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Abstract

Two process calculi may be compared in their expressive power using encodings between them. Not every such translation
is meaningful and therefore quality criteria are necessary. There are several frameworks to assess the quality of encodings.
A rather prominent approach consists of five criteria for valid encodings collected by Gorla. An alternative notion of
validity up to a semantic equivalence was proposed by one of the authors. Here the quality of the encoding is measured
by the strength of the semantic equivalence that makes it valid.

In this paper we analyse two well-known translations from the synchronous into the asynchronous π-calculus, both
meeting Gorla’s criteria, and evaluate the encodings’ validity up to different semantic equivalences.

While Honda and Tokoro’s translation is valid only for the weakest of the considered behavioural equivalences,
Boudol’s encoding also respects stronger ones. One could hence argue that Boudol’s translation is more faithful.
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1. Introduction

Since the late 1970s, a large number of process calculi
has been invented and studied, see e. g. [2]. The need for
new process calculi emerged with different requirements
for analysability and applicability. Due to the significant
number of process calculi, techniques to bring order into
the process calculi landscape are highly useful. One of
those techniques consists of the comparison of the expres-
sive power of process languages. A well-established way of
doing this is based on the existence of convincing transla-
tions between them.

Translations between process calculi help us under-
stand their differences and commonalities. A translation
may also be useful to make existing tools for the target
language available for the source language.

A calculus B is at least as expressive as A if there ex-
ists a translation, mapping every A expression to an ex-
pression of B such that certain criteria are met. The crite-
ria are necessary, because not every translation is suitable
or meaningful. The literature provides a wide variety of
translations between process calculi for which the authors
often establish their own criteria satisfied by their transla-
tion, cf. [6]. Unfortunately, due to the very different crite-
ria, it is hard to compare two translations with each other.
To obtain formal arguments comparing two translations, a
unified set of quality criteria is required. Gorla proposes a
set of five criteria to assess process calculi encodings1 [6].

∗This work was partially supported by the DFG (German Re-
search Foundation).

1We use the terms encodings and translations synonymously.

A different approach for assessing the quality of encodings,
also applicable to languages other than process calculi, is
proposed by one of the authors in [4]. There, the concept
of a valid encoding up to some semantic equivalence ∼ is
defined, demanding that the meaning of an expression and
its translation are equivalent. This criterion has already
been used to compare Milner’s CCS with Hoare’s CSP [4].

In this paper we analyse the validity, in the sense of [4],
of two translations from a synchronous into an asynchro-
nous variant of the π-calculus. Both are known to satisfy
Gorla’s criteria [5]. One encoding is given by Boudol [3],
the other by Honda and Tokoro [7]. Although source and
target language are very similar, the encodings use differ-
ent ideas to encode synchrony by asynchronous primitives.
Hence, the encodings serve as perfect candidates for a case
study on the concept of validity introduced in [4]. We find
an answer to the questions to what extent the validity of
both encodings depends on the choice of the equivalence,
and if there is any difference in the translations’ quality.
In Gorla’s framework both translations have equally good
properties, i. e. all five of Gorla’s criteria are met [5].

We choose several semantic equivalences under which
we evaluate the validity of the encodings. For each trans-
lation we find equivalences up to which they are valid
and some for which we disprove validity. Moreover, we
find a potential difference in the quality of the transla-
tions by presenting equivalences for which Boudol’s en-
coding is valid, but Honda and Tokoro’s encoding is not.
Conversely, we conjecture that there is no natural equiva-
lence for which Honda and Tokoro’s encoding is valid, but
Boudol’s is not.



In Sect. 2, we give preliminary definitions. Sect. 3
defines syntax and semantics of our variants of the syn-
chronous and asynchronous π-calculus. Furthermore, we
introduce the equivalence notions employed in this paper.
In Sect. 4, we present Boudol’s translation and discuss up
to which equivalences it is valid. Analogously, we discuss
Honda and Tokoro’s encoding in Sect. 5. Sect. 6 concludes.

2. Valid Translations between Languages

In this section, we introduce the notions of language, trans-
lation and validity of a translation according to [4]. The
definitions may be applied to arbitrary translations be-
tween formal languages. However, the focus of this paper
is on process calculi.

Definition 1. Let DL be a set. A language is a pair L =
(TL , J KL ) where TL is the set of all valid expressions and
J KL : TL → DL is a function which associates with each
expression P ∈ TL its meaning JP KL ∈ DL .

DL is called the semantic domain of (TL , J KL ). If DL is
the set of all labelled transition systems, then J KL may be
the function mapping each L -term T ∈ TL to its tran-
sition system JT KL given by some structural operational
semantics.

In [4] languages L with process variables are consid-
ered, drawn from a set X , and accordingly DL is of type
(X → V )→ V for some set of values V . Here an element
of X → V is a valuation, associating a value from V with
each process variable, and the meaning of an expression
is a value that depends on the choice of such a valuation.
Since in this paper we deal with languages without process
variables, we can instead take DL to be V .

Definition 2. Let L1,L2 be languages. A translation
from L1 to L2 is a function T : TL1 → TL2 .

We call L1 the source language and L2 the target language
of T . We require the behaviour encoded by a source term
P ∈ TL1

to be preserved by its translation T (P ).

Definition 3. Let Li (i = 1, 2) be languages with seman-
tic domains DLi and let∼ be an equivalence on DL1∪DL2 .
A translation T : TL1

→ TL2
is valid up to ∼ iff T is

compositional and JT (P )KL2
∼ JP KL1

for all P ∈ TL1
.

Here a translation T is called compositional if for every
n-ary operator f in the source language one has

T (f(P1, . . . , Pn))
α
= Cf (T (P1), . . . ,T (Pn))

for some n-hole context Cf . Here
α
= denotes equivalence up

to α-conversion, i.e., renaming of bound names. The defi-
nition in [4] is more general, because it also covers language
constructs such as recursion; this generality is not needed
here. In [4] the use of the above definition is restricted
to languages in which all semantic values are denotable
by closed terms; this condition is trivially fulfilled for the

languages considered here. In fact, formally the semantic
domain DL of the languages L occurring in this paper
consists of the (closed) terms of L up to α-conversion—
the real semantics is given by an appropriate equivalence
relation on these expressions. In addition, since in this pa-
per we investigate languages that make no use of process
variables, the translations under investigation are auto-
matically what is called “fvr-translations” in [4].

In [4], besides the notion of a valid translation, also the
concept of a correct translation up to an equivalence ∼ is
introduced. This definition requires ∼ to be a congruence
for the source language. As this condition is not met by
the semantic equivalences of this paper, we will not apply
the notion of a correct translation here.

3. Process Calculi

In this section we introduce two versions of the π-calculus,
namely a subset πms of the (synchronous) π-calculus and
an asynchronous π-calculus πma. We specify syntax and
semantics, and we list semantic equivalences under which
we will compare processes of the source language πms with
translated processes of the target language πma.

3.1. A Synchronous π-Calculus
The (synchronous) π-calculus was first introduced by Mil-
ner, Parrow and Walker [10]. Here we use a subset of their
operators that was first employed in [9].

Definition 4. Let N be a set of names. The syntax of
the synchronous mini-π-calculus, πms, is defined by the
grammar

P ::= 0
∣∣ x̄z.P ∣∣ x(y).P

∣∣ P |P ∣∣ (y)P
∣∣ !P

where x, y, z ∈ N .

0 denotes the empty process. x̄z stands for an output
guard that sends the name z along the channel x. x(y)
denotes an input guard that waits for a name to be trans-
mitted along the channel named x. Upon receipt, the
name is substituted for y in the subsequent process. P |Q
(P,Q ∈ πms) denotes a parallel composition between P
and Q. !P is the replication construct and (y)P restricts
the scope of name y to P .

The input construct x(y).P binds the name y in P ;
similarly the restriction (y)Q binds y in Q. We denote the
bound names of P by bn(P ), free names by fn(P ), and
define n(P ) := bn(P ) ∪ fn(P ). With P{w/y} we denote
the result of substituting w for all free occurrences of y in
P , with change of bound names to avoid name captures.

Following [11, 9], we give two semantics of πms: a
labelled transition semantics and a reduction semantics.
The labels of the former are drawn from a set of actions
Act := {x̄y, x(y), x̄(y) |x, y ∈ N} ∪ {τ}. We define free
and bound names on transition labels:

fn(τ) = ∅ bn(τ) = ∅
fn(x̄z) = {x, z} bn(x̄z) = ∅

fn(x(y)) = {x} bn(x(y)) = {y}
fn(x̄(y)) = {x} bn(x̄(y)) = {y}
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For α ∈ Act we define n(α) := bn(α) ∪ fn(α).

Definition 5. The labelled transition relation of πms is
the smallest relation −→ ⊆ Tπms

× Act× Tπms
, satisfying

the rules of Fig. 1.

(OUTPUT-ACT)

x̄z.P
x̄z−→ P

(INPUT-ACT)
w 6∈ fn((y)P )

x(y).P
x(w)−→ P{w/y}

(PAR)
P

α−→ P ′ bn(a) ∩ fn(Q) = ∅
P |Q α−→ P ′|Q

(COM)
P

x̄z−→ P ′ Q
x(y)−→ Q′

P |Q τ−→ P ′|Q′{z/y}

(CLOSE)
P

x̄(w)−→ P ′ Q
x(w)−→ Q′

P |Q τ−→ (w)(P ′|Q′)

(RES)
P

α−→ P ′ y 6∈ n(a)

(y)P
α−→ (y)P ′

(OPEN)
P

x̄y−→ P ′ y 6= x w 6∈ fn((y)P ′)

(y)P
x̄(w)−→ P ′{w/y}

(REP-ACT)
P

α−→ P ′

!P
α−→ P ′|!P

(REP-COMM)
P

x̄z−→ P ′ P
x(y)−→ P ′′

!P
τ−→ (P ′|P ′′{z/y})|!P

(REP-CLOSE)
P

x̄(w)−→ P ′ P
x(w)−→ P ′′

!P
τ−→ ((w)(P ′|P ′′))|!P

Figure 1: SOS rules for the synchronous mini-π-calculus. PAR, COM
and CLOSE also have symmetric rules.

Another common way to describe the behaviour of a pro-
cess is a reduction semantics [9]. Instead of taking each
label into account, here we are only interested in the ac-
tual communication steps a πms process may perform. A
crucial part of this type of semantics is handled by struc-
tural congruence ≡R, the smallest congruence relation on
Tπms satisfying the following five rules:

1. Processes that only differ in the choice of bound names
are identified; this is known as α-conversion.

2. (Tπms
/≡R, |,0) is an Abelian monoid, i. e. (i) 0|P ≡R P ,

(ii) (P |Q)|R ≡R P |(Q|R) and (iii) P |Q ≡R Q|P , for all
P,Q,R ∈ Tπ.

3. !P ≡R P |!P .

4. (x)0 ≡R 0, (x)(y)P ≡R (y)(x)P .

5. If x /∈ fn(P ), then (x)(P |Q) ≡R P |(x)Q.

Definition 6. The reduction relation 7−→ ⊆ Tπms × Tπms

is the smallest relation satisfying the rules of Fig. 2.

(COM)
x̄z.P |x(y).Q 7−→ P |Q{z/y}

(PAR)
P 7−→ P ′

P |Q 7−→ P ′|Q
(RES)

P 7−→ P ′

(y)P 7−→ (y)P ′

(STRUCT)
Q ≡R P P 7−→ P ′ P ′ ≡R Q′

Q 7−→ Q′

Figure 2: Reduction semantics of the mini-π-calculus.

The following results show (1) that the labelled transition
relations are invariant under structural congruence (≡R),
and (2) that the closure under structural congruence of the
labelled transition relation restricted to τ -steps coincides
with the reduction relation — (2) stems from Milner [9].

Lemma 1. (Harmony Lemma [14, Lemma 1.4.15])

1. If P
α−→ P ′ and P ≡R Q then ∃Q′.Q α−→ Q′ ≡R P ′

2. P 7−→ P ′ iff ∃P ′′.P τ−→ P ′′ ≡R P ′.

3.2. The Asynchronous π-Calculus

A characteristic of synchronous communication, as used in
πms, is that sending a message synchronises with receiving
it, so that a process sending a message can only proceed
after another party has received it. In the asynchronous
π-calculus this feature is dropped, as it is not possible to
specify any behaviour scheduled after a send action.

Definition 7 ([3]). The asynchronous mini-π-calculus,
πma, consists of all processes in πms such that in each sub-
term of the form x̄y.P , P = 0.

Instead of x̄y.0, we just write x̄y. Since the asynchronous
mini-π-calculus is a subset of the synchronous one, we sim-
ply reuse the semantics defined above. πma is closed under
structural congruence (≡R), labelled transitions, as well as
reductions.

3.3. Equivalences

Here we present six behavioural equivalences for πms and
πma We start with the standard notion of early weak bisim-
ulation for labelled transition systems [14].

Definition 8. A symmetric binary relation R on π-pro-
cesses P,Q is a early weak bisimulation iff P R Q implies

1. if P
τ−→P ′ then aQ′ exists withQ

τ−→
∗
Q′ and P ′RQ′,

2. if P
α−→ P ′ where α=x̄z or x̄(y) with y /∈n(P )∪n(Q)

then a Q′ exists with Q
τ−→
∗ α−→ τ−→

∗
Q′ and P ′RQ′,

3. if P
x(y)−→ P ′ with y /∈ n(P )∪n(Q) then for all w a Q′

exists with Q
τ−→
∗x(y)−→ τ−→

∗
Q′ and P ′{w/y}RQ′{w/y}.

We denote the largest early weak bisimulation by ∼EWB.

Here y /∈ n(P ) ∪ n(Q) merely ensures the usage of fresh
names. A late weak bisimulation is obtained by requiring
in Clause 3 above that the choice of Q′ is independent of
w; this gives rise to a slightly finer equivalence relation.

3



A weaker approach does not compare all the transitions
with visible labels, for these are merely potential transi-
tions, that can occur only in certain contexts. Instead it
just compares internal transitions, together with the in-
formation whether a state has the potential to perform an
input or output over a certain channel. We treat the ca-
pability to read or write over a channel as a predicate of a
process. Such predicates are called barbs [8].

Definition 9. Let x, z ∈ N . A process P has a strong barb

on x, P↓x, iff there is a P ′ with P
x(z)−→ P ′. It has a strong

barb on x̄, P↓x̄, iff there is a P ′ with P
x̄z−→ P ′ or P

x̄(z)−→ P ′.

A process P has a weak barb on a (a ∈ {x, x̄ |x ∈ N}),
P⇓a, iff there is a P ′ such that P

τ−→
∗
P ′ and P ′↓a.

Combining the notion of barbs with the transfer property
of classical bisimulation for internal actions only yields
weak barbed bisimulation [8]. Here, two related processes
simulate each other’s internal transitions and furthermore
have the same weak barbs.

Definition 10. A symmetric relation R on π-terms is a
weak barbed bisimulation iff P R Q implies

1. if P↓a with a ∈ {x, x̄ |x ∈ N} then Q⇓a and

2. if P
τ−→ P ′ then aQ′ exists withQ

τ−→
∗
Q′ and P ′RQ′.

The largest weak barbed bisimulation is denoted by∼WBB.

By Lemma 1 this definition can equivalently be stated with
7−→ in the role of

τ−→.
In asynchronous weak barbed bisimulation [1], only the

names of output channels are observed. Input barbs are
ignored here, as it is assumed that an environment is able
to observe output messages, but not (missing) inputs.

Definition 11. A symmetric relation S on π-terms is an
asynchronous weak barbed bisimulation iff P R Q implies

1. if P↓x̄, then Q⇓x̄, and

2. if P
τ−→ P ′ then aQ′ exists withQ

τ−→
∗
Q′ and P ′RQ′.

The largest asynchronous weak barbed bisimulation is de-
noted by ∼AWBB.

We obtain a stronger equivalence if we consider not only
output channels but also the messages sent along them.

Definition 12 ([1]). A symmetric relation R on π-terms
is a weak oτ -bisimulation if R meets Clauses 1 and 2 (but
not necessarily 3) from Definition 8. The largest weak
oτ -bisimulation is denoted by ∼Woτ .

Amadio et al. strengthen this equivalence by adding a fur-
ther constraint for input transitions.

Definition 13 ([1]). A relation R is a weak asynchronous
bisimulation iff R is a weak oτ -bisimulation such that

P R Q and P
τ−→
∗x(y)−→ τ−→

∗
P ′ implies

• either a Q′ exists satisfying a condition akin to Clause
3 of Definition 8 [1], or

• a Q′ exists such that Q
τ−→
∗
Q′ and P ′ R (Q′|x̄y).

The largest weak asynchronous bisimulation is denoted by
∼WAB.

As a last equivalence we introduce an even weaker equiv-
alence than weak barbed bisimulation, that does not dis-
tinguish between input and output channels.

Definition 14. A process P can perform an action on
channel x, P ↓cx, if P

α−→ P ′, for some P ′, where α has the
form x̄y, x̄(y) or x(y). We write P ⇓c

x when a P ′ exists

with P
τ−→
∗
P ′ and P ′ ↓cx.

A symmetric relation R on π-terms is a weak channel
bisimulation if P R Q implies

1. if P ↓cx then Q ⇓c
x and

2. if P
τ−→ P ′ then aQ′ exists withQ

τ−→
∗
Q′ and P ′RQ′.

The largest weak channel bisimulation is denoted ∼WCB.

We thereby obtain the following hierarchy of equivalence
relations on π-calculus processes (cf. Fig. 3).

EWB

WAB

⊃

Woτ
⊃

WBB
⊃

⊃
AWBB

⊃

WCB
⊃

Figure 3: A hierarchy on semantic equivalence relations for π-
calculus processes, with separation lines indicating where the en-
codings discussed in this paper pass and fail validity.

4. Boudol’s Translation

In the previous section, we introduced syntax and seman-
tics of the synchronous as well as of the asynchronous
π-calculus. Furthermore, we picked several behavioural
equivalences under which we want to assess two transla-
tions between these process calculi. Boudol’s translation
TB : Tπms

→ Tπma
shall be the first [3]. The crucial task

is to implement synchronous communication in the asyn-
chronous calculus.

Suppose there is a πms-process able to perform a com-
munication, for example x̄z.P |x(y).Q. In the asynchronous
variant of the π-calculus, there is no continuation process
after an output operation. Hence, a translation into the
asynchronous π-calculus has to reflect the communication
on channel x as well as the guarding role of x̄z for P in
the synchronous π-calculus. The idea of Boudol’s encod-
ing is to assign a guard to P such that this process must
receive an acknowledgement message confirming the re-
ceipt of z. We write the sender as P ′ = (x̄z|u(v).P ) where
u, v 6∈ fn(P ). Symmetrically, the receiver must send the
acknowledgement, i. e. Q′ = x(y).(ūv|Q). Unfortunately,
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this simple transformation is not applicable in every case,
because the protocol does not protect the channel u. u
should be known to sender and receiver only, otherwise the
communication may be interrupted by the environment.
Therefore, we restrict the scope of u, and start by sending
this private channel to the receiver. The actual message
z is now send in a second stage, over a channel v, which
is also made into a private channel between the two pro-
cesses. The crucial observation is that in (u)(x̄u|u(v).P ∗),
the subprocess P ∗ = v̄z|P may only continue after x̄u was
accepted by some receiver, and this receiver has acknowl-
edged this by transmitting another channel name v on the
private channel u. Boudol’s translation from πms to πma

is defined by the following function (where u 6= v):

TB(0) = 0

TB(x̄z.P ) = (u)(x̄u|u(v).(v̄z|TB(P ))) u, v /∈ fn(P )∪{x, z}
TB(x(y).P ) = x(u).(v)(ūv|v(y).TB(P )) u, v /∈ fn(P )∪{x}

TB(P |Q) = (TB(P )|TB(Q))

TB(!P ) = !TB(P )

TB((x)P ) = (x)TB(P )

In the original definition, Boudol observed that 0 could be
dropped from the syntax of πma in favour of the constant
x̄z, and accordingly used TB(0) = (x)(z)x̄z.

The following lemma guarantees that the names u and
v used above do not occur in the translated terms TB(P )
and TB(Q) either.

Lemma 2. Let P ∈ Tπms . Then fn(TB(P )) = fn(P ).
Moreover, TB(P ){z/y} = TB(P{z/y}) for any z, y ∈ N .

Proof. A straightforward structural induction on P .

By construction, the encoding of Boudol is compositional.
As it makes use of intermediate steps (namely the acknowl-
edgement protocol), we must fail proving validity of the en-
coding up to semantics based on action labels, e. g. early
weak bisimulation.

Theorem 1. TB is not valid up to ∼EWB.

Proof. Let P = x̄z.0 and TB(P ) = (u)(x̄u|u(v).(v̄z|0)).
We present the relevant parts of the labelled transition
semantics:

x̄z.0

0

x̄z

(u)(x̄u|u(v).(v̄z|0))

(u)(0|c(v).(v̄z|0))

(u)(0|(d̄z|0))

(u)(0|(0|0))

x̄(c)

c(d)

d̄z

Here, the translated term may perform an input transition
c(d)−→ the source term is not capable of. Hence, the processes
are not equivalent up to early weak bisimulation.

Early weak bisimulation is too strong to prove the transla-
tion valid, as intermediate steps are taken into account by
the equivalence. Weaker equivalences such as weak barbed
bisimulation only compare the barbs of a process. Fortu-
nately, Boudol’s encoding keeps the original channel names
of a sending or receiving process invariant. Hence, a trans-
lated term does exhibit the same barbs as the source term.

Lemma 3. Let P ∈ Tπms and a ∈ {x, x̄ |x ∈ N}. Then
P↓a iff TB(P )↓a.

Proof. With structural induction on P .

• 0 and TB(0) have the same strong barbs, namely none.

• x̄z.P and TB(x̄z.P ) both have only the strong barb x̄.

• x(y).P and TB(x(y).P ) both have only strong barb x.

• The strong barbs of P |Q are the union of the ones of P
and Q. Using this, the case P |Q follows by induction.

• The strong barbs of !P are the ones of P . Using this,
the case !P follows by induction.

• The strong barbs of (x)P are ones of P except x and
x̄. Using this, the case (x)P follows by induction.

Before we prove validity of Boudol’s translation up to weak
barbed bisimulation, we further investigate the protocol
steps established by Boudol’s encoding. Let P ′ = x̄z.P
and Q′=x(y).Q. Pick u, v not free in P and Q, with u 6=v.
Write P ∗ := v̄z|TB(P ) and Q∗ := v(y).TB(Q). Then

TB(P ′|Q′) = (u)(x̄u|u(v).P ∗) | x(u).(v)(ūv|Q∗)
7−→ (u)

(
u(v).P ∗ | (v)(ūv|Q∗)

)
7−→ (v)(P ∗|Q∗)
7−→ TB(P )|(TB(Q){z/y}) .

Here structural congruence is applied in omitting parallel
components 0 and empty binders (u) and (v). Now the
crucial idea in our proof is that the last two reductions are
inert, in that set of the potential behaviours of a process is
not diminished by doing (internal) steps of this kind. The
first reduction above in general is not inert, as it creates a
commitment between a sender and a receiver to commu-
nicate, and this commitment goes at the expense of the
potential of one of the two parties to do this communi-
cation with another partner. We employ a relation that
captures these inert reductions in a context.

Definition 15 ([5]). Let ≡V be the smallest relation on
Tπma

such that

1. (v)(v̄y|P |v(z).Q) ≡V P |(Q{y/z}),
2. if P ≡V Q then P |C ≡V Q|C,

3. if P ≡V Q then (w)P ≡V (w)Q,

4. if P ≡R P ′ ≡V Q′ ≡R Q then P ≡V Q,

where v 6∈ fn(P ) ∪ fn(Q{y/z}).
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First of all observe that whenever two processes are related
by ≡V, an actual reduction takes place.

Lemma 4 ([5]). If P ≡V Q then P 7−→ Q.

The next two lemmas confirm that inert reductions do not
diminish the potential behaviour of a process.

Lemma 5 ([5]). If P ≡V Q and P 7−→ P ′ with P ′ 6≡R Q
then there is a Q′ with Q 7−→ Q′ and P ′ ≡V Q′.

Corollary 1. If P ≡V∗ Q and P 7−→ P ′ then either
P ′≡V∗Q or there is a Q′ with Q 7−→ Q′ and P ′ ≡V∗ Q′.

Proof. By repeated application of Lemma 5.

Lemma 6. If P ≡V Q and P↓a for a ∈ {x, x̄ |x ∈ N}
then Q↓a.

Proof. Let (w̃)P for w̃ = {w1, . . . , wn} ⊆ N with n ∈ N
denote (w1) · · · (wn)P for some arbitrary order of the (wi).
Using a trivial variant of Lemma 1.2.20 in [14], there are
w̃ ⊆ N , x, y, z ∈ N and R,C ∈ Tπma , such that x ∈ w̃
and P ≡R (w̃)((x̄y|x(z).R)|C) 7−→(w̃)((0|R{y/z})|C)≡RQ.
Since P↓a, it must be that a=x or x̄ with x /∈ w̃, and C↓a.
Hence Q↓a.

The following lemma states, in terms of Gorla’s framework,
operational completeness [6]: if a source term is able to
make a step, then its translation is able to simulate that
step by protocol steps.

Lemma 7 ([5]). Let P, P ′ ∈ Tπms . If P 7−→ P ′ then
TB(P ) 7−→∗ TB(P ′).

Finally, the next lemma was a crucial step in establishing
operational soundness [6].

Lemma 8 ([5]). Let P ∈Tπms
and Q∈Tπma

. If TB(P ) 7−→Q
then there is a P ′ with P 7−→ P ′ and Q ≡V∗ TB(P ′).

Using these lemmas, we prove the validity of Boudol’s en-
coding up to weak reduction bisimulation.

Theorem 2. Boudol’s encoding is valid up to ∼WBB.

Proof. Define the relation R by P R Q iff Q ≡V∗ TB(P ).
It suffices to show that the symmetric closure of R is a
weak barbed bisimulation.

To show that R satisfies Clause 1 of Def. 10, suppose
P R Q and P↓a for a ∈ {x, x̄ |x ∈ N}. Then TB(P )↓a by
Lemma 3. Since Q ≡V∗ TB(P ), we obtain Q 7−→∗ TB(P )
by Lemma 4, and thus Q⇓a.

To show that R also satisfies Clause 2, suppose P R Q
and P 7−→ P ′. Since Q ≡V∗ TB(P ), by Lemmas 4 and 7
we have Q 7−→∗TB(P ) 7−→∗TB(P ′), and also P ′ R TB(P ′).

To show that R−1 satisfies Clause 1, suppose P R Q
and Q↓a. Since Q ≡V∗ TB(P ), Lemma 6 yields TB(P )↓a,
and Lemma 3 gives P↓a, which implies P⇓a.

To show that R−1 satisfies Clause 2, suppose P R Q
and Q 7−→ Q′. Since Q ≡V∗TB(P ), by Corollary 1 either
Q′ ≡V∗TB(P ) or there is a Q′′ with TB(P ) 7−→ Q′′ and

Q′ ≡V∗ Q′′. In the first case P R Q′, so taking P ′ := P
we are done. In the second case, by Lemma 8 there is a
P ′ with P 7−→ P ′ and Q′′ ≡V∗ TB(P ′). We thus have
P ′ R Q′.

Since ∼AWBB and ∼WCB are weaker equivalences than
∼WBB, we obtain the following:

Corollary 2. Boudol’s translation is valid up to ∼AWBB

and up to ∼WCB.

We now know that Boudol’s translation is valid up to
∼AWBB, but not up to ∼EWB. A natural step is to narrow
down this gap by considering equivalences in between.

Theorem 3. Boudol’s translation TB : Tπms
→ Tπma

is
not valid up to ∼Woτ , and not not up to ∼WAB.

Proof. Consider the proof of Theorem 1. x̄z.0 sends a
free name along x while (u)(x̄u|u(v).(v̄z|0)) sends a bound
name along the same channel. Since ∼Woτ differentiates
between free and bound names, the transition systems of
x̄z and its translation are not ∼Woτ -equivalent.

5. Honda and Tokoro’s Translation

Honda and Tokoro translate between the same languages
as Boudol does [7]. Unlike Boudol’s translation, commu-
nication takes place directly after synchronising along the
private channel u. The synchronisation occurs in the re-
verse direction, because sending and receiving messages
alternate, meaning that the sending process x̄z.Q is trans-
lated into a process that receives a message on channel x
and the receiving process x(y).R is translated into a pro-
cess passing a message on x.

THT(0) = 0

THT(x̄z.P ) = x(u).(ūz|THT(P )) u /∈ fn(P )∪{x, z}
THT(x(y).P ) = (u)(x̄u|u(y).THT(P )) u /∈ fn(P )∪{x}

THT(P |Q) = (THT(P )|THT(Q))

THT(!P ) = !THT(P )

THT((x)P ) = (x)THT(P )

Again, this translation is compositional. As in the case
of Boudol’s translation, Honda and Tokoro’s translation is
not valid up to equivalences based on action labels:

Theorem 4. Honda and Tokoro’s translation THT is not
valid up to ∼Woτ , ∼WAB or ∼EWB.

Proof. By the counterexample x̄z.0, as for Theorem 1.

So again we have to use variants of barbed bisimilarity.
However, the choices of ∼AWBB or ∼WBB, that worked for
Boudol’s translation, bear no fruit here.

Theorem 5. Honda and Tokoro’s translation THT is not
valid up to ∼AWBB, and thus not up to ∼WBB.
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Proof. Let P = x̄z.0. Then P↓x̄. The translation is
THT(P ) = x(u).(ūz|0) and THT(P )6 ⇓x̄.

One equivalence remains, namely weak channel bisimula-
tion which does not distinguish between input and output
channels. Actually, we introduced ∼WCB as a rather weak
equivalence after we had proven that Honda and Tokoro’s
encoding is not valid up to one of the original equivalences.

Theorem 6. Honda and Tokoro’s translation THT is valid
up to ∼WCB.

The proof is similar to the one of Theorem 2. Here we use
that Lemmas 7 and 8 also apply to THT [5] and Lemma 3
now holds with ↓cx in the role of ↓a.

6. Conclusion

We evaluated the concept of a valid translation between
two languages, introduced by one of the authors [4]. The
two translations we examined were developed by Boudol
and by Honda and Tokoro. Both translate from the syn-
chronous into the asynchronous mini-π-calculus. Honda
and Tokoro translate an output action into a construct
that first performs an input action on the same channel
and vice versa, while Boudol’s encoding leaves the roles of
sender and receiver names untouched.

We instantiated the concept of validity from [4] with six
behavioural equivalences. Fig. 3 summarises the results.

In order to prove the validity of Honda and Tokoro’s
translation, we had to use the novel weak channel bisimu-
lation that does not distinguish between input and output
channels. Boudol’s encoding withstands a stronger equiva-
lence, namely weak barbed bisimilarity. Hence, Honda and
Tokoro’s encoding can be regarded as weaker than the one
of Boudol. Whether Boudol’s encoding is to be preferred,
because it meets stronger requirements/equivalences, is a
decision that should be driven by the requirements of an
application the encoding is used for.

We only used weak equivalences, abstracting from τ -
steps. The reason is that both translations implement a
protocol with additional transitions, and thus are not valid
up to strong equivalences.

A translation for further study would be Nestmann’s
encoding of the π-calculus with separate choice into the
asynchronous π-calculus [12]. One could also try to state
Palamidessi’s separation result [13] in the current frame-
work. It states that the π-calculus with mixed choice is
strictly more expressive than the one with separate choice.
After choosing an appropriate weak equivalence, it must be
proven that there is no valid encoding from π with mixed
choice into the π-calculus with separate choice.

Finally, we remark that translations are only compara-
ble if their correctness or validity is proven using the same
criteria. It is not useful to establish a specific set of criteria
for each translation. Consequently, the use of general ap-
proaches like the ones by Gorla or the one used here leads
to comparable results on expressiveness of process calculi,
positive as well as negative ones.
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