
Abstract Processes in the Absence of Conflicts

in General Place/Transition Systems⋆

Rob van Glabbeek1,2, Ursula Goltz3 & Jens-Wolfhard Schicke-Uffmann3

1 Data61, CSIRO, Sydney, Australia
2 School of Comp. Sc. and Engineering, Univ. of New South Wales, Sydney, Australia

3 Institute for Programming and Reactive Systems, TU Braunschweig, Germany

Abstract. Goltz and Reisig generalised Petri’s concept of processes of
one-safe Petri nets to general nets where places carry multiple tokens.
BD-processes are equivalence classes of Goltz-Reisig processes connected
through the swapping transformation of Best and Devillers; they can
be considered as an alternative representation of runs of nets. Here we
present an order respecting bijection between the BD-processes and the
FS-processes of a countable net, the latter being defined—in an analo-
gous way—as equivalence classes of firing sequences. Using this, we show
that a countable net without binary conflicts has a (unique) largest BD-
process.

1 Introduction

For the basic class of Petri nets, the condition/event systems, there is a well
established notion of process [Pet77], modelling runs of the represented sys-
tem. This paper continues the adaptation of this notion of process to general
place/transition systems (P/T systems).

Goltz and Reisig proposed a notion of process for P/T systems which is
rather discriminating [GR83]. Depending on which of several “identical” tokens
you choose for firing a transition, you may get different processes, with different
causal dependencies. We call this notion a GR-process.

Best and Devillers [BD87] defined a swapping transformation on GR-processes
that identifies GR-processes differing only in the choice which token was removed
from a place. They proposed an equivalence notion ≡∞

1 on GR-processes, where
≡∞

1 -equivalent processes intuitively can be converted into each other through
‘infinitely many’ swapping transformations. We address an ≡∞

1 -equivalence class
of GR-processes as a BD-process.

GR-processes can be seen as an unsatisfactory formalisation of the intuitive
concept of a run, since there exist conflict-free1 systems with multiple maximal
GR-processes. We refer to [GGS11a,GGS21] and the many references therein
for an example and further discussion. On the other hand, BD-processes can

⋆ This work was partially supported by the DFG (German Research Foundation).
1 Intuitively, a conflict denotes any situation in which there is a choice to resolve.
A formalisation of this notion [Gol86,GGS21] occurs in Section 4.

2 R.J. van Glabbeek, U. Goltz & J.-W. Schicke-Uffmann

2 3 4 5

a b c d

1

6

5 2 1 3 1 4

a b

6 6

d

1

c

6

5 2 1 3 1 4

a

b

6 6

d

1

c

6

Fig. 1. A net together with two of its maximal GR-processes,
which are identified by swapping equivalence.

be seen as unsatisfactory, because there exist systems with do have conflicts,
yet still have a unique maximal BD-process. To illustrate this result, we recall
in Fig. 1 an example due to Ochmański [Och89] — see also [DMM89,GGS11a].
In the initial situation only two of the three enabled transitions can fire, which
constitutes a conflict. However, the equivalence ≡∞

1 obtained from the swapping
transformation (formally defined in Section 3) identifies all possible maximal
GR-processes—two of which are shown here—and hence yields only one complete
abstract run of the system. We are not aware of a solution, i.e. any formalisation
of the concept of a run of a net that allows only one complete run for a conflict-
free net but allocates multiple complete runs to the net of Fig. 1.

In [GGS11a,GGS21] we propose a subclass of P/T systems, called structural
conflict nets, more general then the well-known class of safe nets. On these nets
BD-processes are a good formalisation of runs, for we showed that a structural
conflict net has a largest BD-process if and only if the net is conflict-free.

The question remains what happens for general P/T systems. As we have
illustrated above, systems with conflicts may still have one largest BD-process. In
this paper we will show that the “if” part of the above-mentioned correspondence
also holds for general countable P/T systems: a countable conflict-free P/T-
system has a largest BD-process.2

However, it turns out that the proof of this result is much more complicated
than the special case for structural conflict nets established in [GGS21].3

2 In fact, we present a slightly stronger result, namely that a countable P/T-system
without binary conflicts has a largest BD-process. We also give a counterexample
showing that this stronger result needs the restriction to countable P/T systems.
We do not know whether each uncountable P/T-system without any conflicts has a
largest BD-process.

3 The proof of [GGS21, Theorem 2], creating a largest BD-process for any given struc-
tural conflict net, does not generalise beyond structural conflict nets. We did not
find a better method for this generalisation than via the detour of FS-processes, as
described below.

Abstract Processes in the Absence of Conflicts in General P/T-Systems 3

Best and Devillers [BD87] defined a swapping transformation also on the fir-
ing sequences of a net, allowing two adjacent transitions to be swapped if they
can be fired concurrently. They proposed an equivalence notion ≡∞

0 on firing se-
quences, where ≡∞

0 -equivalent firing sequences intuitively can be converted into
each other through ‘infinitely many’ swaps. We address an ≡∞

0 -equivalence class
of firing sequences as an FS-process. Best and Devillers established a bijective
correspondence between the BD-processes and the FS-processes of a countable
net. Here we consider the natural preorders ⊑∞

1 on GR-processes and ⊑∞
0 on

firing sequences with kernels ≡∞
1 and ≡∞

0 . They induce partial orders (also de-
noted ⊑∞

1 and ⊑∞
0) on BD-processes and FS-processes respectively. In Section 5

we prove that the bijective correspondence between the BD-processes and the
FS-processes of a countable net respects this order, so that a countable net has
a largest BD-process iff it has a largest FS-process. This result is interesting in
its own right. Additionally we use it as a stepping stone for obtaining our main
result discussed above, by showing that a countable conflict-free P/T-system has
a largest FS-process.

The results of this paper appeared already in our technical report [GGS11b],
although formulated and proven differently, since there we didn’t have the pre-
order ⊑∞

1 , introduced in [GGS21]. Our revised proofs are conceptually simpler,
as they avoid the auxiliary concepts of BD-runs and FS-runs.

2 Place/transition systems4

We will employ the following notations for multisets.

Definition 1. Let X be a set.

• A multiset over X is a function A : X → IN, i.e. A ∈ INX.

• x ∈ X is an element of A, notation x ∈ A, iff A(x) > 0.

• For multisets A and B over X we write A ⊆ B iff A(x) ≤ B(x) for all x∈X;
A ∪B denotes the multiset over X with (A ∪B)(x) := max(A(x), B(x)),
A ∩B denotes the multiset over X with (A ∩B)(x) := min(A(x), B(x)),
A+B denotes the multiset over X with (A+B)(x) := A(x) +B(x),
A − B is given by (A − B)(x) := A(x) ·− B(x) = max(A(x) − B(x), 0), and
for k ∈ IN the multiset k ·A is given by (k ·A)(x) := k ·A(x).

• The function ∅ : X → IN, given by ∅(x) := 0 for all x ∈ X, is the empty
multiset over X.

• If A is a multiset over X and Y ⊆ X then A ↾Y denotes the multiset over Y
defined by (A ↾Y)(x) := A(x) for all x ∈ Y .

• The cardinality |A| of a multiset A over X is given by |A| :=
∑

x∈X A(x).

• A multiset A over X is finite iff |A| < ∞, i.e., iff the set {x | x ∈A} is finite.

4 The material in Sections 2, 3.1 and 4 follows closely the presentation in [GGS11a],
but needs to be included to make the paper self-contained.

4 R.J. van Glabbeek, U. Goltz & J.-W. Schicke-Uffmann

• A function π : X → Y extends to multisets A ∈ INX by π(A)(y) =
∑

y=π(x)

A(x).
In this paper, this sum will always turn out to be finite.

Two multisets A : X → IN and B : Y → IN are extensionally equivalent iff
A ↾(X ∩Y) = B ↾(X ∩Y), A ↾(X \Y) = ∅, and B ↾(Y \X) = ∅. In this paper we
often do not distinguish extensionally equivalent multisets. This enables us, for
instance, to use A ∪ B even when A and B have different underlying domains.
With {x, x, y} we will denote the multiset over {x, y} with A(x)=2 and A(y)=1,
rather than the set {x, y} itself. A multiset A with A(x) ≤ 1 for all x is identified
with the set {x | A(x) = 1}.

Below we define place/transition systems as net structures with an initial
marking. In the literature we find slight variations in the definition of P/T sys-
tems concerning the requirements for pre- and postsets of places and transitions.
In our case, we do allow isolated places. For transitions we allow empty post-
sets, but require at least one preplace, thus avoiding problems with infinite self-
concurrency. Moreover, following [BD87], we restrict attention to nets of finite
synchronisation, meaning that each transition has only finitely many pre- and
postplaces. Arc weights are included by defining the flow relation as a function
to the natural numbers. For succinctness, we will refer to our version of a P/T
system as a net.

Definition 2.

A net is a tuple N = (S, T, F,M0) where

• S and T are disjoint sets (of places and transitions),

• F : ((S×T) ∪ (T×S)) → IN (the flow relation including arc weights), and

• M0 : S → IN (the initial marking)

such that for all t ∈ T the set {s | F (s, t) > 0} is finite and non-empty, and
the set {s | F (t, s) > 0} is finite.

Graphically, nets are depicted by drawing the places as circles and the transitions
as boxes. For x, y ∈ S ∪ T there are F (x, y) arrows (arcs) from x to y.5 When
a net represents a concurrent system, a global state of this system is given as
a marking, a multiset of places, depicted by placing M(s) dots (tokens) in each
place s. The initial state is M0.

Definition 3. Let N=(S, T, F,M0) be a net and x ∈ S ∪ T .

The multisets •x, x• : S ∪ T → IN are given by •x(y) = F (y, x) and x•(y) =
F (x, y) for all y ∈ S ∪ T . If x ∈ T , the elements of •x and x• are called pre-
and postplaces of x, respectively. These functions extend to finite multisets
X:S∪T → IN as usual, by •X :=

∑

x∈S∪T X(x)·•x andX• :=
∑

x∈S∪T X(x)·x•.

The system behaviour is defined by the possible moves between markings M
and M ′, which take place when a finite multiset G of transitions fires. When

5 This is a presentational alternative for the common approach of having at most one
arc from x to y, labelled with the arcweight F (x, y) ∈ IN.

Abstract Processes in the Absence of Conflicts in General P/T-Systems 5

firing a transition, tokens on preplaces are consumed and tokens on postplaces
are created, one for every incoming or outgoing arc of t, respectively. Obviously,
a transition can only fire if all necessary tokens are available in M in the first
place. Definition 4 formalises this notion of behaviour.

Definition 4. Let N =(S, T, F,M0) be a net, G ∈ INT, G non-empty and finite,
and M,M ′ ∈ INS.

G is a step from M to M ′, written M
G
−→N M ′, iff

• •G ⊆ M (G is enabled) and

• M ′ = (M − •G) +G•.

We may leave out the subscript N if clear from context. For a word σ =
t1t2 . . . tn ∈ T ∗ we write M

σ
−→ M ′ for

∃M1,M2, . . . ,Mn−1. M
{t1}
−→M1

{t2}
−→M2 · · ·Mn−1

{tn}
−→M ′.

When omitting σ or M ′ we always mean it to be existentially quantified.
Likewise, for an infinite word σ = t1t2t3 . . . ∈ Tω we write M

σ
−→ for

∃M1,M2, M
{t1}
−→M1

{t2}
−→M2

{t3}
−→· · · .

When M0
σ

−→N , the word σ ∈ T ∗ ∪ Tω is called a firing sequence of N . The
set of all firing sequences of N is denoted by FS∞(N), and the subset of finite
firing sequences of N is denoted by FS(N).

Note that steps are (finite) multisets, thus allowing self-concurrency. Also note
that M

{t,u}
−−−→ implies M

tu
−→ and M

ut
−→. We use the notation t ∈ σ to indicate

that the transition t occurs in the sequence σ and use σ ≤ ρ to indicate that σ
is a prefix of the sequence ρ, i.e. ∃µ. ρ = σµ.

3 Processes of place/transition systems

We now define two notions of a process of a net, modelling a run of the repre-
sented system on two levels of abstraction.

3.1 GR-processes

A (GR-)process is essentially a conflict-free, acyclic net together with a mapping
function to the original net. It can be obtained by unwinding the original net,
choosing one of the alternatives in case of conflict. The acyclic nature of the
process gives rise to a notion of causality for transition firings in the original net
via the mapping function. A conflict present in the original net is represented by
the existence of multiple processes, each representing one possible way to decide
the conflict.

6 R.J. van Glabbeek, U. Goltz & J.-W. Schicke-Uffmann

Definition 5.

A pair P = (N, π) is a (GR-)process of a net N = (S, T, F,M0) iff

• N = (S,T,F,M0) is a net, satisfying

− ∀s ∈ S. |•s| ≤1≥ |s•| ∧ M0(s) =

{

1 if •s = ∅
0 otherwise,

− F is acyclic, i.e. ∀x∈S∪T. (x, x) 6∈F
+
, where F

+
is the transitive closure

of {(x, y) | F(x, y) > 0},

− and {t ∈ T | (t, u) ∈ F
+
} is finite for all u ∈ T.

• π : S ∪ T → S ∪ T is a function with π(S) ⊆ S and π(T) ⊆ T , satisfying

− π(M0) = M0, i.e. M0(s) = |π−1(s) ∩M0| for all s ∈ S, and

− ∀t ∈ T, s ∈ S. F (s, π(t)) = |π−1(s) ∩ •t| ∧ F (π(t), s) = |π−1(s) ∩ t•|, i.e.
∀t ∈ T. π(•t) = •π(t) ∧ π(t•) = π(t)•.

P is called finite if T is finite. The end of P is defined as P ◦ = {s ∈ S | s• = ∅}.

For example Fig. 1 gives a net and two of its GR-processes, in which each place
and transition x is labelled π(x). Let GR(N) (resp. GRfin(N)) denote the col-
lection of (finite) GR-processes of N.

A process is not required to represent a completed run of the original net. It
might just as well stop early. In those cases, some set of transitions can be added
to the process such that another (larger) process is obtained. This corresponds
to the system taking some more steps and gives rise to a natural order between
processes.

Definition 6. Let P = ((S,T,F,M0), π) and P ′ = ((S
′
,T ′,F ′,M

′
0), π

′) be two
processes of the same net.

• P ′ is a prefix of P , notation P ′ ≤ P , and P an extension of P ′, iff S
′
⊆ S,

T ′ ⊆ T, M
′
0 = M0, F

′ = F ↾(S
′
×T ′ ∪ T ′×S

′
) and π′ = π ↾(S

′
∪ T ′).

• A process of a net is said to be maximal if it has no proper extension.

The requirements above imply that if P ′ ≤ P , (x, y) ∈ F
+
and y ∈ S

′
∪ T ′ then

x ∈ S
′
∪ T ′. Conversely, any subset T ′ ⊆ T satisfying (t, u) ∈ F

+
∧ u ∈ T ′ ⇒

t ∈ T ′ uniquely determines a prefix of P .

In [Pet77,GSW80,GR83] processes were defined without requiring the third
condition on N from Definition 5. Goltz and Reisig [GR83] observed that certain
processes did not correspond with runs of systems, and proposed to restrict the
notion of a process to those that can be approximated by finite processes [GR83,
end of Section 3]. This is the role of the third condition on N in Definition 5;
it is equivalent to requiring that each transition occurs in a finite prefix. In
[Pet77,GSW80,GR83] only processes of finite nets were considered. For those
processes, the requirement of discreteness proposed in [GR83] is equivalent with
imposing the third condition on N in Definition 5 [GR83, Theorem 2.14].

Abstract Processes in the Absence of Conflicts in General P/T-Systems 7

Two processes P =(N, π) and P ′=(N ′, π′) are isomorphic, notation P ∼= P ′,
iff there exists an isomorphism φ from N to N ′ which respects the process map-
ping, i.e. π = π′ ◦φ. Here an isomorphism φ between two nets N = (S,T,F,M0)
and N ′ = (S

′
,T ′,F ′,M

′
0) is a bijection between their places and transitions

such that M
′
0(φ(s)) = M0(s) for all s ∈ S and F ′(φ(x), φ(y)) = F(x, y) for all

x, y ∈ S ∪ T.

3.2 BD-processes

Next we formally introduce the swapping transformation and the resulting equiv-
alence notion on GR-processes from [BD87].

Definition 7. Let P = ((S,T,F,M0), π) be a process and let p, q ∈ S with

(p, q) /∈ F
+
∪ (F

+
)−1 and π(p) = π(q).

Then swap(P, p, q) is defined as ((S,T,F ′,M0), π) with

F
′(x, y) =

F(q, y) iff x = p, y ∈ T

F(p, y) iff x = q, y ∈ T

F(x, y) otherwise.

We refer to [BD87,GGS21] for an explanation of this definition and further ex-
amples. Here we only give the processes of Fig. 1 as being connected via swap.

Definition 8.

• Two processes P and Q of the same net are one step swapping equivalent
(P ≡1 Q) iff swap(P, p, q) is isomorphic to Q for some places p and q.

• We write ≡∗
1 for the reflexive and transitive closure of ≡1.

In [BD87, Definition 7.8] swapping equivalence—denoted ≡∞
1 —is defined in

terms of reachable B-cuts. In [GGS21] this definition was reformulated as fol-
lows, also introducing the associated preorder ⊑∞

1 .

Definition 9. Let N be a net, and P,Q ∈ GR(N).

Then P ⊑∞
1 Q iff

∀P ′′ ∈GRfin(N), P ′′ ≤ P. ∃P ′, Q′ ∈ GRfin(N). P ′′ ≤ P ′ ≡∗
1 Q′ ≤ Q.

Moreover, P ≡∞
1 Q iff P ⊑∞

1 Q ∧Q ⊑∞
1 P .

In [GGS21] it is shown that ⊑∞
1 is a preorder, and thus ≡∞

1 an equivalence
relation on GR-processes. Trivially, ≡∗

1 is included in ≡∞
1 .

Definition 10.

We call a ≡∞
1 -equivalence class of GR-processes a BD-process.

8 R.J. van Glabbeek, U. Goltz & J.-W. Schicke-Uffmann

4 Conflicts in place/transition systems

We recall the canonical notion of conflict introduced in [Gol86].

Definition 11. Let N = (S, T, F,M0) be a net and M ∈ INS.

• A finite, non-empty multiset G ∈ INT is in (semantic) conflict in M iff

¬M
G
−→ ∧ ∀t ∈ G. M

G ↾{t}
−−−→.

• N is (semantic) conflict-free iff no finite, non-empty multiset G ∈ INT is in
semantic conflict in any M with M0 −→ M .

• N is binary-conflict--free iff no multiset G ∈ INT with |G| = 2 is in semantic
conflict in any M with M0 −→ M .

Thus, N is binary-conflict--free iff whenever two different transitions t and u are
enabled at a reachable marking M , then also the step {t, u} is enabled at M .
The above concept of (semantic) conflict-freeness formalises the intuitive notion
that there are no choices to resolve. In [GGS21] the above definition is compared
with other notions of conflict and conflict-freeness that occur in the literature.

A finite multiset G of transitions has a structural conflict iff it contains two
different transitions that share a preplace. We proposed in [GGS11a] a class
of P/T systems where this structural definition of conflict matches the semantic
definition of conflict as given above. We called this class of nets structural conflict
nets. For a net to be a structural conflict net, we require that two transitions
sharing a preplace will never occur both in one step.

Definition 12. Let N = (S, T, F,M0) be a net.

N is a structural conflict net iff ∀t, u. (M0 −→
{t,u}
−−−→) ⇒ •t ∩ •u = ∅.

Note that this excludes self-concurrency from the possible behaviours in a struc-
tural conflict net: as in our setting every transition has at least one preplace,
t = u implies •t∩•u 6= ∅. Also note that in a structural conflict net a non-empty,
finite multiset G is in conflict in a reachable marking M iff G is a set and two
distinct transitions in G are in conflict in M . Hence a structural conflict net
is conflict-free if and only if it is binary-conflict--free. Moreover, two transitions
enabled in M are in (semantic) conflict iff they share a preplace.

5 Characterising BD-processes by firing sequences

In Section 3 a BD-process was defined as a≡∞
1 -equivalence class of GR-processes;

moreover the preorder ⊑∞
1 on GR-processes induces a partial order on BD-

processes, and hence a concept of a largest BD-process.
Best and Devillers [BD87] introduced an equivalence relation ≡∞

0 on the
firing sequences of a countable net, such that the BD-processes are in a bijective
correspondence with the ≡∞

0 -equivalence classes of firing sequences, called FS-
processes in [GGS11a]. In this section we define a preorder ⊑∞

0 on the firing
sequences of a net, with kernel ≡∞

0 , that thus induces a partial order on FS-
processes, and hence a concept of a largest FS-process.We show that the bijection

Abstract Processes in the Absence of Conflicts in General P/T-Systems 9

between BD-processes and FS-processes respects these orders, and therefore also
the associated notion of a largest process. Thus a countable net has a largest
BD-process iff it has a largest FS-process.

Our main result, that a countable P/T system without binary-conflict has a
largest BD-process, can therefore be established in terms of FS-processes.

5.1 FS-processes

The behaviour of a net can be described not only by its processes, but also by
its firing sequences. The imposed total order on transition firings abstracts from
information on causal dependence, or concurrency, between transition firings. To
retrieve this information we introduce an adjacency relation on firing sequences,
recording which interchanges of transition occurrences are due to semantic in-
dependence of transitions. Hence adjacent firing sequences represent the same
run of the net. We then define FS-processes in terms of the resulting equivalence
classes of firing sequences. Adjacency is similar to the idea of Mazurkiewicz traces
[Maz95], allowing to exchange concurrent transitions. However, it is based on the
semantic notion of concurrency instead of the global syntactic independence re-
lation of trace theory, similar as in the approach of generalising trace theory in
[HKT95].

Definition 13. Let N = (S, T, F,M0) be a net, and σ, ρ ∈ FS∞(N).

• σ and ρ are adjacent, σ ≡0 ρ, iff σ = σ1tuσ2, ρ = σ1utσ2 and M0
σ1−→

{t,u}
−−−→.

• We write ≡∗
0 for the reflexive and transitive closure of ≡0.

Note that ≡∗
0-related firing sequences contain the same multiset of transition

occurrences. When writing σ ≡∗
0 ρ we implicitly claim that σ, ρ ∈ FS∞(N).

Furthermore σ ≡∗
0 ρ ∧ σµ ∈ FS∞(N) implies σµ ≡∗

0 ρµ for all µ ∈ T ∗ ∪ Tω.

Lemma 1. Let N = (S, T, F,M0) be a net, let σ1 ≡0 σ2 ≤ σ3 for some σ1, σ2 ∈
FS(N) and σ3 ∈ FS∞(N). Then there is a σ′ ∈ FS∞(N) with σ1 ≤ σ′ ≡0 σ3.
Moreover, if σ3 ∈ FS(N) then σ′ ∈ FS(N).

Proof. We have that σ1 = αtuβ, σ2 = αutβ, M0
α
−→

{t,u}
−−−→ M1 and σ3 = σ2γ for

some α, β ∈ T ∗, γ ∈ T ∗∪Tω and M1 ∈ INS . Naturally then, we take σ′ = αtuβγ.
From M0

α
−→

{t,u}
−−−→ M1 followsM0

αtu
−−→ M1 andM0

αut
−−→ M1. From σ3 ∈ FS∞(N)

follows additionally M1
βγ
−→. Hence M0

αtu
−−→ M1

βγ
−→ and σ′ ∈ FS∞(N). The case

σ3 ∈ FS(N) follows similarly. That σ1 ≤ σ′ ≡0 σ3 holds trivially. ⊓⊔

Corollary 1. Let σ1 ≡∗
0 σ2 ≤ σ3 for some σ1, σ2 ∈ FS(N) and σ3 ∈ FS∞(N).

Then there is a σ′ ∈FS∞(N) with σ1 ≤ σ′ ≡∗
0 σ3. Moreover, if σ3 ∈ FS(N) then

σ′ ∈ FS(N). ⊓⊔

Lemma 2. Let σ′′ ∈ FS(N), ρ ∈ FS∞(N). Then ∃ρ† ∈ FS∞(N). σ′′ ≤ ρ† ≡∗
0 ρ

iff ∃σ′, ρ′ ∈ FS(N). σ′′ ≤ σ′ ≡∗
0 ρ′ ≤ ρ.

Proof. “If” follows by Corollary 1. For “only if” take ρ′ to be the smallest prefix
of ρ that contains all transitions interchanged between ρ and ρ†. ⊓⊔

10 R.J. van Glabbeek, U. Goltz & J.-W. Schicke-Uffmann

For firing sequences σ, ρ ∈ FS∞(N), σ ≡∗
0 ρ means that σ can be transformed

into ρ by repeated exchange of two successive transitions that can fire concur-
rently. However, ≡∗

0 allows for only finitely many permutations. In [BD87] a
relation ≡∞

0 on FS∞(N) is defined that in some sense allows infinitely many
permutations:

Definition 14. [BD87] Let N be a net, and σ, ρ ∈ FS∞(N).

• Write σ n= ρ when σ and ρ are equal or both have the same length ≥ n
(possible infinite) and agree on the prefix of length n.

• Then σ ≡∞
0 ρ iff ∀n ∈ IN. ∃σ′, ρ′ ∈ FS∞(N). (σ ≡∗

0 σ′
n= ρ ∧ σ n= ρ′ ≡∗

0 ρ).

Observation 1 σ ≡∞
0 ρ iff ∀ρ′′ ∈ FS(N), ρ′′ ≤ ρ. ∃σ′ ∈ FS∞(N). ρ′′ ≤ σ′ ≡∗

0 σ
and ∀σ′′ ∈ FS(N), σ′′ ≤ σ. ∃ρ′ ∈ FS∞(N). σ′′ ≤ ρ′ ≡∗

0 ρ.

Analogously, ⊑∞
0 should be the binary relation on FS∞(N) given by σ ⊑∞

0 ρ iff
∀σ′′ ∈FS(N), σ′′ ≤ σ. ∃ρ′ ∈ FS∞(N). σ′′ ≤ ρ′ ≡∗

0 ρ. Lemma 2 allows us to state
the formal definition of ⊑∞

0 as follows, which will be advantageous later on:

Definition 15. Let N be a net, and σ, ρ ∈ FS∞(N).

Then σ ⊑∞
0 ρ iff

∀σ′′ ∈ FS(N), σ′′ ≤ σ. ∃σ′, ρ′ ∈ FS(N). σ′′ ≤ σ′ ≡∗
0 ρ′ ≤ ρ.

Observation 2 σ ≡∞
0 ρ iff σ ⊑∞

0 ρ and ρ ⊑∞
0 σ.

Corollary 1, in combination with the transitivity of ≤ and ≡∗
0, implies the tran-

sitivity of ⊑∞
0 . Moreover, by definition ⊑∞

0 is reflexive.

Corollary 2. ⊑∞
0 is a preorder on FS∞(N). So ≡∞

0 is an equivalence relation.

Now an FS-process of a net N can be defined as an ≡∞
0 -equivalence class of

possibly infinite firing sequences of N (elements of FS∞(N)). Since ≡∞
0 is the

kernel of ⊑∞
0 , the latter introduces a partial order on FS-processes, and hence a

notion of a largest FS-process.

5.2 A bijection between FS-processes and countable BD-processes

We now recapitulate a result from [BD87], establishing a correspondence between
the GR-processes of a countable net and its firing sequences.

Definition 16. [BD87] Let N be a net, P = ((S,T,F,M0), π) ∈ GR(N) and
σ = t0t1t2 . . . ∈ FS∞(N). If σ is finite, let I = {i | IN ∋ i < |σ|}; otherwise let
I = IN.

P and σ are compatible iff there is a bijection pos : T → I such that

1. ∀t ∈ T. π(t) = tpos(t)

2. ∀t, t′ ∈ T. (t, t′) ∈ F
+
⇒ pos(t) < pos(t′).

Abstract Processes in the Absence of Conflicts in General P/T-Systems 11

Definition 17. [BD87] Let N be a net and P ∈ GR(N).
Lin(P) := {σ | σ ∈ FS∞(N) and σ is compatible with P}.

Theorem 1. [BD87] Let σ, ρ∈FS∞(N) and P,Q∈GR(N) such that σ∈Lin(P)
and ρ ∈ Lin(Q). Then σ ≡∞

0 ρ iff P ≡∞
1 Q.

Definition 18. A net, or a GR-process, is countable iff it has countably many
transitions. A BD-process is countable iff it is an equivalence class of countable
GR-processes.

The last definition uses that if P ≡∞
1 Q, then P is countable iff Q is countable.

By definition a finite net is countable. Since each transition in our nets has only
finitely many pre- and postplaces, a countable net has only countably many arcs,
and countably many places, at least when not counting isolated places, which
are irrelevant.

Observation 3 Let N be a net.
For each firing sequence σ ∈FS∞(N) there exists a process P ∈GR(N) such

that σ ∈Lin(P). Moreover, for each countable process P ∈GR(N) there exists a
firing sequence σ∈FS∞(N) such that σ∈Lin(P), but for an uncountable process
P ∈GR(N) there exists no firing sequence σ ∈ Lin(P).

In [BD87] only countable nets are considered, and there Theorem 1, together with
Observation 3, establishes a bijection between ≡∞

0 -equivalence classes of firing
sequences and ≡∞

1 -equivalence classes of GR-processes, or, in our terminology,
between FS-processes and BD-processes. When allowing uncountable nets, we
obtain a bijection between FS-processes and countable BD-processes.

The following theorem says that this bijection preserves the order between
FS- and BD-processes.

Theorem 2. Let σ, ρ ∈ FS∞(N) and P,Q ∈ GR(N) such that σ ∈ Lin(P) and
ρ ∈ Lin(Q). Then σ ⊑∞

0 ρ iff P ⊑∞
1 Q.

Together with Observation 3 this theorem establishes an order-preserving bijec-
tion between the FS-processes and the countable BD-processes of a net. Conse-
quently, a countable net has a largest BD-process iff it has a largest FS-process.

Although the preorders ⊑∞
0 and ⊑∞

1 are not considered in [BD87], the proof
of Theorem 1 in [BD87] can be adapted in a fairly straightforward way to yield
a proof of Theorem 2 as well. A more detailed proof of Theorem 2, and thereby
also of Theorem 1, using the notation of the present paper, is presented below.

5.3 This bijection preserves the order between processes

The next three lemmas say that if a process P is compatible with a firing sequence
σ, then

– any finite extension of σ can be matched by a compatible extension of P ,
– any finite prefix of σ can be matched by a compatible prefix of P , and
– any finite extension of P can be matched by a compatible extension of σ.

12 R.J. van Glabbeek, U. Goltz & J.-W. Schicke-Uffmann

Lemma 3. Let P ′′ ∈ GRfin(N), σ′′ ∈ Lin(P ′′) and σ′ ∈ FS(N) with σ′′ ≤ σ′.
Then there is P ′ ∈ GRfin(N) with σ′ ∈ Lin(P ′) and P ′′ ≤ P ′.

Proof. We have that σ′′α = σ′ for some α ∈ T ∗. Using induction over the length
of α we need to prove the claim only for σ′′t = σ′ for arbitrary t ∈ T . Let P ′′ =
((T

′′
,S

′′
,F

′′
,M

′′
0), π

′′). From σ′ ∈ FS(N) follows M0
σ′′

−→ M1
t

−→. From σ′′ ∈
Lin(P ′′) we have that M1 = π′′(P ′′◦) via Construction 3.9, Proposition 3.10,
and Theorem 3.13 of [BD87]. Hence •t ⊆ M1 = π′′(P ′′◦). From P ′′◦ we select a
set of (pre-)places A with π′′(A) = •t and we create a set of fresh (post-)places
B together with a function πB : B → S such that πB(B) = t•.

We define P ′ as ((T
′
,S

′
,F

′
,M

′
0), π

′) := ((T
′′
∪ {t′},S

′′
∪ B,F

′′
∪ {(a, t′, 1) |

a ∈ A} ∪ {(t′, b, 1) | b ∈ B},M
′′
0), π

′′ ∪ {(t′, t)} ∪ πB). We need to show that P ′

is a process of N , P ′′ ≤ P ′ and σ′ ∈ Lin(P ′).
“P ′ is a process of N”: ∀s ∈ S

′
. |•s| ≤ 1 as the only new entries in F

′
which

lead to places are for the new places from B, where it holds. ∀s ∈ S
′
. 1 ≥ |s•| as

the only new entries in F
′
which lead from places are for places s from P ′′◦ for

which |s•| = 0 in P ′′. Additionally M
′′
0 = M

′
0. F

′
is acyclic as the new entries all

contain t′ and B is disjoint from S
′′
. {t ∈ T

′
| (t, u) ∈ F

′+
} is finite for all u ∈ T

′

since T
′′
and hence T

′
is finite. π′(M

′
0) = π′′(M

′′
0) = M0 as B is distinct from

S
′′
, hence πB contributes nothing to π′(M

′
0). Finally π′(

•
t′) = π′(A) = π′′(A) =

•t =
•
π′(t′) and π′(t′

•
) = π′(B) = πB(B) = t• = π′(t′)

•
. Hence P ′ is indeed a

process.
“P ′′ ≤ P ′”: As P ′ was construction from P ′′ using disjoint unions, this follows

immediately.
“σ′ ∈ Lin(P ′)”: From σ′′ ∈ Lin(P ′′) we get a pos′′ function. We define

pos′ := pos′′ ∪ (t′, |σ′| − 1). Checking Definition 16 we find π′(t′) = t, which is
the last transition in σ′. As |σ′| − 1 is one larger than the largest value of pos′′,

pos′ is a bijection, and since there is no u′ ∈ T
′
with (t′, u′) ∈ F

′+
we conclude

that σ′ is compatible with P ′. ⊓⊔

Lemma 4. Let P ∈ GR(N), σ ∈ Lin(P) and σ′′ ∈ FS(N) with σ′′ ≤ σ. Then
there is P ′′ ∈ GRfin(N) with σ′′ ∈ Lin(P ′′) and P ′′ ≤ P .

Proof. To be precise, let, in this proof only, •x, x• denote pre- respectively post-
sets in N , ◦x, x◦ denote pre- respectively post-sets in P , and ⋆x, x⋆ denote pre-
respectively post-sets in P ′′.

We have that σ′′α = σ for some α ∈ T ∗ ∪ Tω.
Let P = ((S,T,F,M0), π). From σ ∈ Lin(P) we get a bijection pos between

T and the elements of σ. As α ⊆ σ, we can take the preimage φ := pos−1(α).
We define S

′′
:= S \ φ◦ and T

′′
:= T \ φ and take

P ′′ = ((S
′′
,T

′′
,F ↾(S

′′
× T

′′
∪ T

′′
× S

′′
),M0), π ↾(S

′′
∪ T

′′
)).

We need to show that P ′′ is a finite process of N , P ′′ ≤ P and σ′′ ∈ Lin(P ′′).
“P ′′ is a process of N”: As elements were only removed from P and none of

them were from M0, all clauses of Definition 5 but the last follow. It remains

Abstract Processes in the Absence of Conflicts in General P/T-Systems 13

to be shown that for all t ∈ T
′′
we have π(⋆t) =

•
π(t) ∧ π(t⋆) = π(t)

•
. By

processhood of P we already have π(◦t) =
•
π(t) ∧ π(t◦) = π(t)

•
.

“π(⋆t) =
•
π(t)”: By ⋆t = ◦t, as follows: Take any s ∈ ◦t. If we had s ∈ t′◦ for

any t′ ∈ φ, then pos(t) < |σ′′| and pos(t′) ≥ |σ′′| (from their order in σ) but also

(t′, t) ∈ F
+

and thus pos(t′) < pos(t) (from compatibility of P and σ). Hence
we cannot have such a t′. Thus s 6∈ φ◦, s ∈ S

′′
and s ∈ ⋆t.

“π(t⋆) = π(t)
•
”: By t⋆ = t◦, as follows: Take any s ∈ t◦. As t 6∈ φ and |◦s| ≤ 1

for all s ∈ S, we have s 6∈ φ◦, s ∈ S
′′
and s ∈ t⋆.

“P is finite”: This follows since T
′′
= pos−1(σ′′) and σ′′ is finite.

“P ′′ ≤ P”: This follows immediately from the construction of P ′′.
“σ′′ ∈ Lin(P ′′)”: Using pos ↾T

′′
it follows that σ′′ is compatible with P ′′. ⊓⊔

Lemma 5. Let P ′′, P ′ ∈ GRfin(N) with P ′′ ≤ P ′, and let σ′′ ∈ Lin(P ′′). Then
there is a σ0 ∈ Lin(P ′) with σ′′ ≤ σ0.

Proof. Let P ′ = ((S
′
,T

′
,F

′
,M

′
0), π

′) and P ′′ = ((S
′′
,T

′′
,F

′′
,M

′′
0), π

′′). Applying
induction over the number of transitions in T

′
, we can restrict attention to the

case where T
′
= T

′′
∪ {t′} for one new transition t′.

We take σ0 = σ′′π′(t′) and need to show that σ0∈Lin(P
′) (for by construction

σ′′ ≤ σ0). As σ′′ ∈ Lin(P ′′), it is compatible with P ′′, so there exists a bijection
pos′′ : T

′′
→ {0, . . . , |σ′′| − 1} as per Definition 16.

We define pos0 : T
′
→ {0, . . . , |σ0| − 1} as pos0(t) := pos′′(t) iff t 6= t′ and

pos0(t
′) := |σ0| − 1 = |σ′′| and need to show that σ0 is compatible with P ′:

1. For all t′′ ∈ T
′′
we have π′(t′′) = π′′(t′′) = tpos′′(t′′) = tpos

0
(t′′). Furthermore,

by construction tpos
0
(t′) = t|σ0|−1 = π′(t′).

2. For all u, u′ ∈ T
′
with (u, u′) ∈ F

′+
we need to show pos0(u) < pos0(u

′). If
u 6= t′ 6= u′ then this follows from the compatibility of pos′′. For u = t′ there

cannot be any (u, u′) ∈ F
′+

because t′ was added last in an extension to a

process. If u′ = t′ we find that by definition (t′, t′) 6∈ F
′+
, and for all other

possible u, pos0(u) = pos′′(u) ≤ |σ′′| − 1 < |σ′′| = pos0(t
′).

Finally, we show that σ0∈FS(N). Since P ′′ ≤ P ′ we have
•
t′ ⊆ P ′′◦. So

•
π′(t′) =

π′(
•
t′) ⊆ π′(P ′′◦) = π′′(P ′′◦). Moreover, as σ′′ ∈ Lin(P ′′) we have M0

σ′′

−→ M ,
where M = π′′(P ′′◦) via Construction 3.9, Proposition 3.10, and Theorem 3.13

of [BD87]. Hence M
π′(t′)
−−−→ and σ0 ∈ FS(N). ⊓⊔

In line with the last three lemmas, one might expect that if a process P is
compatible with a firing sequence σ, then any finite prefix of P can be matched
by a compatible prefix of σ. This, however, is obviously false. Take for instance
a process P consisting of two parallel transitions a and b, with the compatible
firing sequence ab; now the prefix of P containing only the transition b has no
compatible prefix of ab. The following is our best approximation.

Lemma 6. Let P ′′∈GRfin (N) and P ∈GR(N) with P ′′ ≤ P , and let σ∈Lin(P).
Then there are σ′′ ∈ Lin(P ′′) and σ1, σ2 ∈ FS(N) with σ′′ ≤ σ1 ≡∗

0 σ2 ≤ σ.

14 R.J. van Glabbeek, U. Goltz & J.-W. Schicke-Uffmann

Proof. Let P = ((S,T,F,M0), π) and P ′′ = ((S
′′
,T

′′
,F

′′
,M0), π

′′). From σ ∈
Lin(P) we have a bijection pos between T and the indices of σ. Every fi-
nite process can be linearised to a firing sequence. Hence there exists some
σ′′ ∈ Lin(P ′′). Thence we obtain a bijection pos′′ : T

′′
→ {0 . . . |σ′′| − 1}. Since

P ′′ ≤ P we find pos′′−1 to be an injection {0 . . . |σ′′| − 1} → T. As σ′′ is fi-
nite, jmax := maxi∈{0...|σ′′|−1}pos(pos

′′−1(i)) exists. Let σ2 be the prefix of σ of
length jmax + 1. Then pos−1(σ2) selects a set of transitions from T which to-
gether with the connecting places forms a prefix P2 ≤ P (cf. Lemma 4). Let P2 =
((S2,T2,F2,M0), π2). As σ2 was chosen long enough, we find pos ◦ pos′′−1 to be
an injection from {0 . . . |σ′′|−1} into {0 . . . |σ2|−1} and hence pos−1◦pos◦pos′′−1

to be an injection not only into T but also into just T2. Clearly then T
′′
⊆ T2.

Also π′′ = π ↾(S
′′
∪T

′′
) = (π ↾(S2∪T2)) ↾(S

′′
∪T

′′
) = π2 ↾(S

′′
∪T

′′
) which is to say,

since both σ′′ and σ2 select some prefix from the beginning of the same P , they
must have the same structure between shared transitions. Hence P ′′ ≤ P2. From
Lemma 5 we then obtain a σ1 ∈ Lin(P2) with σ′′ ≤ σ1. As σ1 ∈ Lin(P2) and
σ2 ∈ Lin(P2) we conclude, using Theorem 7.10 from [BD87], that σ1 ≡∗

0 σ2. ⊓⊔

Besides these lemmas, we only need the following “finitary” version of Theorem 1.

Proposition 1. Let σ, ρ ∈ FS(N) and P,Q ∈ GRfin(N) such that σ ∈ Lin(P)
and ρ ∈ Lin(Q). Then σ ≡∗

0 ρ iff P ≡∗
1 Q.

Proof. In [GGS11a] as Theorem 3 and an immediate conclusion from two theo-
rems of [BD87].

σ′′

σ1

σ′

σ2

σ3 ρ′

ρσ

QP

Q′P ′

P ′′

≤

≤

≡∗
1

⊑∞
1

⊑∞
0

≤
≤ ≤

≤

≤ ≤

≡∗
0

≡∗
0 ≡∗

0

Proof of Theorem 2: “Only if”: Suppose σ ⊑∞
0 ρ. Let P ′′ ∈ GRfin(N) with P ′′ ≤

P . It suffices to show that there are P ′, Q′ ∈ GRfin(N) with P ′′ ≤ P ′ ≡∗
1 Q′ ≤ Q.

By Lemma 6 there are σ′′ ∈ Lin(P ′′) and σ1, σ2 ∈ FS(N) with σ′′ ≤ σ1 ≡∗
0 σ2 ≤

σ. By Definition 15, using that σ ⊑∞
0 ρ and σ2 ≤ σ, there are σ3, ρ

′ ∈ FS(N)
with σ2 ≤ σ3 ≡∗

0 ρ′ ≤ ρ. By Corollary 1, using that σ1 ≡∗
0 σ2 ≤ σ3, there is a

σ′ ∈ FS(N) with σ1 ≤ σ′ ≡∗
0 σ3. Hence σ′′ ≤ σ′ ≡∗

0 ρ′ ≤ ρ by the transitivity
of ≤ and ≡∗

0. By Lemma 3, using that σ′′ ≤ σ′ and σ′′ ∈ Lin(P ′′), there is

Abstract Processes in the Absence of Conflicts in General P/T-Systems 15

a P ′ ∈ GRfin(N) with σ′ ∈ Lin(P ′) and P ′′ ≤ P ′. By Lemma 4, substituting
Q, ρ and ρ′ for P , σ and σ′′, and using that ρ′ ≤ ρ and ρ ∈ Lin(Q), there is
a Q′ ∈ GRfin(N) with ρ′ ∈ Lin(Q′) and Q′ ≤ Q. By Proposition 1, using that
σ′ ∈ Lin(P ′), ρ′ ∈ Lin(Q′) and σ′ ≡∗

0 ρ′, we conclude P ′ ≡∗
1 Q′.

σ′′

σ0

σ′

ρ0

ρ1 ρ′

σ ρ

P ′′

P ′ Q′

P Q

≤
≤

≤

≤

≤

≤≤

≡∗
0

≡∗
0 ≡∗

0

≡∗
1

⊑∞
1

⊑∞
0

≤

“If”: Suppose P ⊑∞
1 Q. Let σ′′ ∈ FS(N) with σ′′ ≤ σ. It suffices to show

that there are σ′, ρ′ ∈ FS(N) with σ′′ ≤ σ′ ≡∗
0 ρ′ ≤ ρ. By Lemma 4, using that

σ′′ ≤ σ ∈ Lin(P), there is a P ′′ ∈ GRfin (N) with σ′′ ∈ Lin(P ′′) and P ′′ ≤ P .
By Definition 9, using that P ⊑∞

1 Q and P ′′ ≤ P , there are P ′, Q′ ∈ GRfin(N)
with P ′′ ≤ P ′ ≡∗

1 Q′ ≤ Q. By Lemma 5, using that P ′′ ≤ P ′ and σ′′ ∈ Lin(P ′′),
there is a σ0 ∈ Lin(P ′) with σ′′ ≤ σ0. By Lemma 6, substituting Q′, Q and ρ
for P ′′, P and σ, and using that Q′ ≤ Q and ρ ∈ Lin(Q), there are ρ0 ∈ Lin(Q′)
and ρ1, ρ

′ ∈ FS(N) with ρ0 ≤ ρ1 ≡∗
0 ρ′ ≤ ρ. By Proposition 1, using that

σ0 ∈ Lin(P ′), ρ0 ∈ Lin(Q′) and P ′ ≡∗
1 Q′, we obtain σ0 ≡∗

0 ρ0. By Corollary 1,
using σ0 ≡∗

0 ρ0 ≤ ρ1, there is a σ′ ∈ FS(N) with σ0 ≤ σ′ ≡∗
0 ρ1. Hence σ′′ ≤

σ′ ≡∗
0 ρ′ ≤ ρ by the transitivity of ≤ and ≡∗

0. ⊓⊔

6 A countable conflict-free net has a largest process

We now show that a countable conflict-free net has a largest process. As we
have an order-preserving bijection between FS-process or BD-process, it does
not matter which notion of process we use here. We prove an even stronger
result, using binary-conflict--free instead of conflict-free. In preparation we need
the following lemmas.

Lemma 7. Let N = (S, T, F,M0) be a binary-conflict--free net, σt, σu∈ FS(N)
with σ ∈ T ∗, t, u ∈ T , and t 6= u.

Then σtu, σut ∈ FS(N) and σtu ≡∗
0 σut.

Proof. As we have unlabelled transitions, σ leads to a unique marking. From
M0

σt
−→ ∧M0

σu
−→ we thus have that an M1 exists with M0

σ
−→ M1 ∧M1

t
−→∧

16 R.J. van Glabbeek, U. Goltz & J.-W. Schicke-Uffmann

M1
u

−→. Due to binary-conflict--freeness then also M1
{t,u}
−−−→. Hence M0

σ
−→

{t,u}
−−−→,

so σtu, σut ∈ FS(N) and σtu ≡∗
0 σut. ⊓⊔

Lemma 8. Let N = (S, T, F,M0) be a binary-conflict--free net, σt, σρ∈ FS(N)
with t ∈ T , σ, ρ ∈ T ∗, and t /∈ ρ.

Then σtρ, σρt ∈ FS(N) and σtρ ≡∗
0 σρt.

Proof. Via induction on the length of ρ.

If ρ= ε, σt ∈ FS(N) trivially implies σεt, σtε ∈ FS(N) and σεt ≡∗
0 σtε.

For the induction step take ρ := uµ (thus u 6= t). With σt, σu ∈ FS(N) and
Lemma 7 also σut ∈ FS(N) and σtu ≡∗

0 σut. Together with σuµ ∈ FS(N), the
induction assumption then gives us σutµ ∈ FS(N) and σutµ ≡∗

0 σuµt = σρt.
With σut ≡∗

0 σtu also σutµ ≡∗
0 σtuµ = σtρ and σρt, σtρ ∈ FS(N). ⊓⊔

Lemma 9. Let N = (S, T, F,M0) be a binary-conflict--free net, σ, ρ1, ρ2 ∈ T ∗,
t ∈ T , t /∈ ρ1.

If σt ∈ FS(N) ∧ σρ1tρ2 ∈ FS(N) then σtρ1ρ2 ∈ FS(N) ∧ σtρ1ρ2 ≡∗
0 σρ1tρ2.

Proof. Applying Lemma 8 with σt∈FS(N)∧σρ1∈FS(N) we get σtρ1∈FS(N)∧
σtρ1 ≡∗

0 σρ1t. Since σρ1tρ2 ∈ FS(N) the latter yields σtρ1ρ2 ≡∗
0 σρ1tρ2 and thus

σtρ1ρ2 ∈ FS(N). ⊓⊔

Lemma 10. Let N be a binary-conflict--free net.

If σ, σ′ ∈ FS(N) then ∃µ, µ′. σµ ∈ FS(N) ∧ σ′µ′ ∈ FS(N) ∧ σµ ≡∗
0 σ′µ′.

Proof. Via induction on the length of σ.

If σ = ε we take µ = σ′ and µ′ = ε.

For the induction step we start with

σ, σ′ ∈ FS(N) ⇒ ∃µ, µ′. σµ ∈ FS(N) ∧ σ′µ′ ∈ FS(N) ∧ σµ ≡∗
0 σ′µ′

and need to show that

σt, σ′ ∈ FS(N) ⇒ ∃µ̄, µ̄′. σtµ̄ ∈ FS(N) ∧ σ′µ̄′ ∈ FS(N) ∧ σtµ̄ ≡∗
0 σ′µ̄′ .

If t ∈ µ, µ must be of the form µ1tµ2 with t /∈ µ1. We then take µ̄ := µ1µ2

and µ̄′ := µ′. By Lemma 9 we find σtµ1µ2 ∈ FS(N), i.e. σtµ̄ ∈ FS(N). By the
induction assumption σ′µ̄′ ∈ FS(N). Per Lemma 9 σtµ̄ = σtµ1µ2 ≡∗

0 σµ1tµ2 =
σµ. From the induction assumption we obtain σµ ≡∗

0 σ′µ′ = σ′µ̄′.

If t /∈ µ, we take µ̄ := µ and µ̄′ := µ′t. By Lemma 8 we find that σtµ, σµt ∈
FS(N), i.e. also σtµ̄ ∈ FS(N). From σµt ∈ FS(N) and σµ ≡∗

0 σ′µ′ follows that
σ′µ′t ∈ FS(N), i.e. σ′µ̄′ ∈ FS(N). Also by Lemma 8 we find σtµ̄ = σtµ ≡∗

0 σµt.
From the induction assumption we obtain σµt ≡∗

0 σ′µ′t = σ′µ̄′. ⊓⊔

Theorem 3. Let N = (S, T, F,M0) be a countable, binary-conflict--free net.

Then N has a ⊑∞
0 -largest FS-process.

Abstract Processes in the Absence of Conflicts in General P/T-Systems 17

Proof. Since N is countable, so is the set FS(N) of its finite firing sequences.
Enumerate its elements as σ1, σ2,

By induction, we will construct two sequence ρ1, ρ2, . . . and σ′
1, σ

′
2, . . . of finite

firing sequences, such that, for all i > 0, (1) ρi ≤ ρi+1, and (2) σi ≤ σ′
i ≡

∗
0 ρi.

Now let ρ ∈ FS∞(N) be the limit of all the ρi. Then trivially σ ⊑∞
0 ρ for any

σ ∈ FS∞(N), so that ρ is the ⊑∞
0 -largest FS-process of N .

Induction base: Take ρ1 := σ′
1 := σ1.

Induction step: Given ρi, by Lemma 10 there are µ, µ′ ∈ T ∗ such that ρiµ and
σi+1µ

′ ∈ FS(N) and ρiµ ≡∗
0 σi+1µ

′. Take ρi+1 = ρiµ and σ′
i+1 := σi+1µ

′. ⊓⊔

Corollary 3. A countable and binary-conflict--free net N has exactly one
⊑∞

1 -largest BD-process.

Proof. By Theorem 3, N has a ⊑∞
0 -largest FS-process. Take any representative

firing sequence σ thereof. By Observation 3 there is a P∈GR(N) with σ∈Lin(P).

Now take any Q ∈ GR(N). As N is countable, so is Q. From Observation 3
thus exists ρ ∈ Lin(Q). As σ comes from the largest FS-process, ρ ⊑∞

0 σ. By
Theorem 2 then Q ⊑∞

1 P .

Thus P is a representative of the largest BD-process of N . ⊓⊔

Corollary 3 does not hold for uncountable nets, as witnessed by the counterex-
ample in Fig. 2. This binary-conflict--free net N has a transition t for each real
number t ∈ IR. Each such transition has a private preplace st with M0(st) = 1
and F (st, t) = 1, which ensures that t can fire only once. Furthermore there is
one shared place s with M0(s) = 2 and a loop F (s, t) = F (t, s) = 1 for each tran-
sition t. There are no other places, transitions or arcs besides the ones mentioned
above.

Each GR-process ofN , and hence also each BD-process P , has only countably
many transitions. Moreover, any two GR-processes firing the same countable
set of transitions of N are swapping equivalent. Thus a BD-process is fully
determined by a countable set of reals, and the ⊑∞

1 -order between BD-processes
corresponds with set-inclusion. It follows that N does not have a ⊑∞

1 -largest
BD-process.

0 1

· · · · · ·· · ·

· · · · · ·· · ·

Fig. 2. A net without a ⊑
∞

1 -largest BD-process.

18 R.J. van Glabbeek, U. Goltz & J.-W. Schicke-Uffmann

7 Conclusion

Best and Devillers [BD87] established a bijective correspondence between BD-
processes and FS-processes (our terminology) of countable place/transition sys-
tems. A BD-process is an equivalence class of Goltz-Reisig processes under the
notion of swapping equivalence proposed in [BD87]. An FS-process is an equiva-
lence class of firing sequences under a related notion of equivalence also proposed
in [BD87]. Here we considered natural partial orders on BD-processes as well as
on FS-processes, and showed that the bijective correspondence between BD- and
FS-processes preserves these orders, and hence the notion of a largest process.

Moreover, we showed that a countable place/transition system without bi-
nary conflicts has a largest FS-process, and hence a largest BD-process. By means
of a counterexample we indicated that this result does not extend to uncountable
nets.

We showed in [GGS11a] that the reverse direction, that a place/transition
system with a largest BD-process is binary-conflict--free, holds for a large class
of Petri nets, called structural conflict nets, which include the safe nets. The ex-
ample from Fig. 1 shows it does not hold for arbitrary countable place/transition
systems. This system has a largest BD-process but does have a binary conflict:
after the a-transition, both b and and c are possible, but the step {b, c} is not.

The question whether an uncountable net without (any) conflict always has
a largest BD-process is left open.

References

[BD87] E. Best & R.R. Devillers (1987): Sequential and Concurrent Behaviour in
Petri Net Theory. Theoretical Computer Science 55(1), pp. 87–136, doi:10.
1016/0304-3975(87)90090-9. See also: E. Best and R.R. Devillers (1987):
Interleaving and Partial Orders in Concurrency: A Formal Comparison. In
M. Wirsing, editor: Formal Description of Programming Concepts III, 1987,
pp. 299–321, North-Holland.

[DMM89] P. Degano, J. Meseguer & U. Montanari (1989): Axiomatizing Net Compu-
tations and Processes. In: Proceedings LICS’89, IEEE, pp. 175–185. See also
P. Degano, J. Meseguer & U. Montanari (1996): Axiomatizing the Algebra
of Net Computations and Processes. Acta Informatica 33(5), pp. 641-667,
doi:10.1007/BF03036469.

[GGS11a] R.J. van Glabbeek, U. Goltz & J.-W. Schicke (2011): Abstract Processes of
Place/Transition Systems. Information Processing Letters 111(13), pp. 626
– 633, doi:10.1016/j.ipl.2011.03.013.

[GGS11b] R.J. van Glabbeek, U. Goltz & J.-W. Schicke (2011): On Causal Semantics
of Petri Nets. Informatik Bericht Nr. 2011-06, Institut für Programmierung
und Reaktive Systeme, TU Braunschweig, Germany. Available at http://
theory.stanford.edu/~rvg/abstracts.html#90. Extended abstract in J.-
P. Katoen and B. König, editors: Proceedings CONCUR’11, LNCS 6901,
Springer, 2011, pp. 43-59.

[GGS21] R.J. van Glabbeek, U. Goltz & J.-W. Schicke-Uffmann (2021): Abstract
Processes and Conflicts in General Place/Transition Systems. To appear in
Information and Computation, doi: 10.1016/j.ic2021.104706.

http://dx.doi.org/10.1016/0304-3975(87)90090-9
http://dx.doi.org/10.1016/0304-3975(87)90090-9
http://dx.doi.org/10.1007/BF03036469
http://dx.doi.org/10.1016/j.ipl.2011.03.013
http://theory.stanford.edu/~rvg/abstracts.html#90
http://theory.stanford.edu/~rvg/abstracts.html#90
https://doi.org/10.1016/j.ic2021.104706

Abstract Processes in the Absence of Conflicts in General P/T-Systems 19

[Gol86] U. Goltz (1986): How Many Transitions may be in Conflict? Petri Net

Newsletter 25, pp. 4–9. Available at http://theory.stanford.edu/~rvg/
HowManyTransitionsMayBeInConflict.pdf.

[GR83] U. Goltz & W. Reisig (1983): The Non-Sequential Behaviour of Petri Nets.
Information and Control 57(2-3), pp. 125–147,
doi:10.1016/S0019-9958(83)80040-0.

[GSW80] H.J. Genrich & E. Stankiewicz-Wiechno (1980): A Dictionary of Some Ba-
sic Notions of Net Theory. In W. Brauer, editor: Advanced Course: Net

Theory and Applications, LNCS 84, Springer, pp. 519–531, doi:10.1007/
3-540-10001-6_39.

[HKT95] P.W. Hoogers, H.C.M. Kleijn & P.S. Thiagarajan (1995): A Trace Semantics
for Petri Nets. Information and Computation 117, pp. 98–114, doi:10.1006/
inco.1995.1032.

[Maz95] A.W. Mazurkiewicz (1995): Introduction to Trace Theory. In V. Diekert &
G. Rozenberg, editors: The Book of Traces, World Scientific, pp. 3–41.

[Och89] Edward Ochmański (1989): Personal communication.
[Pet77] C.A. Petri (1977): Non-sequential Processes. GMD-ISF Report 77.05, GMD.

http://theory.stanford.edu/~rvg/HowManyTransitionsMayBeInConflict.pdf
http://theory.stanford.edu/~rvg/HowManyTransitionsMayBeInConflict.pdf
http://dx.doi.org/10.1016/S0019-9958(83)80040-0
http://dx.doi.org/10.1007/3-540-10001-6_39
http://dx.doi.org/10.1007/3-540-10001-6_39
http://dx.doi.org/10.1006/inco.1995.1032
http://dx.doi.org/10.1006/inco.1995.1032

	Abstract Processes in the Absence of Conflicts in General Place/Transition Systems

