
The University of New South Wales

School of Computer Science & Engineering

Road to RoboCup 2006

rUNSWift 2006 Behaviors & Vision Optimizations

by

Enyang HUANG

Submitted as a requirement for the degree

Bachelor of Software Engineering with Honors

Submitted: 1 September 2006

Supervisor: Dr William Uther

Assessor: Professor Claude Sammut

1

Abstract

This thesis describes work done in visions and high-level behaviors in 2006
at rUNSWift1. For both parts, we have introduced new approaches and
re-implemented bunch of the modules. The first part of this thesis, Vision,
covers the 2006 implementation of chromatical correction of raw images with
machine learning approach. Moreover, as a result of the new rule on the
field, we also introduced the concept of field edge, which is used by higher
level agent vision processes. The second part of this thesis is a review of
the 2006 rUNSWift behavior system. Lots of the modules and concepts
here are, re-defined carefully and re-implemented, with concentration from
simple low-level skills such as ball tracking, ball finding, ball grabbing, ball
dribbling, ball kicking, to high-level complex behaviors such as role assign-
ments, positioning and team cooperation. In parallel, a strategy simulator
was implemented which is capable of performing plug-in-and-play simula-
tion of the behavior modules.

The team comes 1st in Australian Open 20062, and 2nd in Robocup 2006
Bremen3, using 2006 rUNSWift code base.

1rUNSWift is a combination entry of the University of New South Wales and Nation
ICT Australia in Robocup 4 legged-league. National ICT Australia is funded through
the Australian Government’s Backing Australia’s Ability initiative, in part through the
Australian Research Council.

2See http://www.cse.unsw.edu.au/robocup
3See http://www.robocup2006.org

Contents

1 Introduction 8
1.1 Background . 8
1.2 rUNSWift 2006 Architecture 8
1.3 Report Overview . 11

2 Ring Correction 12
2.1 Overview . 12
2.2 Past Work . 12
2.3 Presentation of the work . 13

2.3.1 Theory . 14
2.3.2 Function Minimization 15

2.4 Implmentation . 16
2.5 Summary . 18

3 Field Edge Recognition 20
3.1 Overview . 20
3.2 Present of Work . 22

3.2.1 Detecting wall feature 22
3.2.2 Random Sample Consensus 23
3.2.3 Fitness Function . 24

3.3 Implementation . 25
3.4 Summary and Outlook . 28

4 High Level Behaviors 30
4.1 Behavior System Overview 30

4.1.1 System Structure . 30
4.2 Introduction . 32
4.3 Role . 34

4.3.1 Goalie . 34
4.3.2 Attacker . 38
4.3.3 Supporter / Striker . 40
4.3.4 Defender . 45

4.4 Role Switching . 45

1

4.4.1 Attacker Selection . 45
4.4.2 Defender & Striker Selection 48

4.5 Role Positioning . 49
4.5.1 Background . 49
4.5.2 Decision tree based positioning 49
4.5.3 Weighted Regression based Positioning 51
4.5.4 Summary and Future Work 57

5 Generating Decision 60
5.1 Introduction . 60
5.2 Using Decision Tree . 60
5.3 Field Zones . 62
5.4 Leaf Nodes . 63
5.5 Using Contested Ball Info . 64
5.6 Decisions In Defensive Third 65
5.7 Decisions In Mid-Field Third 65
5.8 Decisions In Offensive Third 68
5.9 Summary . 70

6 Low Level Behvaiours 71
6.1 Low Level Behaviour Overview 71
6.2 Find and Track Ball . 71

6.2.1 Ball Tracking . 72
6.2.2 Ball Finding . 72

6.3 Grab . 79
6.3.1 Introduction . 79
6.3.2 Module Layout . 80
6.3.3 Ball Approaching . 81
6.3.4 Can Do Grab Query 81
6.3.5 Grabbing . 82

6.4 GrabDribble . 85
6.4.1 Introduction . 85
6.4.2 Turn and Aim . 86
6.4.3 Apply OverTurning 88
6.4.4 Obstacle Avoidance - Dodging 88
6.4.5 Edge Behaviors . 92
6.4.6 Kicks . 92
6.4.7 Kick Selection Tree . 93

6.5 Summary . 96

7 Behavious Simulation and Optimisation 99
7.1 Behaviour Simulation . 99

7.1.1 Simulator Overview 99
7.1.2 Design . 99

2

7.1.3 Implementation . 100
7.1.4 Plug-In-And-Play . 100

7.2 Behaviour Optimization . 100
7.2.1 Evaluation . 100
7.2.2 Optimization . 102

7.3 Summary . 103

8 Conclusion and Outlooks 104
8.1 Conclusion . 104
8.2 Outlook . 104

Acknowledgements 106

Bibliography 106

3

List of Figures

1.1 The rUNSWift architecture react with outside environment
through OpenR interface. Agent at each frame sense and then
react. Precisely, it first senses the world, store the results af-
ter processing image, update localization, make decision and
finally set the joint parameters at the end of that frame. . . . 10

2.1 A standard picture taken from ERS-7’s camera without cor-
rection. We can notice the pink fringe near the edge of the
picture. 13

2.2 A picture of an uniform white wall taken from ERS-7’s camera
without correction. One can notice how severe the distortion
is as the distance is awayed from the center. 13

2.3 A pictures by ERS-7 of pieces of papers of pure colours.
TopLeft: Pink uniform colour paper raw image. TopRight:
White uniform colour paper. BottomLeft: A green Uniform
colour paper. BottomRight: Yellow uniform pirce of paper . . 15

2.4 The images before ring correction and after ring correction.
First Row: A picture by ERS-7 of a piece of pure white pa-
per,Post distortion correction of a pure white image. We can
see the ring effect has been minimized by significant level.
Second Row: A picture by ERS-7 of a piece of pure yellow
paper,Post distortion correction of a pure yellow image. The
minimization quality was very high on this colour, comparing
with the image before correction. 17

2.5 A standard image taken by ERS-7 on Robocup field with
usual environment, the ring effect was obvious. The post
distortion correction of the original image with our lab back-
ground. This is a image of non-uniform colour and is cor-
rected well by our method. 18

4

3.1 A typical image taken by our robots at World Championship
2006, Bremen. The image has complex backround patterns
which can cause serious recognition problems. In this image
it is likely our calculate of the goal position and size could
be contaminated by the blue windows and lights on the back-
ground. 21

3.2 A field wall line marked on C plane of a vision frame. Notice
the wall features marked on each vertical scan line with yel-
low dots. The line (red line) is accurately marked along the
boundary of green to non-green transition boundary. 22

3.3 The filed edge is partially interrupted by the ball and the
beacon at the right. 2006 Robocup World Championship,
Bremen. 26

3.4 The filed edge in front of the blue goal been accurately marked.
2006 Robocup World Championship, Bremen. 26

3.5 The ability to quickly eliminate outliers of point data when
many of them are present. This image shows nearly half of
the image are covered by an obstacle. 2006 Robocup World
Championship, Bremen. 27

3.6 The same image presented at the beginning of this chapter.
The field edge is marked by a thin red line elevated at the
near half image height. This helps us to eliminate these com-
plex background for ball and goal recognition. 2006 Robocup
World Championship, Bremen. 27

3.7 The present of multiple field edges needs to be recognized
in the future work. Picture taken at 2006 Robocup World
Championship, Bremen. 29

4.1 The rUNSWift behavior system structure. High level behav-
ior is in charge of role, role positions and role assignment.
Low level behaviors are those skills that can be used by var-
ious roles at high level modules. The ability to dynamically
select which of these skill to execute by what role is known to
be the ”link” between the high and low level behavior mod-
ules. This link is implemented as a decision tree which is
capable of generating decisions. 31

4.2 The rUNSWift architecture react with outside environment
through OpenR interface. Agent at each frame sense and then
react. Precisely, it first senses the world, store the results af-
ter processing image, update localization, make decision and
finally set the joint parameters at the end of that frame. . . . 33

4.3 A simple way of placing of our goalie robot. This placement
is easy to implement and works well in a competition. 37

5

4.4 Attacker avoidance plan A. Non-attacker should avoid being
close to the line between the ball and the goal 43

4.5 Attacker avoidance plan B. Non-attacker should also avoid
being interfere with an attacker when attacker is chasing the
ball . 43

4.6 Bird of Prey in Action. Picture taken from a practical match
between rUNSWift(Red) and GermanTeam06(Blue) From TopLeft
to BottomRight, Red 1 is Goalie. Red 2 is Attacker chasing
the ball. Red 3 is Defender doing Bird of Prey. Red 4 is the
Striker at the front. We see Red 3 is walking in a circular
fashion and tries to avoid slowing down due to going home
directly through teammate and opponent robots. 44

4.7 Non-Attackers positions specified by human under various
game conditions. TopLeft: The ball is in opponent half field,
we place defender and supporter directly behind attacker.
TopRight: The ball is at the top right opponent half, we place
our defender at the back but slightly more forward than the
TopLeft situation. We also place our supporter at the cen-
ter near opponent’s goal box, and head its direction towards
to the ball. BottomLeft: Here we see our attacker is chas-
ing the ball and facing towards our own goal, we will thus
place defensive strategy rather than offensive attacking, and
we place our supporter near the center circle to form team’s
first line of defense. BottomRight: The ball is at the bottom
left region. We place our supporter at high elevation to wait
offensive chance and be ready to receive ball passed forward
by the attacker. 54

4.8 A 3-dimentional kd-tree.[29] The first split(red) cuts the root
cell (white) into two subcells, each of which is then split(green)
into two subcells. Each of those four is split(blue) into two
subcells. This leaves us with final eight leaves. 58

5.1 The rUNSWift behavior system structure. here decision sys-
tem is represented bt the linkage between high and low level
system. 61

5.2 The field division. 1: Defensive left edge, 2: Defensive middle,
3: Defensive right edge, 4: MidField left edge, 5: MidField
right edge, 6: MidField, 7: Offensive middle, 8: Offensive left
edge, 9: Offensive right edge, 10: Offensive left corner, 11:
Offensive right corner . 63

6

6.1 The 3 positions that the team will do distributed find ball on.
The distributed find ball is triggered if none of the robot can
see the ball for a specified duration, and is finished upon the
a found ball event by any dog on the team including goalie. . 73

6.2 The sequence of find ball strategy we use if we can not see
the ball. This sequence consist of useForce, useIR, useHint,
useLastSeen, useGPS, useBackOff, useScan, useSpin. 74

6.3 The traditional visual obstacle detection by counting discrete
obstacle feature pixels in the rectangle projected on the field.
Figure taken from Road to Robocup 2005. 89

7.1 The simulattion of the ready state with both teams on the
regular attacker, striker and defender strategy. The Red team
is kicking off. 101

7.2 The simulator is simulating the same ready state in different
view, a zoomed in view from an opponent robot’s prospective. 101

7.3 2006 rUNSWift 3D Behaviour Simulator: Same ready state
in yet another different view, an audiance’s prospective 101

7

Chapter 1

Introduction

In the first week of summer holiday 2006 (December, 2005), the new 2006
rUNSWifters started their journey. 2006 rUNSWift directly inherited the
spirit of rUNSWift 2005. In particular, the basic approaches of vision, loco-
motion, behavior and system architecture are similar in concept and struc-
ture comparing with year 2005. Based on the weakness of team 2005, the
team has proposed many optimizations. Large-scale work was conducted in
modules related to localization, low-level visions, and behavior. Alone with
these lines of work, the team has also developed some offline tools such as
offline vision, offline behaviors simulator.

In the following chapters I will introduce and discuss the work that I was
in charge. These consist of topics mainly in vision and behavior modules.

1.1 Background

Robocup is an International research project to promote AI, robotics and
related field. In the 4 legged league of Robocup consists of 4 Sony Aibo
robots playing on a 540*360 field. The robots must operate autonomously
and no hardware modification is allowed.

rUNSWift has had good record in 4 legged league of Robocup since its
first participation in year 1999.

1.2 rUNSWift 2006 Architecture

The rUNSWift 2006 architecture consists mainly of censoring/processing,
behavior, and actuator. The system is running 30 times a second. Thus
each frame has 1/30 second of time to sense its environment, update states,
making decision and react. The system was implemented efficiently thus

8

most of the time a full frame process is completed in time.

Sensors used at rUNSWift consist of OpticalRadiation Sensor (Head
Camera, HeadChest Infrared) and Mechanical Sensor (Paw Touch Sensor,
Head Parameters Sensor). Environment censoring is done primarily by Head
Camera. Head camera produces raw image every frame. The following pro-
cessing also consists of two folds. We first apply image process to extract
information out from the raw image. Secondly we update agent’s state. For
example, we do localization update (See Oleg’s Thesis), Obstacle map up-
date (see Josh’s Thesis), as well as storing the objects and their attributes
handily.

When censoring is completed, we move on to behaviors processing. The
structure of this stage naturally consists 3 steps. The first step looks at the
information provided by current frame censoring, as well as those informa-
tion from previous frame left in ”memory”, makes correct decision on what
roughly action the agent should perform. For example, at this stage, the
agent might think if it needs to walk forward or backward, or if it needs
to kick or release the ball. This state is therefore called decision. It may
decide a action to perform only in a particular single frame, or may also
decide a sequential actions that need to performed over the next few frame,
depending on the exact circumstance. Once the next-step decision is de-
cided, the agent looks at the skills it knows how to perform, selects the most
appropriate one, and executes that skill according to how it is specified. The
final step is the communication. Here the agent reports what has done to its
team. Communication and sharing information happens not necessarily at
the end of run of the behaviors. For example, in order to make the correct
next step decision, an agent might ”ask” its team mate a few questions and
”negotiate” before making the final decision.

The physical effect of execution of a particular decision is usually the
movements of agent’s actuators. Either single one such as raising the tail,
or movement of multiple ones such as moving four legs simultaneously to
simulate walking (See Ryan’s Thesis).

The above software structure can be graphed as 1.1:

As can be seen from the graph, there are 5 important sub-systems, Vi-
sion, Localization, Behavior and Actuator Control.

[Vision System] - This system processes YUV image from head camera at
frequency of 30 hz, using sub-sampling methods. Interesting features are
recognized and object recognition is performed over these feature. These
objects include goals, beacons, ball, field lines, and field edge. A detailed

9

rUNSWift 2006 Structure
GPS /
Localisation

Sensor / Vision

Decision /
Behavious

Actuator
Control

OpenR InterfaceField Environment

Raw Image

Objects/Attributes

GPS Info Head/Walk

Wireless/Communication
Image Data

React

Sense

Joint Paras

Figure 1.1: The rUNSWift architecture react with outside environment
through OpenR interface. Agent at each frame sense and then react. Pre-
cisely, it first senses the world, store the results after processing image,
update localization, make decision and finally set the joint parameters at
the end of that frame.

10

desciption of this year’s vision system please refer to [1].

[Localization] - This module tracks the position of the important objects on
the filed. They include the robots, ball and obstacles. It uses a extended
multi-modal Kalman Filter for self localization and updates its position with
new observation of landmarks. Field lines are used as sanity checks over
these procedures. A detailed description of this year’s localisation is at [2].

[Behaviors] - This system uses information provided by vision system and
localization system, together with wireless communication with teammates,
selects the best strategy to perform in real time.

[Actuator Control] - This system handles locomotion of the robots. It re-
ceives commands from behavior system and move the corresponding raw
joints appropriately. For detailed description on Actuator Control modules
please see [3].

1.3 Report Overview

This thesis will explain work details in part of 2006 Vision system. In par-
ticular, low-level vision and field edge recognition in high level vision. This
thesis will also give a comprehensive overview of the entire behavior sys-
tem. In particular, behavior 2005-2006 diff will be discussed in more detail.
Chapter 2 will describe the 2006 camera chromatical distortion correction
approaches. In chapter 3 we will discuss this year’s field edge recognition
using extended Ransac algorithm. From chapter 4 on, we will present the
description of the entire behaviour layer in our architecture. Chapter 4 in-
troduces the behaviour system structure and high-level behaviour modules
including role, role assignment and role positions. Chapter 5 describes the
strategy decision tree that links between high-level behaviour modules and
low-level behaviour modules. Chapter 6 introduces our low-level behaviour
system, with emphasize on the four important skills - ball tracking, ball
finding, ball grabbing, and ball dribbling. Chapter 7 is a description of this
year’s development on behaviour simulator - its design and application. The
last part of this thesis summarizes the work and present the outlooks for fu-
ture works.

11

Chapter 2

Ring Correction

2.1 Overview

A significant problem introduced by the Sony AIBO ERS-7 robots is the
chromatic distortion near the edge of the image. Chromatic distortion hap-
pens when different colors of light do not line up across the entire image
plain, and is usually dependent on the lens aperture size. [5][6] Some other
source also claims that the distortion can be difficultly explained merely in
terms of optics and suspect it could be partially due to digital effects[7].
The distortion looks roughly in cyclic shape and as it distanced away from
the center, the distortion is more apparent. In the domain of Robocup 4
legged league, this problem is common to many teams. At rUNSWift, col-
ors classification plays a fundamental role in the vision system. High-level
vision relies directly on the accuracy of low-level colors classification. Thus,
this problem needs to be resolved.

Because this effect looks closely cyclic, so it is termed ”Ring Effect” at
rUNSWift. The correction method developed here is therefore called ”Ring
Correction”.

2.2 Past Work

Since the introduction of ERS-7 model, many Robocup teams attempted to
come up with effective solution to this ring effect. Early work at rUNSWift
was conducted by Jing Xu in 2004. Jing Xu concluded the following char-
acteristics of this ring effect [8]:
The chromatical distortions experienced by AIBo ERS-7 are:

(a) Symmetric about its center, which is roughly, although not exactly, the
center of the image.

12

Figure 2.1: A standard picture
taken from ERS-7’s camera with-
out correction. We can notice the
pink fringe near the edge of the
picture.

Figure 2.2: A picture of an uni-
form white wall taken from ERS-
7’s camera without correction.
One can notice how severe the dis-
tortion is as the distance is awayed
from the center.

(b) Parabolic in terms of its relationship between chromaticity and pixel
position.

(c) Different for each distinct color.

(d) Roughly consistent for different colors with the same camera settings.

(e) Independent of lighting conditions.

It seems that if the distortion can be modeled, then it can be corrected.
Due to the uncertainty of the cause of such distortion, one may not be able
to express such distortion function in a closed formula. If the distortion
model if F, then to correct a image with distortion F(image), we can apply
the inverse of F, F

′
, hence to correct, image = F

′
(F (image))

Jing Xu eventually ended up with a model similar to electric fields. Given
a pixel’s value, and its position on the image, the pixel’s value before distor-
tion can be calculated from solving a system of quadratic equations[8]. In
the following section, we will present this year’s correction algorithm, which
is much faster to implementation than the 2004 model.

2.3 Presentation of the work

We now need to develop an algorithm to solve the ring effect. The input of
the algorithm will be an arbitrary pixel on a YUV plain, with its values and

13

positions. The output of the algorithm will be the YUV value of the same
pixel after ring correction, so the distortion effect is minimized. Apart from
these, the implementation of the algorithm must be efficient, recall that this
algorithm runs at the very bottom of our architecture, hence its speed is
extremely vital. The efficiency will also be stressed in the following content.

We use YUV color model to describe a pixel on one image frame. Where
Y is the standard luminance component, also called brightness. U and V
are the chrominance components, also called color components. Early work
done by Jing Xu suggested that when distortion of a pixel happens, that
distortion exists on all Y, U and V components. However, it is unclear that
there is any correlation among the individual distortion components. The
plus side of assuming Y, U and V are independent of each other is that its
implementation is considered to be computationally efficient. [8] Early con-
cept built based on this YUV independency worked well in practice. Hence
this year’s approach our model also assumes Y, U and V is independent at
distortion. This naturally leads to the thoughts of building three models,
each for Y, U and V.

2.3.1 Theory

We start by observing these effects first. We took pictures of uniform colors
from the robots. By uniform we mean same or close to same pixel value on
the real object, such as a pure white board. See figure 2.4,2.4,2.4,2.4

The chromatic distortion of component Y (We take Y as an example, U
and V are similar.), given a reference spectrum, is dependent on its magni-
tude. Moreover, it also depends where it is on the image. We therefore use
its distance from the physical center of the image as a measurement.

We then decided to use a polynomial approximation function F to model
Y component distortion. The forward distortion model for Y component is
a function F mapping from the correct value to its corresponding distorted

14

Figure 2.3: A pictures by ERS-7 of pieces of papers of pure colours. TopLeft:
Pink uniform colour paper raw image. TopRight: White uniform colour
paper. BottomLeft: A green Uniform colour paper. BottomRight: Yellow
uniform pirce of paper

value:

F : Yc → Yd (2.1)

Given the distance from this pixel to the image center dY , the full poly-
nomial model we used is given by:

Yd = (a1Yc + b1)(dY)3 + (a2Yc + b2)(dY)2 + (a3Yc + b3)(dY)1 + Yc (2.2)

To apply correction, we use F−1, that is:

F−1(F (Yc)) = Yc

In particular with our polynomial distortion model, we have:

F−1 =
Yd − b1(dY)3 − b2(dY)2 − b3(dY)1

a1(aY)3 + a2(aY)2 + a3(aY)1 + 1
(2.3)

2.3.2 Function Minimization

Now to come up with these coefficients, we need apply minimization algo-
rithm. That is, given pixel value (y,u,v) and its distance from the center dY ,
F (value, dY) can be as close to the expected magnitude as practical.

In our experiment, we have selected a set of uniform color sheets of
papers. The color we used in the experiment are: blue, green, darkblue,
pink, white, yellow. Of course, one can selects more colors. At the next step
we take pictures on each of these objects to form out a training set χ.

The coefficient matrix to be determined is:

15

CoefF =

 aY
1 bY

1 aY
2 bY

2 aY
3 bY

3

aU
1 bU

1 aU
2 bU

2 aU
3 bU

3

aV
1 bV

1 aV
2 bV

2 aV
3 bV

3

Let FY be the distortion model of Y component on a pixel, that is, the

coefficients for FY is the first row in CoefF . Similarly, FU and FV will use
the second and third row respectively. The error function Y colour compo-
nent per pixel is given by:

pixelERRY = (F (Ycenter, dY)− Y)2 (2.4)

That is, the Y component error at this pixel is defined to by the square
of the difference between the estimated Y value and the actual Y value ap-
pears in the picture. The Y value estimation could be calculated from the
Y value of the center pixel in this image and the distance from the current
pixel to the center pixel. In addition, the total error at this pixel is defined
as the sum of all component errors:

pixelERR = pixelERRY + pixelERRU + pixelERRV (2.5)

Finally, the total error of our function at one step of optimization with
entire χ is then the sum of all pixelERR in all picture. Function minimiza-
tion will selects CoefF such that this total error is minimal. In the lab, we
used the standard Simplex Algorithm[9]. Other popular optimization algo-
rithms were used by Robocup peers. For example, Thomas and Walter at
German Team used Simulated Annealing[10] in 2005, and ended with good
results of distortion correction.[7]

The final CoefF returned from minimization is:

 −8.497e−8 1.120e−5 −5.909e−6 −1.064e−3 −1.577e−3 4.898e−2

−1.561e−7 1.081e−5 −3.532e−6 1.331e−3 −1.145e−3 1.363e−1

−1.331e−7 3.059e−5 −1.431e−5 9.920e−4 −4.731e−4 1.033e−1

2.4 Implmentation

The whole implementation would follow two parts: learning model and cor-
recting. Both were implemented successfully at rUNSWift.

The correcting procedure is rather simple, but need to be implemented
efficiently. Look up table seems to be the natural choice in the context.

16

Figure 2.4: The images before ring correction and after ring correction.
First Row: A picture by ERS-7 of a piece of pure white paper,Post dis-
tortion correction of a pure white image. We can see the ring effect has
been minimized by significant level. Second Row: A picture by ERS-7 of a
piece of pure yellow paper,Post distortion correction of a pure yellow image.
The minimization quality was very high on this colour, comparing with the
image before correction.

Because the input of the correcting function requires only several discrete
values, the current Y, U and V value ranging from 0 to 255, and its distance
from the center. On a 208 × 160 image frame. Here we want to convince
the reader that our early claim of assumption of YUV independence helps
increase the efficiency here.

Assume Y, U and V are not independent, and also assume our pre-
learned model matches YUV and its position from the center to Y’U’V’.
Then it follows that there are (Size × Width × Y × U × V) cells needed to
be stored. This gives us approximately: 208×160×256×256×256 = 5 × 1011

Assume Y, U and V are independent of each other, thus split the original
table into 3 smaller tables, this gives us (Size × Width × (Y + U + V))
cells, which is approximately 2.5 × 107

The last model assumes not only the independency among Y, U and V,

17

Figure 2.5: A standard image taken by ERS-7 on Robocup field with usual
environment, the ring effect was obvious. The post distortion correction of
the original image with our lab background. This is a image of non-uniform
colour and is corrected well by our method.

but also take into account of the symmetry of the position. For example, the
top left pixel would be treated as same as bottom right pixel. The concept is
to use the distance between its actual position on the image and the image
center. This further reduces our look up table to Distance × 256 × 3 = 132
× 256 × 3 = 1.0 × 105

Sony AIBO ERS-7 uses memory stick to store programs and instruction.
The memory stick is often of size 16MB. Assume we use a char to represent
Size, Width, Distance, Y, U and V. (Notice on typical platform a char is
1 byte) The first look up table would result in 1560GB. The second mech-
anism requires 25MB. The last look up table requires approximately 200KB.

In practice we used the last type of look up table, which consists of three
look up table, each of capable in correcting Y, U or V component of a pixel.
Each look up table is of type Correct[Int][Int], where the first entry is the
actual value of the YUV value, from 0 to 255, the second is the distance
value, from 0 to 132. The total look up table is of about 476KB in size, and
capable of performing ring correction in virtually constant time.

2.5 Summary

The existence of the ”ring effect” has presented a challenge to many teams.
Various methods were used by different teams. The first approach is to ig-
nore the problem. Seeing the chromatical distortion is only severe at the
near edge of the image, those team only apply object recognition at the re-
gion they are confident about. A few teams also provide plausible solutions
based on model and inverse model approaches, where people come up with
some form of approximation of the distortion model. The correction model

18

is then the inverse function of the original model (rUNSWift04-06, NuBots,
German Team).

Robot’s vision must be accurate, robust, and efficient. [4] The framework
we provided is accurate, robust and efficient. It only takes a few minutes
to run the learning, and is capable of generating correction table regardless
of lighting condition. The performance of this correction method is satis-
factory from both experimental results in our laboratory, as well as from
competition results with other peer teams.

19

Chapter 3

Field Edge Recognition

3.1 Overview

In year 2006, there will be no longer field wall in a competition. The exis-
tence of field wall can help detecting the field boundary, hence features above
such boundary can be confidently ignored. We have developed a simple and
efficient method that is able to recognize field edge in absence of the wall
thus provides means of vision sanity checks for upper level processes. This
sanity check is very important, in particular, there will be audience wearing
colorful clothes close to the field in 2006.

Object recognition works by first constructing scanlines on the images.
Along with the scanline, interesting features over pixels are marked. In ad-
dition, related features are then grouped to form object such as ball, goals
and beacons. This year we introduced wall features, whereby we looking
for boundary wherefrom absence of green color starts. Intuitively these are
likely the boundary of the field from robot’s perspectives. We then approx-
imate a 2 dimensional line from these features. If the line fits well with
regards to these features we accept it, otherwise the process fails.

Being able to accurately identify field wall is very advantageous. The
first attempt of wall approximation at rUNSWift was by Nobuyuki Morioka
in year 2005. [11] Another popular method used by our peer teams is the
concept of ”horizon”. Horizon represents a line through the image with
constant elevation equal to that of the camera. In practical, visual objects
such as ball and goals rarely leaves the ground. Hence both ”field wall” and
”horizon” are good sanity checks to justify object recognized and have rela-
tively high elevation. For example, an orange T-shirt on an audience might
be falsely detected as ball. At Robocup 2006 Bremen, blue window directly
behind the field might be falsely detected as a blue goal. Field wall and
horizon are very effective when dealing with fake objects at wrong elevation

20

Figure 3.1: A typical image taken by our robots at World Championship
2006, Bremen. The image has complex backround patterns which can cause
serious recognition problems. In this image it is likely our calculate of the
goal position and size could be contaminated by the blue windows and lights
on the background.

21

level. The drawback of horizon is that it is noisy, and can result in signif-
icant inaccuracies in the estimated result on the image.[4] [12] rUNSWift
2006 uses both horizon and field wall techniques in its sanity modules.

3.2 Present of Work

3.2.1 Detecting wall feature

The 2006 wall feature detection is similar in concept to the 2005 feature
recognition developed by Alex North. A state machine tracks the number
of green and non-green pixels encountered while walking through vertical
scanlines. A wall feature is detected on a vertical scanline if a green to non-
green transition is detected, and in particular the following are true:

(a) No wall feature was detected on the same scanline before, and
(b) Within last N pixels, the accumulated ratio of green to non-green is
greater than a threshold

Then a wall feature is created at the current scanline position - half of N.

Figure 3.2: A field wall line marked on C plane of a vision frame. Notice the
wall features marked on each vertical scan line with yellow dots. The line
(red line) is accurately marked along the boundary of green to non-green
transition boundary.

22

3.2.2 Random Sample Consensus

Having wall features detected, we now move on approximating of the wall
line. The existance of the noise in detecting false wall features presented us
with a difficult problem. Can we robustly and accurately estimate the wall
line when outliers are present.

The team then decided to use a modified Ransac algorithm (Random
Sample Consensus)[13] to overcome this problem. Ransac was first pub-
lished by Fischler and Bolles in 1981, it is able to do robust estimation of
the model parameters when dealing with high order of magnitude of noise.
The disadvantage is that there is no upper boundary on time it takes to com-
pute such fitting approximation. There is known faster algorithm similar to
Ransac, which guarantees the same confidence of the solution as Ransac,
but discard large number of erroneous model parameters in its preview pro-
cedures at each iteration, thereby increases its efficiency.[14] Here we only
used a standard Ransac but with a time limitation on its runtime. The
algorithm is presented with figure 3.1

23

Algorithm 3.1: The Random Sample Consensus[16]
Data: A set of observed data points
Input: n - the minimum number of data values required to fit the

model
k - the maximum number of iterations allowed in the algorithm
t - a threshold value for determining when a data point fits a model
d - the number of close data values required to assert that a model
fits well to data
Output:
Result: A model that can fit to data points well
iterations = 01

bestfit = nil2

besterr = LargeValue3

while iterations < k do4

maybeinliers = n randomly selected values from data5

maybemodel = model parameters fitted to maybeinliers6

alsoinliers = empty set for every point in data NOT in7

maybeinliers do
if point fits maybemodel with an error smaller than t then8

add point to alsoinliers9

end10

else11

continue12

end13

end14

if the number of elements in alsoinliers is > d then15

bettermodel = model parameters fitted to all points in16

maybeinliers and alsoinliers
thiserr = a measure of how well model fits these points17

if thiserr < bresterr then18

bestfit = bettermodel19

besterr = thiserr20

end21

end22

increment iterations23

end24

return bestfit25

3.2.3 Fitness Function

The fitness of the line estimation with a subset of our data is measured by
the standard linear correlation coefficient. Let SX , SY , and SY Y be the

24

following:

SX = X1 + X2 + · · ·+ Xn (3.1)

SXX = X2
1 + X2

2 + · · ·+ X2
n (3.2)

SXY = X1Y1 + X2Y2 + · · ·+ XnYn (3.3)

The fitness coefficient r, is given by:

r =
nSXY − SXSY√

(nSXX − S2
X)(nSY Y − S2

Y)
(3.4)

This coefficient is a measure of how well our data fits the current line
estimation. Number close to 0 means little fitness and number close to 1
means good fit.

3.3 Implementation

The implementation of wall feature detection is embedded with the pro-
cess scan line method (See SubVision.cc, void processScanline(...)), thus
happens in parallel with the detection of features of other objects. The
ransac wall fitting is called before vision sanity check. (See SubVision.cc
pair< double, double > ransacWall()) In practice we allow maximum 10 es-
timation iterations, each with minimal of 8 data points. The fit of a line is
described by the standard linear regression procedure[15]. The correlation
coefficient is then used to measure such fit of a given estimated line on the
data set. If such correlation is above 0.85 at a particular iteration for a line
fit, we stop our program and return that line setting (A good fit is found).
If after 10 iterations the best correlation is less than 0.55, we return NULL
and claims that no field edge can be estimated otherwise we return the best
line estimated among the 10 iterations.

The following figures demonstrate how much robustness this algorithm
presents when running at only 10 iteration cutoff. 3.3, 3.4, 3.5, 3.6

25

Figure 3.3: The filed edge is partially interrupted by the ball and the beacon
at the right. 2006 Robocup World Championship, Bremen.

Figure 3.4: The filed edge in front of the blue goal been accurately marked.
2006 Robocup World Championship, Bremen.

26

Figure 3.5: The ability to quickly eliminate outliers of point data when many
of them are present. This image shows nearly half of the image are covered
by an obstacle. 2006 Robocup World Championship, Bremen.

Figure 3.6: The same image presented at the beginning of this chapter.
The field edge is marked by a thin red line elevated at the near half image
height. This helps us to eliminate these complex background for ball and
goal recognition. 2006 Robocup World Championship, Bremen.

27

3.4 Summary and Outlook

In this section we described our implementation of field edge detection. Be-
ing able to do so helps to sanity check out false object by their elevation.
The procedure starts by recognizing wall features along each vertical scan-
line, where we are looking for green to non-green color transition but allowing
some noise. At the next step we use a modified Ransac algorithm to prune
those erroneous features and tries to come up with a wall line that agrees
well with the rest of the wall feature set. The difficulty here is to deal with
large number of inaccurate data points in our feature set. Sometime due to
the short amount of time allowed, Ransac might also stop with non-optimal
line fit even when few wrong points are contained in the initial domain. To
overcome this, we might need to reduce the amount of false positive errors
happened in wall feature recognition step. That is, we do not want to rec-
ognize a wrong wall feature (Be more conservative!). The false negative and
positive error present an important trade-off in the balance between them.
A perfect system is one such that these errors are perfectly balanced. In the
domain of field edge detection, accurately identify every valid points and do
not falsely mark any wrong points is very difficult.

Future work might also extent the system to handle recognizing multiple
field edges when they present on one single image frame, for example, the
corner of the field. Figure 3.7 shows a situation where two field lines meet
at top right field corner and both should be marked in the future work.

28

Figure 3.7: The present of multiple field edges needs to be recognized in the
future work. Picture taken at 2006 Robocup World Championship, Bremen.

29

Chapter 4

High Level Behaviors

4.1 Behavior System Overview

The term ”behavior” refers to the actions or reactions of a person or an-
imal in response to external or internal stimuli. In the context here, we
use the term ”behavior” to refer to the way our robots process real-time
information and make appropriate decision of responses. Behavior system
is a sub-system in our software architecture that functions as such. The
behaviors system gathers information from the sensors (Vision, Mechanical
sensors), its memory maintained (localization) as well as information from
its teammates (Wireless Transmissions). The output of the behavior system
is usually a single action frame such as open mouth, raise tail, or an action
in a sequence of actions such a group of actions that grabs a ball.

4.1.1 System Structure

Sitting at the top of behavior hierarchy is our most general modules - a for-
ward player, or a goalie. The rule permits four players on the field including
one goalie. Hence three of the four dogs will be running the forward player
module and the remaining one will be running the goalie module. In real
soccer, 11 players play different strategy and originate at different positions
on a soccer field. Similarly, we assign ”roles” to the three forward dogs.
In general, one dog will be chasing the ball, manipulate, and tries to shoot
into goal. Another dog prefers to place itself such that it is in support to
the first dog on ball. The third dog usually sits at the back yard, getting
ready to defense. These three characters are respectively called, ”attacker”,
”striker”, and ”defender”.

Unlike the FIFA world champion Italy where Del.Piero always places
himself at the striker position regardless anything useful, we dynamically
switch roles. That is, we assign the attacker role to the ”best suited” dog,

30

Forward Play Goalieor

Role as a Forward Player

Attacker Striker Defender

Skills to be executed

Find Ball Grab Ball Track Ball

Grab Dribble Bird of Prey Avoid Ball

.......

Player is:

Low Level
Behaviors

High Level
Behaviors

Figure 4.1: The rUNSWift behavior system structure. High level behavior
is in charge of role, role positions and role assignment. Low level behaviors
are those skills that can be used by various roles at high level modules. The
ability to dynamically select which of these skill to execute by what role is
known to be the ”link” between the high and low level behavior modules.
This link is implemented as a decision tree which is capable of generating
decisions.

31

so does defender and striker roles. Dynamic role switching will be described
in the later sections.

Having defined the characteristics of the three roles, one might find that
strikers and defenders are relatively static comparing with attacker, because
they are not chasing the ball all the time like the attacker. In fact both
of these two roles have their so-called ”home positions”, which defines the
expected position on the field under certain situation at particular time.
Positioning module will also be discussed.

All three roles are capable to execute ”skills”. In particular, they are
programmed to decide which skill to execute under what circumstance. The
decision of which skill to execute is made based on the role type as well as
other relevant information. A new decision can be valid even when actions
of old decision have not yet completed. We will discuss how decision is made
in the following sections.

Finally, a skill is a description/combination of a sequence of simple ac-
tions that complete a certain task, such as ball grabbing, ball finding, or ball
dribbling. A complete run of a skill module spans cross multiple frames. A
skill module is usually implemented by a state machine, knowing its cur-
rent state, executes its next action. Important skill modules will also be
explained.

Summing up, the behavior system consists logically: High Level Behav-
iors, which deals with who should be in what role and where their home
positions are, A decision tree capable of making decision on what skill to
run, and the Low Level Behavior modules that specify each basic skills.

The behavior system talks directly with Actuator Control, whose output
signal is then received by the hardware through Open-R interface. See figure
4.2

4.2 Introduction

High-level behaviors mainly consist of role specification, role assignment and
role positioning. Role specification deals with the definition of various roles
at strategic level. For example, attacker focuses on the management of the
ball, and shoots when appropriate. Defender on the other hand, might fo-
cus on how to place itself to the best defense position in a dynamic game
environment. Moreover, role assignment is the job that decides which par-
ticular robot should be in which role at any time in a game. Finally, role
positioning decides where to places each player on the field. This section

32

rUNSWift 2006 Structure
GPS /
Localisation

Sensor / Vision

Decision /
Behavious

Actuator
Control

OpenR InterfaceField Environment

Raw Image

Objects/Attributes

GPS Info Head/Walk

Wireless/Communication
Image Data

React

Sense

Joint Paras

Figure 4.2: The rUNSWift architecture react with outside environment
through OpenR interface. Agent at each frame sense and then react. Pre-
cisely, it first senses the world, store the results after processing image,
update localization, make decision and finally set the joint parameters at
the end of that frame.

33

will discusses the concept and implementation of these items in details.

4.3 Role

In this chapter, we will discuss the roles we designed - what is each role
respond to. The roles used at rUNSWift are:

Role Type Responsibility Area in charge
Goalie Defend the Goal Only the goal box area,

NEVER goes outside
the goal box

Attacker Track and chase the ball if the
ball is not under control. Drib-
ble and kick the ball if the ball
is under control.

Attacker can be as-
signed to a robot at
any where on the field.

Supporter Stay close to the attacker.
Play defence together with the
defender if they do not have
control of the ball. Be ready
to receive the ball when team
is ”attacking”

Anywhere on the field

Striker Similar to supporter, but typ-
ically keeps itself further away
from the attacker when sup-
porting comparing with a
standard supporter.

Up half field typically

Defender Defense the goal together with
the goalie. Block incoming
ball if it feels necessary.

Back third of the field

Table 4.1: The list of roles and their primary responsibility and active field
area

4.3.1 Goalie

Goalie is an important role in a game. Experiment was conducted comparing
an attacker shooting in to an empty goal with a goal defended by a goalie.
The result shows that a goal with goalie is much harder to score than an
empty goal. The following is a summary of goalie algorithm.

Goalie should always track the ball. In case of lost track of ball, goalie
should quickly re-gain the visual ball. After tracking the ball for long time,

34

Algorithm 4.1: The typical layout of goalie logic
Input:
Output:
Result: Motion at each iteration of run
headScan() / headTrackBall()1

x,y = BallX, BallY2

if Facing the wrong way then3

Direct body to the correct way4

end5

else if Found ball is coming towards the goal quickly then6

Block the goal7

end8

else if Found ball is coming towards the goal then9

Adjust stand position and heading according to the ball position10

end11

else if It is Ok to clear the ball by kicking it then12

Select appropriate kick and kick13

end14

else if Ball is close to the goal then15

Walk to the ball, and attack it16

end17

else18

Select the best position and heading, and guard the goal19

end20

End of iteration21

35

goalie also needs to look around for a short period of time to actively lo-
calize itself. These head motions are handled by the headScan() and head-
TrackBall() functions. To start with, goalie checks if it is facing up field.
Sometimes goalie can get quite lost when it gets pushed so it is facing its
own goal but believes it is actually facing the correct way but cannot see
anything interesting. If this check returns false, goalie needs to turn around
first of all. The second check is to see if ball is flying towards its own goal,
for example, it gets kicked by the components. Goalie will do a full block if
the ball is coming direction measured from goalie is small. Goalie will do a
single direction block if that angle is biased to one direction. If the ball is
coming but its velocity is small, goalie needs to quickly respond by moving
its position and heading. Furthermore, if goalie detects that the ball is close
to it and believes it is suitable to execute a kick to clear the ball but with
caution that it will not score an own goal, then it will execute the kick. The
goalie will then check if it is necessary to go forward and attack the ball.
This happens when the ball is close to the goal, for example, on the edge on
the goal box. The goalie would then walk to the ball and clear it by kicking
it using one of its front arms. Finally, if goalie believes any of the above
does not apply at this frame, it will pick up a ”good” position and places
itself there.

Goalie Positioning

Goalie positioning concerns about where to place the goalie in respond to the
environment. People have come up with several policies that places goalie
over years. Here we present one simple policy used at our Final Round with
Nubots.

We draw one interval between the ball and the two goal posts. Call
them respectively BR and BL (Ball− >Right GP and Ball− >Left GP).
We then position the goalie’s heading such that the line from goalie and the
ball equally divides the angle BR-Ball-BL.

In addition, we also defined the vertical position of its neck position at
(X, 20cm). Early work also uses variable Y component of such position.
That is, if the ball is far away, then we increase the Y component to place
the goalie further out from the goal. If the ball is close, we place the goalie
on the goalie line. Thus, goalie is moving on a circular curve with radius Y.

The above goalie positioning is very simple to implement but performs
very well in practice.

36

Figure 4.3: A simple way of placing of our goalie robot. This placement is
easy to implement and works well in a competition.

Goalie Attacking

Goalie attacking is the behavior that goalie actively charging the ball and
manipulate the ball appropriately afterwards. Goalie attacking in Robocup
is not a new skill - Teams like Germany team[20],[41], WrightEagle[40], and
NUbots[21] have all developed, and used this skill in a real game. The in-
tuitive behind goalie attacking is that, rather than waiting in side the goal
box, we want to get to the ball before the opponent and clear the ball hence
avoids opponents on goal shots. This skill is useful when playing with team
that often uses strong kick but requiring in possession of the ball before
hands. i.e. GermanTeam and WrightEagle. A successful goalie attacking
also gain the whole team time to backtrack the attacker and defenders into
their positions.

rUNSWift 06 goalie walks to the ball and will execute U-Pen kick to
either left-right directions. Interestingly, NUBots also allow their goalie to
grab the ball. The advantage of possess the ball is that it allow the goalie
to pick up the direction to kick the ball to, sort of like the real soccer. The
disadvantages comparing with our go-kick simple approach is that it exposes
them to the risk of missing the grab. Future work might extend the goalie to
handle both ”quick clear” and ”ball control” when perform attacking. For
example, if the opponent is very close to the ball or has equally the chance

37

to get to the ball first, we perform a quick clear of the ball without grabbing.

Goalie Scan

Goalie needs to track the ball if it can see it. In case goalie cannot see the
ball, it needs to perform find ball. The find ball routine for goalie is vastly
different from a normal forward player. In particular, goalie’s primary find
ball is achieved by scan its head around. This year the team has introduced
a point head scan with variable duration for goalie rather than the tradi-
tional smooth scan routine used by other forwards as well. For example,
these points might include left near beacon, left far beacon, right far bea-
con, right near beacon, close front and circular back to left near beacon. The
intuitive behind this is its efficiency. One iteration is usually faster than a
full scan. Secondly, it also helps to active localize it self, by looking at a
direction a beacon is in. This work is primarily done by Oleg Sushkov in
year 2006.

4.3.2 Attacker

When a robot gets assigned to be attacker, its main responsibility is to
chase the ball and attack it in a good way. While attacker is doing these,
it also needs to avoid going into its own goal box, actively localizing, and
making decision on what exactly low level skills to execute. More details
will be present in the later chapters. Before we dig into it, algorithm 4.2
summarizes the property of a typical attacker’s run.

Own Goal Box Avoidance

If a robot other than goalie goes in to its own goal box, it will be panelized
and taken out from the field for 30 seconds. This is not desired. Due to the
nature of the attacker, we need these extra lines of code that makes sure it
does not violate this rule. Other roles such as defender and supporter have
their position defined for them, so they do not need to worry about goal box
avoidance.

This year we use the following criteria to trigger goal box avoidance:

• The ball is in our own goal box, AND

• We have not grabbed the ball, AND

• We have not started to grab

38

Algorithm 4.2: The typical layout of attacker logic
Input:
Output:
Result: Motion at each iteration of run
if Ball in goal box then1

AvoidOwnBox()2

end3

else if Need to active localise then4

ActiveLocalise()5

end6

else if Need to kick/grab ball then7

Select what exactly to do, and execute the selected strategy8

end9

else10

Chase the ball, track the ball11

end12

End of iteration13

The goal box avoidance is then accomplished by the following algorithm:

Algorithm 4.3: Perform own goal voidance
Input:
Output:
Result: Place attacker at the best position when avoid own goal
if Ball still far away then1

return (Do Nothing)2

end3

else if We are on either sie of the goal box then4

Walk to the nearest goal box corner5

end6

else7

//here we must be in front of goal box8

Walk to the side of the ball9

//so goalie can effectively clear the ball10

end11

End of iteration12

39

Active Localisation

After tracking the ball for long time, robots may get worse precision of its
position. In the context here attacker may get lost about where it is and
consequently make wrong strategy decision. Similar issues are present for
other players such as goalie, defender and striker. To overcome this, one
may want the dog to look at landmark for a short period of time and then
back on tracking the ball as usual. This skill is then repeated from time to
time.

For attacker, active localization is triggered by:

• The attacker has just span to find the ball.

• The attacker has seen the ball for a few frames.

• The ball is still far away and straight ahead.

• sFindBall.lastCloseFrame is not recent.

• sGrab.gLastApproachFrame is not recent.

• The attacker has not recently actively localized.

4.3.3 Supporter / Striker

Supporter’s main responsibility is to place itself in a good position such that
it is in support with the attacker when attacking, and is in support with
defender when defending. Striker is similar to supporter. The difference is
that striker tends to stay at the front half of the field more. Even the team
is doing defense, we still want to program the striker to sit at the front to
receive up coming ball. These difference can be controlled by various spec-
ification of their home positions. The main logic run on Supporter/Striker
can be summarized in 4.4:

Stuck Detection

The stuck detection/handling concept was originally developed by 2001 team
using visual detection.[11][17] It allows robot to detect if it is in a situation

40

Algorithm 4.4: Summary of the run of Supporter/Striker
Input:
Output:
Result: The run of Supporter/Striker at each iteration
Track/Find the ball1

if Stuck forward then2

Return3

end4

if Any teammate has grabbed the ball then5

Get out of the way6

end7

else if Need to avoid ball currently being handled by teammate then8

Avoid the ball9

end10

else if Bird of Prey is already runing then11

Bird of Prey12

end13

else if Obstrcting attacker then14

Avoid attacker15

end16

else if Too far from home position then17

Bird of Prey18

end19

else if Lost the ball then20

Find ball21

end22

else23

Move back to home position24

end25

End of iteration26

41

where there are obstacles closely surround by. For example, obstacle might
be opponent robot, goal post, beacons, and field wall if there is. Being able
to detect stuck into such objects are very useful.

This year we mainly used paw sensors, sensors sitting at the front of
both legs. Our walk does not interfere with these sensors at all, and they
only trigger when they hit something. If non-attacker robot walks into an
object, for example a beacon, it will then walk backwards for certain amount
of time and goes on from there. In particular, if both left and right sensors
triggered, a robot would walk straight backwards. If only left leg detected
obstacle, a robot would walk backward as well as to the right. Same idea
apply to the situation where right leg detects obstacles.

Similar to 2005 year, this concept is also applied to ready state. A ready
state is a 45 second time duration in which every robot on the field should
go back to their initial game beginning positions. While robots are walking
towards each other side of the field, stuck detection helps the robot on our
team to back track and avoid the up coming robot.

Avoid attacker

Avoid attacker is essentially another form of backing off, similar to stuck
state handling. However, their intuitive are quite different. Loosely speak-
ing, avoid attacker means get out of the way of the attacking route of the
current attacker on the same team.

The original idea of this behavior came from rUNSWift year 2002,[18]
and polished by the 2005 and 2006 teams. There are two ways of avoidance
designed. The first one caters for attacker with ball in possession, hence
non-attacker interfere with the attacking route should make itself clear. See
figure 4.4

Another form of avoidance happens when attacker has not yet gained the
ball but is on its way for the ball. Here we also would like the non-attacker
to clear itself from the attacker. See figure 4.5

Bird of Prey

In year 2003, rUNSWift developed a behavior to counter the lack to defen-
siveness by efficiently. [19] This behavior was then named bird of prey by
the 2003 rUNSWifters. Through the development over years, Bird of Prey
this year is used to allows non-attackers to walk to their home positions on

42

Figure 4.4: Attacker avoidance plan A. Non-attacker should avoid being
close to the line between the ball and the goal

AttackerAttackerAttacker

Striker

Striker

Figure 4.5: Attacker avoidance plan B. Non-attacker should also avoid being
interfere with an attacker when attacker is chasing the ball

43

the field via a safe path. And does not get obstructed by objects along its
journey. Along with its trip, we also use stuck avoidance to detect and avoid
obstacles.

In a dynamic role switching environment, a non-attacker might suddenly
realize it is out of its home position by a significant amount, and there are
teammates and opponent robots on the routes that directly links where the
non-attacker is and its desired home position. Bird of Prey is used here to
guide the robot to go around these obstacles and quickly return to its home
position. See figure 4.6

Figure 4.6: Bird of Prey in Action. Picture taken from a practical match
between rUNSWift(Red) and GermanTeam06(Blue) From TopLeft to Bot-
tomRight, Red 1 is Goalie. Red 2 is Attacker chasing the ball. Red 3 is
Defender doing Bird of Prey. Red 4 is the Striker at the front. We see Red 3
is walking in a circular fashion and tries to avoid slowing down due to going
home directly through teammate and opponent robots.

The 2006 Bird of Prey is successfully implmented in module sBirdOf-
Prey.py in PyCode directory.

44

4.3.4 Defender

The main role responsibility of defender is to stay at the back of the field
and wait for offensive opportunity. Unlike supporter, striker and supporter,
defender is only active within a fix area at the back. Positioning will be
discussed in the later chapter. The run of defender logic at each iteration is
similar to supporter and striker.

4.4 Role Switching

Having defined which roles we have and what does each role do, this section
describes our role assignment mechanism - Dynamic role switching. In a
game we assign roles to the four players on the field. Since no player other
than goalie is allowed in the own goal box, one robot is always assigned to
be a goalie. For the rest of the three players we dynamically assign most
appropriate role to each of them at any time in a game.

Dynamic role switching is advantageous that the robot in the most ap-
propriate situation gets assigned with the according role. The challenge here
is that we also need to tune up well the system so they play coherently in a
game. For example, we do not want to see all three robots get assigned to
be defenders and no one is willing to go for the ball. Neither do we want to
see more than one robot are in attacker role so they fight against each other
while on their way to the ball together.

For each dog, we use the following set of algorithms to determine its role.

4.4.1 Attacker Selection

Each time we ask what role should I be in, we first check to see if we can be
an attacker. If there is no attacker in the team, then be attacker. If there is
already an attacker, but for some reason that attacker can not see the ball
and I am currently close to the ball and can see it, then I will be attacker.
If I am about to grab the ball and currently doing behaviors with the ball,
then continue to be attacker. If none of the above holds, I calculate my and
teammate’s time to reach the ball. If I have the shortest time to get to the
ball, then I will become attacker. See figure 4.6

Time to reach ball

Time to reach ball is the measure of how fast can a robot get to the ball.
We prefer robot that is able to get to the ball in the shortest time to under-

45

Algorithm 4.5: Top level role switching. We first consider if a robot
should be attacker. If this robot should not be attacker, we then con-
sider defender.

Input:
Output: The role the robot should be in
Result:
if Should I be Attacker then1

Become Attacker2

end3

if Should I be Defender then4

Become Defender5

end6

else7

Be Striker8

end9

End of iteration10

Algorithm 4.6: Attacker selection requirements
Input:
Output: If the robot can be an attacker
Result:
numAttacker = countAttacker()1

if numAttacker == 0 then2

return True3

end4

if numAttacker > 0 AND canSeeBall AND AmClosestToBall then5

return True6

end7

isGrabbed = HaveIGrabbedTheBall()8

grabbingCount = HaveIStartedToGrab()9

if isGrabbed OR grabbingCount > 0 then10

return True11

end12

myEstimateTime = timeToReachBall()13

while RobotI in Other Robots do14

if myEstimateTime > RobotI.timeToReachBall() then15

return False16

end17

end18

tie = BreakTie()19

return True AND tie20

46

take attacker role. This measurement result is calculated for each robots on
the team except the goalie, and shared through wireless LAN for individual
robot’s role calculation.

The time to reach ball concerns about many attribute of the robot. For
example, the straight-line distance from the robot to the ball might be a
reasonable indication. We might also account for a small amount of delay if
the robot is facing opposite to the ball direction so it needs time to turn and
walk. In addition, there might be obstacles, such as team mate and other
opponents on the way, this might add even more magnitude of delay.

In fact, the concept of combining relevant information and formulate the
approximation of time for a robot to reach ball is not new. Back to year
2004, German Team first time described their formula on their technical
report. [20]

timeToReachBall = distanceToBall/0.2
+400.0 ∗ fabs(angleBetweenBallAndOpponentGoal)

+2.0 ∗ timeSinceBallWasSeenLast

The above formular states the time to reach to the ball for a robot is the
weighted sum of its dynamic attributes. In particular, these attributes are:

• Distance to the ball

• Angle between ball and the opponent goal

• Time since last time seen the ball

At rUNSWift, we have adopted this approach since 2005. The current
approach consists of mainly two steps. First we calculate the time required
to reach the ball position, a point. Next we calculate so-called ”bonus” time
under the current situation. For example, robot one might have the lowest
ball variance, hence we might want to bias towards to this robot slightly.
Take another example, we might want to add some hysterisis on the current
attacker, so we assign bonus on the current attacker so it is more likely to
stay on the same role. The idea of ”bonus” is exactly to capture ”prefer-
ence” as such, subject to flexible modifications. The final time to reach ball
is then the sum of these two.

At step one, we calculate the standard time to reach an arbitrary point
on the field, here the point being the ball. We first calculate the straight-line

47

time to get to the point. We derive the result by simply divide the distance
by the estimated velocity. We then increase the time if we need to turn first
in order to facing to the correct direction. We also increase the time if we
realize there are obstacles between the routes. The obstacles are calculated
from the obstacle map stored, and gets updated every frame.1 In addition,
we also perform stuck detection and increase the time upon the found of
stuck stage.

At the second step, we add in our ”preferences”. The typical bonus we
used at 2006 are:

• Certainty of where the ball is

• Current attacker hysterisis

• Grabing bonus

The certainty of the ball position can be measured from the variance of
the ball - bigger bonus for tighter variance. Alternatively we can count the
frame of lost of the ball. The bigger the less the bonus will be. Typically
we apply negative quadratic bonus with respect to the lost ball frame. With
current attacker hysterisis, we add bonus if this robot was an attacker at
last frame. Last but not least, we give big bonus to a robot that is about to
grab or is grabbing the ball.

4.4.2 Defender & Striker Selection

The algorithms for defender and striker selection are similar to the approach
we discuessed for attacker. Apart from the attacker we just selected in the
above procedure, the robot that has shorter time to reach Defender’s ”home
position” will be selected to be the Defender. The last robot will be selected
to be the Striker.

The entire role switching ststem is successfully implmented in module
pForward.py, which consists of the top-level role query calls. Time to reach
ball and ”bonus” concepts are subsequently implmented in hTrack.py mod-
ule.

1For a detailed description of obstacle map please refer to rUNSWift05 Thesis Report.
In particular, Real-Time Shared Obstacle Probability Grid Mapping and Avoidance for
Mobile Swarms. [22]

48

4.5 Role Positioning

4.5.1 Background

In the previous sections, we described our roles and role switching system.
This section will introduce the positioning system that controls where to
place robots in a dynamic fashion. Strictly speaking, the positioning system
concerns only about defenders, supporters and strikers.2 This section would
focus on our strategy of placing these non-attackers.

The traditional approach is usually come up with some form of hand-
coded decision tree before hand. Then deriving the position to place the
robot, we traverse the tree with a vectors of parameters that specify the
current game situation, and the output is a tuple of X-Coordinate, Y-
Coordinate. We will start by introducing several version of this approach
that we have used in year 2006.

4.5.2 Decision tree based positioning

Striker Position

The striker position is determined upon where the ball is. We divide the
field into three zones. We have different policy for each zone if the ball is
in it. The first zone spans from the field length to field length times 0.6.
(540cm - 325cm). The second zone starts from half of the field length and
ends at 325cm. The bottom half field belongs to the third zone. Recall that
the main responsibility of striker is to support attacker and stay at the front.
So we do not want to place it too far back to interfere much with defense.
The striker position policy is summarized as in figure 4.7.

Supporter Position

We have developed several position strategies for our supporter player. One
class of the policy uses the same zone dependent policy specification ap-
proach, where we divide the filed into smaller pieces, more than striker
position. We then specify our policy for each of these small pieces of field.

The second fashion of supporter position we found very effective is to
position the supporter at the back of our attacker. This approach is trivial
to implement but very active in practice. In many cases our supporter can
quickly catch up the ball and back up the attacker, in case the attacker gets

2Attacker has a flexible positioning, since it chases the ball. Goalie determines its own
position.

49

Algorithm 4.7: The striker positioning algorithm
Input:
Output: Striker’s position
Result: targetX,targetY
yOffset = 80.01

ballX,ballY = ballPosition()2

if ballX > FieldWidth*0.5 then3

targetX = Striker Left X4

end5

else6

targetX = Striker Right X7

end8

if ballY < FieldLength ∗ 0.5 then9

targetY = FieldLength ∗ 0.5 + yOffset10

end11

else if ballY < FieldLength ∗ 2/3 then12

targetYA = ballY − yOffset ∗ 0.6513

targetYB = FieldLength ∗ 0.514

targetY = max(targetYA, targetYB)15

end16

else17

targetYA = ballY − yOffset18

targetYB = FieldLength ∗ 0.5 − yOffset19

targetY = min(targetYA, targetYB)20

end21

return targetX, targetY22

50

lost or gets stuck with opponent. See figure 4.8

Algorithm 4.8: The supporter positioning algorithm. Supporter is a
similar role comparing with striker but supporter also helps defense.

Input:
Output: Supporter’s position
Result: targetX,targetY
yOffset = 80.01

xOffset = 70.02

ballX,ballY = ballPosition()3

targetX = min(max(ballX, 70.0), FieldWidth - xOffset)4

targetY = max(ballY - yOffset, 120.0)5

return targetX, targetY6

Defender Position

Defender’s vertical component Y is kept at 120cm behind the ball, but must
be at least 20 cm away from the top of the goal box. Its horizontal com-
ponent X is controlled by the magnitude of the horizontal displacement of
the ball. The bigger the displacement of the ball is, the more biased to one
side we place our defender on the horizontal direction. Finally, we have a
simple special case when the ball is very far forward in opponent half, we
place defender behind the drop in point. See figure 4.9

Implementation

Positioning system is successfully implmented in hWhere.py, through get-
DefenderPos(), getStrikerPos() and getSupporterPos().

4.5.3 Weighted Regression based Positioning

Introduction

In year 2006 we decided to use a direct representation of a reactive strategy
as a function from inputs to outputs. We have a vector of input variables
used to decide out current strategy, and we have a vector of output vari-
ables that are selected by the strategy code. The strategy itself is a function
between these two vectors. The declarative function representation is data
driven. We read the training set into memory, and we delay the processes of
the queries until it needs to be answered. Within the context of positioning,
a set of expert-specified input-output vectors is stored. Each input vector

51

Algorithm 4.9: The striker positioning algorithm
Input:
Output: Defender’s position
Result: targetX,targetY
ballX,ballY = ballPosition()1

targetY = max(GoalBoxDepth + 20.0, ballY - 120.0)2

if ballX > FieldWidth * 0.5 then3

fraction = (ballX - FieldWidth * 0.5) / (FieldWidth * 0.5)4

targetX = FieldWidth * 0.5 + 60.0 * fraction5

end6

else7

fraction = (FieldWidth * 0.5 - ballX) / (FieldWidth * 0.5)8

targetX = FieldWidth * 0.5 - 60.0 * fraction9

end10

if ballY ¿ 300.0 then11

if ballX < FieldWidth * 0.35 then12

targetX = 5013

end14

else if ballX ¿ FieldWidth * (1 - 0.35) then15

targetX = FieldWidth - 5016

end17

else18

targetX = FieldWidth + (ballX - FieldWidth * 0.5) * 0.519

end20

end21

52

describes a game situation. While each output vector contains the corre-
sponding preferred position and heading of our robots. Answer a preferred
position query requires finding the relevant vectors from the training set and
finally the relevance is measured by some form of distance functions. In the
following sections we will describe this new approach in depth.

Concept Overview

The position and heading of the two non-attackers compose the out put vec-
tor Vout consisting of X, Y, Heading for the defender and the striker. The
input vector Vin is a tuple of four values, ballX, ballY, attacker angle to ball,
and Attcking Defencing. The last variable is a boolean variable that is true
when team is attacking and false otherwise. Semantically, we would like to
use ball’s position on the field, attacker’s relative angle to the ball, and a
1 bit attacking or defending variable to conceptualize the current game state.

To build training set, we come up with entries that maps from random
input vectors to the most appropriate output vector defined by human ex-
pert. The bellow strategy graph shows some example entries. 4.7

To answer a query given a input vector VX , we first find all entries in the
entire training sample that are relevant to VX . Relevance here is controlled
by the distance function between VX and any Vi in our training set. The
output vector VY is then computed from the output vectors these relevant
entries.

Distance Weighted Averaging

We first consider the naive case, distance weighted average. Given x̂, and
set of entries [x1 → y1,x2 → y2, ... , yn → yn], we can predict ŷ by:

ŷ =
Σyi

n
(4.1)

Here we take the average on Yi in [Y1,Y2, ..., Yn]. If all of these values are
relevant then the above formula would make positive sense. Conversely if
few of these values are in fact relevant to the value we are querying for, then
the above formula makes little sense. We can solve this barrier through
two ways that are essentially equivalent: Weighting the data directly or
weighting the error criterion used to predict the value.
[23]

As for the first approach, we weight the data directly according to their
distance from the query point. We use dis(x, x̂) to calculate the distance

53

Figure 4.7: Non-Attackers positions specified by human under various game
conditions. TopLeft: The ball is in opponent half field, we place defender
and supporter directly behind attacker. TopRight: The ball is at the top
right opponent half, we place our defender at the back but slightly more
forward than the TopLeft situation. We also place our supporter at the
center near opponent’s goal box, and head its direction towards to the ball.
BottomLeft: Here we see our attacker is chasing the ball and facing towards
our own goal, we will thus place defensive strategy rather than offensive
attacking, and we place our supporter near the center circle to form team’s
first line of defense. BottomRight: The ball is at the bottom left region. We
place our supporter at high elevation to wait offensive chance and be ready
to receive ball passed forward by the attacker.

54

between a data point (x, y) and query point (x̂, ŷ). The distance function
we used here is the Euclidean distance:

dis(x, x̂) =
√

Σ(xi − x̂i)2 (4.2)

The weighting function W() maps Euclidean distance to the weighting
factor is introduced. The predicted ŷ is now the then the ratio between the
weighted sum over the sum of the weights:

ŷ =
ΣyiW (dis(xi, x̂i))
ΣW (dis(xi, x̂i))

(4.3)

As for the second approach, we now weight the error function. Intu-
itively, we want to fit nearby points well, but we care relatively less about
such ”fitness” for points that are far way. Christopher, Andrew and Stefan
formulated this idea as:

C(q) = Σ(ŷ − yi)2W (dis(xi, x̂i)) (4.4)

Locally Weighted Linear Regression

Locally weighted regression (LWR) generates query result that fit locally
well within our training set. In the context of our positioning, the estimated
positions should fit well with those entries in our training set that are of
similar game situations. By similar, again we mean the distance function
defined return small magnetite between xi of one entry, and x̂ which is the
query point. We will discuss the standard approach as described by Atke-
son. [23]

To start with a global linear model of parameter β can be expressed
by:[24]

xT β = y (4.5)

We then append constant 1 at after all input vector xi. Hence we have
training set:

Xβ = Y (4.6)

Using unweighted regression, we can then go on to approximate β to
minimize criterion:

Err = Σ(xT β − yi)2 (4.7)

Apply direct data weighting approach as set up, we then calculate the
distance from each stored points in our training set to the query point x̂.

55

The weight for each such point is then obtained by:

wi = W (dis(xi, x̂i)) (4.8)

where W is our weighting function.

We then apply this weight with its corresponding row in our matrix X.
This involves multiply it with xi as well as yi, let us use Z to express the
left matrix after multiplication and V to express the right matrix after mul-
tiplication, this is:

Xβ = Y
Z = WX
V = WY

Solving the normal equations:

(ZT Z)β = ZT V (4.9)

And this gives us estimate for ŷ:

ŷ(x̂) = XT (ZT Z)−1ZT V (4.10)

Some source also point out that inverting (ZT Z) might not be the most
efficient approach to solve the equations. [25]

Kernal Functions

Kernal function, also called weight function, maps distance from the query
point to a weight ratio. The maximum weight should occur at distance zero
and decay smoothly as we span across our domain.[26]

The kernal function we used is the smoothing weight function: Gaussian
Kernel. [27][28][37]

W (d) = exp (−d2) (4.11)

This kernal function has infinate domain and we can easily adjust a shresh-
old value to ignore data further from a particular radius from the query. [23]

56

4.5.4 Summary and Future Work

Retrieving Relevant Data

Application of locally weighted regression on relatively large training sam-
ple, for example, more than 1000 situation → positions entry set can be
time consuming. This brings us the concern of the speed of algorithm. If
we do a full weighted regression on every entries in the set, this requires a
O(n) lookup and a massive matrix manipulations overheads. Hence people
tend to apply weighted regression ”Locally”, only on entries that seem to be
relevant. Given a distance function dis(xi, x̂), there is fast algorithm that
computes the nearest points with the lowest dis magnitude. In addition,
this approach allow us to find the nearest N points with the lowest distance
magnitude. This therefore made it feasible to apply locally weighted regres-
sion with faster retrieving speed.

The trick we play here is to store our training set into a k-d tree struc-
ture. Finding nearest n nodes between a fix node x in a naive structure like
an array takes linear time. Nearest neighbor in a k-d structure performs
asymptotically logarithmic in the above situation. See figure 4.8

A dk-tree is a space-partitioning data structure for organizing points in
a k-dimensional space. [30],[31],[32],[33] To build a static kd-tree from n
entries from our training set takes O(n log(n)) time. And the nearest N
nodes lookup takes O(log(n)) time to complete. This accelerates our search
speed so relevant data entries can be quickly selected for higher up regres-
sion calculations.

Conclusion

Regression positioning is an application of in-memory lazy learning, where
we read the entire training set into memory, stored them into a data struc-
ture for efficient look up, and delays the process until a query needs to
be answered. Unlike the decision tree based positioning approach, here we
allow human expert to specify the desired positions and heading for non-
attackers directly, under a static game environment on a frame-by-frame
basis. Experiment in the lab shows this approach can already perform as
well as our traditional approach by using less than 50 entries. To come up
with a comprehensive training set, we have also allowed symmetricity, that
is, we only define situations on one half of the field (usually left and right
along the field width), and the corresponding situation happened on the
other half is calculated symmetrically. Secondly, a good concept of ”local-
ity” may need to be further investigated in the future. The distance function
matrix is vital here because it specify data’s relevance directly. Apart from

57

Figure 4.8: A 3-dimentional kd-tree.[29] The first split(red) cuts the root
cell (white) into two subcells, each of which is then split(green) into two
subcells. Each of those four is split(blue) into two subcells. This leaves us
with final eight leaves.

58

simple Unweighted Eculidean distance used as above, one can also take a
look at ”Fully Weighted Euclidean distance”, also known as Mahalanobis
distance,[34], Minkowski norm, or function that has various weight on the
input vector.

At rUNSWift 2006, both decision-tree and a naive version locally weighted
regression have been implemented for our positioning system. And we can
easily switch between one another for our positioning. However, decision-
tree based approach was used in the world final competition. Future work
on the regression based positioning will go on.

59

Chapter 5

Generating Decision

5.1 Introduction

In previous chapter we discussed our behaviour system architecture, which
consists of high-level behaviour layer and low level behaviors layer, and a
player picks up the most appropriate low level behaviour module to execute
through our decision making system.

In this chapter we would like to describe our decision-making system.
How does a player make decision on what to do next, especially attacker
player.

5.2 Using Decision Tree

Using decision tree to generate appropriate action to execute is not recent
at rUNSWift. A decision tree takes input a situation described by a set of
attributes and returns a decision, the predicted output value for the input.
A decision tree reaches its leaves by performing sequence of tests. An inter-
nal node represents a test, and a leaf node represent an output.

The game situation is described by many parameters. In fact, there are
too many to take into account. Thus we only consider a small subset of
them - the attributes that we feel important and fundamental in modeling
a game situation, and could well affect what action an attacker should take
in the next step. These attributes can include:

• The position and heading of the team, including the goalie

• The ball position and velocity

60

Forward Play Goalieor

Role as a Forward Player

Attacker Striker Defender

Skills to be executed

Find Ball Grab Ball Track Ball

Grab Dribble Bird of Prey Avoid Ball

.......

Player is:

Low Level
Behaviors

High Level
Behaviors

Figure 5.1: The rUNSWift behavior system structure. here decision system
is represented bt the linkage between high and low level system.

• Defensive or offensive strategy playing

• Who has the control of the ball

• Opponent players’ positions and headings

In general, we add in those attributes that we feel could affect the next-
step decision-making. For example, we might add in the score difference
into the decision tree used by our goalie, hence to implement a goalie that
goes to the front and become an attacker when the team is down by more
than 3 scores.

Finally, the decision made on leaves contains two classes of actions. The
first is a class of actions that does not require grabbing the ball. This class
of actions can quickly clear the ball using various part of the body with
minimal time delay possible. The disadvantages of these actions are their
low accuracy and reliability. The second class of actions require grab the

61

ball first, then actions with ball handling are followed. The advantages are
the good control of the ball with high reliability. The main disadvantage is
the grabbing ball it self adds time overhead delay.

5.3 Field Zones

At the top of our decision tree, we query the ball position attributes. And
this test channels our query into 3 branches. They are, OffensiveThird, Mid-
dleThird, and DefensiveThird. See figure 5.1

The decisions made on each field would have different emphasizes. The
handling of the ball in defensive area may focuses on speed, that is, chasing
the ball and clear it as quickly as possible, the requirement of the ball trajec-
tory post-action is often somewhat less important. Loosely speaking, given
the choice between slowly approaching the ball and letting the opponent
acquires the ball and clearly the ball quickly even with the chance of getting
it off the field, we will go for the later one. The strategy we want to empha-
size is to minimize the grab of the ball from our opponent in front of our goal.

When we are near the field middle, we would still prefer our quick re-
sponse, i.e being able to quickly react reasonably, but we also require some
form of accuracy. Unlike defensive field third, we start to hate knocking the
ball off the field within this area. The strategy we play at the middle can be
summarized by two words: speed and accuracy. We want to quickly move
the ball along and push it up field. Finally, when we are at the front third
field, accuracy starts playing the top priority. Actions to shoot and avoid
obstacles at the front need to be accomplished with high quality.

Algorithm 5.1: Top level decision tree divides field into zones and
channel the query down upon which zone we are playing in.

Data:
Result:
ballX,ballY = getBallPosition()1

if ballY < FIELD LENGTH * 0.4 then2

return SelectInDefensiveThird()3

else if ballY < FIELD LENGTH * 0.6 then4

return SelectInMiddleThird()5

else6

return SelectInOffensiveThird()7

end8

Within each of these zones, there are sub-zones. Within defensive and

62

middle field thirds, we have left edge slide and right edge slide, as well as
middle slide. So we can react differently when we are near the edge. The
offensive third is further split into six logical regions. They are, top left
corner, top right corner, left edge, right edge, opponent goal close region
and the rectangular rest area. This further break is figured as 5.2:

Figure 5.2: The field division. 1: Defensive left edge, 2: Defensive middle,
3: Defensive right edge, 4: MidField left edge, 5: MidField right edge, 6:
MidField, 7: Offensive middle, 8: Offensive left edge, 9: Offensive right
edge, 10: Offensive left corner, 11: Offensive right corner

5.4 Leaf Nodes

Leaf nodes store corresponding low level behaviour modules that we wish to
execute. As we described early on these modules can be roughly classified
into two groups: behaviors that needs require grab the ball, and behaviors
that do not require ball grabbing.

63

The behaviours require ball grabbing are:

• Grab Turn Kick

• Grab Turn Shoot

• Grab Dribble Goal

• Grab Dribble Stop

• Grab Upen Left

• Grab Upen Right

Those behaviours that run without grab are:

• Dribble

• Upen Kick Left

• Upen Kick Right

• Avoid Own Goal

• Head Kick Left

• Head Kick Right

All these above behaviors are used in Robocup World Championship at
Bremen, Germany. We will next describe when do we use what behaviour
according to this year’s specification.

5.5 Using Contested Ball Info

When ball is contested, we usually channel the tree into a separate branch.
Contest ball is detected primarily by:

• Vision Obstacles/World Obstacle Map [22]

• IR Sensors 1

• Front Legs Paw Sensors
1The used of IR and Obstacles will be discuessed in GrabDribble low-level behaviours

in the later chapter.

64

We believe we are in a contested if all of the following is true:

• Any of three three detections return 1, AND

• The robot is close to the ball

And, we will continue be in ball contested state for the following 15
frames.

5.6 Decisions In Defensive Third

In our defensive area, we emphasize the priority of efficient ball clearing. In
addition, we also want to minimize the chance where we accidentally run
into the ball from the wrong side so that the ball gets knocked into our own
goal. Moreover, if the ball is contested, we want to minimize the chance
of the ball being grabbed by our opponent, hence we tend to use behaviors
that clear the ball and do not require ball grabbing. Finally, we have taken
out the get behind ideas in this area which was introduced by 2005 year.
The reason is that get behind is terribly slow and is against our defensive
philosophy. Practical experience against strong team shows they can easily
grab the ball well and dodgy around our defenders before most of get be-
hind is accomplished2. These lines of thoughts may be summarized as below:

For the actual implementation of behaviour decisions in defensive third,
one can refer to sSelkick.selectKickInDefensiveThrid() in PyCode directory.

5.7 Decisions In Mid-Field Third

In mid-field our players start to attempt to grab the ball. We therefore
encourage our player to grab the ball and compete with opponent when we
are contested. Also, we have modified the decision tree such that it always
attempt grabbing the ball if the robot is facing upwards. The structure of
this tree is similar to the one we described with defensive area, but with
more emphasize on the control of ball. We believe that being able to control
the ball and pass it to the expected direction in the middle of the field is
critical to our overall strategy.

The decision tree in this area when ball is contested only uses Upennkick.
This is because we are confident about the reliability of this kick type, and

2For a complete get behind behaviour description, please refer to rUNSWift 2005: Road
to Robocup 2005 by Nobuyuki[11]

65

Algorithm 5.2: Decision tree used in defensive third area by
rUNSWift 2006.

Data:
Result:
selfH2CenterH = Angle from self position to (ballX,ballY+offset)1

if If ball is contested then2

return contestBallActions()3

else if Ball on Edges then4

return DecisionOnEdges5

end6

else7

if 45 <= abs(selfH2CenterH) < 70 then8

return UpenKick9

if 10 < abs(selfH2CenterH) < 45 then10

return HeadKick11

if abs(selfH2CenterH) < 90 then12

if abs(selfH2CenterH) < 20 then13

return Dribble14

else return GrabDribble15

else16

return GrabDribble17

end18

end19

Algorithm 5.3: Contest ball decision tree by rUNSWift 2006.
Data:
Result:
selfH2CenterH = Angle from self position to (ballX,ballY+offset)1

if 35 <= abs(selfH2CenterH) < 70 then2

if selfH2CenterH < 0 then3

return UPenKickRight4

else5

return UPenKickLeft6

end7

if we are about to grab or we are on the edge but facing roughly8

correct direction then
return GrabDribble9

else10

return Dribble11

end12

66

Algorithm 5.4: Ball near edges decision tree by rUNSWift 2006.
Data:
Result:
selfH2BallH = Angle between self and the ball, normalised to [0,360]1

ballH2TGoalH = Angle between ball and target goal, normalised to
[0,360]
if 20 <= selfH2BallH <= 160 then2

if 30 <= abs(selfH2CenterH - ballH2TGoalH) <= 80 then3

return UPenKicks4

else5

return HeadKicks6

end7

else8

return GrabDribble9

end10

Algorithm 5.5: Decision tree used in field middle area by rUNSWift
2006.

Data:
Result:
selfH2CenterH = Angle from self position to (ballX,ballY+offset)1

if If ball is contested then2

return contestMiddleField()3

else if Ball on Edges then4

return edgesMiddleField()5

end6

else7

if 45 <= abs(selfH2CenterH) < 110 then8

return UpenKick9

if 20 < abs(selfH2CenterH) < 45 then10

return HeadKick11

else12

return GrabDribble13

end14

end15

67

Algorithm 5.6: Contest ball decision tree used in middle filed by
rUNSWift 2006.

Data:
Result:
selfH2CenterH = Angle from self position to (ballX,ballY+offset)1

if 35 <= abs(selfH2CenterH) < 70 then2

if selfH2CenterH < 0 then3

return UPenKickRight4

else5

return UPenKickLeft6

end7

else8

return GrabDribble9

end10

moreover, robots rarely lose track of the ball after the kick. Hence Upenn
kick is our primary kick in middle field when we are playing one on one, or
even one on many opponent players in a contested situation. Its short mo-
tion duration, can help to quickly push the ball to places behind opponents
up field.

Furthermore, we encourage our player to grab the ball and control the
situation when the robots are facing roughly towards the attacking direction
and of course when completely out of the direction. i.e. We need to grab
the ball and adjust its rolling direction when we are chasing the ball towards
our own goal. These lines of thoughts can be reflected by figure 5.6

5.8 Decisions In Offensive Third

Decision tree at the offensive third is much more complicated, for we need
to consider various situations like contest ball, edges, corners. Moreover, we
need to cater for on goal shot area close to opponent’s goal, and special case
like avoid grab the ball and dribble it across opponent’s goal line. Offensive
third is the region we tend to grab the ball in most of the situations. It is
usually difficult to let the ball roll behind opponent robots and then still
be able to chasing it up in a short amount of time. And within this region
we tend to have a extremely contested situation, where opponent goalie,
opponent defender, opponent attacker, our attacker and our supporter are
settled in this small rectangular region. The most effective approach here,
and which is used by teams that have strong ability of ball controlling in
Robocup World Championship, is the idea of grab, dodgy, and shoot. In

68

Algorithm 5.7: Decision tree used in offensive field area by rUNSWift
2006.

Data:
Result:
selfH2CenterH = Angle from self position to (ballX,ballY+offset)1

selfH2BallH - Angle from self position to ball position
ballH2CrossingH = Heading between ball position and the front of
the targetGoal selfH2CrossingH = selfH2BallH - ballH2CrossingH
if If ball is contested then2

return contestOffensiveField()3

else if Ball on Edges then4

return edgesOffensiveField()5

end6

else if Ball on Corners then7

if 30 <= abs(selfH2CrossingH) < 75 then8

return UPenKick9

else10

return GrabDribble11

end12

end13

else if Ball really close to the goal line then14

return Dribble15

end16

else if We are still very far from the target goal AND17

abs(selfH2TGoalH) < 15 AND we are near the center width then
return Dribble18

end19

else20

return GrabDribble21

end22

this area, teams with each other are not only competing about their decision
on what low-level modules they need to run at strategically level, but also
the goodness, efficiency and quality of their underline low-level skills such
as grabbing, tracking, and kicking.

Decision tree for offensive, mid-field and offensive areas are all imple-
mented in sSelKick.py in PyCode directory. The top level interface is called
perform(), which in turn links to selectKickInDefensiveThird(), selectKick-
InMiddleThird() and selectKickInOffensiveThird() functions.

69

5.9 Summary

In this chapter we have outlined our approach on how we generate decision
on what low-level behaviors to execute upon the current game situation.
This approach is particularly implemented for our attacker player in a game,
where we use a set of attributes to represent the game situation, and the
decision system maps these attributes into a low-level behaviour to execute
which is stored at the leaf nodes on the decision tree. This decision tree is
fully implemented in sSelKick.py module inside PyCode directory.

Currently most of our input attributes only describe from the attacker’s
point of view. For example, the angle of the attacker to the target goal,
the angle from the attacker to the ball. Future work might introduce more
parameters that are related to other teammates, and even a rough idea on
the opponent team players. For example, given the supporter’s position, my
current position, the ball’s position and the opponent’s players position, we
can plan a path to kick the ball alone such that our supporter can run up
and receive the passing.

70

Chapter 6

Low Level Behvaiours

6.1 Low Level Behaviour Overview

Low-level behaviour refers to behaviour modules designed to target specific
task or tasks of similar nature. These modules sit at the very bottom of
our behaviour system architecture and each written with a fixed format of
API thus capable of running to play that task on its own. Similar behav-
iors are then grouped into single one module. These modules are called
by high-level behaviors through decision making as outlined in the previous
chapter. These modules then talk to actuator-control system that in turn
controls the effectors and joints thus complete the behaviour specified in
the physical environment. In this chapter, we will dig into the three most
important low-level behaviors: seeing the ball, go and get the ball, and play
while holding the ball. In rUNSWift terminology, these refer to ball finding
and tracking, ball grabbing, and ball grab dribbling.

6.2 Find and Track Ball

Perhaps the most important skill in Robocup is find ball and track ball,
that is, if I can see the ball, then adjust my head parameters to concentrate
on it, is I can not see the ball, I need to quickly find it. Being able to see
the ball is vital in a game. Teams that can consistently track the ball and
being able to regain the ball upon lost have innumerous advantages in terms
of speed, accuracy, and reliability. In this small section we will discuss our
tracking and ball finding modules. Most of these modules were significantly
re-written since year 2004, and were improved through years. Here we will
discuss both the features introduced by the 2006-year team, as well as those
important functional units that originated from previous years for complete-
ness.

71

6.2.1 Ball Tracking

Ball tracking is the ability to point the robot’s head to the ball, if one is
seen on a vision frame. A good tracking implementation should minimize
the occurrence of losing track of the ball, especially when ball is rolling and
given the fact that there are other noises in the system such as reliability
of visual ball detection from vision system and joint sensors fluctuation in
the real game. Here we describe two approaches used at rUNSWift. Both
approaches aim the top of the ball.

The first approach uses point projection that project the top of the ball
on the image plain onto the image background. The robot then adjusts its
pan, tilt, and crane to look at that projected point. This method is easy to
implement and relatively reliable.

The second approach uses the distance from the ball and its relative
heading from the robot’s stance, calculates the required pan, tilt and crane
to look at the ball.

Our comment on these two methods agrees with previous years. That is,
the first method tends to perform better. The reason being is that the second
approach directly rely on the ball distance and that distance is calculated
by the ball radius from higher up vision ball fitting process. Consistently
coming up with an accurate ball radius is somewhat challenging in practical.
For example, part of the ball is not shown on the image corner or covered
by obstacle on the vision frame. In practice, we use the first approach to
direct our head onto the top of the ball and use the second approach only
when our point projection fails to succeed.

Ball tracking function is implemented in hTrack.py module with interface
calls: trackVisualBall(). trackVisualBall function will further call trackVi-
sualBallByProj() which uses the point projection method, and trackVisual-
BallByTrig() which utilises the second method.

6.2.2 Ball Finding

Distributed Find Ball

If none of the robots on the team can see the ball, and it has been the case
for a while, then the 3 forward players will perform a team play - distributed
find ball. The strategy specifies positions for the forward players, and each
player will go to its assigned point and perform spins on that point. The
3 points are chosen such that we can cover as much area on the field as
possible. In this strategy goalie remains inside the goal box. The strategy

72

will cease if any of the robots including goalie re-capture the ball. The three
points used in this year code are: (180,162), (80,378), (280,378).

The strategy also specifies which robot goes to which point. The robot
closest to the bottom point (180,162) will go to that point. The robot that
is closest to point (80,378) in the remaining two robots will go to that point.
Finally the last robot will go to point (80,378).

Goal Box

Distributed Find Ball Goal Box

Goalie

80,378 280,378

180,162

Figure 6.1: The 3 positions that the team will do distributed find ball on.
The distributed find ball is triggered if none of the robot can see the ball
for a specified duration, and is finished upon the a found ball event by any
dog on the team including goalie.

73

General Ball Finding

The general find ball routine is triggered when an individual robot loses
track of the ball. This is achieved through a sequence of actions. This
sequence can be graphed as below:

Track the ball

Use Last SeenUse HintUse IRForce ToDos

Head ScanBody Spin

Can not find ball

no no no

no

no

Use Back Off

no

Use GPS

no

no

Figure 6.2: The sequence of find ball strategy we use if we can not see
the ball. This sequence consist of useForce, useIR, useHint, useLastSeen,
useGPS, useBackOff, useScan, useSpin.

Use Force

The first state is so-called ”Force Todos”, where we force the robots to
perform certain find ball routines. Force state has a timer, which is used
to determine within what amount of time after lost ball should execution of
such routines be forced. Typical use of this semantic is to force robots look
at the out direction of the ball after we just kicked for the duration of force
timer. Another typical application is to allow the robot to walk to and look
at its GPS ball position, which is the prediction of where the ball is.
1

1For a complete description of rUNSWift GPS system please refer to rUNSWift Un-
dergraduate Thesis 2006 by Oleg Sushkov.

74

Use IR

In the next step we will check if there are objects very close in front of us. If
so we need to have a quick look in that region. This check is carried out by
means of check IR sensors. This check is necessary when the ball is direct
under the robot’s chin and is just off its vision. In IR state there is also
a timer, which specify for how long we can remain performing this kind of
search. The search for IR is triggered by:

• The IR timer has not expired

• The filtered IR value is high

• I am not blocking now

If IR is triggered, the robot will direct its head to the position with pan,
tilt and crane parameters being (0, -10, -20) respectively. The robot will
remain walking to where it think the GPS ball is.

Use Hint

Ball hint frame work was originally implemented by the 2005 team. The
reason was originally to build a framework that is able to allow the robot
to forget the normal find ball routine and jump to special find ball action
sequence signaled by other behaviors. [11] A hint is represented by the dis-
tance and heading parameters with a time stamp. The time stamp is used to
specify the valid duration since a hint is set by other actions. The distance
and heading are used to specify the hint point in polar form. The find ball
routine will first check if there are any hint set that is still valid. If so it will
direct the head of the robot as well as its body to the hint point while the
hint is still valid.

The hint framework is extensively used in our behaviour module. These
modules include grab, grabDribble, headKick, and UpenKick.

Use Last Visual

The algorithm then moves on to check the time since the last visual ball. If
the last seen ball was recent, then we will use the last visual ball’s position
to find the ball. This technique is extremely useful, because it allows the
discontinuities of visual ball recognition. In practical find ball based on last
visual ball is triggered when the last visual ball is within 4 vision frames

75

Behaviour
Module

Hints Set (Dis,Ang) Description

Grab setHint(30,0) We set this hint while we doing ap-
proach ball. If the grab failed then it
is more likely we have knocked it away.

GrabDribble setHint(35,-/+ 120) If we are turning while we are carrying
the ball, we set hint to the point such
that the hint heading is opposite to
our turning direction. This useful if
we lost the ball while we spinning.

HeadKick setHint(50,-/+ 30) If we executed head kick, then we want
the robot to look at the direction the
ball going out to

UpenKick setHint(25,-/+ 30) If we executed Upen kick, then we
want the robot to look at the direc-
tion the ball going out to

Table 6.1: The list of hints used in our behaviours

counting backwards from current frame.

If last visual ball was recent, then we will not move our head but leave it
to where it is. That is, we will not move our head if we think the last visual
ball is with past 4 frames. One exception occurs when we have just spun
in the recent time. If such situation happens, the head’s pan value is set
slightly different from its old value. If the robot’s spin direction was clock-
wise, then we set the pan to be its old value + 30 degree in anti-clockwise
direction. Otherwise we set the pan to be its old value - 30 degree in the
clockwise direction.

The use of last visual ball is a mean of putting hysterisis on our head
motions. Here we have allowed discontinuity of 4 noise vision frames to de-
cide if we have really lost track of the ball or not.

Use Gps Ball

When last visual ball was not very recent, the robot moves onto a stage
where it starts to find ball relying upon GPS ball information. Again the
constraint used here is that the time since the last time we see the ball is
shorter than 26 vision frames.

76

Use Backing Off

Using backing off refers to the behaviour where the robots step backwards
first, then proceed find ball from there. The reason is to allow perceive ball
very close to the robots. For example, directly under its chain. The trigger
of this stage is that the distance from the robot to the mean of GPS ball is
shorter than 40 cms.

When performing backing off, the robot will step backwards with maxi-
mum speed, and perform the standard head scan defined in hTrack.py

Use Head Scan

If none of the above tricks can be performed, the algorithm moves on to
make the robot scan its head looking for the ball. The scan used here is a
slight modification of our traditional full scan. Where we limited the full
length of the pan to the size of the variance of the ball. The idea is, if the
GPS ball variance is small and the variance of the robot’s position is also
small, then we are relatively confident to scan in narrower range towards
to that direction. On the other hand, we would scan a broader range by
using a corresponding larger pan range. The robot should remain scanning
for the ball until it exceeds the scan state timer. This scan is therefore
called variance scan. The time limit used here is 30 frames. That is, robot
will remain in this state for entire duration of 1 second unless it finds the ball.

Variance scan is implemented on top of our traditional full scan, but
with specified minPan value and maxPan value according to the ball vari-
ance and robot’s variance. The interface of our full scan is given by:

scan(lowCrane,highCrane,lowTilt,highTilt,lowSpeed,highSpeed,
minPan,maxPan,lookDown=False)

The calculation of the minPan and maxPan is given by algorithm 6.1:

The full scan call resulted from this calculation is then given by:

scan(lowCrane=-10,highCrane=10,lowTilt=0,highTilt=0,lowSpeed=8,
highSpeed=9,minPan=ballH-theta,maxPan=ballH+theta, lookDown=False)

Use Spins

Eventually, the robot will go into spin state if none of the above tricks help
to find the ball. A spin means fixed head motion with body spin only. The

77

Algorithm 6.1: The calculation of minimul and maximum pan value
according to the variance of the robot and it s GPS ball.

Input: scale = 1.0
Output:
Result: minPan, maxPan
total var = sqrt(abs(GpsSelfMaxVar)) + sqrt(abs(gpsBallMaxVar))1

theta = atan(total var, ballD) * scale2

if ballH > MAX PAN - theta then3

ballH = MAX PAN - theta4

end5

if ballH < MIN PAN + theta then6

ballH = MIN PAN + theta7

end8

return (ballH-theta,ballH+theta)9

head parameters are locked for 2 situations.

• GPS ball distance is grater than 120 cm

• GPS ball distance is less than or equal to 120 cm

The typical setting we used are:

• Action.setHeadParams(45 * spinDirection, -10, 0)

• Action.setHeadParams(30 * spinDirection, -10, -10)

The angular velocity is also set to be variable, with respect to the dis-
tance of the GPS ball. This algorithm is presented in 6.2:

As we can see the returned angular speed for spinning depends on the
GPS ball distance. If the ball distance is far away, for example, 300 cm, the
angular speed returned is 55.0. If the ball distance is close, say 20 cm. The
angular speed to be used would be 60.5, with increased magnitude. The
intuitive behind this is that the team feels more confident about picking up
visual ball in the closed and medium range. As the ball rolls away from the
robot, such confidence depredates, especially in a complicated game environ-
ment. We therefore specify the robot to spin slower when the ball is far away.

78

Algorithm 6.2: Variable angular velocity used by find ball spinning
Input:
Output:
Result: Spin angular speed
MAX BALLD = 120.01

MIN BALLD = 20.02

Spin Speed = 55.03

i = float(MAX BALLD - Global.ballD)/float(MAX BALLD -4

MIN BALLD)
if i > 1.0 then5

i = 1.06

end7

if i < 0.0 then8

i = 0.09

end10

MIN DIST SCALE = 1.011

MAX DIST SCALE = 0.912

dist scale = MIN DIST SCALE + i*(MAX DIST SCALE -13

MIN DIST SCALE)
return Spin Speed * dist scale * spinDirection14

6.3 Grab

6.3.1 Introduction

In this section we will discuss another very important skill, ball grabbing.
Ball grabbing refers to the behaviour the robot holds the ball using its two
front legs and its head. Ball grabbing is especially beneficial in controlling
the ball and handle complex motions while carrying the ball. Kick executed
on a grabbed ball tends to be much more reliable then those kick executed
on the fly. In addition, ball grabbing also makes grab dribbling feasible,
that is, carries the ball while running. This is later so-called grab dodge and
shoot strategy used extensively by those top teams in this year’s Robocup
competition.

The earliest record of grab behaviour goes back to 2003/2004. Where
the field wall still exist, so being able to accurately grab the ball is not an
extremely important factor in a game. In year 2005, field wall is taken off
from the filed, so it is possible to kick the ball out of the field area. Since
then, teams started to see the importance of this ball controlling behaviour.
People have been working on optimizing their grabbing behaviour, some
team used the grab to stabilize their kick, and some other teams used this
technique to carrying and shoot the ball. Interestingly, it turns out that high

79

quality performance of grabbing behaviour requires quality work on nearly
most of the other modules. A good ball distance is required from the vision,
correct ball velocity and global position are needed from localization, and
finally approaching ball precisely requires top-quality work on the underline
odometry walking engine.

To target the reliability of grabbing behaviour, many teams have sacri-
ficed their performance from other motions. Some team will wait to grab
until the ball slows down, some other teams would slow down their ap-
proaching ball motions to get balance between the grabbing accuracy and
some hidden defects in their odemetry calibration. rUNSWift 2005 grab
was successfully developed and extensively used for its moderate reliability.
However, there are some known factors need to be reviewed this year. First
of all, slowing down by significant magnitute when approaching to the ball
is not desirable. Secondly, the side adjustment steps also delayed our ball
approach time. The lost in the semi-final with our friend team NuBots in
Robocup 2005 is a good example of how much difference can this compen-
sations make.

In year 2006, our directive comes similar with NuBots, that is, avoid
slow motions while maintain the reliability when approach the ball, and this
forces the team to look at works on optimizing modules in vision, GPS, as
well as underline walking engine. It turns out that those optimizations were
all complete with high quality and these resulted a great improvement in
our grab by a large amount as can be seen in the Robocup 2006 Champi-
onship. Compare with 2005. This year’s grab motion is much faster, and
more reliable. This ability enabled us to compete confidently with those top
teams in a complex game environment.

6.3.2 Module Layout

The grab module consists of three logical functional units. Approaching,
Grabbing, and a query function of ”Can I grab now”. Approaching function
gathers the information out the ball, in particular the distance and velocity,
and returns the forward step amount, left step amount and turning amount
to step to the underline walk engine for the current frame. Grabbing func-
tion executes a fixed sequence of actions in time space. It starts by pointing
robot’s head forward out, and ends up with dropping its head on the ball
over a specified amount of time duration. The query function returns true
if it is appropriate to start grab by calling grabbing function at this frame.

Tuning each of these parts would affect the final performance of the
whole grab module as a whole, and change in other modules can also result

80

in performance degradation in the grab. This year the team has spent enor-
mous amount of time to keep maintain this module.

6.3.3 Ball Approaching

The ball approaching function’s main role is to calculate at each frame the
forward, left and turn component for our underline walk engine. This year
we removed the side step line up mechanism used in 2005 for speed reason,
that is, we decide to use zero left component in grab approaching. Instead,
the robot will always be walking towards the heading of the ball, and this
is done through a sequence of specification of only the forward and turn
components. The simplest form of this function that could be:

walk(BallDistance ∗ cos(BallHeading), 0.0, BallHeading * 0.9)

The magnitude forward component is limited by our turning amount.
If lots of turn are needed, the forward component given to walk engine is
limited by the order of Cosin(BallHeading). On the other hand, if the robot
is facing directly to the ball so the turn component is close to zero, we will
use the full forward strength instead. In addition, we have reduced the ball
heading by 10% to prevent over turning effect.

6.3.4 Can Do Grab Query

As the robot adjusts its forward and turn to line up and chase the ball, the
robot is also checking to see if it is appropriate to execute grab ball action
at the current frame. The implementation of this check is to estimate if the
ball will intercept with the robot in the next few frame by using the ball
velocity information.

We say the ball is intercept with the robot and hence is appropriate for
the robot to start grabbing when:

• The horizontal displacement between the ball and robot is less than 3
cm, AND

• If we have done a large amount of turn in the last 15 frames while
approaching, then the ball distance must be less than 9 cm, AND

• Otherwise the ball distance must be less than 13.5 cm.

81

The entire algorithm is outlined here:

Algorithm 6.3: Checks if it is appropriate to start grab
Input:
Output:
Result: Yes/No
ballX,ballY = ballPosition()1

ballVX,ballVY = ballVelocity()2

PredictionItr = 63

itr = 04

GrabDistance = 13.55

while itr < PredictionItr do6

ballDistance = sqrt(ballX * ballX + ballY * ballY)7

can = true8

can = can AND abs(ballX) < 39

if FrameSinceLastSpin > 15 then10

can = can AND ballDistance < GrabDistance11

end12

else13

can = can AND ballDistance < GrabDistance * 0.7514

end15

ballX += ballVX16

ballY += ballVY17

ballVX *= 0.9018

ballVY *= 0.9019

itr++20

if can then21

return true22

end23

end24

return false25

Notice that the degradation of ballX and ballY velocity at end of each
iteration is used to model roughly the friction effect.

6.3.5 Grabbing

The 2006 grabbing motion completes in 12 vision frames, which is more
than 2 times faster than 2005 grab motion. (25 vision frames) The function
will drive the head and the legs over these 12 frames to complete the grab.
This leaves us to about 2.5 seconds to perform dribbling and kicking after
the grab. In fact, for some situation the grab can be completed in an even

82

shorter time duration if infrared sensor distance check is triggered. This
could in theory double our grab speed, since we increment the counter twice
as fast when infrared sensor check is triggered. Using infrared sensor in grab
allow us to grab close in ball reliably.

The grab motion starts by lifting the head of robot up a slightly, allowing
the ball to go in. The robot will also walking towards to the ball and drop
its head at the end of the duration as well as open its mouth.

The entire 12 frames are divided in the following ways:

State Duration Description
Grab Forward 0 - 3 frame Lift head up and walking with

maximum forward speed with-
out any left and turn com-
poents.

Grab No Check 3 - 6 frame Drop head on to the ball but
keep mouth closed

Grab Complete 6 - 12 frame Keep head motion as above,
open mouth

The entire algorithm of grabbing motion is given by figure 6.4:

Summary

Grabbing can be considered as a form of the ”chicken and egg dilemma”, in
the respect that to play a ”grab and move” style requires good grabbing, but
good grabbing is only important in a ”grab and move” style. [21] Since year
2004, rUNSWift has adopted the ”grab, dodge and shoot” style of game play,
and the team has been striving for the accuracy, reliability and speed since
then. Over the years, the grab reaction time becomes shorter and shorter,
the quality of the grab becomes higher and higher. Inspirited by NUbots,
the 2006 team removed side walk line up and re-wrote the grabbing motion
to accelerate the grabbing speed. At the same time, the team has also paid
special attention on maintain the reliability of the grab module. This fast
and reliable grab has gained the team great advantages in the Robocup 2006
World Championship.

83

Algorithm 6.4: The grabbing motion in grab forward, grab no check
and grab complete time durations

Input:
Output:
Result:
walk(MAX Forward, 0.0, 0.0)1

grabbingCount = frameSinceFirstGrab()2

if IRSensor > SensorNoiceLimit then3

grabbingCount += 14

end5

if can see ball then6

lastSeenBallHeading = BallHeading7

end8

if grabbingCount < 3 then9

setHeadPara(pan = lastSeenBallHeading, tilt = -60, crane = 70)10

end11

else if grabbingCount < 6 then12

setHeadPara(pan = lastSeenBallHeading, tilt = -40, crane = 50)13

end14

else if grabbingCount < 12 then15

setHeadPara(pan = lastSeenBallHeading, tilt = -40, crane = 50)16

openMouth()17

end18

else19

return Completed20

end21

return Executing22

84

6.4 GrabDribble

6.4.1 Introduction

GrabDribble refers to the behaviour of carrying the ball around and shoot
on goal in case of appropriate. The total time duration allowed to grab and
grab dribble is capped at 3 second and the robot is not allowed to move
by more than 50 cm in displacement. GrabDribble is the most important
and complicated high-level behaviour module at rUNSWift. This module
provides complete action specifications after grabbing is succeeded. These
include, carrying ball forward, turning and aiming, obstacle avoidance, kick
and grab-dribble kick selection tree.

Grab-Dribble module at rUNSWift was originally written by Nubuyuki
in 2005. The 2006 year team used very similar structure but has also pro-
posed many useful optimizations. Large amount of work was conducted in
aiming, obstacle avoidance and kick selection tree.

The team has decided to abandon GPS as the primary aiming method
in defensive half. Aiming is now nearly all done by using visual informa-
tion. The robot would only need to aim GPS target in case of failing to
recognize it visually. Empirically this increased the accuracy of our aiming
significantly. The robot is able to consistently perform the action sequence
of grab, turn, aim and shoot.

In addition, the team has re-written dodging behaviors, this include in-
troduction of using infrared distance sensor as primary obstacle detector in
combination with visual obstacle as secondary. Moreover, separate specifi-
cation of strafing goalie and strafing other opponent players were used. This
turns out to help to score most of the on-goal shots when against teams that
have strong goalies.

Furthermore, the team has modified the primary kick used in 2005 from
headTap kick to fastForward kick. This modification retained the charac-
teristic of strong strength of this kick type but reduced the reaction time
by great amount. The combination of strong long-range on-goal kicks with
several other short-reaction soft kicks made the team’s attack more smooth
and efficient. A special kick type, ”head kick” was also added to the kick
selection and helped scored against GermanTeam in a practical game.

In the following paragraphs we will outline the working procedures of
this year’s GrabDribble module, discuss its pros and cons, with emphasize
on the above optimizations.

85

6.4.2 Turn and Aim

Before handling those fancy features such as dodging and shoot on goal, we
first of all need to reliably line up with the goal, in particular, we need to
reliably line up with the gap between goalie and one of the goal post. These
insights naturally lead us to answer the following questions. Where do we
aim, Which way do we turn, and When do we stop.

Use Visual Target Aiming

Visual target aiming is much more reliable than GPS aiming. In visual aim-
ing, the relative heading between robot and target is provided by underline
vision module, and the robot simply need to turn that amount to face the
target. This year we encouraged visual aiming and discouraged, actually
took out as much as we can about GPS target aiming. Our confidence
comes from the reliability and advantages of many other low level modules.
In particular, the speed and robustness of vision module and advantages of
our grab-dribble stance. Robot can reliably see the target goal from over
half of the field on grab-dribble stance. This allowed us the ability to line
up with goal from far distance. The visual goal recognition is completed in
frame, hence our robots can adjust its heading on a frame by frame basis.

Aiming Procudures

If robot can not see the target goal, it needs to turn to look for it. If it can
see the goal after a few frames then it will switch to aim one of the gaps
rather then the center of the goal. Robot will keep spinning until it sees the
goal when it is at the the front half of the field. The reason here is that the
chance of spin in front of the goal within that range and not seeing the goal
within any frames when robot is heading to it is exetremely low. In a game,
and we have tested over and over again, the idea of keep spinning until sees
the goal is highly successeful, especially when GPS heading fails to return
sensible value.

The decision on which way to turn for goal searching is determained by
the robot’s GPS information. We would like to turn in the direction such
that the angle starts from the robot across that direction to the target goal is
smaller than going opposite way. While turning a constant angular velocity
is used. In practice we used walk(0, 0, 50.0) when robot has its Y position
component less than 400cm, and used walk(0, 0, 40.0) otherwise.

As we mentioned above, if visual goal is detected on the current frame,
we would prefer to aim the gap but not necessary the goal center. To-

86

gether with the heading of the goal, we also calculate the two gaps seen on
the goal, this two gaps are represented by the ((leftHeading, rightHeading),
(leftHeading, rightHeading)). All are relative headings from robot point of
view and abs(leftHeading - rightHeading) represents the gap size. The aim-
ing algorithm at this point will pick up a gap and lock it. This gap selection
algorithm selects the gap based on its size and is given by:

Algorithm 6.5: The gap selection logic used in 2006, if we have
already locked one gap then return that one. If we have not selected
one gap then select the wider gap from the two gaps.

Input:
Output:
Result: bestLeftHeading, bestRightHeading
global locked gap1

if NOT locked gap = NULL then2

return locked gap3

end4

(lmin, lmax, rmin, rmax) = getHeadingToBestGap()5

if lmin=0 AND lmax=0 then6

return (rmin,rmax)7

end8

else if rmin=0 AND rmax=0 then9

return (lmin,lmax)10

end11

else if abs(lmin-lmax)>abs(rmin-rmax) then12

return (lmin,lmax)13

end14

else if abs(rmin-rmax)>=abs(lmin-lmax) then15

return (rmin,rmax)16

end17

Once the desired gap is locked, the robot will direct its direction to the
middle of the gap. To determain if robot is in fact aimed successfully with
the gap, we calculate the average heading of the gap and come up with a
padding proportional with the size of the gap. We then say the robot is
aimed at this frame if:

abs(average gap heading) < padding

The entire gap aiming algorithm is given by:

87

Algorithm 6.6: Gap aiming creteria, where if accumulated aimed
frame reaches 4 then we say the robot is aimed

Input: BestLeftGapHeading, BestRightGapHeading
Output:
Result: Complete of Gap Aiming
global aimCount1

middle of gap = abs(BestLeftGapHeading + BestRightGapHeading)2

* 0.50
padding = abs(BestLeftGapHeading - BestRightGapHeading) * 0.253

if abs(middle of gap ¡ padding) then4

aimCount ++5

end6

if aimCount > 3 then7

return Succeeded8

end9

return Executing10

6.4.3 Apply OverTurning

When attempting to line up with target goal at defensive third back yard,
i.e. Y less than 200 cm, we need to start using localization to direct our
turn component. This is because we are relatively less confident in this
range for robot to spin and not miss seeing the goal. The logic is modified
slightly to accommodate the situations. Our robots will still turn to the
same direction as we outlined above. If it captures the target goal then we
switch into accurate gap aiming. If our robot has not seen the target goal
but GPS localization believes robot is actually facing it, we allow our robot
to over turn further for a few frames before stop. Empirically we have seen
too many times where the robots turn and attempt to line up purely on its
GPS localization and stopped just before it could see the target goal. There
are situations where the robot overturns and also missed all visual target
from long distance. But compare with fixing much more under turn situa-
tions, this is relatively minor especially when we require less accuracy such as
lining up from far away range and not executing for on-goal shoot after that.

6.4.4 Obstacle Avoidance - Dodging

Obstacles refer to objects on the field that hinders the progress of the at-
tack. Obstacle avoidance is the ability to avoid any obstacles that could
potentially obstructs the movement of the attacking robot or its shot. This
could be an opponent robot, a beacon, or even a teammate player. This
skill consists of obstacle detection and obstacle dodging.

88

Obstacle Detection

Obstacle detection is done primarily by vision and infrared sensor. Visual
obstacles are recognized by their low Y value in YUV color space. If a pixel
on a scanline falls below 35 then it is classified as obstacles. This approach
was implemented by Alex North in 2005 and differs from most other at-
tempts. [4],[20], [21] The total number of obstacle inside a 50cm by 100cm
rectangle in front of the robot is counted and the obstacle avoidance will be
triggered if this number is above certain threshold.

Figure 6.3: The traditional visual obstacle detection by counting discrete
obstacle feature pixels in the rectangle projected on the field. Figure taken
from Road to Robocup 2005.

The second method is to use head infrared sensor. At 2006 Robocup

89

most of the close in obstacle avoidance is triggered by this method. This
method is very reliable to tell if there is obstacle in front of you in a yes or
no format, irrespective of lighting condition. The sensor also helps to detect
goal post, referee legs and beacons. [21]

The value returned by this head infrared sensor is a distance indication.
The closer the obstacles are to the robots, the smaller this value is. To
come up with a good obstacle threshold, one often need to come up with
the ”avoid-ground-value”, that is, the value when the distance across to the
ground in average. The threshold is then set to:

IR Dodge Theshold = 0.8 * avoid-ground-value

Interestingly, it turns out that the reading of IR value for fixed distance
differs with the field surface material. i.e. for two pieces of field blanket,
one can expect different such threshold. Moreover, it can be shown that
different robots have different ”avoid-ground-value”, this could be possibly
due to the physical differences among the sensors, as well as differences in
physical joint angles reflections. For example, Nubots claims that their IR
sensor values could range from 20cms to 25cms. [21]

To calibrate infrared sensor for obstacle avoidance, one can manually
come up with different IR threshold for each Mac address and use each one
for the corresponding dog. This requires separate tuning for every robot on
a team. Another approach is to select a robot as the base robot. The rest
of the robots’ IR value will be modified by its separate correction model so
that the final reading of these robots are same as the base dog per distance
per environment. Now to calibrate IR threshold on another field, one can
only estimate the new value for this base robot. In practice we used the
second approach, where the correction model was a linear adjustment with
X coefficient and a constant for each robot, and the IR dodging threshold
used in the Robocup 2006 Ground Final was 20cm.

Obstacle Avoidance

Once the dodgy behaviour is triggered, robot will start side steps on a se-
lected direction, for a calculated duration. The decision on which way to
dodge is hard. In practice we have separated situation of executing dodge
on opponent goalie and cases else wise.

The decision for dodge regular obstacles can be summarized as: If robot
is near left edge, including top left corner, we always dodge to the right. If
robot is near right edge, including top right corner, we always make it dodge

90

to the left. Moreover, in defensive half we always dodge to the near side. In
offensive half we always dodge to the center of the goal.

Algorithm 6.7: Decision on dodgying direction
Input:
Output:
Result: Left,Right
if selfX<60 OR At TopLeftCorner then1

left = -LEFT2

end3

else if selfX > FIELD WIDTH-60 OR At TopRightCorner then4

left = LEFT5

end6

else if selfY > FIELD LENGTH * 0.5 then7

if selfX > FIELD WIDTH * 0.5 then8

left = LEFT9

end10

else11

left = -LEFT12

end13

end14

else if selfY <= FIELD LENGTH * 0.5 then15

if selfX > FIELD WIDTH * 0.5 then16

left = -LEFT17

end18

else19

left = LEFT20

end21

end22

return left23

The decision for dodge opponent goalie is slightly different. The differ-
ence comes from the fact we have the gap information. Here, an extension
is added such that if the right gap size is bigger than the left gap size, then
dodge towards to the right gap. If the reverse holds, we will direct the robot
to dodge to that left gap. If no gaps are recognized, the robot will always
dodge to the center of the target goal, increasing the likelihood of scoring.

The robot will dodge with the selected direction until the obstacle value
drops back and maintains the status for a few frames. In practice robot
will stop dodge if accumulated frames for which the obstacle features are
below the triggering threshold has reached DODGE RELEASE. In practice

91

we used 7 frames for goalie dodging and about 30 frames for dodge other
players on the field. For example, to dodge goalie, every frame with obstacle
lower than triggering thrshold, the robot MUST dodge for the next 7 frames.

6.4.5 Edge Behaviors

When handling grab-dribble near the field edge, a special function designed
for this will take the control over. This function directs robot to move away
from the field line using only backward walk, side step walk and diagonal
walk. This behaviour is helpful in preventing carrying the ball over the field
edge when turning. This function was implemented by Nobuyuki in year
2005, and is included here for completeness.

6.4.6 Kicks

In this sub-section we will discuss the four primary kicks used at rUNSWift
2006. These four kicks are hardForward Kick, Wedge Kick, HeadSwipe, and
UPenn Kick. hardForward and Wedge Kick require ball in possession first.
HeadSwipe and Upenn Kick can be executed with or without grabbing the
ball first. Also, hardForward and Wedge Kick kicks in straight line and the
other two types do not.

HardForward Kick

HardForward is the strongest kick we used in Robocup, though it is not the
strongest kick we have in our code repository. The reason is that this kick
was developed to target motion speed, and reliability. We view these two
factors more important than strength. Fast kick motion speed minimizes the
chance for opponents’ push and disturb. The shot that has strong power
and wide batting area would have little sphere of activity, if the shot was
long motion. [35] Nowadays all on-goal shots are completed with external
pressures.

In parallel with optimizing speed, we have also paid special attention on
the reliability of hardForward kick. Reliability refers to the successful rate
of the kick type. Moreover, the successful rate when opponents are push-
ing. Even loosely speaking, how often the ball really goes forward after the
full execution of the kick, especially under external stimulis. We see shots
in similar range used by top teams generally have all these characteristics.
They just never fail the kick - Every kick would almost mean a forward
displacement of the ball.

92

The hardForward kick has strength about 2.5 meters. We believe this is
usually enough for a fast and reliable on-goal shot, as well as a quick ball
clear used in defensive area.

Wedge Kick

Wedge Kick was developed by Andy Owen and was originally designed as
a kick used in practical games to protect damage to the robot’s head made
by using those head kicks. This kick is a straight-line kick but with short
targeting range. It goes to about one meter. Strategically this kick is equiv-
alent to the NUbots’s soft kick, and is used if the robot wants to release the
ball in a very small distance.

This kick is used as our primary choice of short-range kick for its ro-
bustness. Its kick execution rarely fails. WedgeKick takes 12 motion frames
to finish. However we believe this is still slower than its soft kick sibling in
NUbots, which could finish in under 10 frames.

HeadSwipe Kick

HeadSwipe was developed by Oleg Sushkov. HeadSwipe is able to kick the
ball hardly ”on the move”, that is, this is not a grab needed kick. The idea
is to approach the ball and swipe the head of robot and knock onto the
ball with the head. This kick is not as reliable as WedgeKick but has the
advantage for its speed and efficiency. It is used more often in the mid-field
to quickly clear the ball to the forward in a contested situation.

UPenn Kick

UPenn Kick [36] is another form of non-linear kick used in conjunction with
HeadSwipe. Upenn Kick is reliable but slower than HeadSwipe.

6.4.7 Kick Selection Tree

At the end of the grab-dribble behaviour, the robot would select a kick
to execute. This kick is selected based on this grab-dribble selection tree
function, which outputs the most appropriate kick type to execute. This
selection tree has three basic braches, defensive, mid-field and offensive.

93

Defensive Kick Selection

This branch deals with kick selections in defensive third of the field. This
can be summarized as: ”Avoid scoring own goal, and clear the ball quickly
as we can”. The kick we used is HardForward kick, so it is strong enough
to effectively clear the ball. Also, if we could see our own goal, no kick will
be executed, rather, robot will be forced to spin away from our own goal.

Algorithm 6.8: Kick selection in defensive third. We used simple
strong version of linear kick conjuncted with own goal avoidance.

Input:
Output:
if Own Goal Visible then1

Spin()2

end3

else4

HardForwardKick()5

end6

return7

Mid-Field Kick Selection

The kick selection tree in this region is similar in concept with defensive half,
that is, avoid own goal and push the ball up field with strong kick. But we
have also taken into consideration of ball-contested situation. If contested,
usually a strong kick is less effective than a soft kick. We therefore added
in the use of WedgeKick if ball is contested.

Offensive Kick Selection

The selection tree used here is a bit aggressive. That is, even when we are
not seeing the target goal, we still want to shoot in some of these cases.
At the first glance this might not make much sense, but experimentally at
the exact frame we are about to shoot on goal, robot might or might not
recognize the target. The trick we play is to use stronger kick when we can
see the target, and as our confidence drops we decrease the strength of kick
we select so to minimize kicking the ball off the field or kicking on the wrong
direction. The kick selection tree used for offensive is therefore channeled in
to three braches: Goal seen, Goal recently seen, Goal not seen.

The case of we can see the goal, we need to check if robot’s head is
within the gap. Moreover, we also want to release the ball immediately if

94

the robot is too close to the target goal.2 In addition, we have channeled
this tree down to another two special branches. These special cases consider
the offensive kick at two top corners (100cm radius from the top left field
point and top right field point), if the robot is in one of these corners and
can see very small size of gap, it will give up the aimed kick and pass the
ball cross the target goal instead. Putting all of these together, the offensive
decision tree when target goal is visible is given by:

Algorithm 6.9: Kick selection in offensive with target goal visible.
Input:
Output:
if On corner area AND Gap is small then1

Pass Across()2

end3

else if Still aimmed in gap then4

HardForward()5

end6

else if Goal Heading is within 15 defree then7

HardForward()8

end9

else if Distance to target goal < 30cm then10

Release()11

end12

else if Robot’s Y position component > Field Length - 50 then13

HardForward()14

end15

else16

WedgeKick()17

end18

return19

The recentness of goal seen is measured by the frame difference of current
frame and last seen target goal frame. In practice if this difference is less
than 15 we say the robot has recently seen the target goal. In this case use
strong kick when close to the goal, and use soft kick in all other cases.

In the last branch, the robot has not seen the target goal in the last
15 frames. If this is the case, then it is likely that the robot has not lined
up with the target goal yet and still on its way of spinning. Empirically
speaking, the robot has spun across the target goal and happened to missed
all the visual target is very small. The kick command is still issued usually

2The 2006 soccer rule disallows carrying the ball over the line.

95

Algorithm 6.10: Kick selection in offensive with target goal recently
seen.

Input:
Output:
if On corner area AND Gap is small then1

Pass Across()2

end3

else if Robot’s Y position component > Field Length - 50 then4

HardForward()5

end6

else7

WedgeKick()8

end9

return10

because robot is out of grab-dribble time limit. (3 second) Interestingly,
this scenario is somewhat common in Robocup. Image robot A has the ball
grabbed and is spinning to aim the target goal. Opponent robot B happens
to come alone and pushes robot A. The result is that A can hardly spin
because of the jam, or effectively, can only spinning slowly. In this case
it is possible that robot A runs out of time before it could see the target
goal. The second case we often see in a game is the robot selects the wrong
direction to spin, due to the errors in localization. This could also make it
run out of time before it could have chance to see the goal and line up with it.

The trick we play here is to turn on our HeadSwipe kick. HeadSwipe is
a strong kick that kicks the ball out about 30-50 degree out from the robot’s
origin. Robot would HeadSwipe the ball to the right, if it is at the font third
and has been spinning in the clock wised direction and still hasnt seen the
goal yet. Robot would HeadSwipe the ball to its left, if it is at the font third
and has been spinning in the anti-clock wised direction and still hasnt seen
the goal yet.

Finally, robot will perform soft kick if it is at the front half of the field,
and release the ball immediately if it realizes it is in defensive half field. The
entire selection tree in this branch is given by figure 6.11:

6.5 Summary

The low level behaviors are certainly the most critical elements in Robocup.
In a grab-dodge-shoot fashion, robot needs to be able to track the ball reli-

96

Algorithm 6.11: Kick selection in offensive with target goal not seen.
Input:
Output:
X,Y = Robot’s Postion1

if Y > 350 AND OwnGoal not visible AND2

for the past 30 frames, robot has been spinning then3

if TurnDirection = Clockwise then4

HeadSwipe(right)5

end6

else7

HeadSwipeleft8

end9

end10

else11

if Y > Field Length * 0.5 then12

WedgeKick()13

end14

else15

Release()16

end17

end18

return19

97

ably and re-capture the ball as quickly as possible if lost. We see ball finding
and tracking being the foundation in the overall low-level behaviour. Next,
we emphasize the speed, reliability and accuracy of our grab motion, evalu-
ating if we can grab the ball reliably with as small amount artificial slowing
down as possible, under complex game environment. Been able to track
the ball and grab the ball well together gained the team enormous benefits
over other teams and is certainly the step stone for handling post-grab mo-
tions, grab-dribble. In grab-dribble, we evaluate the surround environment
to decide if robot should shoot on goal or dribbling to a even better position
to shoot on-goal. In areas other than opponent target goal, we also use
this dodging skill to avoid obstacles on the field and push the ball up field
through the cleared region. Finally, we perform the combination of long and
short range kicks, emphasizes the balance between strength and accuracy,
speed and reliability.

The quality of these low-level behaviour modules heavily rely on the rest
of modules in the system, in particular vision, localization and actuator con-
trols. High standards originated from these modules made many of these
nice features feasible in writing our behaviors.

98

Chapter 7

Behavious Simulation and
Optimisation

7.1 Behaviour Simulation

7.1.1 Simulator Overview

In contrast to many teams in the legged league of Robocup, rUNSWift does
not equate team cooperation solely with a passing game. Close quarter co-
operation among the robots is integral to the behaviour of the team.[19]
Doing extensive evaluation and testing on real robots are time consuming.
This year rUNSWift started to look at some optimizations which requires
evaluating large set of modules. Hence a behaviour simulator is developed.

By the nature of our goal, the simulator itself does not need to simulate
every real aspect of the robot. For example, legs movement, most visual
object recognition procedures are ignored, since they are of fewer interests
in designing high-level behaviour modules. When building the simulator,
our philosophy is to get the critical behaviour features simulated well with
high priority. These features include, robot’s geographic parameters such
as position and heading, ball’s parameters such as its position and velocity,
the interaction between the robot and the ball, such as grabbing, dribbling
and kicking, interaction between two objects such as collision between the
ball and the robot and collision between robots.

7.1.2 Design

In real Robocup competition, each dog runs its separate copy of our code.
In simulation, this is modeled by running each robot’s behaviour on sepa-
rate process. Our source code is there common for each process to import.
At the backbone, there is a center process acting as a server. This process

99

is used to supervise each of the robot’s behaviour, sort of like referee in a
real game. This process is also in charge of updating user interface and is
extended later to control the optimization procedures.

7.1.3 Implementation

The tool has undergone three different iterations. In its simplest form, the
tool repeats a one-step simulation of the behaviour of a particular robot in
many different positions on the field by feeding information as the position
of the ball, teammates and opponents to the behaviour module. The result
is visually displayed as a vector field and any unexpected behaviour can be
quickly spotted.

Since many of our more complex behaviors are modeled as a more de-
tailed state machine, the second iteration of this tool runs a complex be-
haviour over multiple frames, simulating a single agent’s behaviour.

The third iteration of the tool runs each such simulation as a separate
process, so that simulating a full 4 vs 4 game is feasible.

7.1.4 Plug-In-And-Play

Back to year 2004, rUNSWift has decided to port all its behaviour modules
into Python. Nowadays, using a scripting language to specify behaviour is
not new. Cross compile C++ and Python is not trivial but once done the
benefits become apparent. [36][35][21] Since all behaviors are specified in
Python, the kernel of this simulator is written also in Python. This allows
us to change a few lines of code in one behaviour modules and re-run the
simulator without any compilation delay.

Currently the simulator has interfaces in PyQt, the Python version of
QT, and one version in OpenGL supporting multiple views.(7.1,7.2,7.3)

7.2 Behaviour Optimization

7.2.1 Evaluation

Evaluation methods for behaviour modules present a difficult problem of its
own. There are large number modules to tune up, and qualities of these
modules not only rely on the design of themselves but also the performance
of the rest of the system. The goal of the behaviour system is to have one set

100

Figure 7.1: The simulattion of the ready state with both teams on the
regular attacker, striker and defender strategy. The Red team is kicking off.

Figure 7.2: The simulator is simulating the same ready state in different
view, a zoomed in view from an opponent robot’s prospective.

Figure 7.3: 2006 rUNSWift 3D Behaviour Simulator: Same ready state in
yet another different view, an audiance’s prospective

101

of behaviour modules consistently winning matches over all other possible
ones by using equivalent vision, GPS, walk engine etc.

With behaviour simulator, one can perform some form of behaviour mod-
ule evaluations, which is of the essential nature as above. In the simplest
form, ”evaluation” could mean a serials run of games on the simulator for
several candidate modules versus a fixed opponent logic, in order to deter-
mine which of these candidate modules is likely to perform better.

In particular, if one set of behaviour logic consistently beat another set
of modules, then it is likely that this set of module can in fact play a better
game in the real.

7.2.2 Optimization

Optimization is an integral part of module evaluations. Where evaluation
picks the best module among a set of candidates, optimization improves
one function/module further on its quality. Optimization on the simulator
could usually provide good indications and hints on real robots with much
less time consumption. The most straightforward application of this idea is
to optimizing constants used in our behaviour modules. The input of our
optimization procedure is a vector of constants, most of those are magic
numbers we come up ourselves. The procedure goes on and applies function
minimizations over this vector with one of the popular algorithms. The eval-
uation function is simply given by the score difference between two teams
each running with different such constant vector. Also, to reduce noise and
over fitting, single step evaluation should be conducted with sufficient time
duration. (We typically use 10 minutes game result on the simulator) Fi-
nally, the larger the score difference is, the more biased we are towards to
the function/module that results the higher score.

To validate as the last step, we run games on the simulator between logic
that uses the vector we start with, as well as the vector outputted by our
function minimization algorithm. The result of each game is recorded and
finally the conclusion can be made based on these results. In an experiment
we ran 10 validation simulations between the optimized data and the origi-
nal data. The scores difference between optimized data set and original data
set are given by:

Game 1 2 3 4 5 6 7 8 9 10
Difference 307 236 -86 88 -22 88 180 187 -28 165

102

Assume the difference between the optimized data set and original data
set is a random variable Z that has a normal distribution.

Z ∼ (µ, α2) (7.1)

The model hypothesis is given by:

µ > 0

And the Null hypothesis is:

µ ≤ 0

The reject region used here is:

W0 = | t |> 2.262, and, P > 0.95 (7.2)

The formula is given by:

t =
√

t× Z

S
(7.3)

From the results of the simulation, n = 10, Z = 55.75, and S = 63.32.
T is calculated to be:

T = 2.78 > 2.262 (7.4)

Therefore the resulting data supports our model hypothesis that µ > 0.
This means the our optimized vector indeed improved the performance in
terms of scoring. In practice one will need to test the result in real games
before making the final judgment.

7.3 Summary

Behaviour simulation made it possible to instantly see the result of using
newly developed behaviour module. This allows us to quickly fix those bugs
and unexpected behaviors before testing on real robots. Simulation runs
much faster than real game, hence it also allow us to compare two set of
behaviour modules by simulating the game in a long period. For example
over night. The team has also conducted experiment on optimizing behav-
iors by applying function minimization on simulations. However, the team
feels less confident on these kind of automatic approaches and in practical
the optimized functions are used as a guide only, final decision is usually
made upon experiments on the real robots.

103

Chapter 8

Conclusion and Outlooks

8.1 Conclusion

Standing at this point in time, looking backwards, we feel rUNSWift has
done overally well in year 2006. The team has come 1st in Australian Open
and 2nd in the World Championship. Great improvements were developed
by the team in GPS, Vision and Behaviors.

In the context of vision modules, rUNSWift has performed further up-
grade of its vision system this year moving from Ripple Down Rules[38],[39]
based classifier used in 2005 to a new kernel based classification system. The
speed, accuracy and reliability of our vision system is further maintained at
high quality this year. Optimizations on calibrations, linear shift, ring cor-
rection, field edge recognition and sanity checks were conducted. 1

In the domain of behaviour system, the team emphasizes the grab-dodge-
shoot philosophy this year. Enormous amount of time were spent on the four
critical modules: find ball, tracking, grabbing, and grab-dribble, plus Role
positioning and role assignment. The entire behaviour module has demon-
strated its incremental performance through Australian Open to the World
Final.

8.2 Outlook

Standing at this point in time, looking backwards, we also realized that there
are many areas where possibilities of improvements remained. Behaviour is
the most volatile part in Robocup four-legged league. Continuing develop-
ment is certainly needed for next year’s Robocuppers. Among those ideas,
one can investigate the possibility of ball passing, this includes should both

1For detailed description of the vision system please refer to Andy Owen’s Thesis

104

deliberate and opportunistic passing. In addition, the declarative strategy
used in role positioning can be further elaborated in other area in behaviour
level. Furthermore, development of a quick and reliable kick in both long
range and short distance is also not a bad choice.

At the very last, I hope the layout of this thesis is clear, and the con-
cepts and ideas presented here would still be useful for the upcoming year’s
Robocup enthusiasts in the four-legged league.

105

Acknowledgements

First of all I would like to thank everyone on the team, Michael, Andy, Oleg,
Ryan. It is the teamwork and team cooperation that boosted our perfor-
mance. I would also like to thank Brad Hall, for his guide and advice from
the very beginning and all the way to the end. Thanks to Professor Claude’s
advices and suggestions. Thanks to Dr Waleed for letting me use Leo cluster.
Special Thanks to Nobuyuki - His early framework on behaviour modules is
a perfect start for my work this year. And last but not least, my supervisor,
Dr William Uther, Thanks very much for believing in us, and making us
who we are.

Life is always full of challenges, and I won’t forget those hard working days
with all of you. Thanks.

Enyang HUANG, 1, September, 2006

106

Bibliography

[1] Andrew Owen The 6th Sense I See Red People (As Ball), rUNSWift
Undergraduate Thesis, University of New South Wales, 2006

[2] Oleg Shushkov Robot Localizaion Using a Distributed Multi-Modal
Kalman Filter, and Friends, rUNSWift Undergraduate Thesis, Uni-
versity of New South Wales, 2006

[3] Ryan Cassar Four Legs and A Camera, rUNSWift Undergraduate
Thesis, University of New South Wales, 2006

[4] Alex North, Object Recognition From Sub-Sampled Image Process-
ing, http://www.cse.unsw.edu.au/ robocup/2005site/
reports05/north05-subsampled.pdf, 2005, University of New South
Wales

[5] S.B.Kang and R.S.Weiss, Can We Calibrate a Camera Using an Im-
age of A Flat Textureless Labertian Surface, 2000.

[6] H.Nanda and R.Cutler, Practical Calibrations for a Real-Time Digi-
tal Omnidirectional Camera. Technical report, CVPR 2001 Technical
Sketch, 2001.

[7] Walter Nistic, Thomas Roger Improving Percept Reliability in the
Sony Four-Legged League, Robocup, 2005.

[8] Xu, Jing, 2004 rUNSWift Thesis - Low Level Vision, rUNSWift, 2004.

[9] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein.Introduction to Algorithms, Second Edition. MIT Press
and MaGraw-Hill, 2001. Section 29.3, pp. 790-804.

[10] S. Kirkpatrick and C.D. Gelatt and M.P.Vecchi,Optimization by Sim-
ulatted Annealing, Science, Vol 220, Number 4598, pp 671-680, 1983,
http://citeseer.ist.psu.edu/kirkpatrick83optimization.html

[11] Nobuyuki, Morioka Behaviour Module Design and Implementation,
System Integration, Thesis Report, Univerisity of New South Wales,
2005. http://www.cse.unsw.edu.au/.../thesis nobuyuki.pdf

107

[12] Jared Bunting, Stephan Chalup, Michaela Freeston, Will McMahan,
Rick Middleton, Craig Murch, Michael Quinlan, Christopher Sey-
sener, and Graham Shanks. Return of the NUbots: The 2003 NUbots
Team Report, Technical Report, Newcastle Robotics Laborotory, The
University of Newcastle, 2003.

[13] M.A.Fischler and R.C.Colles (June 1981) Random Sample Consen-
sus: A Paradim for Model Fitting with Applications to Image Anal-
ysis and Automated Cartography, Comm. of the ACM 24: 381–395

[14] Chen FX, Wang RS Fast RANSAC with preview model parameters
evaluation, Jornal of Software, 2005, 16(8): 1431-1437

[15] R.A.FisherThe Goodness of Fit of Regrssion Formulae, and The Dis-
tribution of Regression Coefficients, J.Royal Statist. Soc., 85, 597-
612, 1922.

[16] Wikipedia, 2006 The Generic Ransac Algorithms
http://en.wikipedia.org/wiki/RANSAC, 2006

[17] S. Chen, M. Siu, T. Vogelgesang, T. F. Yik, B. Hengst, S. B. Pham,
C. Sammut. The UNSW RoboCup 2001 Sony Legged League Team.
Technical Report, The University of New South Wales.

[18] Z. Wang, J. Wong, T. Tam, B. Leung, M. S. Kim, J. Brooks, A.
Chang, N. V. Huben. UNSW RoboCup 2002 Sony Legged League
Team. Bachelor Thesis, The University of New South Wales.

[19] J. Chen, E. Chung, R. Edwards, N. Wong. Rise of the AIBOs III -
AIBO Revolutions. Bachelor Thesis, The University of New South
Wales and National ICT Australia.

[20] Thomas Rofer, Tim Laue, Han-Dieter Burhard, Jan Hoffmann,
Matthias Jungel Thoman Rofer, Tim Laue, Hans-Dieter Burkhard,
Jan Hoffmann, Matthias Jungel abd Daniel Gohring, Martin Lotzsch,
Uwe Duffert, Michael Spranger, Benjamin Altmeyer, Vi- viana
Goetzke, Oskar von Stryk, Ronnie Brunn, Marc Dassler, Michael
Kunz, Max Risler, Maximilian Stelzer, Dirk Thomas, Stefan Uhrig,
Uwe Schweigelshohn, Ingo Dahm, Matthias Hebbel, Walter Nis-
tico, Carsten Schumann, and Michael Wachter. GermanTeam 2004.
Technical Report, University at Bremen, Humboldt-University at zu
Berlin, Technische Univer- sity at Darmstadt, University of Dort-
mund, 2004.

[21] Micheal J.Quinlan, Steven P.Nicklin, Kenny Hong, Naomi Hen-
derson, Stephen R.Young, Timothy G.Moore, Robin Fisher, Pha-
vanna Douangboupha, Stephan K.Chalup, Richard H.Middleton and

108

Robert King The 2005 NUbots Team Report, 2005, Univerisity of
Newcastle

[22] J. Shammay. Real-Time Shared Obstacle Probability Grid Mapping
and Avoidance for Mobile Swarms Bachelor Thesis, The University
of New South Wales and National ICT Australia.

[23] Christopher G. Atkson, Andrew W. Moore, ans Stefan Schaal. Lo-
cally Weighted Learning, October 12, 1996.

[24] Mayers, R.H. (1990). Classical and Modern Regression With Appli-
cations. PWS-KENT, Boston, MA.

[25] Press, W.H., Teukoslsky, S.A., Vetterling, W.T., and Flannery,
B.P.(1988). Numerical Recipes in C. Cambridge University Press,
New York, NY.

[26] Gasser,T. and Muller, H.G (1979) Kernal Estimation of Regrssion
Functions., page 23-67. Springer-Verlag, Heidellberg.

[27] Deheuvels,P Estimation Non-parametrique del la Densite Par His-
togrammes Gerneralises. Revue Statistique Applique, 25:5-42

[28] Wand, M, P and Schucany, W.R Gaussian-Based Kernels for Curve
Estimation and Window Width Selection. Canadian Journal of
Statistics, 18:197-204

[29] Wikipedia, 2006 The 3-demensional kd-tree
http://en.wikipedia.org/wiki/Kd-tree, 2006

[30] Bentley, J.L Multidimensional Binary Search Trees Used for Associa-
tive Searching. Communications of the ACM, 18(9):509-517

[31] Friedman, J.H, Bentley, J.L, and Finkel, R.AAn Algorithm for Find-
ing Best Matches in Logarithmic Expected Time. ACM Transactions
on Mathematical Software, 3(3):209-226

[32] Samet, H The Design and Analysis of Spatial Data Structures
Addison-Wesley, Reading, MA.

[33] Sproull, R.F Refinements to Nearest-Neighbor Seaeching in K-D
Trees. Algorithmica, 6:579-589.

[34] Tou, J.T and Gonzalez, R.C Patern Recognition Principles Addison-
Wesley, Reading, MA.

[35] Hayato Kobayashi, Tsugutoyo Osaki, Akira Ishino, Jun Inoue, Naru-
michi Sakai, Satoshi Abe, Shuhei Yanagimachi, Tetsuro Okuyama,
Akihiro Kamiya, Kazuyuki Narisawa, and Ayumi Shinohara Jolly
Pochie Technical Report Robocup 2005, 2005

109

[36] Gilad Buchman, David Cohen, Paul Vernaza, and Daniel D.Lee Uni-
verity of Pennsylvania Robocup 2005 Technical Report, 2005

[37] Schaal, S. and Atkeson, C.G Assessing the Quality of Learned Local
Models. In Cowan et al. (1994), page 160-167

[38] Compton, P., Peters, L., Edwards, G., and Lavers, T.G.Experience
with Ripple-Down Rules, Knowledge-Based System Journal, 2006.

[39] Compton, P. J. and R. Jansen A Philosophical Basis for Knowledge
Acquisition. Knowledge Acquisition 2: 241-257, 1990

[40] Xiaohan Z., Kai X., Xiaohui L., Fei L., Hao Z., Bo R., Xiaoping C.
WrightEagle 2005 Legged Team Report, Technical Report, University
of Science and Technology of China, 2005

[41] Thomas Rofer, Tim Laue, Michael Weber,Hans-Dieter Burkhard,
Matthias Jungel, Daniel Gohring, Jan Hoffmann, Benjamin Alt-
meyer, Thomas Krause, Michael Spranger, Oskar von Stryk, Ronnie
Brunn, Marc Dassler, Michael Kunz, Tobias Oberlies, Max Risler,
Uwe Schwiegelshohn, Matthias Hebbel, Walter Nistico, Stefan Czar-
netzki, Thorsten Kerkhof, Matthias Meyer, Carsten Rohde, Bastian
Schmitz, Michael Wachter, Tobias Wegner, and Christine Zarges Ger-
man Team Robocup 2005, Technical Report, University at Bremen,
Humboldt-University at zu Berlin, Technische University at Darm-
stadt, University of Dortmund, 2005

110

