tree representing one set. This implementation also
required that each node points only to its parent and each node is
contained by only one disjoint set. The root of the tree contains

the representative and is its own parent. See figure 2.7.

children

()

Representative

children children

Member Node Member Node

Figure 2.7: Disjoint sets, Each set points to its parent.
Representative's parent is itself.

There are three common disjoint sets operations:

o Make a set

Create a new set with only one node. That node is also
the representative of the set. It points to itself.

e Union two sets
This operation unites two sets. The new set is the union
of these two sets. Lets call these two sets as S1 and S2. The

representative of the union set is the representative of S1 or

S2 based on path compression heuristic. See figure 2.8.
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e Find set representative

Given a node, this operation returns a pointer to the
representative of the set containing the given node. Path
compression is applied. The running time of the tree is
correspond to its rank — lower rank translates to smaller
running time. The idea of path compression is to make each
node on the find path point directly to the root, hence reduce
the rank and “speed—up any subsequent queries on the find
path” . [15].

2 D
oy Union
|

&
<oy X

Figure 2.8: Two disjoint sets are unioned. The new representative is
either & or D, in this case D is selected.



Path Compression.

Path finding for node A.

Figure 2.9 : Path compression. All the nodes on the find path from node A

Node A to the root are made pointing directly the root.

O-0-0->

Fach node maintains a rank which is an upper bound on the
height of the node. When two sets are merged, the root with smaller
rank is made to point to the root with larger rank, this technique
is known as union by rank. For example in figure 2.8, node A's rank
is two and node D's rank is one. node D is the root of the union
set while node A points to node D. Union by rank minimises the
algorithm running time [15].

The running time of creating a set is 0(1), finding a root is
0(logn) and unioning two sets is 0(logn), where n is the total
number of nodes [29].

In the disjoint sets blob algorithm:

segment = node
blob = set

The disjoint set blob algorithm uses the disjoint sets
theories to merge overlap segments. Similarly as the old algorithm,
the new algorithm scans segments from the top to bottom row, left
to right each row. During the scan the algorithm compares each
segment with all the segments on the previous row and merge them if

they overlap. The overlap conditions are same as the old algorithm.

The differences come when the algorithm attempts to merge
segments. Lets follow an example to see how the disjoint sets
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algorithm merges segments for the first overlap case section. Refer
to figure 2.4. A set with only segment A is created by the make set
operation, the root is segment A and it points to itself, lets call
this set as S(A). This set is merged (union) with S(BC) which
contains segment B and C. The union operation needs to know the
root of S(A) and S(BC). The root of S(A) and S(BC) can be found by
the find set representative operation — given segment A and B. Path
compression applies. Lets assume the roots are segment A and B. The
union operation compares the rank of segment A and B. Since segment
A has a rank of one while segment B has a rank of two, segment A is
made to point to segment B (union by rank). Segment B is the root
of S(ABC). See figure 2.10.

I '

Union (Merge)

Segment B

O~

Figure 2.10: First overlap case merging by the disjoint sets blob algorithm. Correspond to figure 2.4,

Similar techniques apply to the second overlap case. Refer to
figure 2,11. Since segment A belongs to set AC, the disjoint sets
blob algorithm unions set AC with S(BDEFGHI). The root of S(AC) and
S(BDEFGHI) are found by the find set representative operation —
given segment A and B. Path compression applies. Lets assume the
roots are segment A and segment F. The union operation compares the
rank of segment A and segment F. Since segment F has a higher rank,
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segment A is made to point to segment F (union by rank). Segment F
is the root of the new union set. See figure 2.11.
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Figure 2.11: Second overlap case merging by the disjoint sets algorithm. Correspond to figure 2.5.
Path compression applies to the find path segment B -> segment G -> segment H -> segment F.

Basically the operations required for the first and second
overlap cases are identical. Disjoint sets blob algorithm is fast
because the running time for the second overlap case is
significantly improved. Only the roots need to be found, once they
are found, one of them is made to point to the other. Finding the
root is a fast operation because the height of the tree is usually
small due to the path compression heuristic. In figure 2.11, only
4 comparisons are required by the disjoint sets algorithm (find—set
operations), in contrast to 5 comparisons are required by the old
blob algorithm. In the new blob algorithm, only the root is

important and give information about the set.

The running time of the disjoint set algorithm is O(mlogn),
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where m is the total number of make—set, union and find—set
operations and n is the total number of make—set operations. n is
equal to the total number of segments, in the worse case it is hw
where h is the height of the cplane and w is the width of the
cplane [29].

/*
Copyright 2004 The University of New South Wales (UNSW) and
National ICT Australia (NICTA). This file is part of the 2004
team rUNSWift RoboCup entry. You may redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version as modified
below. As the original licensors, we add the followin
conditions to that license: In paragraph 2.b), the phrase
"distribute or publish" should be interpreted to include entry
into a competition, and hence the source of any derived work
entered into a competition must be made available to all parties
involved in that competition under the terms of this license.
In addition, if the authors of a derived work publish any
conference proceedings, Jjournal articles or other academic
papers describing that derived work, then appropriate academic
citations to the original work must be included in that
publication. This rUNSWift source is distributed in the hope
that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more
details. You should have received a copy of the GNU General
Public License along with this source code; if not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA

*/

// Merge two sets — set x and set y.

inline void Merge (RunLengthInfo *x, RunLengthInfo *y) {
Link (Find _Set (x), Find_Set(y));

}

// Link set x and set y based on union by rank.
inline void Link (RunLengthInfo *x, RunLengthInfo *y) {
if (x->rank > y->rank) {
y—>nextSeg = x;

}
else {
X—>nextSeqg = y;
if (x->rank == y->rank)
y—>rank++;
}
}
// Find the root given a node in the set. Path compression
// applies.
RunLengthInfo *Find_Set (RunLengthInfo *node) {
RunLengthInfo *root = cs;
while (root != root->nextSeqg){
root = root—->nextSeg;
}
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while (cs != root){
RunLengthInfo *temp = cs->nextSeg;
cs —>nextSeg = root;
cs = temp;

return root;

Figure 2.12: Code fragment of : union (merge), link (union by rank)
And find-set (path compression apply).

void jointSegments () {

// Get the root of the current and previous segment.
// cs is the current segment.

// ps is the previous segment.

RunLengthInfo *csRoot = Find_Set (cs);

RunLengthInfo *psRoot = Find_ Set (ps);

// Overlap occurs 1f the roots have same color and the

// segments are connected. If the roots are identical then

// they have at least one pixel overlap.

if (csRoot->color == psRoot->color && csRoot != psRoot &&
ps—>overlaps(cs)) {

// If the current segment 1s not joined previously.
// First overlap case.
if (csRoot->blob_number == -1) {

// Copy the blob number from the previous segment.
csRoot—->blob_number = psRoot->blob_number;

// Merge both segments in a single disjoint set.
Link (csRoot, psRoot);

// Update information.

blobinfo[psRoot->color] [psRoot->blob_number].
Update

(cs—>rawColor, cs->startIndex, cs—>endIndex, row,
cs—->length, cs—->xsum, cs->ysum);

// Second overlap case.
} else {

// Merge the disjoint sets.
Link (csRoot, psRoot);

// Find the root of the new disjoint set.
RunLengthInfo *root = Find_Set (ps);

// This new root is assigned the blob number from
// the previous segment.
root—->blob_number = psRoot->blob_number;
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Figure 2.13: Simplified code fragment of the disjoint sets
blob algorithm.

2.4: Performance

Three images were taken for comparison between the old and new
blob algorithm. The first image has few noise and few segments. The
second image has some noises and more segments. The third image is
extremely noisy and over hundreds of segments. Clearly the first
image requires the least processing power, the second image
requires more, the third image requires the most. See figure 2.14,
2.15 and 2.16. Their running times are reported in figure 2.17,

2.18 and 2.19. This experiment was tested with the offvision
software '. Since the offvision is not totally reliable, the

experiment was done five times.

OffVision Debug

Figure 2.14: A simple camera image.

1Execute the vision module with a PC. Refer to [10] for more details.

31



Figure 2.15: A camera image with some noises.

D 1 3?’:&.

Figure 2.16: A complicated and noisy camera image.

32



Average
01d algorithm 436 447 430 437 442  438.4
New algorithm 438 436 426 428 431 431.8

1.51 (2dp) % improvement

Figure 2.17: Blob algorithm running time in ms of
figure 2.14.

Average
01d algorithm 781 730 778 788 775 770.4
New algorithm 606 650 699 599 595 629.8

18.25 (2dp) % improvement

Figure 2.18: Blob algorithm running time in ms of
figure 2.15.

Average
01d algorithm 2741 2752 2747 2754 2741 2747
New algorithm 1467 1470 1499 1469 1589 1498.8

45.44 (2dp) % improvement

Figure 2.19: Blob algorithm running time in ms of
figure 2.16.
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Figure 2.20: Running time of the old and new blob
algorithm.

Clearly the disjoint sets blob algorithm runs faster than the
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old blob algorithm. The actual improvement is depend on the quality
of the camera image — good quality, little improvement and poor
quality, significant improvement. Complex images contain more
second overlap cases than simple images, hence the disjoint sets
improvement becomes more significant (45.44% for figure 2.16). In
figure 2.14 only few second overlap cases occur, since the old and
new algorithm have identical running time for the first overlap

case, not much improvements are made (1.51%).

2.5: Eight—side merging

Sometimes few pixels miss from the distortion. Since the blob
algorithm only merge pixels vertically/horizontally, an object with
few missing pixels may not be recognized.

Colour &

Colour A Distorted Colour &

pixel K

L

Colour A

Originally Colour A

Figure 2.21: A distored pixel causes the object not recognised.

Merge pixels vertically and horizontally is known as four—side
merging. From observations sometimes the object may still be
recognized if pixels are merged diagonally, such as in figure 2.20.
Some experiments were tried with eight—side merging. Eight—side
merging merges pixels vertically, horizontally and diagonally, only
the overlap condition need to be changed.

However eight—sided merging is not used in the competition. It
is only useful for the robot recognition [5] so the algorithm
should be able to differentiate between colors. Due to limited time
it is not implemented.
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2.6: Future development

Eight—side merging with color differentiating may be tried in
the future. It should improve the robot recognition which is
currently not very good. The object recognition may be benefit from
blobbing certain colors eight—way and others four—way, it was tried
unsuccessfully this year, for more details refer to Jing Xu's
thesis [8].
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Chapter 3
Locomotion and Wireless

Section 3.1 to 3.3 present an overview of the previous and
current locomotion module. I did not write any of the locomotion
codes, but I need to understand the concepts in order to integrate
them with the behaviors.

3.1: Locomotion overview

Locomotion module receives action instructions from the
behavior module, buffer it and forward the instructions to the
hardware through OPEN-R.

There are a number of walk types that a robot can have, the
difference is the synchronization between the legs. For example a
robot can walk by moving one leg at a time known as crawl walk
[17] . From experiments, a robot walks fastest when its diagonally
opposite legs 1ift up while the other pair must stay on the ground.

The robot walks by defining locus for each feet to trace out.
The robot's speed is depend on the shape of its walk locus.

A step is finished when a feet completes one cycle of locus.
The feet can only change direction at the end of a half step.

Wallk direction

Forward
F Y

XL

L 2

Figure 3.1: Walk locus. The feet traces the
points on the walk locus. The
three walk components are
shown.
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The robot has three walking components: forward, left and
turn. The forward component allows the robots to move forward and
backward. The left component allows the robots to move sideway. The
turn component allows the robots to turn on the spot. The robot's
movement is the combination of forward, left and turn component.
Most of the walk types allow the robots to move with these three
components. See figure 3.1.

3.2: ERS—210 locomotion overview

rUNSWift had invented four walk types for the ERS-210 robots.
Each walk type defines an unique locus. They are:

3.2.1: Rectangular and Canter walk

Rectangular walk allows the robot to move in any direction but
it is slow. Canter walk is similar to rectangular walk but the
robot body moves in a sinusoidal wave pattern (page 233 of [13]).
Rectangular and canter walk type defines a rectangular locus.

Wall
Direction

Figure 3.2: Rectangular and canter walk locus.

3.2.2: Zoidal walk

Zoidal walk defines a trapezoidal walk locus. This walk type
allows the robot to move forward quickly, but it cannot turn very
well.

Walle
Direction

F 3

-

Figure 3.3: Zoidal walk locus.
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3.2.2: Offset walk

Offset walk is the fastest walk type. It allows the robot to
move forward at its maximum speed. It is a calibrated version of
the zoidal walk. The locus for the front and hind legs are slightly
different.

Interested readers are referred to [17] for more details.

Only canter walk and offset walk were used in the last year's
strategies. Offset walk was fast, it was used for walking
forward/backward and turning slowly. However, offset walk could not
turn quickly, canter walk was used when the robot needed to turn
quickly specially turning on the spot.

3.3: ERS—7 locomotion overview

None of the ERS—210 walk types could be used for the ERS—7
robots due to the physical differences. Instead better and faster
walk types were invented. This year five walk types were used in
the competition — normal walk, high gain normal walk, elliptical
walk and high gain elliptical walk.

3.3.1: Normal walk

Normal walk is a slower walk type which moves approximately 15
cm per second. It is not useful for walking forward because it is
too slow, this walk corresponds directly to the ERS—210's canter
walk. This walk type is flexible as it allows the robot to move in
any direction smoothly. Normal walk allows the robot to stop.

Normal walk's locus is same as canter walk's locus.

High gain normal walk is not really a new walk type, it is

Jjust the normal walk with high gain. The high gain version produces
a much faster walk than the low gain version.

3.3.2: Elliptical walk

Elliptical walk is a new walk type, its locus is a semi—
circle. It is a fastest walk type, much faster than the normal
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walk. Its maximum forward speed is 34cm per second. Elliptical
walk's properties are similar as the offset walk — cannot turn
quickly.

Although elliptical walk is fast it is very inflexible. It
doesn't allow the robot to move sideway and control its forward
speed. The robot always move forward/backward with its maximum
speed, so there is no way to stop the robot with elliptical walk.

High gain elliptical walk produces a much faster walk than the

low gain version.

half-step

F 3
b

half-step

Figure 3.4 Elliptical walk locus.

For more details on the normal and elliptical walk, refer to
[9] and [16].

3.3.3: Normal vs Elliptical walk

Both the normal and elliptical walk were used in the
competition. Normal Walk is handful when the robots needed to make
a large turn, move sideway or stop. Elliptical walk is useful when
the robots want to walk forward quickly or make a small turn.

In a game the robot needs to switch the walk types
dynamically. PID gains are also switched dynamically. If the
battery current is high, all the leg motors are switched into a
smaller set of PID gains to avoid battery overcurrent. When the
battery current is low, the gains are switched to high gain for
stronger and faster motion. See the section on dynamic gain
(section 5.7) for more details.
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3.4: Wireless

3.4.1: Robot communication

Previously TCP' was used for robot wireless communication.
Earlier of the year rUNSWift had a serious wireless problem with
the latest Sony TCP remote processing. For some reasons three or
more robots could not be communicated. The communication between

only two robots was fine.

In the Australian Open, UTS allowed the rUNSWift to run remote
processing with an older version of OPEN—-R. With the older OPEN-R,
the robots were able to connect to each other. The Newcastle team
[18] explained this problem to the rUNSWift team. The problem
caused by changes in remote processing in the latest OPEN-R, the
latest OPEN-R doesn't allow the robots to broadcast packets to each
other. One solution is to disable packet broadcasting, so instead
of robot A broadcasting a packet to robot B, robot C and robot D,
robot A would send the packet only to robot B, and then robot B
forward the packet to robot C, and finally robot C forward the
packet to robot D Although this method would work it is not
recommended, since it is possible that Sony will change the remote
processing method again, then future teams must re—implement the
wireless protocol. A better solution is to switch from TCP to UDP?,
so that the robots do not need to use the Sony TCP remote
processing.

After the Australian Open, the team switched the protocol from
TCP to UDP. UDP allows the robots to broadcast packets. The only
drawback of UDP is the fact that it doesn't support packet loss
recovery [19]. Fortunately this should not be a problem unless the
packet loss rate is significant. Any loss packet would be replaced
by the next received packet.

3.4.2: Wireless speed

The 2003 wireless speed was 500ms delay (page 165 of [13).

1Transmission Control Protocol. A reliable network protocol for data
transfering.
2User Datagram Protocol. A network protocol for data transferring .
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This year the speed rises to approx 10 to 100ms delay. Faster
wireless transmission allows the behavior module to place more
emphasis on wireless communication, in theory should lead to better
team cooperation.

However due to network congestion, the wireless speed in the
world open was actually worse than the previous year. This sudden
change had impacts on the robot's behavior. For example the team
cooperation was poor (section 5.13.4).

3.4.2: New gamecontroller

This year the gamecontroller has modified slightly. The new
gamecontroller allows the operator to change the team color and
change the state to the ready state. Refer to page 282 of [10] for
more details.

hal RoboCup Game Controller

TN ce l— S

) e B B

= | peewe | B
Field Player pushing (303' it L]
Play llegal defender (30) |
llegal defense (0) |
‘ Finien ‘ Obstruction (30) |
struction
++ I[} E ++ I[} E

‘ Resend ‘ Req.for Pick-up (30) |

Figure 3.5: Gamecontroller 7.2.

3.5: Kicks

3.5.1: Introduction

Kicks can be divided into two categories. The first category
includes all kicks that are simply playback of joint angles. The
second category includes all kick that involve decision making.
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First category (playback of joint angles)

¢ Lightning kick
e Front kick

e Chest push

e Dive kick

e Hand kick

e Side kick

e Head kick

Second category (kicks involve decision making)

e Dribble
e Turn kick
e Visual opponent avoidance kick

The following sections describe the first category kicks. The
second category kicks are described in the next two chapters.

3.5.2: Lightning and front kick

Lightning and front kick were invented in the year 2002. These
kicks are very powerful for the ERS—210 robots.

Lightning kick consists of two steps. In the first step, the
robot raises its front paws, bent its knees and looking down on the
ball to trap it under the robot's head. In the second step, the
robot raises its head and bring the front paws down to shoot the
ball forward. The rear legs are brought inward. See figure 3.6.
Lightning kick is a very fast kick.
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Figure 3.6: Lighting kick. (Image courtesy of
2002 UNSW RoboCup report [10])

Front kick is similar as the lightning kick. Firstly the robot
lay down on the ground, reaching its front paws forward and
spreading its rear legs outward from the body. This step allows the
robot to trap the ball with the front legs. After the ball is held,
the robot raises its front paws and lowering its head to trap the
ball. After this step is completed, the robot brings its front paws
down and shoot the ball forward. See figure 3.7.

Rear leg spread

I/] ot warad fivm body

Fromt leps
dropped on
hall, shioting
il forward

r,ﬁfﬁfw
e, £ s w1

Figure 3.7: Front kick. (Image courtesy of
2002 UNSW RoboCup report [10])
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Front kick requires that the ball is held first, otherwise it
may not execute correctly. Lightning kick requires that the ball is
held with the head by approaching it while ball tracking. Refer to
the 2002 UNSW RoboCup report for more details (page 100 of [10]).

Unfortunately lightning and front kick are not useful for the
ERS—7 robots. These kicks need a reliable ball grabbing which
cannot be achieved with the ERS—7 robots. See the next chapter for

more details.

3.5.3: Chest push

Chest push was invented in the year 2001. To begin, the robot
moves its body back, storing momentum while the paws stay in place.
When this step is completed, the robot quickly push its body
forward, move the front paws slightly backward and hit the ball

forward.

Chest push is relatively fast, but its power is limited. It
cannot hit the ball too far away. Due to the limited range, in the
year 2003 it was not used for shooting, but used for short passes
to teammate (page 239 of [13]).

Hahot body is

thirust Forward
-

()

Robot reiums
to miitial posinon
tiv regain balance

Figure 3.8: Chest push. (Image courtesy of 2002 UNSW
RoboCup report [10])
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3.5.4: Dive kick

Dive kick is invented by Pham.K.C after the Australian Open
for his RoboCup open challenge [9]. This kick is not new however,
the 2002 UNSW RoboCup report has mentioned it (page 105 of [10]).

Dive kick allows the robot diving forward, kicking the ball by
head. To begin, the robot moves its front paws forward, sliding the
paws on the ground. The head moves forward also. The back paws are
bent slightly, supporting the body. See figure 3.9. After this step
is completed, the robot returns to its initial position by diving
backward.

This kick hits the ball forward. Its power is excellent since
the robot's body weight is used. It is relatively fast. This year,
dive kick has replaced the lightning and front kick for kicking the
ball forward. Interested readers are refer to [6] and [9].

Figure 3.9: Dive Kkick.

45



3.5.5: Hand kick

There are two versions of hand kick: left and right hand kick.
Left hand kick kicks the ball approx 30 degrees to the right. Right
hand kick kicks the ball approx 30 degrees to the left.

Before hand kick can be executed, the ball must be grabbed.
After the ball is held, the robot drops down on the ground, the
front paws are reached forward and the back legs are bent to
support the robot's weight. If the robot wants to execute left hand
kick, it uses its right front paw to kick the ball to left hand
side, while raising the left front paw. When the ball is under the
left front paw, the robot quickly bring it down and hit the ball
approx 30 degrees to the right hand side. See figure 3.10.
Similarly for the right hand kick. Hand kick is only useful when
the ball is grabbed. Hand kick and sideway kick (next section) are
the only two kicks that are used after the robot has gained
possession of the ball.

Currently handkick is used after the ball grabbing and
turning. Sometimes the robot wants to turn the ball around, it runs
toward the ball, grab it, turn it and then perform a handkick to
hit the ball toward the target side. The paw the robot uses to hit
the ball is depend on the turning direction. If the robot turns
clockwise, it would execute a left hand kick. If the robot turns
anticlockwise, it would execute a right hand kick.

Hand kick is invented by Pham.K.C after the Australian Open
for his RoboCup open challenge [9].
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Figure 3.10: Hand kick. 1. Drop on the ground. 2. Hit
the ball sideway 3. Shoot the ball.

3.5.6: Sideway kick

In the 2003 RoboCup final University of Pennsylvania (UPenn)
vs rUNSWift, the UPenn team used a very powerful sideway kick [28].
Their robots were able to kick the ball past the rUNSWift robots.
Since this kick is useful, rUNSWift has adopted it this year.

Sideway kick has two versions: left and right sideway kick.

Left sideway kick allows the robots to hit the ball to the right
hand side. Right sideway kick is similar, it allows the robots to
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hit the ball to the left hand side.

Sideway kick is a very simple kick. If the robot wants to
perform a right sideway kick, it bends its right front paws while
bending and moving its rear legs slightly backward, storing
momentum. After this step is completed, the robot hits the ball
with its right front paw from the right hand side, hence hitting
the ball toward the left hand side. The left paw is moved slightly
backward and inward, supporting the robot's body. See figure 3.11.
Left sideway kick is similar.

Sideway kick is fast and powerful. The robots do not need to
lay down on the ground, so the robots can recover very quickly. It
is one of the magjor kick used by rUNSWift currently.

Currently sideway kick is used after the ball grabbing and
turning. Sometimes the robot wants to turn the ball around, it runs
toward the ball, grab it, turn it and then perform a sideway to hit
the ball toward the target side. The paw the robot uses to hit the
ball is depend on the turning direction. If the robot turns
clockwise, it executes a left sideway kick. If the robot turns
anticlockwise, it executes a right sideway kick.

Sideway kick is ported by Chan.K.C, see [6] for more details.

48



-

Figure 3.11: Right sideway kick. Left sideway kick is
similar, but the paws are changed.

3.5.7: Head kick

Head kick is a new kick developed for rUNSWift robots. There
are two versions of this kick: left head kick and right head kick.
The robots hits the ball with its head. The left head kick hits the
ball toward the left hand side relatively straight. The right head
kick hits the ball toward the right hand side relatively straight.

In the event of left head kick, the robot hits the ball from
the right hand side of the ball and hence hit the ball toward the
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left hand side. Right head kick is similar.

Since the ERS—7 robot has a larger head, longer neck and an
extra degree of head movement freedom, head kick is a very powerful
kick for the ERS—7 robots. This kick would be very useful when the
robot faces the left or right edge, if the robot faces the left
edge, right head kick would quickly hit the ball toward the target
side. Similarly for the right edge. Head kick is not just powerful,
it is also very fast, since the robot does not need to lie down on
the ground or grab the ball. This year's world champion Germany
team had used this kick very successfully in this year's
competition.

This kick was developed during the competition, and hence not
enough time to put it into the strategies. The future teams should
integrate it into the strategies.
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Figure 3.12: Left head kick. The robot moves its head to the
right hand side and then quickly pan its head
toward the left hand side and hence hit the ball

toward the left side.
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Chapter 4
Behavior before
Australian Open

The RoboCup Australian Open is an annual event where the
Australian universities compete against one another [20]. In 2004,
it was took place on April 16, 2004. The behavior had underwent
significant changes after the Australian Open. Since the behavior
before and after the Australian Open is completely different, they
are separated into two chapters. This chapter describes the
behaviors before the 2004 Australian Open. The next chapter
describes the behaviors after the 2004 Australian Open.

4.1: Behavior summary

The rUNSWift behaviors are specified in a large decision tree.
Decision tree is a hierarchy of nodes, each node makes a decision
which is based on the robot's localisation, wireless, states,
roles, and strategies. The overall team strategy is the combination
of each robot's decision tree. See section 5.3 for more details.

Due to various difficulties encountered, the decision tree and
hence the strategies used before and in the Australian Open was
based on the previous year strategies. In fact rUNSWift used the
same behavior code as the previous year, with slight modifications.
The difficulties encountered:

e Battery overcurrent
rUNSWift encountered frequent hardware crashes due to the fact
that the battery current was too high. The robots crashed too
quickly for any serious behavior development. See section 4.2
for more details.

e Unstable walk

rUNSWift could not developed a stable walk until after the
Australian Open. Everytime when a significant change occurred
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to the locomotion module, the behavior must also changed
accordingly. Only the normal walk was able to develop and
integrate successfully before the Australian Open. However
normal walk is slow. Elliptical walk which is a much faster
walk, was invented two days before the Australian Open and
hence there was not enough time to integrate this walk in the
behavior. Interested readers are referred to [9] and [16] for

more details.
e Poor vision

¢ The robot could not differentiate between the red and
orange color. It recognized the red robots as orange ball
and charged toward the red robots [8].

¢ The fact that the vision module could not distinguish
between black and blue implied the blue robots couldn't be
recognized [5][8].

e The 2003 sanity checks were broken, fake objects were
recognized [5].

e The ERS7 camera images are highly vulnerable to noise and
distortion near the edges of camera images. Hence the robot
could not recognize the beacons and other objects very
well. For example pink blobs of beacons were seen as
orange, hence recognized as the orange ball [8].

e Localisation problem

This year the two mid—field beacons have been removed, also the
height of the walls surround the field are halved. It has an
significant impact on the robot localisation because the robots
have less information and the camera images would be more
noisy. Robots frequently mislocalised near the corners.
Although the field edge detection was invented, it was
implemented successfully only after the Australian Open [7].
Very difficult to test a new strategy when the localisation was
completely mislead.

Behavior module relies heavily on the low levels, if they are

not reliable then not much behavior improvement can be done.

Unfortunately the previous year behavior codes could not be

53



used directly since there are physical differences between the ERS—
210 and ERS-7.

Due to the physical differences and other impacts, some of the
previous skills were not performing effectively this year. Those
skills were rewritten, replaced or even removed:

e Since the ERS—7 robots cannot grab the ball with their front
paws, they must use their head to grab. See section 4.3 for more
details.

e Lightning kick, front kick and turn kick were removed because
the ERS—7 robots cannot grab the ball with their paws. They were
replaced by chest push and paw kick. Chest push was executed
where previously the robot would performed lightning kick. Few
days before the Australian Open, more paw kicks were put in to
filter out the chances of any forward and lightning kicks.
Interested readers are referred to Chan.K.C's thesis report for
more details [6].

e Hover to ball was rewritten. The new hover to ball minimised the

battery current. Refer to section 5.8 for more details.

e Dribble was rewritten since the previous dribble could not grab
and turn with the ball. Dribble is a skill allowing the robots to
push the ball toward the target goal. Refer to [6] for more
details.

The fact that the two middle beacons were removed also had an
impact on the behavior. The active localise was revised and
reworked, eliminating the decisions involved the two middle
beacons. As a consequence the robots would never look for the two
middle beacons.

4.2: Battery overcurrent

4.2.1: Overview

FEarlier of the year rUNSWift had a very serious robot hardware
crash. The robots crashed so easily and so quickly that it was
virtually impossible to play a game. rUNSWift was not able to play
a single full game before the Australian Open. Essentially no robot
could survive for a full game. Most of the development time before
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the Australian Open was concentrate on only making the robots to

survive for the whole game.

4.2.2: Detail description

The robot's motors operate by drawing current from a battery.
The level of the current is determined by the hardware's
requirements. When the motors are operating quickly (ie. fast
motions), more current must be drawn. When the motors are operating

slowly (ie. slow motion), less current is required.

Battery overcurrent occurs when the OPEN-R detects that the
battery current is over a threshold. If this occur the hardware
automatically shut down the robot, protecting it for any possible
damage. The software has no control of the shut down. Since OPEN-R
is not open source, rUNSWift was not able to determine the
threshold until Sony reported it is 3900ma on its web site [21].
Sony has released the battery overcurrent code fragment, see figure
4.1 [21].

static const int OVER_CURRENT_THRESH = 3900; // 3900mA for ERS —7
static const int OVER_CURRENT_THRESH = 3000; // 3000mA for ERS —210/220

OPowerStatus pstatus:

OStatus result = OPENR::GetPowerStatus (&pstatus) ;

if (abs(pstatus.current) >= OVER_CURRENT THRESH) {
0SYSLOG1 ((osys1ogERROR, "BATTERY OVER_CURRENT")) :
Shutdown () ;

Figure 4.1: Sony OPEN-R battery overcurrent code fragment. (Code
fragment courtesy of Sony OPEN —R AIBO SDE homepage [21])

Not all the motors were responsible for the battery overflow.
The robots only automatically shut down when it was moving. In
another words only when the leg motors were moving. If the robots
remained stationary, the battery current would never overflow. Head
and other non—leg motors apparently had nothing to do with the
battery overflow.

Battery overcurrent occurred frequently, rUNSWift did not see

a single game without a robot crashed due to battery overcurrent.
Possible reasons:
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e Surface friction.

rUNSWift's 1lab has a hard surface. When the robots
walked on a hard surface, the motors experienced a strong
friction, the motors must drew more current from the battery.
This is believed to be the major reason of the battery
overcurrent since the robots would never crashed if they were
lifted up such that their legs had no contact with the ground
(ie. no surface resistance, only air resistance). In the
Australian Open, rUNSWift did not encountered any battery
overcurrent, partly because UTS's lab has a soft surface.

e Locomotion implementation

Some other teams reported that the battery overcurrent
only occurred occasionally for their robots. The Germany AIBO
team [23] stated that they did not experienced any battery
overcurrent at all, in an email sent to the RoboCup mailing
list soon after the 2004 RoboCup German Open [24]. From the
videos downloaded at [23], the AIBO robots walked faster than
the rUNSWift robots. Apparently other teams had developed
better walks. Their robots could walked faster while drawing
less battery current.

¢ OPEN-R designers

Apparently the early OPEN-R designers expected the
robots only needed to perform simple and slow motions.
Programming the robot to play RoboCup was not something that
the designers expected. In RoboCup, the robots must walk
quickly and able to withstand the forces arised by crashing
with different objects such as opponent robots.

e Heavy weight
ERS—7s is much heavier than the old models. The leg
motors must draw more current in order to move the robot. Some
kicks such as lightning and front kick require lots of power
when the robot gets up on the ground after finishing the move
since the ERS—7 is just too heavy.

e Strong motors

ERS—7 has very strong motors. Clearly stronger motors
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require more battery current.

Although ERS—210 also crashes when the current overflow,
rUNSWift did not encountered any problem. This is because the ERS—
210s are light and their motors are not as strong as ERS—7's
motors.

Although Sony had claimed the battery current overflow is the
absolute of 3900ma, the team had seen the robots survived even
though their battery current was less than —5000ma before the
release of OPEN-R 1.1.5 r2. The team also had seen the robots
crashed when their last recorded current was only slightly less
than —1000ma. Most of the time the robots crashed when their
current was less than —3000ma, rUNSWift did not see any crash when
the current stayed above —1000ma. A possible explanation is the
fact that the battery current overflow conditions are different for
the OPEN R 1.1.5 r1 and OPEN R 1.1.5 r2.

Apparently the battery current accumulate over time, the
robot's action may not have an immediate effect on the current
level. Over time, if the robot continually perform the action, the
battery current would change accordingly. For example, assume the
robot has walked forward for few minutes, its current is approx —
2500ma. Lets assume when a robot pauses, its current is approx —
1000ma. The robot suddenly pauses, in theory the current should
rise to —1000ma immediately. In fact the current would slowly rise
to —1000ma , usually in 5 to 10 seconds, sometimes more and
sometimes less. The battery current level is depend on the previous
battery current level and previous actions. The robots need some

time to cool down.

Battery current is extremely unpredictable. Different current

readings were recorded for a same series of actions.

From practical observations, apparently the OPEN-R 1.5.1 rl
(not the OPEN-R 1.5.1 r2) updates the current reading every 45 or
90 vision frame, during the interval the current reading remain
unchanged. See figure 4.2.
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Figure 4.2: OPEMN-R updates battery current reading every
45 or 90 vision frames.

4.2.3: Detecting battery overcurrent

Some experiments were tried to detect the battery current

overflow before it occurred.
o Determine the overflow threshold

Determining the overflow threshold was the very first

thing rUNSWift did. This information could be useful since it
could be used for the dynamical gain (see section 5.7).
Unfortunately rUNSWift was not able to determine it
successfully. Determining the overflow threshold was extremely
challenging if not impossible. The current reading only
updated every 45 or 90 vision frames, hence the current
reading given by the OPEN-R might not be updated. For example
if the robot performes three actions, action A, B and C.
Assume the current update takes place after action C has
completed, the current reading may be related to only action
A, or action A and B or action A and B and C. Also when

battery overflow occures, the robot immediately crashes
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leaving no information.

The fact that the battery reading is not predictable
also contributed the difficulties in determining the overflow
threshold. Sometimes a series of actions might lead to current
overflow, but sometimes it might not, even though the robot
performed the actions under the same environment (eg. same
carpet) and the battery readings were very close. An
experiment was tried, after the robot had booted up, it
repeatedly performed lightning kick. Sometimes the robot could
only do one lightning kick and crashed. Sometimes it could
survive for five or more lightning kicks. However the robot
could not survive for more than ten lightning kicks. A guess
might be related to how the current was building up. Sometimes
it builds up quickly, and sometimes it builds up slowly.
Details about how the current builds up and down is unknown.

From observations and experiments, rUNSWift estimated
the overflow threshold was somewhere between —3000ma to
—4000ma. The exact value according to Sony is +3900ma [21].

e Assume overflow occurs when OPEN-R updates the current reading

From experiments, it was found that the hardware only
shut down when OPEN-R updated the current reading which took
place every 45 or 90 vision frames. An experiment was tried —
assume overflows occurred every 45 and 90 vision frames and do
something before it occurred. This method worked in terms of
detecting the current overflow. However this approach did not
help to avoid the battery overflow as will be explained in

next section.

4.2.4: Preventing battery overcurrent

Some experiments were tried to prevent the battery overflow
occurred, unfortunately none of the method worked perfectly. Before
describing the experiments it would be a good idea to discuss how
Sony reacted to the batter overflow. The first OPEN-R version
designed for the ERS—7 robots is OPEN-R SDK ERS—7 Beta. On match,
2004, Sony released the OPEN-R SDK 1.1.5 r1 for ERS—7 and ERS—200
series. Both versions leaded to battery overcurrent. Due to the
complaints from some of the RoboCup teams [25], Sony responsed it
was possible to make the jam detection routine (ie. battery
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overcurrent) “Jess strict by creating the file “/OPEN—
R/SYSTEM/CONE/VRCOMM. CFG” and writing a single line,

“JamDetectionHighThreshold” in the file” [25]. The rUNSWift team
tried this suggestion, it certainly allowed the robots to survive
longer than originally, for example a single robot was able to
survive for the whole game with low gain normal walk. Unfortunately
it was not enough to allow all four robots to play a whole game
without crashing. Few days before the Australian Open, Sony
released the OPEN-R SDK 1.1.5 r2. Sony claimed “the high—current
detection threshold in the OPEN-R SDK 1.1.5 r2 has been changed and
ERS-7 is less likely to shut down. [26] 7 . This latest OPEN-R
allowed the robots to play a whole game without crashing.

¢ Slowing down the robots

This was done by setting a maximum speed. Before
VRCOMM.CFG was suggested by Sony, from experiments, rUNSWift
found that if the low gain normal walk was used and the
maximum speed for each walk component (forward, left and
turn) was four, the robot would not crashed unless it
performed kicks or hitted objects such as the field border.
Notice that the speed is in cm per locomotion step. After
VRCOMM.CFG was used, the maximum forward speed could be set to
seven, the maximum left and turn component could be set to
ten.

Walking slowly clearly helped to minimise the battery
current. However this approach was not used in the Australian
Open because the robots walked too slowly. The robots walked
extremely slowly when its maximum speed was four, in
particular with the low gain normal walk. Low gain normal walk
is already a very slow walk type, rUNSWift could not afford to
make the robots walk even slower. Walking slowly doesn't fit
rUNSWift's strategy which emphasis on speed and aggressive.

This approach could not prevent the battery overcurrent,
only minimised the chances it would occurred. The robots still
crashed if it performed high energy consumed kicks such as the
lightning kick or hitted other robots. In fact before VRCOMM.
CFG was introduced, even setting the maximum speed be 1 cm
per step would still resulted in battery overcurrent if the
robot crashed with other objects. Apparently when the robots
were crashing into each other known as leg stuck, the leg
motors experienced a large resistance and drew more current to

60



counter it.

Simply programming the robots to walk slowly is not a
good idea. A better idea is to walk slowly only when the
current is high, walk quickly when the current is low. This
technique is known as dynamic gain.

e Pausing the robot

As mentioned earlier battery overflow only occurs every
45 or 90 vision frames. An experiment was tried — always
paused the robot between 35" — 45" and 80" — 90™ vision
frames. The idea was to lower the battery current so that the
current would be lower than the overflow threshold when OPEN-R
was trying to determine whether it was necessary to shut down
the robot.

This experiment was unsuccessful, it gave absolutely no
improvement. Firstly the robot would paused frequently.
Secondly rUNSWift found that if the current is high, nothing
could prevent the robot to crash. Thirdly, pausing the robot
in this fashion would not have any effect on the battery
current. As mentioned earlier, the battery current is
accumulative, it depends on the previous battery current and
actions. The robots need at least few seconds to cool down.
Since ERS—7 processes 30 vision frames per second, the 10
frames pauses between 35" — 45" translate to 0.1 second.
Finally action instructions sent from the behavior to
locomotion may not execute immediately, the actions may be

buffer and execute later when the locomotion module is ready.

Pausing the robots when the battery current dropped
below a threshold was also tried. This method did not work
since rUNSWift was not able to determine the overflow
threshold (section 4.2.3). Of course rUNSWift could estimated
the threshold. Unfortunately estimating overflow threshold is
tricky. If it is too low, then the robot would never paused.
If it is too high, then the robot would paused too frequently.
It is important to note that battery overflow only occur when

the current is negative.
e Stuck detection

The robots crashed very easily if they hitted other
objects such as the opponent robots and field border. Stuck
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detection was developed to detect obstacles. See section 5.6
for more details. Stuck detection allowed the robots to detect
and evade obstacles. It could not prevent crashes due to
resistance from walking on the carpet.

e Low PID gain

ERS—7 models have two servo gains, low and high gain.
High gain gives much more powerful and fast motions but it
consumes too much power. Low gain requires much less current
than the high gain. But low gain also gives slower motions
specially it is used for the normal walk. Before and in the in
the Australian Open, low gain normal gain was the only choice
except the match against UTS . High gain normal walk would
crashed the robots too easily, even the VRCOMM.CFG file did
not help. Unfortunately before the OPEN-R SDK 1.1.5 r2 was
released, battery overcurrent could not be prevented with low

gain motions.
e Dynamic gain

A technique allowing the robots to dynamically switch
between the servo gains was invented. Refer section 5.7 for
more details.

Although dynamical gain is useful, it is useless before
the OPEN—-R SDK 1.1.5 r2 was released. This is because before
it was released even the most stable low gain normal walk

would crashed.
e VRCOMM.CFG

Although creating the VRCOMM.CFG file did not prevent
the battery overcurrent, it allowed the robots to survive much
longer than originally. Before it was released, the robots
would crashed even if they were walking very slowly (less than
10cm per second). The file allowed the robots to walk with low
gain normal walk's maximum speed (15cm per second). However
this file is not sufficient to prevent crashes due to robot
charging and high gain motions.

e Improving the locomotion module

Parts of the locomotion module was redesigned. For
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example:

e Develop an offline locomotion simulator.

e Trim the steps if the robot attempts to step too far.

e Perform binary search to find the longest reachable
step size.

These improvements were made by my rUNSWift team
members: Uther.W and Kim.C.K. Refer to Kim.C.K's project
report for more details [9].

The improvements certainly helped. Before the
improvements were made, battery current could dropped below
—5000ma. The robots could not survived for few seconds even
with the low gain normal walk. After the improvements, the
minimum current rUNSWift recorded was around —3500ma.

Unfortunately these improvements were not enough to

prevent the battery overflow.
Behavior modification

Lightning kick and forward kick are removed because
they consume too much power when the robot gets up on the
ground after finishing the move (section 4.3).

Before rUNSWift created the VRCOMM.CFG file, the robots
crashed with any combination of the walk components. In
general, movements with multiple walk components crashed more
quickly than walks with singe walk component. For example,
setting:

forward = 4

I
S

turn
left

I
(@]

(two walk components)
is more likely to crash the robots than setting:

forward = 8

|
(e}

turn
left

I
(@]

(one walk components)

After VRCOMM.CFG had been created, the robots were able
to walk one dimensionally without crashing even they hitted
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other objects. Unfortunately multiple dimensions walk still
leaded to battery overcurrent. Since the older OPEN-R
(OPEN-R SDK 1.1.5 rl) is no longer available, the two
dimensional graphs can not be reproduced. These two
dimensional graphs in figure 4.3 come from my memory, so they
may not be accurate. Given a pair of values (eg: forward = 4
and turn = 4), the robot was instructed to walk with these
values for two minutes. The pair of values were considered as
“safe” if the robot did not crashed in this two minute
interval. Shaded area marks the safe combinations. Notice that
these values assume no robot charging or hitting with any
object such as the field border.

V L
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Turn

Left

=

///////

Turn

-

Figure 4.3: Two dimensionally graphs. Shaded areas indicate
safe combinations - ie. the robot would not crashed
from battery overcurrent. The values were recorded
after VRCOMM,CFG was introducted. Motice that
these graphs may not be accurate because they
COmMe My Mmemaory.

In figure 4.3, forward plus left component did not crashed the
robot. Left plus turn combination crashed the robots more easily
than other two dimensional combinations. Turning requires the
motors to change the robot's heading and balance. Sideway walk
requires less current than turning. Walking forward requires the
least current, neither the heading nor the balance needed to be
changed. In the Australian Open, forward, turn and left components
were clipped to values within the shaded area of the graphs.
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The way the robot chasing the ball (hover to ball) was
modified to take advantage of the fact that one dimensional
movement would never crashed and eliminated the left plus turn
combination. Three dimensional movements were disabled, replaced by
two dimensional walks. See section 5.8 for more details. The
turning speed during getbehind ball was also reduced.

Modified the robot movement helped, the robots were able to
survive much longer than originally. However it could not prevent
the battery overflow specially when the robots were charging into
each others.

4.2.5: Final solution

None of the method mentioned above could prevent the battery
overcurrent. The final solution is the combination of the following
methods:

e Low gain normal walk
e [Locomotion improvements

e Behavior modifications.

Overall a single robot was able to play a whole ten minutes
game without crashing. Unfortunately a full game (ie. four robots)
still could not be played because the robot charging (leg lock)
easily crashed the robots. The team could only lasted around four
minutes. Although this year's competition has introduced the
pushing rule, it is not possible to avoid physical contact with
other robots.

Battery overflow was finally fixed by Sony's OPEN-R 1.1.5 r2
which was released few days before the Australian Open and dynamic
gain.

4.2.6: Impacts on the behavior

Battery overflow had a significant impacts on the behavior.
e Very little behavior development could be done. The strategies

and behaviors in the Australian Open were largely based on the
previous year. Too much time was spent on investigating the
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battery overflow.

e To prevent crashing, the robots were very slow. In the Australian
Open, rUNSWift was the second slowest team. The slow walking
speed was one of the major causes of failure in the Australian
Open.

¢ rUNSWift was not able to develop new kicks for the ERS-7.
Previous but now ineffective kicks must be used. For example, the
lightning kick was replaced by chest push. Chest push is not an
effective kick, its power is limited (page 146 of [13]).

4.3: Ball grabbing

4.3.1: ERS—7 ball grabbing

The ERS—210 robots are able to grab the ball with their front
paws, this is not possible with the ERS—7. ERS—7's chest is larger
than ERS—210's chest while ERS—7's paws are not longer than ERS—
210's paws. As a consequence the offset between the ERS—-7's chest
and paws is too short for grabbing the ball with the paws. All of
the previous years skills involve ball grabbing are not performing
well for the ERS—7 robots. These skills include dribble, turn kick,
visual avoidance opponent kick, lightning kick, front kick, these
kicks have been rewritten or removed this year.
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Figure 4.4: ERS—210 and ERS—7 grabbing with
their front paws. Although not
obvious here, the ERS—7 robots cannot
grab and turn the ball with its paws.

Fortunately ERS—7 robots can still grab the ball with their
front paws and head. ERS—7's head has an extra degree of freedom
(crane), the extra degree allow the robot to move its head up and
down without moving its neck. ERS—7's neck is longer than ERS—210's
neck. According to the model information specifications [11], ERS—
7's neck has a length of 80cm, while ERS—210's neck has a length of
40cm. ERS—7's head is also longer than ERS—210's head. ERS—-7's head
has a length of 76.9cm, while ERS—210's head has a length of 66.6cm
[11]. As a consequence, ERS—7 robots are able to reach and grab the
ball with their head moving forward.

Figure 4.5: ERS—7 grabs the ball with its head.
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When the robot wants to do a ball grabbing, it moves toward
the ball with hover to ball (section 5.8). When it is close to the
ball, it stops, move its front paws and head forward. When the head
is above the ball, the robot moves the head down. If the robot
wants turn with the ball, it remain its ball grabbing stance and
use the normal walk to turn on the spot.

In general ERS—7 cannot grab the ball reliability. Sometimes
the robots hit the ball with their chest or head before the ball is
grabbed, as a consequence the ball rolls out but the robots are not
awared. The ERS—210 robots would immediately know that the ball has
rolled out, because they can see the ball while holding it. Since
ERS—7 needs to move its head down for grabbing, it cannot see
anything other than the field.

Sometimes the mouth joint value and the body sensor can tell
if the ball has been grabbed successfully. When the robot moves its
head down, it opens its mouth. If the ball is below the head (ie.
successful grabbing), the mouth may not be able to open completely,
in this case checking the mouth's joint value can tell if the ball
is grabbed. Also if the ball has been grabbed successfully, it
would block the chest sensor, hence the value of the chest sensor
should be much higher. Unfortunately this technique is not totally
reliable because the readings are not consistent, but it is better
than nothing. This technique was used in this year's competition.
In this year's competition, no team could implement a perfect ball
grabbing.

4.3.2: Future development

The future teams should replace the current ball grabbing with
UTS's ball grabbing. In this year's world open, UTS robots grabbed
the ball with their mouth. Although their robots still could not
see the ball, they could see the front. This skill allowed the UTS
robots to see the opponents and target goal while holding and
moving with the ball. This skill would be very useful for visual
opponent avoidance kick (section 5.9). Interested readers are
referred to the UTS vs Germany 2004 Sony RoboCup Four—Legged League
final video [23].

The current ball turning speed need to be improved in the
future. In this year's competition, lots of teams could turn with
the ball much faster than rUNSWift.
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4.5: Turn kick

Turn kick was one of the major kick used in the last year
strategies. It is a kick that can hit the ball 90 or 180 degree.
Before the kick can be executed, the ball must be grabbed with the
front paws. If the grab is successful, the robot would turn in the
direction it wants to kick the ball. The kick is completed when the
robot releases the ball and hit it with one of its front paws.

Turn kick is a fast kick. The robot can remain in walking
stance throughout the kick, so less recovery time is required. Also
the robot doesn't need to lie down, in contrast to the lightning
and turning kick.

The time of ball release must be calibrated carefully. The
calibration involves determining when to release the ball in a step
cycle.

Figure 4.6: Turn kick. (Image courtesy of 2003 UNSW
RoboCup report [13])

More details including when turn kick was used can be found in
last year's thesis (page 209 of [13]).

Turn kick has been removed in this year's strategy. Reasons:

¢ ERS—7 robots cannot grab a ball with its front paws, hence they
cannot turn and then hit the ball.

e The time to release the ball must be calibrated again for the new
models since the locomotion module has changed. The calibration
is very time—consuming — if the ball is released too early, the
paw may miss it. If the ball is released too late, the ball may
get trapped between the paws (page 212 of [13]).
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The whole calibration process must be repeated when a
significant change occurs to the locomotion module. rUNSWift
couldn't afford to spend too much time on calibrating the turn
kick specially a stable walk was not achieved until after the
Australian Open.

Furthermore it was very difficult to calibrate when battery

overcurrent occurred frequently.

Also rUNSWift ERS—7 robots cannot turn on the spot quickly.
Turn kick would not be powerful with a slow turn.

Before the Australian Open, the strategies were based on the
previous year. Turn kick was simply subtitled by sideway kick.

The left 90 degrees turn kick was replaced by right sideway
kick and the right 90 degrees turn kick was replaced by left
sideway kick. Sideway kick was selected because this was the only
kick that could hit the ball sideway.

The 180 degrees turn kicks were replaced by sideway kick after
ball turning. The calibration process for sideway kick with ball
grabbing is easier than the calibration process for turn kick,
since only the number of frames required for turning need to be
calibrated. As long as the robot's turning speed remain unchanged,
the frames required remain unchanged.

Subtitling turn kick with sideway kick did not work too well.
Sideway kick cannot not hit the ball exactly 90 degrees to the
side. A strategy would only be effective if all the skills are
integrated carefully, simply replace a skill with another skill
would not work. But replacing turn kick with sideway kick is still
better than allowing the ERS—7 robots to perform turn kick.

After the Australian Open, a new attacker strategy was
written. Turn kick was removed in the new strategy. If the robot
wants to turn with a ball, it would perform ball grabbing with
either the handkick or sideway kick. Refer to Chan K.C's thesis
report [6] for more details.
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4.4: Australian Open performance

In the Australian Open, rUNSWift was the second slowest team.
The slow speed was one of the major failures in the Australian
Open. The fast elliptical walk was not used. Fearing of battery
overcurrent, the low gain normal walk was used in the first three
rounds of the Australian Open. However none of the robot crashed,
so the high gain normal walk was used against UTS. Surprisingly
none of the robot crashed in the match versus UTS. No robots
crashed because rUNSWift switched to the OPEN-R 1.1.5 r2 which was
released few days ago before the Australian Open.

The previous year strategies in particular the team
cooperation worked reasonably well. The ball grabbing and sidekick
also worked reasonably well. rUNSWift robots were able to grab the
ball most of the time, partly because the robots were slow. Ball
grabbing plus sidekick was able to turn and hit the kick toward the
target side reliably. However sometimes the red robots backoff from
the ball because they recognized the orange ball as its red
teammate. For more details, refer to Xu.J's thesis [8] and
Lam.C.K's thesis [5].

The robots could play better if they had a better
localisation. Often the robots mislocalised when they could only
see one beacon. The goalie had a very poor localisation, it walked
out of the goal box frequently. For more details, refer to
Whaite.D's thesis [7].

Although some of the behavior skills were reworked, the
overall strategies were not compatible for the new robots and new
rule. For example the strategies being used did not consider the
new pushing rule and ready state. The attacking speed was slow,
chest push could not hit the ball very far away and sometimes the
robot used the hover to ball when it was better to hit the ball
with paw kick, maintaining speed. Also the kicking triggers were
not tuned well, sometimes the robots did not kick the ball because
of the relatively unreliable vision. Clearly the strategies and
decision tree must be rewritten and this was done after the
Australian Open.
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Chapter 5
Behavior After
Australian Open

5.1: Overview

This year the behavior module was rewritten after the
Australian Open. Although the rewrite was time—consuming, it was
necessary:

¢ The old strategies in particular the attacker strategies are
designed for the ERS—210 robots. Simply modifying the old codes
did not work, as seen in the Australian Open. For example
integrating a new walk such as elliptical walk required the hover
to ball to be rewritten, which had a significant impact on how
the attacker approaches the ball.

e The 2004 rUNSWift team realized that maintaining the old code
would be a nightmare. The 2003 rUNSWift codes are extremely
unorganized and hard to understand. Most of the 2003 codes are
uncommented. Even they are commented, sometimes the comments Jjust
do not make any sense. Since all the 2003 rUNSWift team members
have left the team, so the new team must rewrite the codes.

e rUNSWift had only two months before the world open. To speed up
the development, rewriting the behavior with Python was
necessary.

e rUNSWift wanted to try some new strategies, such as no ball
grabbing and directional paw kick. Refer to Chan.K.C's thesis
report for more details [6].

e rUNSWift was not able to make significant behavior improvements

before the Australian Open due to battery overcurrent. After it

was fixed, the time for significant improvements came.
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5.2: Porting process

This section describes the porting process in some details.
The first step was to determine all the functions required by the
Python behaviors. After they were determined, their accesses were
given to the Python behaviors. Function requires are vision
functions (eg: ball distance), localisation functions (eg: self
position), wireless functions (eg: teammate position) and
locomotion functions (eg: the current joint values).

The team then started to port the fundamental behavior skills,
such as the ball tracking, hover to ball and active localise. Ball
tracking allows the robot to track the ball whenever it sees the
ball. The hover to ball skill is described in section 5.8.

After the fundamental skills were completed, the basic skills
were then ported. These skills include get behind ball, paw kick,
locate ball and dribble, they require the fundamental skills such
as the ball tracking, hover to ball and active localise. Get behind
ball allowing the robot to move behind the ball, facing toward the
target side. Paw kick allows the robot to kick the ball with one of
its front paw. Locate ball is a ball searching routine, the robot
spins itself to look for the ball. Dribble allows the robot to push
the ball toward the target goal. Get behind ball, paw kick and
locate ball are same as the previous year, the only difference is
that they are now written in Python, for more details refer to the
previous year thesis report [13]. The dribble has modified slightly
compared to the 2003 version, mainly the way how the robot grabs
and turns with the ball. Refer to Chan.K.C's thesis report for more
details [6].

Determining ball source and ball search were also ported into
Python. Since they are same as the previous years, interested
readers should refer to [13] for more details. Basically
determining ball sources involve deciding which ball source should
the robot choose, there are three choices: vision, wireless and
gps. In general vision ball is the best, hence if the robot can
sees the ball, it chooses the vision ball source. Otherwise the
robot choose wireless ball source if it is reliable, information
related to the wireless ball is reported from the teammates.
However if vision and wireless ball sources are not available, the
robot uses its world model to determine the ball position. Ball
search involves looking for the ball. If the ball source is vision,
then the robot simply tracks the ball with ball tracking. Otherwise
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the robot quickly looks at the position where the ball is last
seen, if the robot still cannot see the ball it tries to look at
the wireless and gps ball position. If the robot still cannot find
the see the ball, it goes into locateball routine — spin itself to
look for the ball.

The next step was to port all the kicks into Python. This was
done by allowing the Python modules to play back the predetermined
joint angles.

After all the behavior skills and kicks were completed or at
least almost completed, the team started to rewrite the higher
level behavior skills and strategies. Decision trees (section 5.3),
attack strategies, team cooperation (section 5.13), bird of prey
(section 5.10), stealth dog (section 5.5) and goalie (section 5.11)
were redesigned, modified and improved. A new player was also
written — ready player (section 5.12).

The new attacking strategies use the new designed decision
tree structure and new DKD (section 5.15). Several new strategies
have tried such as directional paw kick and no ball grabbing.
Directional paw kick allows the robot to hit the ball with its paw
from/to any direction, hence maintaining fast attacking speed.
Directional paw kick is designed to replace ball grabbing, since
ball grabbing is in general not reliable and it is slow. Refer
Chan.C.K's thesis for the new attack strategies.

Some new kicks were developed after the Australian Open, refer
to section 3.5 for more details. Few days before the world open
begun, visual opponent avoidance kick was invented, refer to

section 5.9.
During the porting process, the codes were redesigned,
modified and simplified such that the system is more manageable and

understandable than the previous years.

The following sections describe the skills and strategies in

more details.
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5.3: Decision tree

5.3.1: Introduction

The rUNSWift behaviors are specified in a large hierarchy
decision tree. A decision tree is a structure where nodes represent
tests on one or more attributes. Each node considers a number of
factors, such as robot's states, robot's world model, properties of
different objects, wireless information and joint values. The
output of a non—terminal node is an input of the next node. The
output of a terminal node defines the next set of actions to be
performed by the locomotion module. See figure 5.1.

Information from the vision,
localisation, wireless and loctmotion

Leaf node

Ycision B

Decision A

Mon-terminal

Decision A Decision B

Terminal
node

Actions
To locmotion module

Figure 5.1: rUMNSWIift behaviour hierarchy decsion tree.

5.3.2: 2003 decision tree

The 2003 decision tree was splited into three levels:
strategies, roles and skills (page 119 of [13]). See figure 5.2.
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Information from the vision,
localisation, wireless and loctmotion

Behaviour

Strategies

Beckham
strategy

Mawerick
strategy

/ \

Supporter Roles

Shoot ball Atﬂprgalfh """"
e ba Skills

Lightrning
Kick

Howver to ball

Instruction J Forward, turn and left components

r v
Locmotion

Figure 5.2 rUNSWIift 2003 behaviour hierarchy decsion tree.

The strategies level defined a number of strategies that could

be used. For example one strategy could instruct the robots to
attack the ball simultaneously. Another could instruct the robots
to defense. The strategies could change dynamically.

The roles level assigned roles to the robots. In the 2003
competition, most of the time rUNSWift assigned one forward as an
attacker, one forward as a supporter and one forward as a striker.
The roles could changed dynamically, known as dynamic role
assignment. For more details, refer to the previous year rUNSWift
thesis (page 121 of [13]).

The skills level defined a number of skills the robots could
use. This level gave instructions to the locomotion module.

76



The top two levels in the hierarchy (strategies and roles) are
flexible, dynamic and easy to maintain. However the skills level is
complicated, and hard to maintain. Apparently the rUNSWift 2003
team copied and pasted the codes, a skill could appeared several
times in the sources.

More importantly the decision trees defined in the skills
level doesn't work very well for the ERS—7 robots, for example the
shooting strategies. In 2003, the robot decided which kick it
should be used only when the ball was close and under the robot's
chin. When the ball is under the robot's chin, it decides its kick

based on the world model. See figure 5.3.

Ball under
chin?

Decide the kick
based on the
world model,

Lightning kick  Turn kick Dribble

Figure 5.3: 2003 shooting decision tree.

Unfortunately not all the kicks share the same triggers. Some
kicks are effective only when the robot is not too close to the
ball, while other kicks may only be effective when the robot gains
possession of the ball.

The 2003 decision tree had a number of lock modes. When a lock

mode is activated, it forces the robot to do a particular action,
skipping some of the decision paths. See figure 5.4.
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Is lockmode
activated?

Yes., Jump to skill A

Execute skill &

Figure 5.4 Lock mode.

Lockmodes could be useful for some high level skills such as
dribble. The dribbling process requires more than one vision frame
to execute, lockmode allows the program to “lock” the dribble
until the robot completes it.

However lockmodes are evil, they make the code very hard to
understand, debug and maintain.

5.3.3: 2004 decision tree

This year, the decision trees are partly rewritten in Python.

The strategies and roles levels remain unchanged. The strategies
level is also known as the players level. Python behavior allows
rUNSWift to create different players, each with a different
strategy.
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The decision trees in the skills level were redesigned.
Firstly skills which appeared several times in the sources were

grouped together.

Currently each kick has a different set of triggers. The
decision tree checks the triggers one after another and execute the
kick if its triggers are satisfied. See figure 5.5.

Is skill & ok? Based
on the vision, wireless
and world model.

Yes, execute skill &

Is skill B olk? Based
on the vision, wireless
and world model,

Yes, execute skill B

Figure 5.5: MNew decision tree.

The new decision tree provides flexibility. Changing the
triggers for a particular skill is easy. Previously the changes
might affect other kicks since all the kicks shared the same

triggers.

An idea involved comparing the triggers simultaneously was
also tried. Instead of comparing the triggers one after the
another, they are all compared simultaneously and the final
decision is based on how many triggers have been satisfied and the
priorities of the triggers. For example if we have four skills:
skill A, B, C and D. Skill A has the highest priority. Assume the
triggers for skill A and D are satisfied, the robot knows it could
perform skill A or skill D. Since skill A has a higher priority,
the robot performs skill A. See figure 5.6. This comparison
provides a great flexibility. This idea was implemented but not
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used in the competition, since not enough time to tune it.

Is skill A ok? Is skill B ok? Is skill C ok?

Yes Yes

Yes
4
Which skill is the i

most important? -

v

Most important skill

Figure 5.6: An experimented decision tree. Check the
triggers simultaneously.

Lockmodes were introduced because the decision tree did not
remember its previous decisions. Ideally the decision tree should
makes a decision based on its previous decisions and current
information. In theory, if the decision tree knows its previous
decisions, it should be able to repeat its previous decisions
without lockmodes. This idea was tried this year, but there was not
enough time to complete it before the competition.

While the new decision tree is more flexible and maintainable,
it is not tuned as well as the previous year due to limited
development time. The future rUNSWift teams should refine the
current decision tree.
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5.4: Python behavior

5.4.1: Python advantages

This year the behavior module was completely rewritten after
the Australian Open with Python. Previously it was written in C++.

C++ is a general purpose object—oriented programming language
[30]. It compiles the C++ codes directly into a form that the
machine can understand such as assembly language or binary code.
Unfortunately all the C++ codes must be recompiled everytime a
change occurs. This process is slow, the compile process often
takes for few minutes. The programmer must patiently wait for the
compile process to finish before the code can be transferred to a
memory stick and a robot. If the programmer wantes to change
something again, for example changing a constant, the robot must be
shut down and all the C++ codes must be recompiled again.

Too much time is wasted for compiling C++ codes, it would be a
better idea to use those time for actual code development. rUNSWift
had only two months to prepare for the world open after the
Australian Open, Python was introduced for speeding up the code
development.

Python is an object—oriented scripting language. Because
Python is interpreted, Python modules are loaded and reloaded
dynamically, when imported by a running program [31]. Reloading
allows a programmer to change parts of running programs without
stopping.

This year rUNSWift decided to replace the high level
(behavior) C++ code with Python. Python is selected because:

e Dynamic Reload

Python allows a programmer to modify the behavior
dynamically. When the behavior need to be modified the
programmer sends the modified Python code to the robot by ftp.
The Python interpreter dynamically reloads the new code. It is
not necessary to recompile the Python code, also the robot
doesn't need to be shut down while reloading. Development
speed significantly improve with dynamic reload. Python allows
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rUNSWift to modify the strategies dynamically.

rUNSWift has developed a tool known as SimpleRobotCommander
to transfer the Python codes to the robot dynamically, see figure
5.7.

fad Simple Robo-Commander (c) rUNSWift 2004

Commands ‘Ie\ne[ }Tonls ‘Ey[hnn ‘erug I FTP I

Commander
" j | Send
L] - %.999093 5 - 30003 CPS B

Aves : Pl - 10326us, gps - 1254us, b - 677us current=-984
(1) - 5.008203 s - 29.950863 cps

Aves : PI - 10308us, gps - 1253us, b - 660us current=-964
(1) - 5.008730 s - 29.947711 cps

Aves : Pl - 10326us, gps - 1288us, b - 691us cument=-970
(1) - 4.999479 s - 30.003126 cps

Aves : Pl - 10312us, gps - 1226us, b - 68lus curent=-965
(1) - 4.975636 s - 29.945920 cps

Aves : Pl - 10327us, gps - 1265us, b - 692us cument=-968
(1) - 4.999873 s - 30.000762 cps

Aves : Pl - 10312us, gps - 1270us, b - 690us current=-973
(1) - 9.465898 s - 11.620662 cps

Aves : Pl - 15155us, gps - 1671us, b - 49802us current=-1311
(1) - 0.631575 s - 15.833432 cps

Aves : Pl - 33650us, gps - 3103us, b - 25519us current=-1311
(1) - 4.964327 s - 19.337969 cps

Aves : Pl - 16712us, gps - 9204us, b - 25117us current=-959
(1) - 5.035811 s - 17.673419 cps

Aves : Pl - 18516us, gps - 12156us, b - 25272us current=-947
(1) - 4.980179 s - 17.268456 cps

Aves : Pl - 17612us, gps - 14561us, b - 25116us curent=-1365
(1) - 4.946050 s - 17.387612 cps

Aves : Pl - 17523us, gps - 14663us, b - 24676us current=-1438

Z|
P [o000 Listen
Port |SE)OS Disconnect

Control Panel

Display CPlane ‘ Shew Joint Debugger | Show Walk Leamer

Display WorldModel ‘ Calibrater Info | Help

@ = :‘iroot@dhcppci ~ftrunk/base|[_]Simple Robo-Commander (¢|:§  PyBehaviours - Eric | ? {L__) Mon Aug 23, 12:53 PM

Figure 5.7: SimpleRobotCommander.

Robot crash

Before Python was introduced debugging software crashe was
not easy. If a C++ program crashes, the robot also crashes, hence
the programmer may not able to spot the bugs quickly. Crashing
Tool developed by Griff University is able to report a stack of
functions and assembly codes [34]. However it is not able to
report the line the robot has crashed. Also this tool usually
generates more than one stacks, they must be all examined.

Since Python programs are controlled by an interpreter, the

robot would not crash when the software crashes. Instead the
interpreter reports useful information about the crash including
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a stack of functions and lines including the line the robot has

crashed from telnet. The programmer can simply examine the stack,
modify the code, transfer the code to the robot with ftp and
dynamically reload it. No need for recompiling or shut down the

robot. Debugging Python programs is much easier than debugging

C++ programs.

lad . Simple Robo-Commander, (c) rUNSWift 2004

Commands | Tenet | Tools | Bython | Debug | FTP |

P [192.168.0.100 Pot 59000 Connect
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Traceback (most recent call last)
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File "/MS/PyCode/Debug.py”, line 88, in goAndMakeTraceBack
zero[0] = 0
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Debug.goAndMakeTraceBack()
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Figure 5.8: Python stack.

e Dynamically evaluating variables and expression

Variables and expressions can be dynamically evaluated with
Python. No need to modify or recompile the codes, simply enter the

variables or expressions in SimpleRobotCommander, dynamically

reload is not necessary.
For example given a very simple Python function below:

def function:
variableA = 1
variableB = 2
variableA = variableA + variable B
7 What is the value of variableA now?
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If the programmer wants to know the value of variableA after
the calculations, the programmer can modify the code and

dynamically reload it.

def function:
variableA = 1
variableB = 2
variableA = variableA + variable B
Z Output the value of variable/

Print variableA

However the reloading process takes time — time for ftp
transfer plus time for Python to reload. It would be much better to
evaluate the variableA with SimpleRobotCommander like in figure

5.9, no code change involve.

Python Debugger

Expression |var1'ableA j

Evaluate | eXecute |

Evaluation Result

3

Clear

Base station Debugging

bDebugMessaging j True

Figure 5.9: SimpleRobotCommander dynamically
evaluating variable.

e Dynamically executing functions
Python functions can be dynamically executed. If a programmer

wants to execute a function, instead of modifying the code, the
function can be executed directly with SimpleRobotCommander.
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e Maintainable

Python code is typically 1/3 to 1/5 the size of equivalent

C++ code. Python code is pseudo—code, it is easy to lean and
maintainable than C++ codes [27], very important for rUNSWift

since the team members change every year.

Currently the Python behavior receives information from the

vision, localisation, locomotion and wireless modules, all written

in C++. Python behaviors process the information in a decision tree

and decide what would be the next action. The action is sent to the

hardware through the locomotion module. Python behavior also sends

wireless commands through the wireless module.

L y

Python behaviourl

Py

thon interpretor

. | N W
C++ wision |C++ localisation C++ wireless

c Y+ locmotion

Figure 5.10: Relationship between python behaviour
and low level modules written in C++.

5.4.2: Python disadvantages

Because Python codes are not compiled into assembly or machine

code, they are processed by a Python interpreter, the execution

speed is slower than C++ codes. Refer to [27] for more details.

Also information from low level modules need to pass the Python

interpreter, this information passing is slow.

Currently rUNSWift encounters occasional frame dropping. Even

the improvements give by the disjoint sets blob algorithm (chapter

2) is not sufficient to allow the robot to execute Python behavior

at full frame rate. C++ behaviors can be executed at full frame

rate.
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An experiment involved comparing the running time of vision,
localisation, C++ behavior and Python behavior was tried.
See figure 3.10 for the result. During the experiment, a robot was
put onto the field for playing. It executed the C++ behavior which
was used in the 2004 Australian Open. After the C++ behavior was
finished, it executed the Python behavior which was used in the
2004 RoboCup world open. The execution times were recorded.

Funning Time of each module
2290
20000
25000
220
20000
1790
g
1290
loooo
Fga —
f=ile )
251 -

) []Pﬁhm Behaviour
| G4+ Behaviour
.Localisation

[JYision

ms

17805ms
3137m=
1071ns
6901ms

Frame number (30 samples) Average vision
Average localisation
Average C++ behaviour
Awverage Python behaviour

Figure 5.11: Running time of the modules.

Notice that behavior modules were executing almost constantly.
This is because the decision tree has a constant running time.
Behavior's running time is relatively independent of other modules.

The running time of vision module is depend on the camera
image — as the image becomes more complex and noisy, the running
time increases. The camera images in the experiment were medium
quality. As seen in the figure, vision is the slowest module.
Python behavior is the second slowest module, while the C++
behavior is the fastest module. As seen in the figure, Python
behavior executes much slower than C++ behaviors (6901/1071 =
551%) .

5.4.3: Conclusion and discussion

Python behaviors worked very well this year. rUNSWift was able
to improve the system significantly in only two months after the
Australian Open and before the world open. Lots of skills were
written and invented in Python. The development speed with Python
was much faster than with C++.
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Currently a small parts of the behavior is still in C++
because the team didn't have time to port it into Python. The
future teams will probably port the whole behavior module into
Python.

However Python is slow — approx 5 times slower than C++.
While behavior will probably stay in Python in the future, Python

is not recommended for other modules in particular the vision.

The future teams definitely need to do something to cut down

the current execution time. There are two possible solutions:

e Reduce vision's execution time. The vision will probably be
rewritten in 2005. The next year team may need to reimplement and
improve the color segmentation and blob algorithm, which
contribute most of the vision execution time.

e Currently the low level information is passed to Python
individually. Information passing is slow, it would be a better

idea to pass all the required information simultaneously. See
figure 5.12.

Python behaviour

P

Information A  Information B Information C

Python behaviour

T

Information A, B and C

Figure 5.12: Different ways to pass information
from C++ to Python.
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5.5: Stealth dog

5.5.1: Overview

Stealth dog is an important skill. It allows the robots to
take a curve path avoiding opponent robots. This skill is very
useful for ball chasing when the opponents are in the way. Our
robot doesn't want to charge the opponent and taken off the field
for thirty seconds (pushing rule). A better idea is to walk past
the opponents and attempt to reach the ball before the opponents.

5.5.2: 2003 stealth dog

Obviously taking a curve path toward the ball is slower than
walking straight to the ball. Stealth dog should only be used when
it is not possible or too difficult to reach the ball by walking
straight to the ball.

In the previous strategy stealth dog was activated when:

e The robot could see the ball and it was far away. If the robot
could see the ball, it would performed ball searching. If the
ball distance was close, then there might not be enough time for
the robot to follow a curve path and still be able to reach the
ball before the opponent. In this case the robot should walked
straight toward the ball and fought with the opponents.

e At least one opponent must be visible. The idea of stealth dog is
to walk past the opponents. If only the teammates were seen, then
the robot should backoff and allowed the teammates to gain
possession of the ball.

¢ The robot drew a curved locus before stealth dog was activated.
Stealth dog was activated only when the robot believed the locus
would not hit an edge and hence slowing down the robot's

movement.

e The opponent was closer to us than the ball is. If our robot was
closer, then there was no point to follow a longer path. Simply
walking straight toward the ball and gaining the control of the
ball before the opponent.
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e The opponent had not controlled the ball. If the opponent had
controlled the ball, instead of following a long curve path, a
better idea would be to walk straight to the ball and fought for
the ball control. The robot believed the opponents had controlled
the ball when the distance between the opponent and the ball was
small.

e The opponent was obstructing our robot. The opponent was
considered as obstructed when it was close and in front of our
robot. This condition prevented the robot to stealth when it
could walk straight toward the ball.

Since localisation and wireless may not be reliable, only the
vision information is used in the conditions.

If the stealth dog is activated, the two closest opponent
headings are calculated. In the event of only one opponent is seen,
these two headings are equal. The average of these two headings are
calculated. Stealth dog is a very simple skill, all it does is
maintain a fix angle away from the average of the opponent
headings. In 2003, this fix angle was 45 degrees (page 180 of

[13]).

-"-;Curve path to the ball

I_ 1 -
Opponent ;

——

Heading to
the opponent
—_—

Fix angle to the
heading of the opponent

| OO

I

Figure 5.13: Stealth dog. It takes a curve path around
an opponent toward the ball.
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5.5.3: 2004 stealth dog

Stealth dog is used in this year's attacker and ready player
strategies. A new stealth dog has been added — sideway stealth
dog. The old stealth dog is known as curve stealth dog.

Curve stealth dog's implementation is identical as the
previous year, it is used in this year's attacker and ready player.
Only the trigger conditions for the ready player are changed
slightly. Previously stealth dog only activated when a robot sees
the ball, its turning direction is the direction to the ball. Ready
players do not need to track the ball, so all the trigger
conditions related to the ball are removed for the ready player.
Also the direction of the curve is the direction to the ready
player's kickoff position.

Sideway stealth dog has been introduced for the ready player.
There old stealth dog has a drawback — it cannot be used when an
opponent is too close, since there would not be enough room for the
robot to take a curve path. See figure 5.14.

..

Opponent Q
o+.‘

Figure 5.14: A problem from the previous year's stealh
dog. The robot cannot wallk past an opponent when

it is too close, The robot doesn't have room to take
a curve path,

Sideway stealth dog allows the robot to walk past the
opponents even if they are extremely close to the robot. Instead of

90



taking a curve path, sideway stealth dog walks sideway until the
robot cannot see any opponent or the opponents are no longer
obstructing. See figure 5.15.
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Wall straight
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Figure 5.15: Sideway stealth dog. The rocbot moves sideway
untl it cannot see the opponent, After sideway
stealth dog is deactivated, the robot wallks
straight toward its destination.

The trigger conditions for the sideway stealth dog are
identical to the conditions for the curve stealth dog, except for
the fact that the opponents must be very close to the robot. For
the competition, this distance was set to 30cm. The direction the
robot moves sideway is the direction to the kickoff position.

5.5.4: Conclusion and discussion

Curve and sideway stealth dog has performed well in the

competition. Ready player was able to evade opponents most of the
time.

Unfortunately stealth dog's performance is limited due to the
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poor robot recognition. Sometimes the opponents cannot be
recognized or only able to be recognized for few frames in

particular the blue opponents. The robot distances reported by the

robot recognition is also a problem, the distances are not accurate

in particular when the opponents are close. Since sideway stealth
dog is activated only when the opponents are close, the distance
inaccuracy sometimes activate the sideway stealth dog when it
should not be activated and sometimes deactivate when it should be
activated.

Sideway stealth dog is slow because only the normal walk
allows the robots to move sideway. In the future, a faster sideway
walk type should be invented.

In this year's competition, sideway stealth dog was used onl
for the ready player. But it can be used for the attacker too. UTS
did exploited the potential of sideway stealth dog in the
competition. In the competition, when UTS robots saw opponents in
front of them, they grabbed the ball, moved sideway until they
couldn't see the opponents and then shot.

5.6: Stuck detection
5.6.1: Overview

Stuck detection is a technique allowing the robots to detect
obstacles without actually looking at it. It is a new technique.
Detecting obstacles is important because:

e The new rule specifies that the pushing robot must be taken off
the field for 30 seconds. Stuck detection allows the robot to
detect if it is pushing against other robots. Vision alone may
not be adequate because the camera image is usually noisy when
the robot is close to another robot. Also the robot may not see
the robots it is pushing.

e The ready player needs the stuck detection to field borders.

Two stuck detection methods are tried — PWM duty cycle and
obstacle scanning.

y
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5.6.2: PWM duty stuck detection

PWM stands for Pulse Width Modulation, it is a way of
digitally encoding analog signal levels. A sequence of duty cycle
of digital square waves is used to encode an analog signal.

Interested readers are referred to [32] for more details.

Each joint has a PWM duty value. When the joint is jammed (eg:
something block the robot's way), PWM value should be much higher.

The PWM duty stuck detection algorithm is very simple. The
algorithm takes the PWM value as an input and compares it with a
calibrated PWM threshold. An obstacle is detected if the given PWM
value is higher than the threshold. For the competition, the
threshold is set to 1300.

Since most of the time the robot walks forward, the PWM of the
front paws are used in the algorithm. However the PWM values report
by the hardware are not consistent. Sometimes the PWM values rise
above the threshold even the joint are not jammed. To minimise the
error, the PWM value passes to the stuck detection algorithm is the
maximum PWM value of the front paws over the last two seconds. The
two second interval is a calibrated interval. From experiments, if
the interval is lesser than two seconds, then there are not enough
PWM samples to minimise the error. If the interval is greater than
two seconds, then the robot reacts too slowly. For example if the
interval is four seconds, when the robot hits an object, the
instantaneous PWM rises above the threshold, but the maximum PWM
value would only rise above the threshold four seconds later.

All the kicks require the leg joints to move quickly. Hence
everytime a robot performs a kick, its leg PWM values always rise
above the threshold. The algorithm takes care of this by counting
the number of frames since the last kick has been performed. If the
PWM value is higher than the threshold but the number of frames
since the last kick has been performed is less than 150 (approx 5
seconds), then the algorithm assumes the high PWM values come from
the kicking. See figure 5.16 for the code fragment.
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/*
Copyright 2004 The University of New South Wales (UNSW) and

National ICT Australia (NICTA). This file is part of the 2004

team rUNSWift RoboCup entry. You may redistribute it and/or

modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version as modified

below. As the original licensors, we add the followin
conditions to that license: In paragraph 2.b), the phrase

"distribute or publish" should be interpreted to include entry

into a competition, and hence the source of any derived work

entered into a competition must be made available to all parties

involved in that competition under the terms of this license.
In addition, if the authors of a derived work publish any
conference proceedings, Jjournal articles or other academic

papers describing that derived work, then appropriate academic

citations to the original work must be included in that
publication. This rUNSWift source is distributed in the hope

that it will be useful, but WITHOUT ANY WARRANTY; without even

the implied warranty of MERCHANTABILITY or FITNESS FOR A

PARTICULAR PURPOSE. See the GNU General Public License for more

details. You should have received a copy of the GNU General

Public License along with this source code; if not, write to the

Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA
*/

Def amIStuckBasedOnPWMDuty () :
Z Get the maximum PWM value of the front
Z paws over the last two seconds.

(maxPWM, ), = HelplLong.getStucklInfo ()

stuck = (maxPWM >= 1300 and
Kick. framesSincelastKicking >= 150)

return stuck

Figure 5.16: PWM duty stuck detection code fragment in
Python.

PWM duty is currently used in the ready player for detecting

field borders.

PWM duty stuck detection is simple and effective. However it
can only detect the stuck not evading it since the PWM value only

rise above the threshold after the robot hits an obstacle.

94



5.6.3: Obstacle scanning stuck detection

Obstacle scanning stuck detection allows the robot to detect
the obstacles before the robot hits them. This method involves the
IR head sensor. The IR head sensor has two channels — near and
far. The near sensor detects obstacles with distance between 5cm to
50cm. The far sensor detects obstacles with distance between 20cm
to 150cm [11]. Only the near sensor is used since the minimum
detectable distance for the far sensor is too far to be useful.

When the robot performs a scan, it would slow down or pause
otherwise it may hits the obstacle. During the scan, the robot pan
its head from left to right or right to left. The scan should be
quick, not wasting too much time on it, the whole process should
take less than few seconds to complete. The obstacle is detected
when the distance reports by the IR sensor is less than a
calibrated threshold. Unlike the PWM stuck detection, the direction
to the obstacle can be determined, it is equal to the heading of
the head. For the competition, the threshold is 20cm.

Obstacle scanning stuck detection works reasonably well, but
it is not totally reliable. From the experiments, the distances
give by the sensor are not consistent. Information from other
sources is required to improve the reliably. For example if the
robot wants to scan for opponent robots, the fact that the robot
can see an opponent and the distance gives by the IR sensor is
small suggest an opponent is blocking the robot's way.

Obstacle scanning stuck detection is used by the attacker. It
is not used by the ready player since the ready player already has
three types of obstacle avoidance (section 5.12.10). More details
on how this algorithm is used in the attacker including what would
the robot do if it detects a stuck can be found in Chan.K.C's
thesis [6].
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/*

*/

Copyright 2004 The University of New South Wales (UNSW) and
National ICT Australia (NICTA). This file is part of the 2004
team rUNSWift RoboCup entry. You may redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version as modified
below. As the original licensors, we add the followin
conditions to that license: In paragraph 2.b), the phrase
"distribute or publish" should be interpreted to include entry
into a competition, and hence the source of any derived work
entered into a competition must be made available to all parties
involved in that competition under the terms of this license.

In addition, if the authors of a derived work publish any
conference proceedings, Jjournal articles or other academic
papers describing that derived work, then appropriate academic
citations to the original work must be included in that
publication. This rUNSWift source is distributed in the hope
that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more
details. You should have received a copy of the GNU General
Public License along with this source code; if not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA

def obstacleScanning() :
global stuckDetectTimer

irdist = VisionLink.getAnySensor (Constant.
ssINFRARED_ NEAR)

# Pan the robot's head.
scanForObstacle ()

stuckDetectTimer += 1

if stuckDetectTimer == 30:
stuckDetectTimer = 0

# If the distance is small and an opponent is seen, then

# there must be an opponent in front.

if irdist < 200000 and HelpLong.canSeeOpponentWithinDist
(50) :

# Pan the robot's head from left to right or right to left.
def scanForObstacle (speed = 10, tilt = -10, crane
= -10) :

global panDirection, panx
if panx >= 80 and panDirection == Constant.

dANTICLOCKWISE :
panDirection = Constant.dCLOCKWISE
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elif panx <= -80 and panDirection == Constant.
dCLOCKWISE :
panDirection = Constant.dANTICLOCKWISE

if panDirection == Constant.dCLOCKWISE:
panx —= speed

else:
panx += speed

FWHead.compulsoryAction = FWHead.fixHead
FiHead. fixHeadAt = (panx, tilt, crane , Constant.
HTAbs h)

Figure 5.17: Obstacle scanning code fragment.

The current robot recognition is not very good. Obstacle
scanning offers an alternative to detect opponents.

5.6.4: Conclusion

Neither the PWM duty cycle nor obstacle scanning algorithm is
totally reliable. They must be used with information from other
sources, such as localisation and vision. For example, the ready
player uses stuck detection, stealth dog (vision) and vector
avoidance (localisation) to detect and evade obstacles.
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5.7: Dynamic gain
5.7.1: Description

The new ERS7 models have two servo gains: standard (high) and
weak (low) gain. A servo gain defines the PGAIN, IGAIN, DGAIN,
PSHIFT, ISHIFT, SHIFT for each CPC primitive locator (Sony OPEN-R
SDK ERS7 model information page 10). Since PSHIFT, ISHIFT and SHIFT
are fixed values (page 10 of [11]), the differences between the low
and high gain are PGAIN, IGAIN and DGAIN (PID). The PID defines how
strong the motors should move, it has a significant impact on the
robot performance.

Multiple servo gain is only introduced this year, the previous
ERS—210 models have only one standard servo gain [33]. The robots
can perform very powerful actions with high gain but these actions
consume lots of energy and lead to battery current overflow (see
section 4.2). Before the Australian Open, rUNSWift robots could not
survive for over one minute with high gain. Hence high gain was not
used before and in the Australian Open except the match against UTS
(see section 4.5). To prevent the current overflow, slow gain must
be used but the motion generates is too slow for being competitive.
The slow walking speed generated by low gain was one of the major
causes of failure in the Australian Open.

Fortunately servo gain can be changed dynamically, as Sony
suggests, the robot should wse standard values normally, and use
weak gain values when large vibrations occur (page 10 of [11]).
This technique is known as dynamic gain, it allows the robots to
maintain their fast high gain speed while preventing the current
overflow with low gain.

The latest OPEN-R has a high overcurrent threshold. However
even the latest OPEN-R does not allow the rUNSWift robots to use
the high gain at all times. Occasionally the robots encounter high
battery current with high gain, if the robots still remain in high
gain state, the hardware would automatically shut down the robots,
preventing damages to the robots. Dynamic gain allows the robots to
switch into low gain and avoid automatically shut down. Although
low gain gives slower motion, but it is still better than pausing
the robot or allowing the robots to be shut down.

Dynamic gain is a very simple technique. The software monitors
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the battery current value every frame. The robot would always stay
in high gain unless the battery current rises above a threshold,
when this happen the software immediately switch to the low gain
until the battery current drops below another threshold. The first
threshold triggers the switching from high to low gain, the second
threshold triggers the switching from low to high gain. The reason
why two thresholds are introduced is that the robot has more time
to cool down, since robot's current is accumulated (see section
4.2). Also current reading may not be accurate, the software should
switch the gain back into high only when it is sure it is safe to
do so. It is important to note all kicks are currently performing
with high gain. Since the robots would not continually perform
kicking, high gain kicking should be fine.

The current overflow threshold for ERS—7 is 3900ma [21].
However from practice games, the robots crashed frequently if the
robots switched into low gain when their current is higher than
3900ma. Apparently the robots did not have time to switch into low
gain and cool down. 3900ma is a hardware threshold, the software
should not allow the current rises near it. For the competition,
the software current overflow thresholds are set to 3000ma and
2300ma. See figure 5.18.

/%

Copyright 2004 The University of New South Wales (UNSW) and
National ICT Australia (NICTA). This file is part of the 2004
team rUNSWift RoboCup entry. You may redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version as modified
below. As the original licensors, we add the followin
conditions to that license: In paragraph 2.b), the phrase
"distribute or publish" should be interpreted to include entry
into a competition, and hence the source of any derived work
entered into a competition must be made available to all parties
involved in that competition under the terms of this license.
In addition, if the authors of a derived work publish any
conference proceedings, Jjournal articles or other academic
papers describing that derived work, then appropriate academic
citations to the original work must be included in that
publication. This rUNSWift source is distributed in the hope
that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more
details. You should have received a copy of the GNU General
Public License along with this source code; if not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA

*/

# Set the motor join gain by battery current.
def dynamic_gain ():
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current = VisionLink.getBatteryCurrent ()

# Force to high gain if the robot is performing a kick.
wt = Global.finalAction[Constant.AAWalktype]
if wt in [Constant.ChestPushWT, Constant.
FwdKickWT, Constant.FastKickWT, Constant.
UpennRightWT, Constant.UpennLeftWT,
Constant.DiveKickWT, Constant.
HandKickRightWT, Constant.HandKickLeftWT] :

Global.forceHighGain = True

# If not forced to switch into high gain, execute the
# dynamic gain algorithm.
if Global.forceHighGain is None:
if current < 2300 and not Global.isHighGain:
setHighGain ()
elif current > 3000 and Global.isHighGain:
setLowGain ()
else:

if Global.forceHighGain
setHighGain ()
else:
setLowGain ()

Figure 5.18: Dynamic gain code fragment. Written in python.

Dynamic gain was useless before the release of OPEN-R 1.1.5
r2, since at that time even the most stable low gain normal walk
would crashed. Clearly dynamic gain is useless if the robot stays
in low gain most of the time. Fortunately this is not the case, the
robots remain in high gain state most of the time during the game.

5.7.2: Conclusion

Dynamic gain worked very well in this year's world open —
rUNSWift didn't experience any hardware crash. Undoubtedly dynamic
gain will stay in the future.

100



5.8: Hover to ball

5.8.1: 2003 hover to ball

Hover to ball is one of the most fundamental behavior skill.
It directs a robot to move toward the ball as quickly as possible.
Usually this skill directs the robot to walk straight toward the
ball.

In 2003, this skill was based on the turn factor and the ball
distance. The turn factor was directly related to the ball heading,
the 2003 formula:

turn = ball—heading / 2

Two walks were used — canter and offset walk. Canter walk
allows reliable turning but it is slow. Offset walk is fast but it
cannot turn quickly. The hover to ball decisions involve deciding
which walk would be better to use and what would be the maximum
forward and left component. The decision:

e If the turn factor is small compared to the distance to the ball
then the faster offset walk would be used. Offset walk is ideal
because the far distance to the ball should provide enough time
for the robot to turn even with the offset walk. In this case the
left component is set to zero and the forward component is set to

the maximum forward speed.

e Otherwise, the turn factor is large compared to the distance to
the ball, then the slower canter walk would be used. Canter walk
allows the robot to turn smoothly which is not possible with the
offset walk. The forward and left component are depend on the
turn component. See figure 5.19 for values. These values were
calibrated by the 2003 rUNSWift team. Notice that the values are
also depend on the turning direction since the robot's body is
not symmetry (page 222 of [13]).
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Figure 5.19: 2003 hover to ball parameters (Image
courtesy (Image courtesy of 2003 UNSW
RoboCup report, page 223 of [13])

Hover to ball slows the robot when it is close to the ball,
giving time to grab it. The robot starts to slow down earlier if it
faces toward its own goal than if it faces toward its target goal.
The difference is due to the fact that rUNSWift didn't want the
robot to hit the ball toward the own goal accidentally.

Stealth dog and velocity prediction were used in the last year
hover to ball. If the stealth dog conditions are triggered, then
the robot would stealth around an opponent. If the velocity
prediction is activated, then the robot would move towards a
particular heading.

As stated in the 2003 report (page 223 of [13]), the fact that
maximum forward and maximum left component are based on the turn
component is not making much sense. This problem has been fixed in

this year's hover to ball.

5.8.2: Hover to ball before the
Australian Open

Hover to ball was rewritten for the Australian Open. This
rewrite is necessary because canter and offset walk are not used
for the ERS—7 robots.

Due to fact that velocity prediction is poor, it is removed in
the new hover to ball. The new algorithm is simpler than the
previous version since there is no need to change the walk type.
Before the Australian Open, only low gain normal walk was developed
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successfully. The goal of the rewrite is to minimise robot crashes
due to battery overcurrent. As mentioned in section 4.2.4, allowing
the turn and left components both be nonzero would lead to battery
overcurrent more easily than if either of these components is zero.
The new hover to ball algorithm ensures at least one component —
left or turn must be zero.

Decisions:

e If the ball heading is small and the ball distance is large, then
both turn and forward component are used. The forward component
is equal to the maximum forward speed, the turn component is
related to the ball heading similarly as the old algorithm . The
long distance should provides enough time for the robot to turn
while it walks at its fastest speed, in particular normal walk is
a slow walk type.

e Otherwise if the ball heading is large, only the turn component
would be used. The robot turns toward the ball until the ball
heading is not large compared to the ball distance.

e If the above conditions are not satisfied, then the ball distance
and ball heading are assumed small. In this case the forward
value is set to the maximum forward speed and the turn value is
set to a small value for small turning.

Notice that none of the decision allows left and turn both
become nonzero. In the first and third decision, left is zero, the
robot turns toward the ball while walking at its maximum forward
speed. In the second decision, the robot turns toward the ball on
the spot until the ball heading is small. The decisions are not
based on the turning direction even the ERS—7 robot's body is not
symmetry. This is because the low gain normal walk is slow and
hence stable enough to turn without slipping.

For the competition, the first decision was satisfied when the
absolute value of the ball heading is smaller than 22 degrees and
the ball distance is greater than 60cm. The second decision was
satisfied when the first decision failed and the ball heading is
greater than 18 degrees. These values were hand—calibrated.

The new algorithm also ensures the robot to slow down for ball
grabbing when it is close the ball.
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From experiments, the new algorithm allowes the ERS—7 robots
survive longer than originally. Before this change, no single robot
could survive for a 10 minute game. After this change and other
changes were applied, a single robot could survive for a 10 minute
game without crashing. However the robots were slow — the left
component was not used at all. This is not a significant problem
since the robots can not walk fast anyway with the low gain normal
walk.

5.8.3: Hover to ball after the Australian
Open

The hover to ball was rewritten again after the Australian
Open. This time two walk types are used — elliptical and normal
walk. Elliptical walk is used when the robot wants to walk straight
quickly. Recall from section 3.3.2, elliptical walk can walk
forward quickly, but it cannot turn in particular the robot cannot
stop with the elliptical walk. Normal walk is used when the robot
wants to turn smoothly. Normal walk is slow, but it allows good
turning and the robot can stop with the normal walk. The walk types
are switched dynamically during a game.

Similarly as the previous year, the new hover to ball
algorithm makes decision based on the ball heading and the distance
to the ball. The idea is to turn toward the ball with normal walk
and then walk straight with elliptical walk. Both walks must be
used — if only the normal walk is used then the robot would be too
slow, if only the elliptical walk is used then the robot cannot
turn reliably.

Decisions:

e If the ball heading is large, then normal walk would be used for
quick turning on the spot. Turning in the direction of the ball.

e If the robot wants to slow down (eg: ball grabbing), then normal
walk would be used because normal walk allows the robot to
control the forward speed.

¢ Otherwise the ball distance is large and the ball heading is
small. The robot walks with elliptical walk. In this case the
robot has enough time to complete the turn even with the
elliptical walk.
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Notice that unlike the previous year algorithm, the maximum
forward, left and turn values are not set. This is not necessary
because the new method basically draws a small circle around the
ball. The robot turns toward that circle, walks with elliptical
walk toward that circle until it reaches the circle. After the

circle is reached, the robot uses the normal walk to slow down and
gain possession of the ball. In the event of the elliptical walk,
the forward speed is always constant, the left speed is always
zero, the turn speed is set to the halve of the ball heading with
maximum 30 degrees. In the event of the normal walk, if it is used
for turning on the spot, the forward and left are set to zero. The
turning component is set to the halve of the ball heading with

maximum 30 degrees.

Previously hover to ball was only used by the attacker.
Supporter and striker (see section 5.13) did not use the hover to
ball, they walked toward their desired position with the slow
canter walk. This year all the robots including the supporter and
striker uses the hover to ball technique, speeding up their

movement.

Target
Goal

0 @

| Cwn Goall

Figure 5.20: Howver to ball. The robots turn toward
the ball with the normal walk (red line).
Wallk straight toward the ball with the elliptical
wallk (yellow line). Finally after the robot reaches
the small circle drawn around the ball, the robot
uses the normal walk to slow down (green line).
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/*

*/

Copyright 2004 The University of New South Wales (UNSW) and
National ICT Australia (NICTA). This file is part of the 2004
team rUNSWift RoboCup entry. You may redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version as modified
below. As the original licensors, we add the followin
conditions to that license: In paragraph 2.b), the phrase
"distribute or publish" should be interpreted to include entry
into a competition, and hence the source of any derived work
entered into a competition must be made available to all parties
involved in that competition under the terms of this license.

In addition, if the authors of a derived work publish any
conference proceedings, Jjournal articles or other academic
papers describing that derived work, then appropriate academic
citations to the original work must be included in that
publication. This rUNSWift source is distributed in the hope
that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more
details. You should have received a copy of the GNU General
Public License along with this source code; if not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA

# Move to specified position given the global coordinative.
def saGoToTargetFacingHeading (targetX, targetY, targetH, maxSpeed =

7, maxTurn = 30):

# ariables relative to self localisation.

selfX = Global.selfLoc.getX()

selfy = Global.selfLoc.getY ()

selfH = Global.selfLoc.getHeading /()

relX = targetX - selfX

relY = targetY - selfY

relH = HelpShort.normalizeAngle 180 (targetH — selfH)

relX += Constant .DOG_LENGTH/2.0/10.0* (math.cos (math.radians
(selfH)) - math.cos (math.radians (targetH)))

relY += Constant.DOG_LENGTH/2.0/10.0%* (math.sin (math.radians
(selfH)) — math.sin(math.radians (targetH)))

relD = HelpShort.getLength((relX, relY))

distance = HelpShort.getDistanceBetween (targetX, targety,
selfX, selfY)

inCircle = distance <= 40

faceH = HelpShort.getHeadingToFaceAt (targetX, targetY)

# Inside the circle?
if not inCircle:
if abs(faceH) >= 30:
HelpLong.setNormalWalk (0, 0, HelpShort.CLIP (faceH,
maxTurn))
else:
HelpLong.setEllipticalWalk (7, 0, HelpShort.CLIP
(faceH/1.5, maxTurn))
else:
relTheta = HelpShort.normalizeAngle_ 180 (HelpShort.
RAD2ZDEG (math.atan2 (relY, relX)) - selfH)

forward = HelpShort.CLIP(relD, maxSpeed) * math.cos
(HelpShort.DEGZ2RAD (relTheta))

left = HelpShort.CLIP(relD, maxSpeed) * math.sin
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(HelpShort.DEG2RAD (relTheta))

turnCCwWw = HelpShort.CLIP (relH, maxTurn)
Helplong.setNormalWalk (forward, left, turnCCW)

Figure 5.21: Hovertoball skill allowing the robot to move
to a particular place on the field.

5.8.4: Performance

The normal and elliptical walk combination works very well
together. The robots are able to walk quickly while turning
smoothly.

From the observations in the world open, rUNSWift robot's
turning speed is too slow to being competitive. The future teams
should improve the turning speed and integrate it within the hover
to ball.

5.9: Visual opponent avoidance
kick

5.9.1: Introduction

Visual opponent avoidance kick (VOAK) allows a robot to shoot
through the largest gap between the opponent goalie and the target
goal. It is an useful skill when the robot is close to the target
goal and want to shoot accurately, preventing the opponent goalie
to block the shoot. To do this the robot must grab the ball and
turn it until it faces the largest gap.

VOAK can shoot the ball very accurately but it is also slow.
Few seconds are needed for the robot to turn and align itself with
the gap, these few seconds is enough for the opponent robots to

block the VOAK. In general VOAK is only useful when no opponent

robots are nearby.

5.9.2: 2003 VOAK

At the start of the VOAK, a three second timer starts. If the
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timer reaches zero, the robot immediately aborts the VOAK because
of the three second ball holding rule.

The first step of the VOAK is to grab the ball. To stop the
ball a robot must grab it for a sufficient number of frames. The
ERS—210 robots are able to grab the ball with their paws. When the
robot grabs the ball it must move its head down for ball tracking.

The next step is move the head up while holding the ball. If
the robot sees a ball, it immediately aborts the VOAK and chase the
ball since there is nothing to shoot. If the target goal is not
seen the robot turns the ball toward the GPS goal until the robot
sees the target goal or the three seconds timer expires.

In the event that a target goal is seen, the robot computes
all the gaps exist between the opponent robot and target goal. The
robot determine the largest gap by the number of target goal
colored pixels that are present in the lower half of each gap. The
width of the gaps is not used because it can be misleading (page
218 of [13]).

The robot turns itself and the ball until it is lined up with
the largest gap. When this occur the robot perform a front kick.

To avoid switching between multiple comparable size gaps, once
the robot believes it has selected the largest gap, it turns itself

toward that gap, ignoring the other gaps.

For more details, refer to the last year's thesis [13].

5.9.3: 2004 VOAK

A new VOAK has been developed this year for the ERS—7 robots.
The new VOAK is very similar as the old VOAK, only the physical
actions are changed. Gap computation remain unchanged since it is
robot independent.

The old VOAK cannot be used for the ERS—7 because:

e ERS7 cannot grab the ball with its paws (section 4.3).

e ERS7 must use its head to hold the ball while turning. Also it
cannot see the ball while turning (section 4.3).
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e Front kick does not work for the ERS—7. (section 3.5.1).

The first step at the start of the new VOAK is to grab and
hold the ball with the head. The ball must be grabbed for few
frames to prevent the ball roll out. The robot then looks up,
expecting to see the target goal. If the ball is seen, the robot
aborts the VOAK immediately because the ball has rolled out. If the
target goal is not seen the robot moves its head down and turn the
ball toward the GPS target goal. When it believes it is facing
toward the GPS target goal, it moves its head up again. The robot
aborts the VOAK if it still cannot see the target goal.

In the event that the robot can see the target goal, it
determines the largest gap similarly as the old method. Once the
gap has been determined, the robot sticks with it and ignore other
gaps. If the robot finds itself already align with the gap, it
shoots the ball immediately. Otherwise the robot moves its head
down, hold the ball with its paws and head and turn toward the gap.

Since the robot cannot see the target goal while it is
turning. It calculates the number of frames required for turning
before it starts to turn, and stop the turn when the counter
reaches zero. After the robot completes the turn, it moves its head
up and expecting to see the target goal. If it cannot see the
target goal, then it aborts the VOAK and chase the ball. Turning
again is not recommended because the three seconds timer would be
likely to expire.

In the event that the robot can see the target goal after the
turn, it kicks the ball with hand kick (section 3.5.4). Left hand
kick often hit the ball to the right around 30 degrees. Hence if
the robot wants to do a left hand kick it would stop 30 degrees
left from the center of the gap. Similarly for the right hand kick.
Left hand kick is performed if the robot turns clockwise otherwise
it would do a right hand kick.

109



Grab the ball with front paws
and head. Hodl the ball for few
frames. Then move the head up.

See the target goal?

Mo. Move the head down. Grab the ball.
Turn toward the GPS target goal. And then
move the head up again.

Yes. Determine
the largest gap.

Yes. Determine

Am I facing toward the largest gap.

the gap? See the target goal?

No. Move the head down.
Turn toward the gap.
Calculate the number of
frames required for turning
and stop when it reaches
zero, Move the head up again.

Yes. Perform
hand kick

No. Abort VOAK

See the target goal?

No. Abort VOA

Did I turn clockwise
or anticlockwise?

Clockwise. Perform
left hand kick

Anticlockwise. Perform
right hand kick

Figure 5.22: VOAK flow diagram.

5.9.4: Performance

The new VOAK cannot perform as well as the old VOAK because:

e Poor vision. Robot recognition and goal recognition are poor
specially for the blue robots and blue goal. Often the red robots
cannot recognized the blue opponent goalie and blue target goal.
Only the blue robots can perform the VOAK because red color is
more easily to be recognized [5] and [8].

¢ The robot must moves its head down while turning. Hence it cannot

see the target goal. Although the number of frames required for
turning is calculated before the robot turns, it may not be
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accurate in particular if the opponents push our robot.

VOAK was not used in the competition since it was invented two
days before the world open and hence not enough time to integrate
it in the attacker's strategies.

5.9.5: Future Development

Vision has a significant impact on the VOAK performance.
Reliable VOAK can only be developed with a decent goal and robot
recognition.

The future generation should definitely try University of
Technology of Sydney (UTS) VOAK. In the world open, UTS robots
grabbed the ball with their mouth so that they could see the target
goal while holding the ball. Their robots move sideway with the
ball.

5.10: Bird of Prey

5.10.1: Overview

The Bird of Prey (BOP) algorithm was invented last year. It is
a dynamical role assignation algorithm. It assigns a forward as a
bird. The bird would place itself between the own goal and the
ball.

BOP is a very important skill. Unlike some of the other teams,
rUNSWift does not have a defender. Most of the time one forward is
assigned as an attacker, another forward is assigned as a supporter
and the third robot stayed slightly behind its teammates. If the
ball rolls pass the forwards, they need to get back for defense as
quickly as possible. Sometimes it is no good to walk directly to
the ball since the robot would face toward the own goal when it
reaches the ball. BOP allows the robots to take a curve locus,
positioning itself between the own goal and the ball and possibly
preventing opponent robots to push the ball toward the own goal

BOP would only be activated when cover defense is required.

Cover defense is considered necessary ‘when none of the forwards
in an area enclosed by 150 degrees, centered straight down the
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defensive direction, 10 cm in front of the ball. The angle allows
for the fact that a teammate across the opposite side of the field
than the ball, but level with it, is not in an adequate position to
counter an enemy offensive maneuver ~ (page 179 of [13]). If a
forward is in that area then it would probably be able to walk
directly toward the ball and face toward the target side.

Once the bird is activated it would be deactivated if a
forward is in the area. Hysteresis is necessary otherwise the robot
would switch between activating and deactivating BOP. For
deactivation, the angle is reduced to 90 degrees and the distance

to zero. See figure 5.23.

Deactivation
Zane

Figure 5.23: BOP regions for checking for defending
forwards. (Image courtesy of 2003 UNSW
RoboCup report, page 178 of [13])

In 2003, only one bird was allowed (page 178 of [13]). The
bird would only be effective if the bird has enough room to take a
curve locus. Hence the bird is chosen as the forward with the

greatest x—distance from the ball.

The bird maintains the ball at a particular heading (45
degrees in 2003) until it is deactivated. This form a curve locus
around the ball. Walking in a curve allowing the robot to place
itself between the own goal and the ball. A line is drawn from the
ball to the center of the goal, when the bird is on the left side
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of this line then the locus would curve around the right side.
Similarly when the bird is on the right side of the line. A circle
with radius around 18cm is drawn around the ball. The bird turn
relatively slow when it is outside the circle. When it reaches the
circle, it slowes down and turn quickly toward the ball.

Cwn Goal

LT

Target
Goal

Figure 5.24: Bird takes a curve locus toward the ball.
Positioning itself between the own goal
and the ball. When the robot reaches
a small circle drawn near the ball, it

start to turn quickly toward the direction
to the ball,

The curved locus often leads to the robot entering into the
defensive goalbox and hence taken off the field for 30 seconds.
When the bird detects it is going to enter into the defensive

goalbox, it would change its locus and walk on the goalbox line,
see figure 5.25.
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Figure 5.25; Bird awvoiding goal line.

5.10.2: 2004 Bird of Prey

This year the BOP has been ported into Python. The
implementation is similar as the previous year. Previously the bird
turned with canter walk when it reached the circle drawn around
ball. Otherwise zoidal walk would be used. This year elliptical
walk has replaced the zoidal walk, while the normal walk replaces

the canter walk.

Previously only one bird was allowed. This year all the
forwards would becoming bird. The idea is instead of walking
directly toward the ball and face toward the own goal, all the
forwards should be defensive and take a curve locus. The birds are
in better position to counterattack after they gain the possession
of the ball. Sometimes the robots would be called pushing if they
take a direct path to the ball, pushing the opponent robots on the

way .
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5.10.3: Conclusion

BOP with multiple birds worked extremely well in the
competition. It allowed the rUNSWift robots to attack aggressively
and defense quickly. The birds were often able to block the
opponent attack.

In this year's competition, some of the teams walked straight
toward the ball, grabbed it and turned it toward the target side.
This strategy is faster than BOP. The future rUNSWift teams may
consider to assign two robots as the bird and assign the robot
closest to the ball to take a direct path toward the ball for ball
grabbing.

5.11: Goalie

5.11.2: 2003 goalie

Goalie is the only robot allowing to stay in the goal box. Its
Jjob is to prevent the enemy to score and clear the ball.

Goalie's positioning is very important. A good goalie should
stand between the ball and its own goal, effectively block enemy
shoot. In 2003, if the goalie could see the ball, it would placed
itself on the intercept between the line through ball and center of
the goal, and a semi—circle centered at the center of the goal.

See figure 5.26.

However if the robot could not the see the ball, the goalie
positions itself further behind by using an ellipse instead of the
semi—circle. The idea is that if the ball is visible, the goalie
should be aggressive and place itself further forward to reduce the
size of gaps the enemy opponent can shoot.
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Figure 5.26: Goalie's positioning when it sees the ball.

If the ball is not visible either gps or wireless ball would
be used. In either case the goalie would be more defensive and
placed itself near the goal line. Since the middle and far beacons
could not be seen very well, the goalie should be positioned in
front of the goal line so that it could see the two close beacons.

The previous year goalie would spread its arms to stop a fast
moving ball, known as goal block. Since the goal block has a slow
recovery time, it should not be activated too frequently. It was
activated when all the following conditions were satisfied:

e The ball was close to the goalie or close to the goal line. The
goalie should not do a goal block if the ball is far away.

e The goalie believed it could block the ball with its arm spread.
Velocity prediction was used and it must be reliable.

¢ The ball traveled fast enough to be able to collide with the
goalie within the next second. This condition ensured the goalie

to block at the right time.

An important decision a goalie must make — attack or defense,
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If the goalie decides to attack, enemy robots may shoot the ball
through gaps. If the goalie decides to defense, the enemy robots
may have enough time to regroup and attack the ball. The last year
goalie would attack the ball if:

e The ball was close to the goalbox (10cm within the goalbox). So
that the goalie would stayed inside the goal box.

e The distance between the goalie and the ball was small and no
opponent robot was close to the ball. This condition ensured the
goalie cleared the ball before the opponents gained the control.
The further the goalie was from the goal line, the closer the
ball had to be for the ball distance was considered as small.
These conditions ensured the goalie attacked when it was safe to

do so.

If the goalie decided not to attack, it stayed in front of the
goal line defensively, active localise and patiently searched for
the ball.

If the ball was under the goalie's chin, the goalie turned
toward the gap and kicked the ball with the lightning kick. If the
the goalie could not see a gap, the goalie performed a chest push
and then executed the algorithm again to decide what to do next.

For more details, refer to last vear's thesis [13].

5.11.2: 2004 Goalie

The last year goalie performed well in the 2003 competition.
However the codes are messy and hard to maintain. Also the
lightning kick cannot be used this year, since the offset between

the robot's front paws and its chest is too small.

This year after the Australian Open, the team decided to
rewrite the goalie in Python. The new goalie offers some
improvements but also some drawbacks.

The new goalie places itself further behind than the old
goalie. It positions itself on the goal line. In general unless the
goalie wants to attack, it should positions itself on the goal line
to reduce the size of gaps through which opponent robots can aim.
The old ERS—210 goalie must position itself in front of the goal
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line, otherwise it can't see the close beacons. The middle and far
beacons are too small and give little information. Although the new
ERS—7 robots also cannot see the far beacons very well (middle
beacons have been removed), they can use the edge detection to
localise by looking at the goal lines. Refer to Whaite.D's thesis
for more details [7].

Target
Goal

D

Ll
Owl::lnal

Figure 5.27: Goalie positions istelf on the goal line.

The conditions to trigger when to attack the ball and when to
defense are very similar as the previous year and hence not

repeated here.

However the actions taken when the goalie has gained
possession of the ball is different, which is related to how the
goalie approaches the ball. If the distance to the ball is far,
then paw kick would be used. Paw kick is preferred because it is
fast — the robot doesn't need to slow down while approaching. The
long distance gives enough time for the goalie to align its paw
with the ball. Paw kick would not be useful if the distance to the
ball is small because the goalie doesn't have time to align its paw
with the ball. In the event of the ball distance is small, hover to
ball would be used. Hover to ball allows the robot to move toward
the ball directly.
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If hover to ball is used and after the goalie has gained
possession of the ball, it kicks the ball with either the side way
kick or dive kick. Decisions:

e [f the goalie's global heading is greater than 225 degrees or
smaller than 315 degrees, the goalie is facing toward its own
goal. In this case the goalie will not kick the ball to avoid own
goal.

e If the goalie's global heading is smaller than 225 degrees and
greater than 135 degrees, the goalie do a left sideway kick to
hit the ball toward the right—hand side. Right sideway kick is
not recommended because the ball may roll toward the own goal.

e [f the goalie's global heading is larger than 315 degrees and
smaller than 45 degrees, the goalie do a right sideway kick to
hit the ball toward the left—hand side.

e Otherwise the goalie wants to kick the ball forward, so it

performs a dive kick.

Dive kack

Left sideway kick 50 0 Right sideway kick

Figure 5.28; Goalie's kicking decision
based on global heading.

Notice that the new goalie cannot shoot through gaps, this is
a major drawback. It is not implemented and ported because there is
not enough time to do it before the competition. Furthermore a
reliable gap detection algorithm cannot be implemented because of
the poor robot recognition [5], in particular a red goalie cannot
recognized the blue opponents. The new goalie also cannot spread
its arm to block a fast moving ball.
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The new goalie's decision tree has been redesigned. The new
decision tree is flexible and maintainable. Previously the goalie
kicked the ball immediately when the ball was under its chin, which
kick it used was depend on the gaps and world model. As mentioned
in section 5.3, this approach is not always the best. The new
decision tree removes the restrictions and ask questions such as

“Is sideway kick ok? If it is not ok, is it ok for me to perform
dive kick?” . Refer to section 5.3 for more details.

SR sy Yes, execute left smleway kick

klcy >

\ Yes, execute right S|deway kick
Is right sideway
kick o‘ky

\ Yes, execute dive klck
Is dive 9

+

Is attacking ok?

Yes, execute paw kick

Determine the
defend position

Is paw kick ok?

MNo. Execute

hover to ball, Move to defending position

Figure 5.29: 2004 goalie's decision tree.

5.11.3: Conclusion and discussion

The new goalie positions itself better than the old goalie —

it is more defensive than the previous goalie.
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The new goalie can kicks the ball quicker since paw kick and
sideway kick are fast. Previously the goalie turned toward the gaps
and then shoot, which is slow. The ERS—7 can blocks better than
ERS—210 simply because ERS—7 is larger in size.

However sometimes the new goalie performs poorly. Since it is
unable to kick the ball through gaps, it cannot kick the ball past
the opponent robots. In fact this is one of the reason rUNSWift got
beaten by the Germany team in this year's competition. The goalie
missed some golden opportunities to clear the ball through gaps.

The goal blocking and shooting through gaps are something

future rUNSWift teams will want to add. The ERS7 goalie needs to

redesign and improve in the future.

5.12: Ready Player
5.12.1: Game state

Fach soccer match is composed of game states. Game state
defines the actions allowed. Fail to comply may impose penalty.

This year a new game state known as ready state has been
introduced. In this state all the robots are expected to move to
their kickoff position. All other game states remain unchanged from

the previous year.

State change by
lexl  messags from GamaConlmolar
—  prassing swilch

{ERS5-210: back, ERS-T: head)
— prassing swilch = 3 sac
e pressing back swilch = 1 sec
—--p no butlon inlarfaca

Figure 5.30: Game states flow diagram. (Image courtesy
of Sony Four—-Legged Robot Football League
Rule Book 2004 [3])
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A description of the game states.

Initial state

The robots are not allowed to move, they can't do anything
but wait for the ready state.

¢ Ready state
In this state, the robots walk to their kickoff position as
quickly as possible. This state remains until all the
robots reach legal position or the referee decides to switch

into the set state.

Set state

In this state, the robots stop and wait for kick—off. If
they are not at legal positions, they are manually placed

. The robots are allowed to move their head and tail. Useful
for localising before the game begins.

Playing state

In this state, the robots play a soccer match.

e Penalized state
This state is reached when a robot is penalized for whatever
reason, eg: pushing and ball holding. The robot is taken
away from the field for 30 seconds.

e Finished state

This state is reached when a half or the whole game is
finished.

Either the gamecontroller or manually button pressing trigger
the switching of game state. Refer to [3] for more details.
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5.12.2: Ready state

Previously the robots needed to placed manually before a game
started, this process is tedious. A team of intelligent soccer
playing agents should know how to reposition themselves. A new
state known as ready state has been introduced into the competition
this year. This state occurs after the initial state or after a
team has scored (ie. After playing state). In this state, all the
robots need to walk to their kickoff position. This year rUNSWift
has invented a ready player for the ready state.

If a robot can't move to a legal position then it is manually
placed. So implementing a ready player is not compulsory, manual
placement is always an alternative. However manual placement should
be avoided because the robot has to be placed at least one robot
length behind in contrast to if it moves autonomously. If the
robots reposition themselves, “Two field players of the attacking
team can walk to positions between the center line and the middle
of their side. They may put their leg on the center line, but no
leg may be inside the circle line. The other field players (one of
attacking team, three of defending team) have to be located behind

the middle of their side ...... , but have to stay outside their own
penalty area with at least two feet.” (page 10 of [3]). If the
robots need to be manually placed, “...... the kicking—off robot

shall be one robot length away from the center circle, while one
robot of the other team shall be just in front of one corner of the
penalty area. The other robots shall be on the left and on the
right of their own penalty area.” (page 10 of [3]).

Since autonomously placed robots are allowed to position

closer to the ball, there is an incentive for implementing a
reliable ready player. See figure 5.31.
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Figure 5.31. Manual placerment and a possible autonomous placement
for the attacking side. Motice that autonomous placement
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Autonomous placerment

allows the robots to position closer to the center of the field.

Apparently the ready player is easy to implement.
needs to walk to its kickoff position, no ball tracking is
involved. However, in this year's competition, none of the team
could implemented a perfect ready player. The challenges:

e Avoid teammate and opponent robots while repositioning. Avoiding

opponent robots is a hard problem because you do not have any
control over the opponent robots.
number one challenge for the ready player.

In general this is the most the

e Decide where to kickoff. The ready player should choose an easy

reachable kickoff position, otherwise it may takes too long or
never reach its kickoff position.

e The ready player needs to reach its kickoff position accurately.

However in general this year's localisation is worse than the

previous year, because two middles beacons are removed and ERS—7

has a poor camera.
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e Decide how to reach the kickoff position. Sometimes walk straight
toward the kickoff position may not be the fastest path.

The competition rule has not specified neither the minimum nor
maximum time for the ready state. The ready state is finished when
a referee believes the robots should switch into the set state.
However it is a good idea for the ready player to reach its kickoff
position as quickly as possible, so that it is well prepared when
the game starts. Having said that, speed is not as critical as
accuracy. A slow but accurate ready player often outperform a fast
but inaccurate ready player.

Ready player was developed after the Australian Open. Before
the Australian Open, due to battery overcurrent (section 4.2) ready
player cannot be developed.

5.12.3: Legal and Ideal kickoff position

Legal kickoff position (LKP) is a position that is valid for
kick—off. Goalie has a unique LKP. Forward's LKP is depend on
whether the team is receiving or kicking—off. See figure 5.32, 5.33
and 5.34.

Target
Goal

D

| Qwn Goal '

Figure 5.32: Goalie's legal kickoff position is shaded. Mote
that the goalie has to stay inside the penalty
area with at least two feet,
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Figure 5.33: Forward's legal kickoff position is shaded.
Assume the team is receiving.
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Figure 5.34: Forward's legal kickoff position is shaded.
Assume the team is kicking-off. Mote that
only maximum two forwards can position
within the grey area.
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Unfortunately not all the LKPs are ideal for kicking off.
Position that is ideal for kicking off is known as Ideal kickoff
position (IKP). Note that IKP is a subset of LKP, but not the other
way around. If the robots cannot reach a LKP, they must be manually
placed. Even the robots are able to reach a LKP, sometimes they
should still be manually placed. For example in figure 5.35, assume
the team is kicking—off. One of the robot should be manually placed
and position near the center of the field.

Target
Goal

0)
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Own Goal

Figure 5.35: IKP and LKP. Assume the team is kicking-off. The robots
are positioned correctly, manual placement is not compulsory.
However the robots are not positioned well, one of the robots
should position near the middle of the field.

There are infinite number of possible kickoff strategies. The
kickoff strategy chosen by rUNSWift is simple: place the robots
close to the ball (center of the field). One forward always
positions itself in the center of the field and the other two
forwards position themselves at the sides. The idea is to leave
room between the robots, so that they wouldn't bunch up after the
game begins. The robots positioning at the side shouldn't be
position too close to the border. In any case the robots must face
toward the target side.
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Figure 5.36: rUNSWIift kickoff position during kick-off..
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Figure 5.37: rUNSWift kickoff position during receive.
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5.12.4: Ready player algorithm

The ready player can be broken down into four phases:
localise, position assignment, walk and adjust. Each phase is
independent of the others.

Localise

Position
Assignment

Walk to
kickoff position

l

Adjust

Figure 5.38: Block diagram of the ready player.

5.12.5: Phase 1 — Localise

Localise is the first phase. In this phase, the robots stop
and pan their head for localise. This action is known as stationary
localise. This phase is short and only lasted for few seconds.

Ready state arrives after a team has scored a point and often

when this occur the robots are mislocalised, because they are
concentrated on tracking the ball. For example dribbling requires
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close—ball tracking, not allowing the robots to perform active
localise. Also, the robots may need to push the opponent goalie for
scoring, robot pushing may lead to mislocalisate because the motion
update confuses the localisation module. Since the ready player
heavily rely upon accurate localisation, stationary localise is
necessary. Stationary localise helps the robot to see the field

landmarks.

If the robot sees the target goal and its distance is small
(eg: inside the target goal), then it turns toward the own side
while localising, since the robot needs to turn anyway during the
walk phase (see section 5.12.10). Most importantly the robot may
not see any beacon while it is inside the target goal. Similarly
apply when the robot sees the own goal and its distance is small.

Always turn while localising was tried. Not much improvement
was seen except for few seconds improvement since localising and
turning were done simultaneously. Sometimes an incorrect motion
update while turning affect the robot's localisation. In general
accuracy is more important than speed for the ready player, always
turn while localising is not used in this year's competition.

Target
Goal

()

| Own Goal I

Figure 5.39: The ready player can't see any beacon with stationary localise.
Hence it should turn while panning its head.
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5.12.6: Position assignment

The next step after stationary localise is assigning kickoff
positions. rUNSWift has a straightforward kickoff strategy — the
kickoff positions are predefined. Unfortunately assigning kickoff
positions is not straightforward. For example in figure 5.40, we
have four robots: robot A, B, C and D. Robot D is the goalie.

Own Goal

x4

x  xB

p 49

| arget Goal

Figure 5.40: How to assign the kickoff positions?
For example where should robot A goes?
Robot D is the goalie,

The ready player often walks straight to its kickoff position,
see section 5.12.9 for more details. A good position assignment
algorithm should assigns positions such that the robots can walk
straight most of the time, without crashing with each other. Two
methods were tried this year: static kickoff position assignment

and dynamic kickoff position assignment.

Static position assignment

The static position assignment algorithm is very simple. Each
robot is assigned a fixed player number, the kickoff position is
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based on the player number. Hence the kickoff position is fixed
during the whole game.

Lets take an example. Assume the following player number
assignment:

Robot A => player number
Robot B
Robot C => player number

> player number

S = N W

Robot D => player number

Figure 5.41: Player numbers for the robots. Correspond
to figure 5.48.

Lets assume the static position algorithm assigns the kickoff
positions as:

Player number 0 => Position 4
Player number 1 => Position 1
Player number 2 => Position 2
Player number 3 => Position 3

In our example, robot A is assigned to position 3, robot B is
assigned to position 2, robot C is assigned to position 1 and robot
D is assigned to position 4.

Since the robots walk straight toward their kickoff position
(section 5.12.9), they reach their kickoff position like in figure
5.42.

Static position assignment algorithm is useless, so it is not
used in the competition. Most of the time it assigns kickoff
positions incorrectly since it doesn't take the possibility of
robot collision into account. For example in figure 5.49, robot A
walks to position 3, it may hit robot C whose is walking toward
position 1 and robot B whose is walking toward position 2. Note
that the walk path of robot A, B and C intersect.
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Figure 5.42: Static position assignment.

Static position assignment algorithm is also inefficient in
terms of speed. For example in the above figure, clearly robot A
should position itself at position 1 because it is the closest
kickoff position, robot A needs to walk further in order to reach
position 3.

Dynamic kickoff position assignment

Obviously the kickoff positions must be assigned dynamically.
A dynamic kickoff position assignment (DKPA) algorithm was
invented, it was used in this year's competition. The algorithm
assigns kickoff position dynamically, depend on a number of
factors.

Lets take an example, refer to figure 5.40. There are four
robots: robot A, B, C and D, robot D is the goalie. For their
player number. Robot A has the highest player number, robot B has
the second highest, robot C has the third highest and robot D has
the smallest player number. The robots have four kickoff positions
to choose: position 1, 2, 3 and 4.

In DKPA, the forward with the highest player number and the

133



goalie always decide which kickoff position they want to go before
any other robots. In our example, robot A is the forward with the
highest player number and robot D is the goalie. Since there is
only one legal kickoff position for the goalie, so robot D chooses
position 4 for its kickoff position. Robot A has three choices:
position 1, 2 and 3. How a robot decides a kickoff position would
be explained in the next section, for now lets assume robot A picks
position 1. After this decision is made, robot A broadcasts its
decision (pick position 1) to its teammates through wireless. Robot
B whose has the second highest player number then decide where to
position itself. It knows position 1 is unavailable so it can only
pick between position 2 and 3 (position 4 is for the goalie). Lets
assume robot B picks position 2. Robot B broadcasts this decision
to its teammates through the wireless. After robot C receives robot
B's decision, it picks the only available kickoff position. Robot C
knows position 1 and 2 are taken, so it can only pick position 3.
Notice the pattern: robot A (highest player number) decides, then
robot B (second highest player number) decides and finally robot C
(the lowest player number) decides. This chain of decision is known
as ring algorithm. .

Position 1, 2 and 3 are available

Robot A picks position 1

Position 2 and 3 are available

 J

Player number

Highest to lowest Robot B picks position 2

l Position 3 is available

Robot C picks position 3
(no choice)

Figure 5.43: Ring algorithm. A chain of decsion.
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In DKPA a higher player number forward can “steal” kickoff
position from a lower player number forward. In our example robot A
has the highest player number, it is allowed to change its kickoff
position any time. Lets assume robot A suddenly believes position 2
is a better kickoff position (Of course position 1 is better, but
robot D may be mislocalisated and think its nearest position is
position 2). Robot A broadcasts this new decision to its teammates.
Robot B knows its kickoff position (position 2) has been taken by
robot A, so it must choose another position. Robot B has two
choices: position 1 and 3. Lets assume robot B decides to “steal”
position 3 from robot C. Robot B broadcasts this decision to robot
C. Robot C knows position position 2 and 3 are taken, so it can
only reposition itself at position 1. See figure 5.44.

Robot A has chosen position 1
Robot B has chosen position 2
Robot C has chosen pasition 3

Robot A steals position 2
from robot B

Position 1 and 3 are available

Player number

, Robot B steals position 3
Highest to lowest

from robet C

Position 1 is available

L 4

Robot C picks position 1
(no choice)

Figure 5.44. Ring algorithm. Position stealing.
\J

So the forward with the highest player number is allowed to
pick any kickoff position. It doesn't need to receive wireless
information from any other robot because its decision process is
independent of other robots. The second highest player number
forward is allowed to steal kickoff position from the lowest player
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number forward. Its decision process is depended on the highest
player number forward. The lowest player number forward doesn't
need to make a decision — only one available kickoff position.
Goalie has only one possible kickoff position for it to reposition.

DKPA runs every frame until all the forwards believe they are
positioned.

5.12.7: Ring algor ithm performance

Ring algorithm is easy to understand and debug since the

decision processes don't involve any synchronization. However there
are some drawbacks:

¢ Convergence speed

Only the forward with the highest player number is allowed pick
any kickoff position, the overall convergence speed slower
than a synchronous algorithm. If it mislocalisates,

the overall position assignments may be incorrect since the
lower player number forwards can't overwrite the highest

player number forward's decision. Fortunately localisation is
usually reliable during the ready state.

e Wireless problem

DKPA depends on a reliable wireless communication. See figure
5.45. In the event wireless is broken or the number of
teammates is not three (eg: a teammate crashes due to battery
overcurrent), the ready player switches to the static kickoff
position assignment algorithm.
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Position 1, 2 and 3 are available

Fobot A chooses position 1

Broken wireless

= P—

Player number
Highest to lowest

Robot B can't receive
robot A's decision

Broken wireless

¥

Robot C can't receive
robot A and B's decisions

Figure 5.45: Ring algorithm. Wireless problem.

5.12.8: How to choose a kickoff position

Once again lets take figure 5.48 as our example. Robot C and D
have only one kickoff position to choose. Robot A and B have
multiple positions to pick.

Robot A (highest player number) chooses its kickoff position
depend on its world model, in particular the position of the lower

player number forwards — ie. robot B and C's global position.

Decisions:
e [If robot B and C are at the right—hand side of robot A, robot A
would chooses the left kickoff position.

e If robot B and C are at the left—hand side of robot A, robot A
would chooses the right kickoff position.

e Otherwise robot A chooses the middle kickoff position.
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The idea is to avoid collision with the teammates, assuming
the robots walk straight toward their kickoff position. Robot B
chooses its kickoff position similarly. It has only two available

kickoff positions, and it only need to check the robot C's global
position.

e If robot C is at the left—hand side of robot B, then robot B
would choose the right kickoff position.

e Otherwise robot C choose the left kickoff position.
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Figure 5.46:; DKPA kickoff position assignment. Robot B and C are at the right-hand
side of robot A, so robot A chooses position 1. Robot Cis at the right-hand
side of robot B, so robot B chooses position C. This leave position 3 for robot
C. Robot D (goalie) always resposition itself at position 4.

5.12.9: Phase 3 — Walk strategy

This phase defines the actions required for repositioning.
Two walk strategies were tried: walking backward and walking

forward. In both case, the robots continually pan their head and
localise while walking.
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Walking backward

In this strategy, the ready player walks backward toward its
kickoff position. This idea was taken from the German AIBO team,
Germany Open 2004 [23]. The robots don't need to turn toward their
kickoff position, they walk backward while facing the target side.

Target
Goal

Own Goal

Figure 5.47: The robots walk backward toward
their kickoff position.

Although this strategy is simple, it was not used in the
competition. Opponent avoidance is impossible because the robots
can't see their back. Also the robots walk slower when they walk
backward.

Walking forward

This strategy was used in this year's competition. It is very
similar as the hover to ball (see section 5.8), except for the fact
that the ready players are walking to their kickoff positions. The
robots turn on the spot with normal walk until they are facing
toward their kickoff positions. And then, the robots walk straight
with elliptical walk. After they have reached their destinations,
they turn toward the target side with normal walk. See figure 5.48.
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Figure 5.48: The robots turn and walk straight straight toward
their destination with the elliptical walk, Once they
have reached the small circle drawn arocund their
kickoff position, they turn toward the target side
slowly with the normal walle,

Advantages of this strategy:
e Fast, since the robots can walk forward very quickly.
e The robots can see the close beacons. The close beacons provide
more information than the far beacons because they appear larger

on the cplane.

e Allow the robots to see the opponents and evade them.

5.12.10: Walk phase — Obstacle
avoidances

Three obstacle avoidances were developed: stuck detection
(actuatorControl avoidance), stealth dog (vision avoidance) and

vector avoidance (localisation avoidance).

The decision tree is depicted in figure 5.49.
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Figure 5.49: Ready player walk phase decision tree.

Stuck detection obstacle avoidance

If a ready player detects a stuck based on its PWM value, it

takes few steps backward, see figure 5.50.
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Figure 5.50: The robot detects a stuck from its

PWM walue. It takes few steps backward
toward the direction to the kickoff position.

Borders are not recognized by the object recognition module,
if the robot's localisation is misleading, the robot may not
realized it is facing against the border. Stuck detection allows
the robot to detect and evade the borders. Stuck detection can also
detect obstructing robots in particular the opponents. For more
details, refer to section 5.6.

Stealth dog obstacle avoidance

Stealth dog allows the robots to take a curved path around the
opponent robots. Curve and sideway stealth dogs are both used in
the ready player. Curve stealth dog is useful when the opponent
robots are relatively far away. If the opponent robots are very
close, sideway stealth dog is preferred. See figure 5.51. For more
details including the triggers, refer to section 5.5.
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Figure 5.51: Robot A walks sideway and evade an opponent. The direction
it side-steps is the direction to the kickoff position,
Robot B takes a curve locus. The direction of the curve is the
direction to the kickoff position.

Vector avoidance

Vector avoidance was designed to avoid crashes between

teammates. We would like the robots to stay away from each others.
This is achieved by adding a small side (left/right) vector. The
magnitude of the side vector is inversely proportional to the x—

axis distance between the robots. This idea was suggested by

rUNSWift team captain.
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/*
Copyright 2004 The University of New South Wales (UNSW) and
National ICT Australia (NICTA). This file is part of the 2004
team rUNSWift RoboCup entry. You may redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version as modified
below. As the original licensors, we add the followin
conditions to that license: In paragraph 2.b), the phrase
"distribute or publish" should be interpreted to include entry
into a competition, and hence the source of any derived work
entered into a competition must be made available to all parties
involved in that competition under the terms of this license.
In addition, if the authors of a derived work publish any
conference proceedings, Jjournal articles or other academic
papers describing that derived work, then appropriate academic
citations to the original work must be included in that
publication. This rUNSWift source is distributed in the hope
that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more
details. You should have received a copy of the GNU General
Public License along with this source code; if not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA

*/

# dist is the distance between the robo ts.
def getThelnverseSideVector (dist) :

# alpha is a hand—calibrated value.
alpha = 80.0

#Z Return the magnitude of the side vector.
return (alpha / dist)

Figure 5.52: A code fragment, side vector formula. Written in
python.

The further the distance between the robots, the smaller the
magnitude of the side vector. We want the robots to move away from
each other quickly when they are close.

If the teammate is at the left hand side then a side vector
would be added in the right direction. If the teammate is at the
right hand side then a side vector would be added in the left
direction. The final magnitude is the sum of each teammate's
contribution excluding the goalie. See figure 5.53 and figure 5.54.
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Figure 5.53: Vector avoidance. A side vector has added, its direction is
the opposite of the direction to the other robot. The side
vectors are small because the robots are far away.
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Figure 5.54: \ector avoidance. A side vector has added, its direction is
the opposite of the direction to the other robot. The side
vectors are large because the robots are close.

5.12.11: Phase 4 — Adjust

The robot believes it has reached its kickoff position when:
e The distance to the kickoff position is within 15cm.

e The robot's global heading is between 70 to 110 degrees (ie.
Facing toward the target side).

Unfortunately robot's localisation is not perfect, sometimes
the robot wants to adjust its position since its localisation has
changed. Adjust is necessary when either of the following
conditions satisfy, adding hysteresis:
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e The distance to the kickoff position is greater than 30cm.
¢ The robot's global heading is not between 60 to 120 degrees.

The adjustment is usually slight. When the robots adjust
themselves, they execute the phase three algorithms.

5.12.12: Putting everything together

Figure 5.55 and 5.56 present two autonomous repositioning
examples.

Target
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ﬁ
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Figure 5.55: Repositioning example. Stuck detection = purple, Elliptical walk and vector avoidance = blue,
normal walk = green, circle = yellow, curve stealth dog = red, sideway stealth dog = orange.
Robot C detects a stuck, it walks backward and then use elliptical walk to walk straight toward
position C. Robot B uses the normal walk to turn itself toward the position B. After that, it sees
an opponent, since the opponent distance is small, robot B uses sideway stealth dog to walk past
the opponent. Robot A sees the opponent too, but the distance is large, so it uses the curve stealth
dog. When robot &, B and C reach the circle drawn around their kickoff position, they use the normal
walk to turn itself toward the target side. Notice that the elliptical walk lines do not point straight
directly toward the kickoff position because of vector avoidance. Robot B's elliptical walk line points
straight directly toward its kickoff position because there are robot A and C's vector contribution
cancel each other,
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Figure 5.56: Adjust example. The robot wants to reposition at position B. Due to localisation errors,
it walks to the position A, After it realises its position is not right, it walks to the position B.
Blue = elliptical walk, green = normal walk, yellow = circle.

5.12.13: Performance and future
development

DKPA has performed very well in this year's competition. The
algorithm was able to assign kickoff positions correctly most of
the time (in particular when the wireless was working). However the
algorithm is not perfect — it doesn't take opponent robots into
account. Opponents should be considered in the future.

The ready player was able to reposition themselves quickly in
the competition. Obstacle avoidance worked reasonably well, our
ready players were able to evade opponent robots most of the time.
Overall the ready players performed incredibly well.

Unfortunately ready player's performance was limited by the
poor vision, in particular the robot recognition. For example
stealth dog requires a good robot recognition. See section 5.5 for

more details.
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5.13: Team Cooperation

5.13.1: Introduction

This year's team cooperation is based on the previous year,
with slight modifications since it is robot independent. Currently

the team cooperation codes are written in Python.

There are two forms of team cooperation in rUNSWift's
strategy: global and local cooperation. rUNSwift's strategy usually
assign one forward as the attacker, one forward as the supporter
and one forward as the striker. The attacker attacks the ball
directly. The supporter stays behind the attacker. If the attacker
fails to gain possession of the ball, the supporter would switch
into the attacker and attack the ball. This type of cooperation is
known as local cooperation.

The furthest robot to the ball is assigned as the striker. The
striker positions itself on the opposite side of the field, away
from the attacker and supporter. It provides the long distance
support to the attacker and supporter. This type of cooperation is

known as global cooperation. The roles are assigned dynamically
based on the world model.

The idea of this strategy is aggressive. Two forwards maintain
possession of the ball. The third forward stays away, waiting for
opportunities to attack or defense. The following sections present

an overview of the team cooperation.

5.13.2: Global cooperation

The forward furthest away from the ball than any teammate by a
fixed offset is assigned as the striker. If no forward is clearly
furthest away from the others, the two forwards that are furthest
away from the ball are selected, the forward that is closest to the
desired striker position is selected as the striker. This selection
process ensures the striker reaches the striker position quickly
and minimising leg—lock.

148



Figure 5.57: Assigning the striker. Left: Shaded
robot is clearly furthest away from
the ball. Right: Shaded robot is not
clearly furthest away from the ball,
but it is closest to the striker point.
(Image courtesy of 2003 UNSW RoboCup

report [13]).

Many different positioning methods have discussed in the 2003
UNSW RoboCup report (page 151 of [13]). Only the X positioning was
used in the last year and this year's competition. In X
positioning, four lines are drawn like in figure 5.57. If the ball
is on the left side of the field, then the robot positions itself
on line CE or CB, otherwise it positions itself on line CD and CA.

If the robot is behind point C (ie. one third of the field),
the exact position the robot is positioned is defined by the fixed
y distance behind the ball. If the robot is not behind point C, the
backoff distance is related to how far the ball from point C. As
the distance between the ball and point C increase, the backoff
distance decreases. The idea is to position the striker closer to

the ball, hence more aggressive.
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cres cizal

Figure 5.58: Striker's positioning. (Image courtesy of
2003 UNSW RoboCup report [13]).

5.13.3: Local cooperation

Local cooperation defines the actions taken by the two
robots closest to the ball when they can see each other. A star is
drawn centered on the ball, a line is drawn in the direction of the
DKD (section 5.15), this line divides the star into three regions:
top, middle and bottom region. See figure 5.59.

DED

Mid Regi an,r"

/

Bottom Region { Mid Region

Figure 5.59: Star drawn around the ball. (Image courtesy
of 2003 UNSW RoboCup report [13])
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The decisions to decision which robot is in a better position
to attack:

e If both robots are in the bottom region, the attacking robot is
determined by the ball source, ball distance, player number and
the fact which robot is closer to the DKD.

e If both robots are in the top region, the robot closest to the
ball is in a better position to attack. The other robot must stay
away.

e Since the bottom region is the best place to attack the ball, if
a robot is in the bottom region and the other is not, the robot
in the bottom region will attack the ball, the other robot must
stay away.

e Otherwise, it is unsure that which robot is in a better position
to attack. Both robots will use the get behind ball to break this

symmetry.

The position of the supporter is depend on the ball position,
robot's position and the DKD. See figure 5.60. If the ball is in
top quarter of the field, the supporter will position itself at
position A or B, depend on which side of the DKD line the robot is
on. If the robot is on the left side of the DKD line, the robot
will choose position A, otherwise position B.

Face backoff and sideway backoff are also ported into Python.
Face backoff allows the robot to take a few steps backward when it
detect a very close teammate. Sideway backoff allows the robot to
move slowly when a teammate is beside it and chasing toward the
ball.

Similarly when the ball is in the middle half of the field.
However the “L” shape is wider. When the ball is in the bottom
quarter of the field, the
supporter will not block the attacker.

T}

L” shape is reversed, so that the

Interested readers are referred to the last year's thesis for
more details (page 151 of [13]).
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Figure 5.60: Supporter positioning.

5.13.4: Problems encountered

The team cooperation strategies remain relatively unchanged

this year. Some problems encountered:

Due to noisy camera and the fact that the two middle beacons have
been removed, the robots often mislocalise in particular when a
scrum has occurred. The mislocalisation completely destroy the
team cooperation, since the team cooperation relies on the world
model.

rUNSWift robots have a very poor robot recognition. As a
consequence they cannot backoff effectively. The robot
recognition cannot recognize blue robots, hence blue robots
cannot backoff at all. Although the robot recognition can
recognize the red robots, but the distance, heading calculated
are not accurate.

The fact that the ERS—7 robots wear less uniform have an
influence on the backoff triggers. Sometimes a robot can see its
teammates for only one or few frames.

The 2003 team cooperation decision tree is actually more complex
and messy than what stated in the 2003 RoboCup report. Lots of
hacking were made, the decision tree was tuned for the ERS-210
robots. It worked very well in the 2003 RoboCup competition.
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However the decision tree becomes so messy that it is very hard

to port it into Python.
There are some slight modifications:

e Instead of going into the supporting position when a robot is in
the top region and the other robot is in the bottom region, the
robot uses the get behind ball skill. Get behind ball is
preferred since this skill allows the robot to turn toward the
target side and stay away from the ball while backing off.

e Instead of going into the supporting position when a robot is in
the top region and the other robot is also in the top region but
closer to the ball, the robot uses the get behind ball skill. The
reason is similar as above.

Lots of effort were put into retuning the team cooperation for
the ERS—7 robots. For example changing the constants, modifying the
supporting triggers. However due to limited time, the tuning is not
as good as the previous year.

5.14: Wireless impact

Last year the wireless speed was slow because Sony made a
bug. After the bug was fixed the wireless speed has improved from
500ms delay to approx 10 to 100ms delay. In theory, the faster
wireless speed should lead to better team cooperation.

Currently the behavior in particular the team cooperation
places more emphasis on the wireless than previously. For example
the wireless ball and wireless teammate position are used more
frequently than previously. Placing more emphasis on the wireless
had some impacts on the behavior in the world open. Due to
congestion the wireless speed was very slow, sometimes completely
broken. Team cooperation did not performed well in the competition
since it relied on the wireless.
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5.15: DKD

5.15.1: Introduction

DKD stands for “desired kicking direction” , it is the
direction where the robot wants to move the ball. The DKD points
directly toward the target side. 2003 DKD is shown in figure 5.61.

Figure 5.61: 2003 DKD. (Image courtesy of 2003
UNSW RoboCup report, page 166 of
[13])

5.15.2: 2004 DKD

This year the DKD has separated into tight and wide DKD range.
The new DKD is integrated with the VOAK gap finding calculation. I
was responsible for integrating the new DKD with the VOAK gap
finding (section 5.9), refer to [6] for details on tight and wide
DKD.

If the VOAK gap finding is triggered, the DKD points directly
toward the center of the largest gap. See figure 5.62. This new DKD

allows the robot to kick the ball toward the gap instead of kicking
toward the center of the target goal and block by the opponent
goalie.
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Figure 5.62: New DKD, point toward the center
of the largest gap.

The following conditions trigger the VOAK gap finding
calculation:

e The robot can see the ball and the target goal. Otherwise there
is no point to find the gaps.

¢ The ball and the robot are close to the target goal. This
condition ensures that the robot is in a good position to perform
VOAK gap finding and kick the ball toward the gap.

e Not too many robots are blocking the way for shooting. This
condition ensures that the robot has enough room to shoot through
gaps.

5.16: Discussion

Problems encountered during the behavior development:

e Sometimes the position of the robots are “flipped” due to the
edge detection. Refer to [7] for more details.

e Fake objects such as fake beacons, fake robots and fake goals are
seen due to the inconsistency of the sanity checks. When the
robots are in scrum, lots of fake objects would be seen. Refer to
[5] for more details.

e The current robot recognition is poor. The blue robots almost
cannot be recognized. The red robots can be recognized, but the

155



accuracy is not good.

Due to poor vision, removal of two middle beacons and sometimes
incorrect odometer update, the robot's localisation is not
performing as well as the previous year. The robots easily get
confused when they are in the corner or near the edge and can
only see one beacon.

Overall the system performs much better than before the

Australian Open, in particular a stable walk has been achieved.

rUNSWift was able to improve the system significantly after the

Australian Open.

Even with the improvements made after the Australian Open,

rUNSWift was still inferior than some of the strongest teams in the

2004 RoboCup competition.

rUNSWift's scoring ability could not match with the Germany team,
UTS and Newcastle team. Our attacking speed was simply too slow,
in particular when the robots were facing the edge. This is the
major reason of failure against the Germany team in the round
robin. During the match versus Germany, rUNSWift actually had
more scoring opportunities than the Germany team. rUNSWift robots
were not able to score, while the Germany team scored very
quickly.

The team cooperation obviously did not perform too well in the

competition, in particular when the wireless was broken.

Although rUNSWift robots walked much faster than in the
Australian Open, some of the teams walked even faster. For
example University of Pennsylvania and University of Austia
robots could turned much faster than rUNSWift robots.

156



[1].

[2].

(6] .

(8] .

Bibliography

Sony Four—legged Robot league, http://www.openr.
org/robocup/index.html

RoboCup Official Site, http://www.robocup.org/02.
html

RoboCup Technical Committee., Sony Four Legged Robot
Football League Rule Book (2004)

http://www.tzi.de/ roefer/Rules2004/Rules2004.pdf.

RoboCup Technical Committee., Sony Four Legged Robot
Football League Rule Book (2003), http://www.openr.org/
robocup/rule/RoboCup03 rules.pdf.

Lam K.C, Sony Four—Legged Thesis B report, School of
Computer Science and Engineering, University of New
South Wales, 2004.

Chan K.C., Sony Four—Legged Thesis B report, School of
Computer Science and Engineering, University of New
South Wales, 2004.

Whaite D., Sony Four—Legged Thesis B report, School of
Computer Science and Engineering, University of New
South Wales, 2004.

Xu J., Sony Four—Legged Thesis B report, School of
Computer Science and Engineering, University of New
South Wales, 2004.

Pham K.C., Sony Four—Legged Froject report, School of
Computer Science and Engineering, University of New
South Wales, 2004.

. Olave A., Wang D., Wong J., Tam T., Leung B., Kim M.S.,

Brooks J., Chang A., Huben N.V., Sammut C., Hengst B.,
The UNSW RoboCup 2002 Legged Leagsue Team, undergraduate
thesis in computer and software engineering, University
of New South Wales, 2002.

157



. Sony OPEN-R., OPEN-R SDK Model Information for ERS—7,

Sony Corporation, 2004.

. OPEN-R Official web site, http://www.open—r.org

. Chen, J, Chung, E., Edwards, R., Wong, N., Hemst, B.,

Sammut C., Uther, W., Rise of the AIBOs [II — AIBO
Revolutions (UNSW 2003 RoboCup Team Thesis), University
of New South Wales, 2003.

. Set Data Structures, http://www2.toki.or.id/book/

AlgDesignManual/BOOK/BOOK3/NODE133.HTM

. Sets, http://www.owlnet.rice.edu/~comp314/04spring/lec/

week5/Sets.htm

. Pham K.C, RoboCup [T industry training report, Taste

of Research Summer Scholarship, 2004.

. Kim M., Uther W., Autimatic gait Optimisation for

Quadruped Robots, Proceedings of 2003 Australasian
conference on robotics and automation, 2003.

. Newcastle Robotics Laboratory, http://www.robots.

newcastle.edu.au/

. Best—Effort Delivery (Linktionary term), http://www.

linktionary.com/b/best effort.html

. Third Australian Robot Soccer Open Championship 2004,

http://magic.it.uts.edu.au/AustralianOpen2004/

. AIBO SDE Homepage — FAQ, https://openr.aibo.com/openr/

eng/perm/openrsdk/regi_faq4.phpd#C0010

. Chan K.C., Lam K.C., Whaite D., Wong T., Xu Jing., 2004

UNSW RoboCup Team Thesis A Report, University of New
Wales, 2004.

. German AIBO Team, http://www.robocup.de/

aiboteamhumboldt/index.html

. RoboCup German Open 2004, http://www.ais.fraunhofer.de/

158



[25] .

[31].

[32].

G0/2004/

Sony OPEN-R message board — ers—7 crashes with dive
kick, https://openr.aibo.com/cgi—bin/openr/e regi/
im_trbbs.cgi?uid=general&df=bbs.dat&prm=TAN&pg=—
1&n0=0998%0998

. Sony OPEN-R message board — OPEN-R SDK 1.1.5-r2 Has

Been Released, https://openr.aibo.com/cgi—bin/openr/
e_regi/im_trbbs.cgi?uid:general&df:bbs.dat&prm:TAN&pg:—
1&no=1048%1048

. Lutz M., Ascher David., Learning FPython, 0'Reilly 2004

. University of Pennsylvania RoboCup Team, http://www.cis.

upenn.edu/robocup/index.php

. Lecture 9: Kruskal's MST algorithm: Disjoint Set Union—

Find, http://www.cs.ust.hk/~“scheng/comp271/notes/L09.pdf

. The C++ Programming Language, http://www.research.att.

com/~bs/C++.html
Lutz M., Ascher D., Learning FPython, O'Reilly, 2004.
Introduction to Pulse Width Modulation — PWM, control

systems, digital control, http://www.netrino.com/
Publications/Glossary/PWM.html

. Sony OPEN-R., OPEN-R SDK Model I[nformation for ERS-=220,

Sony Corporation, 2004.

. Griffith University Mobile Robotics Website,

http://www.cit.gu.edu.au/~s2130677/Mi-Pal/

159



