
Another look at abstraction in orocess algebra
(extended abstract)

J.C.M Baeten,
Dept. of Computer Science, University of Amsterdam,

P.O. Box 41882, 1009 DB Amsterdam, The Netherlands

R.J. van Glabbeek,
Dept. of Software Technology, Centre for Mathematics and Computer Science,

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Abstract: Central to theories of concurrency is the notion of abstraction. Abstraction from internal
actions is the most important tool for system verification. In this paper, we look at abstraction in the
framework of the Algebra of Communicating Processes (see BERGSTRA & KLOP [4, 6]). We introduce a
hidden step rl, and construct a model for the resulting theory ACP.o. We briefly look at recursive
specifications in this theory, and discuss the relations with Milner's silent step X.
Note: Partial support received from the European Communities under ESPRIT contract no. 432, An
Integrated Formal Approach to Industrial Software Development (Meteor).

1. Introduction.
Central to theories of concurrency is the notion of abstraction. In algebraic concurrency theories
such as the Algebra of Communicating Processes (ACP, see BERGSTRA & KLOP [4, 6]) we use
operators like alternative, sequential and parallel composition, to build up large systems from
smaller processes. Often, such a large system must have a certain prescribed external behaviour,
must communicate in a certain way with the environment. To verify that is indeed the case, we need
to abstract from all internal behaviour of the system.
Following ideas of MILNER [11] and HOARE [10], abstraction can be modelled by distinguishing
two kinds of actions in a process, viz. external or observable actions, and internal or hidden
actions, and by introducing an explicit hiding operator that transforms observable actions into
internal ones. We introduce a constant 11 for a hidden step, and formulate laws for this constant.
Then we discuss the axiom system ACP~, incorporating the r 1 in the Algebra of Communicating
Processes, and consider some properties of this system.
We discuss a model for ACPn consisting of finitely branching process graphs modulo an
appropriate notion of bisimulatlon (see PARK [13], MILNER [12], BAETEN, BERGSTRA & KLOP
[2]). We use this model to establish the consistency of ACP~ and the conservativity of ACP~ over
BPA~n and ACP. We touch upon infinite processes, definedby means of recursive specifications.
Finall3~, we discuss the relations of the constant rl with Milner's silent step x, that is also used for
abstraction (see MILNER [11], BERGSTRA & KLOP [5]). We note that r I has nicer technical
properties than x. Then, we consider two ways of combining both constants. First, the constant
(at least in a system with only prefix multiplication) becomes definable, so that x can be studied in
the system ACPn. Secondly, we can define a homomorphism from ACP~ into ACPx, that renames
r I into x, and leaves all other constants fixed. This means that we can hav~ a two-tiered abstraction:
first we can abstract to 11, and then, if further abstraction is desired, we can abstract from r 1 to x.
The original idea for the r I, and some of its laws discussed in this paper, are due to Karst Koymans
and Jos Vrancken, to whom the authors express their gratitude.
All missing proofs, and extra information, can be found in the full paper [3].

2. Algebra of communicating processes.
In this section, we review the theory ACP (Algebra of Communicating Processes) as defined by
BERGSTRA & KLOP [4, 6]. In the first paper, also a review of related approaches and comparisons
with them can be found.

2.1 Process algebra starts from a collection of given objects, called atomic actions, atoms or steps.
These actions are taken to be indivisible, usually have no duration and form the basic building
blocks of our systems. The first two compositional operators we consider are., denoting sequential
composition, and + for alternative composition. If x and y are two processes, then x'y is the
process that starts the execution of y after the completion of x, and x+y is the process that chooses

85

either X or y and executes the chosen process (not the other one). Each time a choice is made, we
choose from a set of alternatives. We do not specify whether a choice is made by the process itself,
or by the environment. Axioms At-5 in table 1 below give the laws that + and- obey. We leave out
• and parentheses as in regular algebra, so xy + z means (x'y) + z . . will always bind stronger than
other operators, and + will always bind weaker.
On intuitive grounds x(y + z) and xy + xz present different mechanisms (the moment of choice is
different), and therefore, an axiom x(y + z) = xy + xz is not included.
We have a special constant 5 denoting deadlock, the acknowledgement of a process that it cannot
do anything anymore, the absence of any alternative. Axioms A6-7 give the laws for &
Next, we have the parallel composition operator II, called merge. The merge of processes x and y
will interleave the actions of x and y, except for the communication actions. In xtly, we can either
do a step from x, or a step from y, or x and y both synchronously perform an action, which
together make up a new action, the communication action. This trichotomy is expressed in axiom
CM1. Here, we use two auxiliary operators II (left-merge) and [(communication merge). Thus,
xU_y is xlly, but with the restriction that the first step comes from x, and x y is xllY with a
communication step as the first step. Axioms CM2-9 and CF1-2 give the laws for [L and t. The
laws CF1-2 differ slightly from laws C1-3 in BERGSTRA & KLOP [4]. This will facilitate the
formulation of the system ACPn later on. Finally, we have in table 1 the encapsulation operator a~.
Here H is a set of atoms, and a~ blocks those actions, renames them into, & The operator aH can be
used to encapsulate a process, 1.e. to block communications with the environment.

2.2 SIGNATURE: A is a given (finite) set of atomic actions. On A, we have given a partial binary
function 'y, which is commutative and associative, i.e.

T(a,b) = "{(b,a) and T(a,T(b,c)) = ~/(T(a,b),c)
for al l a,b,c e A. Tis the communication function: i f 3,(a,b) is defined (we write ~a,b)$) , and
T(a,b) = c, it means that actions a and b communicate, and their communication is c; i f T(a,b) is
not defined, we say that a and b do not communicate.
All elements of A are constants of ACP. Further, ACP has binary operators +,.,II,IL, I, unary
operators a H (for H c_ A) and a constant &

2.3 AXIOMS: The axioms of ACP are presented in table 1 below. There a ,b e Au{5}, H ~ A, and
x,y,z are arbitrary processes.
Notice that axioms CF1 and CF2 implythat for all a b c e Au{8} we have:

a l b = b a (C1), al(b c)= (a b) c (C2), a l a = a (C3).
Since every expression of the form a b is equal to an element of A~{8}, we can assume that
axioms CM2,3,5-7 and D1,2 also hold for these expressions. We call the theory just consisting of
the first five axioms, A1-5, BPA (so BPA has in the signature only operators +,. and constants A).

x + y = y + x A1
(x + y) + z = x + (y + z) A2
X + X = X A3
(x + y)z = xz + yz A4
(xy)z = x(yz) A5
x + ~ = x A6
~x = ~ A7

aH(a) .= a i f a ~ H DI
a H (a)=a i f a e H D2
aH(X + y) = all(x) + all(y) D3
aH(xY) = aH(x)-aH(y)

a lb (a,b) i f T(a,b)$ CF1
a lb = ~ otherwise CF2

x/ly = xLy +y x + xly

a x::aXaxU~y--2 a(xlly) ,,

(x + y)[Lz = xlLz + yLLz
albx = (alb)x
ax b = (a b)x
ax by = (a b)(x y)
(X + Y) l z = x z + y l z
x l (y + z) = x y + x z

CM1
CM2
CM3
CM4
CM5
CM6
CM7
CM8
CM9

Table 1. ACP.

3. Hidden step T1.
Let us consider a noisy machine, that is executing a process. When the machine starts the execution
of a process, it starts humming. This noise stops upon successful termination. We can observe
when the machine starts the execution of an atomic action a. Every atomic action takes some time to
be executed, but we do not know how tong. Also, this execution time may vary from instance to
instance. Deadlock cannot be directly observed: we just see no termination, and no atomic action

86

beginning. When the machine is executing an internal step rl, it is running for some time, but we do
not observe any action beginning.
For the moment, we restrict our attention to the theory BPA with extra constant'q.
We can observe no difference between processes a13 and a: in both cases we see the action a
beginning as soon as the machine starts, and then we see the machine stop after a while. Also we
can see no difference between 1313 and rl. This leads us to formulate the following law:

x l l = x H1.
We do see a difference between processes 13a and a: in the case of 13a we see a begin some time
after the start of the machine; in the case of a, we see a begin immediately. For the same reason,
we have 13a + a ~ 13a. The same philosophy leads us to adopt the law

a(13x + y) = a(13x + y) + ax H3,
for, when the process a(r lx + y) is executed, i t might be the case that we observe a begin, as soon
as the machine is started, and then after a while, the machine reaches a state where only execution
of x is possible. The laws H1 and H3 are (reformulations of) the first and the third x-law of
MILNER [11]. The considerations made above can be formalised as follows. The theory BPA n has
laws A1-5 and H1,3.

3.1 DEFINITION. We define on BPArl-terms binary predicates~a, and unary predicates ...+a ~, for
each a e Au{13}.

x ~ a y means that process x can evolve into process y, by starting a;
x __,a q means that process x can terminate (successfully), by starting a.

These predicates are defined by the following rules (a ~ Au{rl}, x,y arbitrary processes):
1. a ~ a ~/ 5. if x ~ a q, then xy ~ a y
2. if x ___~a x', then x+y ~ a x' and y+x ~ a x' 6. a ___~a 13
3. if X _._~a ~, then x+y ~ a ~ and y+x ~ a ~/ 7. if x __~a y and y ~ n z, then x ___~a z
4. if x __~a x, then xy ~ a x y 8. if x ._~a y and y ~ ~/, then x ___~a .~.
(Compare these definitions with the ones in VAN GLABBEEK [9].)

Next, we say that two processes are equal, if they can]?erform the same actions:
3.2 DEFINITION. A b is imula t ion is a bin_,ar,'y relation H on process term, s, satisfying (a ~ Au{13}):
1. if R(p,q) and p .__~a p,, then there is a q, such that q ~ a q, and R(p,,q,);
2. if R(p,q) and q ___~a q , then there is a p such that p ___~a p and R(p ,q);
3. if R(p,q), then p ~ a ~/if and only if q ~ a ~/.
If there exists a bisimulation between processes p and q, we say p and q are bis imilar , and write
p ~____q.

3.3 THEOREM. ~ is a congruence on BPA~-terms.

3.4 THEOREM. For all closed BPAn-terms t ,s we have t ~ S ¢=~ BPA n ~- t=s.

3.5 I] AND MERGE. The situation becomes more complicated if we consider the interaction of 1] and
merge. Since rl is also an action, all axioms that hold for atomic actions must also hold for r I. In
particular, laws CM2 and CM3 must hold for 1] instead of a. This leads to the following
observation (assume that a b = 8):
~l(ab + ha) = r l (a l lb) = ~ a l l b = 1313al1 b = rl(13allb) = 13(13all b + b l l ~ a + r l a l b) =

= 13(~(allb) + b13a + 8) = 13(13(ab + ha) + ha).
The first term and the last term in this chain of equations cannot be proved equal in the system
A1-5, H1,3. It turns out that it is sufficient to add one more law to the theory we have so far:

a(13(x + y) + x) = a(x + y) H2.
The execution of the 13 in the left-hand side leads from a state to another state that has at least the
same possibilities, no options get lost. The philosophy is, that the execution of such an internal step
cannot be observed by the environment.

3.6 AN ALTERNATIVE. An alternative to the solution in 3.5 is, not adopting the law H2, but instead
changing the laws CM2 and CM3 of ACP. In accordance with definition 3.1 we would have

a ~ a v a , if x --) x , then xl lY --> x [[y and x l l y ---> x flY
so that in part icular aLEx .._~a nllx. This leads to the fo l lowing formulat ion of laws C M 2 and CM3:
a l l x = a(13x + x), and a x l l y = a(13(xllY) + xllY). We do not take this possibility in this paper,
because we do not want to change the underlying system ACP.

87

3.7 ACPn. Now we collect all axioms discussed so far together in the equational specification
ACP~. The theory ACPn has in the signature, besides the elements of the signature from ACP, a
consthnt rl (rl ~ A) and unary operators r l i for I c_ A. aqiis the hiding opera to r , that renames
actions from I into T1; I is the set of internal actions. ACP~has, besides the axioms in table 1 (in
2.3) the axioms in table 2 below. We put C = Au{&q}, the set of all constants. In tables 1,2 we
have a ,b • C, H,I ~ A, and x,y,z are arbitrary processes. The theory B P A ~ consists of laws
A1-7 and H1-3.

xr I = x H1 aq[(a) = a if a ~ I HI1
a(rl(x + y) + x) = a(x + y) H2 qi(a) = q if a e I HI2
a(r lX + y) = a (q x + y) + ax H3 I"II!X + Y) =,rilE(X) + ,rli(Y) H I3

"rli(xY) = rl]{X)" ~II(Y) HI4

Table 2. Axioms for ACP W

3.8 NOTE: Axioms CM5 and CM6 are derivable from the other axioms of ACP~.

3.9 DEFINITION: A basic term is a closed BPA~-term of the form
t = ant 0 +. . . + a n ltn 1 + b n + . . . + b _ ,

for certain n,m with n+m>0, ~'~r~n ai,b, e C arid'basic terms t i. We usually abbreviate such
expressions, in this case to t -- ~ . n aiti + ~i<m b~.
The set of basic terms BT can be'~nductivel~ 'l~ui~t up as follows (working modulo law H1):
1. r l e BT; 2. if a e C and x e BT, then a x e BT; 3. if x,y e BT, then x÷y e BT.
Alternatively, we can build up BT as follows:
1. r I e BT; 2. if n>0, a i e C a n d t i e BT (for i<n), then Yl<n aitt e BT.
Both these inductive schemes can be used in proofs.

3.10 THEOREM: For every closed ACP_-term t there is a basic term s such that ACPn F t=s.
This is the so-called e l iminat ion thee{tern.

3.11 PROPOSITION: For all closed ACPn-terms x,y,z we have the following laws of s t a n d a r d
c o n c u r r e n c y : X y = y X (xU_y)[Lz = xLL(yllz)

xlly = y l l x (x{y)[L_z = x (y [Lz)
x (y l z) = (x l y) { z x (y l lz) = (x {y) l lz

3.12 NOTE: We usually assume that the laws of Standard Concurrency hold for all processes.
Therefore, they are often called the axioms of Standard Concurrency.
Often, we also assume the following Handshaking Axiom: X [y lz = 8 (HA).
It says, that all communication is binary, i.e. only involves two communication partners.

3.13 PROPOSITION: In ACP~ with standard concurrency and handshaking axiom we have the
fonowing expansion theoreih (n>l_) (where II, - X.i of course means xu,,...̂ ll IlXn,. ~"

L<n Xi = -~'i_<n xiLL(k<_n, k~i Xk) + I~ii<j<n (Xi xj)LL(k~n, k,i,j Xk)"

4. T h e g r a p h m o d e l .
We construct a model for ACP~q consisting of equivalence classes of process graphs.

4.1 DEFINITION: A process graph is a labeled, rooted, finitely branching, directed multigraph. An
edge goes from a node to another (or the same) node, and is labeled with an element of C, the set
of constants. We consider only finitely branching graphs, so each node has only finitely many
outgoing edges. Graphs need not be finite (have finitely many nodes and edges), but we must be
able to reach every node from the root in finitely many steps, so our graphs never have height more
than co. Finite graphs are also called regular graphs. G is the set of all process graphs, except the
trivial graph 0, just consisting of one node. For more information about process graphs, see e.g.
BAETEN, BERGSTRA & KLOP [2].
An a-step in a graph from s to s ' is an edge going from s to S' with label a e C, notation s _..>a
S'; ~n is the transitive and reflexive closure of --->~, so s -*n S' if there is a number of rl-labeled
edges (>0), starting in s, and ending in s'. --,n is called a general ized rl-step.

88

In order to define when two graphs denote the same process, we have the notion of bisimulating
process graphs. For more information about bisimulations, see PARK[13], MILNER [12] or
BAETEN, BERGSTRA & KLOP [2].
4.2 DEFINrrIoN. Let g,h be process graphs, and let R be a relation between nodes of g and nodes
of h. R is a rooted r l -bis imulat ion between g and h, notation R: g _ ~ h, iff
1. The roots of g and h are related.
2. If R(s,t) and S>a S' is an edge in, g with label aE A (so a , ~ , a~5), then, in h, we can do a
generalized rl-step t --,n t* to a node t with R(s,t), and from t , there is an a-step, followed by a
generalized rl-step to a node t' with R(s',t '). See fig. la.

g h g h

a~" rl a
• -

S ' ' ¢

n

t ° S '

Fig. la. Fig. lb.
In case (S,t) is thepair of roots, we must have t--t* (this is part of the so-called root condition).
3. Vice versa: if R(s,t) and t ..+a t is an edge in h with label a~ A, then, in g, we can do a
generalized rl-step s --,n s* to a node s* with R(s*,t), and from s*, there is an a-step, followed by
a generalized rt-step to a node s ' with R(s' , t ') . See fig. lb. In case (S,t) is the pair of roots, we
must have s - - s* (another part of the root condition).
4. If R(s,t) and s --* s is an edge m g, then, m h, we can do a generalized rl-step t +n t' to a
node t' with R(s',t '). In case (s,t) is the pair of roots, the step t -++1 t' must contain at least one edge
(the third part of the root condition).
5. Vice versa: if R(s,t) and t -..~n t' is an edge in h, then, in g, we can do a generalized Tl-step s ~n
s ' to a node s ' with R(s',t '). In case (s,t) is the pair of roots, the step s ~ n S' must contain at least
one edge (the last part of the root condition).
6. If R(s, t) and s is an endpoint in g (i.e. s has no outgoing edges), then, in h, we can do a
generalized rl-step to an endnode of h.
7. Vice versa: if Fi(s,t) and t is an endpoint in h, then, in g, we can do a generalized Tl-Step tO an
endnode of g.

A relation R between nodes of g and nodes of h is an Tl-bisimulation between g and h, g . ~ h,
if we do not require the root condition in points 2-5.
Graphs g and h are rr l-bisimilar , g ___~ h, if there is a rooted Tl-bisimulation between g and h; g
and h are r l-bisimilar , g _ ~ h, if there ts a rl-bisimulation between g and h.

4.3 EXAMPLES: See fig. 2. We have a ,b ,e E Au{rl}, so e-~3.

~-'> rTI a ~-~r~

"+ i a+
~ " > r ~ a a <-"~' r ~ a

°

89

b

O

vii. ~, i
a

vi. a ~ [~ 11

O rn

viii. 4 i

~ a

Fig. 2.

O

O O

4.4 We see that ~ and ~ are equivalence relations on ~3. ~3/~.~¢n will be the domain of the
graph model for ACPn. The iriterpretation of a constant a e C is the ei~uivalence class of the graph
with two nodes and a single edge between them labeled a. What remains is the definition of the
operators of ACP_ on G/.~¢~. We will define these operators on ~3, and will then show that
is a congruence relation w.r.t, them.

4.5 DEFINITIONS.
1. +. I fg ,h e G, graph ~+h is obtained by taking the graphs of 9 and h and adding one new node
r. For each edge S ...~a S in g from the root of g, we add an edge r __~a S'; similarly, for each edge a)- " a
t ~ t m h from the root of h, we add an edge r --4 t . Then, we discard nodes and edges that
cannot be reached from the new root r. EXAMPLE:

°.i +
Fig. 3.

2... If g,h e G, graph g 'h is obtained by identifying all endpoints of g with the root node of h. If
9 has no endpoints, the result is just g. The root of 9"h is the root of g. EXAMPLE:

Fig. 4.
3.]l. If g,h e ~ , graph g[[h is the cartesian product graph of graphs g and h, with 'diagonal'
edges added for communication steps, i.e. if (s,t) is a node in glib, then it has an outgoingedge
(s,t) __)a (S ,t) for each edge s ._~a S in g, an outgoing edge (s,t) ..~o (s,t') for each edge t __)o t in
h, and moreover, whenever ~a,b) is defined, outgoing edges (s,t) _.~(a,b) (S ,t), so-called
diagonal edges. The root of g ll h is the pair of roots of g and h.

90

EXAMPLE: Suppose y(a,a) = d, and y(a,b) and y(a,c) are not defined. Then:

bL
Fig. 5.

4. [L. If g,h e ~3, graph glLh is obtained from graph gllh by adding a new node r, and, if s is the
root of g and t the root of h, then we add, for each each edge S ___~a S in g, an edge r .__~a (s',t).
Then, we discard nodes and edges that cannot be reached from the new root r.
EXAMPLE: (communications as in the previous example)

a t l_ a a EL a = a

b

Fig. 6.
5. l- Similar to 4: if g,h e (3, graph g lh is obtained from graph gnh by adding a new node r, and
adding, if s is the root of g and t the root of h, an edge r _..)a (s ,t) for each diagonal edge (s,t) __,a
(s',t') in gllh. Then, we discard nodes and edges that cannot be reached from the new root r.
EXAMPLE: (communications as before)

Fig. 7.
6. O H, rl I. If g e (3, obtain 0H(g) by replacing all labels in g from H by 8, and obtain rli(g) by
replacing all labels from I by rl.
This finishes the definition of the operators of ACP~I on {3. Then we also have the operators on
~3/..~_.nl, if we use the following proposition.

4.6 PROPOSrrlON. ~ is a congruence relation on ~3.

4.7 THEOREM: ~3/_.~_rn is a model of ACP~I.

4.8 REMARK: We also obtain models of A CP~I, if instead of limiting ourselves to finitely branching
graphs, we allow all graphs of branching degree less than some infinite cardinal number. Thus we
get models G~/~..~__rn. ~3/~..~_. m is the model G~o/~_~__n,. Also, the set R of all finite process graphs
modulo ~ and t~e set ~iSf all finite and acyclic"process graphs modulo ~ form models of
ACP n.

4.9 THEOREM: ACPn is sound and complete for closed terms, with respect to G/e-~r~, i.e.
for all closed ACPn-terms t,s we have: graph(t) ---~rn graph(s) ¢:, ACP~I F t=s.

4.10 THEOREM: ACP_ is a conservative extension of BPAsn and of ACP, i.e. for all closed
BPArm-terms t,s we h~ce ACP_ F t=S iff BPA~n F t=s,- '
and tot all closed ACP-terms t,s we'have -- ACP~I F t=s iff ACP F t=s.

91

5. Inf inite processes .
Most processes encountered in practice cannot be represented by a closed term, by an element of
the initial algebra of ACP~, but will be specified recursively. Therefore, the model presented in the
previous section also contains infinite processes, processes that can perform infinitely many actions
consecutively. The algebraic way to represent such processes is by means of recursive
specifications. We state some principles for infinite processes, that hold in the graph model.

5.1 DEFINITION. A recursive specification over ACP_ is a set of equations {x = tu : x~ X},
with X a set of variables, and t x a term over ACP_ and var'|ables X. No other variables ~ a y occur
in t x. There is exactly one equation x=!~ for each'~variable x. X contains one designated variable,
called the root variable. A process p (m a certain model of ACP~) is a solution of the recursive
specification E if substituting p for the root variable of E, and substituting other elements of the
model for the other v a ~ b l e s of E, yields a set of statements that hold in the model.

5.2 DEFINITION. i. Let t be a term over ACP n, and x a variable in t. We call the occurrence of x in t
guarded if x is preceded by an atomic action, i.e. t has a subterm of the form a-s , with a~ A, and
this x occurs in S. Otherwise, we call x unguarded.
ii. A recursive specification {x=L : x~ X} is guarded if no t x contains an abstraction operator lqi,
and each occurrence of a variable*in each t x is guarded.

5.3 REMARK: We will see in the sequel that each guarded recursive specification has a unique
solution in the graph model of section 4. We see that the constant ~ cannot be guard, since the
equation x = rlx has infinitely many solutions (for each process p, 110 is a solution).
A definition of guardedness involving abstraction operators rli is very complicated. Therefore, we
limit ourselves to the case where no abstraction operators appear m a recursive specification. Of
course, we can apply abstraction to a process that has been defined by means of a guarded
recursive specification.

5.4 THEOREM. The graph model G/<---~tn satisfies the Recursive Definition Principle
(RDP): Every guarded recursive si~cification has at least one solution.

5.5 THEOREM. The graph model G/~--~rn satisfies the Recursive Specification Principle
(RS P): Every guarded recursive specification has at most one solution.

5.6 DEFINITIONS. i. A process p is definable if it can be obtained from the constants C by means
of guarded recursion and the operators of ACP,.
ii. A process p can be written in head normal ' form if there is an n>0, constants a l , . . . , a n e C
and processes Pl ,"',Pn such that p = ~"i<n aiPi.

5.7 PROPOSITION: Each definable process can be written in head normal form.
Note that all elements of G/~_.tn are definable. As an application of proposition 5.7, we have the
following proposition.

5.8 PROPOSITION: Let p,q be definable processes. Then F PIIq = qltP.

5.9 FAIRNESS. To conclude this section, we want to mention the fairness principle HAR. This is
the rl Abs t rac t ion Rule, and is comparable to Koomen's Fair Abstraction Rule KFAR, see
BAE~N, BERGSTRA & KLOP [2]. HAR states that a process will not perform an infinite sequence
of internal steps, but will perform an external step eventually (if possible):

i f x = ix + y, and i ~ I, then r l i (X) = r l ' r l t (Y) + t i t (y) .
A particular consequence of HAR should be mentioned: if we define the process x by the recursive
equation x = ix, then rhi~(x) is the process that only performs an infinite sequence of internal steps,
a situation that is often ~'alled livelock. Taking y = 8, an application of HAR yields rl{i}(x) = rlS, an
equation that we can call livelock = deadlock.

6. Relations with ~.
6.1 This paper is called another look at abstraction in process algebra, because a different
abstraction mechanism has already been in use in process algebra for some time, starting with

92

BERGSTRA & KLOP [5]. This abstraction mechanism is based on Milner's silent step ~.
The three laws of the constant x are from MILNER [11], and are as follows:

x't = x t x + x = xx a('~x + y) = a(zx + y) + ax
The crucial difference with the rl-laws presented in section 3 is the second law: the second x-law
implies the second Tl-law, since z(x + y) = x(x + y) + (x + y) = x(x + y) + x + y + x = x(x + y) + x,
but not the other way around, as example 4.3 .ix illustrates. We can motivate the second z-law by
reconsidering the action relations of 3.1. If we change their meaning to:
x __.~a y means that process x can evolve into process y, during a period in which a starts;
x ___~a ~/means that process x can terminate (successfully), after performing an a-step,
then we have for x the same definition as the one in 3.1 for the 11, with two extra clauses:
9. if x -*~ y and y -÷a z, then x --~a Z 10. if X --~ y and y --~a "4, then x ~ a "]
(see VaN GLABBEEK [9]). It can be argued that the presence of these clauses makes the x less
operational than the tl. It turns out that the z-laws give a complete axiomatisation for these modified
action relations, i.e. for all closed BPA~-terms t,S we have t ~ s ¢:* BPA~ ~- t=s. In this
philosophy, x and 11 denote the same process, but in ACP n, more subtle differences between
processes are observable. The t 1 of ACP~I is between the tl o f the action relations 3.1 and z.
A different motivation for x is along the lines of the beginning of section 3: when the machine is
executing an intemal step x, it is running for a period of time, which can also have no duration;
therefore, we can consider 11 to stand for 1 or more machine-steps, and x to stand for 0 or more
machine-steps (clauses 9 and 10 above can also be used with this motivation, if we keep the
original meaning of predicates _~a). This philosophy does not mesh nicely with the abstraction
operator zt: it now abstracts an atomic action of some duration to a process which might have no
duration. The difference between x and tl has far-reaching consequences, of which we will mention
a few in the sequel. The first of these differences is that not all laws of ACP, that hold for all atomic
actions a, also hold for x. For if ?(a,b) is defined, we obtain x a l b = (xa + a) [b = z a l b + a [b =
xa [b + ?(a,b) , so z a [b contains a summand y(a,b), contrary to the situation with rl. Thus, in
order to axiomatise the theory ACP., the relation of'~ and merge had to be explicitly defined, which
necessitated careful deliberations. ~ h e result was the axiom system ACP~, which consists of the
axioms in table 1 (in 2.3), the three x-laws above, and the axioms in table 3 below. In all these
axioms, we have a ,b • Au{8}, H,I ~ A and x,y,z are arbitrary processes.

xl lx = xx TM1 O.(x) = x DT
xlxtXlly ~ '~(xllY) TM2 x i (x) = x TI1

- T C 1 '~I(a) = a i f a ~ I TI2
x[x - ~ TC2 ~i(a) = x ff a • I TI3
xx l y = x x y TC3 xx(x + y) =,xl(x) +,xl(y) TI4
x l zy = y TC4 'Ci(xY) = XI(X)" x i (y) TI5

Table 3. Axioms of ACP x.

6.2 The theory ACPn, as developed in this paper, has nicer technical properties than the theory
ACPx. For instance, the proofs of theorem 3.I0 (Elimination Theorem) and propositions 3.11
(laws of Standard Concurrency) and 3.13 (Expansion Theorem) become more cumbersome (see
BERGSTRA & KLOP [5]). Also, not every definable process can be written in head normal form,
and the set of all finitely branching process graphs cannot be made into a model for ACP~, because
it is not closed under the communication merge (see BAETEN, BERGSTRA & KLOP [2]).
However, the authors do not favor one theory over the other, and feel they are not in competition.
Depending on the particular application, one theory may be more suited than the other, and the
theories can even be applied one after the other (the x represents a further abstraction than the 11; in
the sequel we will define a mapping 'rtn } that abstracts more, by renaming rl into x), or even
simultaneously (in the sequel we define "~ m ACP~, at least in prefix position).

6.3 DEF/NITION. We will define a mapping z~_l from ACP_-processes to ACPz-processes on the
graph model G. First some notes on the graph~odel of AC~ x.
The graph model of countably branching process graphs modulo rooted x-bisimulation for ACP~ is
defined in BAETEN, BERGSTRA & KLOP [2]. We denote this model by ~3~t 1/~->rx. The definition of
rooted x-bisimulation is very similar to the notion of rooted tl-bisimulation; the differences are
(using the notation of 4.2) that in 2 we do not require R(s,t*), in 3 we do not require R(s*,t), and
we drop the root condition in point 2 and 3 (but not in 4 and 5). For the proof that ACP~ is sound

93

and complete for closed terms w.r.t. Gt~ 1/~r~, we also refer to [2]. The definition of the operators
on G~l/4ot~ is the same as on G/e-~rn, except for the definition of the communication merge (the
set of finitely branching process graptis cannot be made into a model for ACPx, because it is not
closed under this communication merge).
Then, the mapping tin t simply changes all rl-labels of a graph to c-labels. Thus, for a process
graph g that does not h~ve a rl or c label, we have c{~}(rli(g)) = ci(g).

6.4 PROPOSITION: The mapping c{n} is a homomorphism w.r.t, the operators +, . , l I ,La H.

6.5 NOTE: The mapping c{n t is not a homomorphism w.r.t .I. If e.g. Ha,b) is defined, then ca [b
= y(a,b), while rla Ib = 5.

6.6 Tr~OREM. Let g be a finitely branching graph with labels from Aw{&~q}, and let h be a finitely
branching graph with labels from Aw{~}, such that c{Tll(g) ~--~--rz h. Then g 4-~rr I h.

6.7 Theorem 6.6 allows us to formulate the following proof principle:
ff x is an ACPn-process and y is an ACP-process, and 'rt~,(x) = y, then x = y.

We will call this the Two-t ie red Abs t rac t ion Pr inc ip le (TAP). It follows from the
completeness of the graph model that TAP is derivable for closed terms. In the following example
we apply this proof principle.

6.8 EXAMPLE: A bag (a channel that does not preserve the order of its contents) with input port i
and output port j.is given by the following guarded recursive equation:

_ B'J = 7_,d~ Q ri(d)'(B'Jllsj(d)).
Here D is a finite set o t data, ri(d) is the atomic action receive datum d at port i, and sj(d) is the
atomic action send datum d at port j. For more information, see BAETEN, BERGSTRA & KLOP [1].
Now we connect two bags in series. If we abstract from the communications between the bags, the
resulting process should a~aln be a bag. We express this as follows.
In fig. 8, we have bags B 1~ and B 23. Communications between them are given by defining

~r2 (d) , s2 (d)) = 7(s2(d) , r2(d)) = c2(d)
(communicate d at 2). T is undefined in all other cases. When we merge these bags, we have to
encapsulate unsuccessful communications, actions from H = {r2(d), s2(d) : d~ D}, and abstract
from internal steps, actions from I = {c2(d) : d~ D}. With these definitions, we have the following
theorem.

Fig. 8.

6.9 THEOREM: ll.I°a~(B1211B23) = B 13. o 2
12 3 13 PROOF: In BAETEN,'~EROSTRA & KLOP [1] it is proved that c I 0N(B liB) = B .

o 12 23 o , ; o 12 23 By the remark at the end o f 6.3, we have c I aH(l~" lIB) = x{~} Tl] aH(B lIB). A n appl icat ion
of the Two-tiered Abstraction Principle finishes the proof.

6.10 Thus, we can see that we can consider ACP~ to be a homomorphic image of ACP, (viewing I
as a hidden operator). (Note that this mapping cannot be an isomorphism by example 4'.3.ix.)
When verifying statements about processes, we often use abstraction from internal behaviour. Now
it is possible to use the operator TIT, and the theory ACP_, to implement this abstraction. Then later,
if we want to abstract further, if we want to identify mo~e processes, we can apply the operator c{n }
and use the theory ACPx to see if the obtained expression can be simplified further. Of course,
having done that, it is still possible to add more identifications, for instance the laws of failure
semantics (see BROOKES, HOARE & ROSCOE [8] or BERGSTRA, KLOP & OLDEROG [7]).
In the sequel we will consider a different way to use the constants c and lq together, by defining
(part of) c in ACP,. Where the approach with the operator tin } is closest to the first motivation
given in 6.1, the following approach is more consistent with the' second motivation in 6.1.

6.11 DEFINITION: Enrich the signature of ACP n with a unary operator c and add the following law:
C(x) = TlX + X TH.

We call the resulting theory ACP~. Note that, as an immediate consequence of law A4, we have

94

that ~(x)-y = x(x'y). This allows to write "~'x instead of'c(x).

6.12 ImMMA: The following equations are provable in the theory ACP.~ (a~ C):
1. axx = a x 2. , ~ x = ,cx 3. ~ = ~1 4. ~ 5 - z ~ 8
5. xx + x = xx 6. a (xx + y) = a(xx + y) + ax 7. ~ x ~ y = TI(Xlly) + x ~ y

6.13 LEMMA: The fo l low ing equations are provable for al l closed ACP -terms x,y:
1. xxy = xy 3. x L x y = X[J_Tly = x[Ly ~
2. =xly = x l y = xl=y 4. ~xlly = =(xlly).

6.14 We have seen that we can introduce x in the theory ACP~ as a unary operator, so that we can
simulate prefix multiplication by x. In prefix position, this x ob6ys all laws of the ~ in ACP~ (at least
for closed terms), except for the law for left-merge. Strangely enough, obtaining x from ACP~ by
means of the mapping x ~ respects all operators except the auxiliary operator 1, and obtaining z in
ACPn as a unary operatb?}espects all operators except the auxiliary operator I]. Thus, viewed with
the greater discriminating power of the rl, we see that the laws used in ACPx to define the relation
of x and merge, generate friction amongst eachother, so they cannot be united with the laws for rl.
In both cases though, we do get the same laws for x and merge.

6.15 REMARK: It still can be viewed as a drawback that we were not able to define aprocess x in
the theory ACPn. We can do this, however, with the use of another constant, namely the empty
process e discussed in VRANCKEN [14]. The constant e has the characteristic laws ex = Xe = X.
We see that e is the process that terminates immediately (stands for zero machine-steps), and we
can formulate the following definition: x = 1"1 + E.
Thus, x becomes definable in a theory ACPn with e, and in this theory, we can also define a
mapping x{.q}, renaming "q into x, so that x I = x{~tI°rli.

References
[1] J.C.M.BAETEN, J.A.BERGSTRA & J.W.KLOP, Conditional axioms and o~/fl-calculus in
process algebra, report CS-R8502, Centre for Math. & Comp. Sci., Amsterdam 1985, to appear
in: Proc. IFIP Conf. on Formal Description of Progr. Concepts (M.Wirsing, ed.), G1. Averna~s
1986, North-Holland.
[2] J.C.M.BAETEN, J.A.BERGSTRA & J.W.KLOP, On the consistency of Koomen's fair
abstraction rule, to appear in Theor. Comp. Sci. 51 (1/2).
[3] J.C.M.BAETEN & R.J.VAN GLABBEEK, Another look at abstraction in process algebra, report
CS-R8701, Centre for Math. & Comp. Sci., Amsterdam 1987.
[4] J.A.BERGSTRA & J.W.KLOP, Process algebra for synchronous communication, Inf. & Control
60 (1/3), pp. 109- 137, 1984.
[5] J.A.BERGSTRA & J.W.KLOP, Algebra of communicating processes with abstraction, Theor.
Comp. Sci. 37 (1), pp. 77 - 121, 1985.
[6] J.A.BERGSTRA & J.W.KLOP, Algebra of communicating processes, Proc. CWI Symp. Math.
& Comp. Sci. (J. de Bakker, M.Hazewinkel & J.Lenstra eds.), pp. 89-138, North-Holland, 1986.
[7] J.A.BERGSTRA, J.W.KLOP & E.-R.OLDEROG, Failures without chaos: a new process
semantics for fair abstraction, report CS-R8625, Centre for Math. & Comp. Sci., Amsterdam
1986, to appear in: Proc. IFIP Conf. on Formal Description of Progr. Concepts (M.Wirsing, ed.),
G1. Avern~es 1986, North-Holland.
[8] S.D.BROOKES, C.A.R.HOARE & A.W.ROSCOE, A theory of communicating sequential
processes, JACM 31 (3), pp. 560 - 599, 1984.
[9] R.J.VAN GLABBEEK, Bounded nondeterminism and the approximation induction principle in
process algebra, Proc. STACS 87 (F.Brandenburg, G.Vidal-Naquet & M.Wirsing, eds.), Springer
LNCS 247, pp. 336 - 347, 1987.
[I0] C.A.R.HOARE, Communicating sequentialprocesses, Prentice Hall 1985.
[11] R.MILNER, A calculus of communicating systems, Springer LNCS 92, 1980.
[12] R.MILNER, Lectures on a calculus of communicating systems, Seminar on concurrency
(S.D.Brookes, A.W.Roscoe & G.Winskel, eds.), pp. 197 - 220, Springer LNCS 197, 1985.
[13] D.M.R.PARK, Concurrency and automata on infinite sequences, Proc. 5th GI Conf.(P.
Deussen, ed.), Springer LNCS 104, pp. 167 - 183, 1981.
[14] J.L.M.VRANCKEN, The algebra of communicating processes with empty process, report FVI
86-01, Dept. of Comp. Sci., Univ. of Amsterdam 1986.

