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Abstract 
 

Does the Nao, the new robot adopted for the Standard Platform League (SPL) in 

Robocup, have what it takes to live up to the success of the AIBO dogs? This report 

documents the development of the locomotive functions of the Nao as per the 2008 

rUNSWift team architecture. After six months of testing and development, the Nao has 

demonstrated some promising results. Our results show the Nao is capable of basic 

manoeuvrability skills such as walking and turning in sequence.  
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Introduction 
 

Since its initial launch, Robocup has attracted academics, researchers, and robot 

enthusiast from around the world. In 2008, the Standard Platform League (SPL), 

traditionally known as the four-legged league with the Sony AIBO dogs, saw the 

transition from quadrupedal (four-legged) to bipedal (two-legged) humanoid robots. The 

successor for the SPL, developed by French robotics company, Aldebaran Robotics, is 

the ‘NAO’. 

 

Although the announcement of the new robot is simple, the transition for developers was 

far from it. With change comes great challenges and the new platform meant some key 

components from the previous seven years worth of work in the four-legged league 

became redundant. Locomotive and behavioural skills suffered the most due to 

mechanical and structural differences between the two platforms. Furthermore, as 

behavioural skills were so finely tuned to suit the AIBOs and relied on lower level 

components such as locomotion, it only served as a reference for the new platform. 

Finally, the field was changed, removing localisation beacons leaving only field lines and 

two goal posts; similar to a real soccer field. 

 

This report documents the various events from early March up to and including the 2008 

Robocup competition in Suzhou, China. Section 2 contains an overview of rUNSWift’s 

2008 architecture and the locomotive module. We will then briefly discuss in Section 3, 

the hardware specifications of the Nao and any limitations it has. Section 4 will highlight 

early ventures and results gained from the transition between simulation and the real 

world. Section 5 will outline NaoQi and how rUNSWift adjusted its system to 

accommodate for its introduction. Finally, Section 6 offers some suggestions for future 

work and offers some general feedback from the 2008 experience. 
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1. rUNSWift Architecture and the Locomotion Module 

 

Largely due to its success in previous years, the Nao system architecture was initially 

based on the system employed by the AIBOs. This involved a multi-layered approach to 

modularising key components of the robot. These include Vision, Localisation, 

Locomotion and Behaviour. The former three are all low level modules which 

communicate directly with hardware and sensors compared to Behaviour which 

communicates with the lower level modules in order to achieve its purpose. A break up of 

this can be seen in Figure 1.0. 

 

 
Figure 1.0: rUNSWift Architecture (Collien, D., Huynh, G.) 

 

The Locomotion module was originally responsible for sensing, controlling and 

processing joint commands through the communication of a hardware interface library, 

ALMotion. Three basic moves were to be developed for the locomotion module: straight 

walk, in place turn and side step. These basic movements were sufficient to navigate 

around the field, thus allowing the Naos to play a game of soccer. 
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Throughout the life cycle of the project, the architecture has undergone some changes 

since its initial proposal. These were mainly to accommodate for the introduction of 

NaoQi (middleware software framework which allows communication between software 

and hardware devices), which came supplied with an open loop walk. An open loop walk 

means the walk being execute is simply following a set of commands which have been 

generated offline or pre-processed. Unlike closed-loop walks, they do not adjust or 

accommodate for environmental factors such as external forces. As such, a robot 

executing an open loop walk is prone to instability issues and could tumble. 

 

Upon reception of our first robot, it was realised that if the robot fell down from a 

standing height, severe damage could be sustained to its hardware due to the poor quality 

of the plastic. In order to prevent or reduce the number of falls, a governing layer was 

proposed which was responsible for ‘closing the loop’ in the open loop walk. The main 

idea of this governing layer (later termed ‘walk governor’, see Figure 1.0) was that it 

would analyse data from the Inertial Measurement Unit (IMU) and Force Sensitive 

Resistors (FSR) and attempt to bring the robot to a ‘safe’ position if the sensor readings 

return values suggesting signs of instability (Li, Takanishi, Kato, 1991). The ‘safe’ 

position was a crouching stance which reduced the centre of mass, thereby restabilising 

the robot.  

 

Data gathered from the IMU and FSR were difficult to interpret due to the high level of 

noise present in both devices. A high pass filter was used to counter this however there 

were still outliers which could not be interpreted with certainty. Due to the inconsistent 

and unreliable data gathered from the two devices, the governing layer’s main purpose 

was unable to be fulfilled.  

 

The governing layer thus, eventually became the sole wrapper for the NaoQi walk actions 

with the added ability to queue walk sequences. This was necessary as NaoQi, executes 

walk commands instantly regardless of whether a previous walk command was issued. 

As such, we experienced various moments of twitching due to conflicting joint 

commands. Walk commands would be added and executed once a previous command 

sequence has been completed or terminated.  
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2. The Hardware behind the Nao 

 

Although thoroughly detailed in the NaoWare Documentation, there are some areas of 

the Nao which need to be addressed. In relation to this report, these are the joints and 

lower torso of the robot itself.  

 

Weighing in at just over 4.5kg (with its battery) the Nao is a fairly heavy robot compared 

to the AIBOs which weigh around 1.5kg. In addition, the distribution of weight on the 

Nao is almost divided evenly between its upper and lower body, with the majority of the 

upper body weight in the main torso body. This leads to stability issues as the centre of 

mass is placed higher above the ground, thus making it harder to balance. Since the Nao 

is used in the SPL, it is up to the developers to take this into account when implementing 

balancing algorithms such as an inverted pendulum or dynamic ZMP balancing. Both of 

which will be discussed later. 

 

Overall, the Nao has 25 degrees of freedom (see Appendix 1). A degree of freedom is a 

place where the robot is able to change the position of a joint. There are 11 degrees of 

freedom in the lower torso, including the pelvis. Each leg has five degrees of freedom, 

two in the hip (pitch and roll), one in the knee (pitch) and two in the ankles (pitch and 

roll). Pitch allows a joint to be moved parallel to the sagittal plane, where as roll is 

parallel to the coronal plane. This is shown in Figure 2.0. 

 

  
Figure 2.0: Pitch (left) and Roll (right) on the Nao 

The motor responsible for the pelvis has a unique design which is not seen in 

conventionally robots. Unlike traditional robots which have a horizontal plane hip motor 
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and another vertical plane leg motor the Nao uses an inclined axis rotatory which allows 

its legs to move in a similar fashion to humans. The differences are shown in Figure 2.1. 

Although this design reduces the number of motors required for the hip (effectively one 

as opposed to three), there are performance issues and these affect the walks. However 

the walk parameters are able to be adjusted to accommodate for this and is discussed in 

Section 5.  

 

 
Figure 2.1: Differences in hip motors on robots. (David Gouaillier, Vincent Hugel, 

Pierre Blazevic, 2008) 
 

Although briefly discussed, the Nao is equipped with an array of sensors including the 

Inertial Measurement Unit (IMU), Force Sensitive Resistors (FSR), ultrasound sonar, 

microphones and of course, a video camera. The location of these can be seen in 

Appendix 2. Unlike the IMU and FSR, the ultrasound is fairly accurate within a specific 

range (0.15m to 1.75m). This makes it useful for determining reliably whether there is an 

object in front of the robot or not. However, despite various attempts at its usage, the 

values retrieved by the ultrasound are always two cycles behind, making it slightly 

unreliable when quick decisions are required. This is due to the fact that to test if an 

object is in front, an ultrasound signal must be broadcast in one cycle. The receiver is 

then queried in the next cycle for the result.  
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3. Early works of Nao 

 

Before the introduction of NaoQi, the interface between our software and the robot's 

motors was via a library provided by Aldebaran. This library was a lightweight API 

which gave us near full control on the robot's hardware. Over the 07/08 summer, the 

‘Taste of Summer Research’ students, Steven Wong and Thurston Dang, worked on 

setting up the system in a robotics simulation program known as Webots (by 

Cybernetics). Work was done using this simulator until the actual robots arrived (10 

weeks before the competition).  

 

The first task we decided to tackle was a side stepping motion. There were many reasons 

for going for this before a walk: 

• We only have to work with two dimensions in the Coronal plane. Since the robot 

does not move forwards we do not need to consider the Sagittal plane and thus 

dimensional complexity is reduced allowing us to use 2D trigonometry. 

• Motions can be mirrored easily in both directions as well as reversed if properly 

implemented to give us a canned (open loop) side step in either direction. 

• Useful skill for players to have when lining up to the ball. If a robot is near a ball, 

it will have to align itself around it such that it is facing the correct goal. A 

sidestepping technique is therefore necessary to circle it. 

 

Two versions of the side step were produced (see Appendix 3). In the first approach, we 

assumed the robot’s knees could not bend. This reduced the number of joints we had to 

modify, thereby reducing our complexity. The aim of this approach was to get the robot 

to move in one side ways direction without falling. Results showed that a side step 

motion is possible but could cause damage to the robot due to the falling nature of the 

side step. The second approach was much more successful in terms of speed and stability. 

In this approach we allowed the knee joints to be bent. The aim was the same as the first 

approach, but capable of moving in either direction easily. Results from this approach 

were more promising as moving in opposite directions was as simple as reversing the set 

of commands. The falling motion was also eliminated reducing possibly damage to the 

robot. It is important to note that both approaches resulted in a canned motion (following 

a set of joint commands with no feedback from sensors). 
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Another area explored using the simulator was the idea of a Proportional Integral-

Derivative Controller (PID controller) in the area of balance control. This was necessary 

to develop a system which is capable of adjusting for instability and thus correct the 

balance of the robot while standing and in motion. At first, the robot was left standing 

and data was extracted from the simulated readings of the IMU and FSRs. Noise was 

averaged out via a high pass filter to remove outliners and then averages taken which was 

used as our desired values. The robot was then made to stand again but this time an 

external force was exerted upon it which was an attempt to push it off balance. The 

difference (error) in the reading between the desired and after the exerted force was used 

in Formula 1 to calculate the amount of error which existed. Results showed that the 

Integral component was overcompensating and thus increased the error, as such, it was 

removed.  

 

output = Kp(Pdesired – Perror) + Kd(Ddesired – Derror) + KI(Idesired – Ierror) 
Formula 1: PID formula. KI was set to 0 to eliminate it from the equation 

P = joint angles. D is the derivative of joint angles over some time step (5 cycles). K is a constant 

 

Using this error, leg joints were adjusted appropriately to reduce this error which usually 

involved trying to straighten the upper body by rolling or tilting joints in a direction 

opposite to the force being exerted.  

 

The above approach, if successfully completed, could have been used to treat the robot as 

an inverted pendulum and create stable walks. The idea behind an inverted pendulum is 

that the upper body must be kept at a certain position (relative to the ground). The lower 

body is then responsible for maintaining this, by leg joint angle adjustments. The distance 

from the desired position and the current position would be the error used in the PID 

controller, and solving this problem can be likened to pole balancing experiments. 

 

Although the simulator provided us with a means of testing our design decisions, results 

gains would not translate to the real world. This was due to various reasons: 

• There was no friction in the simulator, for example, if the ball was kicked, it 

would roll and bounce indefinitely. 

• The weight distribution of the robot was rather unrealistic given the actual data 

sheet of the robot's distributions. This lead to calculations for the PID controllers 

being inaccurate and unreliable. 
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• The robot's motors have an infinite amount of power, and given the appropriate 

time, could move the robot to any position. This meant that a knee motor could 

support the entire weight of the robot, when in reality we know this could never 

happen. A perfect example is the get up routine which works in the simulator, but 

could not work on an actual robot. 

Subsequent versions of the simulator addressed and seemed to solve these problems, 

however we did not pursue further into the use of the simulation as the amount of time 

required to readjust our system to work on the simulator and the actual robot would far 

outweigh its potential benefits, given the tight time constraints.
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4. Nao’s the Time for NaoQi 
 

NaoQi is proprietary software designed by Aldebaran Robotics and “is the kernel of 

Nao's intelligence” as it provides the interface between software and hardware features of 

the Nao and replaced the previous library interface. It allows computers in a network to 

either execute programs locally or remotely on the Nao. From a locomotive point of view, 

NaoQi had many features such as calculating joint angles, their location in 3D space, 

balancing as well as an open-loop walk. As such, an investigative study was undertaken 

to explore the limits of these locomotive abilities. 

 

Aldebaran’s Open Loop Walk 

 

Aldebaran was rather generous by providing us with a walk which was relatively easy to 

tune and optimise. Provided were 4 types of walking actions; walking straight, turning on 

the spot, side stepping and walking around a circle (arc walk). A combination of these 

actions sufficed for playing a game of soccer at this year’s competition, but we believe 

for future competitions these will not be enough. 

 

  
Sequence for straight walk Sequence for in place turn 

 

Sequence for sideways walk Sequence for arc walk 

Figure 4.0: NaoWare documentation 
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Figure 4.0 shows the different sequences of steps each walk executes, as well as some of 

the information regarding the parameters used. The use of parameters in the walks is 

rather important as they affect how the walks are executed. For example, a walk with a 

higher centre of mass will have a larger stride (step) length, but may be more unstable. 

However, a walk with a lower centre of mass is able to walk faster but take smaller steps 

because it is more stable. Various tests were carried out and the results of each parameter 

on each walk can be seen in Appendix 4. It is worth noting that some of the results 

obtained from the tests were based on intuition more than concrete empirical results. 

 

Tuning of the walk 

 

The initial walk provided by Aldebaran was not fast enough to live up to the rUNSWift 

name. As such optimisation on the parameters was necessary. Although a machine 

learning or downhill simplex approach would have sufficed for optimisation, time 

constraints prevented us from automating this process. As such, all tuning was performed 

manually by Gary Huynh and Aaron Tay. 

 

Initially, walk parameters were hard coded into the code base of the system. This meant 

that a recompile was required each time a parameter was changed. From a time 

consumption point of view, this could take up to two minutes per change which, adds up 

very quickly leading to inefficient use of the robot as behaviour or vision testing needed 

to be done as well. In order to reduce this time, we developed an external file, 

‘walk.config’, which was placed in the root directory of the Nao. This file contained all 

the walk parameters in a particular order. When our module was executed, it would read 

the values from the file and use those for all the walks in that instance. Reloading of a 

module takes at most five seconds. This reduction in time allowed us to manually tune at 

a quicker pace. The typical layout of the walk configuration file can be seen in Figure 4.1. 

 

The structure of the file was simple and was based on the order in which parameters are 

required in the two main configuration functions. The first number refers to the number 

of cyclesPerStep. Adjusting this affects the speed of the robot’s walk. The next six values 

are parameters for the setWalkConfig() function and are used to adjust the individual 

stepping features from forward and side length to speed and turn angle. Finally, the last 
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four values are for the setWalkExtraConfig() function which allow us to affect the upper 

body during the walk including the height from the ground as well as side and forward 

swaying motions. 

Figure 4.1: Typical layout of walk configuration file. 
 

The approach we used to tune the parameters had a similar resemblance to a hill-climbing 

algorithm and this method comes naturally to humans. We would change the value of one 

parameter and see how that affects the walk. If the walk is more stable and faster (to 

some extent) then this set of parameters would be used in the next iteration. Sometimes 

the same parameter was changed multiple times to see how various values affect the walk 

given the other set of parameters as this allowed us to determine the dependencies as 

specified in Appendix 4.  

 

Once we believed a decent set of parameters was found, tests were performed to compare 

the differences between our hand tuned parameters and Aldebaran’s supplied parameters. 

Appendix 5 shows a summary of results from a series of straight time trial tests. The 

parameters for the relevant walks are also detailed in the test results. Figure 4.2 shows the 

area on which the tests were conducted. All tests were conducted on our star playing Nao 

dubbed ‘Owen’. Overall, the results were promising as our tuned walks were about 20% 

faster than Aldebaran’s walks. It is important to note that due to the hand crafted nature 

of the robots, there are subtle differences between them which leads to the same set of 

parameters not necessarily working for all robots. As such, each robot must be tuned 

individually. Although both walks displayed deviations from a straight line walk, our 
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walk was more predictable than Aldebaran’s. Finally, compared to Aldebaran and other 

teams such as the Newcastle Numanoids (2008 world champions), we believed a lower 

centre of mass provided more stability and less deviation from a straight path. When 

compared side by side, the height of the robot is noticeably different as can be seen in 

Figure 4.3. 

 

Figure 4.2: Field with Nao. The Nao was made to walk straight on the red line. The 

width of the field is 4.0m 

Figure 4.3: Walk with higher centre of mass (left) versus lower centre of mass (right) 
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5. Future work 

 

If time allowed, there are many areas which need exploration. The first and foremost 

involves the communication with hardware devices directly. The Vision module already 

communicates directly with the video camera as the original driver has compatibility 

issues. If the Locomotion module was able to communicate with motors directly, the use 

of NaoQi would be eliminated and as such we would not be restricted nor have to rely on 

using it. Direct communication would also allow us to create more flexible walks which 

are able to be merged or changed dynamically. However, by directly communicating with 

the motors, there is a higher chance for hardware failures as everything we do will need 

to be double checked to ensure damage to the motors is kept to a minimum. 

 

In the field of walks, my first proposal and initial idea of a side step would be to develop 

one which is capable of circling around a point. This approach would have a circle with 

centre, P where; Px= distance from robot centre, Py = 0. The robot would then side step 

around this point in a circle with radius Px. Thus, as Px approaches ∞, the more straight 

the side step as each step corresponds to some arc segment along the circle. Similarly, as 

Px approaches 0 the more circular the side step becomes. It is also worth noting that for Px 

< 0 the same occurs except that the robot should circle the point facing outwards. This 

approach would enable the Nao to circle the ball, goal or even other robots in a manner 

similar to the AiBO sGetBehindBall() behaviour in the previous rUNSWift architecture. 

 

Secondly, a walk which is able to be changed midway is necessary if we want to have a 

flexible soccer player. This could be achieved by following another approach used in the 

AIBOs. We would have a cache which holds the next set of actions to be carried out. If 

the robot has at least one foot on the ground and the other in a ‘safe’ position, then and 

only then should it be able to stop its current walk action and execute the action stored in 

the cache. The reason for the need for this safe position is that it allows the robot to make 

at least one step (thereby movement) between actions as well as prevent it from falling 

over due to frequent changing of actions.  
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6. Conclusion 

 

Overall we can see that the Nao does have potential to succeed the AIBOs to the throne 

as the new platform for the SPL. However, there are some issues which need to be 

addressed in order for Nao to become widely accepted. These are mainly to do with 

design and hardware issues of the Nao.  

 

We have seen that the weight distribution of the Nao is rather poor and does not lend 

itself easily with regard to stability. If some of the weight from the upper body was 

moved to the lower body, this might solve some of the stated problem, however even 

stronger motors would be required to handle a heavier load. The twist hip motor is 

another area which needs to be addressed.  

 

Our robots, ‘Owen’ in particular, have shown that the Naos are capable of decent 

manoeuvres in terms of speed and stability. As such, there is potential for the competition 

to mature (speed-wise) into matches of similar standard to the humanoid league.  

 

From a developer’s perspective, NaoQi, although provided some useful features, is not 

practical for Robocup soccer. This is due to its inflexibility of the walk which is provided. 

If the walks could be changed or even merged in sequence with each other we might have 

adopted and continued to use the system. But because of the static nature of the 

sequencing of walks, it seems that parts of NaoQi, in particular the walking motions, are 

on their way to the scrap yard. 

 

Once the above issues have been addressed in future revisions, only then can the Nao 

have hope in succeeding the AIBO, as the next generation platform for the Standard 

Platform League.
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• Appendix 1 

 

 
Joint Limits as per NaoWare Documentation 

 

Location of joints on the Nao as per NaoWare Documentation 
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Appendix 2 
 

Location of various key parts on the Nao. 
(1) Video camera 
(2) Ultrasound sensor (black dots) 
(3) Force Sensitive Resistors (inside feet) 
(4) Microphone 
(5) Inertial Unit (inside body) 
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Appendix 3a 
 
Task: 
Develop a canned motion for the robot which moves sideways in one direction whilst 
maintaining balance 
 
Terminology: 
Inwards: towards the centre of the robot 
Outwards: leaving the robot’s body 
 
Movement Sequence: 

1. Roll left ankle and hips outwards until the right leg is raised off the ground. This 
effectively shifts the centre of mass onto the left leg. 

2. Roll right hip outwards until the right leg is almost parallel to the ground. Roll the 
right ankle at the same rate inwards so it remains parallel to the ground. 

3. Roll left ankle and hips inwards until the right leg makes contact with the ground. 
4. Roll right hip and ankles back to zero positions 
5. Roll left hip and ankles back to zero positions 

 
Results: 

• Robot was able to successfully move in one direction whilst maintaining balance. 
The resulting actions were neither fluid nor natural (from a human perspective).  

• The side step motion abused the simulator’s lack of friction and dragged the foot 
across the ground when returning to the neutral position.  

• When the mobile foot came in contact with the ground the robot was ‘falling’ 
onto it. If such a motion were carried out under real conditions the leg could 
sustain damage or lose balance due to the falling motion.  

 
Discussion: 

• When the side step motion was executed in reverse order, the robot would fall 
over. However, changing the joint angle to suit the opposite direction would solve 
this problem.  

 
Findings: 
Simulator has very poor friction simulation. 
In order to keep the upper body upright, the ankle roll and hip rolls must be kept equal to 
each other.  
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Appendix 3 cont… 
 
Task: 
Develop a canned motion for the robot which moves sideways in both directions whilst 
maintaining balance. Both directions refer to, using the same set of commands in reverse 
in order to achieve the same motion just in the opposite direction. 
 
Movement Sequence: 

1. Roll hips and ankles to the left until the centre of the upper body is over the left 
foot.  

2. Bending the left knee, move the right leg to the outwards (to the right) until it 
touches the ground, keeping the right ankle parallel to the ground at all times. 

3. Set the joints of the right leg to the joints of the left leg and vice versa. This 
effectively shifts the centre of mass to the other leg whilst keeping the sequence 
of actions symmetrical. 

4. Do the reverse of 1 but with the legs swapped.  
 
Results: 

• The robot was able to successfully move sideways in both directions. Use of the 
knee joint enabled more fluid movement which resulted in a more natural motion.  

• The speed of the transition between support legs was slightly fast and this may 
have adverse effects on the actual robot.  

• There was a slight angle in the sideways motion to the right. The deviation was 
only noticeable if the robot was made to side step the entire length of the field. 
Deviation was around 10 degrees forwards.  

• By reversing the order of commands, the robot was able to return to its initial 
position suggesting that the sideways motion is perfectly symmetrical.  

 
Findings: 

• In order to keep the ankles parallel to the ground, hip roll and ankle roll must be 
equal. Furthermore, hip pitch + ankle pitch must equal knee pitch. 

• Keeping the ankle parallel to the ground at all times meant that as soon as it made 
contact with the ground it would be flat and therefore more stable. 
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Appendix 4 – Parameter Effects on Various Walks 
 

Parameter Effect on Straight Walk 
distance Distance to walk. Positive is forwards. Negative is backwards  
stepsPerCycle How long each step takes. 18 is the best minimum value found. Use 30 if walk is 

unstable, this will slow down the motions. 
maxStepLength How far forward the robot moves with each step.   
maxStepHeight How high each step can be. If stepLength is further, the step height must be high enough 

to allow for the step. Low step height reduces angle deviation. 
maxStepSide No effect, leave as 0.0 
maxStepTurn No effect, leave as 0.0 
zmpOffsetX How far forwards the robot is allowed to lean. Large values lead to instability 
zmpOffsetY How far to the sides is the robot allowed to lean. Large values lead to instability 
LHipRollBacklash No noticeable effect, use default 4.5 
RHipRollBacklash No noticeable effect, use default -4.5 
hipHeight Raises/lowers centre of gravity. Lower height leads to more stable walks. High heights 

allow for larger forward stepLengths. 
torsoYOrientation Affects lean on X-axis (contrary to documentation). Large values can lead to instability. 

 
Parameter Effect on in place Turn 

angle Angle to turn the robot. Angle is in RADIANS. Angles based on the trigonometric angle 
circle (i.e. positive is anti-clockwise) 

stepsPerCycle How long each step takes. 22 is the best minimum. Lower values lead to inaccurate 
turning 

maxStepLength No effect, leave as 0.0 
maxStepHeight How high each step can be. Should be proportional to stepTurn 
maxStepSide No effect, leave as 0.0 
maxStepTurn How many degrees each step changes the orientation of the robot. RADIANS. Use 

numbers which are proportional to π 
zmpOffsetX Affects forward lean. Large values lead to instability. Keep below 0.25 
zmpOffsetY Affects sideward lean. Large values may lead to faster turn. Keep below 0.25 
LHipRollBacklash Affects leftward (anti-clockwise) turning. Larger values give bigger turns. Reduces 

rightward turns. Usually less than rHipRollBacklash due to motor differences. 
RHipRollBacklash As above except for rightward turns. Reduces leftward turns. 
hipHeight Same as straight walk except for larger stepTurn 
torsoYOrientation No noticeable effect, use default 5.0 

 
Parameter Effect on Sideways Walk 

distance Distance to walk. Positive is to the right. Negative to the left 
stepsPerCycle How long each step takes. 20 is the best minimum. 
maxStepLength No effect, leave as 0.0 
maxStepHeight Same as straight walk, except for stepSide. Lower step heights reduce angle deviation 
maxStepSide How far to the side the robot moves with each step.  
maxStepTurn No effect, leave as 0.0 
zmpOffsetX No noticeable effect, use default 0.20 
zmpOffsetY Affects sideward lean. Large values may lead to faster sidesteps, but more instability. 
LHipRollBacklash Affects RIGHTward momentum. Higher values give faster movements to the right. 
RHipRollBacklash As above except for LEFTward momentum.  
hipHeight Same as straight walk except for larger stepSide 
torsoYOrientation No noticeable effect, use default 5.0 
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Appendix 5 – Straight Walk Time Trial Results 
 
Results from various walks 
 

 Distance Travelled (m) 
Walk Type 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 
rUNSWift 
Tuned 

5.7s 
0° 

10.7s 
5° 

15.4s 
10° 

19.3s 
15° 

24.3s 
21° 

29.7s 
24° 

36.1s 
30° 

40.7s 
33° 

Aldebaran 
v1.0 

7.9s 
4° 

 (1)  (1)  (1)  (1)  (1)  (1)  (1)

Aldebaran 
v1.0 (slower) 

9.0s 
5° 

17.1s 
9° 

24.0s 
20° 

31.5s 
5° 

40.0s 
10° 

47.0s 
-10° 

54.3s 
- (2)

 (1)

Aldebaran 
v2.0 

7.1s 
2° 

13.5s 
-6° 

19.1s 
15° 

25.9s 
5° 

31.5s 
2.3° 

37.7s 
30° 

43.3s 
15° 

 (1)

 
Notes:  
Results based on an average of 10 trials per successful walk. 
Aldebaran v1.0 (slower) uses the same parameters except the cyclesPerStep parameter 
was set to 30 as opposed to the original 25.  
 
(1) Robot fell almost immediately and thus results could not be obtained 
(2) Robot fell but after walking a certain distance.  
 
Results in the table represent how long the robot took to travel the distance and how 
much from the centre straight line the walk deviate from. Times are in seconds, 
Deviations are in degrees. Positive deviations means the robot deviated towards the right, 
and negative towards the left. 
 
 
Walk parameters - ordered as per section 4 
 
rUNSWift tuned parameters ‘Owen Config’ 
20 0.04 0.010 0.0 0.0 0.018 0.02 4.5 -4.5 0.17 5.0 
25 0.0 0.012 0.0 0.314 0.02 0.018 0.9 -1.0 0.17 5.0 
20 0.0 0.012 0.06 0.0 0.02 0.018 4.5 -4.5 0.17 5.0 
18 0.04 0.010 0.04 0.015 0.015 0.025 5.5 -5.5 0.17 5.0 
 
Aldebaran Version 1.0 Walk (Initial release) 
25 0.04 0.015 0.04 0.3 0.015 0.025 4.5 -4.5 0.19 5.0 
25 0.00 0.012 0.00 0.314 0.02 0.01 4.5 -4.5 0.19 5.0 
25 0.00 0.015 0.05 0.0 0.02 0.018 4.5 -4.5 0.19 5.0 
25 0.04 0.015 0.04 0.015 0.015 0.025 4.5 -4.5 0.19 5.0 
 
Aldebaran Version 2.0 Walk (Improved)  
25 0.04 0.015 0.04 0.3 0.015 0.025 4.5 -4.5 0.19 5.0 
25 0.00 0.012 0.00 0.314 0.02 0.01 4.5 -4.5 0.19 5.0 
25 0.00 0.015 0.05 0.0 0.02 0.018 4.5 -4.5 0.19 5.0 
25 0.04 0.015 0.04 0.015 0.015 0.025 4.5 -4.5 0.19 5.0 
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