
THE UNIVERSITY OF NEW SOUTH WALES
SCHOOL OF COMPUTER SCIENCE &

ENGINEERING

COMP3902 Special Project B
Report

Author:
Kim Cuong Pham, 3044938
kimpham@cse.unsw.edu.au

Supervisor:

Dr. William Uther
willu@cse.unw.edu.au

Submission date: 22nd September 2004

Table of content
1. Introduction... 4
2. Locomotion ... 4

2.1. Introduction... 4
2.2. Background ... 5
2.3. Elliptical Walk .. 6
2.4. Walk Learning Software ... 7
2.5. Walk Learning Architecture ... 8
2.6. Implement Walking Learner Robot. ... 9
2.7. Interaction inside WLC... 14
2.8. Implementing LearningAlgorithms interface ... 16
2.9. Walk Learning subsidiary tools. ... 17
2.10. Conclusion and Future Improvement.. 18

3. Action-based frame work for robot behaviors .. 20
3.1. Introduction... 20
3.2. Background ... 20
3.3. Specification ... 22

3.3.1. Overview... 22
3.3.2. Notion of Action ... 23
3.3.3. Writing code for an Action ... 24
3.3.4. Built-in counter ... 25
3.3.5. Hysteresis.. 25
3.3.6. Extensibility of an Action: by Inheritance and by Composition............... 29
3.3.7. Dynamic Architecture by pipelining... 30

3.4. Conclusion and future improvements ... 31
4. The Open Challenge ... 31

4.1. Introduction... 31
4.2. The big picture .. 32

4.2.1. The Attacker.. 33
4.2.2. The Supporter.. 35

4.3. Specific skills .. 35
4.3.1. Low level skills ... 35
4.3.2. High level skills .. 43
4.4. Interaction between the 2 dogs ... 43

4.5. Conclusion .. 49
5. Python development framework ... 49

5.1. Introduction... 49
5.2. The Background.. 50
5.3. The development cycle ... 51
5.4. Extend the current system structure.. 56
5.5. Porting to Python .. 57

5.5.1. C++ to Python interface .. 57
5.5.2. Python to C++ interface .. 58
5.5.3. Pseudo Object ... 60
5.5.4. Global.py... 61
5.5.5. Summary of the API ... 62

5.6. Debugging/Remote Debugging .. 62
5.6.1. Four levels of continuation. .. 62
5.6.2. Examining variables by dynamic evaluation .. 63
5.6.3. Enable debugging by dynamic execution ... 64

5.7. Communication with base station... 64
5.7.1. Listening to commands from base station .. 64
5.7.2. Sending data to base station.. 65

5.8. Other issues... 65
5.9. Future improvements .. 66

6. Supplementary Tools .. 67
6.1. CPlaneClient ... 67
6.2. JointDebugger ... 68
7. Future works and conclusion .. 70

References... 70
Appendix... 72

1. Introduction

RoboCup project is a world-wide research initiative in the field of AI and
robotics. At UNSW, RoboCup is an on-going project that has undergone in the last 5
years. The project was particularly successful at both solving research problems, and
performing extremely well in the competition. For an overview of RoboCup as a whole
and the project at UNSW, see [23].
 My works in this project is; firstly, continue of works I had done in the summer
[22] in learning the walk, and secondly, solving OpenChallenge problem. The
environment of this project is rUNSWift RoboCup architecture. However, the current
architecture is to use with the old ERS210 dog, and making the architecture works on the
new ERS7 robot as well as the old robot had turned out to be an difficult problem (see
[22]).
 This report presents the works I had undertaken in the project, its problems and
solutions, in order to achieve a working architecture that contributed to the outcome of
the project. The advantages and limitations of the work will be also described, and future
improvements are followed on each chapter.
 The report is divided into four main topics: Locomotion, Action-based framework
for robot behaviours, The OpenChallenger, and Python development framework,
represented in chapter 2,3,4,5 respectively. The main focus in Locomotion is the works
on the walking style and walk learning. In order to get the dog learn to walk efficiently, a
number of tools were created, which are described in the same chapter. Chapter 3 focuses
on a new complete behaviours framework that facilitates solving complex behaviours
problem such as the one in OpenChallenger. Chapter 4 is devoted for the OpenChallenge,
in which many skills as well as strategies are experimented. Chapter 5 describes the
Python framework that helps developing every behaviours of the robots in this year
project. Chapter 6 presents two other important tools, apart from SimpleRoboCommander
(section 5.3), that are implemented in the system. The conclusion and future works are
drawn in the last chapter, chapter 7.

2. Locomotion

2.1. Introduction
This section introduces our implementation of a new walk, Elliptical Walk,

along with the learning software module. The learning software is implemented in
a generic way in order to plug in different types of algorithms, and different types
of search spaces.

With the new ERS7 robot, we first hand tuned the old rectangular walk up to
the speed of 27cm/sec, which is as equally fast as the faster ERS210. After
realizing the limitation of the rectangular walk, we implemented another type of
walk, similar to a related work [6]. ActuatorControl module was also re-organized
using Object Orientation so that add new walk styles can be added easily.

ElliticalWalk was chosen to start off because of two reasons: it is fairly easy
to implement and it has a small search space (about 12 parameters, compared to
offset walk 24 parameters). Section 2.2.2 describes EllipticalWalk and its
implementation. Section 2.2.3 introduces the learning tool, which will be
described in length in the rest of this sub-chapter. Section 2.2.4 describes how and
why the architecture of the learning software is built, in such a way that it is
extensible later on. Section 2.2.5 describes the client in the system, and the
implementation of walking robot behaviour. Section 2.2.6 describes how the
components interact with each other. Section 2.2.7 describes how to use different
learning algorithms by the system. Section 2.2.8 lists a few tools that was
developed and section 2.2.9 concludes the topics.

2.2. Background
There are many different walk types that a quadruped robot can have [1]

Figure 1 - Different types of quadruped gaits (from 2002 report)

The difference between these walk styles are the synchronization between

the four legs. For example, Crawl walk move one leg at a time, pace walk moves
left legs in the same manner, so do right legs... Among these, Trot walks are used
the most widely, because the front right leg and rear left leg are moving in
synchronization, hence making the walk balanced. As a result, the trot walk is
shown to be the fastest walk out of the above walk styles. Therefore, in the
RoboCup domain, which requires fast walking style, we will try to make a fast
trot gaits.

Back to the literature, the first learned walk was done by genetic

programming [1]. The technique was used to find a general form of walking, not
only constrained to trot gaits. However, the experiment consumed a large amount
of time and required modification of the hardware. Over the period from 2000-
2002, our team introduced a constraints form of the trot gaits, in which the paws
follow a trajectory of certain shapes, for example: rectangular, trapezoidal... [3,
4]. The walk is among the fastest walks in the competition. In 2003, M. S. Kim
and W. Uther [5] made a break though by successfully learning the walk
automatically. The AIBO walked as fast as it possibly can at the speed of

27cm/sec at the time. The latest work on the field was presented by N. Kohl and
P. Stone in [6] to learn the walk in the form of Policy Gradient ReInforcement
Learning.

All of these works so far was done on the old robot ERS210. Our goal in

this project is to apply them on the new robot ERS7. The new robot has great
advantages of faster CPU and stronger motors. Therefore, it is expected to have a
much faster walk.

2.3. Elliptical Walk
home position

ffo

fsohF

width

he
ig

ht

home position

bfo

bsohB

width(back)

he
ig

ht
(b

ac
k)

Figure 2 - Elliptical locus of the front and back legs

Ellipse shape: 4 parameters define ellipse width and height, 2 for front legs and 2
for rear legs.

Home position: 6 parameters. These define the coordinate of the home position of
the front and back paw in 3D space. They are similar to NormalWalk : ffo, fso, bfo, bso ,
hF, hB (see picture).

Moving speed (PG): PG (Period ground) defines the number of frames the legs
finsh their locus. Large PG moves the leg very slow while small PG slows it down.

Turning adjustment (TA) : This parameter is for auto-calibrating of turning
commands. Usually, in order to tell the dog to turn toward a target that has a heading
[alpha],the turning command is computed by a formula :

turnCCW = alpha * TA.
Where TA is a factor, large TA makes the robot fluctuate about the target, while

small TA makes the robot turn slowly toward the target (Figure 3).

Figure 3 - Impact of turning factor. Blue line corresponds to small factor, Red line corresponds to

large factor

The 12 parameters is the first trial to experiment our learning algorithms. The set
of parameter is relatively small. Nevertheless, it has a few advantages over the the old
Offset Walk. It allows the front legs and back legs to be controlled quite freely by
specifying front and back shape differently. This helps hand calibration of the walk. The
speed of the leg (PG) can be any integer number while OffsetWalk only accepts divisible
by 4 numbers. The turn adjustment parameters can be calibrated by hand easily.

2.4. Walk Learning Software

 The software to control the learning process is called Walking Learner Controller
(WLC). It can query and display information about the walking robots (Robot Info
section), information about the learning algorithm (Learning algorithm section).

Figure 4 - Walking Learner Controller GUI

 Each time a walking robot is boot up and starts talking to base station. Its
information is displayed in a separate tab in Robot Info section. This is because in each
message sent from the robot, the robot number is embedded. Each robot has a learning
state (section 2.6), the learning parameters, and last walking time (if it ever runs). The
robot is driven by several commands. Each command is executed by pressing the
corresponding button. Firstly, the robot is put into “ready” state by “Be Ready!”

command. Next, a “GO!” commands is issued and the robot starts walking forward. A
“Skip this run” command tells the robot to stops. The skipping parameter is returned to
the parameters evaluation pool (see next section), and becomes available to any other
available robots.

There are other commands to deal with exceptional cases. “Run too slow”
command is used when it cannot reach the destination in a reasonable amount of time.
This is needed because some parameter can make the robot walking on the spot, and
unable to move to the target. The robot receives this command will stop and return a big
running time to the controller. This can be issued automatically as well.

When the dog crashed, it is treated the same as “Run too slow” situation.
However, there is a problem with the client that it also crashed when the dog stops
communicating with. When the client crashes, if SimpleRoboCommander tries to send
any more packages, there is a bug (in Qt library) that hangs it. Eventhought the WLC
support resuming from crashes, it is still undesirable. So a quick way to overcome this is
whenever the dog crashes, we have to stop WLC from sending querying messages. Once
WLC is stopped, we can then restart the crashed dog and reconnect to all the dogs. That’s
why the button is needed.

The learning process is started by “Start Learning” button, which starts the
learning algorithm and a timer. The timer “fires” every 2 seconds. Each time it fires, it
sends a query command to the robot and the robot responses by sending all information
about its learning state. The response is then parsed to see if the learning state is “DONE”
state. If yes, the walking time is returned to the learning algorithm.

As mention above, WLC can also be resumed from a file. Saving/Restoring
functions is actually done in LearningAlgorithm class which is described in the following
section.

2.5. Walk Learning Architecture
Walk Learning software is called WalkLearner. It is a module in

SimpleRoboCommander. WalkLearner is designed to be flexible and generic. It consists
of the following components:

Walk Learning Controller (WLC): this is the main controller and GUI. This is
where user starts/stops the learning process. It maintains an Evaluation Pool that
generates multiple run from the same policy. WLC queries Evaluation Pool for next
evaluation, and send it to RobotInfo to evaluate.

Evaluation Pool: is to generate multiple run from a policy. Each run is evaluated
once by some dog. Thus, a policy is evaluated multiple times. By evaluating multiple
times, and averaging the result, the experiment is less sensitive to error and more robust.
When Evaluation Pool finishes collecting all the evaluations of one policy, it notifies
LearningAlgorithm and queries the next policy.

RoboInfo: is the interface between the running dog and the controller. It received
command from the controller, encode it and send to the dog. It also receives message
from the dog, decode the result, and send back to controller.

Robot: is the walking robot. It is programmed to perform exactly identical to other
robot. The only difference is the parameter of the learning walk.

LearningAlgorithm: performs some learning algorithm, for example: Gradient
Descent, or Powell Descent Algorithm…

Robot

Walk Learning
Controller

Evaluation
Pool

query new evaluation

get next evaluation

RobotInfoRobotInfo RobotInfo

control

RobotRobot

Wireless

Learning
Algorithms

Gradient Descent
Algorithm

Powell Descent
Algorithm

Figure 5 - Walk Learning Architecture

2.6. Implement Walking Learner Robot.
2.6.1. The environment

The goal of the robot is to evaluate a particular walk parameter decided by
a learning algorithm. Evaluation is done by having a robot walking back and forth
the field measuring the time it takes to do so.

*

*

Home position and
home beacon

Away beacon

Figure 6 - Walking Learner setup field

2.6.2. The Behaviours

The previous section has explained why we decided to use Polling
mechanism to monitor the robot. In order to monitor the robot, WLC needs to
know exactly what it is doing. In other words, WLC can only control a
number of states and it needs to know exactly which state the robot is in. That
is why the robot is designed in a state-oriented way. The below picture shows
the states that robot is following.

Idle Moving to
ready position Ready

Start learningIntermission 1

Intermission 2 Intermission 3

Intermission 4

Walking
Forth

Turning 180°

Done Walking Back

Figure 7 - States in Walking Learner Robot Behaviours

• Idle:

In Idle state, the dog stays still, does nothing except responding to
WLC commands. (Every state responds to WLC Commands).

• Moving to Ready Position:
This state is done usually after the “DONE” state where the robot

finishes in front the Home beacon. Therefore it needs to turn around and
aligned with the Away beacon.

The dog is to move to the ready position, which is marked in Figure 6.
The robot first turns around to find the target beacon. Once it finds it, it steps
backward until it hits the field border. When the robot hits the border, the duty
cycle value PWM is raised. A threshold of 400 is used to detect such situation.
More robust method is available [8] but this method is good enough in this
particular situation.

Note that if the dog stops very far away from the Home beacon, it will
back off the wrong direction, and move away from the Home beacon.
However, it is assumed that before this state, the robot ends up some where
near the Home beacon. During the course of the experiment, this assumption
is not violated so it is not improved anymore...

Again, this is a design decision and it works. Further improvements is
also available that can be taken into account in future work.

• Ready:
The dog stands still, waiting for next commands

• Start learning:
This state is in the design, in case some initializations need to be done.
However, in the implementation, this just jumps straight to the next state.

• Intermission 1:
The dog stops for a little while (30 frames). This relax time is needed
because PWalk has some delay switching from a walk command from
another, unless the dog is currently in standing position. The delay is
maximum 1/3 second, which is significant.
At the end of this state, it starts the timer, and switch to “Walking Forth”
state.

• Walking Forth:
The dog walks toward the Away beacon (see Figure 6), it tracks the
beacon. The tracking algorithm is modified because the beacon is not on
the ground. Head pan and crane are used to track “in the air” beacon. Pan
is equal to the heading to the beacon, and crane is controlled relatively so
that the beacon center is in the center of the cplane (Figure 8). The
threshold for beacon center elevation is 15°. Delta crane degree is 1°. This
means if the beacon is higher than 15° up, more than 15° down the crane
is added/subtracted 1°.

a)

Pan = Heading

Heading < 0

 b)

15°

15°

Figure 8 - Head tracking for beacon using a) pan and b) crane

The state ends when the dog gets close enough to the Away beacon.
This is checked by the infra-sensor or distance sensor built in the dog.
• Intermission 2:

This state stop the timer, count the time the dog used to walk from the
other beacon (called Tf for time walking forth). Later on when
experimenting with this, it is found that the dog often stops at different
positions, which causes some error in the measurement. This is due to
either delay in PWalk, or delay in the infra-sensor. Therefore the distance
from the Away beacon is also taken into account. It is measured again
using the infra-sensor. The head pans a range of (-30°, 30°). The distance
(Df) is computed as the smallest distance sensed. This is more accurate
than the trigger for the dog to stop because the dog stands still and the
head moves slower.

How the distance is used to compute to correct the running time is
described in DONE state

• Turning 180:
• Intermission 3:

This state is similar to Intermission 1, which starts the timer for the second
run.

• Walking Back:
This is similar to Walking Forth, only differ the beacon that the dog is
running toward.

• Intermission 4:
This state is similar to Intermission 2, which measures time taken to walk
back (Tb), and the distance from the beacon (Db).

• DONE :
The dog finishes its run on this state; it stops at the Home beacon and
waits for the next command.

When a query is sent, the robot responses to it by a message contains last
walking time back and forth the distances from the beacons it stopped at
(Tf, Df, Tb, Db).

The speed of the walk is calculated as (see Figure 9 - Calculate exact
speedFigure 9):

Tb
borderDbborderDfDlFW

Tf
borderDfDlFW)()()(−−−−−+−−−

border

Db
Df

Dog length (Dl)

Field Width (FW)

Figure 9 - Calculate exact speed

This behaviours is first implemented in C++, which has its own form of
state-based implementation. Later on, after Python development is invented. This
is re-written in Python using the “action-based” frame-work that supports State-
based as well. As a matter of fact, re-writing the code in Python only took less
than one day of work. The Python development and the frame work are described
later on in section but it is interesting to compare the two implementations and see
how Python and its frame-work help simplifying the later.

2.7. Interaction inside WLC

The whole interaction inside WLC is centered on WLC GUI which
mediates between optimization functions (LearningAlgorithm classes) and
evaluation functions (robot walking classes). In a typical optimization program,
the optimization algorithm manipulates evaluation functions directly. That works
very well with mathematical functions or function that is run on the same CPU.
On the robot domain, this characteristic is no longer true. The robots are running
on its own processor, while the controller is on another computer. In such a
distributed system, a number of issues is raised, such as message passing,
synchronization, fault tolerance… Therefore it is demanded to have a specialized
design. By separating the optimization function and the evaluation function the
system becomes loose-coupling, which is easier to manage.

Figure 10 shows how the design works.
• Step 1: WLC GUI initializes a timer. As described in the architecture

about the polling model, this timer is to frequently poll the robot.
• Step 2: When the timer times out, it queries all the robots to RobotInfo.
• Step 3: RobotInfo sends query over wireless to robots.
• Step 4: Robot Info receives response from robots as (state, lastRunTime).

If the robot has never run before, it returns (-1,-1).
• Step 5: RobotInfo checks if the state is DONE, then requests new

command (new parameters) to WLC GUI. It also notifies WLC GUI about
the pair (lastRunID, lastRunTime) in the request message. runID is to
differentiate between different runs.

• Step 6: WLC GUI, in turn, query Evaluation Pool to see if there is
available run.

::WLC GUI ::Evaluation Pool ::LearningAlgorithm::RoboInfo::Walking Robot

findFreeRunInPool
(lastRunID, time)

[hasFreeRun]
return (runID,policy)

[noFreeRun left]
getNextEvaluation(
policyID, averaged time)

set f(policy) = averated time

[learning is not finished]
return new evaluation
= (policyId, policy)

[policyId != -1]
generate N free runs from
the new policy

[timeout]
queryAllRobots()

initialise timer

send "query"

return (state, lastRunTime)

[state="lsDONE"]
requestNewCommand
(lastRunID,lastRunTime)

[learning is finished]
return (-1,None)

return runID = -1

1

2

3

4

5

6

7

8

9

10

11

12

13

Figure 10 – Walking Learner Sequence diagram

• Step 7: Evaluation Pool receives lastRunID,lastRunTime. It knows which
runID matches which policyID. If policyID has been evaluated for N times
(N is the number of times a policy is evaluated in order to get reliable
measurement), it returns a reliable average time to LearningAlgorithms.
Otherwise, the same policy with different runID is returned for the robot
to run again.

• Step 8, 9: LearningAlgorithms gets the evaluation, work out the next
parameter to evaluate and return the pair (policyID, policy) to evaluation
Pool.

• Step 10, 11: Evaluation Pool receives new policy; it generates N runs, put
into a queue and continuously returns to robots to run.

• Step 12, 13: If LearningAlgorithms finishes, it returns (-1, None) so that
WLC GUI can stop polling and terminate.

2.8. Implementing LearningAlgorithms interface
2.8.1. The interface

The system is designed to easily add new algorithms by simply extending
the LearningAlgorithm class. It involves implementing the following methods:

• __init__(startFromScratch, logFileName): initialize the algorithm. It

takes 2 inputs; startFromScratch specifies whether it should resume
from previous session or start over again. logFileName is to load/store
session data.

• setParameters(…): set initial parameters.
• getCurrentParameters(): return what is set in setParameters.
• getNextEvaluation(): return (policyID, policy), the next policy to

evaluate. The algorithm remembers that this policyID is being
evaluated, and wait for it to be set by the function:

• setEvaluation(policyID, value): set the evaluated value for a policy
identified by policyID.

• getBestParameters(): return the best policy so far.

The rationale of having getNextEvaluation() and setEvaluation() is that
the evaluation can be done in parallel. Some algorithm can be done in parallel
(for ex: Gradient descent) and some cannot.

2.8.2. The adapter
While the new system is more convenient to handle distributed

evaluation, for some algorithms, it is harder to implement. This section will
present how we adapted a traditional optimization function to
LearningAlgorithm interface. With this adapter, any existing optimization
function can be “plug-in” into our system without re-implementation.

Powell optimization will be used as an example. The algorithm is
implemented in a function called fminPowell (in powell.py file). The adapter
is implemented in PowellDescent.py

We can think of fminPowell as being active, while LearningAlgorithm
interface serves as a passive object. One way of solving this problem is using
threads.

The adapter essential invokes another thread to run fminPowell, and
the main thread will handle LearningAlgorithm interface.

Adapter fminPowell

WLC GUI
getNextEvaluation() [fminPowell not running]

startNewThread(fminPowell, f=walkingFunction)

signal(), policyID, cost

walkingFunction(params)

walkingFunction
::Adapter

nextParams = params wait()

setEvaluation()

return cost

return nextParams to
getNextEvaluation()

Figure 11 - LearningAlgorithm Adapter sequence diagram

The adapter provides walkingFunction method, which is a pseudo

evaluation function. What it does is getting parameters from fminPowell, put it
into evaluation queue, and wait until setEvaluation is called. This function gets
called from fminPowell, hence it is in the same thread as fminPowell.

When getNextEvaluation is called, it wakes fminPowell up and waits.
fminPowell runs and eventually makes a call to its evaluation function (which is
walkingFunction), walkingFunction puts the parameter in the queue, wakes
Adapter thread up, and waits.

When setEvaluation is called, it has the result that walkingFunction is
waiting for. It signals walkingFunction up, hence resumes fminPowell threads.
fminPowell then continues the cycle, runs and makes call to walkingFunction…

In conclusion, the adapter shows the extensibility of the current system. It
is possible to implement any algorithm, or use existing algorithm library, to
experiment with the dog.

2.9. Walk Learning subsidiary tools.

• Function variance measuring tools

 To test the accuracy of the walking robots, we have the dog run the
same policy a number of times, and get the mean and variance. A simple
tool to do the work was implemented as a LearningAlgorithm, called
LearnError.py. It simply returns the same parameters in getNextEvaluation()
and records all values given by setEvaluation(). In the end, it prints out all
statistics data, such as mean, variance…

The tool helps reducing a number of bugs in the walking robot. We kept
modifying the behaviour until it can measure the time with a small enough
variance.
• Testing algorithm offline
 Before the two learning algorithms are run on the dog, they were
tested offline by evaluating some known function. This is to make sure
about the correctness of the algorithms. The well-known function
Rosenbrock was used, and the algorithms were shown to converge.

Figure 12 -3D Visualization of 2 dimemsional Rosenbrock function.
(The opitmizer starts from the left hand side corner and
has to reach the optimum on the right hand side corner)

2.10. Conclusion and Future Improvement
The learning frame work was used to improve EllipticalWalk. A

reasonably fast walk was found in only one hour. The speed is about 34cm/sec,
which is significantly faster than the old dogs. The team’s focus was switched to
improving other modules. Therefore, no other improvement was made since then.
Many ideas have to be put into future works.

Several more sophisticated walking styles were experimented, such as
SkiWalk, SkiEllipticalwalk. These walking styles have a large number of

parameters, allowing more control of the way the legs move. An example of that
is timing of the loci. In all other walks that we had implemented so far, time is
allocated evenly along the trajectory. Such timing influences largely on the legs’
synchronization, which largely affects the walk performance. Another extension
that SkiEllipticalWalk has made was being able to adjust the center of gravity of
the dog. In another word, it can make the dog more balance while walking. Such
consideration might have direct effect on the walking speed as well. Adding more
parameters, and let the algorithms figure out the best parameters would definitely
increase the speed.

Up to now, most effort had been spent to learn the walking straight
walking style. However, in a game situation, not all the time, the dog walks
straight forward. A good walking dog should be able to back-off, to get behind
ball/team mates, to walk side way…efficiently. Such skills usually need a lot of
fine-tuning. In addition, at the competition, it is viable that some dog walks
diagonally faster that it does straight. Getting the frame work to learn those walks
will certainly increase the dogs’ performance in games and is very desirable in the
future time. In fact, with the frame-work, it is quite simple to add such features.

When the parameter space gets large, searching might takes a large
amount of time. In such situation, special knowledge might be taken into account
to increase the search strategy. One example of special knowledge was introduced
above, which is the balance of the dog, which can be adjusted separately. Another
piece of knowledge is that the front legs and back legs can be separated. The
rationale of doing this is that the set of parameters for the front legs seems to have
little effects on the parameters of the back legs themselves. Therefore we can
improve the back legs by just changing parameters for the back legs. Then we can
improve the front legs the same manner, then alternatively optimize back legs,
front legs. The idea is similar to co-evolution in genetic programming [9]. In fact,
when we do manual fine-tuning of the walk, a lot of special knowledge (like
balance, contact point with the floor, synchronization…) is considered. Such
methods are worthwhile to research on in the future.

Normal walk
(ERS210)

24cm/sec

Zoidal walk
(ERS210)

25cm/sec

Offset walk
(ERS210)

27cm/sec

Normal walk ERS7 27cm/sec
Elliptical walk
(ERS7)

34cm/sec

Figure 13 - Performance comparison table of different walks

The result of the whole described work is a reasonably fast EllipticalWalk.

The speed measured in the lab is 34cm/sec. The performance can be obviously
improved since there are many room for improvement addressed above.

3. Action-based frame work for robot behaviors

3.1. Introduction
In the past, writing behaviors for the AIBO usually takes alot of time. This

is due to the fact that debugging code in robotics environment is very time-
consuming. In fact, there has not existed a concrete frame work that supports
developing robot’s behaviors. This section introduces an “action based” frame
work that helps developing complex behaviors. Developing behaviors consists of
writing, debugging and maintaining code. This frame-work is developed with
debugging and code-reusability in mind.

The frame-work has also tried to incorporate many techniques in writing
robot’s behaviors, such as hysteresis, time orientation, decision-tree based, state-
based,…The frame work is written in python, however, it takes advantages mostly
from Object Oriented Programming rather than Python features. Therefore, it can
be written in any OO language, such as C++ or Java.

This frame work has been experimented to implement a number of robot
behaviours including OpenChallenger (chapter 4). Other behaviours paradigms,
such as Walking Learner Robot (state-based behaviour, section 2.6) and
Odometry learner (time-based behaviours, Appendix 2) was also implemented
using this frame work.

Section 3.1 will survey the back ground. The details specification is
described in section 3.2. Section 3.3 provides an insight comparison of this frame
work with traditional state-based and decision-tree based frame work.

3.2. Background
Behaviour is one of the key areas to contribute to any team success in

RoboCup competition. This is the area where all the great researches in other area
can be used, and be proven to the public. In the past two approaches to writing
behaviour were used:

• Decision-tree based:
A decision tree is used to decide the execution path of the code. From the
top to the leaf, a decision is made at each node, typically in a structure as
depicted below (extracted from 2003 report).

Figure 14 - Decision-tree based behaviour

The advantage of this method is the simplicity of design, because any
decision tree can be coded by single statement “if …then…else…” Almost any
language or programming paradigm would have supported the statement, thus,
decision tree can be programmed.

The difficulty of using this approach is not small. It is usually hard to
create a decision tree because careful decision, hysteresis (see 3.3.5) need to be
considered, to make sure a particular situation is not falling into two different
execution paths. There is not interaction between nodes in the tree. There is no
history being stored about the past decision, for example whether a particular
action is achieved or failed... these kinds of information are sometimes needed to
make the right decision. Another problem with decision tree is that modifying the
tree is generally cumbersome, because usually, a decision at one node is strongly
dependent of all the decision made above it. Hence moving a node under different
often easily creates undesired behaviours.

Another problem with decision tree is that it is unclear how to plan
behaviours over time. On the other hand, RoboCup world is actually real time.
Therefore, a notion of time should be considered in any approach.

• State based:

An alternative of decision-tree is state based method. Each decision is now
associated with a particular state, which enhances maintainability, because
decision inside one state does not need to care about decision in other state. In
another word, a decision depends on one only thing, which is the state it is in.

An example of states in a simple behaviour of the goalie which is used by
the German team (extracted from XABSL paper [24]):

Figure 15 - Goalie behavioural states

The draw back of state based is that even though decision inside a state is
independent of outside world, there are still decisions to switch from one state to
another state. In the paper, such decisions belong to the former state. Therefore, a
state is still dependent too much on other states, which complicates the design.

In practice, there are many variances of these two methods. In 2003, our
team used a combined solution by keeping the main decision tree, however,
introduced lock mode, which is some kind of states the an action belongs to.

One of the successes of German’s XABSL language is that it is a complete
specification of the robot behaviour. It helps increasing team’s communication
because team member only need to understand its specification language, not
other’s code.

3.3. Specification

3.3.1. Overview

Any type of an agent’s behaviours can be seen as the figure below

0 150 300 450 600 750 900 1200 time(frame)

0 5 10 15 20 25 30 35 time(second)

Action 1

Action 2

Action 4

Action 33.1

3.4

3.2 3.3

Action 5

Figure 16 - A representation of behaviours

The agent is executing a number of related behaviours, that we call
Action. Some actions are executed one after another (action 1, 2 and 3), while
some actions are executed in parallel (action 1 and 5). If we zoom in Action 3, it
is composed of many other smaller actions, interacting with each other the same
way its parents do. The transition from one Action to another is represented by an
arrow. At one end of the arrow, usually some decisions are made, to decide with
arrow to follow…

In this section, we will present a framework that depicts almost every

thing that happens in the above agent’s world. Section 3.3.2 describes in details
the notion of an action that is mentioned above. Section 3.3.3 shows how to write
code for an action. Section 3.3.4 and 3.3.5 show another two aspects of the frame
work: the time counter and hysteresis. Section 3.3.6 describes how behaviours can
be extended. Section 3.3.7 shows a common way of connect the actions together,
by “pipelining”.

3.3.2. Notion of Action
Definition: An action is a series of decisions that are made in consecutive

number of frame in order to archive something.
For example, if a “running” is executed in frame 12,13,14 then it is an

action “running”, while if it is executed in frame 12,13, 15,16 then it is considered
as two “running” action.

The reason that an action needs to be executed in consecutive frames is
because of the way behaviour is designed to send action to actuator control. At
each frame, if behaviour does not set the atomic action, a default action will be
taken, for example: freeze the dog. Therefore, if the dog stops doing action for
one frame, all the effects that it did in the previous frame would be lost, and the
dogs has to start acting from the beginning.

3.3.3. Writing code for an Action
Many interesting events usually occur at the start and ends of an action.

For example, after dribbling the ball, kick it; open the mouth before grabbing ball,
close it when finish… It is important to be notified about these events.

The frame work provides two methods to handle the events of starting and
ending an action:

• beginAction() is executed at the starting frame, just before
DecideNextAction()

• finishAction() is executed at the ending frame, just after
DecideNextAction(), or executed one frame after the true ending
frame. (When “late finish” occurs).

With the ability to program the beginning and the end of an action, the
robot is able to do something like: open mouth, turning (take about 30
frames), and close mouth when finishes (TurnKick).
The code that does this looks like (extracted from KickTurning action,
OpenChallenger.py):

Figure 17 - beginAction() and finishAction() example

Note that the finishAction() may be called in the next frame, because the
action might not intentionally ends, but being forced to end by a higher
decision. Therefore, a “late finish” may occur; however, it is always
finished before any other action is begun. This does not create any known
problem so far.

def beginAction(self):
 …
 HelpLong.openMouth (GRABBING_MOUTH_OPEN)

def finishAction(self):

HelpLong.openMouth (Constant.IND_MOUTH_CLOSED)

3.3.4. Built-in counter
In order to facilitate time oriented behaviors, a frame counter is available in

each action. The counter’s value is the number of frames that the action has been
executed. It is increased every time DecideNextAction() is called.

The counter information is useful in any kind of action that must be aware of
time. For example, in GrabBall functions (see section 4.3.1.2); a chin sensor
check can be implemented as:

Figure 18 - Example of returning states

This checks if the current angle of the mouth is far less than the angle that
we tells the mouth to open. If yes, that can only mean there something (ball) gets
stuck under the chin, so the robot knows that “ball is under chin” and hand itself
to the next action (by “return self.outState”). The time counter check here is
necessary because, it takes time for the mouth to fully open, the amount of time is
specifed in MyGrabBall.CAN_CHECK_CHIN_TIME. If that amount of time is
too short, the mouth is still closed, and the check would always return true, which
is not correct.

While ‘counter’ tells the local point of time, another piece of information is

also available in the framework that is the value of the global counter when the
action is last executed. The value is stored in member variable “lastFrameID”.
This is useful in some situation for example: when is the last time robot does
active localization (action “Active localization” is called…). However, this
feature is never used in practice.

3.3.5. Hysteresis

#check chin sensors
 if self.counter > MyGrabBall.CAN_CHECK_CHIN_TIME :

if VisionLink.getAnySensor(Constant.ssMOUTH) -
GRABBING_MOUTH_OPEN >
MyGrabBall.STUCK_THRESHOLD:

 print "mouth sensor"
 return self.outState
else:
 return None

Figure 19 - Goalie attacking ball 50cm away

 One common problem when writing robot behaviors is to make the right
decision. For example, the goalie has to decide to either attack the ball or stay the
same to block the goal. A simple solution would be

 The main flaw of this problem is that because the ball distance is never be
the same even the robot stays still. It usually fluctuates within some range around
the true distance. Assume when the robot is 50 cm away from the ball, the
distance fluatuate from 49cm-51cm. What may happen is when the robot is away
from the goal box as in the picture, the ball is 50cm away from the robot. The
distance calculated is 49 cm. so based from the code, the robot decides to attack
the ball, however, in the very next frame, the calculated distance becomes 51 cm,
and the robot decides to go back to goal, then in the next frame, the calculated
distance says 49 again and the robot attack the ball again. So the result of this is
that the robot will hang around the spot without doing anything, and give chance
to opponent robots to get the ball.

 This problem can be solved by hysteresis.

Figure 20 - Hysteresis curve

If [the distance from ball] > 50cm then
 Attack the ball
Else
 Stay at the goal

 "Hysteresis is a property of physical systems that do not instantly follow the
forces applied to them, but react slowly, or do not return completely to their
original state: that is, systems whose states depend on their immediate history"
,Wikipedia.

 Imagine the force is the sensor information that the robot senses, the system
is the action that the robot is doing. In some situations, the robot should not react
immediately to the sensor. In our example above, it depends on the previous state
(immediate history) that the goalie reacts to the ball distance differently. If it is
attacking the ball, only when the ball distance > 70 cm, it can change its mind, to
go back to protect the goal. When it's protecting the goal, it can only attack the
ball when the distance < 30cm. In another words, the condition to switch decision
is made harder, hence enable smoother robot behaviors.

 To enable hysteresis between 2 actions, say AttackingBall and DefendGoal,
we need to define 2 conditions, one to switch from AttackingBall to DefendGoal
B and another on to switch from DefendGoal to AttackingBall.

 There are two ways hysteresis can be implemented in the frame work. The
first way is in child actions and the second way is in parent action. The fisrt
soluion is pretty straightforward from out definition of hysteresis above.It
contains defining an only function called switchingCondition() that returns True if
the action need to be switched and False otherwise.

In AttachingBall class we have

In DefendingGoal class we
have

 Now, we need a generic function to do hysteresis, we call the function

switchingCondition()
 return distanceFromBall < 30

switchingCondition()
 return distanceFromBall > 70

The goalie code would simply have
 When Initialisation (beginAction()) :
 currentAction = DefendingGoal /* default action */
 In DecideNextAction() (is executed every frame):

 doHysteresis(currentAction, AttackingBall, DefendingGoal)

 However, this solution has 2 flaws: The first one is that this results in
scattered code. We put write 2 functions at 2 different places to achieve the same
purpose. That makes the code less readable and harder to maintain. The second
flaw is that if we want to do hysteresis between AttackingBoal and another action
but not DefendingGoal, then it is impossible, because the condition of switching
action is hard coded in AttackingGoal, which is meant to be used in conjunction
with DefendingGoal.

 Therefore we came to conclusion that in order for the action to be flexible
and portable, the child action should not know about what hysteresis it is used
with. Moreover, the hysteresis belongs to the parent class which is manipulating
the child actions. Hence, hysteresis should be implemented in parent class.
Fortunately, the parent class always keeps the pointer to which child it is using.
We have hysteresis function:

 The function relies on 2 callback functions: condition1() and condition2()
(which essentially the same as AttackingBall.switchingCondition() and

doHysteresis(currentAction, action1, action2):
 if currentAction.switchingCondition() == True then
 if currentAction == action1
 currentAction = action2
 else
 currentAction = action1
 else
 currentAction is unchanged

 do current Action

doHysteresis(action1, condition1, action2, condition2)
 if this.subState == action1 then
 if condition1() == True:
 this.subState = action2
 else
 if condition2() == True:
 this.subState = action1

DefendingGoal.switchingCondition() mentioned above). Fortunately, most
language supports callback functions, so this solution is quite feasible.
 This solution is portable because the child actions themselves don't need
modifying. It is also easier to maintain because all the aspects of hysteresis is
well-defined. They are defined in the same chunk of code. So anyone who is
unfamiliar with the code but understand hysteresis can comprehend easily.
 That is the case of bi-state hysteresis. Multi-state hysteresis can also be done
the by decomposing into bi-state hysteresis. However, this is not a common
design so it will not be described in details here.

3.3.6. Extensibility of an Action: by Inheritance and by
Composition

Extensibility is one of the main design goals of the framework. It makes

the system more reusable. New features or behaviours are added into the system
by re-using existence Action, instead of re-writing from scratch. That makes the
existence code more robust because it is not only used, but also the base of other
code, which adds another chance of testing to the original one.

The two ways of extending an Action is by Inheritance and by
Composition. These concepts resemble those in OO Programming. Furthermore,
they can be implemented using OOP.

By Inheritance, an action is made a subclass of a parent action. All the
methods as well as attribute of the parent action are inherited. Usually, we only
want to inherit the general behaviours, and specialize some specific details
belongs only to the inheriting action. Therefore, most often, the method
DecideNextAction() is inherited, and the child action provides some new methods
to set attributes that are used in DecideNextAction(). For example, suppose there
is an Action GrabTurning, which grabs the ball, hold it and turn by a desired
angle (see 4.3.1.4). We want to create another action, which grab the ball, turn
toward a teammate, and kick it at the end of the action. GrabTurning has an
attribute desiredHeading, which is used in DecideNextAction () to turn by. We
know that at the begin of each action, beginAction() is called, and at the end of
each action, finishAction() is called. Suppose the new Action is called
PassingToFriend. Instead of rewrite the whole action from scatch, it can be
extended from GrabTurning by just re-implementing beginAction() and
finishAction().

Figure 21 - PassingToFriend's beginAction() and finishAction()

PassingToFriend.beginAction():
desiredHeading =
friend_to_me ’s heading – my
own heading

PassingToFriend.finishAction():
 setKickToUse(ForwardKick)
 setForceStepComplete() // this
force ActuatorControl to the the
kick immediately, no delay.

Another way of extending action is by composition. This concept is more
natural to think of, and is used in most of the skills in section 4.3
(OpenChallenger). Composition is something composed or made of something
else. In the next chapter, we will be seeing RunToGrabBall (4.3.1.3) action
composes of HoverToBall, GetBehindBall, GrabBall, and ApproachingBall… In
general, whenver we have a high level behaviour, which makes use of several
lower behaviours, we can use Composition. In the high level action
(RunToGrabBall), the lowerer actions (HoverToBall, GrabBall…) are stored as
(private) attributes. The higher action can either actively decide which lower
action to use in each action frame, or passively “pipe” lower actions together
using Dynamic Architecture (3.3.7).

3.3.7. Dynamic Architecture by pipelining

One of the aims having the new framework is to develop behaviors that is

flexible and can be reused easily. Usually we want to write behaviors such as
“Grab ball then kick the ball” as well as “Grab ball then dribble the ball”. It is
desired to factor “GrabBall” action in these two behaviors. This requires actions
to be self-contained and a way to “bring” the actions together.

The first requirement is addressed and solved by the idea of action in
section 3.3.2 above. For the second requirement, there are a number of ways to
solve. The German invented a XML-based language to specify how states are
connected together. As discussed in 3.1, this results in a complex structure and
potentially an enormous number of connections. In order to keep things simple,
we only needs to know which action is executed after another action, hence
assimilate a pipeline structure. The idea is originated from ArchJava which is in
turned inspired by Unix’s pipeline mechanism.

In Unix, each shell program is designed to do a relatively simple task. It
follows a standard that each program read input from stdin (standard input) and
writes output to stdout (standard output). Complex tasks are then achieved by
pipelining programs one after another. For example we can do “ls | sort “ (list the
content of directory then sort it) or “ls | wc –c” (list the content of directory then
count how many lines)…

Back to the proposed framework, each action has a pointer to the next
action, called “outState” (it is originally influenced by the state-based
framework). In order to do action, say A, after another action, say B, we simply
set the outState pointer of A to B.

A.setOutState(B).

We can query the architecture which action is executed after which action:

print A.getOutState(B).

We can also “disconnect” actions by:

A.setOutState(None).

Since connecting and disconnecting actions can be done in anytime. The

architecture can be dynamic. Two common uses are Static Architecture (SA) and
Dynamic Architecture (DA). SA means connection of actions is done once and
only once in initialization time, hence the architecture is unchanged overtime. DA
means connections are done in runtime. An example of DA is demonstrated in
BallHoldingLocalise action (Appendix 1)

3.4. Conclusion and future improvements
The framework has addressed a number of problems with both old

methods of writing behaviours. With decision tree, it is difficult to model low
level skills. The framework solved it because by low level action, which can be
written in a time-based paradigm. With state-based method, complex strategies
usually involved too many states, which is too hard to manage. The frame work
managed that by

The framework has been used and shown many advantages in developing
the behaviours. It helps writing “plug-and-play” code. The action is written once,
and can be used anywhere in other actions. It helps testing, since each of the
action itself is a complete, run able behaviour. The framework has tried to apply a
well-known concept in software engineering: separation of concern [7], which
makes the code written in a more manageable and maintainable way.
 One issue with this framework is performance. It is written totally in
Python. Therefore, one improvement would probably involve embed the whole
framework in C++, which will definitely make it faster.
 Having got the framework, it is possible to provide more tools that support
the framework. A monitoring/logging tool would be certainly helpful in analyzing
the strategies. The log is stored, or sent over to base station, where a certain
interesting pattern can be analysed. For example, “an action X is never executed”
may imply that something wrong may have happened. Tool to detect anomalies
can also be developed to detect something like: the action Y is suddenly executed
where action Z is normally executed…

4. The Open Challenge

4.1. Introduction
“This challenge is designed to encourage creativity within the Legged League,

allowing teams to demonstrate interesting research into autonomous systems.”
Robocup committee.

The Open Challenger is a new challenge of this year’s competition. As the

name suggested, it is open to any sort of research ideas, and more importantly, it must
be challenging idea.

The other two challenges that the team have this year are Vision challenge
(Variable Lightning Challenger) and Localization challenge (Almost SLAM
Challenge). With the aim to make the challenges complete, we decided to have a
challenge in high level behaviours, intelligent strategies and multi-agent cooperation.
The challenge is expressed in the form of Keep Away Soccer game. Keepaway soccer
is a challenging enough task for the following reasons:

• Two dog needs to cooperate well in order to play keepaway.
• Low level behaviours and skills involved in keepaway soccer may even

more subtle than normal soccer, including dribbling, catching ball…
• The information of the environment is stochastic and not complete, the

dog may not know exactly where the opponent is, or teammate is.

On the other hand, Keepaway Soccer is, in fact, a well-known problem in
machine learning. The simulation of the game can be learned to play pretty well by
ReInforcement Learning and Genetic Programming [10, 12]. However, it has never
been experimented on a real world condition as in robocup. That makes the problem
very interesting to tackle.

During the course of researching on this challenge, we have found it much

more involved than any previous challenges. The challenge requires solving many
sub-problems related to vision, localization, planning, communication…

Even though the work was still in progress and did not perform successfully in

the competition, we believed that it has established a quite strong foundation for
potential subsequent works.

Section 4.2 presents the very high level strategies. Section 4.3 described the

skills in more details, including low-level actions and higher level decision trees.
Section 4.4 concludes the chapter and sum up the future works. The content of this
chapter is closely related to the Behaviours framework described in previous chapter,
because the KeepAway soccer not only contributed many of the ideas into the
framework, but also took advantage of those concepts from it from the very
beginning.

4.2. The big picture

Supporter
Dog

Attacker
Dog

shouldBecomeAttacker()

shouldBecomeSupporter()
Figure 22 - Two roles in the OpenChallenger

There are attacker and supporter. The idea is to balance between the two

roles. The roles are described in following section 4.2.1 and 4.2.2. The role
switching algorithm is described in section 4.4.1.

4.2.1. The Attacker
The main role of the attacker is to either handle the ball, holding it,

passing it or keeping it away from the opponent. Since the attacker is busy
handling the ball, it relies on its teammate to locate the opponent, and use the
information to plan the actions.

AttackerDog

Controlling
Ball

LosingBall

PullBallOff
Goal

GetOutOf
Stuck

Active
Localise

NormalBall
State

PanicBall
State

EdgeBall
State

Teammate
TooClose KeepAway

Smart
Passing

GetBehindBall
FacingTeammate

BallHolding
Localise

KickTurning
TowardTeammate

Paw
Kick

UPenn
KickingBall

Blocking
Dog

PullBall
OffEdge

DribbleToward
Teammate

Paw
Kick

UPenn
Kicking

Ball

Turn
Passing Ball

UPenn
Kicking Ball

LocateBall
TurningTo

TeammateBall

Figure 23 - Attacker Action Tree

4.2.2. The Supporter

SupporterDog

Smart
Supporter

Locate
Opponent

Help
Tracking BallSupportHead

Expect Ball
From Teammate

Figure 24 - Support Action Tree

The main role of supporter is to track the opponent. This is important because
the attacker may face away from the opponent, thus unable to locate it. The second
role main role is to position itself so that it can catch the ball passed by the attacker.
These two roles are handled in SmartSupporter. The main task of SmartSupporter is
to go to a particular position, and to use the head to track the opponent and the ball
alternatively.

4.3. Specific skills

4.3.1. Low level skills
A number of low-level skills were made available for the challenger’s

behaviours. These skills are higher than SpecialAction in a sense that they are
programmable. However, they are different to high level skills because they need
very-little or none decision making.

4.3.1.1. Approaching Ball

This performs a slow down walking action. This is used in ball
grabbing skill. In order to smooth out the transition from EllipticalWalk,
which only allows the dog to control in each half step, to stop and grab the
ball. In this action, the forward, and turnCCW parameters of normal walk is
used. Forward parameter is calculated linearly as follows:

Forward = (maxForwardSpeed – minForwardSpeed)

*
cestopDistan stanceslowdownDi

cestopDistan ballD

maxForwardSpeed is the largest Normal walk forward, e.g : 7
minForwardSpeed is the speed at “stopping” movement. One can

tune this so that the dog does not stop at stopDistance. For example, when
grabbing ball, the dog can still move, but as slow as it does not hit the ball
to much.

Behaviour slow down when

ballDistance<=slowdownDistance, linearly
until ballDistance< stopDistance

Input slowdownDistance, stopDistance,
maxForwardSpeed , minForwardSpeed

Condition to break out of
action

ballDistance > slowdownDistance or ball is
lost

Condition to switch to next
action

ballDistance < stopDistance

4.3.1.2. Grabbing Ball

In this action, the dog first pushes the head down without opening the
mouth. It then pushes the head further with the mouth open. Finally, it checks
if the ball is stuck under the chin or not.

There are two reasons the mouth is used. The first one is that the

opened mouth can push the ball inside and hold it tighter. The second and
more important one is that it can be used to check whether the grabbing is
successful or not. Such a validation is necessary because in the game, the dog
is usually pushed by other dogs; hence there is chance that it might miss the
ball.

In order to validate ball under chin, two methods were used. The first

one is to use the chin sensor. There is a little soft patch of about 3 cm2 under
the chin of the dog that acts as a touch sensor. Because the area of the patch is
not very big, the ball does not always touch the sensor. Therefore we need
another check, using the mouth sensor. The mouth sensor senses the opening
angle of the mouth, in the range of 0-10e6. When the ball is under the chin,
the mouth is stuck on top of the ball and can not open wider. Therefore, a
simple check by comparing the angle that we told the mouth to open and the
angle that the mouth is actually opening could be used to detect if the ball is
successfully grabbed. The disadvantage of the second method is that it takes
time for the mouth to open, while the first method does not. However the
reliably of the second is almost 100%, while the first method only works when
the ball touches the right spot. In fact, our behaviour combined the two
methods, which has advantages of both.

This action is programmed using the time counter (see 3.3.4). For the
first 5 frames, it pushes the head down. Then, it opens the mouth and pushes
the head down further. After the first 18 frames, which is the time it needs to
fully open the mouth. It checks if the ball is under the chin base on the two
above checks.

This action can be thought of as a Special Action, which can be done

in ActuatorControl. However, implementing this in Behaviour level has many
advantages. It is easier that Special Action because only the head needs to be
control, the leg can be controlled by PWalk parameters, which is easier than
computing every joint angles. Eventhought PWalk no longer has a step
complete delay; SpecialAction can not stop until it is finished. Therefore, we
can not break out of SpecialAction once we detect that the ball is missed
grabbed.

In addition to the two checks using mouth and chin sensors, vision is

also used to detect false grabbing cases. If the ball is too far from the robot, it
is impossible to grab, then grabbing fails immediately. When the dog starts
opening the mouth, it should not see the ball. Therefore if it sees ball when
opening mouth, grabbing fails too.

This action is in charge of only when the ball is close enough that it

can use the head to grab it. The complete RunToGrabBall action will make
use of this skill and will be described in the next section.

4.3.1.3. RunToGrabBall

This skill combines four lower skills: HoverToBall, GetBehindBall,
ApproachingBall and GrabBall. This action makes the decision “when to grab
the ball” and “what is the best way to approach the ball”. It turned out that
these decisions are not trivial and influence greatly on the reliability of the
grabbing action. During the course of developing these behaviours, these
decisions are fine-tuned and re-tuned many times. Therefore it is essential that
these behavious is encapsulated in one place, other wise each tuning involved
many scattered places.

The condition to grab the ball is the ball distance is less than some

distance, say 13.5 cm and the absolute local coordinate of the ball (Figure 25)
is smaller than some distance, for example: 3 cm. In addition to that, because
in some bad vision situation (like one in the competition). It is necessary to
enforce the condition by checking it for several consecutive frames. Only
when distance condition is satisfied in, say 3, consecutive frames, and the ball
grabbing action is executed.

X

Y

Figure 25 - Local coordinate, example: ball

Furthermore, Grab Ball action can not be done if the ball is near the
edges since the paw will hit the ball. In such cases, the dog needs to get
behind the ball, until it is possible to grab the ball without the paw hitting the
edge (Figure 26).

Figure 26 – Grabbing near the edge

4.3.1.4. Grab-turning
In the old ERS210 model, the dog can grab the ball, turning on its

elbows, aim, and shoot the ball. However, due to a physical difference on the
ERS7, the exact movements of the old skill can not be re-used. However, the
new ERS7 has extremely flexible head. Similar to grab ball action, the head is
used to hold the ball under the chin, and having the legs freely turn. This
action is implemented in HoldTurning class in OpenChallenger.py.

There is currently a big disadvantage of using the head. In the old skill,
the head does not involve in the action, hence can be used to look at the target
goal to shoot, or beacons to localize. In the new skill, the head is sticked to the

ball, and can hardly see anything. The new model prevents the new dog from
performing VOAK [1], which relies heavily on vision. Turning is done by
using a counter, and relies on GPS before grabbing ball. The dog grabs the
ball, turns for a number of frames n, and n is calculated by the simple
formulae:

N = AngleToTarget * Number_of_frames_to_turn360 / 360

AngleToTarget is the difference between the desired heading and

current heading, based on GPS.
Number_of_frames_to_turn360 is the number of vision frame for the

dog to turn 360 degree. This constant needs recalibrating when the walk
parameters are changed, or when the surface in the competition is changed
significantly. In 2004 competition, we found the constant the same as the one
used in our lab.

Eventhough this skill requires accurate World Model; this skill
performs reasonably well in the OpenChallenger in our lab. In the game
condition where there are a lot of other robots around, poor GPS prevented
this skill to be useful, especially when there are robots pushing the robot.

However, it is turned out that the ERS7 can do a better Grab-Turning
skill, which is demonstrated by UTS team. By changing the walking style, the
head can actually both holds the ball, and look at the horizon in front of it.
That type of behaviour contributed very much on UTS team and their runner-
up title.

4.3.1.5. Pulling Ball out of goal

This skill is needed when the ball got hit into the goal box. Since the
challenge aimed to require as little human assistance as possible, the dog
should try to grab the ball out of the goal box. This skill is implemented in
PullBallOffGoal class in OpenChallenger.py.

This skill composed of four actions, AppoachingBall, GrabBall,
StepBackward and Grab-turning. These actions are piped one after another.
The dog first approaches the ball, which is inside the goal box. When the
GrabbingBall condition (see section 4.3.1.3) is sastified, it grabs the ball. It
then steps backward out of the goal, and turns around using Grab-Turning
skill described above to turn 180 degree from the goal.

This skill is triggered when the dog discover that it is inside the goal
box. When the dog is inside the goal box, it sees almost nothing except the
goal colour. Therefore detection of this situation is done by vision. Whenever
there is a blob of yellow or blue goal which has the bounding box covering the
whole cplane, then it is inside the goal box.

This skill however does not contribute into keeping the ball away from
the other dog at all. It is implemented to avoid too much human intervention.

4.3.1.6. Turn Kicking.

Turn kick used in 2003 code is proved to be very useful. A similar
skill is implemented in OpenChallenger called TurnKick. The skill consists of
approaching the ball and turn-kicking the ball in either two directions:
clockwise or anti-clockwise.

There are two actions implemented based on this skill. The whole
approaching ball and kicking ball is implemented in DribbleTowardTeammate
class. The lower skill which only is happening when the ball is under the chin
until the ball is kicked away is in TurnKick class in OpenChallenger.py. The
decision when to start turn-kick the ball is not in TurnKick, but is in action
that makes use of TurnKick, as usuall (e.g : DribbleTowardTeammate).

In turn-kicking, the dog turns with special walk parameters, which

lower and bring the two front hands forward, in order to “tap” the ball (see
videos).

 Forward Left Turn PG hF hB hdF hdB ffO fsO bfO bsO
NormalWalk 7 0 0 40 90 110 20 20 59 10 -50 5
TurnKick
(clockwise)

3 -2 -20 40 70 100 10 20 95 15 -55 5

Table 1 - Comparison of PWalk parameters used in TurnKick and NormalWalk

The skill relies on the distance to the ball to detect when it has kicked
the ball away. A threshold of 20cm is used. Whenever the distance is
exceeding it, the skill will terminate so that other action can take over. When
the dog missed the ball, it turns away from the ball, hence the ball distance
will exceed the threshold and the action will terminate so that the dog may
start the whole action again.

4.3.1.7. UPennKick behaviours.

Using UPenn kick (or side-way kick) is by far the most powerful kick

in our system. One problem is getting the dog walk to the ball, and kicking it
at the very right time is a bit unreliable. The reason is because hitting the ball
at different spots on the paw causes the kick performing differently.

In general, we want to align the dog a bit off to the left of the ball
when doing right hand kick, and to the right when doing left hand kick.
Moreover, we do not want the dog to get very close to the ball, then stop,
align and then kick because it is too slow. Instead, the dog should align itself
when walking toward to ball. This behaviour is different from HoverToBall
where the dog walks straight toward the ball in the center. It is, however,
similar to paw-kick behaviour [1]. Therefore, we can reuse by adjusting the
“Leg x offset” in Figure 27.

Figure 27 - Paw kick (2003 report)

Once the dog aimed at hitting the ball at the side, it only needs to wait
until the right trigger is invoked to kick. The trigger condition is constraint by
two values: the ball distance and “x offset” value.

The decision of executing the left hand kick is (similar for right hand
kick):

 Ball distance <= 14 cm:
 X offset < 0: yes
 X offset > 0: no
 28cm > Ball distance > 14 cm:
 X offset > -3: no
 -3 > X offset > -7: yes
 X offset < -7: no
 Ball distance > 28 cm: no

This decision is illustrated by the shaded region in the figure below:

Figure 28 - UPenn kick condition

In general, this skill works pretty well. Another advantage is that this

UPenn kick can be used alternatively with Paw kick because they share the
same goal of walking toward the ball. Both of these are, in fact, used in
KeepAway action in section 4.3.2.5.

4.3.1.8. UPennKick-ing after grab-turning

As mentioned above, perform UPenn Kick requires a lot of careful
fine-tune in behaviour level. Eventhough the above behaviour guaranteed that
the dog can kick the ball with the right paw, and reasonable powerful, it still
does not make the kick more consistent. In our challenger, in order to
successfully pass the ball to teammate, we need a more reliable way of
kicking.

We realized that doing UPenn kick after grabbing the ball is much
more reliable, because once the ball is grabbed; it is much less dynamic than
being any where on the field. Therefore, the kick is guaranteed to hit the ball
at a consistent spot.

Tuning this kick is similar to tuning turn kick addressed in 2003 report

[1]. The ball is moving in synchronization with the walk step, or (1/PG).
Therefore, we can find the right step value which make the kick most
efficient. A trial and error experiment has been done, by having the action
perform the kick at different step, and see which value perform the best. We
did this experiment with UPenn kick left and right, either when it is tuning
clockwise or counter clockwise. Here is the result (note that one step cycle has
2*PG steps = 80 steps).

 UPennRight UPennLeft
Turning Clock
wise

0,41,79 19, 66

Turning Counter
Clock wise

18, 60 43,80

It can be seen that the good steps are at almost separated by

approximately 40 steps, which is one-half cycle.
The only problem here is that the kick can only be performed at the

right half-cycle, the aiming target might not be accurate, for example, if the
dog wants to turn for 30 degree and shoot, because of the delay for the right
half-cycle, it might over turning, say 35%...This is a trade-off between
accuracy and reliability.

4.3.2. High level skills
4.3.2.1. NormalBallState: Opponent is far away, hold the ball and wait
4.3.2.2. EdgeBallState: when the ball is near the edge
4.3.2.3. PanicBallState: when the ball is in danger.
4.3.2.4. TeammateTooCloseState: block the ball and wait until teammate

gets away
4.3.2.5. KeepAway: kick the ball away from opponent
4.3.2.6. SmartPassing: pass the ball to teammate
4.3.2.7. BlockingDog: try to hide the ball away from opponent.

4.4. Interaction between the 2 dogs
4.4.1. Role switching algorithms.

The role is done by a variant of token passing algorithm. A dog becomes

attacker only when it has the token. Only when the attacker gives up the token,
and pass to the supporter, it would then become attacker. However, the supporter
may want to become an attacker. When it decided to become attacker, it first sent
a request to the teammate asking for that token. The attacker then decides whether
it should give up or not before actually giving up the token. When the attacker
gives up the token, it immediately becomes supporter. Due to network delay,
there may be exceptional case when both dogs have the same role of supporter
when the token is on the way to reach the supporter. However, this moment is
usually very short, and can be neglect. To ensure the token won’t be lost due to
network problem, it is sent multiple times by the original attacker dog. This can
be done by the supporter by checking the counter whether it has just become
supporter for a certain number of N frame, then it keeps sending the token N
times, one per frame.

The rationale of this algorithm is that we don’t want to have two attackers
or two supporters at the same time. Two-attacker situation is not desired because
when both of them are attacking the ball, they both lose track of the opponents,
which is dangerous. Two-supporter situation is not wanted either because the ball
will be left unattended.

Supporter
Dog

Attacker
Dog

if i am much closer to ball than teammate,
 request for token

if my teammate is requesting for token,
and the ball is in fact closer to teammate than me,
give up the token

If I have just kicked, and teammate is seeing ball,
 give up the token

Figure 29 - Role switching decision

4.4.2. Supporter positioning
The first goal of the challenger is to support the teammate. One of the

strategies of keeping away soccer is to pass as much as possible so that the
opponent dog can not follow. In order to archive this, the supporter dog needs
to position itself in a convenient spot for the teammate to pass the ball.

The first experiment we did on this was to have the attacker dog
moving around, with the opponent chasing it. The supporter’s role is to
position in such a way that the ball can be easily pass to it, without any risk of
losing the ball to the opponent dog. Three methods have been investigated.

• First attempt: intersect of two circles

Figure 30 - Positioning 1: Two intersecting circles.

(red is teammate, blue is opponent and white is the adviced potioned)

The first and foremost condition is that the supporter must be a certain

distance away from the opponent. Otherwise, a slightly inaccurate passing to the
supporter with opponent being close might easily go the opponent instead of
teammate. Moreover, the larger the distance, the more advantage the supporter
has, to be the first to grab the ball.

Secondly, the supporter should not be too close to the teammate. This is

because if the supporter dog can not catch the ball, the ball will run far away and
may be caught by the opponent dog. Another issue is that we want the two dogs
spread out rather than get bunched up, which is harder to control.

By the two above essential principle, it is natural to come up with a “two
circle intersections” positioning as in Figure 30. Since there are usually two
intersection points, the dog can simply choose the closest point to its current
position. This approach is simple enough to implement, however has a few major
drawbacks:

• There are cases when the two circles do not intersect each other, or
intersecting points are out of the field.

• The WorldModel always has error. When the teammate and the
opponent are close, imagine the two circles have the same radius. The
two centers jump around making the intersecting points anywhere as
illustrated in Figure 31.

Figure 31 - Drawback: Arbitrary positions

When the two circles are not intersecting each other, they are in either one

of the two cases: The centers are too close, or too far away. We just need to
handle these cases separately. The first case is a dangerous case, because the
teammate, who is having the ball, and is being chased by the opponent. This case
is handled in Figure 33. The second case is when the opponent is too far away. In
this case, the teammate should not pass the ball immediately, but instead, hold the
ball and wait until the opponent comes closer. The supporter can do “Marking” as
in Figure 32.

opp_distance

Figure 32 - Positioning 2: Marking

The supporter can mark the opponent by getting in the way so that the

opponent can not directly see the ball; hence maximize the ball keeping away
time. This case can be modified so that the two dogs can do passing yet hiding the
ball away from the opponent. However, this behaviour has not been achieved yet.

opp_distance

Figure 33 - Positioning 3: Teammate in danger

When teammate is in danger, it is difficult to locate exactly which
direction to support. The supporter just hangs back keep the distance with the
opponent. It is then up to the teammate to kick the ball away in any direction and
chances are that it will be away from the opponent.

opp_distance
opp_distance

Figure 34 - Positioning 4: Right triangle

Another attempt is Right Triangular positioning illustrated in Figure

34. This is somewhat similar to the two circle positioning. There are two main
advantages of this method. The first one is that it is easy to compute. The
second one is because the angle of teammate and opponent to the support is
always less than 90 degree, it enable the supporter to visually track the
opponent as well as teammate and ball.

A special case when the opponent is in the corner, it is better to
position into one of the four pre-defined position as below:

Figure 35 - Opponent in corner case

The rationale is that those are the best position to track the opponent
and still avoid moving. If it is necessary, the supporter can switch to attacker,
and go away to find the ball.

In the end, all of these strategies are used except two-circle
intersection. Square-triangle positioning is used as the general case, other
strategies handle special cases (opponent in corner, teammate in danger, and
marking opponent).

4.4.3. ExpectBallFromTeammate

The attacker dog does passing by first sends a message telling the

supporter dog to expect it. The supporter is then in a state of “pre-attacking”
ball. It locates the ball, based on the assumption that the other dog has just
kicked the ball away.

This “pre-attacking” action is called ExpectBallFromTeammate in
OpenChallenger.py. Whenever the supporter receives the message from the
attacker dog, it knows where the other’s facing. Guessing the other dog would
kick the ball straight ahead, and assuming a fixed distance D_KICK of the
kick (100cm), the supporter would run toward the expected ball position,
rotating the head to find ball at the same time. However, after small amount of
time (2 seconds), if it doesn’t see the ball, it should give up the assumption
that the ball is D_KICK distance away from the teammate (the world model of
the teammate may be wrong). When the supporter gives up, it turns back to
locating ball action.

4.4.4. Collaborative tracking ball.
At the same time as the supporter dog doing

ExpectBallFromTeammate, the attacker dog is becoming SupporterDog. It
detects if its teammate has found the ball or not. If not, it continues tracking,
sothat the teammate knows about wireless ball. This action is done in
HelpTrackingBall, and is executed in SupporterDog, whenever its teammate
loses the ball.

This behaviour only works when the wireless is nearly perfect, which
is not very true in the competition.

4.5. Conclusion
The OpenChallenger somewhat works almost as well as planned. However,

there were a number of problem that prevented it to perform well in the competition.
The first problem was the changes in environment. Vision and Locomotion

were affected significantly. The rough carper in Lisbon prevents our one-handed kick
to function properly. In the lab, the ball is usually kicked away about 180-250 cm,
while in Lisbon, it reduced to roughly 100-150cm. Unfortunately, we didn’t have
many alternative kicks to overcome the problem. The lightning condition is also
different to the one in our lab affects sanity checks so much.

The second one was network problem in Lisbon. Due to the poor wireless
network at the competition, the communication of the two robots was affected
seriously. A large part of the challenger heavily relied on the two dog
communication. For example, the attacker relied on its partner to localize opponent
and send that information over the network. Therefore, without a consistent network
connection, the dogs faced a big problem. Furthermore, without the network, the team
could not send many CPlane, therefore could not test vision offline efficiently. Sanity
checks were not well verified in the new field consequently.

However, The OpenChallenge still shows a good example of applying the new
behaviors frame-work. Even though it is developed in only three weeks, it has
explored many of new boundaries for a behaviors challenge.

In the future, we hope that we can solve such challenges more efficient.

5. Python development framework

5.1. Introduction
Using a scripting language for programming robot behaviours has shown

many advantages. In the past, University of Pennsylvania has had a big success
by using their Perl language as a high level programming language for the dog
[14]. The team the first time became a runner-up. At the same time one of our
team member, Nicodemos has experimented using Prolog as a high level
language, based on GoLog[15]. However, the works was still in experimental
stage that was unable to be recognized further.

The original goal of embedding Python was to develop the Open
Challenge, which is an extensive behaviour challenge. Without such a tool, it is
very hard to make the challenge done in time. This Python frame work can be
seen as the back-bone of the challenge.

Python is not only a scripting language, but also an object oriented
language that has been used widely for both industrial and research purposes.
The great advantage of Python is rapid development methodology. Since it is a
scripting language, the code does not need to compile. Therefore coding and
testing can be done at the same time, which is one key characteristic of rapid
development methodology.

The need a rapid development method is getting more and more apparent.
After Australian Open, the inadequate of the old C++ behaviours were well
recognized. The team had only two months until the world competition. The fact
that the current C++ behaviour code took well over 4 months in the past made us
decide to use Python not only for developing the challenger, but also the game
players’ behaviours.

5.2. The Background

Process Time
Compile code (minor
change in Behaviour)

20s

Compile code from scratch 4m10s
Install to MS 22s
Boot the dog 26s
Total time 6 minutes 18 seconds

The current development cycle takes total over 6 minutes for a change to

be made into the robot’s behaviour, not including testing. This makes it
undesirable to make many changes to the code. One solution is to compile any
test the code offline, without any touch to the robot. rUNSWift 2003 had put a lot
of effort to make this happened (page 58, 2003 Report).

However, to reproduce the error if anything goes wrong; all the CPLANEs
need to be logged. This work pretty well with Vision and GPS module, because
bugs in Vision and GPS do not frequently happen. There is no tuning involved in
those modules. On the other hand, writing behaviours needs a large amount of
tuning. The team rUNSWift 2003 has spent a huge amount of effort to write and
fine-tuning behaviours, which is reported in 113 out of 264 pages in their report.

Another solution is to have a complete simulation of the soccer
environment. This approach is attempted by several teams including the 2004
champion. This approach allows every phrases of the development to be done
offline, which turns robot development close to traditional software development.
However, the solution is only achieved to a certain level of reality. [9]

 Lines of code
Vision 12462
GPS 4542
Behaviors 27822
Wireless 1963
ActuatorControl 10320

Table 2 Comparision of amount of code in each module

A more feasible approach is to change the way behaviours is developed.
As a matter of fact, compilation, install to dog and rebooting processes can be

eliminated. Instead of writing Behaviour in C++ code, which needs re-compiling,
programming Behaviour in an interpreting language can remove all compilation
hassle. That is the reason why Python is used in the our system.

 Without Python With Python
Make 20-60s n/a
Install to MS 22-25s n/a
Boot the dog 26-30s n/a
Upload to dog n/a 2-5s
Reload module n/a 5-10s
Fix-a-bug total time 68-115s 7-15s

The old way of writing behaviour, a cycle of 1)writing code, 2)make the

code, 3) install to memstick, 4) boot the dog takes about 68-115 seconds, while
Python simplified the process to 1)writing code, 2)uploading code, 3)reloading
code in a total of only 7-15 seconds. This is clearly a win of using Python.

5.3. The development cycle
With python, the development cycle is done in the following four steps:

1. Programming in Python
Python source code can be written in any editors, however, it is the most

convenient to be written in an integrated development environment (IDE) for
python. The IDE we used was Eric3 [16]. It provides a wide range of tool, from
debugging to code formatting, auto completion…

Figure 36 - ERIC3 IDE with HelloWorld Behaviour

2. Upload python source code to the dog.

An uploading tool is integrated into base station, allowing us to upload the
source code in a convenient and efficient way.

The tool first finds which files have been modified.

Figure 37 – Python source uploading tool

It is noticed that the python interpreter installed on the dog does not

checks the existence of newer source file version. Therefore even the source file is
uploaded correctly; it does not reload python modules on-the-fly. Therefore we
need to tell the main module to reload by listing all the modules that needs
reloading in a file called Reload.py. However, it is tedious to do it every time we
change a source file. The uploading, in fact, does this for us. Note that new source
file should be always reloaded properly except the dependency issues (see section
5.8)

The uploading tool also does another tedious task, checking python code

by pychecker. In Python programming, it is very common to make error in
runtime because source code is not compiled. On a PC this is not a problem
because running a program is just as fast as compiling it. However, on an
embedded system like our AIBO dogs, it takes time to upload the source,
initialize modules… before it can be run. Therefore, it is the best if the program
can be “test-run” on a PC which is much faster than the dog’s CPU. Fortunately,
there is a tool that does the “test-run” called pychecker. With pychecker, most
error is picked up, such as syntax error, mistyping variable name … It also gives

warning, which is very likely to be an error. The uploading tool is also the most
suitable for this task.

Figure 38 - Running pychecker

The pychecker warns that a variable name “finalActionn” is not found. It
is clear that “finalActionn” has been mistyped here.

3. Reloading python program on the dog.

Once source code is uploaded, it is time to tell the running interpreter on

the dog to reload its compiled python program. A command is sent from the base
station to C++ behaviour module to reload python.

Figure 39 - Dog reloading python code

4. Testing program.

After reloading, the dog is ready to run the new code. The dog can now

start and run the new code. If it is paused before, it can be resumed (see 5.6.1).
The most common way to testing the code is to have the dog behave in various
situations and watch it carefully.

This is the final step in the development cycle. After testing, if the code

needs fixing then we go back to step 1 and continue the loop.

5.4. Extend the current system structure

Vision

- Colour Segmentation
- Object recognition

- Sanity checks
- Edge detection

GPS

- Localisation

(Pre) Common Behaviours

- Handling fallen states
- Pause/Resume dogs

- Handling GameController
Commands

Player's Behaviours

Specific skills, strategies
associated with each player

Vision frames

Actuator Control

Wireless

Python Behaviours

Behaviours written in
Python Code

(Post) Common Behaviours

- Send Shared Information to
teammate

- Set Indicators

Figure 40 - Flow chart of robocup modules

The current rUNSWift robot architecture contains 5 modules: Vision, GPS, Behaviours,
ActuatorControl and Wireless [2003 report]. The flow of these modules is depicted in
Figure 40. Vision module is fed in vision frames by OPENR. It does colour segmentation

and forming blobs. It then recognize object and the output goes to GPS. GPS, in turn,
take objects information as well as wireless information from Wireless module, to create
a world model. Behaviour module takes all available information from previous
processes, to make decision and decide which action to do next. The action commands
are performed by ActutatorControl, where it closes the execution loop.
 The python module aims at reducing behaviors development time.

5.5. Porting to Python

5.5.1. C++ to Python interface
C++ to Python interface is the C++ API functions that can be called from

Python. Python interpreter provides an interface for embedding C++ function
called PyMethodDef.

PyMethodDef has 4 fields [17]:

Field C Type Meaning Example
Ml_name char * name of the method sendAtomicAction
Ml_meth PyCFunction pointer to the C implementation VisionLink_sendAtomicAction
Ml_flags

Int flag bits indicating how the call should be
constructed

METH_VARARGS

Ml_doc
char * points to the contents of the docstring “Set the atomic action to be executed

in ActuatorControl”

Table 3 - Python Method struct

Ml_flags can have a number of flags. However, only 2 flags are most
commonly used: METH_VARARGS if the function has arguments and
METH_NOARGS otherwise.

The arguments and return values of these methods can be anything. It can
be function pointers (which will be utilized in the next section), primitive types
like integers, char, or objects… Passing Objects will be described in section 5.5.3.

Making the C++-to-Python interface is as simple as making a list of

PyMethodDef struct.

Figure 41 - Listing of API functions (extracted from PyEmbed.cc)

Since Python is an object-oriented language, these methods must be put

inside a module (Module is a pretty much equivalent to object, except that it is
singleton). For simplicity, we put all methods into one module called VisionLink.
Perhaps, another better way is to put them in several modules, such as Vision,
GPS, Actuator…However, in term of efficiency, the two methods are the same.

5.5.2. Python to C++ interface
In order to use python code, it must be called from C++ code. In the

previous section, we know that Python can give arguments to a C++ function.
That is used to pass C++ the python function pointer, or callbacks. Having got the
python callbacks, C++ code can call them any time, or send messages to Python
modules...

We provided 2 Python function to be used in C++: processFrame and
processCommand.

• processFrame is to be called every time a vision frame is received.
More precisely, each time a vision frame is received, vision and gps is
processed, and then processFrame is called.

• processCommand is called to pass the message that wireless module is
just received to Python.

A sequence diagram will illustrate the use of processFrame and
processCommand in details

/* With this function specifying all the implemented semi-Python/semi-C
** functions, the python codes can call the "bridging" functions implemented in
** this file.
 *
 * NOTE: CHANGE IN THIS TABLE SHOULD BE TYPED IN VisionLink.py as well!
 **/
static PyMethodDef Vision_methods[] = {

 /*
 * General functions
 */
 {"setCallbacks", VisionLink_setCallbacks, METH_VARARGS, "Set the PyEmbed callbacks."},

 /*
 * Actuator related functions
 */
 {"sendAtomicAction", VisionLink_sendAtomicAction, METH_VARARGS, "Set the atomic action."},
 {"sendIndicators", VisionLink_sendIndicators, METH_VARARGS, "Set the LEDs, tail and ears."},
 {"sendMessageToBase", VisionLink_sendMessageToBase, METH_VARARGS, "Send wireless message
back to base station, message is prefixed by '****'"},
….

OpenR

::Vision ::GPS ::Behaviour ::Python

vision frame

visual objects

Behaviour::DecideNextAction()

processFrame()

[PyEmbed]
sendAtomicAction()

::ActuatorControl

atomic action

OCommandVectorData

Figure 42 - System interaction with Python module

OpenR

::Wireless ::Vision ::Behaviour ::Python

TCP data

(char*) message

Behaviour::processCommand(char *)

processCommand(msg)

Figure 43 - Wireless message passing between modules

5.5.3. Pseudo Object
As mentioned in the previous sections, it would be convenient to pass

objects as arguments rather than using numbers. However, making new object as
a native python object is quite complicated and takes time. There is too much
house-keeping function to be implemented [18]. We used a simpler method,
which is easier to implement.

Each C++ class is serialized into a tuple, and passed onto Python from
C++. We created a python wrapper object that is responsible to convert the tuple
back into a python object. The wrapper object is called pseudo object, because
underlying it is not a true data structure but a tuple. To python level code, the
pseudo-object looks the same. It has the same methods as in C++. The only
different is that the object needs to be constructed by giving it the tuple received
from C++. To demonstrate this idea, let’s look at Vector class:

In function getGPSOpponentInfo (in PyEmbed.cc), it returns:

return PyObject_FromVector(gps->getOppPos(opponentNumber, context)) ;

PyObject_FromVector is a function to convert Vector object into a 2-tuple
containing x and y coordinate.

static PyObject * PyObject_FromVector(const Vector &vector){

 PyObject *t;

 t = PyTuple_New(6); //create a tuple of 6 elements
 PyTuple_SetItem(t, 0, PyFloat_FromDouble(vector.x)); //set each element to be a
 PyTuple_SetItem(t, 1, PyFloat_FromDouble(vector.y)); // field from Vector object
 PyTuple_SetItem(t, 2, PyFloat_FromDouble(vector.d));
 PyTuple_SetItem(t, 3, PyFloat_FromDouble(vector.theta));
 PyTuple_SetItem(t, 4, PyFloat_FromDouble(vector.head));
 PyTuple_SetItem(t, 5, PyFloat_FromDouble(vector.angleNorm));

 return t;
}

The tuple is converted back to Vector object in Python by Vector class

(extracted from Global.py) :

class Vector:
 def __init__(self,*arg):
 if len(arg) == 6:
 self.__x , self.__y, self.__d , self.__theta , self.__head , self.__angleNorm = arg
 else:
 print "arg length = ", len(arg)
 raise Exception("Number of argument to Vector() must be 6")
 def getX(self):
 return (self.__x)
…

Whenever the getGPSOpponentInfo gets called in Python, it is wrapped

with the pseudo-object (extracted from HelpLong.py) :

gpsOppPos = Global.Vector(*VisionLink.getGPSOpponentInfo(i, coordinate))

From there on, gpsOppPos is used as a native Python object.

Five C++ class is ported this way, which are Vector, WMObj and

VisualObject, PWalkInfo and WirelessTeammateInfo.

5.5.4. Global.py
The original purpose of this file is to contain global variables, which should

be restricted in OO Programming. However, the existence of some non-standard
API made this module become popular. “Global.py” is the place to standardize
and store wrapper class for pseudo-objects mentioned in previous section. During
the course of development, we realized that people preferred to access
information from variables (e.g: Global.selfLoc) rather than from function (e.g:
VisionLink.getGPSSelfInfo()). Therefore, such variables were put into
“Global.py”. This explained why “Global.py” is almost always imported in every
modules. However, in the near future, this should be changed to its original
purpose.

5.5.5. Summary of the API
This is the list of function available in Python module at the time of this

writing. For an up-to-date list, along with explanations of usage, please consult
VisionLink.py or online documentation [19].

Table 4 - Summary of Python API

5.6. Debugging/Remote Debugging

5.6.1. Four levels of continuation.
When programming on a PC, debuggers such as gdb is able to stop the

program, so that programmer can examine various aspects of the running code
such as stack trace, memory variables…

On the AIBO dogs, there have never existed such tools. Therefore,
programming in C++ for the dog is much harder than for PC. However, with
Python, it is simply possible.

Another advantage of pausing the dog is that it lets us reproduce the error.
Usually, when the game is kept playing, a bug can be seen, but it is very hard to
debug because it is not reproducible, unless the game is played again.

There are four ways in which the dog can be stop for programmers to
examine the state of the dog:

a. Pausing the leg only: “The dog stands still while thinking…”

Locomotion function Vision functions GPS functions Wireless functions Helper functions
sendAtomicAction
sendIndicators
getBatteryLevel
getFallenState
getPressSensorCount
getJointSensor
getAnySensor
getJointPWMDuty
getPWalkInfo
getBatteryCurrent
getTemperature
getCPUUsage
setWalkLearningParameters

getVisualObject
getColouredPixelCount
setUseBeacons
getProjectedBall
getHeadingToBestGap

setGPSGoal
setIfGPSMotionUpdate
setIfGPSVisionUpdate
setAllowPinkMapping
getUsePinkUpdate
getIfGPSVisionUpdate
setGPSPaused
getGPSSelfInfo
getGPSSelfCovariance
getGPSBallInfo
getGPSBallVInfo
getGPSBallMaxVar
getGPSVBallMaxVar
getGPSOpponentInfo
getGPSOpponentCovMax
getGPSTeammateInfo
getOppGoalInfo
getOwnGoalInfo
getGPSCoordArray
getTeamColor
getGPSTeammateBallInfo
setMinimalMode

sendMessageToBase
sendEnvironmentTeamMates
sendCompressedCPlane
sendOPlane
sendEnvironmentBaseStation
sendYUVPlane
sendMyBehaviourInfo
getSharedBallInfo
getWirelessTeammateInfo
getTheCurrentMode
getKickOffState

setCallbacks
doBasicBehaviour
getMyPlayerNum
getCurrentTime
getProjectedPoint
PointToHeading
PointToElevation
getTestingInfo

This is done by deleting all atomic action except head control after
DecideNextAction(). This enables us to examine the code when the
dog is still executing the code. However the dog will not move makes
it much easier to reproduce the error. The head is movable so that
localization is remained the same.
 This type of discontinuation is useful when debugging high-level
strategies, role determination…
 The base station command* is “pyc/pleg n”, where n is the dog
number†.

b. Pausing both leg and head: “Watch closely and think carefully…”

This stop the dog both legs and head. This makes the CPlane that
the dog is seeing stay still. It is particularly useful when a bug is
caused by vision.

The base station command is “pyc/n pause” where n is the dog
number.

c. Stopping DecideNextAction(): “No Python.”

DecideNextAction() is not going to be called, therefore the state of
the player’s behaviour code remains the same. General python
behaviour like processing wireless command is still enabled.

This is often used when it is not clear which proportion of the
player’s behaviour has bugs.

The base station command is “pyc/n nodna” where n is the dog
number.

d. Stop everything (mode 0): “No Behaviours.”

This is the old pause command that stops the dog right from the C++
to cease calling DecideNextAction() ‡. The dog cannot communicate at all,
except for sending cplane and world model, until it is started again in
mode 1.

The base station command is “mode/0”.

5.6.2. Examining variables by dynamic evaluation
Having stopped the dog and the code it executes in the previous section. We

now look at how the state of the program is examined.
In Python, it is possible to evaluate any expression at run time. As a matter

of fact, Python interprets and executes everything at run time.
To evaluate an expression, we send the expression in a wireless message to

the dog, the message is then handed to Python, it extracts the expression, evaluate

* Base station command has 2 fields: name and value. By convention name is to demultiplex in C++ level,
field value is sent to specific player’s code. E.g : name=pyc means message for Python player.
† Dog number can be 1...4 or 5...8. “9” means all dogs. “0” means no dogs.
‡ C++ DecideNextAction() is different from Python DecideNextAction(). The former calls the later.

it, and send back the result via a Python embedded function called
VisionLink.sendMessageToBase(msg).

Note needs to be taken when evaluating the expression. The expression is
evaluated in Behaviour.py, which is the top level module in Python. Therefore, it
is interpreted in the context of Behavior.py module. In order to refer to a variable
in a specific player’s code. It needs to be accessed though module name, imported
from Behaviour.py. For example, suppose there is a variable “frameCounter” in
the player’s module (say, Testing). The expression has to be
“Player.player.frameCounter”. Because “Player” is a general player module
imported by Behaviour. Testing player is in turn imported as “player” in Player
module. Therefore, the expression has to refer to all these modules.

(A gotcha is that since a symbol needs to be accessed via its modules, all
symbols that are imported by “from ModuleX import *” will not be accessible via
“ModuleX” but accessible via the module that does import.)

5.6.3. Enable debugging by dynamic execution
Dynamic evaluation only read the state out of the program, while dynamic

execution can actively change the state of it. Again, this is another feature of
Python. The use of execution is mostly similar to evaluation.

This can be used to change the value variables to simulate from erroneous
condition. The most often use of this is to turn on/off some debugging variables,
which is seen from SanityCheck player (see Appendix 2). The player is used for
either sending CPLANE that visual objects (beacon, ball…) are not recognized
(false positive) or contains visual objects that is not exist (true negative). By
changing one of 9 variables (one for each type of object), we can get a lot of bad
CPLANE for debugging in offline vision.

5.7. Communication with base station
Communication between the dog and base station is never been as easy as it is
with Python. Almost all Python players take advantages of this communication,
especially responding to base commands. WalkingLearner makes the most out of
this communication by both sending and receiving commands. A number of
debugging, testing, experimenting player make use of wireless communication:
ReadJointPlayer, LatencyTester, LandmarkTester, Odometer, OdoLearner…

5.7.1. Listening to commands from base station
Listening to commands from base station is handled by processCommand

function in Behaviour.py. A simple example extracted from Behaviour.py is given:

#--------------------------------------
Called when received a wireless command.
def processCommand(cmd):

 print "Python:I just got this command: ",cmd

Recall that any message from base station to the dog is in the form of
name/value. The name field is processed by C++ code, usually to forward to a
particular C++ player. The name of messages to Python player is “pyc” (Python
commands). The value field is formatted as “n message”, where n is the dog player
number. This number is also processed by C++ layer. The rest of the message will
be given as an argument in the above processCommand.

5.7.2. Sending data to base station

Sending message is done via function sendMessageToBase in VisionLink

module. The above code is sending the result of an expression evaluation to the base
(see 5.6.2). The message is first passed from Vision to Wireless module via the
share memory. The share memory structure is defined in SharedMemoryDef.h:
RC_DEBUG_DATA. The struct field “message” is used to pass the data. However,
that “message” field is limited to 100 characters. Therefore the current code only
allows maximum of 100 characters to be sent from the dog at a frame. This explains
why some message from the dog is truncated to 100 first characters. This will be
probably fixed in the next version.

5.8. Other issues
There are some miscellaneous issues involving in Python.
• Dependency issues:

When a Python module is reloaded, its imported modules are not
automatically reloaded. This makes sense because if it is, then circular dependent
modules will take forever to reload. Therefore, we had to force it to reload a
special way.

 The way we did it was to have a module called Reload. It is forced to reload
by a statement “reload(Reload).” in Behaviour.py. Therefore, everytime
Behaviour is reloaded. It will reload Reload as well. Reload module basically
contains all the modules that need reloading. The modules that need reloading are
usually modules that are modified, which can be generated by Uploading Tools
(see 5.3).

There is a problem with reloading imported objects from a module by “from
moduleB import *”. When using this statement, reloading moduleB will not
reload all contructs that has been imported by moduleA. Therefore, in order for a
module to be reloaded properly, this statement should be avoided.

def processCommand(cmd):
 …

if cmd[:4] == "eval":
 evalResult = eval(cmd[4:])
 VisionLink.sendMessageToBase("****"+str(evalResult))
 …

• Printing out to telnet:

Printing out from Python may slow down the dog due to threading issue. This
is because the interpreter running on the dog is single threaded. All the I/O
processing is busy-waiting. Moreover it is sent over wireless and the delay large.
Therefore, printing a large amount of data to telnet should be avoided.
• Testing Action:

Any single module can be run as long as it provides DecideNextAction().
This is similar to Java static main function. It is useful when testing a module.
The module can be treated a single player.
• Player's description:

When Python module is reloaded, the player’s name and description are
displayed. This is to avoid loading wrong modules. For convenient, the player’s
name and description are put in a triple quotes:

The string inside the triple quotes is interpreted by Python as a special
description belongs to the modules. This special string is printed in Player.py

5.9. Future improvements
There is a lot of room for improvement of the Python development

framework. The API can be made more Object Oriented by grouping them into
appropriate module, such as Vision, GPS, Actuator… The pseudo-objects (5.5.3)
could be replaced by proper embedded objects for better performance. The accessing
of information from C++ should be refactored to be more OO, instead of accessing
global variables in Global.py. Wireless communication could be made more
standardized or extended to send more type of data rather than raw character
messages. Another importance development aspect of the framework is the

"""
Forward, switching between Cruyff, Beckenbaurer and Zidane
"""

import VisionLink
import Debug
…

…
Print player description everytime it is reloaded
if player.__doc__ is not None:
 print "Initiating Player:", player.__doc__
else:
 print "Initiating noname player: [module]", player.__name__
…

SimpleRoboCommander base station. The base station could be improved to be more
user-friendly, more fault tolerance. All these things can definitely boost our
development efficiency and quality.

6. Supplementary Tools
Tool is one of the key aspects of success in our project. Along the course of

developing the system, there are a number of tools that supplement our developments.
There are two tools that I mainly developed: CPlaneClient in C++ and JointDebugger.

6.1. CPlaneClient
This tool is originally developed in the early of the year (Summer 2004),

to experiment with the throughput of sending CPlane. The full frame rate of the
dog’s camera is 30 frames/sec. However, the old Java CPlaneDisplay (see report
2003), can not display CPlane at full frame rate. By changing the implementation
to C++, we hoped that it can display a lot faster.

Tool Frame rate
Java CPlaneDisplay
with ERS210

5-6 frames/sec

Java CPlaneDisplay
with ERS7

3-4 frames/sec

C++ CPlaneClient 24-30 frames/ sec

Table 5 - Performance improvement of C++ CPlaneClient

The experiment showed that C++ could be 10 times faster than Java in
displaying CPlane. This work was later on developed into full feature client
whose screenshot is shown in Figure 44.

The GUI is handled by Qt library, a full fledge GUI library used by open
source community. The library itself provides a complete development
environment, from a GUI designer to make tools. For example, the designer
creates forms, and put the information into a project file, say CPlaneClient.pro.
Another tool called ‘qmake’ convert the project file into Makefile. All the
developer needs to make the program is to type “make” afterward. For more
information of Qt library, see [20].

Figure 44 – A Screenshot of C++ CPlaneClient

The recognized objects are shown on the right panel, along with their
details information (coordinates and size) in the bottom of the CPlane. The client
can also log the cplanes. However, after implementing this, we found out that
logging was also done in base station client, which is the first application that
receives data from the dog. Therefore this feature is unfortunately never used.

Animation is also implemented in CPlaneClient. It can read cplane log
files, and animate them, similarly to Java CPlaneDisplay.

6.2. JointDebugger
At the early stage of porting code to the new ERS7 dog. We got a problem

of “Battery-Over-current”. This problem happens very frequently when the dog
performed improper walking steps (bad walking style causes the dog to perform
action that is over its ability, and thus increases battery current to the limit). When
“Battery-Over-Current” occurred, the dog shut down itself automatically. This
tool is created to find solutions for that problem, aiming at detecting such
improper steps. To detect such conditions, information of current joints angles,

and the command that we tells the dog to do needs to be compared. The
JointDebugger is created to send all those information to the base station for
analyzing. A screenshot of the tool is given below:

Figure 45 - Joint Debugger screenshot

The tool is finished. However, after analyzing such information, we could
not find any particular pattern that caused the shutdown. The cause of the problem
was lying in the early version of OPENR system, which was fixed in the later
versions.

The tool was not successful in term of the original purpose; however, it is
still a necessary tool that could be used in the future. For example, a form of stuck
detection using the same information that this tool provided has been developed
[8].

7. Future works and conclusion
Robocup project has been developed into a relative large scale project, which

involved many smaller projects. This report only showed small parts of it. Even
though, there are a lot improvements can be made in the future works.

Future improvements have been partially addressed in each chapter above.
However, there are still areas that never been explored. We will present some of them
here.

We could create more motions for the dog, especially the kicks. The shortage
of kick has restrained our performance in the open challenger as well as the main
game. In order to do this, a motion editor could be made, allowing visually and
practically edit a dog motion. By visually, we mean the motion can be previewed in a
3D model without the need of playing it on the dog. By practically, we mean once the
draft motion is created, it can be fine-tuned, adjusting on the dog. Instead of viewing
on 3D model, each step of the motion can be transferred directly to the dog, and
showed immediately. Such editor has been used by some teams, and can practically
copy any motion from human’s eyes.

Vision is a big area of improvement in our system. The lack of “quality
insurance” tools may prevent any team from performing at their best in the
competition, even though, it works well in labs. Our methods of detecting visual
objects by color blobs can also be combined with other methods of detecting visual
obstacle [21], which is less sensitive to light condition.

On the other hand, other methods low level vision can also be experimented.
New way of learning color calibration may be developed, which is more robust and
easier to use. One of them is incremental learning method, has been developed many
years in our school. Incremental learning is well-known for its ease of maintain, and
wide availability of approaches as well as tools.

Data fusion of opponent localization could also be improved. This year,
opponent filter is not used, because of several reasons 1) it is not used in strategies
and 2) dog visual detection is not good enough. However, having good localization of
opponents means a total control of the game situations and the strategies would be a
lot more intelligent.

The improvement list is almost endless. That proves the great vision of the
project “to foster AI and intelligent robotics research by providing a standard problem
where wide range of technologies can be integrated and examined...” robocup.org.
We believe that the field of RoboCup researches will be growing up more and more.
The project will definitely be seeing great researches, ideas and achievements to
come.

References

1. J. Chen, E. Chung, R. Edwards and N. Wong. rUNSWift 2003 Report.

2. G. S. Hornby, M. Fujita, S. Takamura, T. Yamamoto, and O. Hanagata. Evolving
Robust Gaits with AIBO. In IEEE International Conference on Robotics and
Automation, pages 3040–3045, 2000.

3. Bernhard Hengst, Darren Ibbotson, Son Bao Pham, and Claude Sammut (2001).
Omnidirectional Locomotion for Quadruped Robots. In A. Birk, S. Coradeschi,8 and
S. Tadokoro, editors, Lecture Notes in Computer Science, RoboCup 2001: Robot
Soccer World Cup V,pages 368–373. Springer, 2002.

4. David Wang, James Wong, Timothy Tam, Benjamin Leung,Min Sub Kim, James
Brooks, Albert Chang, and Nik Von Huben. The UNSW RoboCup 2002 Legged
League Team. Undergraduate thesis in computer and software engineering,
University of New South Wales, 2002.

5. M. S. Kim and W. Uther, “Automatic gait optimization for quadruped robots,” In
proceeding of ACRA2003.

6. N.Kohl and P. Stone, “Policy Gradient Reinforcement Learning for Fast Quadrupedal
Locomotion”, In Proceeding of ICRA2003.

7. Seperation of Concern: http://c2.com/cgi/wiki?SeparationOfConcerns , Wikipedia.
8. J. Hoffmann and D. G¨ohring, “Sensor-Actuator-Comparison as a Basis for Collision

Detection for a Quadruped Robot,” in 8th International Workshop on RoboCup 2004
(Robot World Cup Soccer Games and Conferences), Lecture Notes in
ArtificialIntelligence, Springer, 2005. to appear.

9. Melanie Mitchell, “An Introduction to Genetic Algorithms”
10. J.C.Z.Montealegre, J. Ruiz−del−Solar. UCHILSIM: A dinamically and Visually

Realistic Simulator for the RoboCup four Legged League, in 8th International
Workshop on RoboCup 2004.

11. Learning to Play Keepaway
http://www.cs.utexas.edu/users/AustinVilla/sim/keepaway

12. Genetic programming to learn Keepaway Soccer
http://www.cs.nott.ac.uk/~smg/keepaway.html

13. Videos of OpenChallenger skills
14. University of Pennsylvania Robocup team report, 2003.

http://www.cis.upenn.edu/robocup/source/UPenn03.pdf
15. Nicodemus Sutanto, Undergraduate Thesis Report.
16. Eric3 IDE : http://www.die-offenbachs.de/detlev/eric3.html
17. Python common object structure: http://docs.python.org/api/common-

structs.html#l2h-824
18. Python extension writing

http://starship.python.net/crew/arcege/extwriting/pyext.html#module
19. rUNSWift code online documentation. http://cgi.cse.unsw.edu.au/~tomv/cgi-

bin/robocup/wiki.pl
20. Qt documentation/tutorials: http://doc.trolltech.com/3.3/index.html
21. J. Hoffmann, M. J¨ungel, and M. L¨otzsch, “A Vision Based System for Goal-

Directed Obstacle Avoidance used in the RC03 Obstacle Avoidance Challenge,” in
8th International Workshop on RoboCup 2004 (Robot World Cup Soccer Games and
Conferences).

22. K.C.Pham, Summer Research 2004 technical report.
https://.../trunk/papers/TechnicalReports/KimSummer2004Report.pdf

23. C.K.Lam (Daniel), Undergraduate Thesis Report.
https://.../trunk/papers/Thesis2004/DanielThesisB.pdf

24. Martin L¨otzsch, Joscha Bach, Hans-Dieter Burkhard, and Matthias J ungel,
Designing Agent Behavior with the Extensible Agent Behavior Specification
Language XABSL, ”in 7th International Workshop on RoboCup 2004 (Robot World
Cup Soccer Gamesand Conferences).

Appendix
1. Dynamic Architecture example:
 BallHoldingLocalisation is an example of using so-called dynamic architecture,
by connecting sub actions together and reconnecting them on-the-fly. Connecting two
sub-actions means setting one to be the outState of the other, so that when one sub action
is done, it will execute the next action.
2. Might includes helping players/tools:

• LatencyTester: This player is to measure the latency of the network. It requires
two dogs numbered 1 and 2. Dog 1 will send a numbered token n to dog 2. When
dog 2 received token n, it responds back number n. When dog 1 receives token n,
it continues sending token (n+1). The latency is then calculated from the time dog
1 sends token n, until the time it receives back token n.

• ReadJointPlayer: This is similar to the old remote player. It responds to various
base station commands, to execute various actions.

• Odometer Calibration: This player is used to work out odometry information of a
walk. The walk command is sent to the dog, the human waits until the dog makes
a full circle, and comes back the original position. The diameter of the circle is
calculated, along with the number of frames it took to complete the circle. From
that information, it is able to work out how much forward/left/turn it traveled for
one frame.

• Odometry Learner: This player is to attempt to measure odometry automatically.
It does so using GPS. It starts off by going to a position on the field. The walk
command is executed for a number of frames. Using GPS, the trajectory that it
has gone is logged, from which the odometry information is calculated. However,
it is realized that the current GPS is not accurate enough for this to work.

• Sanity check player: LandmarkTester. This player is used to send CPlane display
“on demand”. For example, sending CPlane about ball is controlled by a variable:
expectBall. If expectBall is True, then the dog would send every cplane that it
does not see the ball, in which case the ball is missed. If expectBall is False, it
would send cplane that it contains ball in which case a phantom ball is
recognized. The variable can be set to None to not send any cplane at all.
Similarly, variables to control beacons, goals, robots are used to send bad vision
cplane.

