

SCHOOL OF
COMPUTER SCIENCE AND ENGINEERING

COMP3902: Special Project B

Robocup 2008

Exploration of Nao and its Locomotive Abilities

Aaron Tay (3160660)

2008

Abstract

Does the Nao, the new robot adopted for the Standard Platform League (SPL) in

Robocup, have what it takes to live up to the success of the AIBO dogs? This report

documents the development of the locomotive functions of the Nao as per the 2008

rUNSWift team architecture. After six months of testing and development, the Nao has

demonstrated some promising results. Our results show the Nao is capable of basic

manoeuvrability skills such as walking and turning in sequence.

 2

Table of Contents

Introduction 4

rUNSWift Architecture and Locomotion Module 5

The Hardware behind the Nao 7

Early Works of Nao 9

Nao’s the time for NaoQi 12

Future Work 16

Conclusion 17

References 18

Appendices 19

 3

Introduction

Since its initial launch, Robocup has attracted academics, researchers, and robot

enthusiast from around the world. In 2008, the Standard Platform League (SPL),

traditionally known as the four-legged league with the Sony AIBO dogs, saw the

transition from quadrupedal (four-legged) to bipedal (two-legged) humanoid robots. The

successor for the SPL, developed by French robotics company, Aldebaran Robotics, is

the ‘NAO’.

Although the announcement of the new robot is simple, the transition for developers was

far from it. With change comes great challenges and the new platform meant some key

components from the previous seven years worth of work in the four-legged league

became redundant. Locomotive and behavioural skills suffered the most due to

mechanical and structural differences between the two platforms. Furthermore, as

behavioural skills were so finely tuned to suit the AIBOs and relied on lower level

components such as locomotion, it only served as a reference for the new platform.

Finally, the field was changed, removing localisation beacons leaving only field lines and

two goal posts; similar to a real soccer field.

This report documents the various events from early March up to and including the 2008

Robocup competition in Suzhou, China. Section 2 contains an overview of rUNSWift’s

2008 architecture and the locomotive module. We will then briefly discuss in Section 3,

the hardware specifications of the Nao and any limitations it has. Section 4 will highlight

early ventures and results gained from the transition between simulation and the real

world. Section 5 will outline NaoQi and how rUNSWift adjusted its system to

accommodate for its introduction. Finally, Section 6 offers some suggestions for future

work and offers some general feedback from the 2008 experience.

 4

1. rUNSWift Architecture and the Locomotion Module

Largely due to its success in previous years, the Nao system architecture was initially

based on the system employed by the AIBOs. This involved a multi-layered approach to

modularising key components of the robot. These include Vision, Localisation,

Locomotion and Behaviour. The former three are all low level modules which

communicate directly with hardware and sensors compared to Behaviour which

communicates with the lower level modules in order to achieve its purpose. A break up of

this can be seen in Figure 1.0.

Figure 1.0: rUNSWift Architecture (Collien, D., Huynh, G.)

The Locomotion module was originally responsible for sensing, controlling and

processing joint commands through the communication of a hardware interface library,

ALMotion. Three basic moves were to be developed for the locomotion module: straight

walk, in place turn and side step. These basic movements were sufficient to navigate

around the field, thus allowing the Naos to play a game of soccer.

 5

Throughout the life cycle of the project, the architecture has undergone some changes

since its initial proposal. These were mainly to accommodate for the introduction of

NaoQi (middleware software framework which allows communication between software

and hardware devices), which came supplied with an open loop walk. An open loop walk

means the walk being execute is simply following a set of commands which have been

generated offline or pre-processed. Unlike closed-loop walks, they do not adjust or

accommodate for environmental factors such as external forces. As such, a robot

executing an open loop walk is prone to instability issues and could tumble.

Upon reception of our first robot, it was realised that if the robot fell down from a

standing height, severe damage could be sustained to its hardware due to the poor quality

of the plastic. In order to prevent or reduce the number of falls, a governing layer was

proposed which was responsible for ‘closing the loop’ in the open loop walk. The main

idea of this governing layer (later termed ‘walk governor’, see Figure 1.0) was that it

would analyse data from the Inertial Measurement Unit (IMU) and Force Sensitive

Resistors (FSR) and attempt to bring the robot to a ‘safe’ position if the sensor readings

return values suggesting signs of instability (Li, Takanishi, Kato, 1991). The ‘safe’

position was a crouching stance which reduced the centre of mass, thereby restabilising

the robot.

Data gathered from the IMU and FSR were difficult to interpret due to the high level of

noise present in both devices. A high pass filter was used to counter this however there

were still outliers which could not be interpreted with certainty. Due to the inconsistent

and unreliable data gathered from the two devices, the governing layer’s main purpose

was unable to be fulfilled.

The governing layer thus, eventually became the sole wrapper for the NaoQi walk actions

with the added ability to queue walk sequences. This was necessary as NaoQi, executes

walk commands instantly regardless of whether a previous walk command was issued.

As such, we experienced various moments of twitching due to conflicting joint

commands. Walk commands would be added and executed once a previous command

sequence has been completed or terminated.

 6

2. The Hardware behind the Nao

Although thoroughly detailed in the NaoWare Documentation, there are some areas of

the Nao which need to be addressed. In relation to this report, these are the joints and

lower torso of the robot itself.

Weighing in at just over 4.5kg (with its battery) the Nao is a fairly heavy robot compared

to the AIBOs which weigh around 1.5kg. In addition, the distribution of weight on the

Nao is almost divided evenly between its upper and lower body, with the majority of the

upper body weight in the main torso body. This leads to stability issues as the centre of

mass is placed higher above the ground, thus making it harder to balance. Since the Nao

is used in the SPL, it is up to the developers to take this into account when implementing

balancing algorithms such as an inverted pendulum or dynamic ZMP balancing. Both of

which will be discussed later.

Overall, the Nao has 25 degrees of freedom (see Appendix 1). A degree of freedom is a

place where the robot is able to change the position of a joint. There are 11 degrees of

freedom in the lower torso, including the pelvis. Each leg has five degrees of freedom,

two in the hip (pitch and roll), one in the knee (pitch) and two in the ankles (pitch and

roll). Pitch allows a joint to be moved parallel to the sagittal plane, where as roll is

parallel to the coronal plane. This is shown in Figure 2.0.

Figure 2.0: Pitch (left) and Roll (right) on the Nao

The motor responsible for the pelvis has a unique design which is not seen in

conventionally robots. Unlike traditional robots which have a horizontal plane hip motor

 7

and another vertical plane leg motor the Nao uses an inclined axis rotatory which allows

its legs to move in a similar fashion to humans. The differences are shown in Figure 2.1.

Although this design reduces the number of motors required for the hip (effectively one

as opposed to three), there are performance issues and these affect the walks. However

the walk parameters are able to be adjusted to accommodate for this and is discussed in

Section 5.

Figure 2.1: Differences in hip motors on robots. (David Gouaillier, Vincent Hugel,

Pierre Blazevic, 2008)

Although briefly discussed, the Nao is equipped with an array of sensors including the

Inertial Measurement Unit (IMU), Force Sensitive Resistors (FSR), ultrasound sonar,

microphones and of course, a video camera. The location of these can be seen in

Appendix 2. Unlike the IMU and FSR, the ultrasound is fairly accurate within a specific

range (0.15m to 1.75m). This makes it useful for determining reliably whether there is an

object in front of the robot or not. However, despite various attempts at its usage, the

values retrieved by the ultrasound are always two cycles behind, making it slightly

unreliable when quick decisions are required. This is due to the fact that to test if an

object is in front, an ultrasound signal must be broadcast in one cycle. The receiver is

then queried in the next cycle for the result.

 8

3. Early works of Nao

Before the introduction of NaoQi, the interface between our software and the robot's

motors was via a library provided by Aldebaran. This library was a lightweight API

which gave us near full control on the robot's hardware. Over the 07/08 summer, the

‘Taste of Summer Research’ students, Steven Wong and Thurston Dang, worked on

setting up the system in a robotics simulation program known as Webots (by

Cybernetics). Work was done using this simulator until the actual robots arrived (10

weeks before the competition).

The first task we decided to tackle was a side stepping motion. There were many reasons

for going for this before a walk:

• We only have to work with two dimensions in the Coronal plane. Since the robot

does not move forwards we do not need to consider the Sagittal plane and thus

dimensional complexity is reduced allowing us to use 2D trigonometry.

• Motions can be mirrored easily in both directions as well as reversed if properly

implemented to give us a canned (open loop) side step in either direction.

• Useful skill for players to have when lining up to the ball. If a robot is near a ball,

it will have to align itself around it such that it is facing the correct goal. A

sidestepping technique is therefore necessary to circle it.

Two versions of the side step were produced (see Appendix 3). In the first approach, we

assumed the robot’s knees could not bend. This reduced the number of joints we had to

modify, thereby reducing our complexity. The aim of this approach was to get the robot

to move in one side ways direction without falling. Results showed that a side step

motion is possible but could cause damage to the robot due to the falling nature of the

side step. The second approach was much more successful in terms of speed and stability.

In this approach we allowed the knee joints to be bent. The aim was the same as the first

approach, but capable of moving in either direction easily. Results from this approach

were more promising as moving in opposite directions was as simple as reversing the set

of commands. The falling motion was also eliminated reducing possibly damage to the

robot. It is important to note that both approaches resulted in a canned motion (following

a set of joint commands with no feedback from sensors).

 9

Another area explored using the simulator was the idea of a Proportional Integral-

Derivative Controller (PID controller) in the area of balance control. This was necessary

to develop a system which is capable of adjusting for instability and thus correct the

balance of the robot while standing and in motion. At first, the robot was left standing

and data was extracted from the simulated readings of the IMU and FSRs. Noise was

averaged out via a high pass filter to remove outliners and then averages taken which was

used as our desired values. The robot was then made to stand again but this time an

external force was exerted upon it which was an attempt to push it off balance. The

difference (error) in the reading between the desired and after the exerted force was used

in Formula 1 to calculate the amount of error which existed. Results showed that the

Integral component was overcompensating and thus increased the error, as such, it was

removed.

output = Kp(Pdesired – Perror) + Kd(Ddesired – Derror) + KI(Idesired – Ierror)
Formula 1: PID formula. KI was set to 0 to eliminate it from the equation

P = joint angles. D is the derivative of joint angles over some time step (5 cycles). K is a constant

Using this error, leg joints were adjusted appropriately to reduce this error which usually

involved trying to straighten the upper body by rolling or tilting joints in a direction

opposite to the force being exerted.

The above approach, if successfully completed, could have been used to treat the robot as

an inverted pendulum and create stable walks. The idea behind an inverted pendulum is

that the upper body must be kept at a certain position (relative to the ground). The lower

body is then responsible for maintaining this, by leg joint angle adjustments. The distance

from the desired position and the current position would be the error used in the PID

controller, and solving this problem can be likened to pole balancing experiments.

Although the simulator provided us with a means of testing our design decisions, results

gains would not translate to the real world. This was due to various reasons:

• There was no friction in the simulator, for example, if the ball was kicked, it

would roll and bounce indefinitely.

• The weight distribution of the robot was rather unrealistic given the actual data

sheet of the robot's distributions. This lead to calculations for the PID controllers

being inaccurate and unreliable.

 10

• The robot's motors have an infinite amount of power, and given the appropriate

time, could move the robot to any position. This meant that a knee motor could

support the entire weight of the robot, when in reality we know this could never

happen. A perfect example is the get up routine which works in the simulator, but

could not work on an actual robot.

Subsequent versions of the simulator addressed and seemed to solve these problems,

however we did not pursue further into the use of the simulation as the amount of time

required to readjust our system to work on the simulator and the actual robot would far

outweigh its potential benefits, given the tight time constraints.

 11

4. Nao’s the Time for NaoQi

NaoQi is proprietary software designed by Aldebaran Robotics and “is the kernel of

Nao's intelligence” as it provides the interface between software and hardware features of

the Nao and replaced the previous library interface. It allows computers in a network to

either execute programs locally or remotely on the Nao. From a locomotive point of view,

NaoQi had many features such as calculating joint angles, their location in 3D space,

balancing as well as an open-loop walk. As such, an investigative study was undertaken

to explore the limits of these locomotive abilities.

Aldebaran’s Open Loop Walk

Aldebaran was rather generous by providing us with a walk which was relatively easy to

tune and optimise. Provided were 4 types of walking actions; walking straight, turning on

the spot, side stepping and walking around a circle (arc walk). A combination of these

actions sufficed for playing a game of soccer at this year’s competition, but we believe

for future competitions these will not be enough.

Sequence for straight walk Sequence for in place turn

Sequence for sideways walk Sequence for arc walk

Figure 4.0: NaoWare documentation

 12

Figure 4.0 shows the different sequences of steps each walk executes, as well as some of

the information regarding the parameters used. The use of parameters in the walks is

rather important as they affect how the walks are executed. For example, a walk with a

higher centre of mass will have a larger stride (step) length, but may be more unstable.

However, a walk with a lower centre of mass is able to walk faster but take smaller steps

because it is more stable. Various tests were carried out and the results of each parameter

on each walk can be seen in Appendix 4. It is worth noting that some of the results

obtained from the tests were based on intuition more than concrete empirical results.

Tuning of the walk

The initial walk provided by Aldebaran was not fast enough to live up to the rUNSWift

name. As such optimisation on the parameters was necessary. Although a machine

learning or downhill simplex approach would have sufficed for optimisation, time

constraints prevented us from automating this process. As such, all tuning was performed

manually by Gary Huynh and Aaron Tay.

Initially, walk parameters were hard coded into the code base of the system. This meant

that a recompile was required each time a parameter was changed. From a time

consumption point of view, this could take up to two minutes per change which, adds up

very quickly leading to inefficient use of the robot as behaviour or vision testing needed

to be done as well. In order to reduce this time, we developed an external file,

‘walk.config’, which was placed in the root directory of the Nao. This file contained all

the walk parameters in a particular order. When our module was executed, it would read

the values from the file and use those for all the walks in that instance. Reloading of a

module takes at most five seconds. This reduction in time allowed us to manually tune at

a quicker pace. The typical layout of the walk configuration file can be seen in Figure 4.1.

The structure of the file was simple and was based on the order in which parameters are

required in the two main configuration functions. The first number refers to the number

of cyclesPerStep. Adjusting this affects the speed of the robot’s walk. The next six values

are parameters for the setWalkConfig() function and are used to adjust the individual

stepping features from forward and side length to speed and turn angle. Finally, the last

 13

four values are for the setWalkExtraConfig() function which allow us to affect the upper

body during the walk including the height from the ground as well as side and forward

swaying motions.

Figure 4.1: Typical layout of walk configuration file.

The approach we used to tune the parameters had a similar resemblance to a hill-climbing

algorithm and this method comes naturally to humans. We would change the value of one

parameter and see how that affects the walk. If the walk is more stable and faster (to

some extent) then this set of parameters would be used in the next iteration. Sometimes

the same parameter was changed multiple times to see how various values affect the walk

given the other set of parameters as this allowed us to determine the dependencies as

specified in Appendix 4.

Once we believed a decent set of parameters was found, tests were performed to compare

the differences between our hand tuned parameters and Aldebaran’s supplied parameters.

Appendix 5 shows a summary of results from a series of straight time trial tests. The

parameters for the relevant walks are also detailed in the test results. Figure 4.2 shows the

area on which the tests were conducted. All tests were conducted on our star playing Nao

dubbed ‘Owen’. Overall, the results were promising as our tuned walks were about 20%

faster than Aldebaran’s walks. It is important to note that due to the hand crafted nature

of the robots, there are subtle differences between them which leads to the same set of

parameters not necessarily working for all robots. As such, each robot must be tuned

individually. Although both walks displayed deviations from a straight line walk, our

 14

walk was more predictable than Aldebaran’s. Finally, compared to Aldebaran and other

teams such as the Newcastle Numanoids (2008 world champions), we believed a lower

centre of mass provided more stability and less deviation from a straight path. When

compared side by side, the height of the robot is noticeably different as can be seen in

Figure 4.3.

Figure 4.2: Field with Nao. The Nao was made to walk straight on the red line. The

width of the field is 4.0m

Figure 4.3: Walk with higher centre of mass (left) versus lower centre of mass (right)

 15

5. Future work

If time allowed, there are many areas which need exploration. The first and foremost

involves the communication with hardware devices directly. The Vision module already

communicates directly with the video camera as the original driver has compatibility

issues. If the Locomotion module was able to communicate with motors directly, the use

of NaoQi would be eliminated and as such we would not be restricted nor have to rely on

using it. Direct communication would also allow us to create more flexible walks which

are able to be merged or changed dynamically. However, by directly communicating with

the motors, there is a higher chance for hardware failures as everything we do will need

to be double checked to ensure damage to the motors is kept to a minimum.

In the field of walks, my first proposal and initial idea of a side step would be to develop

one which is capable of circling around a point. This approach would have a circle with

centre, P where; Px= distance from robot centre, Py = 0. The robot would then side step

around this point in a circle with radius Px. Thus, as Px approaches ∞, the more straight

the side step as each step corresponds to some arc segment along the circle. Similarly, as

Px approaches 0 the more circular the side step becomes. It is also worth noting that for Px

< 0 the same occurs except that the robot should circle the point facing outwards. This

approach would enable the Nao to circle the ball, goal or even other robots in a manner

similar to the AiBO sGetBehindBall() behaviour in the previous rUNSWift architecture.

Secondly, a walk which is able to be changed midway is necessary if we want to have a

flexible soccer player. This could be achieved by following another approach used in the

AIBOs. We would have a cache which holds the next set of actions to be carried out. If

the robot has at least one foot on the ground and the other in a ‘safe’ position, then and

only then should it be able to stop its current walk action and execute the action stored in

the cache. The reason for the need for this safe position is that it allows the robot to make

at least one step (thereby movement) between actions as well as prevent it from falling

over due to frequent changing of actions.

 16

6. Conclusion

Overall we can see that the Nao does have potential to succeed the AIBOs to the throne

as the new platform for the SPL. However, there are some issues which need to be

addressed in order for Nao to become widely accepted. These are mainly to do with

design and hardware issues of the Nao.

We have seen that the weight distribution of the Nao is rather poor and does not lend

itself easily with regard to stability. If some of the weight from the upper body was

moved to the lower body, this might solve some of the stated problem, however even

stronger motors would be required to handle a heavier load. The twist hip motor is

another area which needs to be addressed.

Our robots, ‘Owen’ in particular, have shown that the Naos are capable of decent

manoeuvres in terms of speed and stability. As such, there is potential for the competition

to mature (speed-wise) into matches of similar standard to the humanoid league.

From a developer’s perspective, NaoQi, although provided some useful features, is not

practical for Robocup soccer. This is due to its inflexibility of the walk which is provided.

If the walks could be changed or even merged in sequence with each other we might have

adopted and continued to use the system. But because of the static nature of the

sequencing of walks, it seems that parts of NaoQi, in particular the walking motions, are

on their way to the scrap yard.

Once the above issues have been addressed in future revisions, only then can the Nao

have hope in succeeding the AIBO, as the next generation platform for the Standard

Platform League.

 17

Bibliography (background reading)

• Jacky Baltes and Sara McGrath and John Anderson, 2004, “Active Balancing Using

Gyroscopes for a Small, Humanoid Robot”, 2nd International Conference on

Autonomous Robots and Agents, December 13-15, pg 470-475

• Sven Behnke, Jörg Stückler, Michael Schreiber, Hannes Schulz, Martin B¨ohnert, and

Konrad Meier, 2007, “Hierarchical Reactive Control for a Team of Humanoid Soccer

Robots”, Computer Science Institute University of Freiburg, Germany, pg 635-642

• Stefano Carpin and Enrico Pagello, 2006, “The challenge of motion planning for

humanoid robots playing soccer”, Proceedings of the Workshop on Humanoid Soccer

Robots of the 2006 IEEE-RAS International Conference on Humanoid Robots

• David Gouaillier, Vincent Hugel, Pierre Blazevic Chris Kilner, J´erôme Monceaux,

Pascal Lafourcade, Brice Marnier, Julien Serre, Bruno Maisonnier, 2008, “The NAO

Humanoid: a combination of performance and affordability”, arXiv.org

(arXiv:0807.3223v1 [cs.RO]), Cornell University Library

• Qinghua Li, Atsuo Takanishi and Ichiro Kato, 1991, “A Biped Walking Robot Having

A ZMP Measurement System Using Universal Force-Moment Sensors”, IEEE

• Elliot Nicholls, 1998, “Bipedal Dynamic Walking in Robotics”, The University of

Western Australia, Department of Electrical and Electronic Engineering, PhD Thesis

• Yu Okumura, Tetsuo Tawara, Ken Endo, Tkayuki Furuta and Masaharu Shimizu,

2003, “Realtime ZMP Compensation for Biped Walking Robot using Adaptive Inertia

Force Control”, IEEE October 2003

• Tak Fai Yik, 2007, “Locomotion of Bipedal Humanoid Robots: Planning and

Learning to Walk”, The University of New South Wales, School of Computer Science

and Engineering, PhD Thesis

• Special thanks to everyone on the 2008 rUNSWift team

 18

• Appendix 1

Joint Limits as per NaoWare Documentation

Location of joints on the Nao as per NaoWare Documentation

 19

Appendix 2

Location of various key parts on the Nao.
(1) Video camera
(2) Ultrasound sensor (black dots)
(3) Force Sensitive Resistors (inside feet)
(4) Microphone
(5) Inertial Unit (inside body)

 20

Appendix 3a

Task:
Develop a canned motion for the robot which moves sideways in one direction whilst
maintaining balance

Terminology:
Inwards: towards the centre of the robot
Outwards: leaving the robot’s body

Movement Sequence:

1. Roll left ankle and hips outwards until the right leg is raised off the ground. This
effectively shifts the centre of mass onto the left leg.

2. Roll right hip outwards until the right leg is almost parallel to the ground. Roll the
right ankle at the same rate inwards so it remains parallel to the ground.

3. Roll left ankle and hips inwards until the right leg makes contact with the ground.
4. Roll right hip and ankles back to zero positions
5. Roll left hip and ankles back to zero positions

Results:

• Robot was able to successfully move in one direction whilst maintaining balance.
The resulting actions were neither fluid nor natural (from a human perspective).

• The side step motion abused the simulator’s lack of friction and dragged the foot
across the ground when returning to the neutral position.

• When the mobile foot came in contact with the ground the robot was ‘falling’
onto it. If such a motion were carried out under real conditions the leg could
sustain damage or lose balance due to the falling motion.

Discussion:

• When the side step motion was executed in reverse order, the robot would fall
over. However, changing the joint angle to suit the opposite direction would solve
this problem.

Findings:
Simulator has very poor friction simulation.
In order to keep the upper body upright, the ankle roll and hip rolls must be kept equal to
each other.

 21

Appendix 3 cont…

Task:
Develop a canned motion for the robot which moves sideways in both directions whilst
maintaining balance. Both directions refer to, using the same set of commands in reverse
in order to achieve the same motion just in the opposite direction.

Movement Sequence:

1. Roll hips and ankles to the left until the centre of the upper body is over the left
foot.

2. Bending the left knee, move the right leg to the outwards (to the right) until it
touches the ground, keeping the right ankle parallel to the ground at all times.

3. Set the joints of the right leg to the joints of the left leg and vice versa. This
effectively shifts the centre of mass to the other leg whilst keeping the sequence
of actions symmetrical.

4. Do the reverse of 1 but with the legs swapped.

Results:

• The robot was able to successfully move sideways in both directions. Use of the
knee joint enabled more fluid movement which resulted in a more natural motion.

• The speed of the transition between support legs was slightly fast and this may
have adverse effects on the actual robot.

• There was a slight angle in the sideways motion to the right. The deviation was
only noticeable if the robot was made to side step the entire length of the field.
Deviation was around 10 degrees forwards.

• By reversing the order of commands, the robot was able to return to its initial
position suggesting that the sideways motion is perfectly symmetrical.

Findings:

• In order to keep the ankles parallel to the ground, hip roll and ankle roll must be
equal. Furthermore, hip pitch + ankle pitch must equal knee pitch.

• Keeping the ankle parallel to the ground at all times meant that as soon as it made
contact with the ground it would be flat and therefore more stable.

 22

Appendix 4 – Parameter Effects on Various Walks

Parameter Effect on Straight Walk
distance Distance to walk. Positive is forwards. Negative is backwards
stepsPerCycle How long each step takes. 18 is the best minimum value found. Use 30 if walk is

unstable, this will slow down the motions.
maxStepLength How far forward the robot moves with each step.
maxStepHeight How high each step can be. If stepLength is further, the step height must be high enough

to allow for the step. Low step height reduces angle deviation.
maxStepSide No effect, leave as 0.0
maxStepTurn No effect, leave as 0.0
zmpOffsetX How far forwards the robot is allowed to lean. Large values lead to instability
zmpOffsetY How far to the sides is the robot allowed to lean. Large values lead to instability
LHipRollBacklash No noticeable effect, use default 4.5
RHipRollBacklash No noticeable effect, use default -4.5
hipHeight Raises/lowers centre of gravity. Lower height leads to more stable walks. High heights

allow for larger forward stepLengths.
torsoYOrientation Affects lean on X-axis (contrary to documentation). Large values can lead to instability.

Parameter Effect on in place Turn

angle Angle to turn the robot. Angle is in RADIANS. Angles based on the trigonometric angle
circle (i.e. positive is anti-clockwise)

stepsPerCycle How long each step takes. 22 is the best minimum. Lower values lead to inaccurate
turning

maxStepLength No effect, leave as 0.0
maxStepHeight How high each step can be. Should be proportional to stepTurn
maxStepSide No effect, leave as 0.0
maxStepTurn How many degrees each step changes the orientation of the robot. RADIANS. Use

numbers which are proportional to π
zmpOffsetX Affects forward lean. Large values lead to instability. Keep below 0.25
zmpOffsetY Affects sideward lean. Large values may lead to faster turn. Keep below 0.25
LHipRollBacklash Affects leftward (anti-clockwise) turning. Larger values give bigger turns. Reduces

rightward turns. Usually less than rHipRollBacklash due to motor differences.
RHipRollBacklash As above except for rightward turns. Reduces leftward turns.
hipHeight Same as straight walk except for larger stepTurn
torsoYOrientation No noticeable effect, use default 5.0

Parameter Effect on Sideways Walk

distance Distance to walk. Positive is to the right. Negative to the left
stepsPerCycle How long each step takes. 20 is the best minimum.
maxStepLength No effect, leave as 0.0
maxStepHeight Same as straight walk, except for stepSide. Lower step heights reduce angle deviation
maxStepSide How far to the side the robot moves with each step.
maxStepTurn No effect, leave as 0.0
zmpOffsetX No noticeable effect, use default 0.20
zmpOffsetY Affects sideward lean. Large values may lead to faster sidesteps, but more instability.
LHipRollBacklash Affects RIGHTward momentum. Higher values give faster movements to the right.
RHipRollBacklash As above except for LEFTward momentum.
hipHeight Same as straight walk except for larger stepSide
torsoYOrientation No noticeable effect, use default 5.0

 23

Appendix 5 – Straight Walk Time Trial Results

Results from various walks

 Distance Travelled (m)
Walk Type 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
rUNSWift
Tuned

5.7s
0°

10.7s
5°

15.4s
10°

19.3s
15°

24.3s
21°

29.7s
24°

36.1s
30°

40.7s
33°

Aldebaran
v1.0

7.9s
4°

 (1) (1) (1) (1) (1) (1) (1)

Aldebaran
v1.0 (slower)

9.0s
5°

17.1s
9°

24.0s
20°

31.5s
5°

40.0s
10°

47.0s
-10°

54.3s
- (2)

 (1)

Aldebaran
v2.0

7.1s
2°

13.5s
-6°

19.1s
15°

25.9s
5°

31.5s
2.3°

37.7s
30°

43.3s
15°

 (1)

Notes:
Results based on an average of 10 trials per successful walk.
Aldebaran v1.0 (slower) uses the same parameters except the cyclesPerStep parameter
was set to 30 as opposed to the original 25.

(1) Robot fell almost immediately and thus results could not be obtained
(2) Robot fell but after walking a certain distance.

Results in the table represent how long the robot took to travel the distance and how
much from the centre straight line the walk deviate from. Times are in seconds,
Deviations are in degrees. Positive deviations means the robot deviated towards the right,
and negative towards the left.

Walk parameters - ordered as per section 4

rUNSWift tuned parameters ‘Owen Config’
20 0.04 0.010 0.0 0.0 0.018 0.02 4.5 -4.5 0.17 5.0
25 0.0 0.012 0.0 0.314 0.02 0.018 0.9 -1.0 0.17 5.0
20 0.0 0.012 0.06 0.0 0.02 0.018 4.5 -4.5 0.17 5.0
18 0.04 0.010 0.04 0.015 0.015 0.025 5.5 -5.5 0.17 5.0

Aldebaran Version 1.0 Walk (Initial release)
25 0.04 0.015 0.04 0.3 0.015 0.025 4.5 -4.5 0.19 5.0
25 0.00 0.012 0.00 0.314 0.02 0.01 4.5 -4.5 0.19 5.0
25 0.00 0.015 0.05 0.0 0.02 0.018 4.5 -4.5 0.19 5.0
25 0.04 0.015 0.04 0.015 0.015 0.025 4.5 -4.5 0.19 5.0

Aldebaran Version 2.0 Walk (Improved)
25 0.04 0.015 0.04 0.3 0.015 0.025 4.5 -4.5 0.19 5.0
25 0.00 0.012 0.00 0.314 0.02 0.01 4.5 -4.5 0.19 5.0
25 0.00 0.015 0.05 0.0 0.02 0.018 4.5 -4.5 0.19 5.0
25 0.04 0.015 0.04 0.015 0.015 0.025 4.5 -4.5 0.19 5.0

 24

